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UNIT 1: PROBABILITY SPACES, MEASURE AND DISTRIBUTIO N   
 

1.0 INTRODUCTION    

This Unit Focuses an Probability spaces, probability measures and 

probability distribution for continuous random variables. It gives some basic 

definition and relevant working examples will be given to make the concept 

more meaningful for the learners.    

 

1.1  OBJECTIVES. 

At the end of this unit, student should be able to: 

• Understand the meaning of probability space and its notation. 

• Define Sample space and event, and Event Space.  

• Discuss Probability Measure and State its Theorems. 

• Discuss Probability Distribution for Continuous Random Variables. 

 

1.2 PROBABILITY  SPACE  

A Probability Space is a triplet Finite measure space (Ω, ∧ ,  P[ . ] ) Where  

Ω  is a sample space and each  w∈ Ω  is  called  a  sample  point, and ].[Ρ is 

a  function that  has  ∆   as  its  domain  that is  a  single  term  that  gives  us  

an  expedient  way  to  assume  the  existence  of  all three  components in its  

notation. 
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1.3 SAMPLE  SPACE  AND  EVENT  

 Definition of Sample  Space : 

 The sample  space  denoted  by Ω ,  is  the  collection  or  totality  of  all  

possible outcomes of  a  conceptual experiment.  

In addition to sysbolsothertheareAandERZS µ,,,Ω  to denotes 

sample space.  

Event:  An event is a subset of the sample space.  

Event  Space: The  class  of  all events associated   with  a  given experiment 

is  defined  to  be  the  event spaces.  

 

1.4 PROBABILITY MEASURE 

A  probability  measure  is a  normed non-negative,  countable  additive  set  

function  defined  on the  field of  all events.  

Definition:-  A  probability  measure  P on  a  σ -field of subset  A  of set Ω   

is a real -valued  function having domain A  satisfying the following  

properties  

(i). 1)( =ΩΡ                 

(ii). ∆≥Ρ εAallforA 0)(  
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(iii) If int...................,2,1, disjomutuallyarenn =Α  ,Λinsets  

).()( AnUAnthen ΡΣ=Ρ  

 A probability space, denoted by  ( ).,, ΡΑΩ    

)( ABΡ is a  conditional  probability measure on Ω  

We say  that ( )Pngconditionibyobtainedspaceobabiltytheis ∧ΩΡ∧Ω Pr),(   

by   the event B.  

If  an  event Β  depends  on  occurrence of  event  thenor 21 ΑΑ   

( ) ( )2221

21

/)/()(

)()()(

ABPAP+ΑΒΡΑΡ=
Α∧ΒΡ+Α∧ΒΡ=ΒΡ

 

In general, if an event Β depends on occurrence of events  

,........................,, 21 ∧ΑΑΑ   then  

( )AiBPAi

i

i

n
i

/)(

)()(

Ρ=

ΑΒΡ=ΒΡ

∑

∑
∧

∧

 

1.5 Theorem:  let ),,( Ρ∧Ω  be  a  probability space  then  

 ),,( ΒΡ∧Ω   is  also  a probability  space.  

 Proof:  

  PB   (A) = ;
)(

)(
O

BP

BAn
p

≥  

  PB  (Ω )  = ( )
( ) 1=Ω
BP

nBP  



 8 
 

Let A1, A2……… be disjoint event in  ,I   then  

   

[ [ [ ]

 
)(

)(

)(
)( 1

B

AinB

B

nBAi
BUAi

Ρ
Ρ

=

Ρ
=Ρ

∞

U

U

 

Since (AlnB), I = 1, 2 …………….. are disjoint  events,  we  have  

U
∞ ∞

∑=
1 1

)()( AiPAp iB B and so PB  is  countably additive.  

Hence ( ),, BP∧Ω  is  probability  space   

Lemma  

Let [ ]An be a  sequence of independent  measurable  sets  

(i) If ∑ )(AnP   ∞∠  then  P ( O.A i =)  

(ii)  If  ∑
∞

∞=
1

)( nAP  then  P (A.)  = 1 

where  A1   
 = Lim sup An  

Proof :  

(i) A = mAUnA
nm =

⊆∩ U  

U
∞

=

=
nm

havewecreasesinnasdecreasebSince ,  

( ) ( )∑
∞

=

∞

=

≤






≤
nmnm

AmPAmPAP U  
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Since  ∑ ∞∠ thenPn ,  

( )∑
∞

=∞→
=

nmn

AmPiml 0   

( )

( )(∑∏

∑
∞

=

∞

=

∞

=

∞

=

∞

=

•

=−=











≤









=

mn mn

mn

m
c

n nm

m
c

AmP

APAAPiii

01

)(
1

IU I
  

Hence   

P(A)   =1  

1.6 PROBABILITY DISTRIBUTION 

Definition :- Let  x  be  a   random  variable  whose image  set  (s) is a  

continuous numbers  such as  an  interval.  Then the set 

 
.Sineventanisbxa ≤≤
         

The probability  
asdefinedbxa )( ∠<Ρ

   

   ∫=<<Ρ
b

a
xdxfbxa )()(  

Is  called  continuous random  variable,  the  function f  is  called  the  

distribution or  continuous probability  function  or  density faction of  X  

and  it  satisfies the  following   

i.   0)( >Xf         

ii ∫ ==
R

baRwheredxxf )(1)( 1  



 10 
 

iii.  )(xf is a  non -  decreasing  function  

iv. ∫ <<=−=
b

a
bxapafbfdxxf )()()()(  

for  example, if  x  is a  random  variable  defined  to  take  any  value  in 

interval (0,1) if a  point is  taken  in  this  interval  say  0.45,  the  probability  

that  a  point  picked  is   

0
1

intint

1

int

1
)45.0(

=
∝

=

=

==

ervalthebtwspoofNo

spoUncountale
xP

 

But  it is  easier  to  find  the  probability of a  sub-interval within an  

interval,  it is  possible  to  calculate  per .)45.0( etcx ∠    

The  pr )45.0()45.0( toOlenghtprx =∠  

        =    
lenghtTotal

LenghtgiventheofRatio  

Similarly  

LenghtTotal

xx
xxx

12

21 )(Pr
−

=∠∠   
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Example 1.6.1  :-  Given  the  figure  below 

           

           

           

           

           

            

 

Find  the   probability of  the  shaded portion.  

Solution: 

Pr (Shaded  portion)  = 
ABCofArea

CDEofArea

∆
∆     

Example  1.6.2 : - The   length  of  life  measure  in hours  of a  certain  rare  

type  of  insect is a  random,  reliable x  with  portability density  function  

( )




 <<−

=
eelesewtherO

xxx
xf O 2024

3
)(

20

     

If  the  amount  of  food  measured  in milligrams  consumed  in a  life time 

by such an insect defined by the function  ( ) 2xxg = , 

,, hoursinmesasuedlifeoflenghttheisxwhere  find the  expected  amount of  

food  that  will  be  consumed by  an  insect  of  this  type.  

 

D 

A 

E 

D 
C 
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Solution 

Expected  amount  of  food =  [ ])(xgE    

= ∫−
2

00
)()( dnxfxg     

   =∫ −
2

0

22 )2(4
3( dxxxx  

    mg2.1=  

Example  1.5.3:-  Given  a   continuous  random  variable with the  

probability distribution  function      

10)( 2 ≤≤= ∫ xOkxxf O  

        O             elsewhere 

Find k such that f (x) is then Pdf 

   Solution 

 If  F (x) is a Pdf,  ∫ =
1

0
1)( dxxf  

  ∫ ∫= xdxKdxxf 2

0

10)(  

  = 1
3

)0(

3

)10(

3

)3 33
0

10

=−= kk
Kx

 

            1)010(
3

03 =−= k  

1
3

1000 =K  
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1000

3=k  

 

1.7  CONCLUSION  

In  this unit, you  have learnt  probability  space, the  notation of  its  

components,  the  definition of  sample  space, event  and  event  space.  

You  also  learned  probability measure  and  its  main  probabilities  related  

theorems. You  also  learned  probability  distribution of a  continuous 

random  variables  with  relevant   working  examples.  

 

1.8 SUMMARY  

 What you have learned in this unit are the following probability  distribution  

concepts.  

i. The  meaning  of  probability  space  and  its  notation  

ii. Important   definition  of  sample  space, Event and  event  space .  

iii. Probability measure  and  its  properties  

iv. Part  of  probability  distribution  of  a  continuous random  variables  
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EXERCISE 1.80.1  (SAE)                   

The surface  area measured in squaremeter of a flat metal disk  manufactured  

by a certain process is a random variable x with probability density  

function. 

∫ ∠∠−=
dscuhere

xOxxxf 1)(6)(
0

2           

Find the  expected  radius  measured in  meter of a flat metal disk  

manufactured  by  this  process.  

 

1.90.  TUTOR  MARKED  ASSIGNMENT (TMA) 

Exercise  1.8.1:  The  probability  function  of a   random  variable  x  is  

given by  













=
=
=

=

otherwise

xp

xp

xp

xf

0

34

2

12

)(  

Where P is  a   constant  find  

).1()(,)30()( ><≤ xPbxPa   
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UNIT 2:   DISTRIBUTION OF  RANDOM  VARIABLES  SPACE S   

2.0  INTRODUCTION         

This unit   concerns  with  the  meaning  and  classification of  random  

variables  into  discrete and continuous random variables are high lighted, 

distributive functions for discrete and continuous random variables and 

related examples are also given. 

The unit further high light Graphical representation, Joint distribution for 

discrete and continuous random variable , Independence and Conditional 

probability of random variables and working example on each are given. 

 

2.1 OBJECTIVE 

At the end of this unit student should be able to, 

- Understand the meaning of random variables. 

- Classify random variables into discrete and continuous random variable 

with example. 

- Define and state the properties of distribution function. 

- State the distribution function for discrete and continuous random 

variables and solve example on each. 

- Show the graphical representation of random variables. 
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- State the joint distributions for two random variables which are either 

both discrete or both continuous. 

- State the independent of random variables for independent and 

dependent events. 

- State the conditional probability function for discrete and continuous 

random variables. 

- Solve related problems on the distribution of random variables spaces. 

 
2.2 RANDOM VARIABLES 

A random variable is a function whose domain of definition is the simple 

space S of a random experiment and whose range is a set of real numbers. 

Definition 2 

A real valued measurable function 

( )Ρ∧Ω→Ω ,,: torespectwithRX   

Is called a random variables. 

Note:  

Suppose { }ηX  is a sequence of random. Variable  

If  isXthenXnX
n

,lim =
∞→

 Random  variable 
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Example :  suppose   that  a  coin is  tossed  twice  so  that the  sample  space   

( theentrepsesXletTTTHHTHHS ).,=  number  of  heads  that  can  come 

up.  For example 0)(,1)()(,2)( ==== TTXTHXHTXHHX  

Since the domain of andSisX the range consists of real numbers, 

them x  is  a   random variable.  

A  random  variable  that takes on a finite or  countably infinite  number  of  

values  is  called  a  discrete  random  variable.  While  the one  which  takes  

a  non countable  infinite  number  of  values is called  a  nondiscrete /  

continuous random  variable.  

 

2.3  DISCRETE PROBABILITY DISTRIBUTIONS  

Let  X be  a   discrete   random  variable,  and  suppose  that the  possible  

values  that it  can  assume  are  given  by ,..............................,,, 321 xxx   

arranged  in some  order.  Suppose  also  that   these  values  are   assumed  

with  probabilities  given by  

)1......(..........,2,1)()( === KxfxXp kk   

It is  convenient to  introduce the  probability  function, also  suffered to  as  

probability  distribution, give  by  

)2.........(..................................................)()( xfxXP ==      
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For  ,xkX =  this  reduces  to  equation given  above  while  for  other  

values  of .0)(1 =xfX   

In  general, functionprobablityaisxf )(  if    

1. 
0)( ≥xf

 

2 ∑ =
x

xf 1)(  

Where  the  sum in equation (2)  is taken   over  all  possible  values  of x   

 

2.4 DISTRIBUTION FUNCTION FOR  RANDOM VARIABLES  

   The  cumulative  distribution  function,  or  briefly  distribution  function 

for  a  random  variables  X is  defined by  

  )()( xXPxf ≤=   

Where x is  any  real  number, that is  

    ∞∠∠∞− x    

The  distribution  function  hasxF )( the  following  properties:  

1. )(xf is  non  decreasing [ )yxifyfxfie ≤≤ )()(,    

2. 1)(lim;0)( ==
∞→∞→

xfxFiml
x η

 

3. .)(lim)( 






 +
∞

xalforhxfierightfromthecontinousisXf
ης
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2.5  DISTRIBUTION  FUNCTION FOR  DESECRATE  RANDOM 

VARIABLES    

The  distribution  function for  a   discrete random  variable  x  can  be  

obtained   from  its  probability  function  by  noting  that,  for  all  

)()()(

),,(

xfxXPxp

inx

v η≤
Σ=≤=

∞∞−
    

Where  the  sum  is  taken  over  all  values µ   taken on  by  X  for   which  

x≤µ  if X takes on only a finite numbers of values 

,.......................2, 11 xnxx then  the   distribution  function is  given by  

[ )
[ )











∞∠≤+−+

∠≤+
≤≤

<<∞−

nnn xxxFxF

xxxxfxf

xxxxf

xx

xF

)(

()(

)(

0

)(

1

2221

211

1

η

   

Example  2.5.1:- find  the  probability  function  corresponding to  the  

random  variable  x  when  a  coin  is  tossed  twice;  assuming  that the  coin  

is  fair.  

Solution  

4
1)(

4
1)(,4

1)(,4
1)(

=

===

TTPand

THPHTPHHp
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2

1
4

1
4

1

)()(1(
4

1)()0(,

=+=

+==

===

THPHTPXP

TTPXPThen

  

4
1)()2( === HHPXP   

The  probability  function is  given  in the  table  below  

 

x 0 1 2 

)(xf  
4

1  2
1  4

1  

 

Example  2.5.2  =  (a)  find  the  distribution  for  the  random variable X  

from  the  working  example  above (b)  obtain  its   graph   

Solution:  

The distribution function is  





























=++∠∞≤

=+∠≤

=∠≤

∠∠∞−

=

14
1

4
1

2
1sin21

4
3)()(sin214

3
4

1)(sin104
1

sin00

)(
21

1

cex

xfxfcex

xfcexx

tablethecex

xf
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































=++∠∞≤

=+

=+∠≤

=∠≤

=∠∠∞−

14
1

4
1

2
1sin21

4
3

2
1

4
1

4
3)()(214

3

4
1

)(sin104
1

0sin00

)( 21

1

1

cex

ie

xfxfsiencex

xfcex

tableabovethefromxcex

f η  

 

b.  

)(xf  

0
4

1

2
1

4
3

1

            

 

 

The following things about the above distribution function should be 

noted.  

1.  The  magnitudes of the  jumps  at  0, 1, 2  are ¼ , ½ , ¼  which  

are  precisely  the  probabilities  ie  this  fact  enables  one  to  

obtain the probability function  from the   distribution  function.  

4
13  

½  

      1     2              x  
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2. Because  of the appearance of the graph  it is  often  called  a  staircase  

function  or  step   function, and  the  value   at the function at  an  

integer is  obtained  from  the  higher  step;  thus  the  value  at  I  is  ¾  

and  not  ¼ . This is  expressed  mathematically  by  stating  that  the  

distribution  function  is  continuous from the  right  at 0,1,2.   

3. As  we  proceed from  left  to right in the distribution function is  

monotonically  increasing  function.  

 

2.6 CONTINUOUS  RANDOM  VARIABLES   

A  non discrete random  variable  x  is   said  to   be  absolutely  continuous, 

or  simply  continuous,  if  its  distribution  function   may  be  represented as 

)()()(( 1 ∫
∞−

∞∠∠∞−=≤=
x

xduufxXPxf  

   Where  the  function  sproapertiengthefollowihasxf )(      

1. 0)( ≥xf   

2 ∫
∞

∞

= 1)( dxxf   

It  follows  from  the  above  that if  X is a  continuous  random  variable, 

then, the  probability  that  X  takes on only  one  particular  value  is   zero, 

whereas  the  interval  probability  that X  lies  between  two  different  

values  say  a  and  b  is  given  by  
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∫=∠∠
b

a

dxxfbxap )()(   

Example  2.6.1   (a)  find  the   constant  C   such  that the  function  

( )


 ∠∠=

otherwise

xcx
xf

0

302

 

Is a   density function, and   

b.  Computer  )21( ∠∠ xP  

 

Solution  

Since )(xf   stratifies  property (2) if ,0≥C  it  must  satisfy  property  2  in  

order  to  be  a  density  function  

  

C
C

C
C

Cx

dxcxdxxfNow

9
3

0

3

27
3

)0(

3

)3(

3

)(,

3

0

3
3

3

0

2

=−=

−=

=

=∫ ∫
∞

∞

  

And since the   integral equal to 1, we have 9C = 1  

            C =  1/9 

b. ∫=∠∠
2

1

2

9
1)21( dxxxP   
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( )

27

7

27

1

27

8
27

)1(

27

2

27

33
2

1

3

=−=

−== ∫
x

 

 

2.7 GRAPHICAL REPRESENTATIONS OF RANDOM VARIABLE   

If )(xf is  the  density function for random variable x , then we can  

represent  y = f  (x) graphically by a curve  as  shown  in  the  figure  below.   

Since  ,)( Oxf ≥ the  curve  cannot   fall  below  the  x-anis  the  entire  area  

bonded  by the  curve  and  the  x-anis  must  be  I  because  of  the  second  

property  i.e ∫
∞

∞
= )1)( dxxf .  

Geometrically the probability  that  x  is  between a  and  b, i.e ),( bxap <<  

is  the  represented by the area shown  shaded  from  the  first  figure  below   
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The  destitution  function )()( xXpXF ≤=   is a  monotonically  increasing  

function   which  increases  from  0 to  a 1   and  is   represented  by a   curve 

as  in  the  second  figure.    
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2.8 JOINT DISTRIBUTIONS  

Joint distributions can easily be generalized to two more random variables. 

We shall consider the typical case of two random variables that are either 

both discrete or both continuous.  

Discrete case: - If x and Y are two discrete random variables, we define the 

joint probability function of x and y by  

( ) ),(, yxfyYxXP ===  

Where  (1) f ( Ox ≥), γ  

  (2)  ∑∑ =
x y

yxf 1),(  

i.e the sum  over  all values of 1isyandx  

Suppose that x can assume any one of m values mxxx −−,2,1  and y can 

assume any none of n values y1, y2, - - yn. 

Then the probability of the event that x = xj and y = Yj is given by  

   P(x = xj,  Y = yk) = f ( ), kyjx  

A joint probability fraction for x and y can be represented by a joint 

probability table as shown below 
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Y
X  Y1 Y2 --------- Yx Total 

X1 F( ), 11 yx  F(x1y2) --------- F( )) 11 xyx n  F1( )) 11 xyx n  

X2 F(x2y1) F( ), 12 yx  --------- F( ),2 nyx  F1   (x2) 

      

Xm F(xmy1) F(xmy2)  F(xmyn) F1 (xm) 

Totals→  )( 12 yf  )( 22 yf  ------- f2 (yn) 1 

 

The  probability that  xjX = is  obtained  by  adding  all  entries in the  row  

corresponding  to  ix   and is  given  by  

∑
−

===
2

1
1 )()()(

k
jj kyxjfxfxP η  

For J =  1, 2 -------------- m,  these  are  indicated  by  the  entry  totals  in the  

entrance  right hand  column  or margin  from  the  table  above  similarly 

the probability that Y= yk is obtained  by  adding  all  entries in  the  column  

corresponding  to yk  and is  given by  

∑
=

===
m

j
k ykxjfyfykYp

1
2 ),()()(      

For ,...,....................,.........2,1 nk = these are  indicated  by the  entry  totals  in 

the  bottom  row  or  margin  of  the  probability  table  from  the  two  

equations  given  above  )()(1 2 ykfandxjf or   simply )()( 21 yfandxf  



 29 
 

which  are  obtained  from the  margin  of the  table  are   refer  to  as   the  

marginal  functions  of  X  and y,  respectively  it  should  be  noted  that  

∑∑
∧

==

==
1

2
1

1 1)(1)(
k

k

m

j

yfxif   

 Which  can  be   written  as  follow  

∑ ∑
= =

=
m

j K
kyxjf

1 1

1),(
η

 

This  is   simply  the  statement  that  the  total  probability  of  all  entries  is  

1.  the  grand  total  of  1  is  indicated in the  lower  right – hand   of  the  

probability  table.  

The joint distribution function of x and y is defined by 

)(),()1( 1 ν
νηµ

xfyyxxPyxf
y

∑∑
≤≤

=≤≤=   

In the probability table f ( ), yx  is the sum of all eateries for which x j  ≤  x  

and yk  .y≤  

 
CONTINUOUS CASE: 

The case where both  variables are continuous is obtained easily by analogy 

with the discrete case on replacing sums by integrals thus the joint 

probability function or joint density function  for random variables x and y is 

defined by  

(1) f ( Oyx ≥),  
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(2)  1)( 1 =∫∫
∞

∞−

∞

∞−

dydxyxP  

Graphically ),( yxf=Ζ    represents a surface called the probability 

surface as indicated in the figure below. The total volume bounded by 

this surface and the xy plane is equal  to 1 in accordance with property 

2 above. The probability that x lies between a and b while y lies 

between c and d is given graphically by the shaded values of the 

figure below and mathematically by 

P(a dxdyyxfdycbx
d

cy

b

aX
∫∫

==

=∠∠∠∠ ),(),   
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More generally, if A represents any event, there will be a region RA of 

the yx  plan that corresponds to it. In such case we can find the 

probability of A by performing the integration over RA i.e  

P (A) = ∫
RA
∫ ))( 1 dxdyyxf  

The joint distribution function of x and y in this case is defined by  

 F ( dvduvufyYxXpyx
y

v

),(),(), ∫∫
∞−=∞−=

=≤≤=
η

µ

 

It follows in analogy with equation  

 ,)(
)(

xf
xd

xFd =  

 
dyx

F

∂
∂2

= f (x,y) 

That is density function is obtained by differentiation the distribution 

function with respect to  yandx  from the joint distribution equation 

given above to obtain  

P (x dudvvufxFx
v

x

v

),()() 1 ∫∫
∞−=−∞=

==≤
η

 

 P (y dudvvufyfy
y

v

),()() 2 ∫∫
∞−=

∞

∞−=

==≤
µ

 

The two equation above are called the marginal distribution functions or 

simply the distribution function of x and y respectively.  
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The derivative of the equations with aspect to  yandx  are then called the 

marginal density functions or simply the density functions, of x and y which 

are given below  

F1 ( duyufyfdvvxfx
uv

),()(),() 2 ∫∫
∞

∞−=

∞

∞−=

==  

 

2.9 INDEPENDENCE OF RANDOM VARIABLES  

Suppose that  x and y are discrete random variables. If the events X = x and 

Y = y are independent events for all ,yandx  then we say that x and y are 

independent random variables. In such case, 

 P (X = )()(), yYpxXpYx ==== γ  

Or equivalently  

 f( )()(), 21 yfxfyx =   

Conversely, if for all yandx  the joint probability function f ( )1 yx  can be 

expressed as the product of a function of x  alone and a function of y alone 

(which are then the marginal probability function of X and Y) X and Y are 

independent. If however, f ( ), yx  cannot be so expressed, then X and Y are 

dependent. If X and Y are continuous random variables, we say that they are 

independent random variables if the events X yYandx ≤≤  are 

independent events for all x and y. In such case we can write  
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P (X  )()(), yYpxXpyYx ≤≤=≤≤ or equivalently 

 F ( )()() 211 yFxFyx =  

Where f1 ( )() 2 yfandx η  are the (marginal) distribution functions of X and 

Y, respectively conversely, X and Y are independent random variables if for 

all ,yandx   their joint distribution function  F (x,y) can be  expressed as a 

product of a function of x alone and a function of y alone (which are the 

marginal distribution of X and Y respectively)  

 

If however, f ( ), yx  cannot be expressed, then x and y are dependent. For 

continuous independent random variables, it is also true that the joint density 

function f (x,y)  is the product of a function of x alone, f1 (x)  and a function 

of y alone, f2 (y) , and these are the (marginal) density functions of x and y, 

respectively.  

 

2.10   CONDITIONAL DISTRIBUTIONS  

We already know that if p (A) ,O>  

 P(B/A)  = P (
)(

)

AP

AnB  

If x and  y are discrete random variables and we have the events (A: x =)x  

( ),: yYB =  the above equation becomes  
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 ( )
)(

),(

1 xf

yxf
xXyYP ===  

Where f ( ),(), yyXxPyX ===  is the joint probability fraction and f1 (x) is 

the marginal probability function for x. 

F(y
)(

)(
)

1

1

xf

yxf
x =  

And call it the conditional probability function of Y given X. Similarly, the 

conditional probability function of X given Y is  

F (
)(

)(
)

2

1

yf

yxf
yx =  

We can also denote 

 lyrespectiveylxfandxlyfbyxyfandyxf ill )()()()( 2 these  ideas  can  easily 

be  extended  to the  case  where  X, Y  are  continuous  random  variables.  

For example the conditional densityf unction of Y given X is  

)(

)(
)(

1

1

xf

yxf
ylf =η  

Where ),( yxf  is  the  joint  density  function of )(, xfandyandx i  is  the  

marginal  density  function of x  .  Using  the equation   above we  can  find  

the  probability  of y  being  between  c  and  d  given that dxxXx +∠∠  is  

( ) =+<<<< dxxXxdYcP = ∫
d

c
dyxyf )(  
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Example 10.1  

2: 101  A  random  variable  x   has  the  density  function  

.,
)1(

)(
2

∞<<∞−
+

= xwhere
x

C
xf   

a. Find  the   value  of the  constant  C  

b.  Find the probability that X2  lies  between  1/3   and  1  

Solution 

c.   We must have ∫
∞

∞−
= 1)( dxxf   ie  

   

∏=

=∏=

=














 ∏−−∏=

−=
+∫

∞

∞− ∞−

∞

1

1

1
22

1tan
12

C

C

C

xCdx
x

c

 

     

b. orxeitherthenxIf ≤≤≤≤
3

3
,1

3

1 2   

  
3

3
-x1 ≤≤−  

Thus  the  required  probability  is  
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6

1

64

2

)
3

3
(tan)1(tan

2

1

2

1

1

1

1

11

1

3
53 2

3
53

1

1

3
53 22

=






 ∏−∏
∏

=






 −
∏

=

+∏
=

+∏
+

+∏

−−

−

− ∫∫ ∫

J

x

dx

x

dx

x

dx

  

Example 2:10:2  

2: 102 find  the   distribution  function  corresponding  to  the  density  

function  of  the  example  2:10:1  given  above.  

Solution :  

∫ ∫∞ ∞ +∏
==

u

u

du
duufxf

µ

1

1
)()(

2  

  
−∞

∞

−







∏
= ∫

x
u1tan

1
 

  [ ])(tantan
1 11 −∞−
∏

= −− x  

 

 xx 11 tan
1

2

1

2
tan

1 −−

∏
+=







 ∏+
∏

=  

Example   2:10:3   

2: 10:3  The  distribution  function  for a  random  variable  x  is  



 ≥−= −

0

2 0)(
0

1

η

µ xexf  
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Find  (a)   the  density   function   (b)  the   probability  that  x  >  2   and   (c)  

the  probability  that 43 ≤∠− x   

Solution :  

a . x

x

exexf
dx

d

xwhenexf

22

2

2)2(0)((

01)(

−−

−

=−−=

≥−=
 

 




<
≥−

==>
00

022
)()(2

x

xxe
xf

dx

d
xf  

. 
44

2 2

22

)(2

2)2()(

−−

∞ ∞−−

=+−=

∞−−=

−==> ∫

ee

e

edxexpb

oe

µη

 

c. ∫ ∫
∫

− −

−

−−=−−=

+
==≤<−

4

3 3 84

4 2

12

2
)()43(

o

o

o

exe

dxedxo
dxxfxp

µ

 

OR  )3)4()43( −≤−≤=≤<− xPxPxp  

   
8

8

1

)()1(

)3()4(

−

−

−=
−−=
−−

e

o

PP
e  

Example  2:10:4  The  joint  probability  function  of  two  discrete  random  

variable  X  and Y - 1  is  given  by canyandxwhereyxCyxf ),2(),( +=  

assume  all  integers  such  that  

othewiseoyxfandyoxo =≤≤≤≤ ),(,3,2  

a. find  the  value  of the  constant  C  
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b.    Find   p  (x  = 2, y  =  1).   (c)  find   p   (x  >1,  y < 2 

Solution:  

The  sample  points  ), yx  for  which  probabilities  are   different  from  zero  

are  indicated  below  

x
y  0 1 2 3 Totals  

0 0 C 2c 3c 6c 

1 2c 3c 4c 5c 14c 

2 4c 5c 6c 7c 22c 

Totals  6c 9c 12c 15c 42c 

 

The  probabilities  associated  with  these  points, given  by C  ),2( yx +  are  

shown  in the  table  above  

Since  the  grand  24C must  equal  to 1  i.e  42 C = 1  

       42
1=C  

b. P  (x  =  2  ,  Y =  1)  =  
totalgrand

yxF
xC

)(
)1)22( 1++  

42

5
5

42

5
5

+=

+

c

c

c
c
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c. ( )∑ ∑
≥= ≤

=≤≥
1 2

,)2,1(
x y

yxffyxp  

 
7

4

42

24
24

)654()432(

===

+++++=

c

cccccc
 

Example 2:10:5   Find  (a)  ),2(yf  

  ondistributitheforxypb 21()( ==  

Find  the   example  2:10:4  above  

 Solution  

Using  the   results   from  the  above  example  

  
)(

42/)2(

)(

),(
)(

11 xf

yx

xf

yxf
xyf

+==   

So that  with 2=x  

  
4211

214

21
11

42/)4(
)2(

x

xyy
yf

+=+=  

 22

4 y+=
 

(b)

22
5

22

14
)21()21(

=

+==== fxyp
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2.11  CONCLUSION  

In this unit, you studied random variables and classification, distributive 

functions for discrete and continuous random variables.  You also learned 

Graphical representation and joint distribution for discrete and continuous 

random variables.  

Independence and conditional probability of random variables and related 

working examples are also learned from this its  

 

2:12  SUMMARY 

In this unit distribution of random variables spaces that you studied included  

(1) Meaning of random variables and its classification. 

(2) Distribution functions for discrete and continuous random variables. 

(3) Graphical representation of random variables  

(4) Joint distribution for discrete and continuous random variables. 

(5) Independence and conditional probability of random variables 

(6) Worked examples on each concept of random variables. 

 

Exercise 2.12 .1   (S A E) 
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Suppose that a pair of fair dice are to be tossed, and let the random 

variable x denote the sum of the points. Obtain the probability 

distribution for x. 

 

2.13 TUTOR MARKED ASSIGNMENT (TMA) 

Exercises  2.131.  The joint density function of two continuous random 

variables x and y is  

( ) {


 ∠∠∠∠

=
otherwise

yxoyxC
yxf

0

51,4
,

 

Find the value of the constant c 

(a) Find P ( 1 )32,2 ∠∠∠∠ YX  

(b) Find p (X ).2,3 ≤≥ Y  

 

2.14 REFERENCES/ FURTHER READING / OTHER RESOURCES 

Marry R Spiegel etal (2009) probability and statistics third edition 

published by mc craw hill   
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UNIT 3 EXPECTATION OF RANDOM VARIABLES. 
 

3.0  INTRODUCTION. 

This is a very important concept in probability and statistics. The unit 

will forcusses on mathematical expectation of random variables. 

Expected value for discrete and continuous random variables are stated.   

Variance and Standard Deviation for discrete and continuous random 

variables are highlighted; also some important theorems on the 

expectation of random variables are discussed. 

      
Moment and Moment generating functions for random variables are also 

learned from this unit.  Characteristics function of  random  variables are 

also learned and relevant working examples on each concept are given to 

make the unit more meaningful. 

 

3.1  OBJECTIVE  

At the end of this unit, student should be able to  

1. Define Expectation of random variable  

2. Express mathematically the Expected Value of Mean for discrete and 

continuous random variables.  

3. State and prove Theorems on Expectation. 
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4. State Variance and Standard Deviation for Discrete and Continuous 

Random Variables.  

5. Find the Mathematical Expectation of Moments and Moments Generation   

Function for Discrete and Continuous random variables. 

6. Find the characteristic function of a given random variable. 

7. Solve related examples on the mathematical expectation of random  

variables. 

 

3.2 What Is Expectation of Random Variables? 

Let  X be a discrete random variable with probability function  f (x) , Then 

the expected value of x,  E (x) is defined to be  

 E (X)  = ∑∑ =
=

)()(
1

xfXxjfjX
J

η

 

  = ∑ )(xfx    (1) 

If f ( )x  is a accurate characterization of the population frequency 

distribution, then  

 E (x)  = (µ   the population mean)  

For a continuous random variable x having density function f (x) the 

expectation of x is defined as  

  E (x) = ∫
∞

∞−
−−− )2()( xdxfx  



 44 
 

Provided that the integral converges absolutely. Where f (.x) is the value 

of its probability density at xIfgex .  is the member of point roll with a 

balance die.   F ( 6
1) =x   for x  = 1, 2, 3, 4, 5, 6 and its mathematical 

expectation is   E (
6

1
6

6

1
5

6

1
4

6

1
3

6

1
2

6

1
1) xxxxxxx +++++=  

    = 
6

6

6

5

6

4

6

3

6

2

6

1 +++++  

    = )5.3(2
13

6

21 =  

Also if  X   has the unform density function  

 ( ) oxfandxforxf =∠∠= )(422
1   elsewhere. Then  

 E ( 3
4

1
2

1.) 1
2

24

2
=== ∫ xdxxx  

In many scientifical problem, we  are interested not only the expected 

value of a random variable X but also in the expected value of random 

variable related to x.  Thus, we might be interested in random variable y 

whose values are related  to those  of X  by  y = g ( )x  

The E [ ] ∑ −−−= )3()()()( xfxgxg  

Where  x  is discrete and  E [ ] ∫
∞

∞−
= xdxfxgxg )()())((  

For continuous case using the above example find the expectation of  

g ( 2) xx =   for the number of points rolls with a balance die  
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Solution  

E [ ] ∑= )()( 2 xfxxg  

   (
6

1)(

6,5,4,3,21)(

=

=

xf

xf
 

[ ] 6
136

6

1
25

6

1
16

6

1
9

6

1
4

6

1
1)( xxxxxxxgE +++++=∴  

      = 6
115  

Similarly for the random variable with the uniform density function  

f ( 2
1) =x   for 2 Oxfandx =∠∠ )(4  elsewhere, we get  

E[ ] dxxfxxExg )()()( 24

2

2
∫==  

 = dxx )
2

1
(24

2∫  

 = ∫ =
4

2

4
2

32

6

1
2

1 xdxx  

  = 3
19  

 

3.3  THEOREMS ON EXPECTATION  

Theorem 3.31: If c is any constant, then   E(C X) = C E (X) 

Also, E[ ] [ ])()(. xgECxgC =  

Theorem 3.3.2 : If x and y are any random variables, then  

 E (X + Y) = E (x) + E (Y)  
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Theorem 3.3.3: If x and y are independent random variables, then  

 E (X Y) = E (X) E (Y)  

THEOREM 3.3.4  

 E [ ] )()()( ιηιιη
η

ι

η −−

=
∑=+ xEbabax

o

n
i  

For instance, if n = 1, 

E[ ] )()1()( 11 ιι

ι ι
ι −−

=
∑=+ xEbaban

n

o

n  

= ( ) ( ) ( ) ( )111
1

EbxEa
o

+  

= a E (x) +b 

If 2I=  

[ ] ( ) [ ]
( ) ( ) ( ) ( ) ( ) ( )1

2)(

22
2

2
1

22
20

22
2

2

EbXEabXEa

xEbabaxE ii

o

++

−=+ −

=
∑ ι

ιι  

 = a2   E (x2) + 2ab E (x) + b2  

Theorem 3.3.4 can easily be proved by mathematical induction   

If  z is a random variable whose values are related to those of z and random 

variable x and y by means of equation z = g ( ), yx  

The mathematical Expectation is written as  

 E [ ] ∑∑ −−=
y

yxfyxgyxg )4(),(),(),(
η

 

Or E [ ] ∫∫
∞

∞−

∞

∞−
−−= )5(),(),(),( dydxyxfyxgyxg  
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In equation (4) f ( ), yx is the value of joint probability function of x and 

y at x, y while in equation (5) f ( ), yx Corresponds to the value of the joint 

probability density  

 

3.4   THE VARIANCE AND STANDARD DEVIATION 

We have already noted that the expectation of a random variable X is 

often called the means and is denoted by µ  another quality of great 

importance in probability and statistics is called variance and is defined 

by    Var (x) = E (x-µ )6.(..................................................)2    

The variance is a non-negative number. The positive squaeroot of the 

variance is called the Standard Deviatiation and is given by  

 [ ]( ) )7(.................................))( 2 −−== xXExVarxσ  

The   standard  derivation is   often  denoted  by σ instead  of ,xσ  and  the  

variance  in  such  case is 2σ  

If  x  is a  discrete   random  variable  taking  the  values  X1,X2 ………. Xn   

and  having  probability  function  f (x),,  then  the  variance  is  given by  

∑∑ −−=−=−=
=

)8.......(....................)()()();()( 2

1

222 xfxxfxXE j

n

j
x µµµα  

In the  special  case  of  (8)  where  the  probabilities  are all  equal,  we  

have ( )[ ] )9(...................)_..............)()( 22
2

2
1

2 −+−+−= nxxx n µµµσ  
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Which  is  the  variance  for a  set  of  n numbers  nxx ......................1  

If X takes on an infinite number of values   

( ) ( ) ( )∫
∞

∞−
−=−= )10..(......................................,.........., 222

21 dxxfXXEthenxX x µµσ  

Provided that the  integral converges.  

 

3.5. THEOREMS ON VARIANCE  

Theorems 3.5.1   

 
.)(

)(((

)())(
2)2

2
2

22

xEwhere

xExE

xExxE

=
−=

=−=−=

µ

µµσ
 

Theorem 3.5.2. If  C  is  any  constant,  

)1......(......................................................................)()( 2 −= xVarCxcVar   

Theorem 3.5.3 The quantity isaxE ))(( 2− a minimum when  )(xEa == µ   

Theorem 3.5.4  If   X   and  Y   are   independent  random  variables  

)13....(......................................................................

)()()(

)12...(............................................................

)()()(

222

22
1

2

yxx

yxyx

y

orYVarXVarYXVar

orYVarXVarYXVar

σσσ

σσσ

−=−

−=−

+=

+=+
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3.6 MOMENTS  

The rth  moment of  a random variable X about the mean ,µ  also called the 

rth central moment, is defined as  

)14....(......................................................................)( r
r xE µµ −=  

Where r = o, 1, 2, ------ it follows that 2
20 ,,1 σµµµ === ando i.e second 

moment about the mean is the variance.  

We have, assuming absolute convergence. 

 

)15.....(............................................................)()()(
;var eiabl

r
r discretexfx∑ −= µµ  

 )16......(........................................)()()(
var iable

r
r continuousdxxfx µµ −= ∫

∞

∞−
 

The rth moment of x about the origin, also called the rth raw moment, is 

defined as  

 )17......(................................................................................)(1 r
r xE=µ  

The zero moment and the first moment about the mean are respectively 1 

and 0 Since [ ] 1)1()( ==−= ExE o
o µµ  

And [ ] )()()( 11 µµµ ExExE ==−=  = o=− µµ  

The second movement  called the variance and is dented by .2σ  

 ( )[ ] 22
2 σµµ =−= xE  

This indicate the strength on dispersion of the distribution generated. 
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Generally moment about the mean describe the shape of the distribution of a 

random variable. 

 

3.7 MOMENT GENERATING FUNCTIONS 

Although the moment of some distribution can be determined directly by 

evaluating the necessary integral or sum. There exist on alternative 

technique which often provide considerable signification. This technique is 

based on the moment generating function which is given by  

  ∑== )18..(........................................)()()(
)var( iablediscrete

xtxt
x xfeeEtM  

 )19....(..............................)()()(
)var( iablecontinuous

xttx
x xdxfeeEtM ∫

∞

∞−
==  

 −−−−−−++++=
!!3!2!

1
3322

r

xtxtxttx
ebut

rr
txη  

This for the discrete case  ∑ 







−−+−−−+++=Μ )(

121
1)(

22

xf
r

xtxt
txtx

rr

 

∑ ∑ ∑ ∑ −−−+−−−+++=Μ⇒ )(
!

)(
!2

)(()( 2
2

xfx
r

t
xfx

t
xfxtxftx r

r

 

)20(.............................................................
!2

1)(
!

1
2

2

11 +−−−+++=Μ
r

tt
tt

r

x µµµ  

Thus if we expand )(txΜ as a power series in t, the coefficient of tr is r
1µ  

which is the rth moment about the origin of distribution X. 
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You observed that the maclaurins series of a function )(txΜ  with coefficient 

!r

t r

is the rth derivation of the function with respect to  t  at  t = o. 

Hence another way of determine the movement of a distribution is given by 

variation  

 
ot

rr dt

txdr

=







 Μ= )(1µ  

 

3.8 THEOREMS ON MOMENT GENERATING FUNCTION  

Theorems 3.8.1 If )(txΜ is the moment generating function of the random 

variable x and a and ( )0≠b  are constants, then the moment generating 

function of ( ) 






=






 +







 + b

t
MxetMis

b

ax b
at

b

ax  

Theorem 3.8.2 :- If X and Y are independent random variables having 

moment generating fractions ( ) ( ),tMandtM rx respectively, then  

  )21..(............................................................)()()( tMtMt yxyx =Μ +  

i.e The moment generating function of a sum of independent random 

variables is equal to the product of their moment generating functions.  
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3.9  CHARACTERISTIC FUNCTIONS  

Characteristic function of a random variable X(w) defined on ( ),, p∧Ω  

provides a powerful and application tool in the theory of probability. 

Characteristic function has one important advantages over moment 

generating function because it can be need to prove both the weak law of 

large numbers and the Central limit theorem which will be treated in the next 

unit. 

Definition: Let X be a random variable with probability distribution 

function. The characteristic function of x is defined for real t by  

∫∫ == )()()( dxpexFdet itxtxi

R
ψ  

 ( ) ( )itxitx eEeE ==   

xtiteWhere itx sincos +=  

( ) ( ) xtEixtEeE itx sincos +=  

Properties of characteristic function  

(a) (i) )(tψ  is informally continuous on the real line. 

(ii) 1)( =Ψ o  

(iii) ( )tallfort 1≤φ .  

Since 1=itxe  
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Proof: 

(i) }{ )()()( )( xdpexetht
thihti

∫
∞

∞−

+=−+ φφ  

 ∫
∞

∞−

− −≤ )(( dxpexe itxhti  

= ∫ ∫
∞

∞−

∞

∞−
≤− )()( dxpedxpee xixiitx ηη  

By the dominated convergence theorem, we have  

0)(lim)(1
0

=−=−
→ →

∞

∞−

∞

∞
∫∫ dxpedxpee

h

Lim xi

h

xiitx η

ο

η  

Note: 

(i) 21 ≤−xie η  

(ii) The limit tends to zero independently of  t.  

Thus, otht →−+ )()( φφ independent of t. 

Hence )(tφ  is uniformly continuous on the real line  

(iii) 1sincossincos 22 =+=+= xtxtxtxte itx ι  

1)()()()( =∫=∫≤∫= dxpdxpedxpet txitxiφ  

(b) The characteristic function of the sum of independent random 

variables is the product of their characteristic functions  
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Proof : 

Let S nXXXwhereXnXXn −−−−+++−−++= 2121 , are independent  

random variables.  

Then  

   [ ] ( )[ ]n
its

sn
xxeitEneEt ...............)( 1 +==ψ  

   = E (e itx1) E (e itx2) --- E (E (e itx n ) 

   = .)()()( 2 trealallforttt xnxx ψψψ −−−  

If ( )iX  are independent and identically distributed then  

n
xsn tt )()( ψψ =  

(c) Unlike movement generating functions, )(txψ  

Is finite for all variable x and all real number t. The reason being that eit is 

bounded  while  it is  unbounded for - ∞∠∠∞  

d. The  distribution  function  of  X  and   hence the Pdf,  if  it  exists  can  

be  obtained  from the  characteristic  function  using  an “Inversion  

formula:,   

If  X  is  integer valued  random  variable  then ( ) ∫∏∏
=

η
ψ dttenf x

itn
x )(

2

1    

If  x  is a   continuous  random variable,  then dttexf x
it

x )(
2

1
)( ψ∫

∞

∞∏
=  

 assuming ∫
∞

∞
∞∠)(txψ  
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e. Properties  of  characteristic  function  enable  us  to  prove  both the  

weak  law   of  large  numbers  and  the  central  limit  theorem.  

Properties (c) (d)  and  (e)  are  important  advantages  of  functions  over  

moment  generating  function.  

(f) If  two random variables  have  the  same  characteristic  function they  

have  the  same  distribution  function.  

(g)  If  x  has  finite thn   moment,  then ( )tn
x

)(µ  exists  and  is  continuous in t. 

( ){ }itxn

n

itx
n

x eixE
dt

eE
dt

n

)
(

)(
)( =µ      

Thus ( ) ( )
n

n
xn

i
xE

0)(µ=  

Example  3.9.1:  let  x  have  an  exponential  distribution  with  parameter 

β    find  the  characteristic  function of  x    

Solution   

∫

∫
∞

∞

−

∞

∞

−

−
=−=

==

it
dxe

dxeeeEt

xit

xitxtxi
x

β
ββ

βψ

β

β

)(

)()(

 

 Example  3:9:2  Let  x  be  informally distributed  an (-1,1).   Find  the  

characteristics function of  X.  
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Solution 

( )

t

t

it

ee

t
it

e

dxeEt

iti

i

itx
x

t

tx

sin

2

1

0
2

1
2

1
)

1

1

1

1

=










 −=

≠=

==

−

−

−∫ψ

   

Note:   

.sin20

,sincos

,sincos

tee

tite

tite

itit

it

it

−−

−=−
+=

 

Example  3.9.3 :   Find  the  characteristic function  of the   random  variable  

X  having density  function give  by  





 ≤

=
otherwise

axaxf
0

112
1

(  

Solution  

ϑ
ϑsni

at

at

iat

ee

it

e

a

dxe
a

dxxfeeE

itxitx

a

a
itx

itxa

a

itxitx

==

−−==

==

−

∞

∞ ∫∫

sin

22

1

2

1
)()(

 

Using Euler’s formula with  at=ϑ   

Example  3.9.4 :  Find the  expectation  of a  discrete  random  variable  x  

whose  probability  function is  given  by  

[ ]−=






= .....................................,3,2,1
2

1
)( xxf

x
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Solution  

We have +






+






+=






= ∑
∞

= 8

1
3

4

1
2

2

1

2

1
)(

1

x

x

xxE  

 To   find the sum,  

Let   S +






+






+






+=
16

1
4

8

1
3

4

1
2

2

1 ……………………………….. 

Then     +






+






+=
16

1
3

8

1
2

4

1

2

1
S ………………………………. 

By subtracting 1......................
16

1

8

1

4

1

2

1

2

1 =++++=S  

Therefore, 2=S  

 

Example 3.9.5: A Continuous Random Variable X Has Probability 

Density given by 




≤
>−

=
00

022
)(

x

xe
nf

x

 

Find )()()()( 2xEbxE∞  

dxexdxxfxxE
x

)2()()()( 2−∞

∞

∞

∞ ∫∫ ==∞  

( )
2

1

4
)1(2

2
)(2

2

3

2

=−






 −=

=

∫∫∫

∫
∞

−

−∞

∞

η

x
x

x

ee
x

dxex

 

(b) 
( )

2

1

8
4

4
2

2
)(2

2)()(

0

222
2

222

=












+








−













−
=

==

∫∫

∫ ∫
−−−

∞

∞−

∞ −

e
x

x
x eee

x

xdxexdxxfxE

µ

ο
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 Example 3.9.6   Find (a) the variance, (b) The standard deviation of the 

sum obtained   in tossing a   pair of fair dice.  

Solution  

6
91

6

1
36............

6

1
4

6

1
1

6

1
6..............

6

1
2

6

1
1)()(

2

7

6

16...................
6

1
2

6

1
1)()(

22222

=








+






+






=








+






+






==

=






+






+






==

yExEHence

yExE

    

Then 

.12
35

4

49

6

91

2

7

6

91
)()( 2

=

−=






−== YVorXVar
 

And since X  and  Y  are   independent  

6
35

12

70

12

35

12

35

)(var)(var)(var

=

=+=

+=+ yxyx

 

(c)  Standard Deviation =   nancevar    

( )
6

35
var1 =+=+ yxie

yxσ  

Example  3.9.7: The  random  variable  x  can  assume  the  values 1 and  -1   

with probability  ½  each.  Find  (a)  the  moment  generating  function  

(b) the  first  four  moment  about  the  origin.  
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Solution:   

( ) ( )

( )

1,0,1,0

)2()1(

......................................
!4!3!2

1)()2(

.........................................
!4!2

1
2

1
)1(

)2.....(..............................
!4!3!2

1)(

)1..(..................................................
2

1

2

1

2

1
.)(

4
1

3
1

2
1

4

4
1

3

3
1

2
1

2

42

432

1)1(

1

1

====

+++++=

+++=+

++−++=

−=








+






=









−

−+

µµµµ

µµµµ

haveweandcomperingThen

ttt
tMfromBut

tt
tefromthen

ttt
tehaveweb

eeeEa

x

et

t

ttxit

eet

 

The  odd  moment  are  all  zero,  and  the  even  moments are  all  one   

Example  3.9.8:   A  random  variable  x   has  density  function given  by  

( )




<
≥

=
−

00

02
)

2

x

xe
xf

x

  

Find  (a)  the  moment  generating  function,   

(b)  the   first   four  moments  about  the  origin  

Solution:    

( )

ο

∞

−∞

∞

−∞

∞

∞

∞−

−
−=

=

=

==

∫

∫

∫

2

)2(
2

)(2

)2(

)()()(

2

2

t

t
e

dxe

dxee

dxxfeeEtMa

x

xt

xtx

tx
tx

x
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2min
2

2 <
−

= tgassu
t

 

(b)  If   havewet 2<  

16842
1

21

1

2

2 432 tttt
tt

++++=
−

=
−

 

..................................
!4!3!2

1)(
4

4
1

3

3
1

2
1 +++++= ttt

tMxBut t µµµµ  

Therefore,  on  comparing  terms  2
1=µ  

2

3
,

4

3
,

2

1
4

1
3

11
2 === µµµ  

 

3.10    CONCLUSION  

In  this unit you  have  learnt mathematical expectation of  random  variables  

for  discrete  and  continuous  random variables. You also  learned  Variance  

and  Standard  Deviation  for  discrete and  continuous  random  variables. 

 
Some important theorems on Expectation, Variance and Standard Deviation   

are stated.  

Moment, Moment Generating functions and Characteristic  function  are  

fully treated and  related working example on each concept  are  easily  

shown  to  make  the  learning  of  the  unit  more  meaningful.  
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3.11 SUMMARY  

In  this  unit  expectation of  random  variables  that  you   have  studied  

included the  following:  

- Meaning of Expectation for Discreet and Continuous random 

variables  

- Mathematical Expectation for discreet and continuous random   

variables.    

- Expected Value for  Variance  and   Standard Deviation .        

- Theorems on the  Expectation of  Random  Variables  

- Moment, Moment Generating  Function for  Discrete  and Continuous   

Random  Variables     

- Characteristic Functions of   Random Variables  

- Working examples on the Mathematical Expectation of Random 

Variables 

 
Exercise:  3.11.1  (ASE)  

The density  function  of a   random  variables  X  is given  by  






 <<
=

otherwise

xx
xf

0

20
2

1
)(    

)()()()( 2xEbxEafind
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3.1.2  TUTOR   MARKED ASSIGNMENT (TMA)  

Exercises 3.12.1:  if X  is   random variable  of  Exercise  3.11.1  above  find 

)23( 2 xxE −      

  Exercises 3.12.2 A random  variable  X    has  E(x)  =  2,   E  (x2)  =  8  find  

(a)  Var  (x)    (b)  xσ  

3.13  Reference / Further Reading / other resources   

Murray R  silage et al  (2009)  Probability  and   statistics.  

Third  addition published  by  Mc  Graw  Hill  Dr R.A  Kasumu  (2003)  

probability  theory  first  edition  published  by  FATOL  VENTURES 

LAGOS,  DR S.A  Okunuga  (1998)  Probability  Distribution  2 lecturer  

Materials.      
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LIMIT THEOREM  

4.0 INTRODUCTION   

The  purpose  of  this  unit  is  to   acquaint  the  students  with  the  liquid 

theorems  on cheby shev’s  inequality,  convergence,  weak  laws  of  Lange 

numbers,  strong  law  of  large  number.  Some  of  the  theorems  are  

proved  and  related   working  examples  are  shown  

4.1 OBJECTIVES 

At  the   end  of  this  unit  student  should  be  able  to 

• State   and prove  chebyshev’s  inequality 

•  Define  Convergence  of  random  variables  

•  State  and  prove  some  theorems  on  convergence  in  measure  

•  State  and  prove  weak  law  of  large  numbers  

• State  the  strong  law  large  numbers  

 
4.2   CHEBYSHEV’S INEQUALITY 

This  is  a  important  theorems in probability  and  statistics  that  reveals  a  

general  property of   discrete or  continuous random  variable  having  finite  

mean  and  variance in known   under  the  name  of  chebyshev’s  inequality  

Themes 4.21 suppose that X is  a  random  variable  (discrete  or  

continuous)  
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Having  mean µ   and  variance  ,2σ   which  are  finite. Then  if  epsilon (e)  

is  a positive number,  

σε
ε
σµ

kwithor

ExP

=

≥≥−
2

2

)1(         

2

1
)1(

k
kxP ≤≥− σµ    

Proof :  

We  shall  proof  for  continuous random  variables.  A  proof   for  discrete  

variables  is  similar  it integrals  are  replaced by  sums.  

 If )(xf is the  density  function  of  X,  then   





 −=−= ∫

∞

∞
dxxfxXE )()()( 222 µµσ  

Since  the  integrand  is  nonnegative,  the  value  of the  integral  can   only  

decrease  when the  range  of  integration  is  diminished .   

Therefore,  

∫ ∫−
−

≥ ≥−≥
µ

µ

εµσ
x

E

E dxxfdxxfx
1

2

211

2
)

2 )()()(   

∫
≥−

=
Ex

dxxf
)1

2 )(
µ

ε  

But the  last  integral  is  equal to  ExxP ≥− 11(    

Hence,   
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2

2

)11(
ε

σεµ ≤≥−xP  

4.3   CONVERGENCE OF   RANDOM VARIABLE  

Definition 1  A  sequence   of  random  variables  Xn  is  said to  converge in  

distribution   or  in law  to  X  (we  write )XXn L→    if  the  corresponding  

sequence  of  distribution functions  ∞→→ nasFFnFn, . 

In  this   case  Fn  is  a   distribution  function  of  F.  

Example:  Consider  the   random  variable  Xn  which  is a Binomial 

random  variable  
normaltotendspnBi

XpBipBipBi

thenpnBi

),(

..........................),3(),,2(),,1(

,),(

→  

Furthermore if the corresponding F  distribution  gives:   

( ) FqpnxXFn
xnx

n
→=≤= −

∑)(Pr    

)()()1(

)(

tCtCn

ThenXoffunctionondistributiFXFnieXXnIf l

→
→→

 

Where  )(tCn stands  for  corresponding  characteristic  function of  random 

variable  Xn 

(2)  for  any  bounded  continuous  function  

∫ ∫→ FgdxFngd )(  

Definition  2:  The sequence { } ofXn  random  variables  is  said  to  

converge  to a  random  variable X  if  
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{ } XXnbythisindicateweanfornasXnXP P→>∞→→>− .00 εε   

Definition  3:  The   sequence  { }Xn  of   random  variables  is   said  to  

converge in mean square to a random variable X it  

{ } .0
2 ∞→−− nasXXnε  we  indicate  this  by XXn sm→ .  

{ }
{ } 1limtan.).,(

var:4int

==
∞→

cXPifCtconsatosasurelyalmostorone

probablitywithconvergetosaidisiablerandomofXnsequenceTheionDef

n
n

  

We  indicate  this  by CXorcXn pwXn
n  →→ ..  

or equivalently, .0,0lim >=






 >−

≥
εε everyforCXnSupP

Nn

 

Note:  

1. In general  ff n →  does  not  imply  that { }Xn converges  to a  random 

variable for example, ( ) XXnletnallforandNisXSupose −=,1,0  

Then ( ) ( ) 1,)1,0( xFxFnisThatNisXn =  

)(()( xfxFn = for  all n.   But  

{ } { } ∞→→








≥=≥−=≥− nasxPxPxXnP 0
2

2
εεε  

Hence XXn p→  

(ii) ,0. →→→ εlettingFFnthenXXIf P
n  

We see that )()( xFxFn →  
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4.4 DEMOVRE’S   THEOREM  

 Let    ,),( thenpnBibeX n  

∞→→−= nasN
npq

npXn
Yn )1,(ο  

( )
)()(

)(PrPr

tx
xn

xnr

r
n

eiEtCn

qPnrXoof

=

== −

 

∑
∞

=

==
0

)Pr(
x

itx xXne  

( ) xnxn
r

itx

qPe −
∞

=
∑=

0µ
 

( ) ( ) xnxitxn
r qPe −

∞

=
∑=

0µ
 

( )nit qPe +=  

Therefore  characteristic function of )(
yntieEYn =   

=       E













−

npq

itnp

jnpq

itX
e n  














= −

npq

itxn
eq

np

it Ee  

n
q

vnpq

it
q

np
it

n epetCyei













=

+−

)(.  
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












+−=→ −+ p

evnpq

it

n Pen
q

np
ittyC 1log)(log  


















−
++−= 11log

jnpq

it
epn

q

np
it  

But  ez   =     +   z  +   ................................................................
!2

2

+z  

And  log  ................................................................
!3!2

)1(
32 zz

zz +−=+  

( ) ( ) }}

∞→→








+−=














++−+−=















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











+−++−=
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4.5 CENTRAL  LIMIT  THEOREM  
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Definition  1:  A  sequence of  random  variable  Xn  is  said  to “ converge 

in probability”(weakly) to the constant C if the limit 

00)( >=>− CwherekCXnP  This  is   written  as   

CXn P→  

Definition 2:  A  sequence  of  random  variable  Xn  is  said  to  converge in  

probability  to  X if  0→→ PXXn  
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4.6 KHINCHINE’S THEOREM  

(Weak law of large Numbers) let X1, X2, ……………….. Xn  be  a  

sequence  of  independently  and  identically  distributed  random  variable  

each  with  mean  µ    
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µite  is  the  characteristics  function of  a  random  variables  taking  the  

value  of  µ   with  probability 1  
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THEOREM 4  

The  strong  law  of  large  Numbers let { }Xi   be a   sequence  of  

independent  random  variables  such  that  
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Corollary 1   
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Corollary  Π  

Let everything be as from the above theorem except that  
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Example 4.61  
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Solution. 
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Example 4.6.2 

Let x 1, x2, ----- X n  be a sequence of independent identically distributed 

poison random variable with parameter .λ .  Then  
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Example 4. 

Let X1, X2 -------, Xη  be a sequence of i i d 

Poison random variables. Than by chebychev’s inequality  
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Therefore,  

  λ→P
nX  

 

EXAMPLE 4.6.3 

Convergence in mean square implies convergence in probability. 

By chebychev’s inequality 
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In general, convergence in rth mean implies convergence in probability. 

 
4.7  CONCLUSION  

In this unit you have learned chebyshev’s inequality, the proving and the 

application of the theorem.  

You have also learned convergence of random variables with different 

definitions, Demovre’s theorem, and Central limit theorem by using 

characteristics function for finding convergence.  

Moreover, the weak and strong law of large numbers are discussed the and 

related working examples on the theorems are treated. 
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4.80  SUMMARY  

In this unit the following concept have been learned.  

2. Chebyshev’s Inequality 

3. Convergence of Random Variables  

4. Demovre’s Theorem  

5. Central  limit Theorem  

6. Weak law of Large Numbers 

7. Strong law of Large  Numbers 

8. Relevant examples on the theorems are treated. 

 
EXERCISE: 4.80.1 (S A E) 

A random variable X has mean 3 and variance 2. Use Chebyshev’s 

Inequality to obtain an upper bound for  

(a) P( x- 3 ),2≥    (b) P ( x -3 ).≥  

 
EXERCISE  4.80.2 

Show that the (weak) law of large numbers can be stated as. 

 Lim P =<− )( lµ
n

S n  
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4.90 TUTOR MARKED ASSIGNMENT (TMA) 

(a) Show that the sequence Xn  of random variable  θ   is said to 

converge 

(i) In mean square to Random Variable X.  

(ii)  With probability one almost surely to a constant c. 

(b) State and Prove Central limit Theorem.  
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