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UNIT 1: PROBABILITY SPACES, MEASURE AND DISTRIBUTIO N
1.0 INTRODUCTION

This Unit Focuses an Probability spaces, probgbilheasures and
probability distribution for continuous random \abies. It gives some basic
definition and relevant working examples will begn to make the concept

more meaningful for the learners.

1.1 OBJECTIVES.
At the end of this unit, student should be able to:

. Understand the meaning of probability space andatation.

Define Sample space and event, and Event Space.
. Discuss Probability Measure and State its Theorems.

. Discuss Probability Distribution for Continuous am Variables.

1.2 PROBABILITY SPACE

A Probability Space is a triplet Finite measurecgp@, C, P[ . | ) Where
Q is a sample space and eachi avis called a sample point, ard. ] is

a function that hasz as its domain thatis a single term thates us
an expedient way to assume the existencalldhree components in its

notation.



1.3 SAMPLE SPACE AND EVENT

Definition of Sample Space :

The sample space denoted dy is the collection or totality of all
possible outcomes of a conceptual experiment.

In addition to Q, S, Z R, E 4 and A are the other sysbols to denotes
sample space.

Event: An event is a subset of the sample space.

Event Space: The class of all events associatgth a given experiment

Is defined to be the event spaces.

1.4 PROBABILITY MEASURE

A probability measure is a normed non-negatizeuntable additive set
function defined on the field of all events.

Definition:- A probability measure P on a-field of subset A of seb
is a real -valued function having domain A satigj the following
properties

(). P(Q)=1

(i). P(A) =0 for all AegA



@) If An, n=22,. e, are mutually digoint sets in A,
then P (UAn) = = P (An).
A probability space, denoted by,@, P).

P,( A) is a conditional probability measure on

We say that(Q,0P) istheProbabilty space obtained by conditioning (Q OP)

by the event B.
If an eventB depends on occurrence of evexjtor A, then

P(B)= P(BOA)+PBOA,)
= P(A,) P(B/A,) +P(A,) P(B/A)

In general, if an event Bdepends on occurrence of events

AL, A, e A0, then

P(B) = i P (B,Ai)

= > P (A)P(B/A)

1.5 Theorem: letQ, C,P) be a probability space then
(Q,0,R,) is also a probability space.

Proof:

o
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Q
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Let A, As......... be disjoint event inN, then

[ [UAle]
Pl Jaing)]
- P(B)
Since (AnB), 1=1,2 ................. are disjoint events, wevla

P (CJ A )= iPB (Ai) and so Bis countably additive.

Hence Q,0, P, ) is probability space
Lemma

Let [An] be a sequence of independent measurable sets
() 1> P(A) O «then PA)=0

(i) 1f S P(An) = wthen P(§ =1

1

where A = Lim sup An
Proof :

() A=nUAn0OU Am

Since = Udecreaseb as nin creases, we have

m=n



Since ) B, 0w, then

Hence
P(A) =1
1.6 PROBABILITY DISTRIBUTION
Definition:- Let x be a random variable whose imagd §£s) is a

continuous numbers such as an interval. Thesé¢h

asx<bisan eventin S .

The probability P(a<xUb) defined as

P(a<x<b) = [f(xdx

Is called continuous random variable, the fiomcf is called the
distribution or continuous probability functioor density faction of X
and it satisfies the following

I f (X)>0

i [f(x)dx=1 where R = (ab)



iii. f (x) isa non - decreasing function
iV, jbf (x)dx=f(b) - f(a)=p (a<x<h)

for example, if x is a random variable definédo take any value In
interval (0,1) if a pointis taken in this ental say 0.45, the probability
that a point picked is

1
Uncountale points
1
No of points btw theinterval

P(x =045 =

1 = O

O

But it is easier to find the probability of sub-interval within an
interval, itis possible to calculate gerd 045etc.

The pr(x O 045 = pr(lenght Oto 0.45)

Ratio of the given Lenght
Total lenght

Similarly

X, = X

Pr 0 x O x = —
(% 2) Total Lenght

10



Example 1.6.1 :- Given the figure below

Ny
L im

Find the probability of the shaded portion.

Solution:

Area of A CDE
Areaof A ABC

Pr (Shaded portion)

Example 1.6.2:- The length of life measumehours of a certain rare

type of insectis a random, reliable x witlortability density function

£ (x) :{00 %(2x—x2) 0<x<2
O elesewthere

If the amount of food measured in milligrammensumed in a life time
by such an insect defined by the functigrix) = x?,
, Where xis the lenght of life mesasued in hours, find the expected amount of

food that will be consumed by an insecttlok type.

11



Solution

Expected amount of food £ [g (x)]
=-{"g () f (x) dn

2
—L x2(§£(2x—-%)dx
= 12 mg
Example 1.5.3:- Given a continuous randonriabée with the

probability distribution function
f (x):j ke, O <x <10

O elsewhere
Find k such that f (x)s then Pdf

Solution
If F(x)isaPdf, [ f (9d=1

[ f9ax= K x? dx

KX3)10 3 3
— 0 :k(lo) _k(o) :1
3 3 3
k
=— (@0°-0=1
3 ¢ )
1000K —
3

12



1.7 CONCLUSION

In this unit, you have learnt probability spatee notation of its
components, the definition of sample spacenewad event space.
You also learned probability measure and nigin probabilities related
theorems. You also learned probability distitou of a continuous

random variables with relevant working exaespl

1.8 SUMMARY

What you have learned in this unit are the follogvprobability distribution
concepts.

I The meaning of probability space and ntsation

. Important definition of sample space, Evand event space.
lii.  Probability measure and its properties

lv. Part of probability distribution of a cimuous random variables

13



EXERCISE 1.80.1 (SAE)
The surface area measured in squaremeter of métal disk manufactured
by a certain process is a random variable x witbbability density

function.

f(x) = [6(x-x) Oo0x 01

dscuhere
Find the expected radius measured in meter dfatametal disk

manufactured by this process.

1.90. TUTOR MARKED ASSIGNMENT (TMA)

Exercise 1.8.1: The probability function of aandom variable x is

given by
2p x =1
F(x) = p X =2
4p x =3
0 otherwise

Where P is a constant find

@P O <x< 3), (b)P(x>D.

14
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UNIT 2: DISTRIBUTION OF RANDOM VARIABLES SPACE S

2.0 INTRODUCTION

This unit concerns with the meaning and sfestion of random
variables into discrete and continuous randonmbés are high lighted,
distributive functions for discrete and continuo@dom variables and
related examples are also given.

The unit further high light Graphical representatidoint distribution for
discrete and continuous random variable , Indepmel@and Conditional

probability of random variables and working exammheeach are given.

2.1 OBJECTIVE

At the end of this unit student should be able to,

- Understand the meaning of random variables.

- Classify random variables into discrete and comtirsurandom variable
with example.

- Define and state the properties of distributionction.

- State the distribution function for discrete andhtomious random
variables and solve example on each.

- Show the graphical representation of random vaggbl

16



State the joint distributions for two random vatesbwhich are either

both discrete or both continuous.

- State the independent of random variables for ieddent and
dependent events.

- State the conditional probability function for diste and continuous

random variables.

- Solve related problems on the distribution of rand@riables spaces.

2.2 RANDOM VARIABLES

A random variable is a function whose domain ofirdebn is the simple
space S of a random experiment and whose rangseisad real numbers.
Definition 2

A real valued measurable function

X :Q - R with respect to (Q, a P)

Is called a random variables.

Note:

SupposgXn} is a sequence of random. Variable

If lim Xn= X, then X is Random variable

n- o

17



Example : suppose that a coinis tossedetvsig thatthe sample space

S=(HH HTTH, TT).let X repsesentthe number of heads that can come
up. For examplex (HH) = 2, X (HT)= X (TH) =1 X (TT)=0

Since the domain ok is S and the range consists of real numbers,
them x is a random variable.

A random variable that takes on a finite or rdably infinite number of
values is called a discrete random variablhile the one which takes

a non countable infinite number of valuesafletl a nondiscrete /

continuous random variable.

2.3 DISCRETE PROBABILITY DISTRIBUTIONS

Let X be a discrete random variable, anghpsse that the possible
values that it can assume are given xXQYX,, X, coeerinnnennnny
arranged in some order. Suppose also thasethvalues are assumed
with probabilities given by

P(X=%)=f(X) K=12 e, O

It is convenient to introduce the probabilityn€tion, also suffered to as
probability distribution, give by

P (X = X) = (X) errrereereeemeesesesseeseesseesssesseeseenees Q)

18



For X =xk, this reduces to equation given above whitax bther
values ofx, f (x) =0.
In general,f (x)isa probablity function if

f(x 20

2 Yfx=1

Where the sum in equation (2) is taken oJeérpassible values of x

2.4 DISTRIBUTION FUNCTION FOR RANDOM VARIABLES
The cumulative distribution function, oriddly distribution function
for a random variables Xis defined by
f(x) =P(X<Xx)
Where x is any real number, that is

—oo [Jx [J oo
The distribution functionr (x) hasthe following properties:
1. f (x) is non decreasinfie, f(x) < f(y) if x< vy)

2. lim F (x) = 0; lim f (x) =1

X - 00 -

3. f (X) is continous fromthe right {ie lim f (x+h) for al x}

S

19



2.5 DISTRIBUTION FUNCTION FOR DESECRATE RANDOM
VARIABLES
The distribution function for a discrete randovariable x can be

obtained from its probability function by tmg that, for all
X in (—,0,00)
p(x) = P(X<x)=Z%Z f(x
vsn

Where the sum is taken over all valpesaken on by X for which

usx if X takes on only a finite numbers of values

Xy X2, oveierieniieiennes xn,then the distribution functionis given by
0 - 0<X<X
f < X<

F(x) (%) X =Xs%

[f () +T00) % <x0x
[F(x) +-+Fx) x, <x,0

Example 2.5.1:- find the probability functiomorresponding to the

random variable x when a coin is tossedcawiassuming that the coin

is fair.

Solution

p(HH) = ¥, P(HT) =}, P(TH) =1/
and P(TT) = ¥/

20



Then, P (X =0) =P(TT) = ¥,
P (X =1=P (HT) + P(TH)

=t e =0

P(X=2)=P(HH)= ¥

The probability functionis given in the tabelow

X 0 1 2

100 o\ h

Example 2.5.2 = (a) find the distributionr fethe random variable X
from the working example above (b) obtain gsaph
Solution:

The distribution function is

0 - o [OxOO0 sircethetable
%, O<x O1x sircef (x) =%f
% 1< xO2sircef (x) + f(x) :%

1 2< xl:loosirce}/2+%r+%r:l

f(X)=

21



0 — o [ x 0O since x, =0 from the above table
% 0 < x0O1 since f(x) =%f
HGOREA 1< x 02 sence f(x)+f(x)=3)
i =3
e+ 2=
1 2< x e since %+%+% =1

o
v

The following things about the above distributiemdtion should be

noted.

1. The magnitudes of the jumps at O, 1, 2Yarés , ¥4 which
are precisely the probabilities ie this famables one to

obtain the probability function from the distiibn function.



2. Because of the appearance of the graph aften called a staircase
function or step function, and the value that function at an
integer is obtained from the higher step;stithe value at | is %
and not Y. Thisis expressed mathematically stating that the
distribution function is continuous from theght at 0,1,2.

3. As we proceed from left to right in the distition function is

monotonically increasing function.

2.6 CONTINUOUS RANDOM VARIABLES
A non discrete random variable x is said lbe absolutely continuous,

or simply continuous, if its distribution foton may be represented as

f(x =P (XSX):f f(udu (= o0 x [0 )

—00

Where the functionf (x) has thefollowing proaperties

1. f(=0
2 Tf (X)dx =1

It follows from the above thatif X is a dowous random variable,
then, the probability that X takes on only oparticular value is zero,
whereas the interval probability that X lidsetween two different

values say a and b is given by

23



p(al xODb) =Jqf (x) dx

Example 2.6.1 (a) find the constant C hstitat the function

_jex2 00 x O3
) = { |
0 otherwise

Is a density function, and

b. Computerp (10 x O 2)

Solution
Since f(x) stratifies property (2) i€>0, it must satisfy property 2 in

order to be a density function

Now, Tf (x) dx=_3fcx2dx
o 0

Cx 3,
=
3
_COB _ 0O
3 3
_2C 0 _o
3 3

And since the integral equal to 1, we have 9C =1

C :1/9

b. P @ xO 2)=j12 1 x2 dx

24
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2.7 GRAPHICAL REPRESENTATIONS OF RANDOM VARIABLE

If f(x)is the density function for random variable xhen we can
represent y =f (x) graphically by a curve d®ven in the figure below.
Since f(x)>0,the curve cannot fall below the x-anis thetire area

bonded by the curve and the x-anis mustl deecause of the second
property i.e[ f (x)dx=1).

Geometrically the probability that x is betweerand b, i.e (a <x<b),

Is the represented by the area shown shaded fh@ first figure below

25



The destitution functioF (X) = p(X <x) isa monotonically increasing
function which increases from Oto al asdrepresented by a curve

as in the second figure.

26



2.8 JOINT DISTRIBUTIONS

Joint distributions can easily be generalized to tmore random variables.
We shall consider the typical case of two randomatbdes that are either
both discrete or both continuous.

Discrete case: - If x and Y are two discrete rand@amables, we define the
joint probability function of x and y by

P(X = X, Y=y) = f(xy)

Where ()fk y) =0
(2) 2> f(xy)=1

l.e the sum over all values @f andy is 1

Suppose that x can assume any one of m vatues -- x, and y can

assume any none of n valuasy, - - .

Then the probability of the event that x = xj and ¥; is given by
Px=xj, Y=y) =f(xj, vy

A joint probability fraction for x and y can be regented by a joint

probability table as shown below

27



X% Yl Y2 --------- YX Total

Xl F(Xy V4 ) F(leZ) _______ F(X 1 yn)xl ) Fl(x 1 yn)xl )
X2 F(xay1) F(x, yp) |- F(x,, vo) |F1 (X2

Xm F(Xmy1) F(Xmy2) F(XnYn) Fi (Xm)
Totals- f, (1) f,(y,) |- f2 (Yn) 1

The probability thatx = xj is obtained by adding all entries in the row

corresponding tox andis given by

P(x=n;)= 1 (X) =Zf (4 yk)

m, these are indexh by the entry totals in the

entrance right hand column or margin from tlable above similarly

the probability that Y= yk is obtained by addiad) entries in the column

corresponding to yk and is given by

POY=yk) =T, () = Y F (6, YK

FOr k =22, n,these are indicated by the entry totals in

the bottom row or margin of the probabilitable from the two

equations given abovef1(xj) and

28

f, (k) or

simply f, (x) and f, (y)




which are obtained from the margin of theldalre refer to as the

marginal functions of X andy, respectivetyshould be noted that
Zfl (x) =1 Zfz (V) =1
j=1 k =1

Which can be written as follow
> X 0=t
This is simply the statement that the tqiabbability of all entries is
1. the grand total of 1 is indicated in tlewer right — hand of the
probability table.

The joint distribution function of x and y is dedid by

f (xly) = P(xsx, ysy) = > > f(xv)

U<sn vy
In the probability table fX y) is the sum of all eateries for which xg x

and y <vy.

CONTINUOUS CASE:
The case where both variables are continuoustarda easily by analogy
with the discrete case on replacing sums by integthus the joint

probability function or joint density function foandom variables x and y is

defined by

Df(x y) =0

29



@ [ | Poyy) dxdy=1

Graphically z = f (x,y) represents a surface called the probability
surface as indicated in the figure below. The tetdlime bounded by
this surface and the xy plane is equal to 1 ima@nce with property

2 above. The probability that x lies between a andhile y lies
between ¢ and d is given graphically by the shaekddes of the

figure below and mathematically by
b

d
P@OxObeOyd dy= [ [f(xy) dxdy

X =a y =c

30



More generally, if A represents any event, therébha a region R of
the xy plan that corresponds to it. In such case we @aoh the

probability of A by performing the integration oV i.e

PA)=] [ f(x y) oxdy)

RA

The joint distribution function of x and y in thigse is defined by

F(xy)=p(X<sx Y<y) = T Jy' f (u,v) du dv

H=-0 V=-0
It follows in analogy with equation

dF(x) _
ax %
9 F

axdy=f(x,y)

That is density function is obtained by differenta the distribution
function with respect tox and y from the joint distribution equation

given above to obtain

P(Xs x) = F, (X) = j i f (u,v) dudv

V=—00V = —00

w y

Plysy =f,(»= [ [ v dud

U= — V =—o0

The two equation above are called the marginalibigton functions or

simply the distribution function of x and y respeety.

31



The derivative of the equations with aspect tcandy are then called the

marginal density functions or simply the densitgdtions, of x and y which

are given below

00 o

Fi(= [ fewdv f,(y= [ fuy)du

V=-00 u=-o0

2.9 INDEPENDENCE OF RANDOM VARIABLES
Suppose that x and y are discrete random varialblde events X = x and
Y =y are independent events for alland y, then we say that x and y are
independent random variables. In such case,

P(X=xY=y)=p(X=x p(Y=y)
Or equivalently

f(xy) =1y
Conversely, if for allxandy the joint probability function f %, y) can be
expressed as the product of a functionxadlone and a function of y alone
(which are then the marginal probability functionXand Y) X and Y are
independent. If however, fx(y) cannot be so expressed, then X and Y are
dependent. If X and Y are continuous random vagmblve say that they are
independent random variables if the events 2% and Y <y are

independent events for all x and y. In such caseamewrite

32



P(X <xY <y) =pXsx) p(Y < y)orequivalently

Fxy) =R (®F ()
Where f (x) and f, (y) are the (marginal) distribution functions of X and
Y, respectively conversely, X and Y are independantdom variables if for
all x and y, their joint distribution function F (x,y) can bexpressed as a
product of a function of x alone and a functionyoélone (which are the

marginal distribution of X and Y respectively)

If however, f (x,y) cannot be expressed, then x and y are dependant. F
continuous independent random variables, it is wisothat the joint density
function f (x,y) is the product of a function ofatone, f(x) and a function

of y alone, § (y) , and these are the (marginal) density fumstiof x and v,

respectively.

2.10 CONDITIONAL DISTRIBUTIONS
We already know that if p (A} O,

P(B/A) =P EMB)

P(A)
If x and y are discrete random variables and we ltlae events (A: X 8

(B:Y =y), the above equation becomes

33



f(x
Plv = y|x = x)= f()zx;/)

Where f (X,y) = P(x=X,y=y) is the joint probability fraction and {x) is

the marginal probability function for x.

f
Ry 0 =)

And call it the conditional probability function of given X. Similarly, the

conditional probability function of X given Y is

f
g <50

We can also denote
f (x| y) and f(y| x) by f (xly)and f, (yix)respectively these ideas can easily

be extended to the case where X,Y are mootis random variables.

For example the conditional densitynction of Y given X is

f(x.y)

tin) = — )

Where f (x,y) is the joint density function ofand y,and f (x) is the

marginal density function of . Using the equation above we can find

the probability of y being between ¢ andgigen thatx O X O x+dx is

P(c<Y<d|x<X<x+dx): =_[Cdf (y| x)dy

34



Example 10.1

2:101 A random variable x has the denéiyction

f(x)= ¢ , Wwhere — oo <x < o,

(x* +1)

a. Find the value ofthe constant C

b. Find the probability thatXlies between'/; and 1

Solution
C. We must havé” f(xdx =1 ie
3 C _ _ o
_[_wx2+1dx = Ctan 1><Lo
_cl0_ (_DJ _
2 2
=C=1
C = %‘I
3
b If%sxzsl,theneither%sxsor

Thus the required probability is

35



ij—%dx +i1dx:£j1dx

Mt x*+1 M %x? +1 M % x®+1

20 oy - ot (I3
ﬁ{ tan (D tan (3)}
:E[ﬂ_ﬂj: 1

N4 6 6

Example 2:10:2

2: 102 find the distribution function corregging to the density
function of the example 2:10:1 given above.

Solution ;

f=[f@Ud :% :uzdil

= % [tan U LX To

-1 [tan Tx-tan™ (—oo)]

Example 2:10:3

2: 10:3 The distribution function for a randomariable x is

f(x) = {1—e‘2" x =0
0 0

36



Find (a) the density function (b) theolmability that x > 2 and (c)
the probability that3 0 x<4

Solution ;

f(x)=1-e 2 when x=0

d (f(x) =0-(-2)e x=2e" %
dx

26— 2 >0
2>f(><):dif(x):{0e X )>(<<o
X

N -2 —

(b) p(x>2)_j22e dx=-e ~¥°
= -—e-2(»)

:_eo+e—4 = e

o dx+ I:Ze 24 dx

c. pEB<xsq=[fd=[

=-e-2x|*=1-e-°

OR p(-3<x<4)=P (x<4)-Px< -3

P (4) - P (-3)
= @-°) - (o)
=1-e°°®

Example 2:10:4 The joint probability functiosf two discrete random

variable X and Y -1 is given b (x,y) = C (2x +y), wherex and y can

assume all integers such that

0<x<2 o0<y<3,and f (xYy)=o0othewise

a. find the value of the constant C

37



b. Find p (x =2,y = 1). (c) find px ¢1, y<2
Solution:
The sample points, y) for which probabilities are different fromero

are indicated below

V 0 1 2 3 Totals
X

0 0 C 2C 3C 6C

1 2C 3C 4c 5c 14c

2 4c 5c 6C 7C 22C
Totals 6c 9c 12c 15c 42c

The probabilities associated with these poigiteen by C (2x+y), are
shown in the table above

Since the grand 24C must equal to 1l i.e 421C

c=%

b PXx=2,Y=1) c@+1+_rHY
grand total

38




p(x=21,y<2) =Zf2f(x,y)

x==1 y<2

(2c +3c +4c ) + (4c + 5c + 6¢C)

:24(::%:&
42 7

Example 2:10:5 Find (a¥ (y2),
(b) p(y=1|x=2 for the distribution
Find the example 2:10:4 above

Solution

Using the results from the above example

_f(xy _ (2x+y)l42
PO T L
So that withx=2
_(4+y)/42 _4+y x21
f(y2)= =
1%1 11 x 42
22
4+1
p(y=1x=2) = f(1‘2) =
(b) 22

:%2
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2.11 CONCLUSION

In this unit, you studied random variables and sifemtion, distributive
functions for discrete and continuous random véemb You also learned
Graphical representation and joint distribution éscrete and continuous
random variables.

Independence and conditional probability of randeamables and related

working examples are also learned from this its

2:12 SUMMARY

In this unit distribution of random variables spateat you studied included
(1) Meaning of random variables and its classification.

(2) Distribution functions for discrete and continusasdom variables.
(3) Graphical representation of random variables

(4) Joint distribution for discrete and continuous @mdvariables.

(5) Independence and conditional probability of rand@mables

(6) Worked examples on each concept of random variables

Exercise 2.12 .1 (SAE)
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Suppose that a pair of fair dice are to be tossed, let the random
variable x denote the sum of the points. Obtain prebability

distribution for x.

2.13 TUTOR MARKED ASSIGNMENT (TMA)
Exercises 2.131. The joint density function obtaontinuous random
variables x and y is

{cxy o0 xD410 y0O5
0 otherwise

f(x,y)={

Find the value of the constant c

(@ FindP (10 X O 2 20Y 03

(b) Findp (X>3Y<2)
2.14 REFERENCES/ FURTHER READING / OTHER RESOURCES

Marry R Spiegeletal (2009) probability and statistics third edition

published by mc craw hill
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UNIT 3 EXPECTATION OF RANDOM VARIABLES.

3.0 INTRODUCTION.

This is a very important concept in probability astdtistics. The unit
will forcusses on mathematical expectation of randwariables.
Expected value for discrete and continuous randanalbles are stated.
Variance and Standard Deviation for discrete andticoous random
variables are highlighted; also some important ithes on the

expectation of random variables are discussed.

Moment and Moment generating functions for rand@nables are also
learned from this unit. Characteristics functidnrandom variables are
also learned and relevant working examples on eaohept are given to

make the unit more meaningful.

3.1 OBJECTIVE
At the end of this unit, student should be able to

1. Define Expectation of random variable

2. Express mathematically the Expected Value of M&a discrete and
continuous random variables.

3. State and prove Theorems on Expectation.
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4. State Variance and Standard Deviation for Discrand Continuous

Random Variables.

5. Find the Mathematical Expectation of Moments Btmanents Generation
Function for Discrete and Continuous random vaesbl

6. Find the characteristic function of a given ramdvariable.

7. Solve related examples on the mathematical ¢éapec of random

variables.

3.2 What Is Expectation of Random Variables?
Let X be a discrete random variable with probapilunction f (x) , Then

the expected value of k (x) is defined to be
n
E (X) :Z_ Xj f(x) =YXt (X

=>xf( (1)
If f (x) is a accurate characterization of the populaticagudency

distribution, then
E (X) =u ( the population mean)
For a continuous random variable x having dendgitycfion f (x) the

expectation of x is defined as

E)=[ xf(®dx ---(Q
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Provided that the integral converges absolutelyel#Hl (.x) is the value

of its probability density ak eg If x is the member of point roll with a
balance die. F»§ = ¥ for x =1, 2, 3, 4, 5, 6 and its mathematical

expectation is Ex) = 1xt 4 oxt vt raxt a5 xteext
6 6 6 6 6 6

1
AR
+
olN
+
olw
+
[ RN
+
oo
+
oo

21
2 =3 1, (35)

Also if X has the unform density function

f() =3 for 20 x O4and f(x =o elsewhere. Then

E(x = E x.%dx = %x2|12 =3
In many scientifical problem, we are interested mioly the expected
value of a random variable X but also in the expéatalue of random
variable related to x. Thus, we might be interdsterandom variable y

whose values are related to those of X by W®g
TheElg(] =X g0 f 0 ---0
Where x is discrete and Eg(x))] = [ 909 f(x) dx

For continuous case using the above example fim@xpectation of

g (x) =x* for the number of points rolls with a balance die
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Solution
Elg]=> ¥ (¥

f(x) =123 4,56

(f(x)=%

1 1 1 1 1
O E X)) =IX—+4X—+ 9X— +16X— +25x—+36X
lg (] S TAXCF9X - - JA

=15%3

Similarly for the random variable with the unifoaensity function

f(x)=1% for20x 0 4 and f(x) =0 elsewhere, we get

Elg (0] = EG¢) = [ % £ () o
= xz(%) dx
4 2 _1 5
= L%x dx _EX|2

:9%

3.3 THEOREMS ON EXPECTATION

Theorem 3.31: If ¢ is any constant, then E(C XJ E (X)
Also, E[c.g (x)] = C E [g(x)]

Theorem 3.3.2 : If x and y are any random variglitesn

E(X+Y)=E(x) +E(Y)
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Theorem 3.3.3:If x and y are independent random variables, then
EMXY)=EX)E(Y)

THEOREM 3.3.4
Efax+b)7] =3 () @b EX)
For instance, if n = 1,

E[(an+b)”] = i (Z/I.) a~'br E(x")

:Q) aE(x)+(41) bE (1)
=aE (x)+b
If =2

Efax+ )7 = 3 (2) a® b E[x2-]
(o) Ebxe)s (e )+ (€)er )
=& E()+2abE (x)+b
Theorem 3.3.4can easily be proved by mathematical induction
If zis a random variable whose values are relaagtiose of z and random

variable x and y by means of equation z =xgy{

The mathematical Expectation is written as

Elgxxy] = Saxy) fxy) --@)

OrEfgexy] = [7 [Lo (xy) fxy) dcdy —-()
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In equation (4) f &, y) Is the value of joint probability function of x and

y at X, y while in equation (5) f(y) Corresponds to the value of the joint

probability density

3.4 THE VARIANCE AND STANDARD DEVIATION
We have already noted that the expectation of daanvariable X is
often called the means and is denoted /byanotherquality of great
importance in probability and statistics is callediance and is defined
by Var (X) = E (X#)? oo .(6)
The variance is a non-negative number. The posgiygaeroot of the

variance is called the Standard Deviatiation argiven by

o, = JNa(x) = \/E (I_X—X)ZD— .............................. 7)

The standard derivation is often denotedobypnstead ofoc,, and the

variance in such caseds$
If x isa discrete random variable takirge tvalues XX, .......... Xn

and having probability function f(x),, theéhe variance is given by

a’ = E(X-p? = i(x; =) F (X)) = DX =) () = e, ®

In the special case of (8) where the prdhies are all equal, we

haveo? = [(xl = )+ (X = )% e (x, _u)? ] % T ©)
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Which is the variance for a set of n numbers................. X,

If X takes on an infinite number of values
TR then 0% = E(X = = [~ (X = ) £ (x)ox

Provided that the integral converges.

3.5. THEOREMS ON VARIANCE
Theorems 3.5.1

0 =E (x-u)’X) =E(x)- 4’ =
=E (x¥? (E(x)*
where 4 = E (X).

Theorem 3.5.2. If C is any constant,

Var(C X) = C? Var (X) = cooeeeeeeeeeeeeeeeee e see e eneens

Theorem3.5.3 The quantitye (( x —a)?) isa minimum whena = y =E (x)

Theorem 3.5.4 If X and Y are independerdom variables

Var ( X+Y) =Var (X) + Var (Y) or

Oy = Ot O oo 12
Var(X -Y) =Var (X) —Var (Y) or
O =Y S0, =07 ot @3
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3.6 MOMENTS

The rth moment of a random variable X about tleamy, also called the
rth central moment, is defined as

U, = E(Xm L) e ()]

Wherer =0, 1, 2, ---—--- it follows that,=1, 4, =0 and &, = ¢ i.e second
moment about the mean is the variance.

We have, assuming absolute convergence.

7RI R CE ) G - C R 15
go= [ = u) f 9 (GO TV ST R — L6)

The rth moment of x about the origin, also called tth raw moment, is

defined as

The zero moment and the first moment about the naearrespectively 1
and 0 Sincgu, = E|(x- w)°] = EQ® =1
And ' = E[(x-u)'] =E(X) =E(W) = u-p =0
The second movement called the variance and ieddy o°.
i, =E|(x-u)f] =0

This indicate the strength on dispersion of thérithistion generated.
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Generally moment about the mean describe the sifape distribution of a

random variable.

3.7 MOMENT GENERATING FUNCTIONS

Although the moment of some distribution can besdeined directly by
evaluating the necessary integral or sum. Therest ean alternative
techniqgue which often provide considerable sigatian. This technique is

based on the moment generating function whichvsrgby

M@ =E@) =3 e £ (X) s L9

(discretevariable)

M () =EE€)=[ e f0)dX e 19

{ee]
et (continuousvariable)

tx  t*x®  t% t"x'
Mo=1+ =+ + = + == -—=
but e 1 ! 2! 3! r!

This for the discrete cas®ix (t) =’ {1 rix +0 o1

= Mx(@)=> f(x+t>x f(x)+t?TZx2 f(x)+ ———:—!r DX f(x) +--=

2

M, (t) = 1+4't + ,u;% +———,ult7+ ........................................................ (20)

Thus if we expandvix (t) as a power series in t, the coefficient ‘oisy

which is the rth moment about the origin of digitibn X.
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You observed that the maclaurins series of a fanatix(t) with coefficient

t—lis the rth derivation of the function with respectt at t = o.
r!

Hence another way of determine the movement o$tailolition is given by

variation

't :[der(t)}

dt’

3.8 THEOREMS ON MOMENT GENERATING FUNCTION

Theorems 3.8.1 Ifvix(t) is the moment generating function of the random
variable x and a and(#0) are constants, then the moment generating

()= e Mx @

function of[%j is M [

)
Theorem 3.8.2 :- If X and Y are independent randaamables having

moment generating fractions, (t) and M, (t), respectively, then

My, (€)= My O My ()i 30

l.e The moment generating function of a sum of peielent random

variables is equal to the product of their momestayating functions.
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3.9 CHARACTERISTIC FUNCTIONS

Characteristic function of a random variable X(wgfided on Q,LC, p)

provides a powerful and application tool in thedityeof probability.
Characteristic function has one important advartagwer moment
generating function because it can be need to pbote the weak law of
large numbers and the Central limit theorem whidhbe treated in the next
unit.

Definition: Let X be a random variable with problki distribution

function. The characteristic function of x is defthfor real t by
p@ =[ e dF(x=]e" p(x
- ele)=e e
Where € = cog + isint x
E (€%)=E (cost x)+ i Esint x
Properties of characteristic function
(@) (i) ¢ () is informally continuous on the real line.
(i) w (o) =1
(ii)) [ =< 1 for all t).

Sincele®| =1
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Proof:

()] ot+m-00] =[[ " xe" pax |

< |

:.ro ‘eitx | eir]x_

ei(t'h x — @i p(dX)|

p@9=[" [e™ | | p(@9

By the dominated convergence theorem, we have

ﬂ? eitx

h-0

00

e -1 p(d) = im

e™ —| | p(dx) =0
Note:

(i) e -1]<2

(i) The limit tends to zero independently of t.

Thus | ¢t +h)-¢()| - o independent of t.

Henceg (t) is uniformly continuous on the real line

i) |[e™ =] cost x+7 sintx|= Jcodtx +sin’t x = 1

o) |= [le™p(d) | <[]e™ |p(dx) =] p(dx) =1
(b) The characteristic function of the sum of independeandom

variables is the product of their characteristioctions

53



Proof :
Let Sn = X, +X, +--+++XnwhereX;, X, -—--Xn are independent
random variables.

Then
208 Ele™n| = E [ait (X +.ccoooer. x) ]
=E (") E (™) -~ E (E (€"n)
=y, ) Y, ,0)-——-y () for all real t.
If (x,) are independent and identically distributed then
Yo ) = |, @ |
(c) Unlike movement generating functions, (t)

Is finite for all variable x and all real numbefThe reason being thdltie

bounded while itis unbounded foe-0 | O e

d. The distribution function of X and henhe Pdf, if it exists can
be obtained from the characteristic functiorsing an “Inversion

formula:,

If X is integer valued random variable than(n)zﬁ j;l’e ™y (t) dt

If x isa continuous random variable, thEI(]X):%jw () dt

assuming[ ¢, ©)| O o
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e. Properties of characteristic function enab to prove both the
weak law of large numbers and the cenirait theorem.

Properties (c) (d) and (e) are important athges of functions over

moment generating function.

(H) If two random variables have the same abi@ristic function they

have the same distribution function.

(9) If x has finiten" moment, thenu ™(t) exists and is continuous in t.

qu(n) (t) =d" Ed(Tenlx) E{(lX)n eitx}

Thuse(w)= 4 (©)

n

|
Example 3.9.1 let x have an exponential distribution twiparameter
£ find the characteristic function of x
Solution

W) =E (€)= [e ™ pe 7 dx

— P (B X g B
,BLe dx A

Example 3:9:2 Let x be informally distributed an (-1,1). in& the

characteristics function of X.
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Solution

v.)=E=[e" o
_lew
2 it

e =cog + isint,
Note: e-"=cog - isint,
e —e " 20sint.

Example 3.9.3 Find the characteristic function of thendam variable

X having density function give by

f(xz{}éa Xl <a

0 otherwise

Solution

EE)=["e™ (3 :Zif‘eitx dx
9 a a

_ i eit>< a eitx -e _itx
2a it | 2iat
_sinat  _sni &
at 04

Using Euler’s formula with 9 = at
Example 3.9.4 : Find the expectation of a discrete randomiate X

whose probability function is given by

f (x) :(%j [X=1 2 3 oo -]
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Solution

s, (1) 21, (1 1
We haveE (x) = > x (2} 5 +2(4) +3(8j+

x =1

To find the sum,

Let S:£+ 2 (Ej B(Ej+ 4(ij+ ......................................
2 4 8 16

Then L S :1+2(Ej+3(ij .....................................
2 4 8 16
.1 1 1 1 1
By subtracting=S == + = + = + = +...vorrrrnn. =1
y 9, 2 4 8 16

Therefore,s = 2

Example 3.9.5: A Continuous Random Variable X Has ®bability

x>0

- 2e-2"
D t by f =
ensity givenby f (n) {o x<0

Find («) E (x) (b) E (X))
(@) E(M=[xfd= [x@?”) d

=2 I:xe'2X dx
= 2j(x) (S—ZXJ— (1)@”; =%
E(C) = [ f (9 dx=2 I:xz e “2xdx

e T
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Example 3.9.6 Find (a) the variance, (b) The standard deviatbithe

sum obtained in tossing a pair of fair dice.

Solution

= _ 41 1 6/ (1) _ 7
E(M=E(y)= ‘(EJ . z(gj T 7 (Ej -7
v 20926072 ({2 (g

|
/_Id‘\
ol
N——
+
N
VR
ol
N
+
w
o}
VR
ol
N

Var (X) = Vor (Y =— -
Then 0 ¥ 6

And since X and Y are independent

var (x+ y) =var (x) +var (y)
_35 35 _ 70

12 12 12
= 35
76
(c) Standard Deviation =yvarnance
: 35
leogy,, 6 = Jvar (x+y)= \/%

Example 3.9.7.The random variable x can assume the vdlesl -1
with probability ¥2 each. Find (a) the momey#@nerating function

(b) the first four moment about the origin.
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Solution:

o ekl e

_ 1 (a 1)
= 5 T Q)
t> ot t
(b) we have € =1+t+— - — + — 4+ e )
2! 3 41
2 4
then from (1) 1(et +et):1+t—+t—+ .....................................
2 20 4

3 t4

2
But from (2) M, (t) =1+ u +,ult2—|+,ulst— U F e

3 4
Then compering (1) and (2) we have

U =0 w2 =1 us=0 pya =1

The odd moment are all zero, and the ewmments are all one

Example 3.9.8: A random variable x has density functyiven by

2e & Xx=0
f =
(9) {0 =0

Find (a) the moment generating function,
(b) the first four moments about the origi

Solution:

tx

@ M, (1) =E()=["e f(x d
= j:e‘x (2e ~) dx
=2[e(?) " dx

(t-2)
t-2

00

= 2e

59



S assuming t< 2
2-t

(b) If |t <2 we have

2 1 t+t2+t3+ﬁ
2 -t 1—% 2 4 8 16

B t t® t*
But Mx (t) =1+ g + > E+,ula§+,ul4 T —————

Therefore, on comparing terms:}é

/121 =

,/113: ,,Ul4=

NI~
Nlw
N w

3.10 CONCLUSION
In this unit you have learnt mathematical exgch of random variables
for discrete and continuous random variables: ¥so learned Variance

and Standard Deviation for discrete and comtius random variables.

Some important theorems on Expectation, VarianceStandard Deviation
are stated.

Moment, Moment Generating functions and Charadteridunction are
fully treated and related working example on eaohcept are easily

shown to make the learning of the unit mareaningful.
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3.11 SUMMARY

In this unit expectation of random variablésat you have studied

included the following:

- Meaning of Expectation for Discreet and Continsiotandom
variables

- Mathematical Expectation for discreet and cordimi random
variables.

- Expected Value for Variance and Standard &texn .

- Theorems on the Expectation of Random Vargble

- Moment, Moment Generating Function for Discreted Continuous
Random Variables

- Characteristic Functions of Random Variables

- Working examples on the Mathematical Expectatain Random

Variables

Exercise: 3.11.1 (ASE)

The density function of a random variablesi®given by

f(x) = X 0 <x<?2

o NI

otherwise

find(@ E (x) (b) E ()
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3.1.2 TUTOR MARKED ASSIGNMENT (TMA)

Exercises 3.12.1: if X is random variable Exercise 3.11.1 above find
E B3x-2X)

Exercises 3.12.2 A random variable X has)E 2, E (%) = 8 find

(@) Var (x) (b)o,

3.13 Referencée Further Reading / other resources

Murray R silage et al (2009) Probability arsfatistics.

Third addition published by Mc Graw Hill Dr.R Kasumu (2003)

probability theory first edition published by¥ATOL VENTURES

LAGOS, DR S.A Okunuga (1998) Probability Disttion 2 lecturer

Materials.
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LIMIT THEOREM

4.0 INTRODUCTION

The purpose of this unit is to acquainé tetudents with the liquid
theorems on cheby shev’'s inequality, convergenoeak laws of Lange
numbers, strong law of large number. Some tlod theorems are
proved and related working examples are show

4.1 OBJECTIVES

At the end of this unit student should dde to

State and prove chebyshev’'s inequality

. Define Convergence of random variables

State and prove some theorems on convergenceeasure

State and prove weak law of large numbers

State the strong law large numbers

4.2 CHEBYSHEV'S INEQUALITY

This is a important theorems in probabilitydastatistics that reveals a
general property of discrete or continuous camdvariable having finite

mean and variance in known under the namehebyshev’s inequality

Themes 4.21 suppose that X is a random varialjtbscrete or

continuous)
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Having meanu and variances?, which are finite. Then if epsilon (e)

IS a positive number,

o2
o2

PAx-u| =2E) =2
&

or with € = ko

P(x-ulzko) < k_12

Proof :
We shall proof for continuous random variablés proof for discrete
variables is similar itintegrals are replabgdsums.

If f(x) isthe density function of X, then
0’ = E [(x —p = [y f (x)dx}
Since the integrand is nonnegative, the valfiehe integral can only

decrease when the range of integration isinismed .

Therefore,

o’ = ot (x— )% f (X) dx= j g2 f (x) dx

1- ,UIAE

= g2 jf () dx

1x-p)=E

But the last integral is equal tB(lx -x1=E

Hence,
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0.2
52

P(lx —ul=¢)<

4.3 CONVERGENCE OF RANDOM VARIABLE

Definition 1 A sequence of random variabls is said to converge in
distribution or inlaw to X (we writ&n It - X) if the corresponding
sequence of distribution functior®, Fn - F as n - «.

In this case [Fis a distribution function of F.

Example: Consider the random variable, Xwhich is a Binomial

Bi (n,p), then
random variableBi (1, p), Bi (2,p), Bi 3 P) cccceveevrerverveennn. - X
Bi (n, p) tends to normal

Furthermore if the corresponding F distributioiveg:
Fn =Pr (X £x) :Z(n) pq - F

If Xn OO0~ Xie Fn (X) - F distribution functionof X Then
() Cn(t) - C(@®

Where cCn(t)stands for corresponding characteristic fumcod random
variable X

(2) for any bounded continuous function
jgd Fn(x) - jng
Definition 2: The sequencgxn} of random variables is said to

converge to a random variable X if
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P{{Xn-X| >¢} -~ 0asn - o for ane>0. we indicate this by Xn [IF - X
Definition 3: The sequence{xn} of random variables is said to
converge in  mean square to a random variable X it
el xn-X| ’}- 0asn- «.we indicate this bygn OPF_ X

Def intion 4: The sequence {Xn} of random variable is said to  converge with probablity
one(or almost surely , as)toaconstant Cif P {imX 6 = c} =1

We indicate this byn - cor X, O~ C

or equivalentlylim P{Sup| Xn-C| > 5} =0, for every £>0.

n=N

Note:

1. Ingeneral f, - f does not imply thdtxn}converges to a random
variable for exampleSupose X is N (01)and for all n, let Xn = - X
Then XnisN (01) That is, Fn (x) = F(x)1

Fn (x) = (f(x) for alln. But

P{xn-xzef=P{-2x |z¢}= P{

Hence Xn IP- X
@i)1f X, O~ X then Fn - F. letting £ - 0,

We see thafr, (x) - F(x)
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4.4 DEMOVRE'S THEOREM
Let X, be Bi(n,p) then,

_ Xn-np

Yn ~ N (oD asn - o
Jnpg

Proof Pr (X, =r) = (n) P g™

r

cn (), = E (6%

= Y e™Pr(Xn=x)

x=0

Therefore characteristic function @f = E (¢")

_ o itxX _itnp
) inpq v/ npq
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it
L log Cly, (t) =—it %+ nlog{PeWﬂ-p]

= —it /£+n log 1+p(e_ I 1}
q Inpq -

BUL € = 4 Z et oo
2

2 3
And log (1+z-z—Z— e
2 3

.. [np it (|t) ( )

Olog |y, (t) =it /—j +nlog{1+p + + + O:>order

( q Vynpg - 2npg - \/npa)3!

H 2
= —it m+ n Logil+P o +O(I—3J....p——+0[12j
Jnpg  2npq n°; 2 | npq n
2p 2.2

= —it + it nt” nIOt+O 1

\} \} " 2npgq  2npq n%

) ‘E*Ow

t2

Cy(t) - e 2 asn - o

S
but e 2 is cheracteristic function of a stadard normal distrubtion N (0.1)
O -Yn - N(01)
Theorem

If Xn is binomial Bi (n, p) as - «,P - 0, such that
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np = A, Xn (I} - Poison (A)
Recall : Cx_ (t) = (Peit +q)n

E N )

lim Cxn (t) = lim {1+ i(e " —1)}
P0 n

np-A

= eA et - A

n-oo

Which is the characteristic function of poid@nasn - «, p - 0,np=A.

45 CENTRAL LIMIT THEOREM

be independently and identically

Then yn OO~ N (0)

— + +
X:X1 X2+ i,
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>
X
I
X
+
I\)><
+
+
X

Poof:
Let C(t) be the characteristics function qfsé that @) = E (¢)

Since the random variable are identical

SE (€)= E[€") = =E (eitx“):c ®
cn@) =E (¢
= E {eXI + X, + J\/ﬁxn— ,u}

T+)2
ButC(t)=1+ a,it +a, ('2 ..............................................

Whered, = ph =u

= — 4,2 2
O, =, =H t0

DCy M=e- - [1+i - +{ ' J K +0(t3)]

H
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Taking log to get

itu 2

log, C\r\(n (t) = _ﬁ +nlog (14_\/@ - 20N _+O(t3)J

itu

X% X3
Butlog (X)) =X - "+ — ...
g (X) >t

ct

H t2t itu\3
- n Jno (")
OlogC. (t)=-it ,|— 4 +n - + - + )
9C5, Va'u I (2\/na 20°n )

t2
:-20'2 (tuzz _qu) an - o«

= —t?

2

t
OC. (t) —e- > (remove the log )

Henceyn - N (01)

Definition 1: A sequence of random variab¥ is said to “ converge
in  probability”(weakly) to the <constant C if the mit
P(Xn- C|> k)= 0Owhere C>0 This is written as

Xn - C

Definition 2: A sequence of random variable ¥ said to converge in

probability to Xif xn - X Of- 0
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4.6 KHINCHINE'S THEOREM
(Weak law of large Numbers) let X1,,X..........c.o...ee. Xn be a
sequence of independently and identically rithsted random variable

each with meanu

Let§n=x1+x2+x3+ ................................. + Xn

Then X n f- u
Poof:

C@t)=E(e"™)
=1+itu+0(t?)
Let C. (1) =E [e™)
=E(e“‘x1+ Xy F e + Xn)
=E (") E (). E (€™)

:{C [lﬂn = E (eit x,).E (eitx,) E(e”xn)

- [1+ ItTﬂ +0 (tz)}n

=y Cxn () - ¥ asn - o
hence, Xn [If - u
meaning | im P Hx—,u|>k]:0

e¥ Is the characteristics function of a randorariables taking the

value of x with probability 1
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THEOREM 4

The strong law of large Numbers Iptii be a sequence of

independent random variables such that

0o 2
E(Xn) =), Var (X 0) = 01-2and Z%< oo,j
1

Then the sequenc& D> xi convergeto O almost easily ie)

e=1

Proof:

E()=0and Var (Yn) = 291,

Sn = 3
n=1

n=1 n

Converge almost easily and hence

lim 1 ZXi =0 a.e
e N

Corollary 1
If (Xi) is a sequence of independent ideriitycadistributed random

variables such thag(xi)=0

and variance such that < «,then

o DX
?: ln - 0 almost surely
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Corollary

Let everything be as from the above

E(Xn) = gandVar (Xn) for all n.
Then % ~ u almost surely

Example 4.61

0 with Prob
Suppose X” B :

1 with prob1l- %

X =1 with probability 1.

Solution.

theorem excdpat

Conside|1Xn - X|.The only possible values df7-xiareo and 1. So

0, with prob |—E
Xn-X |= ”1
1 with prob =

0 X<O
P{|xn-X |<Xx}={1-= 0s x<1
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LimP|Xn_X| <X|_ [0 x<0
1 x=z=o0

X, M- X

n

0 x<0
|1 10, X <1
F, (X)= P OSX<1F(X)—{l X s 1
1,

X

\Y)

1
Fn(x) - F(x) forall X

Note: X, If- X, - X

Example 4.6.2

Let X 1, Xp, ----- X . be a sequence of independent identically diskibut

poison random variable with parameter Then

E{| X, =2 |2 }:Var(x_n):% ~ 0 asn - o

Therefore, X, OFFIFEF_ A or X, O FFHEE A
Example 4.

Let X;, X5 ------- , Xn be a sequenceofiid

Poison random variables. Than by chebychev’s indgua

Var (Yn)

p{|>_<—/1 ERER

A

= — -~ Oasn - o
n/
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Therefore,

EXAMPLE 4.6.3
Convergence in mean square implies convergencebapility.

By chebychev’s inequality

X, =X |?)

P{|XH—X|>€}S E|( 7 ~ 0asn-w

o

Thus X, 7 X

In general, convergence in rth mean implies coremeg in probability.

4.7 CONCLUSION

In this unit you have learned chebyshev’s ineqguathe proving and the
application of the theorem.

You have also learned convergence of random vasaklith different
definitions, Demovre’s theorem, and Central limitedrem by using
characteristics function for finding convergence.

Moreover, the weak and strong law of large numleesdiscussed the and

related working examples on the theorems are tteate
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4.80 SUMMARY

In this unit the following concept have been ledine

2. Chebyshev’s Inequality

3. Convergence of Random Variables

4. Demovre’s Theorem

5. Central limit Theorem

6. Weak law of Large Numbers

7. Strong law of Large Numbers

8. Relevant examples on the theorems are treated.

EXERCISE: 4.80.1 (S AE)
A random variable X has mean 3 and variance 2. Obkebyshev’s
Inequality to obtain an upper bound for

(@) P( x-3|z2),| B)P(x-3 |z |).

EXERCISE 4.80.2

Show that the (weak) law of large numbers can &tedtas.

: S
Lim P(| T H |<t)=|
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4.90 TUTOR MARKED ASSIGNMENT (TMA)

(@) Show that the sequence Xof random variable 8 is said to
converge

(i) In mean square to Random Variable X.

(i)  With probability one almost surely to a cosust c.

(b) State and Prove Central limit Theorem.

5.¢ References / Further Reading Dr RA kasumu (2608bability Theory
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