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MODULE 1 PROPAGATION OF PLANE WAVE I[N
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Unit 1 Plane Waves in Isotropic Media
Unit 2 Propagation of Electromagnetic Wave in an
Isotropic Medium
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1.0 INTRODUCTION

There are several kind of waves in nature. We tsmand, light, heat,
electromagnetic waves, mechanical waves e.t.c.eThewes are either
transverse or longitudinal. The electromagneticevare are discussing
IS a transverse wave.

The movement of wave from one point to another wegpect to time is
referred to as propagation.

Plane waves refer to waves whose wavefront ardlglai@ each other.
A plane electromagnetic wave that is polarised Wdwve its electric
field vector oscillating in a specific directiondarts Magnetic field (B)
oscillating perpendicularly to it. The direction pfopagation is then
normal to both directions of E and B. If the E dd/ectors oscillate
randomly {with both perpendicular to each otherg thlectromagnetic
wave is said to be unpolarised or randomly poldriséAn
electromagnetic wave can be linearly polarised. é@ctromagnetic
wave can be linearly polarised (the E vector cetiiiyy in a straight line)
or circularly polarised ( the E vector oscillatiog a circular path) or
elliptically polarised { the E vector oscillating an elliptical path)

An isotropic medium is a medium having a similaogerty in all
direction. An unbounded isotropic medium is therefan unconfined
medium having simiar properties in all direction.sfnple example is
free space.
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In this module we will look at maxwell’s equatiomsfree space and in
material medium,wave equations of electric and ratigriield. We will
also consider reflection and refraction of electagmetic waves.

20 OBJECTIVES

By the end of this module the student should be #il

define a plane polarised wave

express a plane wave with a mathematical expression
understand isotropic media

understand polarisation of plane waves

explain the origin of electromagnetic wave.

3.0 MAINCONTENT

3.1 Propagation Of Plane Wave In Unbounded Isotropic
Media.

A wave may be regarded as a plane wave far away #® source of

radiation. This applies to wavefronts of differshapes. The wavefronts
of a plane wave are parallel to each other. leisessary to mention that
a line normal to the wavefronts or planes is calady. A ray indicates
the direction of propagation.

There are many types of waves such as sound wawdeprhagnetic
wave, electromagnetic wave etc. Their propertietude (i) transfer of
energy from one place to another. (ii) exhibitidrddfraction effect and
(i) obeying the principle of superposition.

The wave we are considering here is electromagmedice which is
generated by accelerated charged particles. Imeéighbourhood of an
electric charge is electric field, E. As the changaves (oscillates), both
electric field and magnetic field exist in the rdgurhood. An
electromagnetic wave is then propagated. Recatl eélectromagnetic
wave exists as a result of variation in electradiwith time, producing
magnetic field (i.e. at high frequency) and theyway magnetic field
producing electric field (faraday’s law) which pess is repeated
continuously.

The electric field, E, is represented by

E =U,E, ex;{ jw{t —éﬂ -------------- (1)

Equation (1) implies that E oscillates along thaxis while the wave
propagates along the z-axis. The velocity of theeyva = w/k, where w
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Is the angular frequency and k is the wave numipeftee space, v =
2.998 x 16ms?! (to 3 d.p). & is the amplitude or peak value of the
varying electric field. The magnetic field, B, whioscillates along the
y-axis is represented by

B=u,B, exr{jw{t—éﬂ -------------- 2)

where B is the amplitude or peak value of the magneticdfieh

polarized plane wave has its field of oscillatidranging with time in a
specified direction while for unpolarized plane wathe direction of
oscillation of its field change randomly with tim&he specified
direction of oscillation of the field could be rgictear, circular or
elliptical in which case rectilinear, circular amdliptical polarization
result. In equation (1) is represented a lineadlapzed plane wave.
Circular polarization of the plane wave will be regented by

E=ugkE, exp[ jw(t —Eﬂ+ u,E, exp{ jw(t _E+£H
% v 2

This is because for circular polarization the twomponents of equal
amplitude must be perpendicular and have a phdgeratice ofn/2
between them. If the amplitude of the componergsuaequal, elliptical
polarization results.

Note that the directions of oscillations of electfield and magnetic
field and the direction of propagation of electrgmatic wave are
mutually perpendicular to each other i.e. the thokeections are
orthogonal. Se€&igure 1.

‘\\ =
\‘x;l (1A

7%
Fig1 / l N X A

9 B

The relationship between the electric field, E, #mel magnetic field, B,
is obtained from Faraday’s law as follows.
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Using differential form of Faraday’s law i.e.

VxE=-28 3)

dt

or
dE, dE, dB

X X

u, —-u, =——
dz dy dt

Since the simple case ok Eonstant in x-y plane is considere(?r,:o.
y

The 29term on the LHS =0 sinaey% =0, therefore,
y

. W . Z dB
U E | Wt =
2 v {M( VH dt

Integrating with respect to t gives,

B:uy%E0 ex;{jm{t—sﬂ """" (4)

Comparing equations (2) & (4) shows that the amgét B, of the
magnetic field equalsdEv. The wave equations of the electric and
magnetic fields of which equations (1) and (2) sokutions are obtained
as follows:

Maxwell's equations in free space in differentiairh are

T/ —— ;

wherep = charge density ang = permittivity of free space.

(V2= ¢ —— (if)
dB
(VA0 s —— i
<E=-S (i
VX B = gy ST ] e )

where j= conduction current density and = permeability of free
space. Note that equation (iv) is the Ampere's lawdified by the

addition of displacement currentb%when the electric field varies
rapidly.

Outside a region of changing charge and currentrilolision, the
Maxwell's equations given above i.e. equationsq(ifiv) becomes

V.E=0 oo (5)

V.B=0 -—-mmmmmmm e (6)
dB

VxE = i (7)



PHY 403 ELECTRODYNAMICSIII

Vx B = gty o e ®)

By taking the curl of (7) i.eVxVxE = —%(Vx B), we have

VxVxE=V(V.E)-V’E
Substituting forv xV x E we have

V(V.E)-V’E = —%(VX B)

Substituting forv.E = 0 from equation 5 and fov x B =¢_u, c:j—ltz gives,

d dE d’E
~V’E=—— —) or V’ZE=g u,—p =-----------=-- 9
o (Eoto o) Follo "7 9)
or
1 d’E
VPE =" —— —mmmmmmmmmmemme e --- (10
¢’ dt? (10)
wherec = L (11)
gOILlO

by taking the curl of (8) i.8/xVxB = goyO%(Vx E), we have

V(V.B)-V’B= —%(VX E)

Using equations (6) & (7) we have
d’B d’B

—VZBz—gO,uOF or V’B=¢,u, e (12)
or

1d°B
VZB=? dt2 """"""""""""""""" (13)

Equations (10) & (13) are the wave equations oftate and magnetic
fields respectively.

40 CONCLUSION:

Plane waves propagating in an unbounded isotrogdium may be
polarised or unpolarised. An unpolarised wave & aleferred to as
randomly polarised wave. A polarised plane wave fhsasfield of

oscillation changing with time in a specified diien. E.g linear,
circular or elliptical directions. For an unpola&tiswave the diection of
oscillation of its field change randomly with time.
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50 SUMMARY

1. A plane wave has wavefronts parallel to eatleroand for away

from any source of radiation, a wave can be saithaoplane

polarised.

A plane wave can be represented mathematically.

An isotropic medium is an unconfined medium ihgvsimilar

properties in all directions. An example of antieptc medium is

free space.

4. A wave is polarised if its field of oscillatiazhange with time in
a specified direction.

5. Electromagnetic wave is generated by acceldratkarged
particles.

w N

6.0 TUTOR MARKED ASSIGNMENT

1. What is the relationship between a wave arad/a r

2. Give examples of anisotropic medium (i.e. a inn@dthat is not
isotropic)

3. Distinguish between circularly and ellipticalpholarised waves
by stating the conditions to be met to producdreac

4. Give the electromagnetic wave spectrum.
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1.0 INTRODUCTION

The student should be familiar with wave equaternhe second order
differential equation that relates the displacement vibration of
particles of medium to the spatial and temporailateom m of wave. For
electromagnetic waves, rather than the particlesneflium, it is the
electric field and magnetic fields that vibrate. #ixch we talk of wave
equation for magnetic waves. These wave equatimnslerived in this
unit

20 OBJECTIVE

By the end of this unit, the student should be &le

) derive wave equations for electric and magnetidd fim an
isotropic insulating medium.
o derive wave equations for electric and magnetiddfisn a

conducting medium.
3.0 MAINCONTENT

3.1 Propagation of Electromagnetic Wave in an |sotropic
medium

CASE 1

Propagation of electromagnetic wave in an isotrapalating medium

Suppose the electromagnetic wave travels in arropiat insulating
medium and that the relative permittivity and nelatpermeability of
the medium arer andy; respectively.
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2
Equation (9) becomesvV’E =su c:jtf ......................
(14)
1d’E
or VZE = g T (15

whereg, the permittivity of the medium is the productsefande;i.e. € =
eograndy, the permeability of the medium is the producp®andy i.e.

I = Hoptr.
Note thatv =

1 1
NETRR
I.e the velocity of the wave in the medium. Equati®2) becomes
d’B

V?B=¢u G T (17)
or
1d°B
VZB=V—2 dt2 """""""""""""""""""""" (18)

Comparing equations (11) and (16) shows that
\lgr:ur :E
Vv

But the refractive index, n = c/v therefomez /s, pz, -------=------------
(19)
n is the refractive index of the medium.

Both relative permittivity and relative permealyiliare known to vary
with frequency for a dispersive medium implying ttliee refractive
index of a dispersive medium varies with the fretuye

Casell : Propagation of electromagnetic wave in a coridganhedium
For the propagation of electromagnetic wave in adocting medium,
the modified Ampere’s law can be written as

. dD
VxH = e 20
X Jf+dt (20)

Where H — the magnetic intensity — equalgop/ (i being the relative
permeability of the medium) and D — the electrisptihcement — equals
eoerE (er being the relative permittivity of the medium).

NOTE: that (i) H = B/uowr in the absence of magnetisation current and
D = =e&&E in the absence of polarisation charges

otherwiseH = -M, where M = magnetisation, a vector quantity
T HoHe T

and D =goeE — P (P = polarisation, a vector quantity). Equa{i20) can
be written as
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V x B =jf+$05,E ---------------- (22)
Moty dt
From ohm’s law i.e. | = V/R -=mmmmmmm oo
(22),
the electric field E = V/E potential gradient, the resistan&&% ------
- (23)
wherep = resistivity, a= area and ¥ length,
| = &or L OFE —-m-mmmmmmm (24)
o oa

by substituting for V from equation (22) and fofr@m equation (23)
(o = 1p = conductivity), I/a = j., thus equation (23) bewss | =cE, and
equation (21) can be written as

Vx—o :0E+aosrd—E ------------------------------ (25)
oty dt
Taking the curl of equation (3),
VxVxE=—%(VxB) ----------------- (26)

Substituting equation (25) into equation (24), \aed
dE d’E

VxV x E——,uo,u{aa}+gong (27)
The LHS of equation (26) can be written as

VxVxE=V(V.E)-VZ2E
Substituting this into equation (26) and notingtthhaE = 0(since the
microscopic charge density is zero for a wave pgapag through a
conductor) gives

dE d?E
VZE:,UO,UrO'E-F/JOﬂrEOErF """"""""""""" (28)
2
Note thatV’E = (:j IZE
Z

This is because the electric field, E is constant-y plane at a fixed z-
coordinate, its amplitude however decreases exp@tlgrwith increase
in z.
Thus equation (27) becomes,
dE d’E
V’E = oc—+ £.& -
:uo:ur dt /uo/ur o“r dtz

(29)
A simple approximation can be made by comparingciefficients of
the two terms in the RHS. To do this effectiveRgAi® can be put in

2
terms of dE/dt i'e'c:jtzE = jwc;—ltz (since E=E, expjw{t—zj) so that
V

equation (28) becomes
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d?’E dE .

= —+ W == 30
G - Mok O gt IWHoH B (30)
= Mok, %[ﬁ + jWe g, | mmmmmmmmmm e (31)

The electrical conductivityg >> weoer. Therefore equation (30) can be
written as
d’E dE

- e — 32
7 = Mot (32)

The solution of this differential equation (i.e.uadon 31) is of the form

E = E, exd j(wt — Bz)|exd- az) -------------------- (33)
Substituting (32) into (31) yields

o« f= ﬂouzraw

The reciprocal ofa = 2 is referred to as skin depth,and it
\ ot 00

measures how rapidly the wave is attenuated. UsjngLs ~ | 2 :
(4]

o

Whenw is high,d is very small.
Example: determin& when frequency is (i) 60Hz (ii) 60MHz
Solution:

(i) 5:\/ — 2 - = 085cm
47 x10"" x 59x10" x120r

(i) 5=\/ S = 85x10"cm
A7 x10" x59%x10" x1207r x10

Example (ii) shows that at high frequency, the entris carried in a
very thin outer layer of the conductor. This pheeaon of current
being carried in a thin outer layer is called SKHRFECT.

40 CONCLUSION
The wave equations for electric field is differdiot an insulating
medium and a conducting medium as expected. THiegeause for an

insulating medium conduction current J ¢E is zero. Thus the
expressions for the electric fields on both medieis.

50 SUMMARY
1. The wave equations for electric field and maignBeld have

been derived for an
insulating medium.

10
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2. The same equations have also been derived foonducting
medium
3. The difference in these equations for both iméxl on the fact

that conduction current is not in an insulating raed
6.0 TUTOR MARKED ASSIGNMENT

1. Derive the wave equations for electric and magrigids in an
insulating medium

Derive these equations for a conducting medium

Define (i) skin depth (ii) skin effect

Calculate the skin depth in copper for a waverefdiency (i)
50Hz (ii) 1IMHz given that p=4n P =1,6 = 5.9 x10

hwN
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1.0 INTRODUCTION

When a wave passes from one medium to another mediudifferent
refractive index, its speed decreases if the seamedium has a greater
refractive index relative to the first medium ahe wvave bends towards
the normal.

If refractive index of the second medium is lesantlihat of the first
speed of the wave increases and it is bent away fr® normal. We
also know that apart from the refracted waves sohtke incident wave
is reflected. The electric fields E of the incidergflected and refracted
waves bear a relationship at the interface i.e Bagnbetween the two
media. This is also the case for magnetic field tBe electric

displacement D and the magnetic intensity H. Thetationships are
called boundary conditions. For te various pararsete

20 OBJECTIVES

By the end of this unit, the student should be &ble

o State the boundary condition on each of the paemEt, H , B
and D.
o Know how to derive these boundary conditions.

12
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3.0 MAINCONTENT
31 Reflection and Refraction of Electromagnetic Waves

When a plane wave is incident at the boundary betwevo different
media, part of the wave is reflected and the opfaat is refracted or
transmitted. We need to determine the ratio of ititensity of the
reflected part to the intensity of the incident was well as the ratio of
the intensity of the refracted (transmitted) partthe intensity of the
incident wave. Note also that intensity is propmrél to the rate of
energy per unit area i.e. the Poynting vector. &hedios are called
coefficients of reflection and transmission respety. These
coefficients can be determined in terms of theactive indices of the
media. First we must make sure that the fieldssigatMaxwell‘s
equations at the boundary between the media.

From equation (7) in section 1.0 i.e.

VxE= —@,
dt
In integral form this equation becomes
e L 0
r dt Js

Let r be the rectangular loop placed along theasarfcommon to the
two media as shown in Figure 1.

E1 EZ

Medium | Medium Il

FIG: 1

In the limit thatAb — O i.e. along the interfacq',B.ds=O, ds being the

surface area and the product Adf and Ab. Thus the LHS of equation
(1) equals zero and

fEd =El-El=00orB=E

This implies that the electric field is continuodshis is the boundary
condition for the electric field. The boundary cdiwh for magnetic

13
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intensity can be determined from the modified Angper law
(i.e.Maxwell‘s 4" equation) by considering Figure 2 below.

Al

FIG: 2

Equation (20) in section 1.0 can be rendered egiratl form as

For the other medium (i.e. the second medium) miteiconductivity,
the first term in the RHS of equation (2) become®zThe second term
Is zero in the limit thanb — O i.e. at the interface since ds is the
product of dl and db. Thus the equation is

§H.dI:O or HJI-H,=0 or H,=H,across the interface. H is

continuous across the interface. From equationoflzauss law for

electric field in section 1.0 i.e¢.E=2 orv.D = o2

€o

where D =E -P
We can writeV.D =0 since there is no free charge inside the cylinder
placed perpendicularly to the interface. &egure 3 below.

1
Q T Medium 1
dh
Medium 2

Fig 3: 2

We can write V.D =0in integral form asJ'lD.ds+LD.ds=0 since the

total flux of electric displacement has contribatiopom top and bottom
surfaces of the cylinder as dhr 0 at the interface. The flux of D is
normal to the surfaces 1 and 2 of the cylinder.sTia can write

D,ds =D, ds,
implying thatD is continuous.

14
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The last boundary condition is determined from Gdaw for magnetic
field i.e. V.B=0 which in integral form becoméB.ds:O. Using the

same cylinder in Figure 3, the contributions of fllu of magnetic field
is from the top and bottom surfaces of the cylingtethat we can write

[Bds+[Bds=0
1 2
B,ds, + B, ds, =0 whereB, is continuous.

From the four boundary conditions i.e.
Elalong = E2along

H1atong= Hzalong
D1across= D2across and

B1across= B2across.

40 CONCLUSION
The boundary conditions on the electric field, E amagnetic intensity,
H are somewhat similar. Also those on magnetiafi® and electric

displacement, D ae similar. This is because fom& H we use line
integrals while for D and B we use surface integral

50 SUMMARY

The boundary conditions of electromagnetic waee ar

1. EtangentiallS cONtiNOUS i.€ f&ngential(Mmedium 1) = (Engential
(medium 2)

2. HtangentiallS cONtiNOUS i.€ Hngential(Mmedium 1) = Khngential
(medium 2)

3. DperpendiculariS continous i.e Rrpendicular(Medium 1) = Rerpendicular
(medium 2)

4. BperpendiculariS continous i.e Rerpendicular(mMedium 1) = Derpendicular
(medium 2)

6.0 TUTOR MARKED ASSIGNMENT

1. The boundary conditions on E and H are similar vatlslight
difference. Explain.

2. Why are D and B’s boundary conditions similar buffedent
from those of E and H.

3. The refractive index of water for waves of frequerdHz is
about 9. Calculate the reflection and transmissaefficient.

15
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(TRANSMISSION)COEFFICIENTS OF
ELEECTROMAGNETIC WAVES

CONTENTS
1.0 Introduction
2.0 Objectives
3.0 Main content
3.1 Reflection and Refraction (Transmission)
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1.0 INTRODUCTION

In this unit the coefficients of reflection (ratad reflected to incident
wave) and transmission (ratio of transmitted toident wave) are
determined. Calculations of percentages reflectedteansmitted wave
in glass and water, for example, are made.

2.0

OBJECTIVES

By the end of this unit, the student should be &ble

3.0

31

define (a) reflection coefficient, R

(b) transmission coefficient, T

obtain the expressions of R and T in terms of pagntector
calculate the percentages of R and T for any medglative to
free space

given its refractive index.

MAIN CONTENT

Reflection and Refraction (Transmission)
Coefficients of Electromagnetic Waves

Noting that in medium 1 we have only the incidemd aeflected waves
l.e. two waves while in medium 2 we have only reffiea or transmitted
wave i.e. one wave, applying th& Bloundary condition we can write

e e (1)

The second boundary condition gives

Hi — H=H - (2)

17
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where the subscripts i, r and t represent incideafracted and
transmitted.

Note that the reflected magnetic intensity, points in the direction
opposite the direction of iHThis can be visualised by making the
middle finger of the left hand point in the directiof propagation (z-
direction) while forefinger and the thumb reprdseft and B
respectively (i.e. in x and y directions). By pagt the middle finger in
the negative z-direction, the thumb representinggmetic field is
observed to be pointing downward i.e. oppositéoitsier direction.

using

S —(3)
Ho

since B = E/c from equation (6) in section 1.0 &hds in free space.

Substituting forc =

in (3) gives

EoHy
(s, E
(1)

JE,

Similarly Hr (also in free space) gg"—l

()2
H: is however in a medium of relative permittivity, and relative
1
permeabilityur. Thus H, = Fof1 ) E

1
(ttott, )z
Equation (2) can then be written as

(80 )% Ei _ (80 )% Er (gogr )% Et

H, = i

1 1

1
tez o)z (popt, )2

or
1
EI _ Er (8r )2 Et ____________________________________ (4)
(44, )2
u, ~1 for most dielectrics so that equation (4) becomes
1
Ei - Er = (gr )E Et ----- (5)
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Using the amplitude of the electric field of theciokent, reflected and

1
transmitted waves and substituting foe (s, )2, equation (5) can be
written as

L (6)
Also using the amplitude of the electric fieldseguation (1) we have
R (7
By combining equations (5) and (6) to eliminatedtves
S L (8)
E 1+n

ot

Equations (5) and (6) can also be combined to eaisi &,. The result
IS

The ratio of the reflected energy of the wave tat thf the incident
energy is referred to as the REFLECTION COEFFICIERTAlso the
ratio of the transmitted energy of the wave to thfaincident energy is
referred to as the TRANSMITTED COEFFICIENT, T. Taastios or
coefficients are determined from the time averdg@e Poynting vector
over one cycle for the incident wave, the reflecigdve and the
transmitted wave since Poynting vector is energyupé time per unit
area.

We can use the combination of the energy of sedictric and magnetic
fields to approximate the energy of an electromtigneave. Using a
capacitor, the energy of static electric field Iidaoned as follows:
Work done in transferring a charge from one pldthe capacitor to the
other plate is

dW =Vdq = (ﬂjdq since V =q/c

Cc
Integrating we have
2
w=["949q=19" or w=lcv?
ocC 2cC 2

For a parallel plate capacit@= g°dA,

the energy density of the electric fieldg, We. energy per unit volume,

2
U, = SoAszlgo(!J N S — (10)
Ad.d 2 \d 2
(volume = Ad, E = V/d and.E = D)
1
e )| 11
5 (11)
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The energy density in a magnetic field is obtairesdfollows: let a
solenoid have a cross sectional area. The volumefAhe solenoid
would store magnetic energy. The energy densithesenergy stored
divided by Al where A is the cross sectional aréshe solenoid and |
its length.

The magnetic energy dU, stored/idt or Z—L: =Vi or a Liﬂ

dt dt
SinceV = Ld—(i"where L is the self inductance

Integrating,
- - 1 .2
IdU =IL|d| =—Li
2
The energy density of the magnetic field will tHm

1L
® 2 A
Substituting forL = ,n’IA andi = B
HoN
where n= number of turns of solenoid.
Up = 22 oo (12)
2 p,
o B 1
Substituting forH =—, U ==B.H
Ho 2
and the total magnetic energy is
1
U, =§_[B.Hdv --------- (13)

Equations (10) and (12) can be combined to givedhergy of the
electromagnetic wave assuming that it doesn’t cedagvarying fields.
Thus
1

U, = 2j(E.D+ B.H v
For a plane wave travelling along z-axis see Figthat speed c in a
box of cross sectional area, A and thickness dxstin of equations (1)
and (3) give the energy density of the electromagneave i.e.

2
U, =U.+U, =1s E2+1B°
2 2

The energy bk stored in the box U, +U,)Adx i.e.

Substituting the relation B = E/c into equatiod)iwe have

1 B(E 1 1 1 feuC+),
du;,,{2 go(E)(cE)Jr%(CﬂAd#{z E%gowwﬂmﬁ{z E{ e ]}Ad, (15)

so that equation (14) is
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_ EBAdx
T uC
The rate of transfer of this energy per unit areathe poynting vector,
N,

du

— dUem — EBdX _____________________ (16)

dtA  p cdt

But % =c¢ and equation (16) becomes
N = BB B oo (17)

Ho

since E=H. Note that the average energy crossing unit aesa p
Ho

second %i.e. N = E°;° --------------------------------- (18)

since N is in the direction of propagation and directions of E and H
are orthogonal we can write,

N=ExH =mmmmmmemmm e (19)
By the definitions of the reflection coefficient, &d the transmission
coefficient, T given earlier,

(E, xH, )ave E,“cu, E,”

R= = or from equation (18
(Ei X Hi )ave Eoiz'cluo Eoi2 ( q ( )
and sinceH, = ch ). Using equation (7)
Ho
1
R (1— njz __________ 20
1+n

E/’

Em] 1

1_(ExHave_ EmHmz(Ef"{uourv ZEJ(CJ_EJ (e | BN o)

(Er xH, )ave EiH, EOI[EOJ Eoi2 Y M(g O'UO)’; Eoi2
y2x

Where /s, =n and /g, ~1

Using equations (8) and (21)
4n
T = oo -- (22
@+ n)? @2)
Example: Given that the refractive index, n, of water fwaves of
frequency 100MHz is 9r(:\/Zvaries with frequency). Calculate the

reflection and transmission coefficients of the med From equation

(20),
2
R:(Ej :ﬁ: 064
1+9 100

USING €QUALION ==-=-==nmmmmm oo oo e (22)
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T=[(14” J=(4)(9)= 036

+O) ) 10

40 CONCLUSION

The higher the value of refractive index the lardper fraction of energy
reflected and the smaller the fraction transmitt€His is because a
longer relative permittivity (which gives large raftive index) the

oscillating dipole moment of each molecules of iedium resulting in

a large radiated field. The forward wave in thieldi interferes

destructively with the original wave within the ni@ah and gives rise to
small transmission.

50 SUMMARY

1. Reflection coefficient is the ratio of refledtenergy to incident
energy while transmission coefficient is the ratiotransmitted
energy to incident energy.

2. The reflection coefficient and transmissionf@oent in terms of
poyting vector, respectively are

_(E xH,)ave
" (E xH,)ave
(E, xH, )ave
TE < Jave
3. From R=G+:j
4n
T

the reflection coefficient and the transmissionfitoent of any medium
relative to free space can be determined.

6.0 TUTOR MARKED ASSIGNMENT
1. Define reflection coefficient and transmissemefficient

2. Calculate the reflection and transmission coieffit given that
the reflection index of a medium is 7
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UNIT 1 TRANSMISSION LINES.
1.0 INTRODUCTION

A transmission line is the medium for transmittiebectromagnetic
energy from one point to another. For electromagrsegnals with high
frequencies, the energy has to be well guided abtlie energy will not
be radiated away. At high frequencies, of the orolekilohertz and
above, electromagnetic energy is transmitted viaallgh wire

transmission lines, coaxial cables, waveguides @stnant cavities.
The first two will be discussed in this unit as thge of waves
transmitted by them is different from those trarisedi by the last two.

20 OBJECTIVES

By the end this module the student should be table

o give a simple sketch of transmission line in anymbar of
cascade.

o derive the wave equations of voltages and curresftsa
transmission line.

o determine the expression for the (i) characteristipedance (ii)

speed of propagation of signals in transmissioeslin
3.0 MAINCONTENT
3.1 Transmission Lines
A transmission line is a system of material bouregawhich forms a
continuous path that can direct transmission oftedenagnetic energy

from a power station to other stations or for traiting energy from
one point to another. A transmission line is unifaf there is no change

24



PHY 403 ELECTRODYNAMICSIII

in its cross sectional geometry. The wavelengtha transmission line
are compatible with its size at gigahertz frequesi@nd its capacitances
and inductances are very small.

The change in potential difference per unit lengtkigure 1 i.e.

1
1
:
v |
1
1
1
1

A 4

AV -Ldi _ |
== —j{wL

n\l _______________________________ 1
AL dt ( )
Fig 1:

Or in the limit of AL becomingdl
Z—\l/ =—(jwL +R)I

Where L is self inductance due to magnetic fielsbad the conductor V

and R, is resistance of the conductor. The chamgmiirent flowing in

the line is given by

dI ch
d o dt

where C is capacitance per unit length (formed beeaof the finite
distance between the conductors of the line) and Gnductance per
unit length (whose existence is due to the dialedivssses of the
dielectric medium in between the conductors).

If we assume that conductors have zero resistandetlaat they are
separated by a perfect insulator (in which casetthesmission line
becomes lossless), equations (1) and (2) whickharbasic equations of
transmission line becomes,

d\%" ‘La ----------------------- (3)

D @)
Differentiating equations (3) and (4) with | angkspectively we have

2 2

C:jl\zl =t jldlt _____________________________________ ®)
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d’l d?v
= —C o 6
dtdx dt? ©)
Equations (5) and (6) can be combined to obtain
1 d%V d¥V
e e e —————— 7
LC di* dt? 0
1 d’l  d?l
o e 8
LC dI*? dt? ®)

Equations (7) and (8) are familiar wave equatidngottage and current
respectively implying that both voltage and currpripagate as waves

along transmission lines. The velocity of propawyatis V =ifrom

JLC

equations (7) and (8). It can be shown that theaceristic impedance
of a transmission ling, =+LC . Try to obtain the net impedance of the
circuit in Figure 2 which is three cascades of a transmission line.

Hint: let z equal the net impedance between a and b. The enpedo
the right of c and d also equals z

PARALLEL WIRE AND COAXIAL CABLE TRANSMISSION
LINE

Two major examples of transmission lines are @)hrallel wire and
(if) the coaxial cable.

To obtain the propagation velocity, V and the chemastics impedance

of any transmission line the inductance per unitgth, L and the
capacitance per unit length must be determined.
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(@ PARALLEL WIRE TRANSMISSION LINES: Recall that the
electric field E of a conductor is given by Gaiems for electric
as,

A _ 9

E= =
2me e, 2me gl

where) (linear charge density) = g/l, for a conductorairmedium of
relative permittivity (dielectric constanty;. For the two wires, each of
radius x and separated by distance y.

E=E+E,=p 1+ =1

2mee|l 2mee |l  me,e,l

The capacitance of the pair is obtained from

C = ﬂ = qu = q

v J' Edr

/ i
2y ar
[ =
(ﬂgosr J-X kj
C 7me,g,

|_=—2y l.e. capacitance per unit length. The
In(j
X

inductance per unit length is obtained as folloth& magnetic flux of
the two conductors (whose shape are approximagslydeical),

giving

P ) - -
Moty |n(2yj
But self inductancel. = £& = X
| /4
Thus the velocity of propagatiow, = ! ! as expected.
L Eor Mok,

1
The characteristics impedance,= \/g = [sz In(gj

2
ToELE, X

(b) COAXIAL CABLE TRANSMISSION LINE: The capacitance
for coaxial cable is obtained following the procexlwsed for the
parallel wire except that thfaEdr is from a to x and b to y, a being the
radius of the central conductor and b, the distéosteeen the centres of
both conductors. Sdégure 3. The capacitance per unit length is thus
C 2ne.e,
Ty

In+
X
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Dielectric

Fig 3: Cross section of a co-axial cable

The inductance of a coaxial cable is obtained #sws: the flux of
magnetic field,$s, through a closed circuit formed by joining the
conductors at the end of a section of cable of tlend, is
|Iwoﬂr dr _ﬂoﬂr Illn(yj

2 X

Recall that self inductance, = ¢I—B =L= %In(ij
JT X

The velocity of propagatiory = 1

JLC

Substituting,V = , and the characteristics impedance,

1
VgogflLlOﬂl’

1
2
7 - L[&] Y

Cl4r’e.e, X

EQUIVALENT CIRCUIT.

In Figure 1 above is illustrated two infinitely lgrines carrying equal
and opposite current. The part between point X ¥nd a subsection
that consists of impedance z =RslLjand admittance y= G#[C . The
resistance, R and inductance, L are due to theHeargd diameter of the
conductors while the capacitance exists by virtuthe close separation
of the conductors. The conductors being separatecrb imperfect
insulator or dielectric necessitate leakage ofemirrThis represents the
shunt conductance which together with shunt capac# gives the
admittance. The 2 conductors can thus be reprekdmntd=igure 2 in
which case the resistance , R and conductancege @Gegligible. Each
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subsection is an equivalent circuit and the indiyifoss line is regarded
as a cascade of infinite number of such circuits.éxample in Figure 2
is shown a transmission line of three cascade.

40 CONCLUSION

The type of waves propagated in parallel wire tmaission lines and
coaxial cables are the Transverse Electric and ElagiTEM) waves.
In these waves both the electric and magneticdiateé transverse to the
direction of propagation. As such they are difféerdrom wave
propagated in transmission lines such as waveguigdbikh are
discussed next.

50 SUMMARY

1. The transmission line for three cascade isrginghe text.

2. Voltage and current are transmitted as wave, éhuation of
which are given in the Text

3 From the inductance and capacitance per unitheaf both the

parallel wire transmission line and the coaxial leabthe
characteristic impedance and speed of propagatiorboth
transmission lines are determined in the text.

6.0 TUTOR MARKED ASSIGNMENT

Sketch a transmission line in 5 cascade

Derive the voltage and current wave equation.

Determine the characteristic impedance anddspepropagation
of (i) coaxial cable (ii) parallel wire transmisailine.

whn e
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MODULE 4 WAVEGUIDES
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1.0 Introduction
2.0 Objectives
3.0 Main content
3.1 Waveguides
4.0 Conclusion
50 Summary
6.0 Tutor Marked Assignment
7.0 References / Further Reading

1.0 INTRODUCTION

For the sake of simplicity, a pair of parallel cantng planes is
discussed first before considering a wave guidde Noat a waveguide
is a system of two pairs of parallel conductingngk& forming a
rectangular hollow box.

The only difference between a pair of conductingnps on one hand
and parallel wire transmission lines and coaxidle@n the other hand
is that conducting planes are not as lossy asttier owo and therefore
more efficient. The same TEM waves are however ggaped in the
three of them.

20 OBJECTIVES

By the end of this unit, the student should be &ble

) obtain the equation relating the wave number ardythde wave
number.

o determine cut-off frequencies of a pair of paralteihducting
planes.

o obtain the expressions of electric and magnetid temponents
of TE waves.
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3.0 MAINCONTENT
3.1 Waveguides

Waveguides are used for the same purposes as tssimmlines i.e. to

transmit electromagnetic energy. However, waveguidee used at
microwave frequencies and they are not as lossdyaasmission lines

which are used at lower frequencies. There aretypes of waveguides,
the metal tubes of any cross section and the dieleods. Wave travels
on the inside of the first type and on the outsitithe other. The second
type is outside the scope of this course. Alsolimeé our discussion to

rectangular wave guides.

RECTANGULAR WAVEGUIDE.

Rectangular waveguide is a hollow infinite rectdagypipe of highly
conducting material. A rectangular waveguide is enag of two pairs
of planes. For the sake of simplicity a pair ofn@a will be considered
first.

TRANSMISSION OF WAVES IN A PAIR OF PARALLEL
CONDUCTING PLANES

Let the separation between the pair of planes Ige distance, d,

assuming the planes are perfectly conducting andfiiite length, the

characteristics of the electric and magnetic fidltst can travel down
between the planes have to be determined. It isssecy for the fields
to obey Maxwell's equations in the free space itwken the plates. The
following are the boundary conditions on the planes

0] parallel or tangential component of electriceldi and the
perpendicular or normal component of the magnetid imust be
zero at every point on the planes. This is becdhses is no
electromagnetic field inside perfect conductors.

(i)  perpendicular or normal component of electredd and parallel
or tangential component of magnetic field need emial zero.
This is because there can be charges on the ssidatke plane,
and surface currents in them.

Obeying Maxwell's equations implies the satisfactiof electric field
wave equations and the magnetic field wave equatien

d’E

VZE:‘90#0 Gz T '---(1)
d’B

V2B = £ fig —— ==mmmmmmmmmmmmmmmmmmmmmmmmenmmenn e e 2

Eolo at? ( )
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A linearly polarized plane wave whose electric andgnetic fields,
respectively are
E = E, exp[jw(t — kz/W)] -------nnnmmmmmmmmmmoooonooooe e 3)

B = —, —2 eXPLW(t —kg/W)] <--rrrremrerr e (4)

is not only a solution to equations (1) & (2) blgcasatisfies boundary
conditions (i) & (ii) stated above.

A linearly polarized wave whose electric and mamgndields are
expressed above is a transverse electric and maghe&M) wave. This
is because both fields are not only perpendicuagach other but are
also transverse to the direction of propagatiorhdhat the three are
mutually perpendicular i.e. orthogonal. Though TEMves can travel
in a pair of planes just as they could in paraleke and coaxial cable
transmission lines, they cannot, however, be prajgagin wave guide
which is a hollow conductor. This is because thdgodly conducting
walls of the waveguide will short circuit the electfield, electric
potential not being able to exist across perfendaotors.

In Figure 1 is shown a pair of parallel planes separated stadce, a, in
the x — axis.

Fig 1:

The superposition of the incident and reflected esawhose electric
fields and magnetic fields are represented byt B, and &£ and B
respectively in Figure lis also a solution to etprest (1) and (2).

If E10scillates along y — direction, its expression lbees
E, = u,E, exp[jw(t -]
W
= U, E, eXPLW(t — 1/ W)] =mrmrmmmmememmememen e (5)
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—-u, sing LU sing

Wherev, = v

Such that

1 —Xsingd zcosd

—.r= +

V, v %
And equation (5) becomes,
zcosf N Xsing

\ \Y

on reflection the wave has velocity

1 u.csing LY cost

Vv, v %
The electric field, E of the reflected wave is given by equation (7)
zcosd xsine)]

Superposing Eand E to obtain the resultant field E gives

E=u,2j sin(%sin@) exp[jw(t — ZC\?S@)] (7)

E, =u,E, exp[jw(t - )] - (6)

E, =-u, E, exp[jw(wt —

The planes inFigure 1 are placed at x = 0 and x = a since by our
boundary conditions E = 0 at the walls i.e. firska 0; substituting x =

0 in equation (7), E automatically becomes zerowstg that the
boundary condition is satisfied.

If & is chosen such thaiin(%sinej=0 then E = 0 at x = a. This
Vv

satisfies the boundary conditions on the seconaepl@he condition that
sin(%sinej =0
\%

Implies that Wsino=nz or sing=""
Vv

WX

putting sind <1 and x = a, we have,
7 <1
wa
supposev—ﬂzl, when n = 1,121 or f <.
wa 2a 2a
f is the cut- off frequency when n = 1. For n X¥xl5 nc/2a.

For example when the pair of planes is separat&tthy
o 3x100
* (2)2)x10?

from equation (8) i.e.sind _ vz
WX

)

NI

34



PHY 403 ELECTRODYNAMICSIII

Substituting sir® & cos6 into equation (7) gives

E=u,2jE, sin(%rxjexr{jw{t—viﬂ (9)

1
1 1 n’z?)2
Where V_ = (V_z - W2b2 j ___________________________ (10)
1 k
Using the fact that= = —
V. w
1 k
Vg
1
2_2
and k, =| k? -2 e (11)
a

Electric field components for TE waves are

E, =2jE, sin(%j exp{ jv\{t —iJ]
a Vv,

E.,=0andE, =0
By the differential form of Faraday’s law i.&.x E =% we can obtain

the components of the magnetic fields by using

d d
Ax Ay A &
we have
dE, dE, dB
u,| ——=|+u,| — |=——
dz dx dt
or

R e |

Integrating gives

B, = 2] E, sin(n—ﬂxj ex;{ jv\{t —iﬂ
v, a Vv,
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where
1 1 n7

2 2 W2a2

from equation (10)

Note that we can also add two waves having thegnegc field in the

y-direction  only such that BlzeyBoex{jw{t—iH and

v
B, =-¢,B, ex;{ jw{t _viﬂ
9

9
Superposing the two fields gives a set of equationghich the resultant
B has only y-component,yBBx and B being equal to zero. The electric
field, E, will then have a component in the z-dil@e. Such a wave is
called a transverse magnetic (TM) wave.

40 CONCLUSION
The pair of parallel conducting planes just likergial wire
transmission line and coaxial cables transmit TEM/@s. TE and TM

waves are also propagated in the pair of paratletiacting planes but
not in the other two.

50 SUMMARY

1. The equation relating the wave number, K analghide wave
number is derived in the text.
: . 2
2. The cut-off frequency is obtained fronfi, < Cﬂ'(;)
3. The expressions of electric and magnetic ftelchponents are

obtained in the text.

6.0 TUTOR MARKED ASSIGNMENT

1. A pair of parallel conducting plates are sefrdy 2.5cm. Find
the guide wavelength given that a 3cm wave praesage the
pair.

2. Calculate the cut-off frequency of the wavejurestion I.

3. Determine the electric and magnetic field congris of wave

propagating in a pair of parallel conducting ptate
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1.0 INTRODUCTION

Two pairs of parallel conducting planes form a aagular waveguide.
There two types of waveguides- the metal tubesigfcaoss section and
the dielectric rods. Wave travels on the insidéheffirst type and on the

outside of the other. The second type is outsidestiope of this course.
Also,we limit our discussion to rectangular wavelgs.

20 OBJECTIVES

By the end of the unit, the student should be #able

o determine guide wavelength

o obtain the equation relating wave number and theegwave
number.

o determine the expressions for the electric and miagfields.

3.0 MAINCONTENT
3.1 Waveguide

Adding another pair of perfectly conducting parap&anes to the pair
already treated such that these new planes aretbatly = 0 and y = b,
we obtain the waveguide shownhkigure 2. The waveguide is a hollow
rectangular metal pipe. Only the TE and TM waves pa@pagate in the
waveguide. By the presence of the new pair of {mrplates separated
along y — axis, the electric field is expected tsoavary in the y —

direction in addition to its variation in the x #ettion such that,

E o Kf (y)Sin(%J exp{ jw(t _éﬂ

or
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E = Kf(y) sm ex;{ w(t—— } --------------------- (12)

For the wave to be able to propagate in the wadegiequation (12)
must satisfy equation (1), the electric field waaguation as well as
Maxwell's equations. Taking thetMaxwell’'s equation i.eV.E = 0or
dE
dEX +—2 4 dEZ =0 o (13)
dx dy dz

E; = 0 since the wave cannot have component in thectibn of

propagation. ThereforeddE =0 thus equation (13) becomes
V4

dE dE
£+_y:0 or dEX = S (14)
dx dy dx

dE, =-K df sm exp{ \/\(t—— }
dx

By integration k becomes

E, = ca df (y co m7x exp{ w(t—— } ----------------------------- (15)
mz dy

{k

Fig 2:

We can determine f (y) by making« Batisfy the boundary conditions
that it be zero at the walls y = 0 and y = b aaiikf/ the wave equation
and making sure tat the wave equation is satisfjedk..

ForE&k=0aty= O,idf—(y) =sinky = sinnz
mz dy
or,
o (y)_mr
dy a
putting y = b, m = kb or k = m/b, and,

ky— 7 sinmz
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df (y) _ mz sin( nyzyj
dy a b

Integratingmd—(y) we have
y

b
For a pair of parallel plates we had,
2 n272'2
kg =k2_ b2

For two pairs of parallel plates,
) n°z® (m’r?
K, =k2—( o2 +[ "

m?z? n?z?
™ Il (16).

which is the waveguide equation.

or

The guide wave numbergkfrom which the cut-off wave length is
determined for a particular mode is obtained frammdimensions (width
and length) of the wave guide and free space waneber. We can
write equation (16) as

Ko =KZ = Ky®  mmmmmmmmm oo e (17)
where
2 m272'2 n272'2
kC = a2 + b2 --------------------------------------- (18)
or

p) 2 = az + bz
Thus equation (17) can be written as
Ar?  Ag?  Ax? op L _1 1
2 T .2 .2 2 2,2
AL A A A A A

Substituting for f(y) into equations (12) and (14 obtained the
components of the electric field as shown below.

(A e
e

E,=0
That E, =0 is actually the reason the wave is referred tdEsince it
Is transverse to the direction of propagation z-glirection having no

40



PHY 403 ELECTRODYNAMICSIII

component in that direction. The expressions ferrttagnetic fields are

obtained from the differential form of Faraday'svlae. Vx E = —% as

follows:

kg Kmr {n [{ W( }
B, =— co sm ex t——
wa
k Knz
By = sm( ex;{ v{t—— }
wb
vy, b

Note that the direction of propagation is the zdiion. Thus the energy
of the wave is in the z-direction. The rate of gyetow across unit area
is referred to as POYNTING VECTOR, N. it can bewhdhat N is the
vector product of the electric field and magneigtd of the wave i.e.

N - (20)

Expanding equation (4), we have,

u, u, u
N=|E, E, E,|-ul(E,B,-E,B,)+u,(EB, -EB,)+u,(E,B,-E,B,)
B, B, B
Thus

N, =E,B,-E,B, =EB, since E=0.
N, = E,B, -E,B, =-E,B, since =0, and

Since the direction of energy is the z-directiomantioned above, N
Ny =0i.e.

E,B, = E,B, =0 implying that i and B are out of phase and Bnd B
are out of phase. The energy produced by thesaigi®dnerely flows

into and out of the planes. The cut-off frequendyT& waves is
obtained from equation (3) ang=f c/ic to give

N R B — (22)
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Note that only waves of frequency greater thacah be propagated in
the guide of given axb. Thus the wave guide behéikesa high-pass
filter. In other words only modes whose cut-offduencies are lower
than radiation frequency can be propagated.

Transverse Magnetic (TM) waves in which there iswamgnetic field in
the direction of propagation are also propagatdtierguide. They must,
however, satisfy the boundary conditions of thedguas well as the
wave equation. For such waves the electric fielsl t@mponent in the
direction of propagation. The TM modes would hawet-off
frequencies at the same values as the TE waves biywdhe equation
(6). We must however note that unlike the TE theana't be TMn or
TMmo. This is because the field lines of magnetic fiaelthe waveguide
is two-dimensional there being no magnetic chaggesono poles and
as such the magnetic field has to vary with bothrdmates other than
in the direction of propagation. Thus the lowest ddes that can exist
is the TMi1 mode. The electric field, on the other side is -one
dimensional in the guide. As such its lines of &ogo from one plane to
another. Thus the lowest TE mode is eithes:1& TEwo depending on
which of the width, a, or the height, b, is longeor instance the cut-off
frequencies for

c (1Y ¢

2
While that of Tho i.e. f,, =§ H - C

from equation (22).

The lowest TE mode is the fundamental and importaatle in the
rectangular waveguide. Take for example a wavegaidéimensions a
= 3cm and b= 1.5cm in which a wave whose wavelemgtree space is
5cm corresponding to a frequency of 6 ¥HDi.e. 6GHz, the cut-off
frequencies of the following modes are determinstl@mpared.

for corresponding to Td&z mode = 6.7x1M™Hz

f10 corresponding to T& mode = 5x1fHz

foz corresponding to Td&z mode = 1.33x10Hz

f20 corresponding to T&o mode = 1.01x10Hz

f11 corresponding to Tz mode = 1.12x18Hz

It is only fio that is lower than the frequency of the propagatade. As
such it is only fo that is allowed in the guide. Note thap fs the
fundamental and most important mode.

The velocity with which wave crests and/or troudtevel through a

medium is known as phase velocity, From the fact that the velocity is
the quotient of angular frequency and wave numleerv = w/k, the
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phase velocity in a wave guide i$ ¥ w/ky (kg being guide wave
number). k can be determined from the combination of equatidrr)

and (18) from which we can obtain.Vvin the example abovep\=

5.5x16ms*and v > ¢ (the velocity of light)

The group velocity, yis the velocity of a group of waves while phase
velocity is the velocity of the individual wavesthin the group. Waves
within the group are observed to travel faster ttiengroup itself, thus
Vp > Vg It is, however, the group velocity that is nortypaheasured
since wave velocities are measured by the arrivideodisturbances and
it is the velocity by which the energy of the waseropagated. < ¢
and as such there is no contradiction of Einsteidtte that the product
of phase velocity and group velocity equasThus = c/vp= 1.64m¢g
Equation (20) can be used to determine the avgrager a waveguide
operate on by finding the average of the poyntiegter i.e. the right
hand side (RHS) of equation (21). This has to liegmated over the
cross-sectional area of the guide since the poyntector is defined as
rate of energy per unit area.

In the example above the poynting vector of thelgum the direction of

k
propagation i.e. Nfor the Tho mode =E H, = Wg Ey2 sinz(%j by

Hq
combining the expressions of &nd B above and noting that-BHx/po.
Note also that for Tkmode, m = 1 while n = 0.Substituting for m and n
in the expressions ofxEand B above shows E= By = 0 such that N\=
EyBx implying that the first term of the left hand sidiequation (21) is

zero. The average power of operation of the gudd Eio mode is thus
2%, ks, &, b and w are obtainable from the

wavelength and guide dimension known; the eledieid, E, would be
given and the average power can then be obtaimgdgrating this
expression over the area of the guide, we obtain

k
l 9 E0y2 Si n2 (n_”j
2 Wy, a

: k
given by %—QWEN

0o

40 CONCLUSION

The TEM wave which can be propagated in the pairpafallel

conducting planes, the parallel wire transmissioe land the coaxial
cable cannot be propagated in a wave guide. Thisesause in a
waveguide either the electric field or the magneas a component in
the direction of propagation in which case we hagesverse magnetic

(TM) or transverse electric (TE) waves respectivel
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The average power of operation of a waveguide @woldiained from
the poynting vector, which is defined as rate aérgg flow across unit
area, in the direction of propagation.

50 SUMMARY

1. The guide wavelength is obtainable from thelgwave number.

2 The equation relating the wave number and guidee number
is derived in the text

3 The expression for the electric and magnettd fof the guide

are obtained in the text
6.0 TUTOR MARKED ASSIGNMENT

1. The dimension of a wave guide is given as 2gr&dm.
Calculate (i) the ground wavelength (ii) thedge wave number.
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MODULE 5 RESONANT CIRCUIT, RADIATION FROM
AN OSCILLATING DIPOLE AND
RADIATION FROM MOVING CHARGES

Unit 1 Resonant Circuit
Unit 2 Radiation from an Oscillating Dipole
Unit 3 Radiation from Moving Charges.

UNIT 1 RESONANT CIRCUIT
CONTENT

1.0 Introduction
2.0 Objectives
3.0 Main content
3.1 Resonant Circuit
4.0 Conclusion:
50 Summary
6.0 Tutor Marked Assignment
7.0 References / Further Reading

1.0 INTRODUCTION

There are many occurrences of resonance in evetiydagometimes in
a building, when the door of a room is jammed fultg, the doors of
other rooms are observed to respond by vibratifgs Tesponse is

known as resonance. In this case the second deardg4o resonate with
the first door, the frequencies of both doors béhegsame.

20 OBJECTIVE

By the end of this unit, the student should be &ble

o define resonance
o explain resonance
o write the simple differential equation of a resanarcuit.

3.0 MAINCONTENT

3.1 Resonant Circuit

Resonance is a phenomenon in which a vibratingesysésponds with
maximum amplitude to an alternating driving (exsdyriorce. Thus any

electrical circuit that exhibit resonance is a resu circuit.Figure 1
shows a resonant circuit (RLC circuit).
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@ —cC

Fig 1:

Resonance occurs when the frequency of the exterrdiiving force is
exactly equal to the natural frequency of the unoEsnsystem. The
natural frequency of the undamped system is detexanirom the circuit
above in the absence of the resistance which cadaegping. The
equation of motion for such a free oscillatory gitovhen no external
force is applied is
H 2
Lﬂ+ﬂ=0 or Ld—+g=0 --------------------------- (1)
dt ¢ dt®> ¢

The solution of this differential equation is
Q= 0, SINW,t -----mmmmmmmmmmmmmoemeee -2

Where q is the charge at any point in time, t amgd is the maximum
value of charge while w, is the angular frequenéyoscillation. By
differentiating equation (2) twice, we obtain

e —w?q, sinwt
. dzq d?
This equal todt_2 =-w’qor e W2 =0 ------- —-(3)

Comparing equation (3) and (1) indicates

R YV — (4)

LC vLC

Implying that the natural angular frequency, w,wqul—

JLC

The impedance, Z, of the RLC circuit in Figureis--
Z = JR? 4 (X, + Xg )} wmmrmmrmmemmemmemmenme e (5)

Where X, the inductive reactance (positive reactance) =antl X, the
capacitance reactance (negative reactance) = Slastituting equation
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(5) becomes

WHEN WL = L e 7)
WC

the current flowing will be high from, = EFZ’“S and resonance occurs.

The circuit is then said to be tuned to the resbifil@guency. From
equation (7)
1

W:ﬁ """"""""""""""""""""""""" (8)

when resonance occurs (compare equations (4) gahdT{& tuning of
the radio set is a demonstration of resonance iichmtihe knob of the
receiver-set is used to vary either the inductamwdde capacitance such
that the natural frequency of the set is equahéoftequency of a desired
signal. In this way different radio signals of ateican be received.

Example:

The aerial circuit of a radio set is equipped wahtuning coil of
inductance 1.8mH. What tuning capacitor must bel ugéh this to tune
to the BBC long wave station (200KHz)

SOLUTION:

From equation (4) or (8)

oo 1 1
47°1°L  47(200x10°|18x107)
= 35x10™° = 350x 10" = 350pF

In Figure 2is illustrated the plots ofrs versus angular frequency.
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/ \
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o
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40 CONCLUSION

The simplest resonant circuit consists of an itoluand a capacitor. It
responds with maximum amplitude to an alternatingir (external
force). In other words, it resonates. A radio seaicomplex resonant
circuit which resonate when tuned to external raifymals picked by its
aerial.

50 SUMMARY

1. Resonance is defined as a phenomenon in whichratwig system
responds with maximum amplitude to an alternatingvir
(external) force.

The exploration of this phenomenon is containeithétext

A simple differential equation of a resonant citasi

wn

14,9 ¢
d c

The symbols are defined in the text.
6.0 TUTOR MARKED ASSIGNMENT

1. (a) Define (b) explain the phenomenon of resonance.
2. Show that the resonant equation can be written as
2
199,9_¢
d° c
3. Show that the natural angular frequency,W, of ragbugircuit is

1
W=—=

JLC
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CONTENT

1.0 Introduction
2.0 Objectives
3.0 Main content
3.1 Radiation from an Oscillating Dipole
4.0 Conclusion:
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References / Further Reading

1.0 INTRODUCTION

The electromagnetic wave spectrum consists oforadives {104- 109
Hz}, micro waves {16-10"°Hz} infra-red {10'-10'*Hz} visible light
{less than 1&Hz},utraviolent {10>-10'"Hz}, X-rays {10'*>-10?°Hz} and
Gamma rays {18-10*Hz}.Each component of this spectrum has its
source and method of generation. In this unit tlethod of generating
radio wave i.e by an oscillating dipole is discukse

20 OBJECTIVE

By the end of this unit, the student should be &ble

o understand that oscillating dipoles are aerialsefara)

o describe how radiations emanate from oscillatinple

o derive the electric field and magnetic field compoets of a
dipole.

3.0 MAINCONTENT
3.1 Radiation from an Oscillating Dipole

Recall that a dipole is a system of two equal bppasite charges
separated by a short distance. The product of starte, x and the
magnitude of one of the charges, g is the dipolenerd, P. We can then
write

P =0gx

Radio waves are generated by oscillating electionsonductors and
dipole antennae. An example of such a dipole it ¢dhawo brass rods
with a small gap between is connected to a higtagel supply, say 5kv.
An oscillatory discharge between the polished entilghe rods is
produced. This sparkling is due to the ionizatidrthe air in the gap
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between the ends of the rods as a result of thenio@g of the electric
field. Suppose the gap between the ends of the Iboals is 1.5mm, the
electric field would be the quotient of the potahtiifference and the
separation of the rods i.e. V/x which becomes 5k{1:6mm)! =
3.3MVm? on substitution.

The two brass rods describe an antenna or aemaknfas are often in
the form of a metal wire or rod in which electrasge back and forth
periodically. At a certain time, one end of the evior rod will be

negative and the other end positive. Half a cyaterl polarity of the
ends is exactly reversed. This is referred to a®suillating electric

dipole since its dipole moment changes in a peciadily with time

The oscillating dipole also radiates electromagnégld in the radio
wave frequency range. The radiation field of anilladmg electric
dipole is obtained as follows. Let the charge @f $park vary with time
as
g=q,sinwt
where @ is the amplitude of the oscillating charge andsvthie angular
frequency of the oscillations. Let the gap betwdes brass rods be
small compared to the wavelength of the radiatiosndpced. The
current set up can be written as
| =wq, coswt = | , coswt
hencel , =waq,
Note that the oscillating charge is equal to anllatag dipole moment.
Let the gap between the rods be of magnitude xemgth, then dipole
moment, P is
P =gx= P, sinwt
whereP, = q,X

The simple oscillating dipole is called a Hertziglipole whose

importance is in the fact that many radiating systeare thought to be
made up of large number of such dipoles. In ordefirid the total

power radiated by the Hertzian dipole, we proceetbbows:

The power density is given by the Poynting vectdrg poynting vector,
N, is defined as energy crossing unit area pertimé; see section 2.0).
The Poynting vectoN = ExB. We can then write P =E x B (since

power density, B N).

We need to find the expressions of the electricaii) magnetic fields
(B) of the radiation. Consider a very simple antena. a short filament
in which current | =dsinwt is flowing. Magnetic field is induced in the
neighbourhood of the filament. An electric fieldassociated with the
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varying magnetic field. The radiation is thus elestagnetic. The
various components of the electromagnetic fielgiven as follows:

In the Figure below is a filament of length]. Components of
electromagnetic field at a point P, a distanceamfthe centre is to be
determined.

y
&

In this problem in which we have to relate thedgelto the changing
current producing them, it is easier to work witle retarded potential.
Note that the field at P will be produced by therent flowing through

the filament at time t — r/c, where r/c is the tita&en for the field to
travel from the filament to P at the velocity ajhit.

The retarded potential A, is related to the curnerthe filament by

iit-(v/)

A:iL4dv
A r

Since the current is in the x-axis only we can vrit

A&— J_l Ismvvlt—(/)J
:—smw[t—(/)] ------------------ 1)

It can be shown that the retarded potential A liatee to the magnetic
field B, by

Using Spherigal coordinate, by equation (1)
1.
A =A cosf = Esmw(t - (%)cos@

A, =—-Asing = ;—;sinw(t - (%)sine
A, =0
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Using equation (2) we can find the spherical congmb® of the
magnetic fields:

The spherical components of the electric fields asained from the
differential form of Faraday’s law i.e. the thirdaMwell’'s equation

ieVxE :_—dB
dt
E =0
g _—Wlsing Si”l""(t _%)J
"7 4zec? r
E,=0

40 CONCLUSION

Many radiating systems are made up of the simptilasng dipole
which is called a Hertzian dipole. These are thenmmon aerials
(antenna). The electric and magnetic fields fromictvhthe power
density is obtained have been determined.

50 SUMMARY

1. Oscillating dipoles are aerial, either transimgitor receiving
aerials

2. Radiations from an oscillating dipole is fudlyplained in the text

3 Electric and magnetic fields of an oscillatingale are derived in
the text.

6.0 TUTORED MARKED ASSIGNMENT

Define, (i) a dipole,(ii) Hertaian dipole.

Explain how radiations emanate from oscillatingple.
Derive the electric and magnetic field compdserh an
oscillating dipole.

wn e
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1.0 INTRODUCTION

The method generation of radiation from moving glearis described in
this unit. The devices used to cause the oscillaifccharges are
magnetrons and Klystrons. These devices employeggaavities
which are discussed below.

20 OBJECTIVES
By the end of this unit the student should be &dyle

o Explain how radiations are generated by moving gémsr
o Derive the electric and magnetic field componemnts esonant
cavity, a device used in oscillation of charges.

3.0 MAINCONTENT
3.1 Radiation from M oving Char ges

Moving charges are known as electric currents. Tawgire in which

charges flow is an electric current-carrying-wifgound such wires or
conductors, radiation is generated. In the ladi@®cthe radiation from
oscillating dipole was treated. This radiation dstssof radio waves.
When electrons are made to oscillate at frequerdi@®GHz in a tuned
cavity, microwaves (with wavelength of a few cerdines) are
produced. The devices used to cause the osciltatidrcharge which
produce microwaves are magnetrons or klystronssé&laevices use
resonant cavities. Simply defined, resonant cavgya piece of

waveguide closed off at both ends. Whereas wayeaapagated in a
longitudinal direction in the waveguide, in theaeant cavity standing
waves exist and oscillations can take place ifcénaty resonator — as it
is also called — is suitably excited. The simplesstity whose resonant
frequencies can be calculated is a rectangulatycavi
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In the rectangular cavity resonator, the electe&dfcan be represented

by
E=E,f(x,y,z)expjwt)

Where w is angular frequency of the wave functipnyfz) gives the
variation of the electric field in the three dinects. Note that the
electric field is no longer constant in the z-direc i.e. it now varies in
that direction.

Following the example of the waveguide in sectid®, he components
of the electric field of TE standing waves in ttevity which satisfy the
boundary conditions on the walls and satisfy theatiqn V.E = O are

E, :—(mTﬂjco{m:(jsm(ngyjsm(ld jexr(jvvt)
(Cr:l”jsm(m;mjco{ngyjsm(ld jexr(jvvt)

E,
E,=0

The associated magnetic field components are diiinfrom the

differential form of Faraday’s law i.&/.E = —% or by using the pattern

of the magnetic field component of the rectangwlaveguide. The
magnetic field components are

B, = —j[kvrr\;;zzjsin( m:cho{ ngyjco{lzzjexr(jwt)
B, =— J;,tﬂjﬂz sin( ngyjco{ m:xj co{l%zj expl jwt)
B, = jijvrz [(gjz +(Ej2]co{%jco{ngyjsm(ld jexp(Jwt)

These electric field and magnetic field componeviisild be acceptable
solutions to Maxwell's equations inside the cavitythey satisfy the
wave equations for the electric and magnetic fielBgbstituting the
electric field and magnetic components into the rappate wave
equations shows that the fields are acceptabtbelintegers m, rl,and
the wave number k are related by

°’m?*  7n? r

a2 b d?
(compare equation [16] in section 4.3) from whidie tresonant
frequencies (depending on the integers ml) rof the cavity can be
derived as follows. We can write

2
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Az?  x’m?  x’n®  x’l?
2 a e d?
and using. = c/f, we have
4f2 m* n® |?
2 & b d?

AGRORD]

f==l—1| +|—| +|=

2\l a b d

Note that the lowest frequency — in which a lowaside is excited —
corresponds to any two of m, n andquals to one and the third integer
associated with the shortest side of the cavityaktp zero i.e. Thy,
TEi01, Or TE10 as the case may be. Another set of possible sakifior
the electromagnetic fields in the cavity are exgim@ss of electric and
magnetic fields corresponding to Transverse Magn@M) standing
waves in which the electric field has a z-componesiile the z-
component of the magnetic field is zero. ddMvaves occur at the same
frequencies as the T waves for the same cavity resonator. The sum

of the resonating TE and TM waves gives the pddraesonance of the
standing wave.

or

Cavity resonator can be used as a frequency negpars from its use for
the generation of microwaves. Measurement of frequeis made
possible by the use of a plunger attached to owdefare which then
allows the resonant length of the cavity to vary.

EXAMPLE:

The dimensions of a rectangular cavity are a = 2Zzm,2.5cm and d =
3cm. determine the number of resonances possilitena frequency
range of f =5 x1%Hz and f =18°Hz.

SOLUTION:

Resonance occurs in the cavity resonator for fregjee in between the
limits of frequencies given. Resonance will ocaur f

0] TEo11 whose §11 =6.3x10Hz
(i) TEo12whose §12=9 x10Hz
(i) TE11awhose §11=9.88 x16Hz

55



PHY 403 ELECTRODYNAMICSIII

40 CONCLUSION

Oscillation of charge is made possible by devicehsas magnetrons
and Klystrons. These devices use resonant cavitiessonant cavity
described in the text is a single waveguide clagédt both open ends.
The components of its electric and magnetic fiblalge been derive.

50 SUMMARY

1. Generation of radiations by moving(oscillajetzarges is
described in the text.

2. Electric and magnetric field components havenlbaerived in the
text.

6.0 TUTORED MARKED ASSIGNMENT

1 .What is the relationship between magnetron amd@nant
cavity.

2. Obtain the electric and magnetic fields of orent cavity.

3. Given that the dimensions of a resonant casifycm by 1.5cm

by 2cm.What is the upper limit of a frequency roger which
we can have 3 region arces given that the loiwet iis
f=10%Hz.
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