

PHY 314
NUMERICAL COMPUTATIONS

Course Team Dr. A. B. Adeloye - (Course Developer)
 University Univerity of Lagos
 Dr. Ajibola S. O.- (Programme Leader)
 (NOUN)
 Dr. Aluko J. T.- (Course Reviewer)

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE
GUIDE

PHY 314 NUMERICAL COMPUTATIONS

iii

© 2023 by NOUN Press
National Open University of Nigeria
Headquarters
University Village
Plot 91, Cadastral Zone
Nnamdi Azikiwe Expressway
Jabi, Abuja

Lagos Office
14/16 Ahmadu Bello Way
Victoria Island, Lagos

E-mail : centralinfo@nou.edu.ng
URL: www.nou.edu.ng

All rights reserved. No part of this book may be reproduced, in any
form or by any means, without permission in writing
from the publisher.

Printed 2023

ISBN: 978-978-058-984-9

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng

COURSE GUIDE PHY 314

iv

Contents

Introduction…………………………………… v
The Course……………………………………. v
Course Aims…………………………………... vi
Course Objectives……………………………. vi
Working Through the Course…………………. vi
The Course Material…………………………… vii
Study Units for Numerical Analysis…………… vii
Textbooks……………………………………… vii
Assessment……………………………………... vii
Tutor Marked Assignment……………………… vii
End of Course Examination……………………. viii
Summary………………………………………. viii

PHY 314 NUMERICAL COMPUTATIONS

v

INTRODUCTION

Numerical Analysis is an important part of Physics and Engineering. This
is because most of the problems encountered in real life do not lend
themselves to a solution in a closed form. In other words, we have to make
do with approximate solutions. It is clear, therefore, that you need to be
conversant with the various methods of approximate solution of
problems, as well as the loss of information inherent in replacing the exact
solution with an approximate one.

It is also quite clear that the fastest way of doing numerical computation
is through the computer. It is imperative, then, that you understand one or
more of the available programming languages. In this course, the
programming language of interest is C++.

It is quite clear from the foregoing that numerical analysis is an interesting
course, and we would expect you to apply yourself fully to the course, as
a lot of your future work in the field of physics would warrant a sound
knowledge of numerical analysis.

THE COURSE

Phy 309 (3 Credit Units)

This 2-unit course introduces you to numerical analysis. Unit 1 discusses
the various types of errors and how they might be minimised.

Unit 2 is on curve-fitting. You would need to deduce some physical
parameters from a given set of readings obtained perhaps in a laboratory.
Various ways of linearising given formulas is given, preparatory to
drawing a line of best fit from which the physical quantity is deduced.

Unit 3 is all about linear systems of simultaneous equations. You shall
learn how to handle a large set of linear equations by writing them in the
form of matrices. Such problems will then be solved with the methods
applicable to matrices. You would also learn how to arrive at solutions
through iterative methods.

Unit 4 discusses different methods of finding the roots of algebraic and
transcendental equations.

In Unit 5, you will come across finite differences. You will be introduced
to various kinds of differences, and how to detect the error in difference
tables.

COURSE GUIDE PHY 314

vi

Numerical integration is the object of Unit 6. In this Unit, you shall learn
how to integrate a function within a given set of limits (definite integrals).

Unit 7, the concluding part of the theory part of the course discusses the
numerical solution of initial value problems of ordinary differential
equations.

The C++ Programming aspect of the course is an introduction to program-
writing in one of the most versatile programming languages.

We wish you success.

COURSE AIMS

The aim of this course is to teach you about the mechanics of the atomic
and subatomic particles.

COURSE OBJECTIVES

After studying this course, you should be able to

 Understand the various types of errors and how to minimise them.
 Linearise a given expression in order to bring out a physical

constant from the resultant relationship.
 Fit a curve to a given set of data.
 Solve a system of linear equations.
 Find the roots of a given algebraic or transcendental equation.
 Obtain the definite integral of a given function of a single variable.
 Work with finite difference schemes.
 Solve a first order initial value problems of ordinary differential

equation.
 Solve higher order initial value problems of ordinary differential

equations.
 Write C++ programs for solving the numerical problems.

WORKING THROUGH THE COURSE

Numerical methods provide a powerful way of solving almost any
problem in physics, provided it has been properly formulated. It is our
belief that the student would be motivated enough to put in a good effort
in understanding the theoretical part of this course and be willing to learn
to write programs in C++ language.

PHY 314 NUMERICAL COMPUTATIONS

vii

THE COURSE MATERIAL

You will be provided with the following materials:

COURSE GUIDE

Study Material containing study units

At the end of the course, you will find a list of recommended textbooks
which are necessary as supplements to the course material. However, note
that it is not compulsory for you to acquire or indeed read them.

STUDY UNITS FOR NUMERICAL ANALYSIS

The following study units are contained in this course:

Unit 1: Approximations and Errors in Numerical Computations
Unit 2: Approximations and Errors in Numerical Computations
Unit 3: Linear Systems of Equations
Unit 4: Roots of Algebraic and Transcendental Equations
Unit 5: Finite Differences and Interpolation
Unit 6: Numerical Integration
Unit 7: Initial Value Problems of Ordinary Differential Equations

TEXTBOOKS

Some reference books, which you may find useful, are given below:

 Numerical Methods in Engineering and Science – Grewal, B. S.
 Introductory Methods of Numerical Analysis – Sastry, S. S.
 A friendly Introduction to Numerical Analysis – Bradie, B.

ASSESSMENT

There are two components of assessment for this course. The Tutor
Marked Assignment (TMA), and the end of course examination.

TUTOR MARKED ASSIGNMENT

The TMA is the continuous assessment component of your course. It
accounts for 30% of the total score. You will be given 4 TMA’s to answer.

Three of these must be answered before you are allowed to sit for the end
of course examination. The TMA’s would be given to you by your
facilitator and returned after they have been graded.

COURSE GUIDE PHY 314

viii

END OF COURSE EXAMINATION

This examination concludes the assessment for the course. It constitutes
70% of the whole course. You will be informed of the time for the
examination. It may or may not coincide with the university semester
examination.

SUMMARY

This course is designed to lay a foundation for you for further studies in
Numerical Analysis. At the end of this course, you will be able to answer
the following types of questions:

 What is the need for numerical analysis in Physics?
 What are the types of error that can be encountered in numerical

work?
 What the ways of obtaining the line that best fits a set of laboratory

data?
 What are the various ways of numerically solving a system of

linear equations?
 What are the ways in which we can numerically find the roots of

an equation?
 How do I integrate a function that does not lend itself to an

analytical solution?
 How do I solve a first order ordinary differential equation?
 How do I tackle a higher order initial value problem of ordinary

differential equation?
 What are the merits and demerits of some of the methods of

numerical analysis?

We wish you success.

PHY 314 NUMERICAL COMPUTATIONS

1

MODULE 1

Unit 1 Approximations and Errors in Numerical Computations
Unit 2 Approximations and Errors in Numerical Computations
Unit 3 Linear Systems of Equations
Unit 4 Roots of Algebraic and Transcendental Equations
Unit 5 Finite Differences and Interpolation
Unit 6 Numerical Integration
Unit 7 Initial Value Problems of Ordinary Differential Equations

UNIT 1: Approximations and Errors in Numerical Computations

Unit Structure

1.1 Introduction
1.2 Objectives
1.3 Main Content
 1.3.1 Accuracy of Numbers

1.3.1 Approximate Numbers
1.3.2 Significant digits (figures)
1.3.3 Rounding off
1.3.4 Arithmetic precision
1.3.5 Accuracy of Measurement
1.3.6 Errors
3.3.1 Rounding Errors
3.3.2 Inherent Errors
3.3.3 Truncation Errors
1.3.4 Absolute Error, Relative Error and Percentage Error

1.4 Conclusion
1.5 Summary
1.6 Tutor-Marked Assignment (TMA)
1.7 References/Further Readings

1.1 Introduction

Physics is an exact science. However, it is strictly impossible to achieve infinite
accuracy in practice. You are quite aware that your apparatus or instrument is
not perfect, neither is your eye nor your measuring ability. We then see that errors
arise in everyday observations and measurements. The study of errors is very
important in all areas of Science and Technology. This is necessitated by the fact
that errors should not swamp our procedure enough to alter, significantly,
conclusions that may be drawn from such observations or measurements.

Apart from the limitations of observation and measurement, there are some
errors inherent in the problem itself. A good example in Quantum Mechanics is

PHY 314 NUMERICAL COMPUTATIONS

2

given by the Heisenberg Uncertainty Principle, which maintains that we cannot
measure some pairs of quantities accurately simultaneously, for example, the
position of a body and its momentum. Any attempt to measure either quantity
accurately gives an infinite error in the other. Some other errors arise as a result
of representing an infinite series with a truncated one. We shall talk a little bit
more about this in a while.

1.2 Objectives

By the end of this unit, you would be able to:

 understand the importance of errors in numerical analysis.
 round a number to a certain number of significant figures
 know how to reduce the errors involved in your numerical work.
 understand arithmetic precision

1.3 Main Content

1.3.1 Accuracy of Numbers

1.3.2 Approximate Numbers

For the sake of numerical computation, all numbers can be classified under two
broad headings: exact numbers and approximate numbers. As the name implies,
the former comprises numbers that are fully represented by some digits.
Examples include the integers, and rational numbers that can and have been
completely written, e.g., 3.2158. Approximate numbers are those that are not
fully specified by the digits representing them. As an example, we could write

the rational number
7

3
 as 2.3333. You are quite aware that the actual number is

not exactly 2.3333.

By this stage of your study, you must have worked with the rational numbers.
These are numbers which can be written as a fraction of two integers. Although
certain rational numbers are exact numbers, you have also come across a lot of
rational numbers that cannot be written as exact numbers as in the example
above. The irrational numbers are even more troublesome. An example of an
irrational number is 2 : such numbers cannot be written as the ratio of any two
integers. There are two families of numbers that are unending: the ones that
repeat certain sequences, and the ones that do not. For instance, 12.345454545
and 18.127849342. The order of preference in dealing with numbers in numerical
computations is: natural numbers, rational numbers that have a finite string of
digits, rational numbers that have unending strings of digits and irrational
numbers.

PHY 314 NUMERICAL COMPUTATIONS

3

3.1.2 Significant digits (figures)

We say a number is of r significant digits (figures) if r digits are used to express
it. As an example, 1.612, 0.004812 and 3806000 all have four significant figures.
You would notice that each of them could be written nx 10 (with no loss of
information), where x is of 4 (r = 4 in this case) digits, not starting or ending
with zero and n is an integer, positive or negative.

The following rules will be of assistance to you. Make sure they become a part
of you.

 The leftmost non-zero digit is the most significant digit, e.g., in 0.001243,

1 is the most significant digit.
 In the case where there is no decimal point, the rightmost non-zero digit

is the least significant, e.g., 145630000, 3 is the least significant figure.
 If there is a decimal point, the rightmost digit is the least significant, even

if it is zero, e.g., in 235.34200, the last 0 is the least significant. The
number is not 235.34201 or 235.34199.

 All digits between the least significant and the most significant (inclusive)
are significant, e.g., in the example under rule 1, 13 are significant. In
the example in rule 2, 1  3 are significant.

Take another example: 0.00004 has one significant figure, while 984.13245 has
8 significant figures. It should be obvious to you why they have been classified
this way.

There is an exception, however:
When a zero is obtained by rounding, for example, 329.5 is rounded to 3
significant figures. This becomes 330, the last zero being significant in this case.
You can compare this with rule 2 above.

3.2.3 Rounding off

The irrational numbers are a perfect example of numbers with unending digits.
Even in the case of rational numbers there can still be unending number of digits
and in some other cases we may decide to reduce the number of digits by which
a number is represented. This process is called rounding off.

Rules for Rounding off a number to n significant figures

(a) Discard all digits to the right of the nth digit
(b) If the discarded part of the number is
(I) less than half a unit in the n th place leave the n th digit unchanged
(II) greater than half a unit in the n th place, increase the n th digit by unity

PHY 314 NUMERICAL COMPUTATIONS

4

(III) exactly equal to half a unit in the n th place, leave the digit unchanged if
it is even; increase by unity if otherwise.

Examples: Round the following numbers to 5 significant figures:

(i) 3.142857143 (ii) 6.32431925 (iii) 1.4123519

Solution: To 5 significant figures, the numbers are:

(i) 3.1428 (rules (a) and (b)(III) nth digit unchanged as it is even
(ii) 6.3243 (rules (a) and (b)(I) as the discarded part of the number is less than

half a unit in the nth place.
(iii) 1.4124 (rules (a) and (b)(III) nth digit increased by unity as it is odd

Note:

A number rounded off to n significant figures is said to be correct to n significant
places.

3.1.4 Arithmetic precision

As we have said before, it might be necessary to round off our numbers to make
them useful for numerical computation, moreso as it would require an infinite
computer memory to store an unending number. The precision of a number is an
indication of the number of digits that have been used to express it. In scientific
computing, it is the number of significant digits or numbers, while in financial
systems, it is the number of decimal places. You are quite aware that most
currencies in the world are quoted to two decimal places.

In our own case, arithmetic precision (often referred to simply as precision) is
the specified number of significant figures or digits to which the number of
interest is to be rounded.

1.7 Errors

We said earlier, that we shall be revisiting the different types of errors. These
are:

1.7.1 Rounding Errors

These are errors incurred by truncating a sequence of digits representing a

number, as we saw in the case of representing the rational number
3

7
 by 2.3333,

instead of 2.3333….., which is an unending number. Apart from being unable to
write this number in an exact form by hand, our instruments of calculation, be it
the calculator or the computer, can only handle a finite string of digits.

PHY 314 NUMERICAL COMPUTATIONS

5

Rounding errors can be reduced if we change the calculation procedure in such
a way as to avoid the subtraction of nearly equal numbers or division by a small
number. It can also be reduced by retaining at least one more significant figure
at each step than the one given in the data, and then rounding off at the last step.

1.7.2 Inherent Errors

As the name implies, these are errors that are inherent in the statement of the
problem itself. This could be due to the limitations of the means of calculation,
for instance, the calculator or the computer. This error could be reduced by using
a higher precision of calculation.

1.7.3 Truncation Errors

If we truncate Taylor’s series, which should be an infinite series, then some error
is incurred. This is the error associated with truncating a sequence or by
terminating an iterative process.

This kind of error also results when, for instance, we carry out numerical
differentiation or integration, because we are replacing an infinitesimal process
with a finite one. In either case, we would have required that the elemental value
of the independent variable tend to zero in order to get the exact value.

3.3.4 Absolute Error, Relative Error and Percentage Error

The absolute error in a measurement is the absolute difference between the
measured value and the actual value of the quantity. Thus, we can write
 Absolute error = |valuemeasuredvalueactual| 

The ratio of the absolute error to the actual value is the relative error. We can
therefore write the relative error as

Absolute error =
valueactual

|valuemeasuredvalueactual| 

The relative error taken to a percentage is the percentage error. Percentage error
can therefore be written as

Percentage error = 100
valueactual

|valuemeasuredvalueactual|




Examples

PHY 314 NUMERICAL COMPUTATIONS

6

4.0 Conclusion

In this Unit you learnt that errors occur in measurement, because the imperfect
observer makes use of imperfect measuring instruments. Some errors are
inevitable as they are a part of the problem under investigation. Moreover, the
instruments of calculation, such as the computer, can only handle a finite number
of digits, as the memory is finite. You also learnt to write a certain number in a
specified number of decimal points. You got to know how to round a number to
a number of significant figures. Some ways of reducing some of these errors
were also discussed.

5.0 Summary

In this Unit, you learnt the following:

 Errors are an integral part of life.
 How to round a number to a specific number of significant figures?
 The different types of error and how some of them may be reduced.

6.0 Tutor-Marked Assignment

1. Round the following to the number of significant figures indicated.

(a) 12.0234831 4 significant figures
(b) 295.10542 5 significant figures
(c) 0.0045829 3 significant figures

2. A student measured the length of a string of actual length 72.5 cm as 72.4

cm. Calculate the absolute error and the percentage error.

7.0 References/Further Readings

Solutions to Tutor Marked Assignment

1. Round the following to the number of significant figures indicated.

(a) 12.0234831 4 significant figures = 12.02
(b) 295.10542 6 significant figures = 295.105
(c) 0.0045829 3 significant figures = 0.00458

2. A student measured the length of a string of actual length 72.5 cm as 72.4

cm. Calculate the absolute error and the percentage error.

Absolute error is 01.0|4.725.72|  .

The percentage error is 1379.0100
5.72

1.0


PHY 314 NUMERICAL COMPUTATIONS

7

UNIT 2 Approximations and Errors in Numerical Computations

Unit Structure

2.1 Introduction
2.2 Objectives
2.3 Main Content

3.1 Linear Graph
3.2 Linearisation
3.3 Curve Fitting

3.3.1 Method of Least Squares
3.3.2 Method of group averages

2.4 Conclusion
2.5 Summary
2.6 Tutor-Marked Assignment (TMA)
2.7 References/Further Readings

2.1 Introduction

In most experiments as a physicist, you would be expected to plot some graphs.
This chapter explains in details, how you can interpret the equation governing a
particular phenomenon, plot the appropriate graph with the data obtained, to
illustrate the inherent physical features, and deduce the values of some physical
quantities. The process of fitting a curve to a set of data is called curve-fitting.
We shall now take a look at the possible cases that could arise in curve-fitting.

2.0 Objectives

By the end of this unit, you should be able to:

 Linearise a given equation in order to plot a linear graph from which some

physical constants can be determined.
 Derive the equation for least squares linear fit.
 Derive the equation for the method of moving averages.
 Fit a linear graph to a set of data.

3.0 Main Content

3.1 Linear Graph

The law governing the physical phenomenon under investigation could be linear,
of the form cmxy  . It follows that a graph could be plotted of the points

),(ii yx , i = 1, …, n, where n is the number of observations (or sets of data). We
could obtain the line of best fit via any of a number of methods:

PHY 314 NUMERICAL COMPUTATIONS

8

More on this.

3.2 Linearisation

A nonlinear relationship can be linearised and the resulting graph analysed to
bring out the relationship between variables. We shall consider a few examples:

Case 1: xaey  .

(i) We could take the logarithm of both sides to base e:
 axeaaey xx lnlnln)ln(ln  ,

 since xex

ln . Thus, a plot of yln against x gives a linear graph with
slope unity and a y-intercept of ln a.

(ii) We could also have plotted y against xe . The result is a linear graph

through the origin, with slope equal to a.

Case 2:
g

l
T 2

We can write this expression in three different ways:

(i))ln(ln
2

1
)2ln(ln

2

1
)2ln(ln gl

g

l
T 


  .

Rearranging, we obtain,

 


  glT ln
2

1
)2ln(ln

2

1
ln 

writing this in the form cmxy  , we see that a plot of Tln against lln gives a

slope of 0.5 and a ln T intercept of 


  gln
2

1
)2ln( . Once the intercept is read

of the graph, you can then calculate the value of g.

(ii) l
g

T
2



A plot of T versus l gives a linear graph through the origin (as the intercept is

zero). The slope of the graph is
g

2
, from which the value of g can be recovered.

(iii) Squaring both sides,

PHY 314 NUMERICAL COMPUTATIONS

9

 l
g

T
2

2 4


A plot of 2T versus l gives a linear graph through the origin. The slope of the

graph is
g

24
, and the value of g can be obtained appropriately.

Case 3: teNN 

 0

The student can show that a plot of Nln versus t will give a linear graph with
slope  , and Nln intercept is 0ln N .

What other functions of N and t could you plot in order to get  and 0N ?

Case 4:
vuf

111


We rearrange the equation:

ufv

111


A plot of 1v (y-axis) versus 1u (x-axis) gives a slope of 1 and a vertical

intercept of
f

1
.

Example

A student obtained the following reading with a mirror in the laboratory.

u 10 20 30 40 50
v -7 -10 -14 -15 -17

Linearise the relationship
ufv

111
 . Plot the graph of 1v versus 1u and draw

the line of best fit. Hence, find the focal length of the mirror. All distances are in
cm.

PHY 314 NUMERICAL COMPUTATIONS

10

Solution

u v 1/u 1/v
10 -7 0.1 -0.14286
20 -10 0.05 -0.1
30 -14 0.033333 -0.07143
40 -15 0.025 -0.06667
50 -17 0.02 -0.05882

The graph is plotted in Fig. 1.1.

Fig. 1.1: Linear graph of the function
ufv

111


The slope is 05.1 and the intercept 04.0 . From
ufv

111
 , we see that the

intercept is 04.0
1


f

, or
04.0

1
f = 25 cm.

3.3 Curve Fitting

What we did in Section 3.2, generally, was to plot the values of dependent
variable against the corresponding values of the independent variable. With this
done, we got the line of best fit. The latter could have been obtained by eye
judgment. There are some other ways of deducing the relationship between the

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00
0 0.05 0.1 0.15

1/
v

(/
cm

)

1/u (/cm)

PHY 314 NUMERICAL COMPUTATIONS

11

variables. We shall first consider the ones based on linear relationship, or the
ones that can be somehow reduced to such relationships.

3.3.1 Method of Least Squares

Suppose nixi ,,1,  are the points of the independent variable where the

dependent variable having respective values niyi ,,1,  is measured.

Consider the graph below, where we have assumed a linear graph of equation

cmxy  . Then at each point nixi ,,1,  , cmxy ii  .

The least square method entails minimizing the sum of the squares of the
difference between the measured value and the one predicted by the assumed
equation.

Fig. 1.2: Illustration of the error in representing a set of data with the line of best
fit

 



n

i
ii cmxyS

1

2)(2.1

We have taken the square of the difference because taking the sum alone might
give the impression that there is no error if the sum of positive differences is
balanced by the sum of negative differences, just as in the case of the relevance
of the variance of a set of data.

Now, S is a function of m and c , that is,),(cmSS  . This is because we seek a
line of best fit, which will be determined by an appropriate slope and a suitable

1x

PHY 314 NUMERICAL COMPUTATIONS

12

intercept. In any case, ix and iy are not variables in this case, having been
obtained in the laboratory, for instance.

You have been taught at one point or another that for a function of a single

variable)(xf , the extrema are the points where 0
dx

df
. However, for a function

of more than one variable, partial derivatives are the relevant quantities. Thus,
since),(cmSS  , the condition for extrema is

0


m

S
 and 0



c

S
 2.2






 n

i
iii xcmxy

m

S

1

0))](([2 2.3






 n

i
ii cmxy

c

S

1

0)1)](([2 2.4

From equation 2.3,

  
  



n

i

n

i

n

i
iiii cxxmyx

1 1 1

2 = 0 2.5

and from equation 2.4,

  
  


n

i

n

i

n

i
ii cxmy

1 1 1

= 0 2.6

It follows from the fact that
n

x

x

n

i
i

i





1 and similar expressions, that equations

2.5 and 2.6 give, respectively,

 02
 xcxmxy 2.7

 0 cxmy 2.8

Multiplying equation 2.8 by x gives
 02  xcxmyx 2.9

Finally, from equations 2.7 and 2.9,

22 xx

yxxy
m




 2.10

and from equation 2.8,
 xmyc 
 2.11

PHY 314 NUMERICAL COMPUTATIONS

13

Example

A student obtained the following data in the laboratory. By making use of the
method of least squares, find the relationship between x and t.

Thus, for the following set of readings:

t 5 12 19 26 33
x 23 28 32 38 41

The table can be extended to give

t 5 12 19 26 33 =95 t =19
x 23 28 32 38 41 =162 x =32.4
tx 115 336 608 988 1353 =3400 tx=680

2t 25 144 361 676 1089 =2295 2x =459

6571.0
19459

4.3219680
222












tt

xttx
m 2.12

 9151.19196571.04.32  tmxc
 2.13

Hence, the relationship between x and t is,
 9151.196571.0  tx

3.3.2 Method of group averages

As the name implies, a set of data is divided into two groups, each of which is
assumed to have a zero sum of residuals. Thus, given the equation

cmxy  2.14

we would like to fit a set of n observations as close as possible.

The error in the measured value of the variable and the value predicted by the
equation is (as we have seen in Fig. …):

)(cmxy iii  2.15

The fitted line requires two unknown quantities: m and c. Thus, two equations
are needed. We would achieve these two equations by dividing the data into two,
one of size l and the other of size n-l, where n is the total number of observations.

PHY 314 NUMERICAL COMPUTATIONS

14

The assumption that the sum of errors for each group is zero, requires that





l

i
ii cmxy

1

)]([= 0 2.16

and





n

l
ii cmxy

1

)]([= 0 2.17

From equation 2.16,

lcxmy
l

i
i

l

i
i  

 11

 2.18

and equation 2.17 yields

clnxmy
n

li
i

n

li
i)(

11

 


 2.19

the latter equation being true since n – l is the number of observations that fall
into that group.

Dividing through by l and n – l, respectively, equation 2.18 gives

cx
l

my
l

l

i
i

l

i
i  

 11

11
 2.20

and from equation 2.19,

cx
ln

my
ln

n

li
i

n

li
i 







 11

11
 2.21

Thus,

cxmy  11

cxmy  22 2.22

PHY 314 NUMERICAL COMPUTATIONS

15

Subtracting,

)(2121 xxmyy  2.23

21

21

xx

yy
m




 2.24

and

11 xmyc  2.25

Example

Let us solve the example in Section 3.3.1 using the method of group averages.

t 5 12 19 26 33
x 23 28 32 38 41

We shall divide the data into two groups, such as:

t 5 12 19
x 23 28 32

and

t 26 33
x 38 41

The tables can be extended to give, for Table 3:

t 5 12 19 =36 1t =12
x 23 28 32 =83 1x =27.666667

and for Table 4:

t 26 33 =59 2t =29.5
x 38 41 =79 2x =39.5

21

21

tt

xx
m




 = 67619.0

5.2912

5.39666667.27






and
 11 tmxc  =)1267619.0(666667.27 
 = 19.552387

PHY 314 NUMERICAL COMPUTATIONS

16

Thus, the equation of best fit is,
 552387.1967619.0  tx

4.0 Conclusion

In this Unit, you learnt how to linearise an expression in order to obtain some
relevant information when written as a linear equation. You also derived the
equations for two different methods of drawing the line of best fit. In addition,
you applied these formulas to a set of data and was able to write the equation of
best fit in each case.

5.0 Summary

In this Unit, you learnt:

 How to linearise a nonlinear expression in order to deduce some desired

parameters.
 How to draw the line of best fit with the method of least squares.
 How to draw the line of best fit with the method of group averages.

6.0 Tutor Marked Assignment (TMA)

1. The current flowing in a particular R-C circuit is tabulated against the

change in the time 0tt  , such that at time 0tt  , the current is 1.2 A.
Using the least-squares method, find the slope and the intercept of the
linear function relating the current i to the time t. Hence, determine the
time-constant of the circuit.

t 2 2.2 2.4 2.6 2.8 3
i 0.20 0.16 0.13 0.11 0.09 0.07

2. Solve the problem in TMA 1 with the method of group averages by
dividing into two groups of three data sets each.

t 2 2.2 2.4
i 0.20 0.16 0.13

 and

t 2.6 2.8 3
i 0.11 0.09 0.07

PHY 314 NUMERICAL COMPUTATIONS

17

3. A student performing the simple pendulum experiment obtained the
following table, where t is the time for 50 oscillations.

l (cm) 50 45 40 35 30 25 20 15
t (s) 71 69 65 61 56 52 48 43

Find the acceleration due to gravity at the location of the experiment, using

(i) the method of least squares, and
(ii) the method of group averages.

7.0 References/Further Readings

Solutions to Tutor Marked Assignment

1. The current flowing in a particular R-C circuit is tabulated against the

change in the time 0tt  , such that at time 0tt  , the current is 1.2 A.
Using the least-squares method, find the slope and the intercept of the
linear function relating the current i to the time t. Hence, determine the
time-constant of the circuit.

t 2 2.2 2.4 2.6 2.8 3
i 0.20 0.16 0.13 0.11 0.09 0.07

Taking logs: RCteii /
0



 .
RC

t
ieii RCt  

0
/

0 log)log(loglog . A plot of ilog

against t gives slope
RC

1
 and intercept 0logi .

 t I tsquare log l tlogl
 2.0 0.200000 4 -0.69897 -1.39794 -0.7022
 2.2 0.160000 4.84 -0.79588 -1.75094 -0.78902
 2.4 0.130000 5.76 -0.88606 -2.12654 -0.87584
 2.6 0.110000 6.76 -0.95861 -2.49238 -0.96266
 2.8 0.090000 7.84 -1.04576 -2.92812 -1.04948
 3.0 0.070000 9 -1.1549 -3.46471 -1.1363
Sum 15 38.2 -5.54017 -14.1606
Average 2.5 6.3666667 -0.92336 -2.3601
 Slope -0.4431
 Intercept 0.1844

4431.0
5.23666667.6

)92336.05.2(3601.2
2





m

PHY 314 NUMERICAL COMPUTATIONS

18

1844.0log  tmlc

RC

m
1

 , or 2568.2
1


m
RC = time constant of the circuit.

3. Solve the problem in TMA 1 with the method of group averages by

dividing into two groups of three data sets each.

t 2 2.2 2.4
i 0.20 0.16 0.13

 and

t 2.6 2.8 3
i 0.11 0.09 0.07

Group 1
t i log i
2.0 0.20 -0.69897
2.2 0.16 -0.79588
2.4 0.13 -0.88606
6.6 -2.38091
2.2 -0.79364

Group 2
t i log i
2.6 0.11 -0.95861
2.8 0.09 -1.04576
3.0 0.07 -1.1549
8.4 -3.15927
2.8 -1.05309

4324.0
8.22.2

)05309.1(79364.

21

21












xx

yy
m

 1576.0)2.24324.0(79364.011  xmyc

3. A student performing the simple pendulum experiment obtained the

following table, where t is the time for 50 oscillations.

l (cm) 50 45 40 35 30 25 20 15
t (s) 71 69 65 61 56 52 48 43

PHY 314 NUMERICAL COMPUTATIONS

19

Find the acceleration due to gravity at the location of the experiment, using

(iii) the method of least squares, and
(iv) the method of group averages.

Method of least squares (taking logs)

l
g

T log
2

12
loglog 



 

: A plot of Tlog against llog gives slope 0.5 and

intercept c =
g

2
log , from which the value of g is

2

1)(log

2 





 c


.

l t log l log T (log l)*(log l) (log l)*(log T)
0.50 71 -0.30103 0.152288 0.090619058 -0.04584 0.2966771
0.45 69 -0.34679 0.139879 0.120261561 -0.04851 0.3165404
0.40 65 -0.39794 0.113943 0.158356251 -0.04534 0.3387458
0.35 61 -0.45593 0.086360 0.207873948 -0.03937 0.3639201
0.30 56 -0.52288 0.049218 0.273402182 -0.02574 0.3929817
0.25 52 -0.60206 0.017033 0.362476233 -0.01026 0.4273542
0.20 48 -0.69897 -0.017729 0.488559067 0.012392 0.4694229
0.15 43 -0.82391 -0.065502 0.678825613 0.053967 0.5236588
 Sum -4.14951 0.475492 2.380373913 -0.1487
 Average -0.51869 0.059436 0.297546739 -0.01859

 slope 0.429391
 intercept 0.282157
 2 pi 6.284
 log 2 pi 0.798236
 log 2 pi -inter 0.516079
 2(log 2pi-inter)1.032159 log g
 10.84 g

Method of least squares (taking squares)

l
g

T
2

2 4
 . A plot of 2T against l gives a line through the origin with slope m

=
g

24
, from which g

m

24
:

L t L Tsquare lsquare Tsquare l

PHY 314 NUMERICAL COMPUTATIONS

20

50 71 0.50 2.016400 0.2500 1.0082 2.05 0.5
45 69 0.45 1.904400 0.2025 0.85698 0.070136 0.45
40 65 0.40 1.690000 0.1600 0.676 0 0.4
35 61 0.35 1.488400 0.1225 0.52094 2.0164 0.35
30 56 0.30 1.254400 0.0900 0.37632 2.50932 0.3
25 52 0.25 1.081600 0.0625 0.2704 2.1661 0.25
20 48 0.20 0.921600 0.0400 0.18432 1.8264 0.2
15 43 0.15 0.739600 0.0225 0.11094 1.47766 0.15
 Sum 2.6 11.0964 0.9500 4.0041
 Average 0.325 1.38705 0.11875 0.500513

 slope 3.788286 g 10.42
 intercept 0.155857

Method of group averages (taking logs)

Group 1
L t log l log T
0.50 71 -0.3010 0.15229
0.45 69 -0.3468 0.13988
0.40 65 -0.3979 0.11394
0.35 61 -0.4559 0.08636
 Sum -1.50169 0.49247
 Average -0.37542 0.123118

Group 2
L t log l log T
0.30 56 -0.5229 0.04922
0.25 52 -0.6021 0.01703
0.20 48 -0.6990 -0.0177
0.15 43 -0.8239 -0.0655
 Sum -2.64782 -0.01698
 Average -0.66196 -0.00425

 slope 0.444496
 intercept 0.289991
 g 10.38

PHY 314 NUMERICAL COMPUTATIONS

21

Method of group averages (taking squares)

Group 1
L t l Tsquare
0.50 71 0.50 2.0164
0.45 69 0.45 1.9044
0.40 65 0.40 1.69
0.35 61 0.35 1.4884
 Sum 1.70 7.0992
 Average 0.43 1.7748

Group 2
L t l Tsquare
0.30 56 0.30 1.2544
0.25 52 0.25 1.0816
0.20 48 0.20 0.9216
0.15 43 0.15 0.7396
 Sum 0.9 3.9972
 Average 0.225 0.9993

 slope 3.8775
 intercept 1.02051
 g 10.18

PHY 314 NUMERICAL COMPUTATIONS

22

Unit 3: Linear Systems of Equations

Unit Structure

3.1 Introduction
3.2 Objectives
3.3 Main Content

3.3.1 System of Linear Equations
3.3.2 Gaussian Elimination
3.3.3 Gauss-Jordan Elimination
3.3.4 LU Decomposition
3.3.5 Jacobi Iteration
3.3.6 Gauss-Seidal Iteration

3.4 Conclusion
3.5 Summary
3.6 Tutor Marked Assignment
3.7 References/Further Reading

3.1 Introduction

Perhaps in all areas of Physics, you would come across a system of linear
equations. For example, you might want to know what proportions of two or
more variables you would need to achieve some specific values of a desired
composite product. This kind of problem could lead to a set of linear equations.
This unit will equip you with the necessary tools to solve a system of linear
equations. You shall come across direct methods as well as iterative ways of
solving such problems.

3.2 Objectives

You should be able to do the following after studying this Unit:

 Write a system of linear equations in an augmented matrix form
 Solve a system of linear equations.

3.3 System of Linear Equations

It is necessary for us to set the stage by getting to know how to write the general
set of simultaneous linear equations.

PHY 314 NUMERICAL COMPUTATIONS

23

Let us consider a linear system of equations

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa







2211

22222121

11212111

.

.

.
 3.1

This can be written in the form







































































nnnnnn

n

n

b

b

b

x

x

x

aaa

aaa

aaa

2

1

2

1

21

22221

11211

 3.2

3.3.2 Gaussian Elimination

A recall of the solution of a system of two equations will help in introducing the
Gaussian Elimination method.

For instance, let)3,2(be a solution set),(yx . Then the following equations are
in order.

1332  yx 3.3
1 yx 3.4

You might want to verify that these equations are consistent with the given
solution set.

We could multiply equation 3.2 by -2 and add to equation 2.3. This yields

155 y 3.5

Equivalently, 3y . Substituting this value of y in either equation 3.3 or 3.4
gives 2x .

The augmented matrix representing our system of two equations is





 1

13

11

32

PHY 314 NUMERICAL COMPUTATIONS

24

By Gaussian elimination, we seek to make every entry below the main diagonal
zero. This we achieve by reducing 1 to zero, making use of the first row.




 







15

13

50

32

1

13

11

32)(2)()'(iiiii

 3.6

Thus,

3155  yy 3.7

Substituting this in the first row gives

13)3(32 x 3.8

from which we obtain 2x .

The process of reducing every element below the main diagonal to zero (row
echelon form) is called Gaussian Elimination. That of substituting obtained
values to calculate other variables is called Back Substitution.

You can see that there is nothing new about Gaussian elimination. It is a process
you have been carrying out all along, but which you never called this name.

The same process can be carried over to the case of a system of three equations.

Let)1,2,1( be a solution set.

Then, the equations below are valid:

52  zyx
523  zyx 3.9

3423  zyx

The augmented matrix is

















3

5

5

423

231

112

PHY 314 NUMERICAL COMPUTATIONS

25

This yields (by Gaussian elimination)
















 
 




















3

5

5

3/53/70

550

112

3

5

5

423

231

112

))(3/2()()(

)(2)()'(

iiiiiii

iiiii


















   10

5

5

1000

550

112

)')(7/15()'(')'(iiiiiiii

 3.10

Upon back substitution,

1010  z or 1z
1z ; 21  yzy ; 152  xzyx

Traditionally, in Mathematics, it is usual to use indices such as ,, 21 xx etc. instead
of zyx ,, . Do you have any idea why this is so? It is because if we stay with the
alphabets, we shall soon run out of symbols. Bear in mind that not all the
alphabets can be employed as variables; as an example, a, b, c is commonly used
as constants. In addition, it makes it easy to associate the coefficients ,, 1211 aa

etc. with ,, 21 xx etc. respectively. More importantly in numerical work, it makes
programming easier. For instance, for our system of three equations, we could
use the more general notation:













 
 
















'

'

''0

''0

34

24

14

3332

2322

131211

))(/()()(

))(/()()'(

34

24

14

333231

232221

131211

3111

1211

a

a

a

aa

aa

aaa

a

a

a

aaa

aaa

aaa

iiiaaiiii

iiaaiii













   ''

'

''00

''0

34

24

14

33

2322

131211

)')(/()'(')'(3222 a

a

a

a

aa

aaa

iiiaaiiiii

 3.11

We would like to sound a note of warning here. How do you set '21a equal to

zero? From the expression 3.11, 21
21

11
1121 0' a

a

a
aa  . In order to avoid having

to deal with fractions which could lead to rounding errors, it is better to put this
in the form:

)()()'(1112 iiaiaii  3.12

PHY 314 NUMERICAL COMPUTATIONS

26

A better way of writing equation 3.11 is,













 
 
















'

'

''0

''0

34

24

14

3332

2322

131211

)()()(

)()()'(

34

24

14

333231

232221

131211

1111

1112

a

a

a

aa

aa

aaa

a

a

a

aaa

aaa

aaa

iiiaiaiii

iiaiaii













   ''

'

''00

''0

34

24

14

33

2322

131211

)'()'(')'(2232 a

a

a

a

aa

aaa

iiiaiiaiii

 3.11

3.3 Gauss-Jordan Elimination

This entails eliminating in addition to the entries below the major diagonal, the
entries above it, so that the main matrix is a diagonal matrix. In that case, the
solution to the system is given by dividing the element in the augmented part of
the matrix by the diagonal element for that row. In other words, the end product
of Gauss-Jordan elimination looks like













''''

'''

''

''''00

0''''0

00

34

24

14

33

22

11

a

a

a

a

a

a

 3.12

from which it follows that

11141 /'' aax  '''/''' 22242 aax  ''''/'''' 33343 aax  3.13

Example

We shall solve problem … using the Gauss-Jordan elimination. Luckily, we have
already completed the Gaussian elimination part of this method. We continue
from where we stopped.











 





 
 






















10

20

40

1000

0100

01020

10

5

5

1000

550

112
)(2)()'(

)(10)()'(

iiiiiii

iiiii











 




  

10

20

20

1000

0100

0020)'()'(')'(iiii

 3.14

PHY 314 NUMERICAL COMPUTATIONS

27

It follows that,

2020  x or 1x ; 2010  y or 2y ; and 1010  z or 1z

3.4 LU Decomposition

Suppose we could write the matrix













333231

232221

131211

aaa

aaa

aaa

 =
























33

2322

131211

333231

2221

11

00

00

00

u

uu

uuu

lll

ll

l

 3.15

This implies that

111111 aul  , 121211 aul  , 131311 aul  3.16

112121 ula  , 2222122122 ulula  , 2322132123 ulula  3.17

113131 ula  , 2232123132 ulula  , 33332332133133 ululula  3.18

Without loss of generality, we could set the diagonal elements of the L matrix
equal to 1. Then,













333231

232221

131211

aaa

aaa

aaa

 =
























33

2322

131211

3231

21

00

0

1

01

001

u

uu

uuu

ll

l 3.19a

Multiplying out the right side of equation 3.19,













333231

232221

131211

aaa

aaa

aaa

=















3323321331223212311131

2313212212211121

131211

uululululul

uuluulul

uuu

 3.19b

From the equality of matrices, this requires that,

1111 au  3.20

1212 au  3.21

1313 au  3.22

112121 ula  1121112121 // aaual  3.23

113131 ula  1131113131 // aaual  3.24

PHY 314 NUMERICAL COMPUTATIONS

28

22122122 uula  , or 12
11

21
2212212222 u

u

a
aulau 

 3.25

23132123 uula  , or 13
11

21
2313212323 u

u

a
aulau 

13
11

21
2323 a

a

a
au  3.26




  12
11

31
32

2222

123132
32

1
u

u

a
a

uu

ula
l




  12
11

31
32

22
32

1
a

a

a
a

u
l 3.27

2232123132 ulula  3.28

332332133133 uulula 

233213313333 ululau  3.29

You can see that we have determined all the nine elements of the two matrices
in terms of the elements of the original matrix.

Once we have obtained L and U, then we can write the original equation






































3

2

1

3

2

1

333231

232221

131211

y

y

y

x

x

x

aaa

aaa

aaa

 3.30

as

yx LU 3.31

where x and y are column vectors.

We shall write xw U

Then,

yw L 3.32

12
11

21
2222 a

a

a
au 

PHY 314 NUMERICAL COMPUTATIONS

29

Example

Solve the following system of equations using the method of LU decomposition.

52  zyx
523  zyx

 3.33

3423  zyx

The corresponding matrix is

















423

231

112

1111 au  = 2 3.34

1212 au  = 1 3.35

11313  au 3.36

112121 / aal  = 2/1 3.37

113131 / aal  = 2/3 3.38

2/5)1(
2

1
312

11

21
2222  a

a

a
au

 3.39

2/5
2

1
2)1(

2

1
213

11

21
2323  a

a

a
au

5/7)1(
2

3
2

2/5

11
12

11

31
32

22
32 


 


  a

a

a
a

u
l 3.40

1)2/5)(5/7()1)(2/3(4233213313333  ululau 3.41

Thus,











 













 100

2/52/50

112

15/72/3

012/1

001

=
















423

231

112

 3.42

As you can see, we got the decomposition right, as the multiplication of the L
and U gives the original matrix.

The original equation is equivalent to

PHY 314 NUMERICAL COMPUTATIONS

30

ywx  LLU 3.43

yw L implies






































 3

5

5

15/72/3

012/1

001

3

2

1

w

w

w

 3.44

Solving,

1w 5 3.45

5
2

1
21  ww or

2

5
)5(

2

1
5

2

1
5 12  ww 3.46

3
5

7

2

3
321  www , or 1)5(

2

3

2

5

5

7
3

2

3

5

7
3 123 


 www 3.47

wx U implies:






































 

1

2/5

5

100

2/52/50

112

3

2

1

x

x

x

 3.48

By back substitution,

13 x 3.49

2

5

2

5

2

5
32  xx 5)1(

2

5

2

5

2

5

2

5

2

5
32  xx 3.50

22 x 3.51

52 321  xxx 3.52

1
2

)1(25

2

5 32
1 







xx
x 3.53

The solution set is therefore,

11 x , 2y , 1z . 3.54

PHY 314 NUMERICAL COMPUTATIONS

31

3.5 Jacobi Iteration

Given the system of equations

1111 dzcybxa  3.55

2222 dzcybxa  3.56

3333 dzcybxa  3.57

Solving for x , y and z , gives

 zcybd
a

x 111
1

1
 3.58

][
1

222
2

zcxad
b

y  3.59

][
1

333
3

ybxad
c

z  3.60

It is easy to see that provided the diagonal elements are large relative to the other
coefficients, the sequence of iteration would converge.

For initial values 0x , 0y and 0z , the scheme would be as shown below:

 01011
1

1

1
zcybd

a
x  3.61

][
1

02022
2

1 zcxad
b

y  3.62

][
1

03033
3

1 ybxad
c

z  3.63

We can now write, for n = 0 and above,

 nnn zcybd
a

x 111
1

1

1  3.64

][
1

222
2

1 nnn zcxad
b

y  3.65

PHY 314 NUMERICAL COMPUTATIONS

32

][
1

333
3

1 nnn ybxad
c

z  3.66

The sequence of iteration continues until there is convergence, in the sense that

|| 1 nn xx  , || 1 nn yy  and || 1 nn zz  are less than the prescribed tolerance.

Example

We shall solve the following system of equations using the Jacobi iteration
method.

2825  zyx 3.67

59230  zyx 3.68

192023  zyx 3.69

Equivalently,

25

28 zy
x


 , 30

259 zx
y


 , 20

1923 


yx
z 3.70

Let us assume that the initial guess of solution is (0, 0, 0).
Then, the first set of values for the iteration is:

25

28

25

0028
1 


x 12.1 3.71

30

59

30

0059
1 


y 96666667.1 3.72

20

19

20

1900
1 


z 95.0 3.73

00333333.1
15000

13850

25

20/1930/5928



x 3.74

99266667.1
1500

2803

1500

5606

30

)
20

19
(2

25

28
59





y 3.75

97866667.0
15000

14860

20

19
30

59
2

25

26
3





z 3.76

PHY 314 NUMERICAL COMPUTATIONS

33

Table 3.1 shows the rest of the computation.

Table 3.1: Table for Jacobi iteration

n x y z
1 1.12000000 1.96666667 -0.95000000
2 1.00333333 1.99266667 -0.97866667
3 1.00114667 1.99846667 -0.99876667
4 1.00011067 1.99987956 -0.99967467
5 1.00001783 1.99997462 -0.99997136
6 1.00000216 1.99999750 -0.99999479
7 1.00000031 1.99999958 -0.99999943
8 1.00000004 1.99999995 -0.99999991
9 1.00000001 1.99999999 -0.99999999
10 1.00000000 2.00000000 -1.00000000

3.6 Gauss-Seidal Iteration

You would recall that in each of the Jacobi iterations, we calculated the value of
the variables using the old variables. The Gauss-Seidal iteration is a modification
of this method, in which the value of x obtained in a particular iteration and the
old value of z is put into the formula for y to obtain a new value for y. The new
values of x and y are substituted into the equation for z.

Thus, given the system of equations

1111 dzcybxa  3.77

2222 dzcybxa  3.78

3333 dzcybxa  3.79

with the initial condition 0x , 0y , 0z ,

 01011
1

1

1
zcybd

a
x 

 3.80

][
1

02122
2

1 zcxad
b

y  3.81

][
1

13133
3

1 ybxad
c

z  3.82

PHY 314 NUMERICAL COMPUTATIONS

34

 nnn zcybd
a

x 111
1

1

1  3.83

][
1

2122
2

1 nnn zcxad
b

y   3.84

][
1

13133
3

1   nnn ybxad
c

z 3.85

As in the case of the Jacobi iteration, the sequence of iteration continues until
there is convergence, in the sense that || 1 nn xx  , || 1 nn yy  and || 1 nn zz  are
less than the prescribed tolerance.

Example

We shall solve the following system of equations using the Gauss-Seidal
iteration method. Assume (0,0,0) is the initial guess of solution.

2825  zyx 3.86

59230  zyx 3.87

192023  zyx 3.88

25

28 00
1

zy
x




 3.80

20

259 01
1

zx
y


 3.81

30

1923 11
1




yx
z 3.82

12.1
25

28

25

0028
1 


x

 3.80

929333333.1
750

1447

30

02
25

28
59

1 



y 3.81

974933333.0
375000

365600

20

19
750

1447
2

25

28
3

1 



z 3.82

PHY 314 NUMERICAL COMPUTATIONS

35

You can verify the remaining calculations on Table 3.2.

Table 3.2: Table for Gauss-Seidal iteration
n x y z
1 1.12000000 1.92933333 -0.97493333
2 1.00382933 1.99820124 -0.99924572
3 1.00010212 1.99994631 -0.99997931
4 1.00000298 1.99999852 -0.99999941
5 1.00000008 1.99999996 -0.99999998
6 1.00000000 2.00000000 -1.00000000

Observation: As expected, the Gauss-Seidal iteration converged faster than the
Jacobi iteration.

4.0 Conclusion

In this Unit, you learnt various methods for solving a system of linear algebraic
or transcendental equations using various methods: some were direct, while the
others were iterative in nature. You also got to know the merits and the demerits
of direct and iterative methods. You also found out that it is important, in
elementary row operations, to avoid having to deal with fractions, so as to keep
rounding errors minimal.

5.0 Summary

You learnt the following in this Unit:

 How to write a matrix in the form amenable for programming.
 How to numerically solve a set of linear equations.
 That the Gauss-Seidal iteration converges faster than the Jacobi iteration.
 In numerical work, for the sake of avoiding rounding errors, it is better to

retain fractions for as long as possible.
 Iteration is advisable only if the main diagonal elements are large

compared with the other entries of the equivalent matrix.

6.0 Tutor Marked Assignment

1. Solve the system of linear equations 1 zyx , 422  zyx ,

769  zyx using the method of

 Gaussian elimination
 Gauss-Jordan elimination
 LU decomposition
 Jacobi iteration

PHY 314 NUMERICAL COMPUTATIONS

36

 Gauss-Seidal iteration

2. Solve the system of linear equations 222  zyx , 422  zyx ,

14269  zyx using the method of

 Gaussian elimination
 Gauss-Jordan elimination
 LU decomposition
 Jacobi iteration
 Gauss-Seidal iteration

7.0 References/Further Reading

Solutions to Tutor Marked Assignment

1. Solve the system of linear equations 1 zyx , 422  zyx ,
769  zyx using the method of

(i) Gaussian elimination

Initial augmented matrix
 1 1 1 -1
 1 2 2 -4
 9 6 1 7

First round of Gaussian elimination
 1 1 1 -1
 0 1 1 -3
 0 -3 -8 16

Second round of Gaussian elimination
 1 1 1 -1
 0 1 1 -3
 0 0 -5 7

PHY 314 NUMERICAL COMPUTATIONS

37

(ii) Gauss-Jordan elimination

Last matrix for Gaussian elimination
 1 1 1 -1
 0 1 1 -3
 0 0 -5 7

First round of Jordan elimination
 5 5 0 2
 0 5 0 -8
 0 0 -5 7

Second round of Jordan elimination
 -25 0 0 -50
 0 5 0 -8
 0 0 -5 7

(iii) LU decomposition

1 zyx
422  zyx 3.33

769  zyx

The corresponding matrix is













169

221

111

1111 au  = 1 3.34

1212 au  = 1 3.35

11313  au 3.36

112121 / aal  = 1/1 = 1 3.37

113131 / aal  = 1/9 = 9 3.38

1)1)(1(212
11

21
2222  a

a

a
au

 3.39

1)1)(1(213
11

21
2323  a

a

a
au

PHY 314 NUMERICAL COMPUTATIONS

38

3)1(
1

9
6

1

11
12

11

31
32

22
32 


 


  a

a

a
a

u
l 3.40

5)1)(3()1)(9(1233213313333  ululau 3.41

Thus,

























 500

110

111

139

011

001

=












169

221

111

 3.42

W got the decomposition right, as the multiplication of the L and U gives the
original matrix.

The original equation is equivalent to ywx  LLU ,

yw L implies








































 7

4

1

139

011

001

3

2

1

w

w

w

 3.44

Solving,

1w 1 3.45

421  ww or 3)1(44 12  ww 3.46
739 321  www , or 7)1(9)3(37937 123  www 3.47

wx U implies:








































 7

3

1

500

110

111

3

2

1

x

x

x

 3.48

By back substitution,

5/73 x = 4.1 3.49

332  xx)5/7(33 32  xx 3.50

PHY 314 NUMERICAL COMPUTATIONS

39

6.15/82 x 3.51

1321  xxx 3.52

2
5

10
)5/7()5/8(11 321  xxx 3.53

The solution set is therefore,

21 x , 6.1y , 4.1z . 3.54

Notice that, where necessary, we reverted to fractions to avoid incurring
rounding errors.

2. Solve the system of equations 26225  zyx , 152203  zyx ,

zyx 154  using:
(i) Jacobi iteration
(ii) Gauss-Seidal iteration
Assume a starting set of values 0000  zyx and a tolerance of

6
1 105|| 

  ii xx , 6
1 105|| 

  ii yy , 6
1 105|| 

  ii zz .

(i) Jacobi iteration
1.040000 0.750000 1.333333
1.033333 1.039333 1.064000
0.999413 1.011400 0.987289
0.998580 0.998641 0.996999
0.999989 0.999487 1.000457
1.000059 1.000044 1.000138
1.000002 1.000023 0.999984
0.999998 0.999999 0.999994
1.000000 0.999999 1.000001
1.000000 1.000000 1.000000

(ii) Gauss-Seidal iteration
1.040000 0.906000 1.022400
1.008416 1.003502 0.998505
0.999660 0.999799 1.000076
1.000019 1.000010 0.999996
0.999999 0.999999 1.000000
1.000000 1.000000 1.000000

Observation: The Gauss-Seidal iteration scheme converged faster than the Jacobi
iteration, as was expected.

PHY 314 NUMERICAL COMPUTATIONS

40

2. Solve the system of linear equations 222  zyx , 422  zyx ,

14269  zyx using the method of

(iv) Gaussian elimination
Initial augmented matrix
 1 2 2 -2
 2 2 1 -4
 9 6 2 -14

First round of Gaussian elimination
 1 2 2 -2
 0 -2 -3 0
 0 -12 -16 4

Second round of Gaussian elimination
 1 2 2 -2
 0 -2 -3 0
 0 0 -4 -8

Answers
x 0
y -3
z 2

(v) Gauss-Jordan elimination

Last matrix for Gaussian elimination
 1 2 2 -2
 0 -2 -3 0
 0 0 -4 -8

First round of Jordan elimination
 4 8 0 -24
 0 -8 0 24
 0 0 -4 -8

Second round of Jordan elimination
 32 0 0 0
 0 -8 0 24
 0 0 -4 -8

(vi) LU decomposition

PHY 314 NUMERICAL COMPUTATIONS

41

1 zyx

422  zyx 3.33

769  zyx

The corresponding matrix is













169

221

111

1111 au  = 1 3.34

1212 au  = 1 3.35

11313  au 3.36

112121 / aal  = 1/1 = 1 3.37

113131 / aal  = 1/9 = 9 3.38

1)1)(1(212
11

21
2222  a

a

a
au

 3.39

1)1)(1(213
11

21
2323  a

a

a
au

3)1(
1

9
6

1

11
12

11

31
32

22
32 


 


  a

a

a
a

u
l 3.40

5)1)(3()1)(9(1233213313333  ululau 3.41

Thus,

























 500

110

111

139

011

001

=












169

221

111

 3.42

W got the decomposition right, as the multiplication of the L and U gives the
original matrix.

The original equation is equivalent to ywx  LLU ,

yw L implies

PHY 314 NUMERICAL COMPUTATIONS

42








































 7

4

1

139

011

001

3

2

1

w

w

w

 3.44

Solving,

1w 1 3.45

421  ww or 3)1(44 12  ww 3.46
739 321  www , or 7)1(9)3(37937 123  www 3.47

wx U implies:








































 7

3

1

500

110

111

3

2

1

x

x

x

 3.48

By back substitution,

5/73 x = 4.1 3.49

332  xx)5/7(33 32  xx 3.50

6.15/82 x 3.51

1321  xxx 3.52

2
5

10
)5/7()5/8(11 321  xxx 3.53

The solution set is therefore,

21 x , 6.1y , 4.1z . 3.54

Notice that, where necessary, we reverted to fractions to avoid incurring
rounding errors.

3. Solve the system of equations 26225  zyx , 152203  zyx ,
zyx 154  using:

(i) Jacobi iteration
(ii) Gauss-Seidal iteration

PHY 314 NUMERICAL COMPUTATIONS

43

Assume a starting set of values 0000  zyx and a

(i) Jacobi iteration tolerance of 7

1 10|| 
  ii xx , 7

1 10|| 
  ii yy ,

7
1 10|| 

  ii zz .

x y z
0.571429 -0.300000 0.800000
0.878571 -0.722857 0.805714
0.910816 -0.907714 0.913429
0.962490 -0.937833 0.980922
0.988746 -0.975586 0.982635
0.992054 -0.991511 0.992485
0.996710 -0.994481 0.998194
0.998961 -0.997845 0.998451
0.999293 -0.999221 0.999346
0.999711 -0.999510 0.999830

(ii) Gauss-Seidal iteration of 6

1 105|| 
  ii xx , 6

1 105|| 
  ii yy ,

6
1 105|| 

  ii zz .

x y z
0.571429 -0.642857 0.942857
0.954082 -0.966735 0.995878
0.996152 -0.997279 0.999681
0.999692 -0.999783 0.999975
0.999976 -0.999983 0.999998
0.999998 -0.999999 1.000000
1.000000 -1.000000 1.000000

PHY 314 NUMERICAL COMPUTATIONS

44

Unit 4: Roots of Algebraic and Transcendental Equations

Unit Structure

4.1 Introduction
4.2 Objectives
4.3 Main Content

4.3.1 Introduction
4.3.2 Bisection Method
4.3.3 Merits of the Bisection Method
4.3.4 Demerits of the Bisection Method
4.3.5 Newton-Raphson Method
4.3.6 Merits of the Newton-Raphson Method
4.3.7Demerits of the Newton-Raphson Method
4.3.8 Regula-falsi method
4.3.9Secant Method

4.4 Conclusion
4.5 Summary
4.6 Tutor Marked Assignment
4.7 References/Further Reading

4.1 Introduction

In Physics, as well as in many other scientific fields, there is always the need to
find the root of an equation. You have no doubt been tackling such problems
from high school days. However, up till now, you have been able to handle
simple cases that a calculator could be employed to do. In this Unit, you shall
learn how to handle the more complicated cases of roots of algebraic and
transcendental equations.

4.2 Objectives

By the time you are through with this Unit, you should be able to:

 Find the root of an equation or equivalently the zero of a function.
 You would also be able to compare the various methods of obtaining the

zero of a function.

4.3 Main Content

3.1 Introduction

You are probably quite familiar with the concept of the function of a continuous
variable)(xf , continuous over a certain interval of the independent variable x.
If we equate)(xf to zero, we obtain the equation 0)(xf . You might even see

PHY 314 NUMERICAL COMPUTATIONS

45

the process as that of equating two different functions)(1 xf and)(2 xf , where the
latter is identically zero.

Fig. 4.1

Figure 4.1 shows the graph of xxxf 3)(2

1  . The x-axis can be seen as the
function 0)(2 xf . Equating the two functions gives)(03)(2

2
1 xfxxxf 

. The resulting equation, 032  xx , has two solutions 0x and 3 (the two
solutions are indicated in Figure 4.1). Let us ‘slide’)(2 xf down to 2)(2 xf ,
the lower horizontal line. The equation becomes 232

 xx . This is perhaps
one of the commonest quadratic equations you ever came across. The solutions
are: 1.0 and 2.0. You can check this out on Fig. … as well. Shifting)(2 xf lower
to 5.2 would ensure that the resulting equation has no real solutions as the
curve would not intersect the line.

The equations we have dealt with so far have been such that could easily be
solved using analytical methods. It should be obvious to you that such equations
should form a small subset of a much larger family of equations, the solutions of
most of which do not readily lend themselves to analytical methods, especially
as the power of the polynomial being equated to zero becomes large. Equating a
polynomial to zero gives an algebraic equation. A transcendental function is a
function that ‘transcends’ the normal laws of algebra as it cannot be expressed
as a sequence of the algebraic operations of addition/subtraction,
multiplication/division, an example being the square root of another function.
Other examples include logarithmic, trigonometric, exponential functions and
their inverses. If an equation involves the transcendental expressions, such as
exponentials, trigonometric, logarithmic functions, the equation is said to be a
transcendental equation.

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

PHY 314 NUMERICAL COMPUTATIONS

46

We shall assume that the function whose roots we desire,)(xf , is a function of
x , whose zeros (or the roots of the resulting equation) lie on the real axis. That
is, the roots of the equation 0)(xf are real numbers. There are a number of
methods of finding the roots. We shall now take some of these.

3.2 Bisection Method

Fig.

As the name implies, we obtain the points 1x and 2x , such that 0)()(12 xfxf ,
meaning that the value of f has opposite signs at the two points, which points
to the fact that a root exists between 1x and 2x . We approximate this root by the
average of the two, i.e., 2/)(21 xx  . Let this be 3x . Then we evaluate)(3xf . 3x

is then combined with 1x or 2x , depending on the one at which the sign of the
function is opposite that of)(3xf . This gives 4x . This process is repeated until

)(xf attains the prescribed tolerance. We have illustrated this in Fig … for the
root of the equation 033  xx , given that the root lies between 1x = 1.2 and 2x

= 2.4. Then, 2/)(213 xxx  = 1.8. 0)(3 xf , so we combine it with 1x to arrive

at 2/)(314 xxx  , and so on.

The convergence of the Bisection method is slow and steady

-2

-1

0

1

2

3

4

5

6

7

8

0.8 1.3 1.8 2.3

1x 2x 3x 4x

PHY 314 NUMERICAL COMPUTATIONS

47

3.2.1 Merits of the Bisection Method

1. As you can see, the root bisection method always converges. This is
because you would get closer and closer to the root as the distance
between the two points of interest is halved each time.

2. You can also keep a tab on the error. If the root lies between the points a
and b, there will be a sequence:

)(
2

1
...)(

4

1
)(

2

1
1112211 abababab

nnnnnnn 


. But you would recall

that bb 1 and aa 1 . Thus,
12 




nnn

ab
ab . On the other hand, we note that the

first iteration point 3x is at least as close to the root as half the interval 11 ab  ,

i.e.,
2

|| 11
3

ab
xx


 . Similarly, for the nth iteration

2
|| nn

n

ab
xx


 . But

12 




nnn

ab
ab . Hence,

nnnnn

abab
abxx

222

1
)(

2

1
||

1




. We conclude that

nnn

abab
xx

222

1
||

1








, and this gives us an idea of the maximum error in our

estimate of the root.

3.2.2 Demerits of the Bisection Method

1. The convergence is generally slow.
2. You might actually be approaching a singularity, for example, while

dealing with functions that are not continuous between the two initial

points. A classical example is the function
x

xf
1

)( , negative for 0x

and positive for 0x . As you start out with the bisection method with a
point on the right of 0 and another on the left of 0, you are under the
impression that there should be a root in-between. If the function is
continuous between the initial guesses, this problem is eliminated.

3. The bisection method will not work if the function is tangential to the x-
axis at the desired root. For example, 2)(xxf  is tangential to the x-axis
at the point 0x which is the root of the equation 02

x . The function
is positive on either side of 0x , so you would not even try to get it in
the first place, as the bisection method imposes the condition that the signs
on either side be different.

4. If one of the initial points is close to the root, you would need many
iterations to arrive at the root.

5. It does not work for repeated roots. If there are multiple roots within the
interval given, the scheme narrows down on only one of the roots.

6. It does not work for repeated roots.

PHY 314 NUMERICAL COMPUTATIONS

48

Example: Find a zero of the function 3232)(23  xxxxf between the
points 1.4 and 1.7, using the bisection method. Take the tolerance to be

5
1 10|| 

  jj xx .

Solution

192.0)4.1(f

756.0)7.1(f

55.1
2

7.14.1
3 


x

1104025.1)55.1(f

475.1
2

4.155.1
4 


x

0588.0)475.1(f

5125.1
2

475.155.1
5 


x

You can confirm that Table 4.1 is indeed true.

Table 4.1: Table for Bisection method

n x)(xf
1 1.55 0.14025
2 1.475 -5.88E-02
3 1.5125 3.22E-02
4 1.49375 -1.54E-02
5 1.503125 7.87E-03
6 1.498437 -3.89E-03
7 1.500781 1.96E-03
8 1.499609 -9.76E-04
9 1.500195 4.89E-04
10 1.499902 -2.44E-04
11 1.500049 1.22E-04
12 1.499976 -6.10E-05

PHY 314 NUMERICAL COMPUTATIONS

49

3.3 Newton-Raphson Method

Consider Taylor Series


!2

))((''
)(')()(

2xxf
xxfxfxxf 4.1

To a first order approximation, we can neglect second order and higher order
terms. In that case, if 0)( xxf , then we truncate equation 4.1, leaving only
the first two terms on the right. Then,

0)(')()( xxfxfxxf 4.2
or

)('

)(

xf

xf
x

 , 4.3

so that with an initial guess of 0x , we obtain a better approximation xx 0 , i.e.,

)('

)(

0

0
001 xf

xf
xxxx  4.4

It is quite clear that the function)(xf must be differentiable for you to be able
apply the Newton-Raphson method.

More generally,

)('

)(
1

i

i
iii xf

xf
xxxx  4.5

With an initial guess of 0x , we can then get a sequence 1x , 2x , …, which we
expect to converge to the root of the equation.

We can rearrange equation 4.5 to obtain,

ii

i
i xx

xf
xf






1

)(0
)(' 4.6

meaning that Newton-Raphson method is equivalent to taking the slope of the
function)(xf at the i th iterative point, and the next approximation is the point
where the slope intersects the x axis. See the Fig 4.1:

PHY 314 NUMERICAL COMPUTATIONS

50

Fig. 4.1: Graph showing the gradient relationship of Newton-Raphson method

3.3.1 Merits of the Newton-Raphson Method

1. The Newton-Raphson method has a fast rate of convergence.
2. It can identify repeated roots, since it does not explicitly look for changes

in the sign of)(xf .
3. It can find complex roots of polynomials if you started with a complex

initial guess.

3.3.2 Demerits of the Newton-Raphson Method

1. It requires that we compute both)(xf and)(' xf , which makes the
scheme taxing.

2. Some functions might not be so easy to differentiate. In that case, it might

be useful to take an approximate differential,
x

xfxxf


)()(

.

3. It is quite sensitive to initial condition and may diverge for the wrong
choice of initial point.

4. It will not work if 0)(' xf . Also, if the differential is sufficiently close
to zero, the sequence may diverge away from the root, or converge very
slowly.

5. If the derivative changes signs at a test point, the sequence may oscillate
around a point that may not even be the root.

6. It cannot detect repeated roots.

0

PHY 314 NUMERICAL COMPUTATIONS

51

Example: Find the zeros of the function 3232)(23  xxxxf using the
Newton-Raphson method, starting with x= 1.4. Take the tolerance to be

5
1 10|| 

  jj xx .

Solution

3232)(23  xxxxf
266)(' 2  xxxf

4.10 x

)('

)()('

)('

)(

0

000

0

0
01 xf

xfxfx

xf

xf
xx




266

3232266

0
2

0

0
2

0
3

00
2

0
3

0






xx

xxxxxx

266

334

0
2

0

2
0

3
0






xx

xx

2)4.1(6)4.1(6

3)4.1(3)4.1(4
2

23






5412.1

5412.11 x , 1412.0|| 01  xx

5035.12 x , 0377.0|| 12  xx
5.13 x , 0035.0|| 23  xx

5.14 x , 0|| 34  xx

3.4 Regula-falsi method

A regula-falsi or a method of false position assumes a test value for the solution
of the equation.

You would recall that with the root-bisection method, we knew that a root existed
between 1x and 2x if the function was smooth and 0)()(21 xfxf . Let us again
choose these two points as in the case of root-bisection.

PHY 314 NUMERICAL COMPUTATIONS

52

Then, for an arbitrary x and the corresponding y,

12

12

1

1)()()(

xx

xfxf

xx

xfy









 4.9

gives the equation of the chord joining the points))(,(11 xfx and))(,(22 xfx .

Setting 0y , that is, where the chord crosses the x-axis,

)()(
)(

12

12
113 xfxf

xx
xfxx




 4.10

Then, we evaluate)(3xf . Just as in the case of root-bisection, if the sign is

opposite that of)(1xf , then a root lies in-between 1x and 3x . Then, we replace

2x by 3x in equation 4.10. In just the same way, if the root lies between 1x and

3x , we replace 2x by 1x . We shall repeat this procedure until we are as close to
the root as desired.

Example

Find the root of the equation 3232)(23  xxxxf between x = 1.4 and 1.7
by the regula-falsi method.

 192.0)4.1(f , 756.0)7.1(f

A solution lies between x = 1.4 and 1.7. Let 4.11 x and 7.12 x . Then,

)192.0(756.0

4.17.1
)192.0(4.1

)()(
)(

12

12
113











xfxf

xx
xfxx

= 4607595.1
 088983.0)4607595.1(f

0

1x 2x 3x

PHY 314 NUMERICAL COMPUTATIONS

53

The root lies between 1.46076 and 1.7. Let 46076.11 x and 7.12 x .

)088983.0(756.0

46076.17.1
)088983.0(4607595.1

)()(
)(

12

12
114











xfxf

xx
xfxx

= 1.485953

Table 4.2 gives the remaining iterations.

Table 4.2: Table for Regula-falsi method

n x)(xf

1 1.460759 -0.088983
2 1.485953 -0.033938
3 1.495149 -0.011985
4 1.498346 -0.004118
5 1.499439 -0.001401
6 1.499810 -0.000475
7 1.499936 -0.000161
8 1.499978 -0.000055

3.5 Secant Method

In the case of the secant method, it is not necessary that the root lie between the
two initial points. As such, the condition 0)()(21 xfxf is not needed. Following
the same analysis with the case of the regula-falsi method,

12

12

1

1)()()(

xx

xfxf

xx

xfy









 4.11

Setting 0y gives

)()(
)(

12

12
223 xfxf

xx
xfxx




 4.12

Thus, having found nx , we can obtain 1nx as,

)()(
)(

1

1
1











nn

nn
nnn xfxf

xx
xfxx , n = 2, 3, … 4.13

By inspection, if 0)()(1 

nn xfxf , the sequence does not converge, because

the formula fails to work for 1nx . The regula-falsi scheme does not have this
problem as the associated sequence always converges.

PHY 314 NUMERICAL COMPUTATIONS

54

Example

Find the root of the equation 3232)(23  xxxxf between x = 1.4 and 1.7
by the regula-falsi method.

1x 1.4, 2x 1.7

192.0)4.1(f , 756.0)7.1(f

A solution lies between x = 1.4 and 1.7. Let 4.11 x and 7.12 x . Then,

)192.0(756.0

4.17.1
)192.0(4.1

)()(
)(

12

12
113











xfxf

xx
xfxx

= 460759.1

)(3xf 088983.0

756.0088983.0

7.1460759.1
)088983.0(460759.1

)()(
)(

23

23
334











xfxf

xx
xfxx

 = 1.485953

You can continue with this scheme. Table 4.3 shows the other values obtained
from the operation.

Table 4.3: Table for Secant Method

n x)(xf

1 1.460759 -0.088983
2 1.485953 -0.033938
3 1.501487 0.003730
4 1.499949 -0.000129
5 1.500000 0.000000

4.0 Conclusion

In this Unit, you learnt to find the zeros of an algebraic or transcendental
function. We explored a number of methods, and outlined their merits and
demerits. We were also able to estimate the maximum error in the bisection
method.

PHY 314 NUMERICAL COMPUTATIONS

55

5.0 Summary

In this Unit, you learnt:

 to find the zeros of an algebraic or transcendental function using several

methods.
 the merits and demerits of the methods.
 to the maximum error that can be incurred in using the bisection method.

6.0 Tutor Marked Assignment

1. Find the upper bound of the error you are likely to incur in using the

bisection method in finding the root of an equation if the two starting
points are 1.4 and 2.5 and you needed 8 steps to achieve the required
tolerance.

2. Find a root of the equation 5.0232 23
 xxx using the following

methods (tolerance …..):

 Root bisection [starting points1.9 and 2.1 (tolerance |)(| xf

0.001)].

 Newton-Raphson starting point 2.0
 Regula-falsi [starting points1.9 and 2.1].
 Secant [starting points1.9 and 2.1].
 Find a root of the equation xx sin2 using
 The bisection method, given that the root is between 1.5 and 3, with

tolerance 02.0|)(| xf .

 Newton-Raphson method, with the starting point 1.35, with tolerance
610|)(| xf .

 Regula-falsi [starting points1.5 and 3.0].
 Secant [starting points1.5 and 3.0].

7.0 References/Further Reading

Solutions to Tutor Marked Assignment

1. Find the upper bound of the error you are likely to incur in using the

bisection method in finding the root of an equation if the two starting
points are 1.4 and 2.5 and you needed 8 steps to achieve the required
tolerance.

3

8
10297.4

2

4.15.2
|| 


 xxn

PHY 314 NUMERICAL COMPUTATIONS

56

3. Find a root of the equation 5.0232 23

 xxx using the following
methods (tolerance …..):

(i) Root bisection [starting points1.9 and 2.1 (tolerance |)(| xf

0.001)].

Iteration No. ix)(ixf

1 2 -0.5
2 2.05 2.27E-02
3 2.025 -0.24434
4 2.0375 -0.11224
5 2.04375 -4.51E-02
6 2.046875 -1.13E-02
7 2.048437 5.72E-03
8 2.047656 -2.78E-03
9 2.048047 1.47E-03
10 2.047851 -6.58E-04

(ii) Newton-Raphson starting point 2.0

Iteration No. ix)(ixf

1 2.05 0.05
2 2.04792 0.002084
3 2.04791 3.81E-06

(iii) Regula-falsi [starting points1.9 and 2.1].

Iteration No. ix)(ixf

1 2.040918 -0.075613
2 2.047610 -0.003287
3 2.047899 -0.000142

(iv) Secant [starting points1.9 and 2.1].

Iteration No. ix)(ixf

1 2.568354 8.457968
2 1.912709 -1.30566
3 2.000387 -0.49613
4 2.054121 6.79E-02
5 2.047653 -2.81E-03
6 2.047911 -1.49E-05

PHY 314 NUMERICAL COMPUTATIONS

57

2. Find a root of the equation xx sin2 using

(i) The bisection method, given that the root is between 1.5 and 3, with

tolerance 02.0|)(| xf .

Iteration No. ix)(ixf

1 2.25 0.69385361
2 1.875 -0.0331716
3 2.0625 0.29944043
4 1.96875 0.12503812
5 1.921875 0.04387042
6 1.8984375 0.00482936
7 1.886719 -0.0143012

(ii) Newton-Raphson method, with the starting point 1.35, with tolerance
 610|)(| xf .

Iteration No. ix)(ixf

1 2.420215 1.099376
2 1.980780 0.146526
3 1.899250 0.006165
4 1.895502 0.000013
5 1.895494 0.000000

(iii) Regula-falsi [starting points1.5 and 3.0].

Iteration No. ix)(ixf

1 1.731106 -0.243250
2 1.835347 -0.095074
3 1.874712 -0.033632
4 1.888467 -0.011464
5 1.893136 -0.003858
6 1.894705 -0.001292
7 1.895230 -0.000432

(iv) Secant [starting points1.5 and 3.0].

Iteration No. ix)(ixf

1 1.731106 -0.243250
2 1.835347 -0.095074
3 1.902230 0.011077
4 1.895251 -0.000399
5 1.895493 -0.000002

PHY 314 NUMERICAL COMPUTATIONS

58

Unit 5 Finite Differences and Interpolation

Unit Structure

5.1 Introduction
5.2 Objectives
5.3 Main Content

5.3.1 Finite Differences
5.1.1 Forward Differences
5.1.2 Error in Finite Difference Table
5.3.2 Interpolation
5.2.1 Newton forward interpolation formula
5.2.2 Newton’s Backward Interpolation Formula

5.4 Conclusion
5.5 Summary
5.6 Tutor Marked Assignment
5.7 References/Further Reading

5.1 Introduction

Given the function)(xf we can evaluate the values of f at different x , thereby
representing a continuous function with a set of discrete data. On the other hand,
it could be that we have a set of data and we would like to see if they could have
been got from a polynomial or if indeed we could represent the points by a
polynomial. Finite differences would help us in this regard. With the aid of finite
differences, we shall then derive Newton’s forward and Newton’s backward
interpolation formulas.

5.2 Objectives

By the end of this Unit, you would be able to:

 Deduce a polynomial from its difference table.
 Derive Newton’s forward and Newton’s backward interpolation

formulas.
 Fit a polynomial to a given a set of data
 Interpolate and extrapolate with Newton’s forward difference
 Interpolate and extrapolate with Newton’s backward difference

3.0 Main Content
3.1 Finite Differences

We proceed by defining the finite difference

i. First Forward difference:

PHY 314 NUMERICAL COMPUTATIONS

59

 iii fff 1
 5.1
ii. First Backward difference:
 iii fff 

1
 5.2
iii. First Central difference:

 

2/
11

2 i
ii ff   5.3

The table for forward difference would look like Table 5.1. What do you notice
about this table? You can see that 0y and the differences related to it appear on
the first line slanting down to the right.

Table 5.1: Forward difference Table

You can see that differences with similar subscripts form a line slanting
downward to the right from the top.

Table 5.2 is the backward difference table.

Table 5.2: Backward difference table

x y y y2 y3

0x 0y

 0y

1x 1y
0

2 y

 1y
0

3 y

2x 2y
1

2 y

 2y
1

3 y

3x 3y
2

2 y

 3y

4x 4y

x y y y2 y3

0x 0y

 1y

1x 1y
2

2 y

 2y
3

3 y

2x 2y
3

2 y

 3y
4

3 y

3x 3y
4

2 y

PHY 314 NUMERICAL COMPUTATIONS

60

Can you spot what makes this table unique? Differences with similar subscripts
form a line slanting upward to the right from the bottom.

Note that for forward difference, 010

2 yyy  , or generally,

nnn yyy  1
2 5.4

and for backward difference,

1
2


 nnn yyy 5.5

Of course, we can also get a table for central differences, Table 5.3.

Table 5.3: Central difference table

Do you notice that like subscripts appear on the same row.

3.1.1 Forward Differences

Suppose the given function is 32)(2  xxxf , then we can evaluate f at

6,,2,1,0 x , and then with the aid of forward difference, arrive at Table 5.4:

Table 5.4: Forward difference table for 322  xxy

x y y y2
0 3
 3
1 6 2

 4y

4x 4y

x y y y2 y3

0x 0y

 2/1y

1x 1y
1

2 y

 2/3y
2/3

3 y

2x 2y
2

2 y

 2/5y
2/5

3 y

3x 3y
3

2 y

 2/7y

4x 4y

PHY 314 NUMERICAL COMPUTATIONS

61

 5
2 11 2
 7
3 18 2
 9
4 27 2
 11
5 38 2
 13
6 51

The second forward difference produces a constant value of 2.

A similar operation carried out on the function xxf 2)( will produce a constant
difference after only one forward difference.

It follows that the number of forward differences needed to achieve a constant
value of difference is the degree of the polynomial, and the constant value in the
second forward difference is the second differential of the function.

Hence,

2
2

2


dx

fd

Integrating,

12 cx
dx

df


and finally,

21
2)(cxcxxf 

The values of the constants 1c and 2c will be determined from the values of f at
different values of x .

3)0(2  cf
6431)1(11  ccf

Thus, 21 c .

The function, therefore, is

32)(2  xxxf .

This was the same function we started with. Of course, if what we started with
was just the table, we could then have obtained the polynomial the way we did.

PHY 314 NUMERICAL COMPUTATIONS

62

We could extrapolate for values of x not given on the table, such as for x = 0.2
or 7.0 or interpolate for values such as x = 3.5 and 4.2.

3.1.2 Error in Finite Difference Table

Consider Table 5.5 for forward difference table into which we have introduced
an error  through 4x .

Table 5.5: Forward difference table with error

The higher the degree of the difference, the more the error involved. Moreover,
you would notice that the error terms are the binomial coefficient of n)1( ,
where n is the order of the difference. Thus, for degree 1, it is  . For degree 2,
it is 22 21)1(  . For 323 331)1(  . But can you notice one
thing? The errors in each difference column cancel out. You shall need this
property later.

Example

Find the wrong entry in the following table, given that they represent a cubic
polynomial.

x y y y2 y3 y4

0x 0y

 0y

1x 1y
0

2 y

 1y
0

3 y

2x 2y
1

2 y  0
4 y

 2y  1
3 y

3x 3y  2
2 y 41

4  y
  3y 32

3  y

4x 4y 23
2  y 62

3  y

  4y 33
3  y

5x 5y  4
2 y 43

3  y

 5y  4
3 y

6x 6y
5

2 y  4
3 y

 6y
5

3 y

7x 7y
6

2 y

 7y

8x 8y

PHY 314 NUMERICAL COMPUTATIONS

63

x 0 1 2 3 4 5 6 7 8
y -2 4 34 106 238 448 754 1174 1726

Solution
The forward difference table is as shown below on the left part of Table 5.6. The
right part of the table would have resulted if there had been no error.

Table 5.6: Forward difference table with error (a) and without (b)

(a) (b)

From the given Table

What the table would have looked

 like had there been no error

0 -2 0 -2
 6 6
1 4 24 1 4 24
 30 18 30 18
2 34 42 2 34 42
 72 20 72 18
3 106 62 3 106 60
 134 12 132 18
4 240 74 4 238 78
 208 24 210 18
5 448 98 5 448 96
 306 16 306 18
6 754 114 6 754 114
 420 18 420 18
7 1174 132 7 1174 132
 552 552
8 1726 8 1726

We recall that the third difference should have been a constant. This constant we
can determine by remembering that you were told the sum of errors in a single
difference column cancel out. Thus, the sum of the entries in the column
representing the third forward difference remains the same as it would have been
had there been no error. This sum is 108. We divide this by 6 to arrive at 18.
Each entry in that column should have been 18. We notice that the shaded entries
in the table can be traced backwards to the entry 240 in the values of y. This is
the entry in error. Moreover,

PHY 314 NUMERICAL COMPUTATIONS

64

2405  y , 201
3  y , 1232

3  y . But 2
3

1
3 yy  , implying that

  31220 

Solving for  , 84  and 2 . Thus, 24025 y , giving 2385 y . You can
now see that the table on the left of Table … should have been the correct table
if there had been no error.

3.2 Interpolation

3.2.1 Newton forward interpolation formula

At times, we would like to represent a set of values),(ii yx with a function,
enabling us, among other things, to be able to interpolate or extrapolate values
that are not in the given set.

Let the interpolating function be a polynomial given by)(xy . Then, we can write
the polynomial as,

+))...()((... 110 

 nn xxxxxxa 5.6

)(xyn must be equal to the tabulated values of y. Thus, we require that:

0y (y at 0xx ) = 0a 5.7

1y (y at)1xx  =)(0110 xxaa 

which implies

h

y

xx

yy

xx

ay
a 0

01

01

01

01
1






 5.8

2y (y at 2xx ) =))(()(120220210 xxxxaxxaa 

 =))(()(12022011210 xxxxaxxxxaa 

 = 2

2
1210110 2)()(ahxxaxxaa  (since hxx 202 )

 = 2
20

1 2 ahh
h

y
y 

2
2

0112 2 ahyyyy 

from which

PHY 314 NUMERICAL COMPUTATIONS

65

2
0

2

2
01

2 !22 h

y

h

yy
a

 5.9

Similarly,

3
0

2

3 !3 h

y
a

 5.10

Putting these values in equation 5.6 gives

))((
!2

)()(102
0

2

0
0

0 xxxx
h

y
xx

h

y
yxy 

...))()((
!3 2102

0
3

 xxxxxx
h

y
 5.11

Now, let rhxx  0 . Then,

rhxx  0 , hrhrhxxxxxx)1(1001 

hrhhrxxxxxx)2()1(2112 

Hence, from equation 5.11,

...
!3

)2)(1(

!2

)1(
)()(0

3
0

2
000  y

rrr
y

rr
yryrhxyxy

+ … ...
!

))1()...(1(
0 

y
n

nrrr n 5.12

PHY 314 NUMERICAL COMPUTATIONS

66

This is Newton’s forward interpolation formula.

Note: Newton’s forward interpolation formula is for

(i) interpolating the values of y near the beginning of a set of tabulated

values, and (ii) extrapolating values of y a little to the left of 0y

3.2.2 Newton’s Backward Interpolation Formula

Let us choose)(xyn in the form,

))(()()(1210 
 nnnn xxxxaxxaaxy

))...()((... 11 xxxxxxa nnn 


 5.13

)(xyn must be equal to the tabulated values of y. Thus, we require that:

ny (y at nxx ) = 0a 5.14

1ny (y at)1 nxx =)(110 nn xxaa 




h

y

xx

yy

xx

ay
a

nn

nn

nn

n 0

1

1

1

01
1














 5.15

2ny (y at 2 nxx) =))(()(1222210 
 nnnnnn xxxxaxxaa

=))(2()2(210 hhahaa 

2ny = 2
222 ah

h

y
hy n

n 

= 2

2
1 2)(2 ahyyy nnn 



= 2

2
1 22 ahyy nn 



We can then write

)2(
2

1
1222 

 nnn yyy
h

a

But 122111

2 2)()(


 nnnnnnnnnn yyyyyyyyyy

Hence,

PHY 314 NUMERICAL COMPUTATIONS

67

ny
h

a 2
22 2

1  5.16

Similarly,

ny
h

a 3
33 3

1  5.17

n
n

nn y
hn

a  1
 5.18

Putting these values in equation 5.13 yields,

)(xyn = ...
2

))(()(2
2

1  

n
nn

n
n

n y
h

xxxx
y

h

xx
y

...
))...()((

... 11  

m
m

m
mm y

mh

xxxxxx

Setting rhxx n  , rhxx n  , hrhrhxxxxxx nnnn)1(11 


.

Similarly, 2112 

 nnnn xxxxxx = hrhhr)2()1( . Thus,

hnrxx)]1([1  .

...
!3

)2)(1(

!2

)1(
)()(32

0  nnnn y
rrr

y
rr

yryrhxyxy

+ … ...
!

))1()...(1(
n

n y
n

nrrr

This is the Newton’s backward interpolation formula.

Note: Newton’s backward interpolation formula is for

(i) interpolating the values of y near the end of a set of tabulated values, and
(ii) extrapolating values of y a little to the right of ny .

Example

Find the cubic polynomial that fits the following table.

x 1 2 3 4
y 3 9 27 63

PHY 314 NUMERICAL COMPUTATIONS

68

Solution

The forward difference table gives:

x y  2 3
1 3
 6
2 9 12
 18 6
3 27 18
 36
4 63

The step-size, h, is 1. Let rhxx  0 , with 10 x .

...
!3

)2)(1(

!2

)1(
)()(0

3
0

2
000  y

rrr
y

rr
yryrhxyxy

+ … ...
!

))1()...(1(
0 

y
n

nrrr n

0xxr  = 1x .

Then,

...6
!3

)3)(2)(1(
12

!2

)2)(1(
6)1(3)( xxxxx

xxy

= ...)3)(23()23(6663 22  xxxxxx

= ...693231218636 2232  xxxxxxxx

= 33  xx

Check: Find the value of y when x = 3:

27333)3(3 y

You could also get the value of y when x is 0.95, being a little to the left of 0x

= 1.

907375.2395.95.)3(3 y

PHY 314 NUMERICAL COMPUTATIONS

69

Let us solve the same problem with Newton’s backward formula.

x y y y2 y3

1 3
 -6
2 9 12
 -18 -6
3 27 18
 -36
4 63

nxxr  = 4x , since h= 1.

...
!3

)2)(1(

!2

)1(
)(32  nnnn y

rrr
y

rr
yryxy

+ … ...
!

))1()...(1(
n

n y
n

nrrr

= ...6
6

)2)(3)(4(
18

2

)3)(4(
36)4(63 







xxxxx
x

=)65)(4()127(91443663 22  xxxxxx

= 24204651086391443663 2232  xxxxxxxx

= 33  xx

Check: Find the value of y when x = 2:

9322)3(3 y

You could also have found)9.3(y , x = 3.9 being a point to the left of x = 4:

)9.3(y = 39.3)9.3(3  = 58.419

4.0 Conclusion

In this Unit, you have learnt how to carry out the three different difference
schemes. You have also learnt how to deduce a polynomial from tabulated data.
Moreover, you can now detect what and where an error has been introduced into
a difference table. You also derived Newton’s forward and backward

PHY 314 NUMERICAL COMPUTATIONS

70

interpolation formulas. From the interpolation formulas, you were able get
interpolating functions.

5.0 Summary

In this Unit, you leant to do the following:

 Carry out any of the three difference schemes.
 Derive the polynomial that fits a set of tabulated data.
 Derive Newton’s forward interpolation formula.
 Derive Newton’s backward interpolation formula.
 With the aid of Newton’s forward or backward formula, obtain a function

that takes the values in a set of tabulated data.

6.0 Tutor Marked Assignment

1. Carry out the forward, backward, and the central difference schemes
on the set of data provided below:

1 2 3 4 5 6 7
1 12 47 118 237 416 667

2. Starting with the function 12288 23

 xxx , draw up a difference table.
Deduce the equation that fits the data, starting from the table alone.

3. We have deliberately inserted an error in the data in the table below. If

the data represents a cubic polynomial, find which of the entries is in
error.

0 1 2 3 4 5 6 7 8 9
-12 -14 16 126 366 778 1416 2326 3556 5154

4. Find the quartic polynomial that fits the following table.

(i) Using the Newton’s forward interpolation formula.
(ii) Using the Newton’s backward interpolation formula.

PHY 314 NUMERICAL COMPUTATIONS

71

7.0 References/Further Reading

Solutions to Tutor Marked Assignment

1. Carry out the forward, backward, and the central difference schemes on

the set of data provided below:

1 2 3 4 5 6 7
1 12 47 118 237 416 667

Solution

Forward difference:

1 1
 11
2 12 24
 35 12
3 47 36
 71 12
4 118 48
 119 12
5 237 60
 179 12
6 416 72
 251
7 667

Backward difference:

1 1
 -11
2 12 24
 -35 -12
3 47 36
 -71 -12
4 118 48
 -119 -12
5 237 60
 -179 -12
6 416 72
 -251
7 667

PHY 314 NUMERICAL COMPUTATIONS

72

2. Starting with the function 12288 23

 xxx , draw up a difference table.
Deduce the equation that fits the data, starting from the table alone.

Solution
0 -12
 -2
1 -14 32
 30 48
2 16 80
 110 48
3 126 128
 238 48
4 364 176
 414
5 778

The degree of the polynomial is 3.

''48
3

3

y
dx

yd


Hence, edx
x

cxy 
2

8
2

3

Substituting in turn three different values of x yields ,,, edc respectively –16,
–2 and –12.

The polynomial is then 12288 23

 xxxy .

2. We have deliberately inserted an error in the data in the table below.
If the data represents a cubic polynomial, find which of the entries is
in error.

0 1 2 3 4 5 6 7 8 9
-12 -14 16 126 366 778 1416 2326 3556 5154

PHY 314 NUMERICAL COMPUTATIONS

73

Solution
x y y y2 y3
0 -12
 -2
1 -14 32
 30 48
2 16 80
 110 50
3 126 130
 240 42
4 366 172
 412 54
5 778 226
 638 46
6 1416 272
 910 48
7 2326 320
 1230 48
8 3556 368
 1598
9 5154

The third difference should have been a constant. The sum of errors in a single
difference column cancel out. Thus, the sum of the entries in the column
representing the third forward difference remains the same as it would have been
had there been no error. This sum is 336. We divide this by 7 to arrive at 48.
Each entry in that column should have been 48. We notice that the shaded entries
in the table can be traced backwards to the entry 336 in the values of y. This is
the entry in error. Moreover,

3665  y , 501
3  y , 4232

3  y . But 2
3

1
3 yy  , implying that

 34250 

Solving for  , 84  and 2 . Thus, 36625 y , giving 3645 y . You can
now see that the table below should have been the correct table if there had been
no error.

PHY 314 NUMERICAL COMPUTATIONS

74

x y y y2 y3
0 -12
 -2
1 -14 32
 30 48
2 16 80
 110 48
3 126 128
 238 48
4 364 176
 414 48
5 778 224
 638 48
6 1416 272
 910 48
7 2326 320
 1230 48
8 3556 368
 1598
9 5154

3. Find the quartic polynomial that fits the following table.

(iii) Using the Newton’s forward interpolation formula.
(iv) Using the Newton’s backward interpolation formula.

x 0 2 4 6 8
y 8 17 230 1230 3972

Solution

The forward difference table gives:

x y y y2 y3 y4
0 8
 9
2 17 204
 213 583
4 230 787 372
 1000 955
6 1230 1742
 2742
8 3972

PHY 314 NUMERICAL COMPUTATIONS

75

The step-size, h, is 2. Let rhxx  0 , with

00 x , h = 2. Hence,
2

/)(0

x
hxxr 

...
!3

)2)(1(

!2

)1(
)()(0

3
0

2
000  y

rrr
y

rr
yryrhxyxy

+ … ...
!

))1()...(1(
0 

y
n

nrrr n

Then,

583
!3

)2
2

)(1
2

(
2204

!2

)1
2

(
29

2
8)(







xxxxx
x

xy

...372
!4

)3
2

)(2
2

)(1
2

(
2 




xxxx

this expression,

8
6

25

4

19

48

25

32

31
)(234  xxxxxy

Solving the same problem with Newton’s backward formula.

x y y y2 y3 y4
0 8
 -9
2 17 204
 -213 -583
4 230 787 372
 -1000 -955
6 1230 1742
 -2742
8 3972

r = 4
22

8





 xx

h

xx n , since h= 2.

...
!3

)2)(1(

!2

)1(
)(32  nnnn y

rrr
y

rr
yryxy

PHY 314 NUMERICAL COMPUTATIONS

76

+ … ...
!

))1()...(1(
n

n y
n

nrrr

 = 





 955
6

)2
2

)(3
2

)(4
2

(
1742

2

)3
2

)(4
2

(
2742)4

2
(3972

xxxxx
x

...372
6

)1
2

)(2
2

)(3
2

)(4
2

(





xxxx

Simplifying, we yet again arrive at

8
6

25

4

19

48

25

32

31
)(234  xxxxxy

PHY 314 NUMERICAL COMPUTATIONS

77

Unit 6: Numerical Integration

Unit Structure

6.1 Introduction
6.2 Objectives
6.3 Main Content

6.3.1 The Newton-Coates Quadrature Formula
6.3.2 The Trapezoidal Rule
6.3.3 Simpson’s one-third rule
6.3.4 Simpson’s three-eighth rule
6.3.5 Errors in the Quadrature formulas
6.3.6.1 Error in the Trapezoidal rule
6.5.2 Error in the Simpson’s one-third rule
6.3.6 Romberg’s method

6.4 Conclusion
6.5 Summary
6.6 Tutor Marked Assignment
6.7 References/Further Reading

6.1 Introduction

No doubt, before you could get to this stage of your studies, you integrated quite
a number of function analytically. Perhaps you were told at the onset that the
process of analytical integration arose from discretising the function, that is,
‘slicing’ up the function into vertical bars as shown in Fig. 5.1 and then adding
up the areas of the bars in the limit as the slivers become infinitesimally narrow.
Numerical integration goes back to this idea, and represents a continuous
function by a discrete set of points as this is the way the program compiler can
handle data. Numerical integration is called quadrature when the function is a
function of a single variable. In this unit, you shall learn several methods of
integrating a function numerically.

6.2 Objectives

By the end of this Unit, you should be able to:

 Numerically integrate a given function of a single variable between a

given set of limits.
 Know the merits and demerits of various numerical integration schemes.
 Deduce the error involved in approximating an analytical integral with a

numerical integral.

PHY 314 NUMERICAL COMPUTATIONS

78

Fig. 5.1: Discretisation of the interval of integration

6.3 The Newton-Coates Quadrature Formula

As you can see, numerical integration as the process of finding the value of a
definite integral,


b

a
dxxfI)(6.1

with bxa  (Fig. 5.1). An approximate value of the integral is obtained by
replacing the function by an interpolating polynomial. Thus, different formulas
for numerical integration would result for different interpolating formulas. In our
own case, we shall be making use of take Newton’s forward difference formula.

We shall divide the interval],[ba into n equal subintervals:

bxxxa n  ...10 , such that hxx jj 1 , where the interval, habh /)(

. Hence, we can write hxx  01 , hxhhxhxx 2)(0012  . It follows

therefore, that rhxxr  0 . The integral becomes,


nx

x
dxxfI

0

)(6.2

We can write qhxx  0 and hdqdx  . nhxxn  0 .

Let us make a change of variable from x to q: qhxx  0 . Then, hxxq /)(0 .

It follows, therefore, that when 0xx  , 0q ; when nhxxx n  0 ,

nhnhhxxq n  //)(0 .

PHY 314 NUMERICAL COMPUTATIONS

79

The integral becomes

 
 nnhx

x
dqqhxfhhdqqhxfI

0 00)()()(
0

0 6.3

Let us approximate)()(0 hqxfxf  by the Newton’s forward difference
formula. Then, from equation 6.3, and setting)(xfy  ,

 


  n
dqy

qqq
y

qq
yqyhI

0 0
3

0
2

00 ...
6

)2)(1(

2

)1(
 6.4

Integrating and putting the limits of integration,

 


  n
dqy

qqq
y

qq
yqyI

0 0
3

0
2

00 ...
6

)2)(1(

2

)1(

 =




 




  ...

!4
3

3

11

2

3

524

)2(

12

)32(

2
0

4224

0
3

2

0
2

00

y
n

nnn
y

nn
y

nn
y

n
ynh

 6.5
This is the Newton-Coates quadrature formula.

By setting n equal to 1, 2, 3, …, we obtain different integration formulas.

6.3.2 The Trapezoidal Rule

Suppose we set n equal to 1, and take the curve between two consecutive points
as linear. Thus, we terminate the sequence on the right in equation 6.5 at the
linear term as the higher difference terms (0

2 y , 0
3 y , etc.) would be zero. Then,

)(
2

)(
2

1

22

1
)(1001000

0

0

yy
h

yyy
h

yyhdxxf
hx

x



 


  

 6.6

Similarly,

)(
2

)(
2

1

22

1
)(2112111

20

0

yy
h

yyy
h

yyhdxxf
hx

hx



 


  


 6.7

.

.

.

)(
2

)(1)1(

0

0
nn

nhx

hnx
yy

h
dxxf  




 6.8

PHY 314 NUMERICAL COMPUTATIONS

80

Do these equations remind you of an old formula for finding the area of a
triangle? Yes, each of them is the area of a trapezium, hence the procedure is
known as the trapezoidal rule.

Adding all these integrals,

)(
2

...)(
2

)(
2

)(12110

0

0
nn

nhx

x
yy

h
yy

h
yy

h
dxxf  

 6.9

 =)]...(2)[(
2 1210 

 nn yyyyy
h

3.3 Simpson’s one-third rule

We set n = 2 in equation 6.5, and assume the function is quadratic between two
consecutive intervals. Then,




  

0
2

00

2

6

1
2)(

0

0

yyyhdxxf
hx

x
 6.10

 = 


 )(
6

1
)(2 01010 yyyyyh

= 


 )]()[(
6

1
)(0112010 yyyyyyyh

 = 


 ]2[
6

1
)(012010 yyyyyyh

=])2[)(66(012010 yyyyyyh 

 =
3

4
2 210 yyy
h



 =)4(
3 210 yyy
h

 6.11

PHY 314 NUMERICAL COMPUTATIONS

81

Similarly,

)4(
3

)(432

4

2

0

0

yyy
h

dxxf
hx

hx
 

 6.12

.

.

.

)4(
3

)(12)2(

0

0
nnn

nhx

hnx
yyy

h
dxxf  




 6.12

Adding all these integrals, with the proviso that n be even (this condition is
necessary as we need two consecutive intervals, kx to 1kx to 2kx),

)]...(2)...(4)[(
3

)(2421210

0

0




 nnn

nhx

x
yyyyyyyy

h
dxxf

With the aid of the summation symbol,

]24)[(
3

)(
2-n

even,2

1

odd,1
0

0

0











ii

i

n

ii
in

nhx

x
yyyy

h
dxxf 6.13

This is Simpson’s one-third rule.

3.4 Simpson’s three-eighth rule

In this case, we set n equal to 3 in equation 6.5 and take the curve over each
interval as a polynomial of order 3.




  

0
3

0
2

00

3

8

1

2

3

2

3
3)(

0

0

yyyyhdxxf
hx

x
 6.14

The student can show that,

  hx

x
dxxf

30

0

)(=)33(
8

3
3210 yyyy

h
 6.15

Similarly,

)33(
8

3
)(6543

5

3

0

0

yyyy
h

dxxf
hx

hx
 

 6.16

.

.

.

PHY 314 NUMERICAL COMPUTATIONS

82

Adding all these integrals, with the proviso that n be a multiple of 3,

)]...(2)...(3)[(
8

3
)(3631210

0

0




 nnn

nhx

x
yyyyyyyy

h
dxxf

 6.17

This is Simpson’s three-eighth rule.

Exercise: Integrate the following function of x with respect toxusing the
Trapezoidal rule, Simpson’s one-third rule and Simpson’s three-eighth rule.

153 2  xx ; 41  x ; step size 0.5.

Compare your results with the exact value of the integral.

Solution:

3,
2

5
,2,

2

3
,1,

2

1
,0 6543210  xxxxxxx

19,75.14,11,75.7,5,75.2,1 6543210  yyyyyyy

i. Trapezoidal rule

 Integral 625.252
2

5

1
60 


  

i
iyyy

h

ii. Simpson’s
3

1
rule

Integral 5.2524
3

5

,1

4

,2
60 



   

 oddii evenii
ii yyyy

h

The exact integral is 25.5.

The Simpson’s one-third rule is a second order approximation to the integral.
Since the function is quadratic, an accurate result is obtained.

(iii) Simpson’s three-eighth rule

3,
2

5
,2,

2

3
,1,

2

1
,0 6543210  xxxxxxx

19,75.14,11,75.7,5,75.2,1 6543210  yyyyyyy

PHY 314 NUMERICAL COMPUTATIONS

83

Integral =]2)(3)[(
8

3
3542160 yyyyyyy

h


=)]75.7(2)75.1411575.2(3)191[(
2

1

8

3


 = 25.5

3.5 Errors in the Quadrature formulas

We approximated the function)(xf with the polynomial)(xP . The error
involved in the approximation is

 
b

a

b

a
dxxPdxxfE)()(6.18

The Taylor series expansion of)(xf about 0x is, where 0xxh  ,

...)(''
!2

)(')()(0

2

00  xf
h

xhfxfxf 6.19

3.5.1 Error in the Trapezoidal rule

dxxf
h

xhfxfdxxf
hx

x

hx

x   


  0

0

0

0

...)(''
!2

)(')()(0

2

00 6.20

In the first interval,],[10 xx , trapezoidal rule gives an area))()((
2

1
10 xfxf  . The

integral (integrating term by term) on the right side of equation 6.20 gives

...)(''
!23

)('
2

)(0

3

0

2

0 


 xf
h

xf
h

xhf 6.21

When 1xx  ,)()(1xfxf  . Thus, from equation 6.19,

...)(''
!2

)(')()(0

2

001  xf
h

xhfxfxf 6.22

Thus,

))()((
2 10 xfxf
h

 = 







  ...)(''

!2
)(')()(

2 0

2

000 xf
h

xhfxfxf
h

PHY 314 NUMERICAL COMPUTATIONS

84

= 


  ...)(''
!2

)(')(2
2 0

2

00 xf
h

xhfxf
h

 6.23

The error in the first interval is therefore (5.21 minus 5.23):




 


  ...)(''
!22

)('
2

)(...)(''
!23

)('
2

)(0

3

0

2

00

3

0

2

0 xf
h

xf
h

xhfxf
h

xf
h

xhf

= ...)(''
!22

1

23

1
0

3 



 xfh = ...)(''

12 0

3

 xf
h

 6.24

In the interval],[21 xx , the error in the two values is ...)(''
12 1

3

 xf
h

, etc.

The total error, therefore, is

)](''...)('')('')(''[
12 1210

3


 nxfxfxfxf

h
E 6.25

If the largest value of the sequence of the second differentials at different discrete
values of x is)ˆ('' xf , then we can write,

)ˆ(''
12

)(
)ˆ(''

12

23

xf
hab

xf
nh

E



 6.26

since habn /)(

3.5.2 Error in the Simpson’s one-third rule

dxxf
h

xhfxfdxxf
hx

x

hx

x   


  2

0

2

00

2 0

0

0

0

...)(''
!2

)(')()(6.27

In the first interval,],[10 xx , Simpson’s one-third rule gives an area

))()(4)((
3 210 xfxfxf
h

 . The integral on the right side of equation 6.27 gives

...)(''
!3

8
)('

!2

4
)(2 0

3

0

2

0  xf
h

xf
h

xhf 6.28

When 1xx  ,)()(1xfxf  . Thus, from equation 6.19,

PHY 314 NUMERICAL COMPUTATIONS

85

...)('''
!3

)(''
!2

)(')()(0

3

0

2

001  xf
h

xf
h

xhfxfxf 6.29

Setting hxx 20  ,)()(2xfxf  and

...)('''
!3

8
)(''

!2

4
)('2)()(0

3

0

2

002  xf
h

xf
h

xhfxfxf
 6.30

Putting equations 6.29 and 6.30 into equation 6.27 and equating to the
approximate integral in the interval 0x to hx 20  ,

))()(4)((
3 210 xfxfxf
h



= 






  ...)('''

!3
)(''

!2
)(')(4)(

3 0

3

0

2

000 xf
h

xf
h

xhfxfxf
h







  ...)('''

!3

8
)(''

!2

4
)('2)(0

3

0

2

00 xf
h

xf
h

xhfxf

= ...)0(
18

5
)(''

!23

8
)('

!2

4
)(2)(

5

0

3

0

2

0  ivf
h

xf
h

xf
h

xhf 6.31

The error in the interval],[20 xx is therefore 5.28 minus 5.31:




  ...)(''
!3

8
)('

!2

4
)(2 0

3

0

2

0 xf
h

xf
h

xhf




  ...)0(
18

5
)(''

!23

8
)('

!2

4
)(2)(

5

0

3

0

2

0
ivf

h
xf

h
xf

h
xhf

= ...)(
15

4

18

5
0

)(5 


  xfh iv = ...)(
90 0

)(
5

 xf
h iv 6.32

In the interval],[42 xx , the error in the two values is ...)(
90 0

)(
5

 xf
h iv , etc.

The total error, therefore, is

...])()()([
90 2

)(
1

)(
0

)(
5

 xfxfxf
h

E iviviv 6.33

PHY 314 NUMERICAL COMPUTATIONS

86

If the largest value of the sequence of the second differentials at different discrete
values of x is)ˆ()(xf iv , then we can write,

)ˆ(
90

)(
5

xf
nh

E iv =)ˆ(
902

)()(
5

xf
hab iv


 =)ˆ(

190

)()(
5

xf
hab iv 6.34

since nabh 2/)( .

3.6 Romberg’s method

Yet again, we refer to the integral,

 
b

a
dxxfI)(

You would recall that the error in trapezoidal rule in a subinterval h is

)(''
12

)(2

xf
hab

E




Thus, for subinterval of width 1h , the error in the integral is

)(''
12

)(2
1

1 xf
hab

E


 6.35

For subinterval of width 2h , the error in the integral is,

)(''
12

)(2
2

2 xf
hab

E


 6.36

We expect that)('' xf and)('' xf would be almost equal. Dividing equation 6.35
by equation 6.36,

2
2

2
1

2

1

h

h

E

E
 6.37

It follows that 12
1

2
2

2 E
h

h
E  , so that 



  1

2
1

2
2

1112
1

2
2

12
h

h
EEE

h

h
EE

2
1

2
2

2
1

2
1

2
2

1

1

12

1

1
hh

h

h

h
E

E

EE

E






 

 6.38

We also note that adding the error to the estimate gives the correct integral I.

2211 EIEII  6.39

from which

PHY 314 NUMERICAL COMPUTATIONS

87

2112 IIEE  6.40

From
2

1
2

2

2
1

12

1

hh

h

EE

E





,

)()(212
1

2
2

2
1

122
1

2
2

2
1

1 II
hh

h
EE

hh

h
E  6.41

We can therefore write,

)(212
1

2
2

2
1

111 II
hh

h
IEII 

=
2

1
2

2

2
12

2
21

2
1

2
2

21
2

1
2

1
2

21)()(

hh

hIhI

hh

IIhhhI









 6.42

This is a better approximation to the integral, I. Why, do you think?

Let us take a situation where hh 1 and hh
2

1
2  . Then, equation 6.42 gives,

22

2
2

2
1

22

2
2

2
1

)4/(

)4/(

)2/(

)2/(

hh

hIhI

hh

hIhI
I









 6.43

Multiplying through by 4, and denoting I by)2/,(hhI

3

4
)2/,(12 II

hhI


 6.44

But)(1 hII  and)2/(2 hII 

We can therefore write,

)2/,(hhI 3/)]()2/(4[hIhI  6.45

We can develop the scheme below by applying equation 6.45 to the estimates of
the integral over successively halved intervals.

)(hI
)2/,(hhI

)2/(hI)4/,2/,(hhhI
)4/,2/(hhI)8/,4/,2/,(hhhhI

PHY 314 NUMERICAL COMPUTATIONS

88

)4/(hI)8/,4/,2/(hhhI
)8/,4/(hhI

)8/(hI

We continue the table until successive values converge. This gives a better result
than could have been obtained with the trapezoidal rule.

Example

Let us once again solve the problem .)13(
3

0

2 dxxx 

Solution:

Let us choose h= 1.0, 0.5 and 0.25. Then, the following table obtains.

)(hI = 26
)2/,(hhI = (425.625-26)/3 = 25.5

)2/(hI = 25.625
)4/,2/(hhI = (425.53125-25.625)/3 = 25.5

)4/(hI = 25.53125

25.5 is a better approximation to the integral than the trapezoidal method. Indeed,
in this case, it is the exact integral.

3.0 Conclusion

In this Unit, you derived the Newton-Coates quadrature formula. Also, you learnt
how to carry out, with several methods, the numerical integration of a function
between a given limit of integration. Having found the error in the quadrature
formula for the different integration methods, you were able to link up with the
Romberg method of numerical integration.

5.0 Summary

In this Unit, you were able to:

 Derive the Newton-Coates quadrature formula, and, consequently, the

different formulas for integrating a function between limits.
 Estimate the error in the quadrature formula for different numerical

integration methods

PHY 314 NUMERICAL COMPUTATIONS

89

5.0 Tutor Marked Assignment

1. Integrate the function 2
2

5

2

1
)(2  tttx , 6.00  t , with six

intervals, using the following methods:

(i) Trapezoidal rule
(ii) Simpson’s one-third rule
(iii) Simpson’s three-eighth rule

2. Evaluate the integral  2/

0
sin



dxxx (where x is in radians) with a step-

size of 16/x , using

(i) Trapezoidal rule
(ii) Simpson’s one-third rule
(iii) Simpson’s three-eighth rule

7.0 References/Further Reading

Solutions to Tutor Marked Assignment

1. Integrate the function 2
2

5

2

1
)(2  tttx , 6.00  t , with six intervals,

using the following methods:

(i) Trapezoidal rule
(ii) Simpson’s one-third rule

Formula for Trapezoidal rule:

  



 





b

a
n

n

i

i yyy
x

dxxf
1

1

0 2
2

)(

Formula for Simpson’s one-third rule:

  









 







b

a n

n

eveni
i

i

n

oddi
i

i yyyy
x

dxxf
2

,
2

2

,
1

0 24
3

)(

PHY 314 NUMERICAL COMPUTATIONS

90

Trapez
o

Simpso
n

Ste
p 0.1
x)(xf

0 2 First value of)(xf = 2 2
0.1 2.255

0.2 2.52 33.7
 4 times sum of
odd

0.3 2.795
Sum of intermediate values of

)(xf 28.05 Simpson’s 1-3 rule

0.4 3.08 (Trapezoidal rule) 11.2
 2 times sum of
even

0.5 3.375

0.6 3.68 Last value of)(xf = 3.68 3.68
 33.73 50.58

Result
s Answer 1.6865 1.686

Analytical solution:

 


 
6.0

0

2

2

1
5.22 dttt =

6.0

0

32

62
5.22

tt
t  = 1.686

(iii) Simpson’s three-eighth rule

Integral =]2)(3)[(
8

3
3542160 yyyyyyy

h


 =)]795.2(2)375.308.352.2255.2(3)68.32[(
8

)1.0(3


 = 1.686

2. Evaluate the integral  2/

0
sin



dxxx (where x is in radians) with a step-

size of 16/x , using

(i) Trapezoidal rule
(ii) Simpson’s one-third rule

Working with radians

Trapezoi
dal

Simpson’s
1-3

PHY 314 NUMERICAL COMPUTATIONS

91

x xsinx
0 0 First value of)(xf = 0 0
0.1963
5

0.0383
06

0.3926
99

0.1502
79

10.119577
35

4
tim
es
su
m
of
odd

0.5890
49

0.3272
58

Sum of intermediate
values of)(xf

8.64790
81

0.7853
98

0.5553
6

3.5881194
68

2
tim
es
su
m
of
eve
n

0.9817
48

0.8162
93

1.1780
97

1.0884
2 Last value of)(xf =

1.57079
63

1.5707963
28

1.3744
47

1.3480
37

1.5707
96

1.5707
96

10.2187
04

15.278493
15

 Answer
1.00321
88

0.9999748
3

PHY 314 NUMERICAL COMPUTATIONS

92

Unit 7: Initial Value Problems of Ordinary Differe ntial
 Equations

Unit Structure

7.1 Introduction
7.2 Objectives
7.3 Main Content

7.3.1 Reduction of a higher order ODE to a system of first order ODE
7.3.2 Methods of Solving First Order Ordinary Differential Equations
7.2.1 Picard’s Method
7.2.2 Euler Method
7.2.3 Modified Euler Method
7.2.4 Runge-Kutta Methods
7.3 Fourth-Order Runge-Kutta Scheme for a System of Three Equations

7.4 Conclusion
7.5 Summary
7.6 Tutor Marked Assignment
7.7 References/Further Reading

7.1 Introduction

Ordinary differential equations abound in Physics. This is because we often have
to deal with a rate of change of function of a single variable. It could be a time-
rate of change, say velocity or acceleration, or it could be a spatial rate of change
as you would expect from the variation of temperature over a metallic bar heated
at one end at any particular fixed instant of time. Unlike analytic differentiation
of a function, which is most times achievable, the larger number of functions do
not lend themselves to analytical integration. We therefore have to resort to
numerical integration when confronted with such functions. In this Unit, you
shall learn how to numerically integrate a function of a single variable.

7.2 Objectives

By the end of this Unit, you should be able to:

 Write an nth order ordinary differential equation in terms of n first order

ordinary differential equations.
 Solve a first order ordinary differential equation.
 Solve a system of first order ordinary differential equations.

PHY 314 NUMERICAL COMPUTATIONS

93

7.3 Reduction of a higher order ODE to a system of first order
 ODE

Every ordinary differential equation can be put in the form

'),(yxyf
dx

dy
 7.1

or a system of such equations. As an example, take the equation of simple
harmonic oscillation,

0'' 2  xx  7.2

where  is the angular frequency of oscillation.

Let

'xz  7.3

Then,

xz 2'  7.4

The last two equations form a system of ordinary differential equations.
Likewise, a nth order ordinary differential equation can be written as a set of n
ordinary differential equations. Thus, it suffices to solve the ordinary differential

equation),(xyf
dx

dy
 .

Example

The Henon-Heiles system of equations leads to chaotic motion. We can reduce
the two second-order differential equations to four first order ordinary
differential equations. We can then solve the equations with the methods to be
learnt later in this Unit.

The Henon-Heile’s Hamiltonian is,

 3
22

2
1

2
2

2
1

2
2

2
1

3

1

22
qqq

qqpp
H 







The resulting equations are,

)2(2112
1

2

qqq
dt

qd


)21(2)2(1
2

2
2

122
2

2

qqqq
dt

qd


Each of these equations has been broken up into two first order ordinary
differential equations:

PHY 314 NUMERICAL COMPUTATIONS

94

1
1 p

dt

dq


)21(2)2(12111 qqqqp
dt

d


2
2 p

dt

dq


)21(2)2(1
2

2
2

122 qqqqp
dt

d


3.2 Methods of Solving First Order Ordinary Differential
 Equations

We shall now take a look at the various methods of solving a first order ordinary
differential equation.

3.2.1 Picard’s Method

Given the ordinary differential equation

),(yxf
dx

dy
 7.5

we can write

dxyxfdy),( 7.6

Integrating both sides,

 
x

x

y

y
dxyxfdy

00

),(7.7

Then,


x

x
dxyxfyy

0

),(0 7.8

We take, as a first approximation to the solution)(xy , the value of y when

0xx  , that is, 0y . Then,


x

x
dxyxfyy

0

),(001 7.9

PHY 314 NUMERICAL COMPUTATIONS

95

The next approximation to y, that is, 2y , is obtained by substituting 1y under the
integral.


x

x
dxyxfyy

0

),(102 7.10

Thus, we obtain a sequence of approximations to y which would converge to
the solution of the ordinary differential equation provided the function),(yxf is
bounded in a region about),(00 yx and satisfies the Lipschitz condition:

|ˆ||)ˆ,(),(| yyMyxfyxf  7.11

where M is a constant.

Obviously, a drawback to this method is that most times, the function has to be
a simple function that can be easily integrated. As we have discussed before,
only a limited class of functions satisfies this condition.

3.2.2 Euler Method

We discretize the ordinary differential equation 7.1 as

),(1
jj

jj xyf
x

yy



 7.12

From which it follows that

),(1 jjjj xyfxyy  7.13

This method is self-starting, but is so low in accuracy that it is rarely ever used
in serious computational work.

Example: With the aid of the Euler method, calculate)8.0(y , given the
differential equation

yx
dx

dy
 ; 0)0(y ; with 2.0h

Solution:

),(1 jjjj xyfhyy 

0j ; 0,0 00  xy ; 000),(00 xyf ;
00*2.00),(0001  xyfhyy

PHY 314 NUMERICAL COMPUTATIONS

96

1j ;
2.0,0 11  xy ; 2.02.00),(11 xyf ; 04.02.0*2.00),(1112  xyfhyy

2j ;

4.0,04.0 22  xy ; 44.04.004.0),(22 xyf ;

128.044.0*2.004.0),(2223  xyfhyy

3.2.3 Modified Euler Method

We could write equation 7.1 as

),(yxf
dx

dy


 dxyxfdy),(

Integrating,


1

0

),(01

x

x
dxyxfyy

Rearranging and generalizing,

 



1

),(1

j

j

x

xjj dxyxfyy

With the aid of the trapezoidal rule, we can write the last equation as

)],(),([
2 111   jjjjjj yxfyxf
h

yy 7.14

Indeed, it is best to write equation 7.14 as

)],(),([
2

)(
11

)1(
1

i
jjjjj

i
j yxfyxf

h
yy 


  7.15

This is the modified Euler method. It is an implicit scheme.

The starting value)1(

0y is obtained by an implicit formula, e.g., the Euler formula.
Thus, the scheme would look like (for j = 0),

0i)],(),([
2

)0(
11000

)1(
1 yxfyxf

h
yy 

1i)],(),([
2

)1(
11000

)2(
1 yxfyxf

h
yy 

PHY 314 NUMERICAL COMPUTATIONS

97

This is continued until convergence is achieved.

Example

Using the modified Euler method, find)2.0(y , if 0)('  yxy , given that

1)0(y . Take a step length of 0.1 and the tolerance as 0001.0||)1()( k
i

k
i yy .

Solution

00 x , 10 y

Using Euler’s formula,

),(000
)0(

1 yxhfyy  =)10(1.01  = 1.1

We now apply the modified Euler formula.

0i)],(),([
2

)0(
11000

)1(
1 yxfyxf

h
yy 

=)]1.11.0()10[(05.01  = 1.11

1i)],(),([
2

)1(
11000

)2(
1 yxfyxf

h
yy 

=)]11.11.0()10[(05.01  = 1.1105

||)1(
1

)2(
1 yy  = 0005.01.11 - 1.1105 

2i)],(),([
2

)2(
11000

)3(
1 yxfyxf

h
yy 

=)]1105.11.0()10[(05.01  = 1.110525

||)2(
1

)3(
1 yy  = 000025.01.1105 - 1.110525 

With the tolerance satisfied, we can now proceed to get 2y , that is,)2.0(y

Using Euler’s formula,

),(111
)0(

2 yxhfyy  =)110525.10(1.0110525.1  = 1.23155

We now apply the modified Euler formula.

PHY 314 NUMERICAL COMPUTATIONS

98

0i)],(),([
2

)0(
22111

)1(
2 yxfyxf

h
yy 

=)]23155.12.0()1105.11.0[(05.01105.1  = 1.242603

1i)],(),([
2

)1(
22111

)2(
2 yxfyxf

h
yy 

=)]242603.12.0()1105.11.0[(05.01105.1  = 1.243155

||)1(
2

)2(
2 yy  = 000552.01.242603 - 1.243155 

2i)],(),([
2

)2(
22111

)3(
2 yxfyxf

h
yy 

=)]243155.12.0()1105.11.0[(05.01105.1  = 1.243183

||)2(
2

)3(
2 yy  = 000028.01.243155 -1.243183 

3.2.4 Runge-Kutta Methods

We recall that Taylor’s series is given as


!2

))((''
)(')()(

2xxf
xxfxfxxf

This we can write as (if we set 1)(yxxf  ,))(0yxf  and hx )

...
!2

)(''
)('

2

01 
hxf

xhfyy

A first order approximation to the series is

)('01 xhfyy  7.16

This is the Runge-Kutta first order method, which you would also notice is
the Euler method.

On the other hand, we recall equation 7.14,

)],(),([
2 111   jjjjjj yxfyxf
h

yy

Writing),(1 jjjj yxhfyy  in equation 7.14 (the modified Euler formula),

PHY 314 NUMERICAL COMPUTATIONS

99

))],(,(),([
2 11 jjjjjjjj yxhfyxfyxf
h

yy  

Let us set

1),(kyxhf jj 

and

2111),()),(,(kkyxhfyxhfyxhf jjjjjj  

Then, we can write

][
2

1
211 kkyy jj 

 7.17

This is the second-order Runge-Kutta formula.

Example

Find the value of y at x = 0.2 if 02'  yy ; 1)0(y , step-length 0.2.

Solution

))],(,(),([
2 11 jjjjjjjj yxhfyxfyxf
h

yy  

))],(,(),([
2 00010001 yxhfyxfyxf
h

yy 

Let us set

100),(kyxhf  4.0)]1(2[2.0)2(2.0 0  y
and

24.0)]4.01(2[2.0),(2101  kkyxhf

Then, we can write

][
2

1
211 kkyy jj 

PHY 314 NUMERICAL COMPUTATIONS

100

]24.04.0[
2

1
1][

2

1
2101  kkyy

Hence,

)2.0(y 68.0

The formula for the third-order Runge Kutta method is

)4(
6

1
3211 kkkyy jj  7.18

where

),(1 jj yxhfk 




 
2

,
2

1
02

k
y

h
xhfk j

)2,(213 kkyhxhfk jj 

Example

Using the third-order Runge-Kutta method, find the value of y when x= 0.2,
given that yxy ' , 2)0(y , with step length 0.1.

Solution

0j

2.0)20(1.0),(001  yxhfk




 
2

,
2

1
002

k
y

h
xhfk

 085.0)9.005(.1.0
2

2.0
1

2

1.0
01.0 







 


 

)2,(21003 kkyhxhfk 

193.0)03.2,1.0(1.0))085.0(2)2.0(2,1.0(1.0  ff

PHY 314 NUMERICAL COMPUTATIONS

101

)4(
6

1
32101 kkkyy  =)]193.0()085.0(42.0[

6

1
2  = 1.877833

1j

177783.0)877833.11.0(1.0),(111  yxhfk




 
2

,
2

1
112

k
y

h
xhfk

163894.0
2

177783.0
877833.1

2

1.0
1.01.0 







 


 

)2,(21113 kkyhxhfk 

152783.0)727828.1,2.0(1.0))163894.0(2)177783.0(877833.1,2.0(1.0  ff

)4(
6

1
32112 kkkyy 

)]152783.0()163894.0(4177783.0[
6

1
877833.1  = 1.713476

Fourth Order Runge-Kutta Method

The formula is , where h is the step-length,


  ),*(

3

1
),(

6

1
2/12/11 jjjjjj xyfxyfhyy


 ),*(

6

1
),**(

3

1
112/12/1 jjjj xyfxyf 7.19

The computation follows the order

(i)),(jj xyf

 7.20

(ii)
22/1

h
xx jj 

 7.21

(iii)),(
2

* 2/1 jjjj xyf
h

yy 

 7.22

PHY 314 NUMERICAL COMPUTATIONS

102

(iv)),*(
2

** 2/12/1 jjjj xyf
h

yy  

 7.23
(v)),**(* 2/11 jjjj xyfhyy  

 7.24

(vi) Evaluate 1jy with equation 7.19.

Another, equivalent, computation scheme is as follows:

(i)),(jj xyf

 7.25
(ii)),(001 yxhfk 
 7.26

(iii) 


  1002 2

1
,

2

1
kyhxhfk

 7.27

(iv) 


  2003 2

1
,

2

1
kyhxhfk

 7.28
(v)  3004 , kyhxhfk 
 7.29

(vi))22(
6

1
4321 kkkkk 

 7.30
(vii) Evaluate kyy jj 1

Example: Solve the following ordinary differential equation using the Runge-
Kutta Fourth order method.

xy
dx

dy
 ; 1)0(y . Find y at 2.0x

Solution:

1),(,2.0,1,0 0000  yxfhyx

2.012.0),(001  yxhfk

2400.0)1.1,1.0(2.0
2

1
,

2

1
1002 


  fkyhxhfk

PHY 314 NUMERICAL COMPUTATIONS

103

2440.0)12.1,1.0(2.0
2

1
,

2

1
2003 


  fkyhxhfk

  2888.0)244.1,2.0(2.0, 3004  fkyhxhfk

)22(
6

1
4321 kkkkk 

2428.0)2888.0488.048.02.0(
6

1


Hence, 2428.101  kyy

The fourth-order Runge-Kutta method is the most accurate of the Runge-Kutta
methods.

3.3 Fourth-Order Runge-Kutta Scheme for a System of Three
 Equations

We shall solve the Lorenz system of equation with the fourth-order Runge-Kutta
method. The equations are:

)(10 xy
dt

dx
),,(1 zyxf

)100(xzyx
dt

dy
),,(2 zyxf

)2(zxy
dt

dz
),,(3 zyxf

Let us make use of the set of equations given in 7.19-7.24.

There will be three 1k ’s, one each for three variables, three 2k ’s and so on.

),,,(000011 zyxthfk x 

),,,(000021 zyxthfk y 

),,,(000031 zyxthfk z 




  zyxx kzkykxhthfk 101010012 2

1
,

2

1
,

2

1
,

2

1

PHY 314 NUMERICAL COMPUTATIONS

104




  zyxy kzkykxhthfk 101010022 2

1
,

2

1
,

2

1
,

2

1




  zyxz kzkykxhthfk 101010032 2

1
,

2

1
,

2

1
,

2

1




  zyxx kzkykxhthfk 202020013 2

1
,

2

1
,

2

1
,

2

1




  zyxy kzkykxhthfk 202020023 2

1
,

2

1
,

2

1
,

2

1




  zyxz kzkykxhthfk 202020033 2

1
,

2

1
,

2

1
,

2

1

  zyxx kzkykxhthfk 303030014 ,,, 

  zyxx kzkykxhthfk 303030014 ,,,   zyxx kzkykxhthfk 303030014 ,,, 

)22(
6

1
4321 xxxxx kkkkk 

)22(
6

1
4321 yyyyy kkkkk 

)22(
6

1
4321 zzzzz kkkkk 

Hence, xkxx  01

ykyy  01

zkzz  01

4.0 Conclusion

In this Unit, you got to know how to reduce an nth ordinary differential equation
to n first order differential equations. In particular, you were able to see how a
pair of second-order ordinary differential equations were reduced to four first-

PHY 314 NUMERICAL COMPUTATIONS

105

order differential equations. You also learnt various methods of solving a first
order ordinary differential equation.

6.0 Summary

In this Unit, you learnt how to:

 Reduce an nth order ordinary differential equation to n first order ordinary

differential equations.
 Numerically solve a first order ordinary differential equation.
 Numerically solve a system of first order ordinary differential equations.

6.0 Tutor Marked Assignment

1. Given that 2xy
dx

dy
 ; 1)0(y , evaluate)2.0(y (step length 0.2), using

the

(i) Modified Euler method.
(ii) Fourth order Runge-Kutta method.

2. With a step length of 0.1, find the value of y at 2.0x given the ordinary

differential equation: 0 xy
dx

dy
; 0)0(y .

(i) Second-order Runge-Kutta method
(ii) Fourth-order Runge-Kutta method.

7.0 References/Further Reading

Solutions to Tutor Marked Assignment

1. Given that 2xy
dx

dy
 ; 1)0(y , evaluate)2.0(y (step length 0.2), using

the

(iii) Modified Euler method.
(iv) Fourth order Runge-Kutta method.

Solution

00 x , 10 y

(i) First using Euler’s formula,

),(000
)0(

1 yxhfyy  = 22
000)1(01  yxy = 1

PHY 314 NUMERICAL COMPUTATIONS

106

We can now apply the modified Euler formula.

0i)],(),([
2

)0(
11000

)1(
1 yxfyxf

h
yy 

= 98.0)])1(2.0()1(0[(1.01 22 

1i)],(),([
2

)1(
11000

)2(
1 yxfyxf

h
yy 

= 980792.0)])98.0(2.0()1(0[(1.01 22 

||)1(
1

)2(
1 yy  = 000792.(-0.98)- 980792.0- 

2i)],(),([
2

)2(
11000

)3(
1 yxfyxf

h
yy 

= 980761.0])980792.0(2.0()1(0[(1.01 22  = 1.110525

 ||)2(
1

)3(
1 yy  = 000031.0)(-0.980792- 980761.0- 

Hence, 980761.0)2.0(y .

(v) fourth-order Runge-Kutta method.

2
00),(,2.0,1,0 xyyxfhyx 

),(001 yxhfk 




  1002 2

1
,

2

1
kyhxhfk




  2003 2

1
,

2

1
kyhxhfk

 3004 , kyhxhfk 

)22(
6

1
4321 kkkkk 

Hence, kyy  01

PHY 314 NUMERICAL COMPUTATIONS

107

)0(x 0 -1)0(y

Step-size 0.2

1k 0 -1 0

2k 0.1 -1 0.02

3k 0.1 -0.99 0.0196

4k 0.2 -0.9804 0.03845
k 0.01961

1y -0.98039

2. With a step length of 0.1, find the value of y at 2.0x given the ordinary

differential equation: 0 xy
dx

dy
; 0)0(y .

(iii) Second-order Runge-Kutta method
(iv) Fourth-order Runge-Kutta method.

Solution

(i) Second-order Runge-Kutta method

),(1 jj yxhfk  = 0)00(1.0)(1.0 00  yx

),(112 kyxhfk jj   = 01.0)01.0(1.0)0,(1.0 01  yx

005.0]01.00[
2

1
0][

2

1
][

2

1
2102101  kkykkyy

),(1 jj yxhfk  = 0105.0)005.01.0(1.0)(1.0 11  yx

),(112 kyxhfk jj  ))0105.0005.0(,2.0(1.0 

02155.0)0155.02.0(1.0 

][
2

1
][

2

1
2112112 kkykkyy 

021025.0]02155.00105.0[
2

1
005.0 

(iii) Fourth-order Runge-Kutta method.

0x = 0 0y = 0 1x = 0.1 1y = -0.00517

1k 0 1k -0.0105171

2k -0.005 2k -0.0160429

PHY 314 NUMERICAL COMPUTATIONS

108

3k -0.00525 3k -0.0163192

4k -0.01053 4k -0.022149
k -0.00517 k -0.0162317

1y -0.00517 2y -0.0214026

Elements of C++ Programming

In this chapter we take a look at C++ programming as a tool for numerical
analysis. This should not be taken as a substitute for a good book on C++
programming. Indeed, space would only permit us to treat just what it would take
you to do write scientific programs.

As is usual with most books on C++ programming language, it would be in order
to start with a simple program, the ‘Hello World.’

#include <iostream>
using namespace std;

int main ()
{
// Program to write ‘Hello World’ on the screen.

cout << “Hello World”;
return (0);
}

We shall now examine this program with a view to familiarizing you with the
simplest program in C++ language.

#include <iostream>

A line that begins with # is a directive for the preprocessor. Including this file,
which is the iostream standard file. This line is necessary as we shall be making
use of input or output (in this particular case, the standard output stream, cout).
The symbol << is the insertion operator. In the program, the insertion operator
inserts the variable “Hello World” into the output stream cout.

using namespace std;

namespace contains all the elements of the standard C++ library. This expression
enables us to use the elements of the standard C++ library.

int main ()

PHY 314 NUMERICAL COMPUTATIONS

109

This is the statement that begins the definition of the main function. All C++
programs are executed beginning from this statement. Thus, it is essential that
every C++ program has a main function.

After the int main () statement, the bracket opens with ‘{‘signifying the
beginning of the codes within the main function. This ends with an ‘}’ after the
return (0); statement.

// Program to write ‘Hello World’ on the screen
Any statement that begins with two slashes (/) is taken as a comment by the
compiler. Comments are used to make some ‘thought sense’ of a program. You
would be surprised a program you wrote a few weeks back might not make any
sense anymore if you never put enough comments.

cout <<” Hello World”;

Note that apart from the #include statement and int main (), every statement in
this program ends with the semi-colon.

The basic ideas of C++ programming can be listed under the following broad
headings:

Declaration Statements
Array Dimensioning
Input / Output
Arithmetic / Logical Expressions
Looping
Subroutines and functions

We shall however discuss first the variables and data types. There are several
types: integer, floating point and string.

An identifier is required by every variable. This distinguishes it from other
variables. An identifier contains one or more digits, letters and single underscore
characters. Usually, it begins with a letter, although it might begin with an
underscore sign, where it does not clash with those reserved for the compiler.

Basic Data Types

It is necessary at this point to mention that the byte (4 bits) is the unit of
representation in C++. A bit is the smallest. This can store a single character or
a small integer. Integers could be signed or unsigned. A byte can store an integer
between 0 and 255 if it is an unsigned integer. For a signed integer, it can store
between –128 and 127, both limits inclusive in both cases.

PHY 314 NUMERICAL COMPUTATIONS

110

Table 1 shows each data type, its size and the range of data that it can take. The
size and range are for a 32-bit system.

Table 1: Data types in C++

Name Description Size

(bytes)
Range

Char A character or small
integer

1 Signed: -128 to 127
Unsigned: 0 to 255

short
int

A short integer 2 Signed: -32768 to 32767
Unsigned: 0 to 65535

Int An integer 4 Signed: -2147483648 to
2147483648
Unsigned: 0 to 4294967295

long int A long integer 4 Signed: -2147483648 to
2147483648
Unsigned: 0 to 4294967295

Float A floating point number 4 +/-3.4 38/10 
double A double precision

floating point number
8 +/-1.7 308/10 

long
double

A long double precision
floating point number

8 +/-1.7 308/10 

wchar_t A wide character 2 or 4 1 wide character
Bool A Boolean value. It takes

true or false
1 True or false

A variable has to be declared to be used in C++. This is achieved by simply
stating the type of variable it is. For example, int, long, char, short, long (long
int), short (short int), float, bool, long double, or wchar_t. This is followed by
the variable name. For example,
int number;
or
float age_goat;

Variables of the same type could be declared using the same statement, e.g.,
long number, year;

Moreover, the default is signed. For an unsigned variable, we would need to
declare it so. For example,
unsigned distance;

An exception is char. Char has no default; as such, you have to declare it signed
or unsigned.

Variable names are case-sensitive, meaning that Happy is not the same variable
as happy.

PHY 314 NUMERICAL COMPUTATIONS

111

Strings

These are non-numeric values that are longer than a single character. It is not a
fundamental type. This necessitates including the header file <string> along with
<iostream>.

The Span of a Variable

A variable in a program could be local or global. Local variables are declared
within a block or a function. Their scope is limited to the block or the function
usually delineated by {…}. Outside the block or the function, the variables are
of no relevance. As an example, variable chalk has relevance throughout the
function main (). So does variable chalk_dust, but chalk_dust has relevance only
within the function minute.

int main ()

float chalk;
{
// Program to demonstrate span of variable

int minute ()
 {
// Span of chalk_dust is only within the function minute.
float chalk_dust;
cout <<chalk_dust;
 }
return (0);
}

Initialising a Variable

We can fix the initial value of a variable after it might have been appropriately
declared, as in:

int counter;

counter = 5;

On the other hand, we could also set the initial value of a variable as we declare
its type, as in:

int counter = 5;

PHY 314 NUMERICAL COMPUTATIONS

112

Another way of initializing a variable is by writing the initial value in
parenthesis:

short counter (5);

Strings

These are variables that store non-numeric values longer than a character.

To be able to make use of strings, the programmer would need to include the
standard header file <string>:

#include <iostream>
#include <string>
using namespace std;

int main ()
{
string My_Name;
My_Name = Johnson;
cout << My_Name;
return 0;
}

Constants

A constant, as the name implies, has a fixed value.

Constants can be further divided into three categories: Literals, defined constants
and Declared constants.

Literals state the specific values within a program. These can be further divided
into three: integer numerals, floating point numbers, Boolean literals and
character and string literals.

Integer numerals identify integer decimal, octal (base 8) or hexadecimal (base
16) values. The last two are expressed, respectively, by putting a suffix 0 and
0x. Thus, decimal 750 is equivalent to 01356, and 0x2ee in hexadecimal.

Integer numerals are by default integers (int), but we could still declare them
unsigned, long or unsigned long by appending the appropriate letter (l, u or ul),
where it is immaterial whether the letter is upper or lower case. For example,
750ul.

PHY 314 NUMERICAL COMPUTATIONS

113

Floating point numbers are numbers with decimals, and could be with or without
exponents. Examples include 4.1239, 6.64e-34. Floating point literals are of type
double by default, but we can still express a floating point literal as float or long
double. In this case, respectively, we append f or l. For instance, 4.1239f. The
appended symbol could be lower or upper case.

Boolean Literals have only two values: true and false. Their type is bool. For
example, Bool Decision.

Character and String Literals are non-numerical constants. Single characters are
enclosed within single quotes, e.g., ‘t’. A string is expressed within double
quotes, “Hello World” for example.

Declared Constants are constants the user declares. After the declaration, the
values of the constants remain unchanged as their values cannot be modified.

For example,
const int Number.

Defined Constants are constants the user might need quite often in a program. A
good example is the number pi. Thus, we could define pi as follows:
#define pi = 3.142

As is usual with all the lines starting with the hatch sign (#), this is a command
for the preprocessor.

Operators

Assignment operator

This is the operator that assigns a value on the right of the equality sign to the
variable on the left. Thus,
int a = 3;
float b = 4.28;

Arithmetic Operators

These are the operators for carrying out the usual arithmetic operations. They
are:
Addition +
Subtraction –
Multiplication *
Division /
Modulo %

PHY 314 NUMERICAL COMPUTATIONS

114

Increase and Decrease

The increase operator is ++ and not +, while the decrease operator is --. Thus,
a++ would mean increase a by 1, or a = a + 1. This could also be written in a
compound way as a += 1. Likewise, decrease by 1 in b would be written as b--
or b-=1.

We could also write ++a or – b. The difference being that in the first case treated
in the above paragraph, the number is incremented after it has been used, while
in the second case, the increment is done before the number is used. Thus,

a = 2;
d = a++;
cout <<d;

the output is ‘d = 2’. In this case, a will become 3.

a = 2;
e = ++a;
cout <<e;

the output is ‘e = 3’. In this case, a is also 3, because the increment had been
made before the number was stored as variable e.

Relational Operators

The equality operator for comparing two values is the double equality sign. Thus,
if we would inquire whether variable r is equal to two, we would write
r = = 2

Note that as a relational, this could be true or false.

The relational operators are:
Equal to =
Not equal to ! =
Less than <
Greater than >
Less than or equal to <=
Greater than or equal to >=

Logical Operators

The (Boolean) logical operators are:
NOT !
AND &&
OR | |

PHY 314 NUMERICAL COMPUTATIONS

115

The NOT operator changes True to False and vice versa.

A !A
True False
False True

The AND and the OR operator are used when there are two expressions that will
yield a single relational result. The NOT is true only if the two expressions are
true. It is false otherwise.

AND operator

A B A&&B
True True True
True False False
False True False
False False False

The OR operator is true if either expression is true. It is false if both are false.
AND operator

A B A&&B
True True True
True False True
False True True
False False False

The Conditional Operator

The conditional operator is represented by the symbol? Thus,
a = = b? v: w returns v if a is equal to b, but returns w if a is not equal to b.

Explicit Type Casting Operator

This allows us, for example to utilise the integer part of a number that has been
declared as a floating point number:
int Johns_Age;

Float JohnsDecimal_Age = 25.36;

Johns_Age = int JohnsDecimal_Age = 25.36;
cout << Johns_Age;

This program writes 25 years as Johns_Age.

PHY 314 NUMERICAL COMPUTATIONS

116

Sizeof()

The operator Sizeof() takes one parameter and gives the length (in bytes). Thus,
Sizeof(char) is 1, as a character variable has a length of one byte.

Basic Input and Output Statements

The basic output statement is the cout. It outputs onto the screen. This, as we
have seen all along, could be used if we included the header file <iostream>. As
said earlier << is the insertion operator.

The basic input statement is the cin. It takes the input from the keyboard. The
syntax is cin >>, where >> is the extraction operator. cin extraction can only take
one word, because it stops whenever a blank space appears. To get an entire line,
we use the getline function.

In the example below, String_var will be given as “I am writing a string with the
getline function”. Later, the String_var will be given the string “It sure is”. You
will notice that String_var would have been replaced by the new string.

#include <iostream>
#include <string>
using namespace std;

int main ()
{
string String_var;
cout <<“What am I doing?”;
getline (cin,String_var);
cout <<“That could be fun”;
getline (cin, String_var);
return (0);
}

The output will be:

What am I doing?

I am writing a string with the getline function.
That could be fun
It sure is

PHY 314 NUMERICAL COMPUTATIONS

117

Writing into a file

We would like to write some of our results in an output file. We proceed by
opening a file, for instance, Arearray.txt. But to allow us to do this we need to
put

Ofstream myfile;

ofstream myfile;

myfile.open ("Arearray.txt");
float Area[5];
float s;
float a[5] = {2.0, 1.5, 4.1, 3.2, 2.3};
float b[5] = {2.0, 4.2, 3.5, 1.9, 1.1};
float c[5] = {2.0, 3.3, 2.4, 1.4, 2.8};
int i=0;

while (i<5) {

 s = (a[i]+b[i]+c[i])/2.0;

 Area[i]= s*(s-a[i])*(s-b[i])*(s-c[i]);

Myfile <<a[i]<<","<<b[i]<<","<<c[i]<<","<<s<<","<<A rea[i]<<"\n";

Control Structures

Central to the concept of control structures is the block. Each block is enclosed
in a pair of braces (). Thus, the block has one or (usually) more statements
enclosed inside a pair of braces. Note that if the block has only one statement,
the braces () are not necessary.

The Conditional Structure

This has the form

if (condition) statement

where condition is a valid C++ expression. The statement is executed if the
condition is true. If the condition is false, the statement is not executed. The
program continues after this statement, whether the expression is executed or
not. As an example, consider the following program that determines the period
of oscillation of a pendulum, given its length and the acceleration due to gravity.

PHY 314 NUMERICAL COMPUTATIONS

118

// Program to evaluate the period of oscillation of a pendulum, given the length
and the //acceleration due to gravity

#include <iostream>
#include <math.h>
using namespace std;

int main ()
{
float length, acceleration_gravity;
cin >> length;
cin >> acceleration_gravity;
float discri = length/acceleration_gravity;
if (discri < 0) sqrtdiscri = sqrt(discri);
}

We could also state what the program should do if the statement is false, using
the else keyword.

int main ()
{
float length, acceleration_gravity;
cin >> length;
cin >> acceleration_gravity;
float discri = length/acceleration_gravity;
if (discri < 0) sqrtdiscri = sqrt(discri);
else
cout << “Imposssible”;
}

Loop Structures

It might be necessary to repeat a set of codes in the program. This is called a
loop. We shall examine a few ways of doing this.

The for loop
The for loop follows the following routine:

for (initialisation, condition, increase) statement;

As an example, we want to write a program that reads from 1 to 10 and adds the
numbers.

#include <iostream>
using namespace std;

PHY 314 NUMERICAL COMPUTATIONS

119

int main ()
{
for (int i = 0, i <= 10, i++);
{
int sum = sum + i;
}

The while loop
For the while loop, the format is,

while (expression) statement

The while loop repeats the statement for as long as the expression is true.
The program written with the for loop can be written with the while loop as
shown below.

#include <iostream>
using namespace std;

int main ()
{
while (i < 50) {
int sum = sum + i;
i++;
}

The do while loop
The do while loop has the format:
do statement while (condition);

The program written with the for loop and the while loop can be written with the
while loop as shown below.

#include <iostream>
using namespace std;

int main ()
{
int sum = sum + i;
i++;
while (i < 50);
}

PHY 314 NUMERICAL COMPUTATIONS

120

Jump Statements

The goto statement
With the goto statement, we could jump from one point to another in the
program. The point to jump to is identified by an identifier, followed by a colon
(:).

int main ()
{
float length, acceleration_gravity;
new_set:
cin >> length;
cin >> acceleration_gravity;
float discri = length/acceleration_gravity;
if (discri < 0) sqrtdiscri = sqrt(discri);
else
cout << “Imposssible”;
goto new_set;
}

In the program segment above, we get the opportunity to pick another set of
length and acceleration due to gravity to calculate another value of the period of
oscillation.

As another example,
#include <iostream>
using namespace std;

int main ()
{
newnumber:
int sum = sum + i;
i++;
if (i < 50);
goto newnumber;
}

In this program, we have the goto pairs up with the conditional operator if to
produce a loop.

The continue statement

The continue statement gives the programmer the opportunity to jump to the
beginning of the loop. If we would like to skip 25 in the last example, we could
write:

PHY 314 NUMERICAL COMPUTATIONS

121

#include <iostream>
using namespace std;

int main ()
{
newnumber:
int sum = sum + i;
i++;
if (i < 50);
if (i = = 25) continue;
goto newnumber;
}

The program would now add from 1 to 50, skipping the number 25.

The break statement

The break statement enables us to leave a loop before the end of the loop. As an
example, let us again write the program for adding from 1 to 50.

#include <iostream>
using namespace std;

int main ()
{
int sum = sum + i;
i++;
while (i < 50);
if (i = = 25) break;
}

This program now adds from 1 to 24.

The switch function
The switch function works in a way similar to the if (condition) statement
expression works.

PHY 314 NUMERICAL COMPUTATIONS

122

int main ()
{
float length, acceleration_gravity;
cin >> a;
cin >> b;
cin >> c;
float discri = b*b-4*a*c;
if (discri < 0) sqrtdiscri = sqrt(discri);
else
cout << “Imposssible”;
else
if (discri = 0) sqrtdiscri = sqrt(discri);
else
cout << “coincident roots”;
if (discri > 0) sqrtdiscri = sqrt(discri);
else
cout << “different roots”;
}

int main ()
{
switch (discri);
float length, acceleration_gravity;
cin >> a;
cin >> b;
cin >> c;
float discri = b*b-4*a*c;
case <0:
cout << “Imposssible”;
break;
case = 0:
cout << “coincident roots”;
break;
case >0:
cout << “different roots”;
}

The switch statement does not use blocks. Rather it uses labels (recall the goto
statement).

Functions

A function consists of a group of statements that are executed when the function
is called from a point in the program.

A function is of the form:

type name (parameter1, parameter2, …) (statements)

The function returns the data type specifier type. The name is the identifier by
which the function will be called within the program. Each parameter has its data
type specifier declared along with its identifier, e.g., float orange. Finally, the
body of the function is made up of statements enclosed within braces.

As an example,
#include <iostream>
#include <math.h>
using namespace std;

int main ()
{
float root;
root = root_quadratic (3, 2, 5);

PHY 314 NUMERICAL COMPUTATIONS

123

return (0);
}

float root_quadratic (float a, float b, float c)
{
r = b + sqrt(b*b-4*a*c);
return (r);
}

math.h is a header file that allows you to do mathematical operations.

The main function calls up the function root_quadratic to provide the value of
root in the main program.

Notice that 3, 2 and 5 correspond respectively (in order) to a, b and c in the
function root_quadratic.

The function type void
When a function needs not return a value, we use type void. This could be
declared as follows:

void menu ();
or
void menu (void);

More on VOID!

Arrays

Arrays are memory locations within the computer that are reserved for some
values that will eventually be stored in them. An array could be one dimensional
(a column or row vector) or two or more in dimension (a matrix).

The type of the array is specified along with the size. Thus, the following are
examples of arrays.

float Abba [4]; is a one-dimensional floating point array that has four memory
locations.

int forum [3] [4]; is a two-dimensional integer with twelve locations, a 3 by 4
matrix.

The memory locations for Abba will be filled with floating point numbers; those
of forum will contain integers.

Initialising an Array

PHY 314 NUMERICAL COMPUTATIONS

124

A global array is set to zero, unless otherwise initialised. A local array (for
example, one that is within a function) will not be initialised until some values
are stored in them. Note that arrays start with zero. For example, Abba [4] has
the locations Abba [0], Abba [1], Abba [2] and Abba [3].

Just as any variable could have an initial value stated on the same line as the type
is declared, an array could also have its initial values declared along with the
type. For example,

float Abba [4] (1.2, 2.5, 15.4, 12.1, 6.0);

We could also have written
float Abba [] (1.2, 2.5, 15.4, 12.1, 6.0); that is, leaving out the size of the array.
But the compiler reads in the five values and then gives the array a size: 5 and
takes the array to be float Abba [5].

Appendix Ii

Some C++ Programs

// Program to calculate the area of a triangle, using Hero’s formula: // A =
sqrt(s(s-a)(s-b)(s-c)), given a, b, and c, the sides of the
// triangle.

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{
ofstream myfile;
myfile.open ("Area.txt");
float Area;
float s;
float a=2.0;
float b=2.0;
float c=2.0;
s = (a+b+c)/2.0;
Area = s*(s-a)*(s-b)*(s-c);
myfile << a << ", " << b << ", " << c << ", " << s << ", "<< Area;
myfile.close ();
 return 0;
}

PHY 314 NUMERICAL COMPUTATIONS

125

We could also write the program in such a way that several values of a, b, and c
could be read in, and values of A calculated in each case.

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{
ofstream myfile;
myfile.open ("Arearray.txt");
float Area[5];
float s;
float a[5] = {2.0, 1.5, 4.1, 3.2, 2.3};
float b[5] = {2.0, 4.2, 3.5, 1.9, 1.1};
float c[5] = {2.0, 3.3, 2.4, 1.4, 2.8};
int i=0;

while (i<5) {

 s = (a[i]+b[i]+c[i])/2.0;

Area[i]= s*(s-a[i])*(s-b[i])*(s-c[i]);

myfile <<i<<","<<a[i]<<","<<b[i]<<","<<c[i]<<","<<s <<","<<Area[i]<<"\n";
 i++;
 }
myfile.close ();
 return 0;
}
#include <iostream>
#include <fstream>
#include <math.h>
using namespace std;

float root_quadratic (float a, float b, float c)
{
float r;
float argum = b*b-4*a*c;
if (argum>=0)

r = b + sqrt(b*b-4*a*c);

return (r);

int main ()

PHY 314 NUMERICAL COMPUTATIONS

126

ofstream myfile;
myfile.open ("FunctExam.txt");

float root;
root = root_quadratic (1, 2, -2);
//cout <<root;
myfile <<"The root of the equation is" <<"\n";
myfile << root;
return 0;
// Newton-Raphson solution of the equation
// x**2-3x-2
#include <iostream>
#include <fstream>
#include <math.h>
using namespace std;
// We make the initial approximate solution 0.8
int main ()
{
ofstream myfile;
myfile.open ("Nraphson.txt");
//float xold=0.8;
cout <<"The initial guess is ";
float xold, ratio;
cin >> xold;
myfile <<xold <<"\n";
myfile <<"Successive iterations yield" <<"\n";
float f;
float fprime;
evaluate:
f=xold*xold-3.*xold+2.0;
fprime=2.*xold-3.0;
ratio=f/fprime;
float xnew=xold-ratio;
float Diff;
Diff = fabs(xnew-xold);
myfile <<xnew << ", " << Diff <<"\n";

if (Diff>0.001)
 {
 xold=xnew;
 goto evaluate;
}
myfile <<"The root of the equation is"<< "\n";
myfile << xnew << "\n";
return 0;

PHY 314 NUMERICAL COMPUTATIONS

127

// Bisection Method
// 2.0x**3-3x**2-2x-0.5
#include <iostream>
#include <fstream>
#include <math.h>
using namespace std;
// We make the initial approximate solution 0.8
int main ()
{
ofstream myfile;
myfile.open ("bisection1.txt");
float ratio;
float x1,x2,x3,fx1,fx2,fx3,multi,dfx3;
x1=1.9;
x2=2.1;
compute:
fx1=2.0*x1*x1*x1-3.0*x1*x1-2.0*x1-0.5;
fx2=2.0*x2*x2*x2-3.0*x2*x2-2.0*x2-0.5;
x3=(x1+x2)/2.0;

fx3=2.0*x3*x3*x3-3.0*x3*x3-2.0*x3-0.5;
multi=fx1*fx3;
myfile << x3 << " " <<fx3 <<"\n";

if (fx3<0.0){

dfx3=fx3*-1.0;
if (fx3>=0.0){

 dfx3=fx3;

 if (dfx3<0.001)
 goto evaluate;
 if (multi<0.0)
 x2=x3;
 goto compute;

 if (multi>0.0)
 {
 x1=x2;
 x2=x3;
 goto compute;
 }

evaluate:
myfile << x3 << " " <<fx3 <<"\n";

PHY 314 NUMERICAL COMPUTATIONS

128

myfile <<"The root of the equation is"<< "\n";
myfile << x3 << "\n";
return 0;
}
// Euler Implicit
// y'=x*x+y
#include <iostream>
#include <fstream>
#include <math.h>
using namespace std;
float f(float x1, float x2);
int main ()
{
ofstream myfile;
myfile.open ("eulerim.txt");
float x[10],y[10],b,c,d,e,g,h,diff;

 x[0]=0.0;
 y[0]=1.0;
 myfile << x[0] << " " << y[0] <<"\n";
 cout<< x[0];
 e = x[0];
 g = y[0];

// Step size is 0.1
 h = 0.1;
 int m=1;

// Get y(1) using the Euler method
 compute:
 y[1] = y[0]+h*f(x[0],y[0]);
 int j = 1;

// Send it for refining by the Modified Euler method
 loop:
 b=x[0]+h;
 c=y[j-1];
 d=y[j];
 y[j+1]=y[0]+(h/2.)*(f(x[0],y[0])+f(x[0]+h,y[j]));
 diff = y[j+1]-y[j];
 diff = fabs(diff);
 if (diff <= .001)
 {
 goto write;
 }

PHY 314 NUMERICAL COMPUTATIONS

129

 y[j]=y[j+1];
 j = j + 1;
 goto loop;

// Write answers and then get nine other steps
 write:
 myfile << x[0]+h << " " <<y[j+1] <<"\n";
 x[0]=x[0]+h;
 y[0]=y[j+1];
 e = x[0];
 g = y[0];
 m = m + 1;
 if (m < 10)
 {
 goto compute;
 }

 stop:

return 0;
}

float f(float xx, float yy) //function declaration
 {

 return xx*xx+yy;
 }

