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INTRODUCTION

Numerical Analysis is an important part of Physiosl Engineering. This
is because most of the problems encountered inlifeatio not lend
themselves to a solution in a closed form. In oti@rds, we have to make
do with approximate solutions. It is clear, therefadhat you need to be
conversant with the various methods of approximatdution of
problems, as well as the loss of information inhene replacing the exact
solution with an approximate one.

It is also quite clear that the fastest way of damumerical computation

Is through the computer. It is imperative, theat you understand one or
more of the available programming languages. Iis ttourse, the

programming language of interest is C++.

It is quite clear from the foregoing that numerigahlysis is an interesting
course, and we would expect you to apply yoursgly to the course, as
a lot of your future work in the field of physicsould warrant a sound
knowledge of numerical analysis.

THE COURSE

Phy 309 (3 Credit Units)

This 2-unit course introduces you to numerical ysial Unit 1 discusses
the various types of errors and how they might b@mised.

Unit 2 is on curve-fitting. You would need to dedusome physical
parameters from a given set of readings obtaineabps in a laboratory.
Various ways of linearising given formulas is giygireparatory to
drawing a line of best fit from which the physicalantity is deduced.

Unit 3 is all about linear systems of simultaneegsations. You shall
learn how to handle a large set of linear equatipnariting them in the
form of matrices. Such problems will then be solvath the methods
applicable to matrices. You would also learn hovatdve at solutions
through iterative methods.

Unit 4 discusses different methods of finding thets of algebraic and
transcendental equations.

In Unit 5, you will come across finite differenc&®u will be introduced
to various kinds of differences, and how to detketerror in difference
tables.
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Numerical integration is the object of Unit 6. ms Unit, you shall learn
how to integrate a function within a given setiofits (definite integrals).

Unit 7, the concluding part of the theory part loé tourse discusses the
numerical solution of initial value problems of ordry differential
equations.

The C++ Programming aspect of the course is andnttion to program-
writing in one of the most versatile programmingdaages.

We wish you success.
COURSE AIMS

The aim of this course is to teach you about thehameics of the atomic
and subatomic particles.

COURSE OBJECTIVES
After studying this course, you should be able to

o Understand the various types of errors and howitdnmse them.

Linearise a given expression in order to bring auphysical

constant from the resultant relationship.

Fit a curve to a given set of data.

Solve a system of linear equations.

Find the roots of a given algebraic or transceraleaguation.

Obtain the definite integral of a given functionao$ingle variable.

Work with finite difference schemes.

Solve a first order initial value problems of oralig differential

equation.

o Solve higher order initial value problems of ordindifferential
equations.

o Write C++ programs for solving the numerical praobte

WORKING THROUGH THE COURSE

Numerical methods provide a powerful way of solviagmost any
problem in physics, provided it has been propeolyrulated. It is our
belief that the student would be motivated enowgput in a good effort
in understanding the theoretical part of this ceunsd be willing to learn
to write programs in C++ language.

Vi
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THE COURSE MATERIAL

You will be provided with the following materials:

COURSE GUIDE

Study Material containing study units

At the end of the course, you will find a list @commended textbooks

which are necessary as supplements to the coutseimhaHowever, note
that it is not compulsory for you to acquire oreed read them.

STUDY UNITSFOR NUMERICAL ANALYSIS
The following study units are contained in this ks@1

Unit 1: Approximations and Errors in Numerical Cangttions
Unit 2: Approximations and Errors in Numerical Canggtions
Unit 3: Linear Systems of Equations

Unit 4: Roots of Algebraic and Transcendental Eiquiat
Unit 5: Finite Differences and Interpolation

Unit 6: Numerical Integration

Unit 7: Initial Value Problems of Ordinary Differgal Equations

TEXTBOOKS

Some reference books, which you may find usefel garen below:

o Numerical Methods in Engineering and Science — @teB. S.
o Introductory Methods of Numerical Analysis — Sas8yS.

o A friendly Introduction to Numerical Analysis — Bti&, B.
ASSESSMENT

There are two components of assessment for thisseod’he Tutor
Marked Assignment (TMA), and the end of course d@ration.

TUTOR MARKED ASSIGNMENT

The TMA is the continuous assessment componenaf gourse. It
accounts for 30% of the total score. You will beegi 4 TMA'’s to answer.

Three of these must be answered before you aneedlto sit for the end

of course examination. The TMA’s would be givenyiou by your
facilitator and returned after they have been giade

vii
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END OF COURSE EXAMINATION

This examination concludes the assessment fordtese. It constitutes
70% of the whole course. You will be informed oftlime for the
examination. It may or may not coincide with thavensity semester
examination.

SUMMARY

This course is designed to lay a foundation for f@uurther studies in
Numerical Analysis. At the end of this course, yall be able to answer
the following types of questions:

What is the need for numerical analysis in Physics?

What are the types of error that can be encounteredmerical
work?

What the ways of obtaining the line that bestditset of laboratory
data?

What are the various ways of numerically solvingyatem of
linear equations?

What are the ways in which we can numerically find roots of
an equation?

How do | integrate a function that does not lergklit to an
analytical solution?

How do | solve a first order ordinary differenteduation?

How do | tackle a higher order initial value prablef ordinary
differential equation?

What are the merits and demerits of some of thehoalst of
numerical analysis?

We wish you success.

viii
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MODULE 1

Unit 1
Unit 2
Unit 3
Unit 4
Unit 5
Unit 6
Unit 7

UNIT

1:

NUMERICAL COMPUTATIONS

Approximations and Errors in Numerical Caxtgdions
Approximations and Errors in Numerical Castagions
Linear Systems of Equations

Roots of Algebraic and Transcendental Eignat

Finite Differences and Interpolation

Numerical Integration

Initial Value Problems of Ordinary Differgal Equations

Approximations and Errors in Numerical Com putations

Unit Structure

11
1.2
1.3

1.4
15
1.6
1.7

11

Introduction
Objectives
Main Content

1.3.1
13.1
1.3.2
1.3.3
134

Accuracy of Numbers
Approximate Numbers
Significant digits (figures)
Rounding off

Arithmetic precision

1.3.5 Accuracy of Measurement

1.3.6

Errors

3.3.1 Rounding Errors

3.3.2 Inherent Errors

3.3.3 Truncation Errors

1.3.4 Absolute Error, Relative Error and Percentage Error
Conclusion

Summary

Tutor-Marked Assignment (TMA)

References/Further Readings

Introduction

Physics is an exact science. However, it is syriatipossible to achieve infinite

accuracy in practice. You are quite aware that yapparatus or instrument is
not perfect, neither is your eye nor your measuaioitity. We then see that errors

arise in everyday observations and measuremenessilily of errors is very

important in all areas of Science and Technologys T necessitated by the fact

that errors should not swamp our procedure enooghlter, significantly,
conclusions that may be drawn from such observatimmmeasurements.

Apart from the limitations of observation and measoent, there are some
errors inherent in the problem itself. A good exé&mp Quantum Mechanics is

1
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given by the Heisenberg Uncertainty Principle, whncaintains that we cannot
measure some pairs of quantities accurately simedtasly, for example, the
position of a body and its momentum. Any attempinieasure either quantity
accurately gives an infinite error in the otherntgoother errors arise as a result
of representing an infinite series with a truncateé. We shall talk a little bit
more about this in a while.

1.2 Objectives

By the end of this unit, you would be able to:

. understand the importance of errors in numericalyas.

. round a number to a certain number of significagures

. know how to reduce the errors involved in your ntinoa work.
. understand arithmetic precision

1.3 Main Content
1.3.1 Accuracy of Numbers

1.3.2 Approximate Numbers

For the sake of numerical computation, all numloars be classified under two
broad headings: exact numbers and approximate msmbethe name implies,
the former comprises numbers that are fully repriesk by some digits.
Examples include the integers, and rational numbeas can and have been
completely written, e.g., 3.2158. Approximate numsbare those that are not
fully specified by the digits representing them. @&sexample, we could write

the rational numbe% as 2.3333. You are quite aware that the actuabeuns

not exactly 2.3333.

By this stage of your study, you must have workéith whe rational numbers.
These are numbers which can be written as a fraofibwo integers. Although
certain rational numbers are exact numbers, yoe h&o come across a lot of
rational numbers that cannot be written as exaatbmss as in the example
above. The irrational numbers are even more traobhe. An example of an

irrational number is/2 : such numbers cannot be written as the ratio pftan
integers. There are two families of numbers that @amending: the ones that
repeat certain sequences, and the ones that déoronstance, 12.345454545
and 18.127849342. The order of preference in dgalith numbers in numerical
computations is: natural numbers, rational numbieas have a finite string of
digits, rational numbers that have unending striofjsdigits and irrational
numbers.
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3.1.2 Significant digits (figures)

We say a number is ofsignificant digits (figures) if digits are used to express
it. As an example, 1.612, 0.004812 and 380600@eaié four significant figures.
You would notice that each of them could be writter10” (with no loss of
information), wherex is of 4 § = 4 in this case) digits, not starting or ending
with zero andn is an integer, positive or negative.

The following rules will be of assistance to youaké sure they become a part
of you.

o The leftmost non-zero digit is the most significdigfit, e.g., in 0.001243,
1 is the most significant digit.

o In the case where there is no decimal point, thletmost non-zero digit
is the least significant, e.g., 145630000, 3 isléast significant figure.
o If there is a decimal point, the rightmost digithe least significant, even

if it is zero, e.g., in 235.34200, the last O ig tkast significant. The
number is not 235.34201 or 235.34199.

o All digits between the least significant and thestreagnificant (inclusive)
are significant, e.g., in the example under rulé—23 are significant. In
the example in rule 2, & 3 are significant.

Take another example: 0.00004 has one significguatd, while 984.13245 has
8 significant figures. It should be obvious to yehy they have been classified
this way.

There is an exception, however:

When a zero is obtained by rounding, for exampk9.3 is rounded to 3
significant figures. This becomes 330, the lasb Z&ing significant in this case.
You can compare this with rule 2 above.

3.2.3 Rounding off

The irrational numbers are a perfect example of semnwith unending digits.

Even in the case of rational numbers there cdrbstilinending number of digits
and in some other cases we may decide to reducaithber of digits by which

a number is represented. This process is catlexdding off.

Rules for Rounding off a number ton significant figures

(@) Discard all digits to the right of tmth digit

(b) If the discarded part of the number is

() less than half a unit in theth place leave thath digit unchanged
(I)  greater than half a unit in theth place, increase theth digit by unity



PHY 314 NUMERICAL COMPUTATIONS

() exactly equal to half a unit in theth place, leave the digit unchanged if
it Is even; increase by unity if otherwise.

Examples Round the following numbers to 5 significant figs:
(i) 3.142857143 (i) 6.32431925 (iii) 1.4123519
Solution: To 5 significant figures, the numbers are:

0] 3.1428 (rules (a) and (b)(IIfth digit unchanged as it is even

(i)  6.3243(rules (a) and (b)(l) as the discardedqiatie number is less than
half a unit in thenth place.

(i) 1.4124 (rules (a) and (b)(IIxth digit increased by unity as it is odd

Note:

A number rounded off to significant figures is said to be correctntsignificant
places.

3.1.4 Arithmetic precision

As we have said before, it might be necessaryund®ff our numbers to make
them useful for numerical computation, moreso agotild require an infinite

computer memory to store an unending number. Téeigon of a number is an
indication of the number of digits that have besadito express it. In scientific
computing, it is the number of significant digitsrmmbers, while in financial

systems, it is the number of decimal places. Y@l quite aware that most
currencies in the world are quoted to two decintates.

In our own case,rahmetic precision (often referred to simply as precision) is
the specified number of significant figures or thgio which the number of
interest is to be rounded.

1.7 Errors

We said earlier, that we shall be revisiting thi#edént types of errors. These
are:

1.7.1 Rounding Errors

These are errors incurred by truncating a sequenadigits representing a
number, as we saw in the case of representingtioaal numberg by 2.3333,

instead of 2.3333....., which is an unending numBpart from being unable to
write this number in an exact form by hand, outrinments of calculation, be it
the calculator or the computer, can only handiaigefstring of digits.
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Rounding errors can be reduced if we change tleiledion procedure in such
a way as to avoid the subtraction of nearly equatlmers or division by a small
number. It can also be reduced by retaining at le@s more significant figure
at each step than the one given in the data, amdrdunding off at the last step.

1.7.2 Inherent Errors

As the name implies, these are errors that areenben the statement of the
problem itself. This could be due to the limitasoof the means of calculation,
for instance, the calculator or the computer. Einisr could be reduced by using
a higher precision of calculation.

1.7.3 Truncation Errors

If we truncate Taylor’s series, which should berdimite series, then some error
is incurred. This is the error associated with ¢atmg a sequence or by
terminating an iterative process.

This kind of error also results when, for instanes carry out numerical
differentiation or integration, because we areaejplg an infinitesimal process
with a finite one. In either case, we would hawgureed that the elemental value
of the independent variable tend to zero in ordeyet the exact value.

3.3.4 Absolute Error, Relative Error and PercentageError
The absolute error in a measurement is the absdifference between the

measured value and the actual value of the quaritiys, we can write
Absolute error 9 actualvalue— measuredalue|

The ratio of the absolute error to the actual vasueihe relative error. We can
therefore write the relative error as

r _|actualvalue— measuredalue|
actualvalue

Absolute erro

The relative error taken to a percentage is thegmeage error. Percentage error
can therefore be written as

|actualvalue— measuredalue|
actualvalue

x100

Percentage error

Examples
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4.0 Conclusion

In this Unit you learnt that errors occur in measoent, because the imperfect
observer makes use of imperfect measuring instrtsneédome errors are

inevitable as they are a part of the problem umuerstigation. Moreover, the

instruments of calculation, such as the compugar,anly handle a finite number

of digits, as the memory is finite. You also leamivrite a certain number in a
specified number of decimal points. You got to knwaw to round a number to

a number of significant figures. Some ways of redgcsome of these errors

were also discussed.

5.0 Summary

In this Unit, you learnt the following:

o Errors are an integral part of life.

o How to round a number to a specific number of digant figures?
o The different types of error and how some of theay tme reduced.

6.0 Tutor-Marked Assignment

1. Round the following to the number of significargures indicated.
(@) 12.0234831 4 significant figures

(b)  295.10542 5 significant figures

(c) 0.0045829 3 significant figures

2. A student measured the length of a string afaldength 72.5 cm as 72.4
cm. Calculate the absolute error and the percemage

7.0 References/Further Readings

Solutions to Tutor Marked Assignment

1. Round the following to the number of significargures indicated.
(@) 12.0234831 4 significant figures = 12.02

(b)  295.10542 6 significant figures = 295.105

(c) 0.0045829 3 significant figures = 0.00458

2. A student measured the length of a string afadength 72.5 cm as 72.4
cm. Calculate the absolute error and the percemage

Absolute error is|725-72.4]= 001.

The percentage error %xlOO: 0.1379
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UNIT 2 Approximations and Errors in Numerical Computations

Unit Structure

2.1 Introduction
2.2  Obijectives
2.3  Main Content
3.1 Linear Graph
3.2 Linearisation
3.3  Curve Fitting
3.3.1 Method of Least Squares
3.3.2 Method of group averages
2.4  Conclusion
2.5 Summary
2.6  Tutor-Marked Assignment (TMA)
2.7 References/Further Readings

2.1 Introduction

In most experiments as a physicist, you would heeeted to plot some graphs.
This chapter explains in details, how you can prietrrthe equation governing a
particular phenomenon, plot the appropriate grajpgh the data obtained, to

illustrate the inherent physical features, and dedbe values of some physical
guantities. The process of fitting a curve to acdelata is called curve-fitting.

We shall now take a look at the possible casesctidt arise in curve-fitting.

2.0 Obijectives

By the end of this unit, you should be able to:

. Linearise a given equation in order to plot a lmgraph from which some
physical constants can be determined.

. Derive the equation for least squares linear fit.

. Derive the equation for the method of moving avesag

. Fit a linear graph to a set of data.

3.0 Main Content

3.1 Linear Graph

The law governing the physical phenomenon undegstigation could be linear,
of the form y=mx+c. It follows that a graph could be plotted of thans

(x,y.),1 =1, ...,n, wheren is the number of observations (or sets of data. W
could obtain the line of best fit via any of a nienbf methods:
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More on this.
3.2 Linearisation

A nonlinear relationship can be linearised andrdslting graph analysed to
bring out the relationship between variables. Wadlstonsider a few examples:

Case l.y=a€’.

0] We could take the logarithm of both sides tgdma
Iny=In(ae*) =Ina+Ine* =x+Ina,

sincelne* = x. Thus, a plot ofiny againstx gives a linear graph with
slope unity and g-intercept of Ina.

(i)  We could also have plotteg againste*. The result is a linear graph
through the origin, with slope equaldo

Case 2T = 2;;\/%

We can write this expression in three different svay
0] InT = In(2ﬂ)+iln N In(27r)+1(lnl —Ing)
- 2 |g 2 '

Rearranging, we obtain,
1 1
INT ==Inl +| In(27) —=In
it +(inzn)-2ing

writing this in the formy = mx+c, we see that a plot of T againstinl gives a
slope of 0.5 and a I intercept Of(|n(2ﬂ')—%|n g). Once the intercept is read

of the graph, you can then calculate the valug of

(i) T:%\/l_

A plot of T versusy| gives a linear graph through the origin (as theriept is

zero). The slope of the graph—%ﬂc, from which the value af can be recovered.
g

(i)  Squaring both sides,
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4

g

T?=—oI

A plot of T? versusl gives a linear graph through the origin. The slopée

47

graph is
g

, and the value af can be obtained appropriately.

Case 3:N = N,e™

The student can show that a plotloN versust will give a linear graph with
slope—-4, andInN interceptisin N,.

What other functions oN andt could you plot in order to get andN,?

Case 4:£=1+E
f u v

We rearrange the equation:
1 1 1

v f u
A plot of v*' (y-axis) versusu™ (x-axis) gives a slope of1 and a vertical

intercept of% :

Example

A student obtained the following reading with anmmirin the laboratory.

u 10 20 30 40 50
v -7 -10 -14 -15 -17

Linearise the reIationshi% =%—1. Plot the graph of* versusu™ and draw
\% u

the line of best fit. Hence, find the focal lengfithe mirror. All distances are in
cm.
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Solution
u Vv 1/u 1/v
10 -7 0.1 -0.14286
20 -10 0.05 -0.1
30 -14 0.033333 -0.07143
40 -15 0.025 -0.06667
50 -17 0.02 -0.05882
The graph is plotted in Fig. 1.1.
1/u (/cm)
0.00 ‘ : .
0 0.05 0.1 0.15
-0.02 -
-0.04 -
-0.06 -
e
2 -0.08 -
2
-0.10 -
-0.12 -
-0.14 -
-0.16 -
. o 1 1 1
Fig. 1.1: Linear graph of the funct|<}V|f1=T—G
The slope is- 105 and the intercept004. From %:%—%, we see that the

intercept isi =-004,0r f = __L —-25cm.
f 0.04

3.3 Curve Fitting

What we did in Section 3.2, generally, was to plw values of dependent
variable against the corresponding values of tdependent variable. With this
done, we got the line of best fit. The latter coblye been obtained by eye
judgment. There are some other ways of deducingetlagionship between the

10
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variables. We shall first consider the ones basetinear relationship, or the
ones that can be somehow reduced to such relafjpsnsh

3.3.1 Method of Least Squares

Supposex,i=1--,n are the points of the independent variable whaee t
dependent variable having respective valye$=1--,n is measured.

Consider the graph below, where we have assumirtbar Igraph of equation
y=mx+c. Then at each point,i=21--,n, y =mx +c.

The least square method entails minimizing the sinthe squares of the
difference between the measured value and the mukcped by the assumed
equation.

Wi+

Fig. 1.2: lllustration of the error in representmget of data with the line of best
fit

S:i[yi —(mx +c)f 2.1

We have taken the square of the difference bedalseg the sum alone might
give the impression that there is no error if thensof positive differences is
balanced by the sum of negative differences, jsish @he case of the relevance
of the variance of a set of data.

Now, S is a function ofm andc, that is,S= S(m,c). This is because we seek a
line of best fit, which will be determined by anpappriate slope and a suitable

11
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intercept. In any casex and y, are not variables in this case, having been
obtained in the laboratory, for instance.

You have been taught at one point or another thaaffunction of a single
variable f (x), the extrema are the points whe?e: 0. However, for a function
X

of more than one variable, partial derivatives tAeerelevant quantities. Thus,
since S = S(m,c), the condition for extrema is

E=0 and§=0 2.2

om ocC

0S 0

9o _ o —x)= 2.

p 2;[% (mx +c)l(-x) =0 3

0S 0

EzZZ[yi —(mx +¢)](-) =0 2.4
i=1

From equation 2.3,
Zn:xiyi—mzn:xiz—zn:cx:O 2.5
i=1 i=1 i=1

and from equation 2.4,

>y -myx -3 e=0 26
i=1 i=1 i=1

> x
It follows from the fact thatk, =-=>— and similar expressions, that equations
n
2.5 and 2.6 give, respectively, o
Xy—mx? - X =0 2.7

Multiplying equation 2.8 byx gives
Xy-mx’-cx=0 2.9

Finally, from equations 2.7 and 2.9,

m=XY=XY 2.10
x2 - x2

and from equation 2.8,

2.11

12
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Example

A student obtained the following data in the labona By making use of the
method of least squares, find the relationship betw andt.

Thus, for the following set of readings:

t 5 12 19 26 33
X 23 28 32 38 41

The table can be extended to give
t 5 12 19 26 33 >=95 t=19
X 23 28 32 38 41 >=162 | x=32.4
tx 115 336 608 988 1353 | £=3400| tx=680
t? 25 144 361 676 1089 | =2295| x2 =459

=0.6571 2.12

tx-{X 680-19x324
2 459-19?
—mf =324-0.6571x19=19.9151

Hence, the relationship betweeandt is,
x=0.6571+199151

3.3.2 Method of group averages

As the name implies, a set of data is divided tato groups, each of which is
assumed to have a zero sum of residuals. Thus greeequation

y=mx+cC 2.14

we would like to fit a set afl observations as close as possible.

The error in the measured value of the variablethrdvalue predicted by the
equation is (as we have seen in Fig. ...):

g =Y, —(mx +c) 2.15

The fitted line requires two unknown quantitiesandc. Thus, two equations
are needed. We would achieve these two equatiods/layng the data into two,
one of sizd and the other of sizel, wheren is the total number of observations.

13



PHY 314 NUMERICAL COMPUTATIONS

The assumption that the sum of errors for eachpyi®uero, requires that

iﬁm-%mx+cn=0 2.16
and
3Ly, - (mx +0)]= 0 217

1+1

From equation 2.16,
| |
D yi=my x +lc 2.18
i=1 i=1
and equation 2.17 yields

Dy, =mzn:xi+(n—l)c 2.19

i=l+1 i=l+1

the latter equation being true sinte- |is the number of observations that fall
into that group.

Dividing through byl andn — |, respectively, equation 2.18 gives
| |

I—lz:yi =m|—12xi+c 2.20
i=1 i=1

and from equation 2.19,

n—{liilyi = mn—:i_T+lxi +C 2.21
Thus,

Yy, =mX +cC

Y, =mX, +C 2.22

14
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Subtracting,

V1= Yo =m(X —X;) 2.23

m=i=Ye 2.24
X =%

and

c=Yy, —mx, 2.25

Example

Let us solve the example in Section 3.3.1 usingribthod of group averages.

t 5 12 19 26 33
X 23 28 32 38 41

We shall divide the data into two groups, such as:

t 5 12 19
X 23 28 32
and
t 26 33
X 38 41

The tables can be extended to give, for Table 3:

t 5 12 19 $=36 £ =12
X 23 28 32 $=83 X,=27.666667

and for Table 4:

t 26 33 $=59 £,=29.5
X 38 41 $=79 x,=39.5
% - X, _ 27.666667-395

=0.67619

-t 12-29.5
and
c=X —m,= 27.666667- (0.67619x12)
=19.552387
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Thus, the equation of best fit is,

4.0

x=0.67619+19.552387

Conclusion

In this Unit, you learnt how to linearise an expien in order to obtain some
relevant information when written as a linear egpratYou also derived the
equations for two different methods of drawing line of best fit. In addition,
you applied these formulas to a set of data andalkesto write the equation of
best fit in each case.

5.0

Summary

In this Unit, you learnt:

How to linearise a nonlinear expression in ordedléduce some desired
parameters.

How to draw the line of best fit with the methodi@dst squares.
How to draw the line of best fit with the methodgnbup averages.

6.0 Tutor Marked Assignment (TMA)

1. The current flowing in a particular R-C circist tabulated against the
change in the time -t,, such that at time =t,, the current is 1.2 A.
Using the least-squares method, find the slopeth@dntercept of the
linear function relating the currento the timet. Hence, determine the
time-constant of the circuit.

t 2 2.2 2.4 2.6 2.8 3

i 10.20 0.16 0.13 0.11 0.09 0.07

2. Solve the problem in TMA 1 with the method of groanerages by
dividing into two groups of three data sets each.

t 2 2.2 2.4

[ 0.20 0.16 0.13
and

t 2.6 2.8 3

[ 0.11 0.09 0.07

16
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3. A student performing the simple pendulum expentnobtained the
following table, where is the time for 50 oscillations.

I(cm) |50 45 40 35 30 25 | 20 | 15
t(s) |71 69 65 61 56 52 | 48 | 43

Find the acceleration due to gravity at the locabbthe experiment, using

0] the method of least squares, and
(i)  the method of group averages.

7.0 References/Further Readings
Solutions to Tutor Marked Assignment

1. The current flowing in a particular R-C circist tabulated against the
change in the time-t,, such that at time =t,, the current is 1.2 A.

Using the least-squares method, find the slopeth@dntercept of the
linear function relating the currento the timet. Hence, determine the
time-constant of the circuit.

t 2 2.2 2.4 2.6 2.8 3
i 10.20 0.16 0.13 0.11 0.09 0.07

Taking logs:i =i,e'F°. logi = logi, —log(e"'*°) = logi, +RLC' A plot of logi

. . 1 : .
against gives slopeE and interceptogi, .

t I tsquare log | tlogl
2.0 0.200000]| 4 -0.69897 -1.39794 -0.702P
2.2 0.160000| 4.84 -0.79588 -1.75094 -0.78902
2.4 0.130000| 5.76 -0.88606 -2.12654 -0.87584
2.6 0.110000| 6.76 -0.95861 -2.49238 -0.96266
2.8 0.090000| 7.84 -1.04576 -2.92812 -1.04948
3.0 0.070000| 9 -1.1549| -3.46471 -1.1363
Sum 15 38.2 -5.54017 -14.1606
Average | 2.5 6.3666667 -0.92336 -2.3601
Slope -0.4431
Intercept | 0.1844

- _ = 23601 (25x-0.92339 _

—-0.4431
6.366666 — 2.5°

17
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c=logl —mi = 0.1844

m= _Ric’ or RC= —% = 2.2568= time constant of the circuit.

3. Solve the problem in TMA 1 with the method of groanerages by
dividing into two groups of three data sets each.

t 2 2.2 2.4

i 0.20 0.16 0.13
and

t 2.6 2.8 3

[ 0.11 0.09 0.07

Group 1

t i log i

2.0 0.20 -0.69897

2.2 0.16 -0.79588

2.4 0.13 -0.88606

6.6 -2.38091

2.2 -0.79364

Group 2

t i log i

2.6 0.11 -0.95861

2.8 0.09 -1.04576

3.0 0.07 -1.1549

8.4 -3.15927

2.8 -1.05309

Y, - Y, -.79364-(-1.05309

m=21 72 - =-04324
X =X, 22-28
c=Yy, — X, =-0.79364- (-0.4324x 2.2) = 0.1576
3. A student performing the simple pendulum expentnobtained the
following table, where is the time for 50 oscillations.
| (cm) |50 45 40 35 30 25 20 15
t(s) 71 69 65 61 56 52 48 43

18
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Find the acceleration due to gravity at the locabbthe experiment, using

(iii)
(iv)

the method of least squares, and
the method of group averages.

Method of least squares (taking logs)

logT = Iog[%}%logl : A plot of logT againstlogl gives slope 0.5 and
. 2z . . ( 27 jz
interceptc = log—, from which the value of is - :
Jg log™(c)
I t log | log T (logD)*(log I) |(log)*(log T)
0.50(71 -0.30103 | 0.152288 0.090619058 -0.04584 0.2966771
0.45 |69 -0.34679 | 0.139879 0.120261561 -0.04851 0.3165404
0.40 |65 -0.39794 | 0.113943 0.158356251 -0.04534 0.3387458
0.35[61 -0.45593 | 0.086360 0.207873948 -0.03937 0.3639201
0.30 |56 -0.52288 | 0.049218 0.273402182 -0.02574 0.3929817
0.25[52 -0.60206 | 0.017033 0.362476233 -0.01026 0.4273542
0.20 48 -0.69897 | -0.017729.488559067 | 0.012392 0.4694229
0.15 43 -0.82391 | -0.06550R.678825613 | 0.053967 0.5236588
Sum |-4.14951| 0.475492 2.380373913 -0.1487
Average-0.51869 | 0.059436 0.297546739 -0.01859
slope 0.429391
intercept 0.282157
2 pi 6.284
log 2 pi 0.798236
log 2 pi -inter| 0.516079
2(log 2pi-inten)1.032159 log g
10.84

Method of least squares (taking squares)

_|_2_47r2

2

7 from which g= 4z

| . A plot of T? againsi gives a line through the origin with slope

L

Tsquare | Isquare | Tsquare |

19
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50 71 0.50 2.016400.2500 |1.0082 | 2.05 0.5
45 69 0.45 1.904400.2025 |0.85698| 0.070138.45
40 65 0.40 1.690000.1600 |0.676 0 0.4
35 61 0.35 1.488400.1225 |0.52094| 2.0164 | 0.35
30 56 0.30 1.254400.0900 |0.37632| 2.50932 0.3
25 52 0.25 1.081600.0625 |0.2704 | 2.1661 | 0.25
20 48 0.20 0.921600.0400 |0.18432| 1.8264 | 0.2
15 43 0.15 0.739600.0225 |0.11094| 1.47766 0.15
Sum 2.6 11.0964| 0.9500| 4.0041
Averagel0.325 1.38705| 0.11875 0.5005[13
slope 3.78828( 10.42
intercept| 0.155857
Method of group averages (taking logs)
Group 1
L t log | log T
0.50 71 -0.3010 0.15229
0.45 69 -0.3468 0.13988
0.40 65 -0.3979 0.11394
0.35 61 -0.4559 0.08636
Sum -1.50169 0.49247
Average -0.37542 0.123118
Group 2
L t log | log T
0.30 56 -0.5229 0.04922
0.25 52 -0.6021 0.01703
0.20 48 -0.6990 -0.0177
0.15 43 -0.8239 -0.0655
Sum -2.64782 -0.01698
Average -0.66196 -0.00425
slope 0.444496
intercept 0.289991 |
g 10.38
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Group 1
L t I Tsquare
0.50 71 0.50 2.0164
0.45 69 0.45 1.9044
0.40 65 0.40 1.69
0.35 61 0.35 1.4884
Sum 1.70 7.0992
Average 0.43 1.7748
Group 2
L t I Tsquare
0.30 56 0.30 1.2544
0.25 52 0.25 1.0816
0.20 48 0.20 0.9216
0.15 43 0.15 0.7396
Sum 0.9 3.9972
Average 0.225 0.9993
slope 3.8775
intercept 1.02051
g 10.18
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Unit 3: Linear Systems of Equations

Unit Structure

3.1 Introduction

3.2 Objectives

3.3  Main Content
3.3.1 System of Linear Equations
3.3.2 Gaussian Elimination
3.3.3 Gauss-Jordan Elimination
3.3.4 LU Decomposition
3.3.5 Jacobi Iteration
3.3.6 Gauss-Seidal Iteration

3.4 Conclusion

3.5 Summary

3.6  Tutor Marked Assignment

3.7 References/Further Reading

3.1 Introduction

Perhaps in all areas of Physics, you would comesaca system of linear
equations. For example, you might want to know wgraiportions of two or

more variables you would need to achieve some Bpealues of a desired
composite product. This kind of problem could l¢a@ set of linear equations.
This unit will equip you with the necessary toalssblve a system of linear

equations. You shall come across direct methodsedisas iterative ways of
solving such problems.

3.2 Objectives
You should be able to do the following after studythis Unit:

. Write a system of linear equations in an augmentattix form
. Solve a system of linear equations.

3.3 System of Linear Equations

It is necessary for us to set the stage by gettirkmpow how to write the general
set of simultaneous linear equations.
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Let us consider a linear system of equations
By X, + 8%, +o -8y X, =0y
Ay X + 85X, + 18X, =b,

3.1
Ay X, ta, X, +---a,, X, = bn
This can be written in the form
a, &, - - - X b.l.
a Ay - Gy, X, b2
= 3.2
ay, a, - - - a, X, bn

3.3.2 Gaussian Elimination

A recall of the solution of a system of two equasiavill help in introducing the
Gaussian Elimination method.

For instance, lef2,3) be a solution setx, y). Then the following equations are
in order.

2x+3y =13 3.3
X—y=-1 3.4

You might want to verify that these equations ameststent with the given
solution set.

We could multiply equation 3.2 by -2 and add toaopn 2.3. This yields
5y =15 35

Equivalently, y = 3. Substituting this value of in either equation 3.3 or 3.4
givesx=2.

The augmented matrix representing our system ofegqumtions is
2 3|13
1 -1-1
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By Gaussian elimination, we seek to make everyydrgtow the main diagonal
zero. This we achieve by reducing 1 to zero, makseyof the first row.

2 3|13] Gy |2 313
— =
1 -1-1 0 515 3.6
Thus,
5y=15=>y=3 3.7

Substituting this in the first row gives

2x+ 3(3) =13 3.8

from which we obtainx=2.

The process of reducing every element below thenrdeigonal to zero (row
echelon form) is called Gaussian Elimination. Tbatsubstituting obtained
values to calculate other variables is called Bagkstitution.

You can see that there is nothing new about Gaus$imination. It is a process
you have been carrying out all along, but which geuer called this name.

The same process can be carried over to the cassystem of three equations.
Let (1,2-1) be a solution set.

Then, the equations below are valid:

2X+y—-z=5
X+3y+2z=5 3.9
3X-2y-4z=3

The augmented matrix is

2 1 -15
1 3 2|5
3 -2 43
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This yields (by Gaussian elimination)

2 1 -15 2 1 -1 5

1 3 2|5 W02 19 5 _5 -5

3 -2 -43| W0-eRm g 7/3 5/3 3
2 1 -1|5

0 -5 -5/-5 3.10
(iii )"=(ii )"+ @5/ 7)(iii )' N 0 O -1 10

Upon back substitution,

-10z=100r z=-1
2=-1; y+z=1=>y=2,; 2x+y-z=5=x=1

Traditionally, in Mathematics, it is usual to usdices such as,, x,, etc. instead
of x,y,z. Do you have any idea why this is so? It is beealiwe stay with the
alphabets, we shall soon run out of symbols. Baamind that not all the
alphabets can be employed as variables; as an é&amp, c is commonly used
as constants. In addition, it makes it easy to@atothe coefficients,;,a,,,
etc. withx,, x,, etc. respectively. More importantly in numericalrnwoit makes
programming easier. For instance, for our systertini@e equations, we could
use the more general notation:

a; &, A3 Ay a; &, a3 a4y
(i)=()—(ay /ap)(i) ' - '
Qy 8y Ay Ay = > 0 &y’ ay,) ay,
(iii)=()—(ay, / agy)iii) . \ .
3 33 Qg Ay o > | 0 ay' ag) ay

&, &, 3| Ay

0 a, ay|ay,

(iil )"=(ii ) +(8g | agy)(iii ) " "
51 000 ag ey

3.11

We would like to sound a note of warning here. Hiwvyou seta,,' equal to

zero? From the expression 3.Hl,'=0= aﬂ—%aﬂ. In order to avoid having

21
to deal with fractions which could lead to roundergors, it is better to put this
in the form:

(il)'=ay,(i) —ay,(ii) 3.12
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A better way of writing equation 3.11 is,

&, a, agla,| a, a, a;| ay,
By By By By | —EEEBAL—) 0 By, Ay) 8y
By Ay Ay d, | —Ol 10 g, a]a,

a; a5, Q3| Ay
0 a, ay|ay,
(iil)'=agy (i) +ap (i) o| ) 0 a33" 334" 3.11

3.3 Gauss-Jordan Elimination

This entails eliminating in addition to the entrledow the major diagonal, the
entries above it, so that the main matrix is a oled matrix. In that case, the
solution to the system is given by dividing thenedmt in the augmented part of
the matrix by the diagonal element for that rowother words, the end product
of Gauss-Jordan elimination looks like

a, O 0| a,”
0 a," 0 | a,"

0 0 ax,""

Bsa 3.12

from which it follows that

X1=a14“/a11 X, = Ay /azzm X3:a34”“/a33““3-13

Example
We shall solve problem ... using the Gauss-Jordammgition. Luckily, we have

already completed the Gaussian elimination pathsf method. We continue
from where we stopped.

2 1 -1| 5 |Q=@® LF_ 20 10 0 ]-40
0 -5 -5|-5|0==2® s g _-10 0] 20
0 0 -1010 0 0 -10 10

— =@ 520 0 0 |-20
0 -10 0] 20 3.14
0 0 -1Q 10
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It follows that,
—20x=-200r x=1; -10y=200r y=2; and-10z=10 or z=-1
3.4 LU Decomposition

Suppose we could write the matrix

all a12 a13 Ill 0 0 ull u12 l'113
a21 a22 a23 = I21 |22 0 0 u22 u23 315
I31

aGl a32 a33 |32 I 33 0 0 u33

This implies that

I111'111 =a, I111'112 =y, |11u13 = a3 3.16
ay = |21u11! Ay, = I211"12 +|22uzzv Ay = |21U13 + |22u23 3.17
a3 = |31U11! Az = |31u12 + |32uzzv Ay; = |31U13 + |32u23 + |33U33 3.18

Without loss of generality, we could set the disgjoglements of the L matrix
equal to 1. Then,

all a12 a13 1 0 0 ull u12 ul3
A,y 8, ay|l=|l,, 1 0] 0 u, uy, 3.19a

A 83 g lsy 1 1]L O 0 ug

Multiplying out the right side of equation 3.19,

all a12 a13 ull l'112 u13
a21 a22 a23 = IZlull |21u12 + u22 I21ul3 + u23 319b
aGl a32 a33 I31u11 |31u12 + |32u22 I31u13 + |32u23 + u33

From the equality of matrices, this requires that,

Uy, =y, 3.20
u,=a, 3.21
Uz =a; 3.22
321:|21u11 jlzlzazllun:am/au 3.23
a31:|31u11 :>|31:a31/u11:a31/a11 3.24
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a, = |21u12 +Uy, , OMUy, =a,, _|21u12 =a, -
3y
= Uy =a——4a,
1
Qy3 = |21u13 +Uys, OF Uy = Qp3 — I21"'13 =y
_ a,,
= Uy =8, ——a;
a;
_ a;, _|31u12 _ 1 as;
|32 = =—|8p Uy
u,, u,, 11

1 A
. =—|ag, -8
= 32 u22 |:a32 all a12j|

az = |31u12 + |32u22

Agz = |31u13 + I32uzs + Uss
= Ugz =355 — |31u13 - |32U23

You can see that we have determined all the niemahts of the two matrices

NUMERICAL COMPUTATIONS

aZl

U,
11
3.25
ay ™
11
3.26
3.27
3.28
3.29

in terms of the elements of the original matrix.

Once we have obtained L and U, then we can wrédetlginal equation

a; &, a3z X Y1
Ay Ay Ayp| X =Y
A 8y Qg | X Ys
as
LUx =y

wherex andy are column vectors.
We shall writew = Ux

Then,
Lw =y

3.30

3.31

3.32
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Example
Solve the following system of equations using tlethnad of LU decomposition.
2X+y—-z=5
X+3y+2z=5
3.33
3X-2y—-4z=3

The corresponding matrix is

2 1 -1
1 3 2
3 -2 -4
Uy =a,= 2 3.34
Uy, =85,=1 3.35
S 3.36
l,, =a,/a,=1/2 3.37
3y =2y /2y, = 3/2 3.38
Uy, =8y, _%aiz = 3_2(1) =5/2
& ? 3.39
a 1 1
Uy = azs_iais = 2_5(_1) = 2+§ =5/2
! 3 1 3
ly =— -—= =——|-2-—@1) |=-7/5 3.40
32 U, {aez a, a12j| 5/2|: 2 ( )j|
Us3 = 8g3 — |31u13 _|32u23 =—4-B/2)(-1) - (-7/5)(5/2) =1 3.41
Thus,

1 0O 0|2 1 -1 2 1 -1
1/2 1 0||0 5/2 5/2|={1 3 2 3.42
3/2 -7/5 1|0 O 1 3 -2 -4

As you can see, we got the decomposition righthasnultiplication of the L
and U gives the original matrix.

The original equation is equivalent to
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LUx=Lw=y

Lw =y implies

1 0 Oflw 5
172 1 0||lw,|=|5
312 -7/5 1||w,| |3
Solving,
w,= 5

%W1+W2 =50rw, =5—%Wl =5—%(5) =

3
2

Ux =w implies:

2 1 -11x 5
0 5/2 5/2||x,|=|5/2
0 O 1% -1

By back substitution,

5 5 5 5 5 5

— Xt =Xg=— D> =X, =———X=——-—(-1) =5

 5-X,+X% 5-2+(-1) _
2 2

1

The solution set is therefore,

x=1y=2,z2=-1.

3

5 5

5

2

NUMERICAL COMPUTATIONS

3.43

3.44

3.45

3.46

—Wl—ng +w, =3,0rw, :3+éw2 _EWl =3+Z(§j—§(5) =-1 347

5\2) 2

3.48

3.49

3.50

3.51

3.52

3.53

3.54
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3.5 Jacobi Iteration

Given the system of equations

ax+by+cz=d, 3.55
a,x+b,y+c,z=d, 3.56
a,Xx+by+c,z=d, 3.57

Solving for x, y andz, gives

1

x:a[dl—bly—clz] 3.58
1

y=—[d, -a,x-c,Z] 3.59
b,
1

z=C—[d3—a3x—b3y] 3.60

3

It is easy to see that provided the diagonal elésreme large relative to the other
coefficients, the sequence of iteration would cogee

For initial valuesx,, y, and z,, the scheme would be as shown below:

1

X = _[d1 - blyO - C120] 3.61
a
1

Y, = b_[dz —a,Xy —Cy 2] 3.62
P
1

4 = C_[ds —a;%, —b,Y,] 3.63
3

We can now write, fon = 0 and above,

Xii1 :%[dl_blyn _Clzn] 3.64

Yo = bi[dz — X, - szn] 3.65

2
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1

Za =_[d3 —a3X, _bsyn] 3.66
3

The sequence of iteration continues until ther@isvergence, in the sense that
| X0 =X | | Vs — Y, | @nd| z,,, — z, | are less than the prescribed tolerance.

Example

We shall solve the following system of equationsngighe Jacobi iteration
method.

25x+y-2z2=28 3.67
X+30y+2z=59 3.68
3x-2y-20z=19 3.69
Equivalently,

X_28—y+z _59-x-2z7 Z_3x—2y—19
T2 YT 30 T 20 3.70

Let us assume that the initial guess of solutigi@,®, 0).
Then, the first set of values for the iteration is:

x =2870+0_28_.,4, 3.71
25 25
y, =29-0=0_59_, 96666667 3.72
30 30
2, =070-19_ 19 495 3.73
20 20
,_ 28-59/30-19/20 13850 _ oo 374
25 1500( '
28 19
59- " -2x(-20)
g 25 20" _5606_ 2803 _, 45566667 3.75
30 150C  150¢ '
3x 2022 19 14860
,-_ 25 30 __ = -0.97866667 3.76
2Q 1500( '
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Table 3.1 shows the rest of the computation.

Table 3.1: Table for Jacobi iteration

n X y

1 1.12000000 1.96666667 -0.95000000
2 1.00333333 1.99266667 -0.97866667
3 1.00114667 1.99846667 -0.99876667
4 1.00011067 1.99987956 -0.99967467
5 1.00001783 1.99997462 -0.99997136
6 1.00000216 1.99999750 -0.99999479
7 1.00000031 1.99999958 -0.99999943
8 1.00000004 1.99999995 -0.99999991
9 1.00000001 1.99999999 -0.99999999
10 1.00000000 2.00000000 -1.00000000

3.6 Gauss-Seidal Iteration

You would recall that in each of the Jacobi itemasi, we calculated the value of
the variables using the old variables. The GausgaSéeration is a modification
of this method, in which the value afobtained in a particular iteration and the
old value ofzis put into the formula foy to obtain a new value fgr The new

values ofx andy are substituted into the equation for

Thus, given the system of equations

ax+by+cz=d, 3.77
a,x+b,y+c,z=d, 3.78
a;x+b,y+c,z=d, 3.79

with the initial conditionx,, y,, z,,

1
X :a[dl _blyO _ClZO]

3.80
1

Y1 :b_[dz_ale_czzo] 3.81
>
1

2= 1dy - 2% ~by] 3.82
3
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X1 = i[dl - b1yn _Clzn] 3.83
=
1

yn+1 :_[dz _azxn+1_czzn] 384
b,
1

2y = C_[d3 — X~ bsyn+1] 3.85

3

As in the case of the Jacobi iteration, the sequefateration continues until
there is convergence, in the sense that - x, |, | V... — ¥, | and|z,,, -z, | are

less than the prescribed tolerance.

n+1

Example

We shall solve the following system of equationsngsthe Gauss-Seidal
iteration method. Assume (0,0,0) is the initial ggief solution.

25x+y-2z2=28

3.86
x+30y+2z=59 3.87
3x-2y-20z=19 3.88
y -2 %t7
25 3.80
59-x, -2z,
=—3=1 32 3.81
Y 20
z _3% -2y, -19 3.82
30
x =2870+0_28_,4,
28 2 3.80
59-28_2,0 1447
y, = —22 = =1 1929333333 3.81
30 75C
3><2—8—2x71447—19 365600
z=—2> 150 __ = -0.974933333 3.82
20 37500
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You can verify the remaining calculations on T&aRl2.

Table 3.2: Table for Gauss-Seidal iteration

NUMERICAL COMPUTATIONS

n X y

1 1.12000000 1.92933333 -0.97493333
2 1.00382933 1.99820124 -0.99924572
3 1.00010212 1.99994631 -0.99997931
4 1.00000298 1.99999852 -0.99999941
5 1.00000008 1.99999996 -0.99999998
6 1.00000000 2.00000000 -1.00000000

Observation: As expected, the Gauss-Seidal iteration convefgstér than the
Jacobi iteration.

4.0 Conclusion

In this Unit, you learnt various methods for sotyim system of linear algebraic
or transcendental equations using various mettsmise were direct, while the
others were iterative in nature. You also got towrthe merits and the demerits
of direct and iterative methods. You also found thdt it is important, in
elementary row operations, to avoid having to da#i fractions, so as to keep
rounding errors minimal.

5.0 Summary
You learnt the following in this Unit:

How to write a matrix in the form amenable for pr@mming.

How to numerically solve a set of linear equations.

That the Gauss-Seidal iteration converges fasgar tie Jacobi iteration.
In numerical work, for the sake of avoiding rourglarrors, it is better to
retain fractions for as long as possible.

o Iteration is advisable only if the main diagonaktrakents are large
compared with the other entries of the equivaleatrixi

6.0 Tutor Marked Assignment

1. Solve the system of linear equatioms-y+z=-1, x+2y+2z=-4,
9x+ 6y + z=7 using the method of

Gaussian elimination
Gauss-Jordan elimination
LU decomposition

Jacobi iteration
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° Gauss-Seidal iteration

2. Solve the system of linear equatiors 2y +2z=-2, 2x+2y+z=-4,
9x + 6y + 2z = —14 using the method of

Gaussian elimination
Gauss-Jordan elimination
LU decomposition

Jacobi iteration
Gauss-Seidal iteration

7.0 References/Further Reading
Solutions to Tutor Marked Assignment

1. Solve the system of linear equatiors y+z=-1, x+2y+2z=-4,
9x+6Yy+ z=7 using the method of

(1) Gaussian elimination

Initial augmented matrix

1 1 1 -1
1 2 2 -4
9 6 1 7
First round of Gaussian elimination

1 1 1 -1
0 1 1 -3
0 -3 -8 16
Second round of Gaussian elimination

1 1 1 -1
0 1 1 -3
0 0 -5 7
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(i)  Gauss-Jordan elimination

NUMERICAL COMPUTATIONS

Last matrix for Gaussian elimination

1

1

=

0

1

0

0

First round of Jordan elimination

5

5

0

5

0

0

Second round of Jordan elimination

-25

0

0

0
5
0

(i) LU decomposition

X+y+z=-1
X+2y+2z=-4

IX+6y+z=7

The corresponding matrix is

© R R
o N R
PN R

U, =2~ 1
Up =851
Ug=a;,;=1

l,=a,/a,=1/1 =1

lyy=ay/a, =9/1 =9
Uy, = aZZ_%aﬂ =2-0@)=1

1

a
Uy = az3_faia =2- (1)(1) =1

1

3.33

3.34
3.35

3.36

3.37

3.38

3.39
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1 Ay, 1 9
|, =— -2 ==16—-——@0) =-3 3.40
32 u,, {332 a, a12j| 1{ 1 ( )}
Usg = 83 — l33Uy5 —155Up5 =1— (9)(1) — (-3)() = -5 3.41
Thus,
1 0 0|11 1 1 111
1 1 0|01 1|=|1 2 2 3.42
9 -3 1|0 0 -5 9 6 1

W got the decomposition right, as the multiplicatiof the L and U gives the
original matrix.

The original equation is equivalent kdJx = Lw =y,
Lw =y implies

1 1 0||w,|=|-4 3.44

Solving,

w,= -1 3.45
W, +W, =—4 or w, =—4-w, =—4-(-1) =-3 3.46
ow, —3w, +W, =7, 0r wy =7+3w, -9w, =7+3(-3)-9(-D =7 3.47

Ux =w implies:

11 17x] [-1
01 1|x|=-3 3.48
0 0 -5{|x| |7

By back substitution,

X, =—7/5=-14 3.49

X, + X3 =—3= X, =—3—X; =—-3—(-7/5) 3.50
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X, =—8/5=-16 3.51

X 4+ X, + X3 =-1 3.52
10

X, =—1-X, — X =—1—(—8/5)—(—7/5)=€=2 3.53

The solution set is therefore,
Xx=2,y=-16, z=-14. 3.54

Notice that, where necessary, we reverted to tastito avoid incurring
rounding errors.

2. Solve the system of equatiorgsx+2y-z=26, 3x-20y+2z=-15,
X+ 4y +15z using:

0] Jacobi iteration

(i) Gauss-Seidal iteration

Assume a starting set of valueg,=y,=z,=0 and a tolerance of
| %1 =% [£5x107°, |y, -y, [€5x10°, |z, -z [K5x107.

0] Jacobi iteration

1.040000 0.750000 1.333333
1.033333 1.039333 1.064000
0.999413 1.011400 0.987289
0.998580 0.998641 0.996999
0.999989 0.999487 1.000457
1.000059 1.000044 1.000138
1.000002 1.000023 0.999984
0.999998 0.999999 0.999994
1.000000 0.999999 1.000001
1.000000 1.000000 1.000000
(i)  Gauss-Seidal iteration

1.040000 0.906000 1.022400
1.008416 1.003502 0.998505
0.999660 0.999799 1.000076
1.000019 1.000010 0.999996
0.999999 0.999999 1.000000
1.000000 1.000000 1.000000

Observation: The Gauss-Seidal iteration schemearged faster than the Jacobi

iteration, as was expected.
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2. Solve the system of linear equatiors 2y +2z=-2, 2x+2y+z=-4,
9x+ 6y + 2z = —14 using the method of

(iv) Gaussian elimination
Initial augmented matrix
1 2 2 -2
2 2 1 -4
9 6 2 -14
First round of Gaussian elimination
1 2 2 -2
0 -2 -3 0
0 -12 -16 4
Second round of Gaussian elimination
1 2 2 -2
0 -2 -3 0
0 0 -4 -8
Answers
X 0
y -3
Z 2
(v)  Gauss-Jordan elimination
Last matrix for Gaussian elimination
1 2 2 -2
0 -2 -3 0
0 0 -4 -8
First round of Jordan elimination
4 8 0 -24
0 -8 0 24
0 0 -4 -8
Second round of Jordan elimination
32 0 0 0
0 -8 0 24
0 0 -4 -8

(vi) LU decomposition
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X+y+z=-1

X+2y+2z=-4 3.33
OX+6y+z=7

The corresponding matrix is

111
12 2
9 6 1
u,=a,=1 3.34
U, =a,=1 3.35
Ui = 85 =1 3.36
l,,=a,/a,=1/1 =1 3.37
l,,=a5/a, =9/1 =9 3.38
a
Uy, =8y, _iaiz =2-M@ =1
a, 3.39

a
Uy = a‘23_fa13 =2-0@)=1

1

1 Ay, 1 9
|, =— -2 ==16—-——@0 |=-3 3.40
32 u,, {asz a, a12j| 1{ 1 ( )}
Usg = 83 — l33Uy5 —155Up5 =1— (9)(1) — (-3)() = -5 3.41
Thus,
1 0 0|11 1 1 111
1 1 0|01 1|=|1 2 2 3.42
9 -3 1({|0 0 -5 9 6 1

W got the decomposition right, as the multiplicatiof the L and U gives the
original matrix.

The original equation is equivalent kdJx = Lw =y,
Lw =y implies
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1 0 0w -1
1 1 0w, |=|-4 3.44
9 -3 1||w, 7

Solving,

w,= -1 3.45
W, +WwW,=-40rw,=-4-w, =-4-(-1)=-3 3.46
Ow, —3W, +W, =7, OF W, = 7+3W, —9w, = 7+3(-3)-9(-1) = 7 3.47

Ux =w implies:

11 1]/x -1
01 1|x,([=[-3 3.48
0 0 -5]||x 7

By back substitution,

X, =—7/5=-14 3.49
X, + X3 ==3=> X, =—3— X, =-3—(-7/5) 3.50
X, =—8/5=-16 3.51
X + X, + X =—1 3.52
X =-1- xz—x3:—1—(—8/5)—(—7/5):1—50:2 3.53

The solution set is therefore,
X=2,y=-16, z=-14. 3.54

Notice that, where necessary, we reverted to tastito avoid incurring
rounding errors.

3. Solve the system of equatio2sx + 2y — z= 26, 3x— 20y +2z=-15,
X+ 4y +15z using:

0] Jacobi iteration
(i)  Gauss-Seidal iteration
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Assume a starting set of valugs=y, =z,=0 and a

NUMERICAL COMPUTATIONS

0] Jacobi iteration tolerance -x K107, |y, -V K107,
12, -2 107,

X y y

0.571429 -0.300000 0.800000

0.878571 -0.722857 0.805714

0.910816 -0.907714 0.913429

0.962490 -0.937833 0.980922

0.988746 -0.975586 0.982635

0.992054 -0.991511 0.992485

0.996710 -0.994481 0.998194

0.998961 -0.997845 0.998451

0.999293 -0.999221 0.999346

0.999711 -0.999510 0.999830

(i)  Gauss-Seidal iteration of |x,,—x |<5x10°, |y, -V K5x10°,

|z, -2 [£5x107°.

X y z

0.571429 -0.642857 0.942857
0.954082 -0.966735 0.995878
0.996152 -0.997279 0.999681
0.999692 -0.999783 0.999975
0.999976 -0.999983 0.999998
0.999998 -0.999999 1.000000
1.000000 -1.000000 1.000000
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Unit 4: Roots of Algebraic and Transcendental Equabns

Unit Structure

4.1 Introduction
4.2 Objectives
4.3 Main Content
4.3.1 Introduction
4.3.2 Bisection Method
4.3.3 Merits of the Bisection Method
4.3.4 Demerits of the Bisection Method
4.3.5 Newton-Raphson Method
4.3.6 Merits of the Newton-Raphson Method
4.3.7Demerits of the Newton-Raphson Method
4.3.8 Regula-falsi method
4.3.9Secant Method
4.4  Conclusion
45  Summary
4.6  Tutor Marked Assignment
4.7References/Further Reading

4.1  Introduction

In Physics, as well as in many other scientifitdie there is always the need to
find the root of an equation. You have no doubtnb&ekling such problems
from high school days. However, up till now, yowaaeen able to handle
simple cases that a calculator could be employatbtdn this Unit, you shall
learn how to handle the more complicated casesoofsrof algebraic and
transcendental equations.

4.2  Objectives

By the time you are through with this Unit, you sltbbe able to:

o Find the root of an equation or equivalently theozaf a function.
o You would also be able to compare the various nuttod obtaining the
zero of a function.

4.3 Main Content
3.1 Introduction

You are probably quite familiar with the conceptlod function of a continuous
variable f (x), continuous over a certain interval of the indejsaTt variablex.

If we equatef (x)to zero, we obtain the equatidr(x) = 0. You might even see
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the process as that of equating two different fionst f, (x) and f,(x), where the
latter is identically zero.

1.5 -

-0.5 0 0.5 1

-1.0 +

-1.5

2.0 \/

-25 -

Fig. 4.1

Figure 4.1 shows the graph df(x) = x> —3x. The x-axis can be seen as the
function f,(x)=0. Equating the two functions giveis(x) = x* -3x=0= f,(X)

. The resulting equationx® -3x =0, has two solutionsx=0 and 3 (the two
solutions are indicated in Figure 4.1). Let usdsli f,(x) down to f,(x) =-2,

the lower horizontal line. The equation becom@s 3x=-2. This is perhaps
one of the commonest quadratic equations you eveeacross. The solutions
are: 1.0 and 2.0. You can check this out on Figas well. Shiftingf,(x) lower

to — 25 would ensure that the resulting equation has ab gelutions as the
curve would not intersect the line.

The equations we have dealt with so far have beeh that could easily be
solved using analytical methods. It should be obsi you that such equations
should form a small subset of a much larger fawilgquations, the solutions of
most of which do not readily lend themselves toital methods, especially
as the power of the polynomial being equated to becomes large. Equating a
polynomial to zero gives an algebraic equationrakscendental function is a
function that ‘transcends’ the normal laws of algehs it cannot be expressed
as a sequence of the algebraic operations of adgtibtraction,
multiplication/division, an example being the squaoot of another function.
Other examples include logarithmic, trigonometeggponential functions and
their inverses. If an equation involves the trangeatal expressions, such as
exponentials, trigonometric, logarithmic functiotise equation is said to be a
transcendental equation.
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We shall assume that the function whose roots sealef (x), is a function of

x, whose zeros (or the roots of the resulting eqoatie on the real axis. That
is, the roots of the equatiofi(x) =0 are real numbers. There are a number of

methods of finding the roots. We shall now take sahthese.

3.2 Bisection Method

Fig.

As the name implies, we obtain the poimtsand x,, such thatf (x,) f (x) <0,
meaning that the value df has opposite signs at the two points, which points
to the fact that a root exists betweerand x,. We approximate this root by the
average of the two, i.e(x, +x,)/2. Let this bex,. Then we evaluaté (x;) . x,

is then combined withx, or x,, depending on the one at which the sign of the
function is opposite that of (x,) . This givesx,. This process is repeated until

f (x) attains the prescribed tolerance. We have illtestréhis in Fig ... for the
root of the equationx® —3x =0, given that the root lies betweeq= 1.2 andx,
=2.4.Thenx, =(x, +Xx,)/2 = 1.8. f(x;) >0, SO we combine it wittx, to arrive

at x, =(x, +%;)/2, and so on.

The convergence of the Bisection method is slowsteddy
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3.2.1 Merits of the Bisection Method

1. As you can see, the root bisection method always/erges. This is
because you would get closer and closer to the asothe distance
between the two points of interest is halved eanb.t

2. You can also keep a tab on the error. If the lies between the poings
andb, there will be a sequence:

b,-a, = %(bn_l -a,,)= %(bn_2 -a,,)=..= 2n1_1 (b, —a,) . But you would recall
thatb, =b anda, =a. Thus,b, -a, = bz:_?. On the other hand, we note that the

first iteration pointx, is at least as close to the root as half thevates, —a,,

le., |x3—x|sbl%a1. Similarly, for the nth iteration | x, — x[< b”;a”. But

b, -a, = b__?. Hence,| x, - x|s£(bn -a,) Slb;f _b=2 \e conclude that
2" 2 22" 2"
lb-a b-a L . . :

| X, —x|sE PTERRTE and this gives us an idea of the maximum erraun

estimate of the root.

3.2.2 Demerits of the Bisection Method

1. The convergence is generally slow.
2. You might actually be approaching a singularity; example, while
dealing with functions that are not continuous lkesw the two initial

points. A classical example is the functidiix) =E, negative forx<0
X

and positive forx > 0. As you start out with the bisection method with a
point on the right of 0 and another on the leftOpfyou are under the
impression that there should be a root in-betwéethe function is
continuous between the initial guesses, this probgeeliminated.

3. The bisection method will not work if the furantiis tangential to the-
axis at the desired root. For exampféx) = x> is tangential to the-axis

at the pointx =0 which is the root of the equatiotf = 0. The function
is positive on either side of=0, so you would not even try to get it in
the first place, as the bisection method imposesdmdition that the signs
on either side be different.

4. If one of the initial points is close to the togou would need many
iterations to arrive at the root.

5. It does not work for repeated roots. If there multiple roots within the
interval given, the scheme narrows down on onlyafitée roots.

6. It does not work for repeated roots.
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Example: Find a zero of the functionf (x) = 2x* —3x* —2x+3 between the
points 1.4 and 1.7, using the bisection method.eTHie tolerance to be

| X, — X, €107,
Solution

f (1.4) = -0.192
f (L.7) = 0.756

X, = 1.4;1.7 _ 155

f (155) = 1.4025x10™

X, = —155; L4 _ 1475

f (L.475) = —0.0588

o= 5B LATS o

You can confirm that Table 4.1 is indeed true.

Table 4.1: Table for Bisection method

n X f(x)

1 1.55 0.14025

2 1.475 -5.88E-02
3 1.5125 3.22E-02
4 1.49375 -1.54E-02
=) 1.503125 7.87E-03
6 1.498437 -3.89E-03
I 1.500781 1.96E-03
8 1.499609 -9.76E-04
9 1.500195 4.89E-04
10 1.499902 -2.44E-04
11 1.500049 1.22E-04
12 1.499976 -6.10E-05
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3.3 Newton-Raphson Method

Consider Taylor Series

n 2
%%. 4.1
To a first order approximation, we can neglect sdcorder and higher order
terms. In that case, if (x+ Ax) =0, then we truncate equation 4.1, leaving only
the first two terms on the right. Then,

f(X+Ax) = f(X)+ f'(X)Ax+

f(x+AX) = f(X)+ f'(X)Ax=0 4.2
or
AX = — f(x), 4.3

(%)

so that with an initial guess of , we obtain a better approximatiop+ Ax, i.e.,

(%) 4.4

=Xy + AX =X, —
PR T )

It is quite clear that the functiof(x) must be differentiable for you to be able
apply the Newton-Raphson method.

More generally,
f (Xi) 4 5
f'(x) '

X, =% +AX=X —

With an initial guess ofk,, we can then get a sequenceg x,, ..., which we
expect to converge to the root of the equation.

We can rearrange equation 4.5 to obtain,
fr(x)= )

X1~ X

4.6

meaning that Newton-Raphson method is equivaletdkimg the slope of the
function f(x) at theith iterative point, and the next approximationhis point

where the slope intersects theaxis. See the Fig 4.1:
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Fixia s
g"j LX)

Fig. 4.1: Graph showing the gradient relationstiplewton-Raphson method

3.3.1 Merits of the Newton-Raphson Method

1.
2.

3.

The Newton-Raphson method has a fast rate afecgance.

It can identify repeated roots, since it doasaxplicitly look for changes
in the sign of f (x) .

It can find complex roots of polynomials if ystarted with a complex
initial guess.

3.3.2 Demerits of the Newton-Raphson Method

It requires that we compute both(x) and f'(x), which makes the
scheme taxing.

Some functions might not be so easy to diffeagatin that case, it might
be useful to take an approximate differentifai,XJrAAx))(_ 1) .

It is quite sensitive to initial condition andayndiverge for the wrong
choice of initial point.

It will not work if f'(x)=0. Also, if the differential is sufficiently close
to zero, the sequence may diverge away from thig co@onverge very
slowly.

If the derivative changes signs at a test ptingt,sequence may oscillate
around a point that may not even be the root.

It cannot detect repeated roots.
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Example: Find the zeros of the functior (x) = 2x*> —3x* —2x+3 using the
Newton-Raphson method, starting witt= 1.4. Take the tolerance to be

| X, — X, [€107°,

Solution

f(x)=2x>-3x*-2x+3

f'(X) = 6x* —6x—2

X, =14

F(%) _ X f (%) = f(X)

X, =Xy —
(%) (%)

BX,” — 6%, —2X, — 2%, +3X,” +2X, — 3
6X,” —6X, — 2

4%, -3%,° -3
BX,” —6X, — 2

_4(14)° - 3147 -3
~ B(L4)? - 6(L4) -2

=15412

X, =15412, |x, —X, £ 0.1412
X, =1.5035, | X, — X, |= 0.0377
X; =15, | X; — X, |= 0.0035
X, =15, X, =% =0

3.4 Regula-falsi method

A regula-falsi or a method of false position asssi@éest value for the solution
of the equation.

You would recall that with the root-bisection mathwe knew that a root existed
betweenx, and x, if the function was smooth anfi(x,) f (x,) <0. Let us again

choose these two points as in the case of rootiinse
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Then, for an arbitrary and the corresponding

y=£06) _ 106)= (%) 40
X=X, X, =% '

gives the equation of the chord joining the poiXs f (x,)) and(x,, f(x,)).

Settingy =0, that is, where the chord crosses the x-axis,

—% 4.10

XZ
%=X ) T o)

Then, we evaluatef (x,). Just as in the case of root-bisection, if the sgy

opposite that off (x,), then a root lies in-betweex and x,. Then, we replace
X, by x, in equation 4.10. In just the same way, if thet t@s betweernx, and

X5, We replacex, by x,. We shall repeat this procedure until we are asecto

the root as desired.

Example

Find the root of the equatiofi(x) = 2x® - 3x* - 2x+ 3 betweerx = 1.4 and 1.7
by the regula-falsi method.

f (14) =-0.192, f (1.7) = 0.756

A solution lies betweer= 1.4 and 1.7. Lek, =14 and x, =17. Then,

#Xl=14—(—0192) 17-14
f(x,)-f(x) = 7 0.756-(-0.192

X3=X1_f(xl)

= 14607595
f (1.4607595 = -0.088983
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The root lies between 1.46076 and 1.7. ket 1.46076and x, = 1.7.

X, = % — f(x)—2=%__ _14607595 (~0.088983— -/~ 140076
f(x,)— f(x) 0.756— (—0.088983

= 1.485953

Table 4.2 gives the remaining iterations.

Table 4.2: Table for Regula-falsi method

n X f(x)

1 1.460759 -0.088983

2 1.485953 -0.033938

3 1.495149 -0.011985

4 1.498346 -0.004118

5 1.499439 -0.001401

6 1.499810 -0.000475

7 1.499936 -0.000161

8 1.499978 -0.000055

3.5 Secant Method

In the case of the secant method, it is not necgdsat the root lie between the
two initial points. As such, the conditioi(x,) f (x,) <0 is not needed. Following
the same analysis with the case of the regula-fiedshod,

y—f(X1)= f (%)= f(x) 411
X=X X =X '

Settingy =0 gives

X =%
X, =X, — F(X,)—"2—2— 4.12
> RRICSERICY

Thus, having found,, we can obtairx, , as,

=2,3, ... 4.13

X — X
X .. =X —f(x n_"nl
mee (n)f(xn)_f(xn—l)

By inspection, if f (x,) - f(x,,) =0, the sequence does not converge, because
the formula fails to work forx,,,. The regula-falsi scheme does not have this
problem as the associated sequence always converges
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Example

Find the root of the equatiofi(x) = 2x® - 3x* - 2x+ 3 betweerx = 1.4 and 1.7
by the regula-falsi method.

x =14,x,=1.7

f (L4) =-0.192, f (L7)=0.756

A solution lies betweer= 1.4 and 1.7. Lek, =14 andx, =1.7. Then,

X, = %, 17-14
X, =X — f(X)—2—L —=14-(-0.19
s =% - 100) f(x,)— (%) ( 2 0756~ (-0.192
= 1460759
f (x;) = —0.088983
X, = Xy — F Q) —2"%__ _1460750- (~0.088983x 200759 L7
f (%)= f(x,) —0.088983- 0.756

= 1.485953

You can continue with this scheme. Table 4.3 shilhvesother values obtained
from the operation.

Table 4.3: Table for Secant Method

n X f(x)

1 1.460759 -0.088983
2 1.485953 -0.033938
3 1.501487 0.003730
4 1.499949 -0.000129
5 1.500000 0.000000

4.0 Conclusion

In this Unit, you learnt to find the zeros of amgeliraic or transcendental
function. We explored a number of methods, andirwedl| their merits and
demerits. We were also able to estimate the maxiratar in the bisection
method.
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5.0 Summary

In this Unit, you learnt:

o to find the zeros of an algebraic or transcendduatadtion using several
methods.

o the merits and demerits of the methods.

o to the maximum error that can be incurred in usitggbisection method.

6.0 Tutor Marked Assignment

1. Find the upper bound of the error you are liklyincur in using the
bisection method in finding the root of an equatibthe two starting
points are 1.4 and 2.5 and you needed 8 stepshievacthe required
tolerance.

2. Find a root of the equatiogx®-3x*-2x-05 using the following
methods (tolerance ..... ):

o Root bisection [starting points1.9 and 2.1 (tolemn f(x)
0.001)].

Newton-Raphson starting point 2.0

Regula-falsi [starting points1.9 and 2.1].

Secant [starting points1.9 and 2.1].

Find a root of the equatior— 2sinx using

The bisection method, given that the root is betwgd and 3, with
tolerance]| f (x) < 002.

o Newton-Raphson method, with the starting point 1\8Bh tolerance
| f(x)|<10°.

o Regula-falsi [starting points1.5 and 3.0].

o Secant [starting points1.5 and 3.0].

7.0 References/Further Reading
Solutions to Tutor Marked Assignment

1. Find the upper bound of the error you are liklyincur in using the
bisection method in finding the root of an equatibthe two starting
points are 1.4 and 2.5 and you needed 8 stepshievacthe required
tolerance.

|x - x| 2'52_8 14 4207x10°

n
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3. Find a root of the equatioax® —3x*> - 2x- 05 using the following
methods (tolerance ..... ):

M Root bisection

[starting points1.9 and 2.1 (tolemn

0.001)].

Iteration No. X f(x)

1 2 -0.5

2 2.05 2.27E-02
3 2.025 -0.24434
4 2.0375 -0.11224
5 2.04375 -4.51E-02
6 2.046875 -1.13E-02
7 2.048437 5.72E-03
3 2.047656 -2.78E-03
9 2.048047 1.47E-03
10 2.047851 -6.58E-04
(i)  Newton-Raphson starting point 2.0

Iteration No. X f(x)

1 2.05 0.05

2 2.04792 0.002084
3 2.04791 3.81E-06
(i)  Regula-falsi [starting points1.9 and 2.1].

Iteration No. X, f(x)

1 2.040918 -0.075613
2 2.047610 -0.003287
3 2.047899 -0.000142
(iv)  Secant [starting points1.9 and 2.1].

Iteration No. X, f(x)

1 2.568354 8.457968
2 1.912709 -1.30566
3 2.000387 -0.49613
4 2.054121 6.79E-02
5 2.047653 -2.81E-03
6 2.047911 -1.49E-05
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0] The bisection method, given that the root is betwgé and 3, with
tolerance]| f (x) < 002.

Iteration No. X f(x)
1 2.25 0.69385361
2 1.875 -0.0331716
3 2.0625 0.29944043
4 1.96875 0.12503812
5 1.921875 0.04387042
6 1.8984375 0.00482936
7 1.886719 -0.0143012
(i) Newton-Raphson method, with the starting point 1\88h tolerance
| f(X) [ 10°.
Iteration No. X f(x)
1 2.420215 1.099376
2 1.980780 0.146526
3 1.899250 0.006165
4 1.895502 0.000013
5 1.895494 0.000000
(i)  Regula-falsi [starting points1.5 and 3.0].
Iteration No. X, f(x)
1 1.731106 -0.243250
2 1.835347 -0.095074
3 1.874712 -0.033632
4 1.888467 -0.011464
5 1.893136 -0.003858
6 1.894705 -0.001292
7 1.895230 -0.000432
(iv)  Secant [starting points1.5 and 3.0].
Iteration No. X, f(x)
1 1.731106 -0.243250
2 1.835347 -0.095074
3 1.902230 0.011077
4 1.895251 -0.000399
5 1.895493 -0.000002

57



PHY 314 NUMERICAL COMPUTATIONS

Unit 5 Finite Differences and Interpolation

Unit Structure

5.1 Introduction
5.2  Objectives
5.3 Main Content
5.3.1 Finite Differences
5.1.1 Forward Differences
5.1.2 Error in Finite Difference Table
5.3.2 Interpolation
5.2.1 Newton forward interpolation formula
5.2.2 Newton’s Backward Interpolation Formula
5.4 Conclusion
55 Summary
5.6  Tutor Marked Assignment
5.7 References/Further Reading

5.1 Introduction

Given the functionf (x) we can evaluate the values bfat differentx, thereby
representing a continuous function with a set sfidite data. On the other hand,
it could be that we have a set of data and we witkédo see if they could have
been got from a polynomial or if indeed we coulgresent the points by a
polynomial. Finite differences would help us insthegard. With the aid of finite
differences, we shall then derive Newton’s forwartd Newton’s backward
interpolation formulas.

5.2 Obijectives

By the end of this Unit, you would be able to:

o Deduce a polynomial from its difference table.

o Derive Newton’s forward and Newton's backward iptdation
formulas.

o Fit a polynomial to a given a set of data

o Interpolate and extrapolate with Newton’s forwaiffledence

o Interpolate and extrapolate with Newton’s backwaifterence

3.0 Main Content
3.1 Finite Differences

We proceed by defining the finite difference

I. First Forward difference:
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fi+1 - fi = Afi

5.1
il. First Backward difference:
f,—f =Vf
5.2
ii. First Central difference:
(fi+1 B fi—l) — 5”2 5.3
2

The table for forward difference would look likella 5.1. What do you notice
about this table? You can see thygtand the differences related to it appear on

the first line slanting down to the right.

Table 5.1: Forward difference Table

X y Ay A’y A’y
Xo Yo

Ay,
X Yi A%y,

Ay, Ay,
X, Ya A%y,

Ay, Ay,
X, Vs Ay,

AY;
X4 Ya

You can see that differences with similar subssrifirm a line slanting
downward to the right from the top.

Table 5.2 is the backward difference table.

Table 5.2: Backward difference table

X y Vy Viy Viy
Xo Yo

vy,
X, Vi vy,

VY, V7Y,
X, Y, vy,

Vy, % Y,
X3 Ys vy,
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VY,

X4 Ys

Can you spot what makes this table unique? Difiesnwith similar subscripts
form a line slanting upward to the right from thatom.

Note that for forward differencey’y, = Ay, - Ay,, or generally,

A’y = Ay, — Ay, 5.4
and for backward difference,

VY, = VY, = VY., 5.5
Of course, we can also get a table for centraédifices, Table 5.3.

Table 5.3: Central difference table

X y sy 52y 5%y
XO yO

0 Y0
X, Yi A%y,

S Vs Ay
X, Ya Ay,

S Vs ANy
X Ys A%y,

O Y,
X4 Ya

Do you notice that like subscripts appear on timeeseow.
3.1.1 Forward Differences

Suppose the given function is(x) = x* + 2x+3, then we can evaluaté at
x=012--,6, and then with the aid of forward difference, \&rat Table 5.4:

Table 5.4: Forward difference table fge x* + 2x+3

X y Ay A’y
0 3

3
1 6 2
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5

2 11 2
7

3 18 2
9

4 27 2
11

=) 38 2
13

6 51

The second forward difference produces a constloe\of 2.

A similar operation carried out on the functidé(x) = 2x will produce a constant
difference after only one forward difference.

It follows that the number of forward differenceseded to achieve a constant
value of difference is the degree of the polynopaab the constant value in the
second forward difference is the second differ¢énfighe function.

Hence,
d?f
=2
dx?

Integrating,

ﬂ= 2X+C,
dx

and finally,
f(x)=x*+cx+C,

The values of the constantsandc, will be determined from the values éfat
different values ofx.

f(0=c,=3

f@=1+c, +3=4+c =6

Thus,c, =2.

The function, therefore, is
f(x) = x* + 2x+ 3.

This was the same function we started with. Of seuif what we started with
was just the table, we could then have obtainegdhgomial the way we did.

61



PHY 314 NUMERICAL COMPUTATIONS

We could extrapolate for values ®fnot given on the table, such asfor — 20
or 7.0 or interpolate for values suchxas 3.5 and 4.2.

3.1.2 Error in Finite Difference Table

Consider Table 5.5 for forward difference tableinathich we have introduced
an errore throughx, .

Table 5.5: Forward difference table with error

X y Ay A’y Ay Ay

XO yO
AY,

X, Vi A%y,
Ay, Ay,

X, Y, A%y, Ay, +¢&
AY, AP Yy, té&

X3 A Ay, +& Ay, —4e
AY, +& Ay, -3¢

X, y,+& Ay, —2¢ A%y, +6¢
Ay, —& Ay, +3¢

Xs A Ay, +¢& Ay, —4g
Ay A® Yo— &

X A Ay, Ay, +¢
AYs A’ys

X7 Y7 A’y
Ay,

Xg Ys

The higher the degree of the difference, the mueeetror involved. Moreover,
you would notice that the error terms are the biabmoefficient of 1-¢)",
wheren is the order of the difference. Thus, for degregi$ —¢ . For degree 2,
itis 1-¢)*=1-2s+¢°. For 1-¢)® =1-3¢+3¢” +£°. But can you notice one
thing? The errors in each difference column camcgl You shall need this
property later.

Example

Find the wrong entry in the following table, givimat they represent a cubic
polynomial.
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X 0 1 2 3 4 5 6 7 8
y -2 4 34 106 238 448 754 1174 1726
Solution

The forward difference table is as shown belowranléft part of Table 5.6. The
right part of the table would have resulted if thBad been no error.

Table 5.6: Forward difference table with errorgajl without (b)
(a) (b)

From the given Table

What the table would have looked

like had there been no error

0 |2 0 |-2

6 6
1 |4 24 1 | 4 24

30 18 30 18
2 34 42 2 | 34 42

72 20 72 18
3 106 62 3 106 60

134 12 132 18
4 240 74 4 238 78

208 24 210 18
5  |448 98 5 1448 96

306 16 306 18
6 |754 114 6 | 754 114

420 18 420 18
I 1174 132 7 1174 132

552 552
8 1726 8 1726

We recall that the third difference should havenb@eonstant. This constant we
can determine by remembering that you were toldsthme of errors in a single
difference column cancel out. Thus, the sum of ¢néries in the column
representing the third forward difference remalmesdame as it would have been
had there been no error. This sum is 108. We dithdeby 6 to arrive at 18.
Each entry in that column should have been 18. btleethat the shaded entries
in the table can be traced backwards to the et@yi2 the values of. This is
the entry in error. Moreover,
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Y5 +& =240, A’y, + & =20, A’y, -3¢ =12. But A’y, = A’y,, implying that
20-£=12+3¢

Solving fore, 4¢=8 ande=2. Thus,y, + 2= 240, giving y. = 238. You can
now see that the table on the left of Table ... sthémalve been the correct table

if there had been no error.

3.2 Interpolation

3.2.1 Newton forward interpolation formula

At times, we would like to represent a set of valge,y.)with a function,
enabling us, among other things, to be able tapotate or extrapolate values

that are not in the given set.

Let the interpolating function be a polynomial giMey y(x). Then, we can write
the polynomial as,

+ o a, (X=X ) (X=X). . (X— X, 4) 5.6

y,(x) must be equal to the tabulated valueg. dthus, we require that:
Yo(yatx=x) = a 5.7
yi(yat x=x)= a,+a,(x —X)

which implies

_Yima _YiYo _ AV

= 5.8
X — X X, — X h

E

yz(yat X= Xz) = Q +a1(X2 _Xo)+a2(xz _Xo)(xz - Xl)
=, +a1(X2 =X+ X - Xo) + az(xz - Xo)(xz - Xl)
= a, +a,(X — X,) + 3, (X, — ) +2h*a, (sincex, — X, = 2h)

= yl+%h+2h2a2

Y, =Y, = Ay, = Ay, + 2h28-2
from which
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Ay, —AY, A2 Yo

="z T an
Similarly,
_ AZYO
TS

Putting these values in equation 5.6 gives

AZ
Z!z;’ (X—X,)(X— %)

A
y(x)=yo+%(x—xo)+

3

A%y,

+3!h2

(X=X )(X= X )(X=X,) +...

Now, let x=x, +rh. Then,
X=X, =Th, X=X, =X=-X,+X, —% =rh—h=(r-Dh
X=X, =X=X+X% =X, =(r=Dh-h=(r-2)h

Hence, from equation 5.11,

y(¥) = y(%, +1h) =y, + Ay, + 3l

P —1)...:|—(n—1)) Ay + ...

r(r-1) A2y + r(r-=2(r-2)
2! °

5.9

5.10

5.11

Ay, + ...

5.12
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This is Newton’s forward interpolation formula.
Note: Newton’s forward interpolation formula is for

0] interpolating the values of near the beginning of a set of tabulated
values, and (ii) extrapolating valuesya little to the left ofy,

3.2.2 Newton’s Backward Interpolation Formula

Let us choosey, (x) in the form,

Yo (X) = a5 +a (X=X,) + 8, (X=X, )(X = X 4)

ot a, (X=X ) (X=X, 4)...(X—= %) 5.13

y,(x) must be equal to the tabulated valueg. dthus, we require that:
Yo (Yatx=x,) = a 5.14
Yoa(Yatx=xX) =ag+a(X, ,—X,)

=

a = Y1~ _ Y1 = Y _ vyO 5.15

Xoa — X, Xoa — X, h

Yoo ( y at x= Xn—2) =g+ a:l.(xn—Z - Xn) + aZ(Xn—Z - Xn)(xn—Z - Xn—l)

= a, + a,(-2h) + a,(-2h)(-h)

Yo = Yn —2h%+2h2a2

yn - 2(yn - yn—l) + 2h2a2

2Yn—l - yn + 2I’]2a2
We can then write

1

a,=—>
> 2n?

(yn—2 +Y, - 2yn—1)

But V2y, =Vy, = VY, 1 = (Yo = You) = (Vs = Yn2) = Yoo + Yo — 2Yna
Hence,
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a, = Ziz vy, 5.16
Similarly,
v 5.17
a5 = 3K VY, :
a, = 1 vy, 5.18
nh"

Putting these values in equation 5.13 yields,

X— X X— X, )(X— X
yn(x): yn+( h n)vyn+( n;l(’lz n_l)vzyn+'..

N (X_Xm)(x_xm—l)"'(x_ Xl) \val
mk™

Yo e

Settingx=x, +rh, x—=x, =rh, X=X, =X=X, + X, —X,, =rh+h=(r +1)h.

Similarly, x—X, , = X=X, + X, —X,,= (r +)h+h=(r +2)h. Thus,
X=X =[r+(n-1)]h.
y(¥) = y(X +1h) =y, +rVy, +

r(rzjrl)vzy N r(r+2)(r +2)V3yn .

3!

r(r+2)...(r +(n-12))
n!
This is the Newton’s backward interpolation formula

+ ...

Ve, +...

Note: Newton’s backward interpolation formula is fo

0] interpolating the values gfnear the end of a set of tabulated values, and
(i)  extrapolating values of a little to the right ofy, .

Example

Find the cubic polynomial that fits the followingiie.

IRy
N
w
NN

X
y 3

(o]
N
\l
(o)}
w
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Solution

The forward difference table gives:

X y A A? A®
1 3

6
2 9 12

18 6
3 27 18

36
4 63

The step-sizdy, is 1. Letx = x, + rh, with x, =1.

r(r-1 r(r-D(r-2
Y(X) = y(X, +rh) =y, + rAy, + (2' )Azyo+%ﬁyo+...

r(r-2...r—(n-1) Ay 4
- o oo

+ ...

r=x-—X%X,= X-1.

Then,

y(3) = 3+(X—1)><6+WX12+ (X-D(x=2)(x=3

3!

= 34+ 6X—6+6(X* —3x+2) + (x> —=3x+ 2)(Xx—=3) +...

= BX—3+6x> —18x+12+ x> —3x*> + 2X—3x> +9X—6+...
= x*-x+3

Check: Find the value gfwhenx = 3:
y@) =3*-3+3=27

You could also get the value gf whenx is 0.95, being a little to the left of
=1.

y(3) = 95° — 95+ 3=2907375
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Let us solve the same problem with Newton’s backwarmula.

X y vy vZy Viy
1 3

-6
2 9 12

-18 -6
3 27 18

-36
A 63

r=x-x, = x—4, sinceh= 1.

r(r +1)

3 ) r(r+2)(r+2) 4
y(x) =y, +rvy, +TV Yot—— —V

3l Yot

r(r+2)...(r +(n-12))
n!

+ ...

Ve, +...

= 63+ (x—4)x 36+ (X_4)2(X_3) 184 X=AX=3X=2) o,

= 63+ 36X 144+ 9x (X? = 7x+12) + (x— 4)(x* —5x + 6)

63+ 36X — 144+ 9x% — 63x + 108+ x® —5x° + 6x — 4x> + 20x — 24

x2—x+3

Check: Find the value gfwhenx = 2:

y(3)=2°-2+3=9

You could also have foung(3.9), x = 3.9 being a point to the left gf= 4:
y(39) = (39)°-39+3=58.419

4.0 Conclusion

In this Unit, you have learnt how to carry out tieee different difference
schemes. You have also learnt how to deduce a iyl from tabulated data.
Moreover, you can now detect what and where am Ba® been introduced into
a difference table. You also derived Newton’s famvaand backward
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interpolation formulas. From the interpolation faas, you were able get
interpolating functions.

5.0

Summary

In this Unit, you leant to do the following:

6.0

Carry out any of the three difference schemes.

Derive the polynomial that fits a set of tabulatizda.

Derive Newton’s forward interpolation formula.

Derive Newton’s backward interpolation formula.

With the aid of Newton’s forward or backward formubbtain a function
that takes the values in a set of tabulated data.

Tutor Marked Assignment

Carry out the forward, backward, and the centrieténce schemes
on the set of data provided below:

2 3 4 5 6 7

12 47 118 237 416 667

Starting with the functioBx® - 8x* — 2x-12, draw up a difference table.
Deduce the equation that fits the data, startiogfthe table alone.

We have deliberately inserted an error in the dathe table below. If
the data represents a cubic polynomial, find who€hhe entries is in
error.

1 2 3 4 5 6 7 8 9

-12

-14 | 16 126 | 366 | 778 1416 2326 3556 51b4

(i)
(ii)

Find the quartic polynomial that fits the followingple.

Using the Newton’s forward interpolation formula.
Using the Newton'’s backward interpolation formula.
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7.0 References/Further Reading
Solutions to Tutor Marked Assignment

1. Carry out the forward, backward, and the centrieince schemes on
the set of data provided below:

1 2 3 4 5 6 7
1 12 47 118 237 416 667
Solution

Forward difference:

1 1

11
2 12 24

35 12
3 47 36

71 12
4 118 48

119 12
5 237 60

179 12
6 416 72

251
7 667
Backward difference:
1 1

-11
2 12 24

-35 -12
3 47 36

-71 -12
4 118 48

-119 -12
5 237 60

-179 -12
6 416 72

-251
7 667
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2. Starting with the functioBx® - 8x* — 2x-12, draw up a difference table.
Deduce the equation that fits the data, startiogfthe table alone.

Solution
0 -12

-2
1 -14 32

30 48
2 16 80

110 48
3 126 128

238 48
4 364 176

414
5 778

The degree of the polynomial is 3.

d’y
dx®

= 48: y“
X2
Hence,y=8x* + o+ dx+e
Substituting in turn three different valuesofyields c, d, e, respectively —16,
-2 and -12.
The polynomial is thery = 8x® —8x* — 2x-12.

2. We have deliberately inserted an error in the dathe table below.
If the data represents a cubic polynomial, findakihof the entries is
in error.

0 1 2 3 4 5 6 7 8 9
-12 | -14 | 16 126 | 366 | 778 1416 2326 3556 51b4
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Solution
X y Ay Ay Ay
0 -12

-2
1 -14 32

30 48
2 16 80

11— 50
3 126— 130

240 42
4 366 172

412 54
5 778 226

638 46
6 1416 272

910 48
7 2326 320

1230 48
8 3556 368

1598
9 5154

The third difference should have been a constdm. Sum of errors in a single
difference column cancel out. Thus, the sum of ¢néries in the column
representing the third forward difference remalmesdame as it would have been
had there been no error. This sum is 336. We dithdeby 7 to arrive at 48.
Each entry in that column should have been 48. btleethat the shaded entries
in the table can be traced backwards to the er@8yii3 the values of. This is
the entry in error. Moreover,

Ys +£ =366, A’y, +£ =50, A’y, —3¢ =42. But Ay, = A’y,, implying that
50-£=42+3¢
Solving fore, 4¢=8 ande=2. Thus,y, +2=2366, giving y. =364. You can

now see that the table below should have beenaitneat table if there had been
no error.
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X y Ay Ay Ay
0 12

-2
1 14 32

30 48
2 16 80

110 48
3 126 128

238 48
4 364 176

414 48
5 778 224

638 48
6 1416 272

910 48
7 2326 320

1230 48
8 3556 368

1598
9 5154

3. Find the quartic polynomial that fits the followingple.

(i)  Using the Newton’s forward interpolation formula.
(iv)  Using the Newton’s backward interpolation formula.

X 0 2 4 6 8
y 3 17 230 1230 3972
Solution
The forward difference table gives:
X y Ay A’y Ny Ay
0 8
9
2 17 204
213 583
4 230 787 372
1000 955
6 1230 1742
2742
3 3972
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The step-sizeh, is 2. Letx=x, +rh, with
X, =0, h=2. Hencey =(x—x0)/h=§

r(r-1) r(r-1(r-2)

Y(X) = y(X, +rh) =y, + rAy, + Ay, + 3 Ay, + ...
+ r(r-1..r-(n-1) Ay,
n!
Then,
X X, X X

X 5(5—1) 5(5—1)(5—2)
Y(X) =8+ —=x9+5==—x204+ x 583

2 2! 3!

X X X X
S C-9G-20-9

2

41

this expression,

31, 25, 19,

X) = —x*+
y() 32 48

Solving the same problem with Newton’s backwardrfola.

x372+...

25

+—X+8

6

X y vy vy vy Viy
0 8
-9
2 17 204
-213 -583
4 230 787 372
-1000 -955
6 1230 1742
-2742
8 3972
p= X% X8 _X_ 4 sinceh=2.
h 2 2
y(X) =y, +rVy. +%V2yn +WV3yn .
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+ ...

r(r+2)...r +(n-12))

n!

:39m+€—®xzmm_l—32——

X X X
(E - 4)(5 - 3)(5 - 2)(

+

2

Vey, +...

C-9(-3)

Xy

x 372+ ...

6

Simplifying, we yet again arrive at

31 25

y(X) = —x*+==X

32 48

3

_19..
4

+2—5x+8
6

NUMERICAL COMPUTATIONS

(
x 1742+

X_
2

@Q—@(

X
Z_2
> )

x 955+

76



PHY 314 NUMERICAL COMPUTATIONS

Unit 6: Numerical Integration
Unit Structure

6.1 Introduction

6.2 Objectives

6.3 Main Content
6.3.1 The Newton-Coates Quadrature Formula
6.3.2 The Trapezoidal Rule
6.3.3 Simpson’s one-third rule
6.3.4 Simpson’s three-eighth rule
6.3.5 Errors in the Quadrature formulas
6.3.6.1Error in the Trapezoidal rule
6.5.2 Error in the Simpson’s one-third rule
6.3.6 Romberg’'s method

6.4  Conclusion

6.5 Summary

6.6  Tutor Marked Assignment

6.7 References/Further Reading

6.1 Introduction

No doubt, before you could get to this stage ofrygudies, you integrated quite
a number of function analytically. Perhaps you wetd at the onset that the
process of analytical integration arose from dissireg the function, that is,

‘slicing’ up the function into vertical bars as sfin Fig. 5.1 and then adding
up the areas of the bars in the limit as the sivcome infinitesimally narrow.
Numerical integration goes back to this idea, aedresents a continuous
function by a discrete set of points as this isvlag the program compiler can
handle data. Numerical integration is called quagleawhen the function is a
function of a single variable. In this unit, youafihlearn several methods of
integrating a function numerically.

6.2 Objectives

By the end of this Unit, you should be able to:

. Numerically integrate a given function of a singl@riable between a
given set of limits.

. Know the merits and demerits of various numerigtdgration schemes.

. Deduce the error involved in approximating an ainedy integral with a

numerical integral.
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f !.'??«*’_.‘J

/

/

Fig. 5.1: Discretisation of the interval of intetion

6.3 The Newton-Coates Quadrature Formula

As you can see, numerical integration as the psooéginding the value of a
definite integral,

= [T (9 dx 6.1

with a<x<b (Fig. 5.1). An approximate value of the integlobtained by
replacing the function by an interpolating polynamirhus, different formulas
for numerical integration would result for diffetenterpolating formulas. In our
own case, we shall be making use of take Newtamisdrd difference formula.

We shall divide the interval [a,b] into n equal subintervals:
a=X, <% <..<X, =b, such thatx , = x; +h, where the intervalh = (b-a)/h

. Hence, we can writg =x, +h, x, =x +h=(x,+h)+h=x,+2h. It follows
therefore, thai = x, + rh. The integral becomes,

| :Ix"f(x)dx 6.2
Xo

We can writex = x, + gh anddx= hdg. x, =X, +nh.

Let us make a change of variable frano q: x= x, + gh. Then,q=(x-x,)/h.
It follows, therefore, that whenx=x,, gq=0; when x=x,=x,+nh,
g=(X,—X%,)/h=nh/h=n.
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The integral becomes

I =J.xx:+nhf(><o+qh)(hdq)=hj-onf(xo+qh)dq 6.3

Let us approximatef (x) = f(x, +qh) by the Newton’s forward difference
formula. Then, from equation 6.3, and setting f (x),

| = hjon [yo + gAY, + q(q2—1) A%y, +9@-3@-2) _1é(q_ 2) A%y, +...}dq 6.4

Integrating and putting the limits of integration,

| = Ion [yo + gAY, +_q(q2—1) Ay, +—q(q_1é(q ) Ay, +...}dq

5 2 3

_ 2 4 2 2 A4
nr{yo+gAy0+—n(2£12 3)A2yo+—n(n242) A3y0+(n— an” dn —3nj y°+...}

This is the Newton-Coates quadrature formula.

By settingn equal to 1, 2, 3, ..., we obtain different integratformulas.
6.3.2 The Trapezoidal Rule

Suppose we set equal to 1, and take the curve between two cotisequoints

as linear. Thus, we terminate the sequence onighé in equation 6.5 at the
linear term as the higher difference termsy(,, A%y,, etc.) would be zero. Then,

+h 1 h 1 h
I: F(x) dx= h(yo +§Ayoj = E(YO 50 yo)j =5 Yo+ Y1) 6.6

Similarly,

%o+2h 1 h 1 h
IW F(x)dx= h[yl +§Ay1) = E[yl 502 - yl)) =5t Y) 67

Xo+nh h
[ovian FOOOX=2 (Vo1 + ¥,)

Xo+(n-1)h

6.8
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Do these equations remind you of an old formulafioding the area of a
triangle? Yes, each of them is the area of a tiapgzhence the procedure is
known as the trapezoidal rule.

Adding all these integrals,

+nh h h h
[ F09aX=Z Yo+ Yu) + 5 (Vs + ¥+t o (Vs + i) 6.9

(Yo +¥a) +2(Ys + Yy + ot Vo)

N

3.3 Simpson’s one-third rule

We setn = 2 in equation 6.5, and assume the function &datic between two
consecutive intervals. Then,

I;°+2h f(x)dx= Zh( Y, + AY, +%A2y0) 6.10
_ 1
—Zh[yo +(Y1— Yo) +E(Ayl —Ayo))

_ 1

= h(yo 0 0) + 210, —yl)—(yl—yo)])

1
= h(yo +(y1 - yo)"'g[yz _2y1 + yo]j

= h®y, +6(Y, — Yo) +[Y> — 2Y, + ¥,))

- 2hy0+4y1+y2
3

h
::§(y0+4y1+y2) 6.11
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Similarly,

2y dx= Dy, + 4
Ix0+2h () X_E(y2+ Yo+ Ya) 6.12

Xg+nh h
oo FOVIX=2 (Y2 + 4% 5+ )

Xg+(n-2)h

6.12

Adding all these integrals, with the proviso tlmbe even (this condition is
necessary as we need two consecutive interxate, x,;, 10 x,,,),

Xo+nh h
[ FOAA= 0+ Vo) + At Yot oot Yo i)+ 2o+ Yt ot Y o)

With the aid of the summation symbol,

+nh h n-1 n-2
[T 00dx= 1Yo + o) +4 Yy +2 D] 6.13
%o 3 i=1,i odd i=2,ieven

This is Simpson’s one-third rule.
3.4 Simpson’s three-eighth rule

In this case, we set equal to 3 in equation 6.5 and take the curve eaeh
interval as a polynomial of order 3.

I:+3hf(x)dx=3.h(yo+gAyO+gA2yO+éA3yO) 6.14
The student can show that,

f:+3h F(x) dx =3£(y0 +3Y, +3Y, + Vs) 6.15
Similarly,

+5h 3h
j*‘) PO dx="-(Y3 +3Y, +3Y5 + o)

Xo+3h

6.16
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Adding all these integrals, with the proviso thdie a multiple of 3,
Xo+nh 3h
[ T00@X= 20+ Ya) #3001+ Yo oot Vo) + 2Ys + Yo o0t Vo)
6.17

This is Simpson’s three-eighth rule.

Exercise Integrate the following function ok with respect tausing the
Trapezoidal rule, Simpson’s one-third rule and Sowps three-eighth rule.

3x* +5x-1; 1< x<4; step size 0.5.
Compare your results with the exact value of thegral.
Solution:

1 3 5
x0=0,x1=§,x2=l x3=§,x4=2, x5=§,x6=3

Yo=1Yy,=275Y,=5Y,=775Yy,=11 y. =14.75 y, =19

I Trapezoidal rule

5
Integral = g(yo + Y +2), yij = 25,625

i=1

. Simpson’s% rule

5 4
Integralzg(yo +Ys+4 D Y2 D) yi] =255
i=1i odd i=2,i even

The exact integral is 25.5.

The Simpson’s one-third rule is a second order @ppration to the integral.
Since the function is quadratic, an accurate reswlbtained.

(i)  Simpson’s three-eighth rule
1 3 5
X, =0, Xl:E' X, =1 X, =5 X, =2, Xg =5 Xs =3

Yo=1Y,=275Y,=5Y,=775Yy,=11 y. =14.75 y, =19
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3h
Integral ZE[(yO + ye) +3(y1 + yz + y4 + ys) + 2y3]

= g%[(1+ 19) + 3(275+5+11+14.75 + 2(7.75)]

=255
3.5 Errors in the Quadrature formulas

We approximated the functiorf(x) with the polynomial P(x). The error
involved in the approximation is

E= [ f(xdx- [ P(x)dx 6.18

The Taylor series expansion éfx) aboutx, is, whereh = x-x,,

2

f(X) = f(x0)+hf'(x0)+% f (%) + ... 6.19
3.5.1 Errorin the Trapezoidal rule

Ix°+hf(x)dx:IX°+h[f(xo)+hf'(xo)+h—2f"(x0)+...}dx 6.20
% % 2!

In the first interval[x,,x,], trapezoidal rule gives an arézlaf (x,)+ f(x)). The

integral (integrating term by term) on the rigldesof equation 6.20 gives

h? h*
hf(x0)+7f'(x0)+ﬁf"(x0)+... 6.21

When x=x;, f(x)= f(x). Thus, from equation 6.19,

2

f(x)= f(x0)+hf'(x0)+%f"(xo)+... 6.22

Thus,

D)+ f(xl)):g{f(xm{f(xo)+hf'(xo>+%f"(xo>+..H

83



PHY 314 NUMERICAL COMPUTATIONS

2
:E{Zf(xo)+hf'(xo)+%f"(x0)+...} 6.23
The error in the first interval is therefore (512inus 5.23):

[hf(xo)ﬁ‘_2 f'(x)+ 3“; fr '(x0)+...}—{hf(xo)+ h* ¢ (%,) + 2“; fr '(x0)+...}

A Ty Ty 6.24
— )= i 1) o |

3
In the interval[x,, x,], the error in the two values 45;]—2 f'(x)+..., etc.

The total error, therefore, is
h3
E =—E[f“(xo)+ Frix)+ (%) +...+ F (X, 4)] 6.25

If the largest value of the sequence of the seddietentials at different discrete
values ofx is f'(X), then we can write,

nh? (b—a)h?

T (%) =- f"(%)

12 6.26

sincen=(b-a)/h

3.5.2 Error in the Simpson’s one-third rule
Xo+2h Xo+2h , h2 .
LO f(x)dx:_[xo [f(xo)mf (%) + 5 f (x0)+...}dx 6.27

In the first interval[x,,x ], Simpson’s one-third rule gives an area

g(f (x,) +4f(x)+ f(x,)). The integral on the right side of equation 6.R/2g

3
2hf(x0)+4h f'(%)+ h — (%) +... 6.28

When x=x;, f(x)= f(x). Thus, from equation 6.19,
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2 3

f(x) = f(x,)+hf' (x0)+h f' (x0)+h fr (%) + - 6.29

Settingx=x, + 2h, f(x)= f(x,) and

f(X,) = f(X%,)+2hf" (x0)+4—hzf (%) + 8h3 ' (%) + ..

6.30

Putting equations 6.29 and 6.30 into equation GRd equating to the
approximate integral in the interva] to x, + 2h,

g(f(xo)+4f(x1)+f(x2»
_h , h? he ..
—g[f(xm{f(xmhf (O6) + 11 06) + - f (xo)+...]

(f(xo)+2hf (x0)+4—hzf (x0)+8h (%) + - ﬂ

3
—2hf(x0)+ 4’ f(o) 8h

5 100+ f<'v> ©0) + 6.31

The error in the intervdlx,, x,] is therefore 5.28 minus 5.31:

{2hf(xo>+4—“2f (%) + 8h 3 )+ }

[th(xo)+4h f'(%,)+ 8h3

1)+ f"V)(O) }

= [5 }hs M (%) +... h” — M (x,) +... 6.32
18 15 a0

5
In the interval[x,,%,], the error in the two values is% f ™M (x,)+..., etc.
The total error, therefore, is

5
E= —%[ f M (%) + F O (x)+ FM(x,)+...] 6.33
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If the largest value of the sequence of the seddietentials at different discrete
values ofx is f ™ (%), then we can write,

5 5 5
Ee M fmg= - BN f g 0= () g 6.34
9C 2x9C 19C
sinceh=(b-a)/2n.
3.6 Romberg’'s method
Yet again, we refer to the integral,
= [*t(x) dx
You would recall that the error in trapezoidal ruidex subintervah is
_(b—a)h?
E= f'
T '(X)
Thus, for subinterval of widtlh,, the error in the integral is
_(b-a)h”
E = f! 6.35
! T (%)

For subinterval of width,, the error in the integral is,

(b-a)h,’

E.=—
2 12

B ¢z 6.36

We expect that "'(x) and f"(x) would be almost equal. Dividing equation 6.35
by equation 6.36,

2
E_h 6.37

E, h}

h,2 h,’ h,’
It follows that E, = ? E,, so thatE, - E, = ? E -E = El(?_lJ
E, E, h*

= T 6.38
Ez_E1 E(hz_J hz _hl
1

2

We also note that adding the error to the estimates the correct integrél
| =1,+E =1,+E, 6.39

from which
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Ez_E1:|1_|2

E __ W
E,-E h'-h’

From

h’ ey _
hzz_hlz(Ez El)_hzg_hlg(ll Iz)

1 =
We can therefore write,

hlz
|:|1+E1:|1+W(|1—|2)

— |1(h22_h12)+h12(|1_|2) _ I1hzz_|2hl2

hz _h12 B hzz_hl

NUMERICAL COMPUTATIONS

6.40

6.41

6.42

This is a better approximation to the integrallVhy, do you think?

Let us take a situation where=h andh, =%h. Then, equation 6.42 gives,

C1,(h/2)2 =1,h2  1,(h? /4)—1,h?

~ (h/2)2-n*  (h?/4)-h?

6.43

Multiplying through by 4, and denotirigby I (h,h/2)

|(h,h/2)=%

But I, =1(h) andl, =1(h/2)
We can therefore write,

I(h,h/2) =41 (h/2)-1(h)] /3

We can develop the scheme below by applying equétidb to the estimates of

6.44

6.45

the integral over successively halved intervals.

I (h)

I(h,h/2)

1(h/2) I(h,n/2,h/4)

I(h/2,h]4)

I(h,n/2,n/4,n/8)
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I (h/4) I(h/2,n/4,n/8)
I (h/4,h/8)

1 (h/8)

We continue the table until successive values cgevd his gives a better result
than could have been obtained with the trapezoidal

Example

Let us once again solve the probleff\(lx2 +3x+1)dx

Solution:

Let us choosén= 1.0, 0.5 and 0.25. Then, the following table oiga

I (h)= 26

| (h,h/2) = (4x 25.625-26)/3 = 25.5

I(h/2)= 25.625

I(h/2,h/4) = (4x 25.53125-25.625)/3 = 25.5

I(h/4)= 25.53125

25.5 is a better approximation to the integral thertrapezoidal method. Indeed,
in this case, it is the exact integral.

3.0 Conclusion

In this Unit, you derived the Newton-Coates quadeformula. Also, you learnt
how to carry out, with several methods, the nunag¢iittegration of a function
between a given limit of integration. Having foutine error in the quadrature
formula for the different integration methods, ywere able to link up with the
Romberg method of numerical integration.

5.0 Summary

In this Unit, you were able to:

o Derive the Newton-Coates quadrature formula, andsequently, the
different formulas for integrating a function betmeimits.
o Estimate the error in the quadrature formula fdfedent numerical

integration methods
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5.0 Tutor Marked Assignment
: 1, 5 . :
1. Integrate the function x(t)=§t +§t+2, 0<t<06, with six
intervals, using the following methods:
0] Trapezoidal rule

(i)  Simpson’s one-third rule
(i)  Simpson’s three-eighth rule

2. Evaluate the integra{lglzxsinxdx (wherex is in radians) with a step-
size of Ax= /16, using
0] Trapezoidal rule
(i)  Simpson’s one-third rule
(i)  Simpson’s three-eighth rule
7.0 References/Further Reading
Solutions to Tutor Marked Assignment
1. Integrate the functiorx(t) =%t2 +gt+2, 0<t< 06, with six intervals,
using the following methods:
0] Trapezoidal rule

(i)  Simpson’s one-third rule

Formula for Trapezoidal rule:
b Z&X n-1
jaf(x)dx=7[yo ORE ynJ

Formula for Simpson’s one-third rule:

j:f(x)dX=% Vo+ady +25y 4y,
i=1 =2

i,odd i,even

89



PHY 314 NUMERICAL COMPUTATIONS

TrapezSimpsda
0 n
Ste
p |0.1
x | f(x)
0 [2 First value of f(x)= 2 2
0.1[2.255
4 times sum O
0.22.52 33.7 |odd
Sum of intermediate values @
0.3[2.795| f (%) 28.05 Simpson’s 1-3 rule
2 times sum o
0.4(3.08 |(Trapezoidal rule) 11.2 leven
0.5/3.375
0.6/3.68 |Lastvalue of f(x)= 3.68 |3.68
33.73 | 50.58
Result
S Answer 1.686%1.686
Analytical solution:
06 1 2 ¢ 06
I(2+ 2.5t+—t2)dt: 2t+25—+—| =1.686
) 2 2 6,
(i)  Simpson’s three-eighth rule
_3h
Integral _E[(yo + ye) +3(y1 +Y,tY,+ ys) + 2y3]
_ 301
= T[(2+ 368) + 3(2.255+ 252+ 308+ 3.375 + 2(2.799)]
= 1.686
2. Evaluate the integraji:lzxsinxdx (wherex is in radians) with a step-

size of Ax= /16, using

0] Trapezoidal rule
(i)  Simpson’s one-third rule

Working with radians

Trapezoi| Simpson’s
dal 1-3
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X XSinx
0 0 First value of f(x)= 0 0
0.1963| 0.0383
5 06
4
tim
es
su
m
0.3926| 0.1502 10.119577| of
99 79 35 odd
0.5890| 0.3272| Sum  of intermediate| 8.64790
49 58 values of f (x) 81
2
tim
es
su
m
of
0.7853]| 0.5553 3.5881194| eve
98 6 68 n
0.9817| 0.8162
48 93
1.1780| 1.0884 1.57079 | 1.5707963
97 2 Last value of f(x)= 63 28
1.3744| 1.3480
47 37
1.5707| 1.5707
96 96
10.2187 | 15.278493
04 15
1.00321 | 0.9999748
Answer 88 3
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Unit 7: Initial Value Problems of Ordinary Differe ntial
Equations

Unit Structure

7.1  Introduction
7.2  Objectives
7.3  Main Content
7.3.1 Reduction of a higher order ODE to a systéfirsi order ODE
7.3.2 Methods of Solving First Order Ordinary Diffatial Equations
7.2.1 Picard’s Method
7.2.2 Euler Method
7.2.3 Modified Euler Method
7.2.4 Runge-Kutta Methods
7.3 Fourth-Order Runge-Kutta Scheme for a Systefrhode Equations
7.4  Conclusion
7.5 Summary
7.6 Tutor Marked Assignment
7.7 References/Further Reading

7.1 Introduction

Ordinary differential equations abound in Physidss is because we often have
to deal with a rate of change of function of a Engariable. It could be a time-
rate of change, say velocity or acceleration, ooitld be a spatial rate of change
as you would expect from the variation of tempematwer a metallic bar heated
at one end at any particular fixed instant of titdalike analytic differentiation
of a function, which is most times achievable, ldrger number of functions do
not lend themselves to analytical integration. \Weré¢fore have to resort to
numerical integration when confronted with suchchions. In this Unit, you
shall learn how to numerically integrate a functadra single variable.

7.2 Objectives

By the end of this Unit, you should be able to:

. Write annth order ordinary differential equation in termsndirst order
ordinary differential equations.

. Solve a first order ordinary differential equation.

. Solve a system of first order ordinary differenggluations.
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7.3 Reduction of a higher order ODE to a system dirst order
ODE

Every ordinary differential equation can be putha form

Y flyx=y 7.1
dx

or a system of such equations. As an example, tia&e=quation of simple
harmonic oscillation,

X'+o’x =0 7.2

where o is the angular frequency of oscillation.

Let

z=X 7.3
Then,

Z'=-w’X 7.4

The last two equations form a system of ordinarffetgntial equations.
Likewise, anth order ordinary differential equation can be tentas a set af
ordinary differential equations. Thus, it suffi¢essolve the ordinary differential
. dy
equation—== f(y,x) .
dx
Example

The Henon-Heiles system of equations leads to @hawition. We can reduce
the two second-order differential equations to fdust order ordinary
differential equations. We can then solve the aqoatwith the methods to be
learnt later in this Unit.

The Henon-Heile’s Hamiltonian is,
p+p, o +a,’
2 2
The resulting equations are,

3

1
H= +0,°d, -3%

dZQl

a2 = _(q1 + 2q1q2)
d2
dt‘iz = —(q, +20,° —Q,2) =—2(1+ 20)

Each of these equations has been broken up intofitsio order ordinary
differential equations:
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dg _
gt P,
d
a P, = _(q1 + 2q1q2) = _2(1"‘ 2q1)
dg, _
at P,
d

a P, = _(qz + 2q12 - q22) = _2(1+ 2q1)

3.2 Methods of Solving First Order Ordinary Differential
Equations

We shall now take a look at the various methodsobfing a first order ordinary
differential equation.

3.2.1 Picard’'s Method

Given the ordinary differential equation

Y_txy) 75
dx

we can write

dy= f(x,y)dx 7.6

Integrating both sides,

[Tdy=]"f(xy)dx 7.7
Yo X0

Then,

y:yO+J'XX f (X, y)dx 7.8

We take, as a first approximation to the solutigr), the value ofy when
X=X,, thatis,y,. Then,

y1=y0+IXz f (X, y,)dx 7.9
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The next approximation tg that is, y,, is obtained by substituting under the
integral.

Y, =Y, +I; f(xy,)dx 7.10

Thus, we obtain a sequence of approximationg tehich would converge to
the solution of the ordinary differential equatiomovided the functionf (x,y) is
bounded in a region abowt,, y,) and satisfies the Lipschitz condition:

[ f(xy)-fTXYEM|y-Y| 711
whereM is a constant.

Obviously, a drawback to this method is that mses, the function has to be
a simple function that can be easily integrated wishave discussed before,
only a limited class of functions satisfies thisiddion.

3.2.2 Euler Method

We discretize the ordinary differential equatioh &s

y4+ —_ y
#= f(y,,x;) 7.12
From which it follows that

Yin =Y; +AX- f(yjixj) 7.13

This method is self-starting, but is so low in aeqy that it is rarely ever used
in serious computational work.

Example: With the aid of the Euler method, calculaig0.8), given the
differential equation

%’=x+y; y(0) = 0; with h= 02
X

Solution:
Yia=Y; +h-f(y;,%;)

]=0; ¥,=0,%,=0; f(yo,x0)=0+0=o;
Vi =Yo+h-f(y,,%)=0+02*0=0
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j=1
y,=0,x, =02; f(y;,x)=0+02=02; y, =Yy, +h- f(y,,x)=0+02* 02= 004

j=2;

Yy, = 004,x, = 04; f(y,,%,) = 004+ 04 = 044,
Vs =Y, +h- f(y,,X,) = 004+ 02* 044=0.128

3.2.3 Modified Euler Method

We could write equation 7.1 as

dy
- = f(x,
™ (x,y)

dy = f(x, y)dx
Integrating,
Vo= ¥o = [ f(x y)dx
Rearranging and generalizing,
Vi =Y, + ], f(xy)dx
With the aid of the trapezoidal rule, we can witfte last equation as
ia = Yy DL+ (X0, 7.14
Indeed, it is best to write equation 7.14 as
(i+1) _

h i
y]'+1 - yj +E[f(xj’y]')+ f(Xj+l’yJ(-21)] 715

This is the modified Euler method. It is an imglecheme.

The starting valug/ is obtained by an implicit formula, e.g., the EdlEmula.
Thus, the scheme would look like (for 0),

. h
i=0 y®=y, +§[f(xo,yo)+ f (%, yi)]

. h
i=1 yl‘z’=yo+5[f(xo,yo)+f(x1,yf”)]
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This is continued until convergence is achieved.
Example

Using the modified Euler method, fing(0.2), if y—(x+y)=0, given that
y(0) =1. Take a step length of 0.1 and the tolerandeyés— y*™ | < 0.0001

Solution

X =0,y,=1

Using Euler’s formula,

v =y, +hf(x,,Y,)=1+01x (0+1)= 1.1

We now apply the modified Euler formula.
. h
=0 y1(1) =yo+§[f(xo’YO)+f(x1’y1(0))]

=1+ 0090+ + (0.1+11)]=1.11

. h
i=1 yl‘z’=yo+5[f(xo,yo)+f(x1,yf”)]

=1+ 009(0+1) + (0.1+111)]=1.1105

|y - y? |=]1.11051.11= 0.000%

=2 Y = Yo+l v+ 106, yi2)]

=1+ 005(0+1) + (0.1+1.1109]= 1.110525

|y® - y? |=]1.1105251.1105 = 0.000025

With the tolerance satisfied, we can now proceeggetoy, , that is, y (0.2)
Using Euler’s formula,

vy =y +hf(x,y,) = 1.110525+ 0.1x (0+1.110525 = 1.23155

We now apply the modified Euler formula.
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. h
i=0 ygl) = yl+§[f(X1,y1)+ f(xz,yéo’)]

= 1.1105+ 005(0.1+1.1105 + (0.2 +1.23155] = 1.242603

) h
i=1 y®@= y1+5[f(x1,yl)+ f(X,, Y]

= 1.1105+ 005(0.1+1.1105 + (02 +1.242603] = 1.243155

|y —y§ |= |1.2431551.24260B= 0.000552

. h

=2 y§3) =Y +§[ f (Xl’ yl) + f (Xz’ yf))]

= 1.1105+ 009(0.1+1.1105 + (0.2 +1.243155] = 1.243183
ly® —y? |=]1.2431831.24315%= 0.000028

3.2.4 Runge-Kutta Methods

We recall that Taylor’s series is given as

F(x+AX) = (x) + f'(x)Ax+LI(AX)2+,,,

This we can write as (if we séti(x+Ax) =y,, f(x)=y,) andAx=h)
, f"(x)h?

Y, =Y, +hf (X)+T+"'

A first order approximation to the series is

Y, =Y, +hf'(x) 7.16

This is theRunge-Kutta first order method, which you would also notice is
the Euler method.

On the other hand, we recall equation 7.14,
h
Yia=Y; +E[ fOX,y)+ F(X00 Y]
Writing y,,, =y, + hf(x;,y,) in equation 7.14 (the modified Euler formula),
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Via = ¥y +oLF 0 Y+ (XY, Ry )
Let us set

hf(x;,y;) =k

and

hf (X1, y; +hf(X;,y;)) =hf (X, y; +k) =k,

Then, we can write

1
Yia =Y, +§[k1 +K,] 717

This is thesecond-order Runge-Kuttaformula.

Example

Find the value oy atx = 0.2 if y'+2y =0; y(0) =1, step-length 0.2.

Solution

h
Yia =Y, +§[f(xj’yj)+ f (X0, Y, +0F(X,y))]

h
Y1=Yo +E[ f (XO' yo) + f(X1’ Yo+ hf (Xo’ yo))]

Let us set

hf (X, Y,) = k, = 02(-2y,) = 02[-2(1)] = -04
and

hf (x,, Y, +k,) =k, = 02[-2(1- 04)] = - 024

Then, we can write

1
Yia =Y, +§[k1 +K,]

99



PHY 314 NUMERICAL COMPUTATIONS

Y. =Yo +%[kl +k,] = 1+%[—0.4— 024]

Hence,

y(02) = 068

The formula for thehird-order Runge Kutta method is
1
Yia =Y, +E(k1+4k2+k3) 7.18
where
k, =hf(x;,y;)

h k
k, = hf(xj +5 Yo +Elj

k, = hf(x, +h,y, —k, +2k,)

Example

Using the third-order Runge-Kutta method, find #adue of y when x= 0.2,
given thaty'= x-y, y(0) = 2, with step length 0.1.

Solution
j=0

K, = hf (X,,y,) = 0.1x (0— 2) = —0.2

h k
k, =hf| X, +—,y, +—
2 (0 2Yo 2)

= 0.1x ({O+ %} - [1— %D = 0.1x (.05- 0.9) = -0.085

ks = hf(x, +h,y, -k, +2k,)

= 01x f (0.1 2—(-0.2) + 2x (-0.085)) = 01x f (0.1, 203) = —0.193
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Y. =Y, +%(k1 +4k, +k;) = 2+%[—0.2+ 4x(-0.085 +(-0.193]= 1.877833

j=1

k, =hf(x,Yy,) = 01x (01-1.877833=-0.177783

h k
k, =hf| X +—,y, +—
2 (1 2Y1 2)

= 0.1x q 01+ %} - {1.877833— 017—27783D =-0.163894

K, = hf(x, +hy, -k, +2k,)

= 01x f (02,1.877833- (-0.177783 + 2x (-0.163899) = 0.1 f (02, 1.727829 = —0.152783

1
Y, = y1+6(k1+4k2 +k3)

1877833+ %[—0.177783+ A% (~0.163894 + (~0.152783] = 1.713476

Fourth Order Runge-Kutta Method

The formula is , wherh is the step-length,

1 1
Yin=Y; + h{g f (yj an)+§ f (y*j+1/2’xj+1/2)

1 1
+§f(y**j+1/2’xj+l/2)+gf(y*j+1’xj+1):| 7.19

The computation follows the order
(M) f(y;.x)
7.20
.. h
(”) X2 = X +§
7.21
h
(iif) Y* w2 =Y, +§ f(y; %)
7.22
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(iv) y**j+1/2 =Y, +g f (y*j+1/2'Xj)
7.23

(V) Y=Y, +h-f(y**.1,.%)
7.24

(vi) Evaluatey,,, with equation 7.19.

Another, equivalent, computation scheme is asvdlo

M flyx)
7.25

(i) k; =hf (X5, o)
7.26

1 1

@)k, =hf(x0+§h, y0+§kl)
7.27

: 1 1

(|V) k3=hf(XO +§h,y0 +§k2j
7.28

(v) k, = hf (Xo +h,y, + k3)
7.29

(vi) Kk =%(kl+2k2 +2k; +k,)
7.30

(vi) Evaluatey,, =y, +k

Example: Solve the following ordinary differential equatiaising the Runge-
Kutta Fourth order method.

%’:y+x; y(0)=1. Findy at x=02
X

Solution:
X =0 ¥=Lh=02 f(X,,Y,) =1

k, =hf(X,,Y,)=02x1=02

k, = hf(xo +%h, Yo +%k1) =02x f (0.11.1) = 0.2400
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k, = hf(xo +%h, Yo +%sz = 02x f (0.1112) = 0.2440

K, = hf(X, +h,y, + K, )= 02x f (021.244) = 0.2888

k= %(kl + 2k, + 2k, +k,)

= % (02+ 048+ 0.488+ 0.2888 = 0.2428

Hence,y, =y, + k=1.2428

The fourth-order Runge-Kutta method is the mosteate of the Runge-Kutta
methods.

3.3 Fourth-Order Runge-Kutta Scheme for a System ofThree
Equations

We shall solve the Lorenz system of equation withfourth-order Runge-Kutta
method. The equations are:

dx
a 10(y-x) = f,(x,y,2)

%z (100x-y-x2) = f,(X,Y,2)

3—f = (xy—22) = £,(x,Y.2)

Let us make use of the set of equations givenlfi-7.24.

There will be three,’s, one each for three variables, thigés and so on.
kix = hf,(to, X0, Yoi Z0)
kly = hfz(tho' y01zo)

Ky, = hf;(tg, X5, Yo, Z)

1 1 1 1
k2x = hfl(to +§h,XO +§klx’y0 +§kly,zo +§k1ZJ
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1 1 1
k3y = hfz(to +§h,XO +§k2x'y0 +§k

2y

1 1 1 1
k3z = hfg(to +§h,XO +§k2x'y0 +§k2y,20 +§k22j

Kox = hfl(tO +h, % + Ky, Yo + ksy’zo + k3z)

Ky = hfl(to +0, %, +Kay, Yo + k3y7ZO + ksz) K = hfl(to +0, %, + ks, Yo + k3y7ZO + ksz)

k, = %(klX + 2K, + 2K;, +K,,)
1
k, = E(kly +2K,, +2k;, +K,,)

k, = %(klZ +2k,, + 2K;, + k,,)

Hence,x, = x, +K,
Y: =Y, tk,

zZ, =2,+Kk,

4.0 Conclusion

In this Unit, you got to know how to reduceth ordinary differential equation
to n first order differential equations. In particulggu were able to see how a
pair of second-order ordinary differential equasiomere reduced to four first-
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order differential equations. You also learnt vasanethods of solving a first
order ordinary differential equation.

6.0 Summary

In this Unit, you learnt how to:

o Reduce amth order ordinary differential equationridirst order ordinary
differential equations.

o Numerically solve a first order ordinary differealtequation.

) Numerically solve a system of first order ordindifferential equations.

6.0 Tutor Marked Assignment
1. Given that%: xy?; y(0) = -1, evaluatey(0.2) (step length 0.2), using
the

0] Modified Euler method.
(i)  Fourth order Runge-Kutta method.

2. With a step length of 0.1, find the valueyofat x = 0.2 given the ordinary

differential equation%’ -y+x=0; y()=0.
X

0] Second-order Runge-Kutta method

(i) Fourth-order Runge-Kutta method.

7.0 References/Further Reading

Solutions to Tutor Marked Assignment

1. Given that%: xy’; y(0) = -1, evaluatey(0.2) (step length 0.2), using
the

(i)  Modified Euler method.
(iv)  Fourth order Runge-Kutta method.

Solution
XO = O, yO = —1
0] First using Euler’s formula,

YO = vy +hf (X, ¥o) = Yo + %Yo =—1+0(-1)%= -1
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We can now apply the modified Euler formula.
120 ¥ = Yo+ 2010 y)+ (6, YO

= 1+ 0.4[(0x (-1 + (02x (-1)?)] = - 098
e LR AR IR

= —1+04(0x (-D? + (0.2(-098)*)] = —0.980792
1y® -y |= |- 0980792 (-0.98) =.000792

A LICR ORIV

= —1+04[(0x (-1)? + (0.2(-0.9807932] = —0.980761= 1.110525
|y® -y |=|-0.98076% (-0.98079% = 0.000031

Hence,y(0.2) = 0.980761
(v)  fourth-order Runge-Kutta method.

X, =0, ¥, =-1 h=02 f(x,y)=xy

k, = hf (X, o)

1 1
k2 = hf(XO +§h, Yo +§kl)

1 1
k3 = hf(XO +§h, Yo +§k2j
k, = hf(x, +h,y, +k;)
1
ook :E(k1+2k2 + 2k, +k,)

Hence,y, =y, +k
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x(0) 0 -1 y(0)
Step-size 0.2

Ky 0 -1 0

k, 0.1 -1 0.02

K 0.1 -0.99 0.0196
K, 0.2 -0.9804 0.03845
k 0.01961
A -0.98039

2. With a step length of 0.1, find the valueyofat x = 0.2 given the ordinary

differential equation:(cl:—y -y+x=0; y()=0.
X

(i)  Second-order Runge-Kutta method
(iv)  Fourth-order Runge-Kutta method.

Solution

0] Second-order Runge-Kutta method

ky =hf(x;,y;)= 01X, +Y,)=010+0)=0

k, =hf(X;,.,y; +k))= 01(-x, Y, +0) = 01(-01+0) =-001
Y. =Y +%[kl +K,]1=Y, +%[kl +Kk,] = 0+%[0— 001 =-0.005
k, = hf(x;,y;) = 01(-x, +Y;) = 0(-0.1- 0.009 = -0.0105

k, = hf (X1, ¥, +k;) = 01(-02,(~0.005- 0.0105)

- 01(-02-0.0155 = —0.02155
1 1
Yo=Y +§[k1 + kz] =Y, +§[k1 + kz]

=-0.005+ %[—0.0105— 0.021583 =-0.021025

(i)  Fourth-order Runge-Kutta method.

X,=0 Yo =0 x =0.1 y, =-0.00517
k, 0 ky -0.0105171
K, -0.005 K, -0.0160429
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Ky -0.00525 Ky -0.0163192
K, -0.01053 K, -0.022149

k -0.00517 K -0.0162317
Y -0.00517 Y, -0.0214026

Elements of C++ Programming

In this chapter we take a look at C++ programmisgaatool for numerical
analysis. This should not be taken as a substitutea good book on C++
programming. Indeed, space would only permit usgat just what it would take
you to do write scientific programs.

As is usual with most books on C++ programming leage, it would be in order
to start with a simple program, the ‘Hello World.’

#include <iostream>
using namespace std;

int main ()

{

/I Program to write ‘Hello World’ on the screen.

cout << “Hello World™;
return (0);

}

We shall now examine this program with a view toilarizing you with the
simplest program in C++ language.

#include <iostream>

A line that begins with # is a directive for theeprocessor. Including this file,
which is the iostream standard file. This line és@ssary as we shall be making
use of input or output (in this particular case, standard output streaoqu.
The symbol << is the insertion operator. In thegpam, the insertion operator
inserts the variable “Hello World” into the outmiteamcout

using namespace std;

namespace contains all the elements of the sta@ardibrary. This expression
enables us to use the elements of the standardil@aty.

int main ()
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This is the statement that begins the definitiorthef main function. All C++
programs are executed beginning from this statenfémits, it is essential that
every C++ program has a main function.

After the int main () statement, the bracket opens with ‘{‘signifying the
beginning of the codes within the main functionisTénds with an ‘}’ after the
return (0); statement.

I/l Program to write ‘Hello World’ on the screen

Any statement that begins with two slashes (/aleh as a comment by the
compiler. Comments are used to make some ‘thouwegiges of a program. You

would be surprised a program you wrote a few wéakk might not make any

sense anymore if you never put enough comments.

cout <<” Hello World™;

Note that apart from the #include statement andnain (), every statement in
this program ends with the semi-colon.

The basic ideas of C++ programming can be listedeuthe following broad
headings:

Declaration Statements

Array Dimensioning

Input / Output

Arithmetic / Logical Expressions
Looping

Subroutines and functions

We shall however discuss first the variables artd tigpes. There are several
types: integer, floating point and string.

An identifier is required by every variable. Thisstthguishes it from other
variables. An identifier contains one or more digiétters and single underscore
characters. Usually, it begins with a letter, alihio it might begin with an
underscore sign, where it does not clash with theserved for the compiler.

Basic Data Types

It is necessary at this point to mention that tlyge (4 bits) is the unit of
representation in C++. A bit is the smallest. T¢as store a single character or
a small integer. Integers could be signed or uresigA byte can store an integer
between 0 and 255 if it is an unsigned integer.&signed integer, it can store
between —128 and 127, both limits inclusive in bxbkes.
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Table 1 shows each data type, its size and theerahdata that it can take. The
size and range are for a 32-bit system.

Table 1: Data types in C++

Name | Description Size | Range
(bytes)
Char A character or smalll Signed: -128 to 127
integer Unsigned: 0 to 255
short | A short integer 2 Signed: -32768 to 32767
int Unsigned: 0 to 65535
Int An integer 4 Signed: -2147483648 |to
2147483648
Unsigned: 0 to 4294967295
long int | A long integer 4 Signed: -2147483648 |to
2147483648
Unsigned: 0 to 4294967295
Float A floating point number 4 +/-3.4x10*'-38
double | A double precisiond +/-1.7x10"/-3%8
floating point number
long A long double precision8 +/-1.7x10"/7308
double | floating point number
wchar_t| A wide character 2 or4 1 wide character
Bool A Boolean value. It takesl True or false
true or false

A variable has to be declared to be used in C++s Ehachieved by simply
stating the type of variable it is. For exampld, lang, char, short, long (long
int), short (short int), float, bool, long doubla, wchar_t. This is followed by
the variable name. For example,

int number;

or

float age goat;

Variables of the same type could be declared uki@game statement, e.g.,
long number, year;

Moreover, the default is signed. For an unsignedaisée, we would need to
declare it so. For example,
unsigned distance;

An exception is char. Char has no default; as symi have to declare it signed
or unsigned.

Variable names are case-sensitive, meaning thgbyHiamot the same variable
as happy.
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Strings

These are non-numeric values that are longer ttsangée character. It is not a
fundamental type. This necessitates including delkr file <string> along with
<iostream>.

The Span of a Variable

A variable in a program could be local or globabchl variables are declared
within a block or a function. Their scope is lindtéo the block or the function

usually delineated by {...}. Outside the block or fiuection, the variables are
of no relevance. As an example, variable chalk reésvance throughout the
function main (). So does variable chalk_dust,dnatik _dust has relevance only
within the function minute.

int main ()

float chalk;
{

// Program to demonstrate span of variable

int minute ()

{

I/l Span of chalk_dust is only within the functiomuote.
float chalk_dust;
cout <<chalk_dust;

}

return (0);
}
Initialising a Variable

We can fix the initial value of a variable aftemight have been appropriately
declared, as in:

int counter;
counter = 5;

On the other hand, we could also set the initiblevaf a variable as we declare
its type, as in:

int counter = 5;
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Another way of initializing a variable is by wrignthe initial value in
parenthesis:

short counter (5);

Strings
These are variables that store non-numeric vabreger than a character.

To be able to make use of strings, the programneerddvneed to include the
standard header file <string>:

#include <iostream>
#include <string>
using namespace std;

int main ()

{

string My_Name;
My_Name = Johnson;
cout << My_Name,
return O;

}

Constants
A constant, as the name implies, has a fixed value.

Constants can be further divided into three categokiterals, defined constants
and Declared constants.

Literals state the specific values within a progrdimese can be further divided
into three: integer numerals, floating point nunsheBoolean literals and
character and string literals.

Integer numerals identify integer decimal, octag® 8) or hexadecimal (base
16) values. The last two are expressed, respegtivglputting a suffix 0 and
0x. Thus, decimal 750 is equivalent to 01356, ax@e@ in hexadecimal.

Integer numerals are by default integers (int), Wwatcould still declare them
unsigned, long or unsigned long by appending tipecgiate letter (I, u or ul),

where it is immaterial whether the letter is uppeldower case. For example,
750ul.
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Floating point numbers are numbers with decimaid,@uld be with or without
exponents. Examples include 4.1239, 6.64e-34. iRpabint literals are of type
doubleby default, but we can still express a floatingnpéteral as float or long
double. In this case, respectively, we appendl. For instance, 4.1239f. The
appended symbol could be lower or upper case.

Boolean Literals have only two values: true anddalTheir type is bool. For
example, Bool Decision.

Character and String Literals are non-numericaktats. Single characters are
enclosed within single quotes, e.g., ‘. A strilgyexpressed within double
guotes, “Hello World” for example.

Declared Constants are constants the user dechsites.the declaration, the
values of the constants remain unchanged as thkies cannot be modified.

For example,
const int Number.

Defined Constants are constants the user might quaieel often in a program. A
good example is the number pi. Thus, we could égpiras follows:
#define pi = 3.142

As is usual with all the lines starting with thetdtasign (#), this is a command
for the preprocessor.

Operators
Assignment operator

This is the operator that assigns a value on ttg of the equality sign to the
variable on the left. Thus,

inta =3;

float b = 4.28;

Arithmetic Operators

These are the operators for carrying out the uaudgdmetic operations. They
are:

Addition +

Subtraction —

Multiplication *

Division /

Modulo %
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Increase and Decrease

The increase operator is ++ and not +, while theredese operator is --. Thus,
a++ would mean increase a by 1, or a = a + 1. ¢tidd also be written in a
compound way as a += 1. Likewise, decrease byhlvimuld be written as b--
or b-=1.

We could also write ++a or — b. The difference bdimat in the first case treated
in the above paragraph, the number is incremerftediahas been used, while
in the second case, the increment is done beferaumber is used. Thus,

a=2;
d=a++;
cout <<d;

the output is ‘d = 2’. In this case, a will becofe

a=2;
e = ++a;
cout <<e;

the output is ‘e = 3'. In this case, a is also &duse the increment had been
made before the number was stored as variable e.

Relational Operators

The equality operator for comparing two valuefiessdouble equality sign. Thus,
if we would inquire whether variable r is equahwm, we would write

r = =
Note that as a relational, this could be true taefa

The relational operators are:

Equal to =

Not equal to =

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to  >=
Logical Operators

The (Boolean) logical operators are:
NOT !

AND &&

OR ||
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The NOT operator changes True to False and vicaver

A 1A
True False
False True

The AND and the OR operator are used when therevarexpressions that will
yield a single relational result. The NOT is trugyoif the two expressions are
true. It is false otherwise.

AND operator

A B A&&B
True True True
True False False
False True False
False False False

The OR operator is true if either expression ig.tttis false if both are false.
AND operator

A B A&&B
True True True
True False True

False True True
False False False

The Conditional Operator

The conditional operator is represented by the sybhus,
a==Db?v:wreturns v if ais equal to b, butires w if a is not equal to b.

Explicit Type Casting Operator

This allows us, for example to utilise the integart of a number that has been
declared as a floating point number:

int Johns_Age;

Float JohnsDecimal _Age = 25.36;

Johns_Age = int JohnsDecimal_Age = 25.36;
cout << Johns_Age;

This program writes 25 years as Johns_Age.
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Sizeof()

The operator Sizeof() takes one parameter and geelength (in bytes). Thus,
Sizeof(char) is 1, as a character variable hasgtheof one byte.

Basic Input and Output Statements

The basic output statement is the cout. It outpuats the screen. This, as we
have seen all along, could be used if we inclutiecheader file <iostream>. As
said earlier << is the insertion operator.

The basic input statement is the cin. It takesinpet from the keyboard. The
syntax is cin >>, where >> is the extraction oparatin extraction can only take
one word, because it stops whenever a blank sppeaes. To get an entire line,
we use the getline function.

In the example below, String_var will be given aarh writing a string with the
getline function”. Later, the String_var will bevgn the string “It sure is”. You
will notice that String_var would have been repthbg the new string.

#include <iostream>
#include <string>
using hamespace std;

int main ()

{

string String_vatr,

cout <<*What am | doing?”;
getline (cin,String_var);
cout <<*That could be fun”;
getline (cin, String_var);
return (0);

}

The output will be:
What am | doing?
| am writing a string with the getline function.

That could be fun
It sure is
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Writing into a file

We would like to write some of our results in artpui file. We proceed by
opening a file, for instance, Arearray.txt. Butaitow us to do this we need to
put

Ofstream myfile;

ofstream myfile;

myfile.open ("Arearray.txt");

float Area[5];

float s;

float a[5] ={2.0, 1.5, 4.1, 3.2, 2.3};

float b[5] = {2.0, 4.2, 3.5, 1.9, 1.1};

float c[5] ={2.0, 3.3, 2.4, 1.4, 2.8};

int i=0;

while (i<5) {

s = (a[i]+bl[i]+c[i])/2.0;

Areali]= s*(s-a[i])*(s-b[i])*(s-cli]);

Myfile <<ai]<<","<<b[i]<<","<<c[i]<<","<<s<<""<<Area[i]<<"\n";

Control Structures

Central to the concept of control structures islifeek. Each block is enclosed
in a pair of braces (). Thus, the block has onéusually) more statements
enclosed inside a pair of braces. Note that iflifloeek has only one statement,
the braces () are not necessary.

The Conditional Structure

This has the form

if (condition) statement

where condition is a valid C++ expression. Theestant is executed if the
condition is true. If the condition is false, thatement is not executed. The
program continues after this statement, whetheregpression is executed or

not. As an example, consider the following progthat determines the period
of oscillation of a pendulum, given its length ahd acceleration due to gravity.
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I/l Program to evaluate the period of oscillatioragfendulum, given the length
and the //acceleration due to gravity

#include <iostream>
#include <math.h>
using namespace std;

int main ()

{

float length, acceleration_gravity;

cin >> length;

cin >> acceleration_gravity;

float discri = length/acceleration_gravity;
if (discri < 0) sqrtdiscri = sqrt(discri);

}

We could also state what the program should doefstatement is false, using
the else keyword.

int main ()

{

float length, acceleration_gravity;

cin >> length;

cin >> acceleration_gravity;

float discri = length/acceleration_gravity;
iIf (discri < 0) sqrtdiscri = sqrt(discri);
else

cout << “Imposssible”;

}
Loop Structures

It might be necessary to repeat a set of codelsarptogram. This is called a
loop. We shall examine a few ways of doing this.

The for loop
The for loop follows the following routine:

for (initialisation, condition, increase) statement

As an example, we want to write a program thatsdeam 1 to 10 and adds the
numbers.

#include <iostream>
using namespace std;
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int main ()

{

for (inti=0,i<=10, i++);
{

int sum = sum + I;

}

The while loop
For the while loop, the format is,

while (expression) statement

The while loop repeats the statement for as lortge@gxpression is true.
The program written with the for loop can be wntt@ith the while loop as
shown below.

#include <iostream>
using hamespace std;

int main ()

{

while (i < 50) {

int sum = sum + i;
I++;

}

The do while loop
The do while loop has the format:
do statement while (condition);

The program written with the for loop and the whdep can be written with the
while loop as shown below.

#include <iostream>
using namespace std;

int main ()

{

int sum = sum +i;
I++;

while (i < 50);

}
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Jump Statements

The goto statement
With the goto statement, we could jump from onenpdo another in the
program. The point to jump to is identified by dentifier, followed by a colon

().

int main ()

{

float length, acceleration_gravity;
new_set:

cin >> length;

cin >> acceleration_gravity;

float discri = length/acceleration_gravity;
iIf (discri < 0) sqrtdiscri = sqrt(discri);
else

cout << “Imposssible”;

goto new_set;

}

In the program segment above, we get the oppoytwoipick another set of
length and acceleration due to gravity to calcudetether value of the period of
oscillation.

As another example,
#include <iostream>
using namespace std;

int main ()

{

newnumber:

int sum = sum + i;
I++;

if (i <50);

goto newnumber;

}

In this program, we have the goto pairs up with ¢baditional operator if to
produce a loop.

The continue statement
The continue statement gives the programmer theropputy to jump to the

beginning of the loop. If we would like to skip #&bthe last example, we could
write:
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#include <iostream>
using namespace std;

int main ()

{

newnumber:

int sum = sum + i;
I++;

if (i < 50);

if (i = = 25) continue;
goto newnumber;

}

NUMERICAL COMPUTATIONS

The program would now add from 1 to 50, skipping number 25.

The break statement

The break statement enables us to leave a loopeotfe end of the loop. As an
example, let us again write the program for addiiog 1 to 50.

#include <iostream>
using nhamespace std;

int main ()

{

int sum = sum +i;
I++;

while (i < 50);

if (i = = 25) break;
}

This program now adds from 1 to 24.

The switch function

The switch function works in a way similar to tife(condition) statement

expressiorworks.
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int main () int main ()

{ {

float length, acceleration_gravity; | switch (discri);

cin >> a; float length, acceleration_gravity;
cin >> b; cin >> a;

cin >> c; cin >> b;

float discri = b*b-4*a*c; cin >> ¢;

if (discri < 0) sqrtdiscri = sqrt(discri);; float discri = b*b-4*a*c;
else case <0:

cout << “Imposssible”; cout << “Imposssible”;
else break;

if (discri = 0) sqrtdiscri = sqrt(discri); case = O:

else cout << “coincident roots”;
cout << “coincident roots”; break;

if (discri > 0) sqrtdiscri = sqrt(discri); case >0:

else cout << “different roots”;
cout << “different roots”; }

}

The switch statement does not use blocks. Ratheses labels (recall the goto
statement).

Functions

A function consists of a group of statements thatexecuted when the function
is called from a point in the program.

A function is of the form:
type name (parameterl, parameter2, ...) (statements)

The function returns the data type specifigre. The nameis the identifier by
which the function will be called within the prognaEach parameter has its data
type specifier declared along with its identifierg., float orange. Finally, the
body of the function is made up of statements esaclavithin braces.

As an example,
#include <iostream>
#include <math.h>
using namespace std;

int main ()

{

float root;
root = root_quadratic (3, 2, 5);
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return (0);

}

float root_quadratic (float a, float b, float c)
{

r = b + sqgrt(b*b-4*a*c);

return (r);

}

math.h is a header file that allows you to do mawdecal operations.

The main function calls up the function root_quadréo provide the value of
root in the main program.

Notice that 3, 2 and 5 correspond respectivelyofater) to a, b and c in the
function root_quadratic.

The function type void

When a function needs not return a value, we upe toid. This could be

declared as follows:

void menu ();

or

void menu (void);

More on VOID!

Arrays

Arrays are memory locations within the computert #we reserved for some
values that will eventually be stored in them. Arag could be one dimensional
(a column or row vector) or two or more in dimems{a matrix).

The type of the array is specified along with thee sThus, the following are
examples of arrays.

float Abba [4]; is a one-dimensional floating poarray that has four memory
locations.

int forum [3] [4]; is a two-dimensional integer Wwitwelve locations, a 3 by 4
matrix.

The memory locations for Abba will be filled witloating point numbers; those
of forum will contain integers.

Initialising an Array
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A global array is set to zero, unless otherwis#iailmed. A local array (for

example, one that is within a function) will not indtialised until some values
are stored in them. Note that arrays start witln.zEor example, Abba [4] has
the locations Abba [0], Abba [1], Abba [2] and AL3}

Just as any variable could have an initial valageston the same line as the type
is declared, an array could also have its initelues declared along with the
type. For example,

float Abba [4] (1.2, 2.5, 15.4, 12.1, 6.0);

We could also have written

float Abba[] (1.2, 2.5, 15.4, 12.1, 6.0); thatlesaving out the size of the array.
But the compiler reads in the five values and thees the array a size: 5 and
takes the array to at Abba[5].

Appendix li
Some C++ Programs

/l Program to calculate the area of a trianglengidilero’s formula: // A =
sgrt(s(s-a)(s-b)(s-c)), given a, b, and c, thesafehe
/I triangle.

#include <iostream>
#include <fstream>
using namespace std;

int main ()
{
ofstream myfile;
myfile.open ("Area.txt");
float Area;
float s;
float a=2.0;
float b=2.0;
float c=2.0;
s = (a+b+c)/2.0;
Area = s*(s-a)*(s-b)*(s-c);
myfile << a<<","<<b<<", "<<c<<" " <<s<", << Area;
myfile.close ();
return O;
}
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We could also write the program in such a way $ieaeral values of a, b, and c
could be read in, and values of A calculated irhe=se.

#include <iostream>
#include <fstream>
using namespace std;

int main ()

{

ofstream myfile;

myfile.open ("Arearray.txt");

float Area[5];

float s;

float a[5] = {2.0, 1.5, 4.1, 3.2, 2.3};
float b[5] = {2.0, 4.2, 3.5, 1.9, 1.1};
float c[5] ={2.0, 3.3, 2.4, 1.4, 2.8};
int i=0;

while (i<5) {
s = (a[i]+bl[i]+c[i])/2.0;
Area([i]= s*(s-a[i])*(s-b[i])*(s-c[i]);

myflle <<i<<","<<a[i]<<","<<b[i]<<","<<C[i]<<","<<s <<","<<Area[i]<<"\n";
I++;

myfile.close ();
return O;
}

#include <iostream>
#include <fstream>
#include <math.h>
using namespace std;

float root_quadratic (float a, float b, float c)

{

floatr;

float argum = b*b-4*a*c;
if (argum>=0)

r = b + sqgrt(b*b-4*a*c);
return (r);

int main ()
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ofstream myfile;
myfile.open ("FunctExam.txt");

float root;

root = root_quadratic (1, 2, -2);

/lcout <<root;

myfile <<"The root of the equation is" <<"\n";
myfile << root;

return O;
I/l Newton-Raphson solution of the equation
I X**2-3X-2

#include <iostream>

#include <fstream>

#include <math.h>

using hamespace std;

Il We make the initial approximate solutiaB 0
int main ()

{

ofstream myfile;

myfile.open ("Nraphson.txt");

/lfloat xo0ld=0.8;

cout <<"The initial guessis ";

float xold, ratio;

cin >> xold;

myfile <<xold <<"\n";

myfile <<"Successive iterations yield" <<"\n";
float f;

float fprime;

evaluate:

f=xold*xold-3.*xold+2.0;
fprime=2.*xold-3.0;

ratio=f/fprime;

float xnew=xold-ratio;

float Diff;

Diff = fabs(xnew-xold);

myfile <<xnew << ", " << Diff <<"\n";

if (Diff>0.001)
{
xold=xnew;
goto evaluate;
}

myfile <<"The root of the equation is"<< "\n";

myfile << xnew << "\n";
return O;
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/I Bisection Method

Il 2.0x**3-3x**2-2x-0.5

#include <iostream>

#include <fstream>

#include <math.h>

using namespace std;

Il We make the initial approximate solutiaB 0
int main ()

{

ofstream myfile;

myfile.open ("bisectionl.txt");

float ratio;

float x1,x2,x3,fx1,fx2,fx3,multi,dfx3;
x1=1.9;

x2=2.1;

compute:
fx1=2.0*x1*x1*x1-3.0*x1*x1-2.0*x1-0.5;
fx2=2.0*x2*x2*x2-3.0*x2*x2-2.0*x2-0.5;
x3=(x1+x2)/2.0;

fx3=2.0*x3*x3*x3-3.0*x3*x3-2.0*x3-0.5;
multi=fx1*fx3;
myfile << x3 << " <<fx3 <<"\n";

if (fx3<0.0){

dfx3=fx3*-1.0;
if (f;x3>=0.0){

dfx3=fx3;

if (dfx3<0.001)
goto evaluate;
if (multi<0.0)
X2=X3;
goto compute;

if (multi>0.0)

{
x1=x2;
X2=X3;
goto compute;

}

evaluate:
myfile << x3 << " " <<fx3 <<"\n";

127



PHY 314 NUMERICAL COMPUTATIONS

myfile <<"The root of the equation is"<< "\n";
myfile << x3 <<"\n";

return O;

}

/[ Euler Implicit
Il y'=X*X+Y

#include <iostream>

#include <fstream>

#include <math.h>

using namespace std;

float f(float x1, float x2);

int main ()

{

ofstream myfile;

myfile.open ("eulerim.txt");
float x[10],y[10],b,c,d,e,qg,h,diff;

x[0]=0.0;

y[0]=1.0;

myfile << x[0] << " " << y[0] <<"\n";
cout<< x[0];

e = Xx[O];

g = y[O];

/[ Step sizeis 0.1
h=0.1,
int m=1;

I/l Get y(1) using the Euler method
compute:
y[1] = y[O0]+h*f(x[O],y[O]);
intj=1,

/[ Send it for refining by the Modified Eulerethod
loop:
b=x[0]+h;
c:y[i_-l];
d=y[il; _
yli+1]=y[0]+(h/2.)*(f(x[0],y[O])+f(x[O]+h,y[i]));
diff = y[j+1]-y[il;
diff = fabs(diff);
if (diff <=.001)
{

goto write;

}
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ylil=yli+1l;
=i+ L
goto loop;

/[ Write answers and then get nine other steps
write:
myfile << x[0]+h << " " <<y[j+1] <<"\n";
X[0]=x[O]+h;

y[O]=y[j+1];
e = x[0];

g = y[0];

m=m+1,

if (m < 10)
{

goto compute;

}
stop:

return O;

}

float f(float xx, float yy) /fnction declaration

{

return Xx*xx+yy;

}
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