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INTRODUCTION  
 
Numerical Analysis is an important part of Physics and Engineering. This 
is because most of the problems encountered in real life do not lend 
themselves to a solution in a closed form. In other words, we have to make 
do with approximate solutions. It is clear, therefore, that you need to be 
conversant with the various methods of approximate solution of 
problems, as well as the loss of information inherent in replacing the exact 
solution with an approximate one. 
 
It is also quite clear that the fastest way of doing numerical computation 
is through the computer. It is imperative, then, that you understand one or 
more of the available programming languages. In this course, the 
programming language of interest is C++. 
 
It is quite clear from the foregoing that numerical analysis is an interesting 
course, and we would expect you to apply yourself fully to the course, as 
a lot of your future work in the field of physics would warrant a sound 
knowledge of numerical analysis. 
 
THE COURSE 
 
Phy 309 (3 Credit Units) 
 
This 2-unit course introduces you to numerical analysis. Unit 1 discusses 
the various types of errors and how they might be minimised. 
 
Unit 2 is on curve-fitting. You would need to deduce some physical 
parameters from a given set of readings obtained perhaps in a laboratory. 
Various ways of linearising given formulas is given, preparatory to 
drawing a line of best fit from which the physical quantity is deduced. 
 
Unit 3 is all about linear systems of simultaneous equations. You shall 
learn how to handle a large set of linear equations by writing them in the 
form of matrices. Such problems will then be solved with the methods 
applicable to matrices. You would also learn how to arrive at solutions 
through iterative methods. 
 
Unit 4 discusses different methods of finding the roots of algebraic and 
transcendental equations. 
 
In Unit 5, you will come across finite differences. You will be introduced 
to various kinds of differences, and how to detect the error in difference 
tables. 
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Numerical integration is the object of Unit 6. In this Unit, you shall learn 
how to integrate a function within a given set of limits (definite integrals). 
 
Unit 7, the concluding part of the theory part of the course discusses the 
numerical solution of initial value problems of ordinary differential 
equations. 
 
The C++ Programming aspect of the course is an introduction to program-
writing in one of the most versatile programming languages. 
 
We wish you success. 
 
COURSE AIMS 
 
The aim of this course is to teach you about the mechanics of the atomic 
and subatomic particles. 
 
COURSE OBJECTIVES 
 
After studying this course, you should be able to 
 
 Understand the various types of errors and how to minimise them. 
 Linearise a given expression in order to bring out a physical 

constant from the resultant relationship. 
 Fit a curve to a given set of data. 
 Solve a system of linear equations. 
 Find the roots of a given algebraic or transcendental equation. 
 Obtain the definite integral of a given function of a single variable. 
 Work with finite difference schemes.  
 Solve a first order initial value problems of ordinary differential 

equation. 
 Solve higher order initial value problems of ordinary differential 

equations. 
 Write C++ programs for solving the numerical problems. 
 
WORKING THROUGH THE COURSE 
 
Numerical methods provide a powerful way of solving almost any 
problem in physics, provided it has been properly formulated. It is our 
belief that the student would be motivated enough to put in a good effort 
in understanding the theoretical part of this course and be willing to learn 
to write programs in C++ language. 
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THE COURSE MATERIAL 
 
You will be provided with the following materials: 
 
COURSE GUIDE 
 
Study Material containing study units 
 
At the end of the course, you will find a list of recommended textbooks 
which are necessary as supplements to the course material. However, note 
that it is not compulsory for you to acquire or indeed read them. 
 
STUDY UNITS FOR NUMERICAL ANALYSIS 
 
The following study units are contained in this course: 
 
Unit 1: Approximations and Errors in Numerical Computations 
Unit 2: Approximations and Errors in Numerical Computations 
Unit 3: Linear Systems of Equations 
Unit 4: Roots of Algebraic and Transcendental Equations 
Unit 5: Finite Differences and Interpolation 
Unit 6: Numerical Integration 
Unit 7: Initial Value Problems of Ordinary Differential Equations  
 
TEXTBOOKS 
 
Some reference books, which you may find useful, are given below: 
 
 Numerical Methods in Engineering and Science – Grewal, B. S. 
 Introductory Methods of Numerical Analysis – Sastry, S. S. 
 A friendly Introduction to Numerical Analysis – Bradie, B. 
 
ASSESSMENT 
 
There are two components of assessment for this course. The Tutor 
Marked Assignment (TMA), and the end of course examination. 
 
TUTOR MARKED ASSIGNMENT  
 
The TMA is the continuous assessment component of your course. It 
accounts for 30% of the total score. You will be given 4 TMA’s to answer.  
 
Three of these must be answered before you are allowed to sit for the end 
of course examination. The TMA’s would be given to you by your 
facilitator and returned after they have been graded. 
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END OF COURSE EXAMINATION 
 
This examination concludes the assessment for the course. It constitutes 
70% of the whole course. You will be informed of the time for the 
examination. It may or may not coincide with the university semester 
examination. 
 
SUMMARY 
 
This course is designed to lay a foundation for you for further studies in 
Numerical Analysis. At the end of this course, you will be able to answer 
the following types of questions: 
 
 What is the need for numerical analysis in Physics? 
 What are the types of error that can be encountered in numerical 

work? 
 What the ways of obtaining the line that best fits a set of laboratory 

data? 
 What are the various ways of numerically solving a system of 

linear equations? 
 What are the ways in which we can numerically find the roots of 

an equation? 
 How do I integrate a function that does not lend itself to an 

analytical solution? 
 How do I solve a first order ordinary differential equation? 
 How do I tackle a higher order initial value problem of ordinary 

differential equation? 
 What are the merits and demerits of some of the methods of 

numerical analysis? 
 
We wish you success. 
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MODULE 1 
 
Unit 1  Approximations and Errors in Numerical Computations 
Unit 2  Approximations and Errors in Numerical Computations 
Unit 3  Linear Systems of Equations 
Unit 4  Roots of Algebraic and Transcendental Equations 
Unit 5  Finite Differences and Interpolation 
Unit 6  Numerical Integration 
Unit 7  Initial Value Problems of Ordinary Differential Equations  
 
 
UNIT 1:  Approximations and Errors in Numerical Computations 
 
Unit  Structure 
 
1.1 Introduction 
1.2  Objectives 
1.3 Main Content 
 1.3.1 Accuracy of Numbers 

1.3.1 Approximate Numbers 
1.3.2 Significant digits (figures) 
1.3.3 Rounding off 
1.3.4 Arithmetic precision 
1.3.5 Accuracy of Measurement 
1.3.6 Errors 
3.3.1 Rounding Errors 
3.3.2 Inherent Errors 
3.3.3 Truncation Errors 
1.3.4 Absolute Error, Relative Error and Percentage Error 

1.4 Conclusion 
1.5  Summary 
1.6  Tutor-Marked Assignment (TMA) 
1.7 References/Further Readings 
 
1.1 Introduction 
 
Physics is an exact science. However, it is strictly impossible to achieve infinite 
accuracy in practice. You are quite aware that your apparatus or instrument is 
not perfect, neither is your eye nor your measuring ability. We then see that errors 
arise in everyday observations and measurements. The study of errors is very 
important in all areas of Science and Technology. This is necessitated by the fact 
that errors should not swamp our procedure enough to alter, significantly, 
conclusions that may be drawn from such observations or measurements.  
 
Apart from the limitations of observation and measurement, there are some 
errors inherent in the problem itself. A good example in Quantum Mechanics is 
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given by the Heisenberg Uncertainty Principle, which maintains that we cannot 
measure some pairs of quantities accurately simultaneously, for example, the 
position of a body and its momentum. Any attempt to measure either quantity 
accurately gives an infinite error in the other. Some other errors arise as a result 
of representing an infinite series with a truncated one. We shall talk a little bit 
more about this in a while. 
 
1.2 Objectives 
 
By the end of this unit, you would be able to:  
 
 understand the importance of errors in numerical analysis.  
 round a number to a certain number of significant figures 
 know how to reduce the errors involved in your numerical work. 
 understand arithmetic precision  
 
1.3 Main Content 
 
1.3.1 Accuracy of Numbers 
 
1.3.2 Approximate Numbers 
 
For the sake of numerical computation, all numbers can be classified under two 
broad headings: exact numbers and approximate numbers. As the name implies, 
the former comprises numbers that are fully represented by some digits. 
Examples include the integers, and rational numbers that can and have been 
completely written, e.g., 3.2158. Approximate numbers are those that are not 
fully specified by the digits representing them. As an example, we could write 

the rational number 
7

3
 as 2.3333. You are quite aware that the actual number is 

not exactly 2.3333. 
 
By this stage of your study, you must have worked with the rational numbers. 
These are numbers which can be written as a fraction of two integers. Although 
certain rational numbers are exact numbers, you have also come across a lot of 
rational numbers that cannot be written as exact numbers as in the example 
above. The irrational numbers are even more troublesome. An example of an 
irrational number is 2 : such numbers cannot be written as the ratio of any two 
integers. There are two families of numbers that are unending: the ones that 
repeat certain sequences, and the ones that do not. For instance, 12.345454545 
and 18.127849342. The order of preference in dealing with numbers in numerical 
computations is: natural numbers, rational numbers that have a finite string of 
digits, rational numbers that have unending strings of digits and irrational 
numbers. 
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3.1.2 Significant digits (figures) 
 
We say a number is of r significant digits (figures) if r digits are used to express 
it. As an example, 1.612, 0.004812 and 3806000 all have four significant figures. 
You would notice that each of them could be written nx 10  (with no loss of 
information), where x  is of 4 (r = 4 in this case) digits, not starting or ending 
with zero and n  is an integer, positive or negative. 
 
The following rules will be of assistance to you. Make sure they become a part 
of you. 
 
 The leftmost non-zero digit is the most significant digit, e.g., in 0.001243, 

1 is the most significant digit. 
 In the case where there is no decimal point, the rightmost non-zero digit 

is the least significant, e.g., 145630000, 3 is the least significant figure. 
 If there is a decimal point, the rightmost digit is the least significant, even 

if it is zero, e.g., in 235.34200, the last 0 is the least significant. The 
number is not 235.34201 or 235.34199. 

 All digits between the least significant and the most significant (inclusive) 
are significant, e.g., in the example under rule 1, 13 are significant. In 
the example in rule 2, 1  3 are significant. 

 
Take another example: 0.00004 has one significant figure, while 984.13245 has 
8 significant figures. It should be obvious to you why they have been classified 
this way. 
 
 
There is an exception, however:  
When a zero is obtained by rounding, for example, 329.5 is rounded to 3 
significant figures. This becomes 330, the last zero being significant in this case. 
You can compare this with rule 2 above. 
 
3.2.3 Rounding off 
 
The irrational numbers are a perfect example of numbers with unending digits. 
Even in the case of rational numbers there can still be unending number of digits 
and in some other cases we may decide to reduce the number of digits by which 
a number is represented. This process is called rounding off. 
 
Rules for Rounding off a number to n significant figures 
 
(a) Discard all digits to the right of the nth digit 
(b) If the discarded part of the number is 
(I) less than half a unit in the n th place leave the n th digit unchanged 
(II)  greater than half a unit in the n th place, increase the n th digit by unity 
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(III)  exactly equal to half a unit in the n th place, leave the digit unchanged if 
it is even; increase by unity if otherwise. 

 
Examples: Round the following numbers to 5 significant figures: 
  
(i) 3.142857143 (ii) 6.32431925 (iii) 1.4123519 
 
Solution: To 5 significant figures, the numbers are: 
  
(i)  3.1428 (rules (a) and (b)(III) nth digit unchanged as it is even   
(ii)  6.3243 (rules (a) and (b)(I) as the discarded part of the number is less than 

half a unit in the nth place. 
(iii)  1.4124 (rules (a) and (b)(III) nth digit increased by unity as it is odd 
 
Note:  
  
A number rounded off to n significant figures is said to be correct to n significant 
places. 
 
3.1.4 Arithmetic precision 
 
As we have said before, it might be necessary to round off our numbers to make 
them useful for numerical computation, moreso as it would require an infinite 
computer memory to store an unending number. The precision of a number is an 
indication of the number of digits that have been used to express it. In scientific 
computing, it is the number of significant digits or numbers, while in financial 
systems, it is the number of decimal places. You are quite aware that most 
currencies in the world are quoted to two decimal places. 
 
In our own case, arithmetic precision (often referred to simply as precision) is 
the specified number of significant figures or digits to which the number of 
interest is to be rounded. 
 
1.7 Errors 
 
We said earlier, that we shall be revisiting the different types of errors. These 
are: 
 
1.7.1 Rounding Errors 
 
These are errors incurred by truncating a sequence of digits representing a 

number, as we saw in the case of representing the rational number 
3

7
 by 2.3333, 

instead of 2.3333….., which is an unending number. Apart from being unable to 
write this number in an exact form by hand, our instruments of calculation, be it 
the calculator or the computer, can only handle a finite string of digits. 
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Rounding errors can be reduced if we change the calculation procedure in such 
a way as to avoid the subtraction of nearly equal numbers or division by a small 
number. It can also be reduced by retaining at least one more significant figure 
at each step than the one given in the data, and then rounding off at the last step. 
  
1.7.2 Inherent Errors 
 
As the name implies, these are errors that are inherent in the statement of the 
problem itself. This could be due to the limitations of the means of calculation, 
for instance, the calculator or the computer. This error could be reduced by using 
a higher precision of calculation. 
 
1.7.3 Truncation Errors 
 
If we truncate Taylor’s series, which should be an infinite series, then some error 
is incurred. This is the error associated with truncating a sequence or by 
terminating an iterative process. 
 
This kind of error also results when, for instance, we carry out numerical 
differentiation or integration, because we are replacing an infinitesimal process 
with a finite one. In either case, we would have required that the elemental value 
of the independent variable tend to zero in order to get the exact value. 
 
3.3.4 Absolute Error, Relative Error and Percentage Error 
 
The absolute error in a measurement is the absolute difference between the 
measured value and the actual value of the quantity. Thus, we can write 
 Absolute error = |valuemeasuredvalueactual|   
 
The ratio of the absolute error to the actual value is the relative error. We can 
therefore write the relative error as  
  

Absolute error = 
valueactual

|valuemeasuredvalueactual| 
 

 
The relative error taken to a percentage is the percentage error. Percentage error 
can therefore be written as 
  

Percentage error = 100
valueactual

|valuemeasuredvalueactual|



 

Examples 
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4.0 Conclusion 
 
In this Unit you learnt that errors occur in measurement, because the imperfect 
observer makes use of imperfect measuring instruments. Some errors are 
inevitable as they are a part of the problem under investigation. Moreover, the 
instruments of calculation, such as the computer, can only handle a finite number 
of digits, as the memory is finite. You also learnt to write a certain number in a 
specified number of decimal points. You got to know how to round a number to 
a number of significant figures. Some ways of reducing some of these errors 
were also discussed. 
   
5.0 Summary 
 

In this Unit, you learnt the following: 
 

 Errors are an integral part of life. 
 How to round a number to a specific number of significant figures? 
 The different types of error and how some of them may be reduced. 
 
6.0 Tutor-Marked Assignment  
 
1. Round the following to the number of significant figures indicated. 

 
(a) 12.0234831  4 significant figures 
(b) 295.10542 5 significant figures 
(c) 0.0045829 3 significant figures 
 
2. A student measured the length of a string of actual length 72.5 cm as 72.4 

cm. Calculate the absolute error and the percentage error. 
 
7.0 References/Further Readings 
 
Solutions to Tutor Marked Assignment 
 

1. Round the following to the number of significant figures indicated. 
 

(a) 12.0234831  4 significant figures = 12.02 
(b) 295.10542 6 significant figures = 295.105 
(c) 0.0045829 3 significant figures = 0.00458 
 
2. A student measured the length of a string of actual length 72.5 cm as 72.4 

cm. Calculate the absolute error and the percentage error. 
  
Absolute error is 01.0|4.725.72|  .  
 

The percentage error is 1379.0100
5.72

1.0
  
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UNIT 2  Approximations and Errors in Numerical Computations 
 
Unit  Structure 
 
2.1 Introduction 
2.2  Objectives 
2.3 Main Content 

3.1 Linear Graph 
3.2 Linearisation 
3.3 Curve Fitting 

3.3.1 Method of Least Squares 
3.3.2 Method of group averages 

2.4 Conclusion 
2.5 Summary 
2.6 Tutor-Marked Assignment (TMA) 
2.7 References/Further Readings 
 
2.1 Introduction 
 
In most experiments as a physicist, you would be expected to plot some graphs. 
This chapter explains in details, how you can interpret the equation governing a 
particular phenomenon, plot the appropriate graph with the data obtained, to 
illustrate the inherent physical features, and deduce the values of some physical 
quantities. The process of fitting a curve to a set of data is called curve-fitting. 
We shall now take a look at the possible cases that could arise in curve-fitting.  
 
2.0 Objectives 
 
By the end of this unit, you should be able to:  
 
 Linearise a given equation in order to plot a linear graph from which some 

physical constants can be determined. 
 Derive the equation for least squares linear fit. 
 Derive the equation for the method of moving averages. 
 Fit a linear graph to a set of data. 
 
3.0 Main Content 
 
3.1 Linear Graph 
 
The law governing the physical phenomenon under investigation could be linear, 
of the form cmxy  . It follows that a graph could be plotted of the points 

),( ii yx , i = 1, …, n, where n is the number of observations (or sets of data). We 
could obtain the line of best fit via any of a number of methods: 
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More on this. 
 
3.2 Linearisation 
 
A nonlinear relationship can be linearised and the resulting graph analysed to 
bring out the relationship between variables. We shall consider a few examples: 
 
Case 1: xaey  .  
 
(i) We could take the logarithm of both sides to base e: 
  axeaaey xx lnlnln)ln(ln  ,  
 
 since xex

ln . Thus, a plot of yln  against x gives a linear graph with 
slope unity and a y-intercept of ln a. 

 
(ii) We could also have plotted y against xe . The result is a linear graph 

through the origin, with slope equal to a. 
 

Case 2: 
g

l
T 2  

 
We can write this expression in three different ways: 
 

(i) )ln(ln
2

1
)2ln(ln

2

1
)2ln(ln gl

g

l
T 


  . 

 
Rearranging, we obtain, 

 


  glT ln
2

1
)2ln(ln

2

1
ln   

 
writing this in the form cmxy  , we see that a plot of Tln against lln  gives a 

slope of 0.5 and a ln T intercept of 


  gln
2

1
)2ln(  . Once the intercept is read 

of the graph, you can then calculate the value of g.  
 

(ii) l
g

T
2

  

 
A plot of T  versus l  gives a linear graph through the origin (as the intercept is 

zero). The slope of the graph is 
g

2
, from which the value of g can be recovered. 

 
(iii) Squaring both sides, 
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 l
g

T
2

2 4
  

 
A plot of 2T  versus l  gives a linear graph through the origin. The slope of the 

graph is 
g

24
, and the value of g can be obtained appropriately. 

 
Case 3: teNN 

 0  
 
The student can show that a plot of Nln  versus t  will give a linear graph with 
slope  , and Nln  intercept is 0ln N . 
 
What other functions of N  and t could you plot in order to get   and 0N ? 
 

Case 4: 
vuf

111
  

 
We rearrange the equation: 

 
ufv

111
  

 
A plot of 1v  (y-axis) versus 1u  (x-axis) gives a slope of 1  and a vertical 

intercept of 
f

1
. 

 
Example 
 
A student obtained the following reading with a mirror in the laboratory. 
 

u 10 20 30 40 50 
v -7 -10 -14 -15 -17 

 

Linearise the relationship 
ufv

111
 . Plot the graph of 1v  versus 1u  and draw 

the line of best fit. Hence, find the focal length of the mirror. All distances are in 
cm. 
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Solution 
 
u v  1/u  1/v 
10 -7 0.1 -0.14286 
20 -10 0.05 -0.1 
30 -14 0.033333 -0.07143 
40 -15 0.025 -0.06667 
50 -17 0.02 -0.05882 
 
 
The graph is plotted in Fig. 1.1. 

 

Fig. 1.1: Linear graph of the function 
ufv

111
  

 

The slope is 05.1  and the intercept 04.0 . From 
ufv

111
 , we see that the 

intercept is 04.0
1


f

, or 
04.0

1
f = 25 cm.  

 
3.3 Curve Fitting 
 
What we did in Section 3.2, generally, was to plot the values of dependent 
variable against the corresponding values of the independent variable. With this 
done, we got the line of best fit. The latter could have been obtained by eye 
judgment. There are some other ways of deducing the relationship between the 

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00
0 0.05 0.1 0.15

1/
v 

(/
cm

)

1/u (/cm)
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variables. We shall first consider the ones based on linear relationship, or the 
ones that can be somehow reduced to such relationships. 
 
3.3.1 Method of Least Squares 
 
Suppose nixi ,,1,   are the points of the independent variable where the 

dependent variable having respective values niyi ,,1,   is measured.  
 
Consider the graph below, where we have assumed a linear graph of equation 

cmxy  . Then at each point nixi ,,1,  , cmxy ii  .  
 
The least square method entails minimizing the sum of the squares of the 
difference between the measured value and the one predicted by the assumed 
equation. 
 

 
  

 
Fig. 1.2: Illustration of the error in representing a set of data with the line of best 
fit 
 

 



n

i
ii cmxyS

1

2)(      2.1 

 
We have taken the square of the difference because taking the sum alone might 
give the impression that there is no error if the sum of positive differences is 
balanced by the sum of negative differences, just as in the case of the relevance 
of the variance of a set of data. 
 
Now, S  is a function of m and c , that is, ),( cmSS  . This is because we seek a 
line of best fit, which will be determined by an appropriate slope and a suitable 

1x  
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intercept. In any case, ix  and iy  are not variables in this case, having been 
obtained in the laboratory, for instance. 
 
You have been taught at one point or another that for a function of a single 

variable )(xf , the extrema are the points where 0
dx

df
. However, for a function 

of more than one variable, partial derivatives are the relevant quantities. Thus, 
since ),( cmSS  , the condition for extrema is  
 

0


m

S
 and 0



c

S
        2.2 

 






 n

i
iii xcmxy

m

S

1

0))](([2       2.3 






 n

i
ii cmxy

c

S

1

0)1)](([2       2.4 

 
From equation 2.3,   

  
  



n

i

n

i

n

i
iiii cxxmyx

1 1 1

2 = 0       2.5 

 
and from equation 2.4,   

  
  


n

i

n

i

n

i
ii cxmy

1 1 1

= 0       2.6 

It follows from the fact that 
n

x

x

n

i
i

i





1  and similar expressions, that equations 

2.5 and 2.6 give, respectively, 

    02
 xcxmxy      2.7 

    0 cxmy      2.8 
 
Multiplying equation 2.8 by x  gives  
    02  xcxmyx      2.9 
 
Finally, from equations 2.7 and 2.9, 
     

22 xx

yxxy
m




          2.10 

 
and from equation 2.8,   
    xmyc       
 2.11 
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Example 
 
A student obtained the following data in the laboratory. By making use of the 
method of least squares, find the relationship between x and t.  
 
Thus, for the following set of readings:  
 

t  5 12 19 26 33 
x  23 28 32 38 41 

 
The table can be extended to give  

t  5 12 19 26 33 =95 t =19 
x  23 28 32 38 41 =162 x =32.4 
tx  115 336 608 988 1353 =3400 tx=680 

2t  25 144 361 676 1089 =2295 2x =459 
 

6571.0
19459

4.3219680
222












tt

xttx
m      2.12 

 9151.19196571.04.32  tmxc     
 2.13 
 
Hence, the relationship between x and t is, 
 9151.196571.0  tx  
 
3.3.2 Method of group averages 
 
As the name implies, a set of data is divided into two groups, each of which is 
assumed to have a zero sum of residuals. Thus, given the equation 
  

cmxy           2.14 
 
we would like to fit a set of n observations as close as possible. 
 
The error in the measured value of the variable and the value predicted by the 
equation is (as we have seen in Fig. …): 
  

)( cmxy iii          2.15 

 
The fitted line requires two unknown quantities: m and c. Thus, two equations 
are needed. We would achieve these two equations by dividing the data into two, 
one of size l and the other of size n-l, where n is the total number of observations. 
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The assumption that the sum of errors for each group is zero, requires that 
  





l

i
ii cmxy

1

)]([ = 0        2.16 

 
and 
  





n

l
ii cmxy

1

)]([ = 0        2.17 

 
From equation 2.16, 
  

lcxmy
l

i
i

l

i
i  

 11

        2.18 

 
and equation 2.17 yields 
  

clnxmy
n

li
i

n

li
i )(

11

 


       2.19 

 
the latter equation being true since n – l is the number of observations that fall 
into that group. 
 
Dividing through by l and n – l, respectively, equation 2.18 gives 
  

cx
l

my
l

l

i
i

l

i
i  

 11

11
       2.20 

  
and from equation 2.19,  
  

cx
ln

my
ln

n

li
i

n

li
i 







 11

11
      2.21 

 
Thus, 
  

cxmy  11  
  

cxmy  22          2.22 
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Subtracting, 
  

)( 2121 xxmyy          2.23 
  

21

21

xx

yy
m




          2.24 

 
and 
  

11 xmyc           2.25 
 
Example 
 
Let us solve the example in Section 3.3.1 using the method of group averages. 
 

t  5 12 19 26 33 
x  23 28 32 38 41 

 
We shall divide the data into two groups, such as: 
 

t  5 12 19 
x  23 28 32 

 
and 
 

t  26 33 
x  38 41 

 
 
The tables can be extended to give, for Table 3: 
  

t  5 12 19 =36 1t =12 
x  23 28 32 =83 1x =27.666667 

 
and for Table 4: 
 

t  26 33 =59 2t =29.5 
x  38 41 =79 2x =39.5 

 

 
21

21

tt

xx
m




 = 67619.0

5.2912

5.39666667.27





 

and 
 11 tmxc  = )1267619.0(666667.27   
         = 19.552387 
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Thus, the equation of best fit is, 
 552387.1967619.0  tx  
 
4.0 Conclusion 
 
In this Unit, you learnt how to linearise an expression in order to obtain some 
relevant information when written as a linear equation. You also derived the 
equations for two different methods of drawing the line of best fit. In addition, 
you applied these formulas to a set of data and was able to write the equation of 
best fit in each case. 
 
5.0 Summary 
 
In this Unit, you learnt: 
 
 How to linearise a nonlinear expression in order to deduce some desired 

parameters. 
 How to draw the line of best fit with the method of least squares. 
 How to draw the line of best fit with the method of group averages. 

 
6.0 Tutor Marked Assignment (TMA) 
 
1. The current flowing in a particular R-C circuit is tabulated against the 

change in the time 0tt  , such that at time 0tt  , the current is 1.2 A. 
Using the least-squares method, find the slope and the intercept of the 
linear function relating the current i to the time t. Hence, determine the 
time-constant of the circuit. 

 
t  2 2.2 2.4 2.6 2.8 3 
i  0.20 0.16 0.13 0.11 0.09 0.07 
 

2. Solve the problem in TMA 1 with the method of group averages by 
dividing into two groups of three data sets each. 
 

t  2 2.2 2.4 
i  0.20 0.16 0.13 
 
 and 
   
t  2.6 2.8 3 
i  0.11 0.09 0.07 
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3. A student performing the simple pendulum experiment obtained the 
following table, where t  is the time for 50 oscillations.  

 
l (cm) 50 45 40 35 30 25 20 15 
t (s) 71 69 65 61 56 52 48 43 

  
  
Find the acceleration due to gravity at the location of the experiment, using 
 
(i) the method of least squares, and 
(ii)  the method of group averages. 
 
7.0 References/Further Readings 
 
Solutions to Tutor Marked Assignment 
 
1. The current flowing in a particular R-C circuit is tabulated against the 

change in the time 0tt  , such that at time 0tt  , the current is 1.2 A. 
Using the least-squares method, find the slope and the intercept of the 
linear function relating the current i to the time t. Hence, determine the 
time-constant of the circuit. 

 
t  2 2.2 2.4 2.6 2.8 3 
i  0.20 0.16 0.13 0.11 0.09 0.07 
 

Taking logs: RCteii /
0



 . 
RC

t
ieii RCt  

0
/

0 log)log(loglog . A plot of ilog  

against t gives slope 
RC

1
 and intercept 0logi . 

 
 t I tsquare log l tlogl  
 2.0 0.200000 4 -0.69897 -1.39794 -0.7022 
 2.2 0.160000 4.84 -0.79588 -1.75094 -0.78902 
 2.4 0.130000 5.76 -0.88606 -2.12654 -0.87584 
 2.6 0.110000 6.76 -0.95861 -2.49238 -0.96266 
 2.8 0.090000 7.84 -1.04576 -2.92812 -1.04948 
 3.0 0.070000 9 -1.1549 -3.46471 -1.1363 
Sum 15  38.2 -5.54017 -14.1606  
Average 2.5  6.3666667 -0.92336 -2.3601  
   Slope -0.4431   
   Intercept 0.1844    
       
 

4431.0
5.23666667.6

)92336.05.2(3601.2
2





m  
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1844.0log  tmlc  

  
RC

m
1

 , or 2568.2
1


m
RC = time constant of the circuit. 

 
3. Solve the problem in TMA 1 with the method of group averages by 

dividing into two groups of three data sets each. 
 

t  2 2.2 2.4 
i  0.20 0.16 0.13 
 
 and 
   
t  2.6 2.8 3 
i  0.11 0.09 0.07 
 
 
 
 
Group 1   
t i log i 
2.0 0.20 -0.69897 
2.2 0.16 -0.79588 
2.4 0.13 -0.88606 
6.6  -2.38091 
2.2  -0.79364 
 
Group 2   
t i log i 
2.6 0.11 -0.95861 
2.8 0.09 -1.04576 
3.0 0.07 -1.1549 
8.4  -3.15927 
2.8  -1.05309 
 
    

4324.0
8.22.2

)05309.1(79364.

21

21












xx

yy
m      

 1576.0)2.24324.0(79364.011  xmyc     
      
3. A student performing the simple pendulum experiment obtained the 

following table, where t  is the time for 50 oscillations.  
 

l (cm) 50 45 40 35 30 25 20 15 
t (s) 71 69 65 61 56 52 48 43 
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Find the acceleration due to gravity at the location of the experiment, using 
 
(iii)  the method of least squares, and 
(iv) the method of group averages. 
 
Method of least squares (taking logs) 
 

l
g

T log
2

12
loglog 



 

: A plot of Tlog  against llog  gives slope 0.5 and  

 

intercept c = 
g

2
log , from which the value of g is 

2

1 )(log

2 





 c


. 

 
l t log l log T (log l)*(log l) (log l)*(log T)  
0.50 71 -0.30103 0.152288 0.090619058 -0.04584 0.2966771 
0.45 69 -0.34679 0.139879 0.120261561 -0.04851 0.3165404 
0.40 65 -0.39794 0.113943 0.158356251 -0.04534 0.3387458 
0.35 61 -0.45593 0.086360 0.207873948 -0.03937 0.3639201 
0.30 56 -0.52288 0.049218 0.273402182 -0.02574 0.3929817 
0.25 52 -0.60206 0.017033 0.362476233 -0.01026 0.4273542 
0.20 48 -0.69897 -0.017729 0.488559067 0.012392 0.4694229 
0.15 43 -0.82391 -0.065502 0.678825613 0.053967 0.5236588 
 Sum -4.14951 0.475492 2.380373913 -0.1487  
 Average -0.51869 0.059436 0.297546739 -0.01859  
       
    slope 0.429391  
    intercept 0.282157  
    2 pi 6.284  
    log 2 pi 0.798236  
    log 2 pi -inter 0.516079  
    2(log 2pi-inter)1.032159 log g 
     10.84 g 
 
Method of least squares (taking squares) 
 

l
g

T
2

2 4
 . A plot of 2T  against l gives a line through the origin with slope m  

 

= 
g

24
, from which g

m

24
: 

 
L t L Tsquare lsquare Tsquare l   
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50 71 0.50 2.016400 0.2500 1.0082 2.05 0.5 
45 69 0.45 1.904400 0.2025 0.85698 0.070136 0.45 
40 65 0.40 1.690000 0.1600 0.676 0 0.4 
35 61 0.35 1.488400 0.1225 0.52094 2.0164 0.35 
30 56 0.30 1.254400 0.0900 0.37632 2.50932 0.3 
25 52 0.25 1.081600 0.0625 0.2704 2.1661 0.25 
20 48 0.20 0.921600 0.0400 0.18432 1.8264 0.2 
15 43 0.15 0.739600 0.0225 0.11094 1.47766 0.15 
 Sum 2.6 11.0964 0.9500 4.0041   
 Average 0.325 1.38705 0.11875 0.500513   
        
    slope 3.788286 g 10.42 
    intercept 0.155857   
 
Method of group averages (taking logs) 
 
Group 1    
L t log l log T 
0.50 71 -0.3010 0.15229 
0.45 69 -0.3468 0.13988 
0.40 65 -0.3979 0.11394 
0.35 61 -0.4559 0.08636 
 Sum -1.50169 0.49247 
 Average -0.37542 0.123118 
    
    
Group 2    
L t log l log T 
0.30 56 -0.5229 0.04922 
0.25 52 -0.6021 0.01703 
0.20 48 -0.6990 -0.0177 
0.15 43 -0.8239 -0.0655 
 Sum -2.64782 -0.01698 
 Average -0.66196 -0.00425 
    
    
  slope  0.444496 
  intercept 0.289991  
  g 10.38 
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Method of group averages (taking squares) 
 
Group 1    
L t l Tsquare 
0.50 71 0.50 2.0164 
0.45 69 0.45 1.9044 
0.40 65 0.40 1.69 
0.35 61 0.35 1.4884 
 Sum 1.70 7.0992 
 Average 0.43 1.7748 
    
    
Group 2    
L t l Tsquare 
0.30 56 0.30 1.2544 
0.25 52 0.25 1.0816 
0.20 48 0.20 0.9216 
0.15 43 0.15 0.7396 
 Sum 0.9 3.9972 
 Average 0.225 0.9993 
    
    
  slope  3.8775 
  intercept 1.02051 
  g 10.18 
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Unit 3:  Linear Systems of Equations 
 
Unit  Structure 
 
 
3.1 Introduction 
3.2 Objectives 
3.3 Main Content 

3.3.1 System of Linear Equations  
3.3.2 Gaussian Elimination 
3.3.3 Gauss-Jordan Elimination 
3.3.4 LU Decomposition 
3.3.5 Jacobi Iteration 
3.3.6 Gauss-Seidal Iteration 

3.4 Conclusion 
3.5 Summary 
3.6 Tutor Marked Assignment 
3.7 References/Further Reading  
 
3.1 Introduction 
 
Perhaps in all areas of Physics, you would come across a system of linear 
equations. For example, you might want to know what proportions of two or 
more variables you would need to achieve some specific values of a desired 
composite product. This kind of problem could lead to a set of linear equations. 
This unit will equip you with the necessary tools to solve a system of linear 
equations. You shall come across direct methods as well as iterative ways of 
solving such problems. 
 
3.2 Objectives 
 
You should be able to do the following after studying this Unit: 
 
 Write a system of linear equations in an augmented matrix form 
 Solve a system of linear equations. 
 
3.3 System of Linear Equations  
 
It is necessary for us to set the stage by getting to know how to write the general 
set of simultaneous linear equations. 
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Let us consider a linear system of equations 

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa







2211

22222121

11212111

.

.

.
      3.1 

 
 
This can be written in the form  







































































nnnnnn

n

n

b

b

b

x

x

x

aaa

aaa

aaa

2

1

2

1

21

22221

11211

    3.2 

 
 
3.3.2 Gaussian Elimination 
 
A recall of the solution of a system of two equations will help in introducing the 
Gaussian Elimination method. 
 
For instance, let )3,2(  be a solution set ),( yx . Then the following equations are 
in order. 
 

1332  yx          3.3 
1 yx          3.4 

 
You might want to verify that these equations are consistent with the given 
solution set. 
 
We could multiply equation 3.2 by -2 and add to equation 2.3. This yields 
 

155 y          3.5 
 
Equivalently, 3y . Substituting this value of y  in either equation 3.3 or 3.4 
gives 2x . 
 
The augmented matrix representing our system of two equations is  





 1

13

11

32
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By Gaussian elimination, we seek to make every entry below the main diagonal 
zero. This we achieve by reducing 1 to zero, making use of the first row.  

 




 







15

13

50

32

1

13

11

32 )(2)()'( iiiii

      3.6
 

 
Thus,  
 

3155  yy         3.7 
 
Substituting this in the first row gives 
 

13)3(32 x          3.8 

 
from which we obtain 2x . 
 
The process of reducing every element below the main diagonal to zero (row 
echelon form) is called Gaussian Elimination. That of substituting obtained 
values to calculate other variables is called Back Substitution. 
 
You can see that there is nothing new about Gaussian elimination. It is a process 
you have been carrying out all along, but which you never called this name. 
 
The same process can be carried over to the case of a system of three equations. 
 
Let )1,2,1(   be a solution set.  
 
Then, the equations below are valid: 
 

52  zyx  
523  zyx         3.9 

3423  zyx  
 
The augmented matrix is  
 

















3

5

5

423

231

112
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This yields (by Gaussian elimination) 
 
















 
 




















3

5

5

3/53/70

550

112

3

5

5

423

231

112

))(3/2()()(

)(2)()'(

iiiiiii

iiiii

 

    


















   10

5

5

1000

550

112

)')(7/15()'(')'( iiiiiiii

 3.10 

 
Upon back substitution, 
  

1010  z  or 1z  
1z ; 21  yzy ; 152  xzyx  

 
Traditionally, in Mathematics, it is usual to use indices such as ,, 21 xx  etc. instead 
of zyx ,, . Do you have any idea why this is so? It is because if we stay with the 
alphabets, we shall soon run out of symbols. Bear in mind that not all the 
alphabets can be employed as variables; as an example, a, b, c is commonly used 
as constants. In addition, it makes it easy to associate the coefficients ,, 1211 aa

etc. with ,, 21 xx etc. respectively. More importantly in numerical work, it makes 
programming easier. For instance, for our system of three equations, we could 
use the more general notation: 
 













 
 
















'

'

''0

''0

34

24

14

3332

2322

131211

))(/()()(

))(/()()'(

34

24

14

333231

232221

131211

3111

1211

a

a

a

aa

aa

aaa

a

a

a

aaa

aaa

aaa

iiiaaiiii

iiaaiii  

 













   ''

'

''00

''0

34

24

14

33

2322

131211

)')(/()'(')'( 3222 a

a

a

a

aa

aaa

iiiaaiiiii

     3.11 
 
We would like to sound a note of warning here. How do you set '21a  equal to 

zero? From the expression 3.11, 21
21

11
1121 0' a

a

a
aa  . In order to avoid having 

to deal with fractions which could lead to rounding errors, it is better to put this 
in the form: 
  

)()()'( 1112 iiaiaii          3.12 
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A better way of writing equation 3.11 is, 
 













 
 
















'

'

''0

''0

34

24

14

3332

2322

131211

)()()(

)()()'(

34

24

14

333231

232221

131211

1111

1112

a

a

a

aa

aa

aaa

a

a

a

aaa

aaa

aaa

iiiaiaiii

iiaiaii  

 













   ''

'

''00

''0

34

24

14

33

2322

131211

)'()'(')'( 2232 a

a

a

a

aa

aaa

iiiaiiaiii

     3.11 
 
3.3 Gauss-Jordan Elimination 
 
This entails eliminating in addition to the entries below the major diagonal, the 
entries above it, so that the main matrix is a diagonal matrix. In that case, the 
solution to the system is given by dividing the element in the augmented part of 
the matrix by the diagonal element for that row. In other words, the end product 
of Gauss-Jordan elimination looks like 
 













''''

'''

''

''''00

0''''0

00

34

24

14

33

22

11

a

a

a

a

a

a

       3.12

 

 
from which it follows that 
 

11141 /'' aax     '''/''' 22242 aax    ''''/'''' 33343 aax  3.13 
 
Example 
 
We shall solve problem … using the Gauss-Jordan elimination. Luckily, we have 
already completed the Gaussian elimination part of this method. We continue 
from where we stopped. 
 











 





 
 






















10

20

40

1000

0100

01020

10

5

5

1000

550

112
)(2)()'(

)(10)()'(

iiiiiii

iiiii

 

 

     











 




  

10

20

20

1000

0100

0020)'()'(')'( iiii

  3.14 
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It follows that, 
 

2020  x  or 1x ; 2010  y  or 2y ; and 1010  z  or 1z  
 
3.4 LU Decomposition 
 
Suppose we could write the matrix  
  













333231

232221

131211

aaa

aaa

aaa

 = 
























33

2322

131211

333231

2221

11

00

00

00

u

uu

uuu

lll

ll

l

    3.15 

 
This implies that 
  

111111 aul  , 121211 aul  , 131311 aul        3.16 
  

112121 ula  , 2222122122 ulula  , 2322132123 ulula      3.17 
  

113131 ula  , 2232123132 ulula  , 33332332133133 ululula    3.18 
 
Without loss of generality, we could set the diagonal elements of the L matrix 
equal to 1. Then, 
  













333231

232221

131211

aaa

aaa

aaa

 = 
























33

2322

131211

3231

21

00

0

1

01

001

u

uu

uuu

ll

l     3.19a 

 
Multiplying out the right side of equation 3.19, 
 













333231

232221

131211

aaa

aaa

aaa

= 















3323321331223212311131

2313212212211121

131211

uululululul

uuluulul

uuu

  3.19b 

 
From the equality of matrices, this requires that, 
  

1111 au           3.20 

1212 au            3.21 

1313 au           3.22 

  

112121 ula      1121112121 // aaual    3.23 
  

113131 ula      1131113131 // aaual     3.24 
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22122122 uula   , or 12
11

21
2212212222 u

u

a
aulau   

 
       3.25

 

23132123 uula  , or 13
11

21
2313212323 u

u

a
aulau      

13
11

21
2323 a

a

a
au         3.26 

 




  12
11

31
32

2222

123132
32

1
u

u

a
a

uu

ula
l              

 




  12
11

31
32

22
32

1
a

a

a
a

u
l       3.27 

 

2232123132 ulula        3.28 

332332133133 uulula              

233213313333 ululau        3.29 
 
You can see that we have determined all the nine elements of the two matrices 
in terms of the elements of the original matrix.  
 
Once we have obtained L and U, then we can write the original equation  
 






































3

2

1

3

2

1

333231

232221

131211

y

y

y

x

x

x

aaa

aaa

aaa

       3.30 

as 
  

yx LU          3.31 
 
where x and y are column vectors. 
 
We shall write xw U  
 
Then, 

yw L          3.32 
 

12
11

21
2222 a

a

a
au 
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Example 
 
Solve the following system of equations using the method of LU decomposition. 
 

52  zyx  
523  zyx         

 3.33 

3423  zyx  
 
The corresponding matrix is  
 

















423

231

112

 

 
  

1111 au  = 2         3.34 

1212 au  = 1          3.35 

11313  au           3.36 

  

112121 / aal  = 2/1         3.37 
  

113131 / aal   = 2/3         3.38 

2/5)1(
2

1
312

11

21
2222  a

a

a
au

      3.39
 

2/5
2

1
2)1(

2

1
213

11

21
2323  a

a

a
au  

5/7)1(
2

3
2

2/5

11
12

11

31
32

22
32 


 


  a

a

a
a

u
l            3.40 

1)2/5)(5/7()1)(2/3(4233213313333  ululau   3.41
 

  
Thus, 
  











 













 100

2/52/50

112

15/72/3

012/1

001

= 
















423

231

112

    3.42 

 
As you can see, we got the decomposition right, as the multiplication of the L 
and U gives the original matrix. 
 
The original equation is equivalent to  
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ywx  LLU         3.43 

 
yw L  implies 

 






































 3

5

5

15/72/3

012/1

001

3

2

1

w

w

w

      3.44 

 
Solving, 
  

1w  5         3.45 
  

5
2

1
21  ww  or 

2

5
)5(

2

1
5

2

1
5 12  ww     3.46 

 

3
5

7

2

3
321  www , or 1)5(

2

3

2

5

5

7
3

2

3

5

7
3 123 


 www  3.47 

 
wx U  implies:  

  






































 

1

2/5

5

100

2/52/50

112

3

2

1

x

x

x

      3.48 

 
By back substitution,  
  

13 x          3.49 
  

2

5

2

5

2

5
32  xx 5)1(

2

5

2

5

2

5

2

5

2

5
32  xx     3.50 

  
22 x           3.51 

  
52 321  xxx         3.52 

  

1
2

)1(25

2

5 32
1 







xx
x       3.53 

 
The solution set is therefore, 
  

11 x , 2y , 1z .       3.54 
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3.5 Jacobi Iteration 
 
Given the system of equations 
  

1111 dzcybxa          3.55 
  

2222 dzcybxa          3.56 
  

3333 dzcybxa          3.57 
 
Solving for x , y  and z , gives 
  

 zcybd
a

x 111
1

1
         3.58 

  

][
1

222
2

zcxad
b

y         3.59 

  

][
1

333
3

ybxad
c

z         3.60 

 
It is easy to see that provided the diagonal elements are large relative to the other 
coefficients, the sequence of iteration would converge.  
 
For initial values 0x , 0y  and 0z , the scheme would be as shown below: 
  

 01011
1

1

1
zcybd

a
x         3.61 

  

][
1

02022
2

1 zcxad
b

y         3.62 

  

][
1

03033
3

1 ybxad
c

z         3.63 

 
We can now write, for n = 0 and above, 
  

 nnn zcybd
a

x 111
1

1

1         3.64 

  

][
1

222
2

1 nnn zcxad
b

y         3.65 
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][
1

333
3

1 nnn ybxad
c

z         3.66 

 
The sequence of iteration continues until there is convergence, in the sense that 

|| 1 nn xx  , || 1 nn yy   and || 1 nn zz   are less than the prescribed tolerance. 
 
Example 
 
We shall solve the following system of equations using the Jacobi iteration 
method. 
 

2825  zyx         3.67 

59230  zyx         3.68 

192023  zyx         3.69 
 
Equivalently, 
  

25

28 zy
x


 , 30

259 zx
y


 , 20

1923 


yx
z     3.70 

 
Let us assume that the initial guess of solution is (0, 0, 0).  
Then, the first set of values for the iteration is: 
  

25

28

25

0028
1 


x 12.1        3.71 

  

30

59

30

0059
1 


y 96666667.1       3.72 

  

20

19

20

1900
1 


z 95.0       3.73 

 

00333333.1
15000

13850

25

20/1930/5928



x     3.74 

99266667.1
1500

2803

1500

5606

30

)
20

19
(2

25

28
59





y    3.75 

97866667.0
15000

14860

20

19
30

59
2

25

26
3





z     3.76 
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Table 3.1 shows the rest of the computation. 
 
Table 3.1: Table for Jacobi iteration  
 
n x  y  z  
1 1.12000000 1.96666667 -0.95000000 
2 1.00333333 1.99266667 -0.97866667 
3 1.00114667 1.99846667 -0.99876667 
4 1.00011067 1.99987956 -0.99967467 
5 1.00001783 1.99997462 -0.99997136 
6 1.00000216 1.99999750 -0.99999479 
7 1.00000031 1.99999958 -0.99999943 
8 1.00000004 1.99999995 -0.99999991 
9 1.00000001 1.99999999 -0.99999999 
10 1.00000000 2.00000000 -1.00000000 
 
 
3.6 Gauss-Seidal Iteration 
 
You would recall that in each of the Jacobi iterations, we calculated the value of 
the variables using the old variables. The Gauss-Seidal iteration is a modification 
of this method, in which the value of x  obtained in a particular iteration and the 
old value of z is put into the formula for y  to obtain a new value for y. The new 
values of x and y are substituted into the equation for z. 
 
Thus, given the system of equations 
  

1111 dzcybxa          3.77 
  

2222 dzcybxa          3.78 
  

3333 dzcybxa          3.79 
 
with the initial condition 0x , 0y , 0z , 

 01011
1

1

1
zcybd

a
x 

       3.80
 

  

][
1

02122
2

1 zcxad
b

y         3.81 

  

][
1

13133
3

1 ybxad
c

z         3.82 
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 nnn zcybd
a

x 111
1

1

1         3.83 

  

][
1

2122
2

1 nnn zcxad
b

y          3.84 

  

][
1

13133
3

1   nnn ybxad
c

z       3.85 

 
As in the case of the Jacobi iteration, the sequence of iteration continues until 
there is convergence, in the sense that || 1 nn xx  , || 1 nn yy   and || 1 nn zz   are 
less than the prescribed tolerance. 
 
Example 
 
We shall solve the following system of equations using the Gauss-Seidal 
iteration method. Assume (0,0,0) is the initial guess of solution. 
 

2825  zyx         3.86 

59230  zyx         3.87 

192023  zyx         3.88 
 

25

28 00
1

zy
x




        3.80
 

  

20

259 01
1

zx
y


         3.81 

  

30

1923 11
1




yx
z         3.82 

 

12.1
25

28

25

0028
1 


x

       3.80
 

  

929333333.1
750

1447

30

02
25

28
59

1 



y      3.81 

  

974933333.0
375000

365600

20

19
750

1447
2

25

28
3

1 



z    3.82 
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You can verify the remaining calculations on Table 3.2. 
 
Table 3.2: Table for Gauss-Seidal iteration 
n  x  y  z  
1 1.12000000 1.92933333 -0.97493333 
2 1.00382933 1.99820124 -0.99924572 
3 1.00010212 1.99994631 -0.99997931 
4 1.00000298 1.99999852 -0.99999941 
5 1.00000008 1.99999996 -0.99999998 
6 1.00000000 2.00000000 -1.00000000 
 
Observation: As expected, the Gauss-Seidal iteration converged faster than the 
Jacobi iteration. 
 
4.0 Conclusion 
 
In this Unit, you learnt various methods for solving a system of linear algebraic 
or transcendental equations using various methods: some were direct, while the 
others were iterative in nature. You also got to know the merits and the demerits 
of direct and iterative methods. You also found out that it is important, in 
elementary row operations, to avoid having to deal with fractions, so as to keep 
rounding errors minimal. 
 
5.0 Summary 
 
You learnt the following in this Unit: 
 
 How to write a matrix in the form amenable for programming. 
 How to numerically solve a set of linear equations. 
 That the Gauss-Seidal iteration converges faster than the Jacobi iteration. 
 In numerical work, for the sake of avoiding rounding errors, it is better to 

retain fractions for as long as possible. 
 Iteration is advisable only if the main diagonal elements are large 

compared with the other entries of the equivalent matrix. 
 
6.0 Tutor Marked Assignment 
 
1. Solve the system of linear equations 1 zyx , 422  zyx , 

769  zyx  using the method of 
 

 Gaussian elimination 
 Gauss-Jordan elimination 
 LU decomposition 
 Jacobi iteration 
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 Gauss-Seidal iteration 
 
2. Solve the system of linear equations 222  zyx , 422  zyx , 

14269  zyx  using the method of 
 

 Gaussian elimination 
 Gauss-Jordan elimination 
 LU decomposition 
 Jacobi iteration 
 Gauss-Seidal iteration 
 
 
7.0 References/Further Reading  
 
Solutions to Tutor Marked Assignment 
 

1. Solve the system of linear equations 1 zyx , 422  zyx , 
769  zyx  using the method of 

 
(i) Gaussian elimination 
 
Initial augmented matrix   
 1 1 1 -1 
 1 2 2 -4 
 9 6 1 7 
     
     
First round of Gaussian elimination   
 1 1 1 -1 
 0 1 1 -3 
 0 -3 -8 16 
     
Second round of Gaussian elimination  
 1 1 1 -1 
 0 1 1 -3 
 0 0 -5 7 
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(ii)  Gauss-Jordan elimination 
 
Last matrix for Gaussian elimination   
 1 1 1 -1 
 0 1 1 -3 
 0 0 -5 7 
     
     
First round of Jordan elimination   
 5 5 0 2 
 0 5 0 -8 
 0 0 -5 7 
     
Second round of Jordan elimination   
 -25 0 0 -50 
 0 5 0 -8 
 0 0 -5 7 
 
(iii)  LU decomposition 
 

1 zyx  
422  zyx         3.33 

769  zyx  
 
The corresponding matrix is  
 













169

221

111

 

 
  

1111 au  = 1         3.34 

1212 au  = 1          3.35 

11313  au            3.36 

  

112121 / aal  = 1/1  = 1       3.37 
  

113131 / aal   = 1/9  = 9       3.38 

1)1)(1(212
11

21
2222  a

a

a
au

      3.39
 

1)1)(1(213
11

21
2323  a

a

a
au  
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3)1(
1

9
6

1

11
12

11

31
32

22
32 


 


  a

a

a
a

u
l             3.40 

 
5)1)(3()1)(9(1233213313333  ululau     3.41

 

  
Thus, 
  

























 500

110

111

139

011

001

= 












169

221

111

     3.42 

 
W got the decomposition right, as the multiplication of the L and U gives the 
original matrix. 
 
The original equation is equivalent to ywx  LLU , 

yw L  implies 
 








































 7

4

1

139

011

001

3

2

1

w

w

w

       3.44 

 
Solving, 
  

1w  1          3.45 
  

421  ww  or 3)1(44 12  ww     3.46 
739 321  www , or 7)1(9)3(37937 123  www   3.47 

 
wx U  implies:  

  








































 7

3

1

500

110

111

3

2

1

x

x

x

       3.48 

 
By back substitution,  
  

5/73 x = 4.1         3.49 
  

332  xx )5/7(33 32  xx      3.50 

  



PHY 314       NUMERICAL COMPUTATIONS 
 

39 
 

6.15/82 x         3.51 
  

1321  xxx         3.52 
  

2
5

10
)5/7()5/8(11 321  xxx     3.53 

 
The solution set is therefore, 
  

21 x , 6.1y , 4.1z .       3.54 
 
Notice that, where necessary, we reverted to fractions to avoid incurring 
rounding errors.  
 
2. Solve the system of equations 26225  zyx , 152203  zyx , 

zyx 154   using: 
(i) Jacobi iteration 
(ii)  Gauss-Seidal iteration 
Assume a starting set of values 0000  zyx  and a tolerance of 

6
1 105|| 

  ii xx , 6
1 105|| 

  ii yy , 6
1 105|| 

  ii zz . 
 
(i) Jacobi iteration 
1.040000 0.750000 1.333333 
1.033333 1.039333 1.064000 
0.999413 1.011400 0.987289 
0.998580 0.998641 0.996999 
0.999989 0.999487 1.000457 
1.000059 1.000044 1.000138 
1.000002 1.000023 0.999984 
0.999998 0.999999 0.999994 
1.000000 0.999999 1.000001 
1.000000 1.000000 1.000000 
 
(ii) Gauss-Seidal iteration 
1.040000 0.906000 1.022400 
1.008416 1.003502 0.998505 
0.999660 0.999799 1.000076 
1.000019 1.000010 0.999996 
0.999999 0.999999 1.000000 
1.000000 1.000000 1.000000 
 
Observation: The Gauss-Seidal iteration scheme converged faster than the Jacobi 
iteration, as was expected. 
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2. Solve the system of linear equations 222  zyx , 422  zyx , 

14269  zyx  using the method of 
 

(iv) Gaussian elimination 
Initial augmented matrix   
 1 2 2 -2 
 2 2 1 -4 
 9 6 2 -14 
     
     
First round of Gaussian elimination   
 1 2 2 -2 
 0 -2 -3 0 
 0 -12 -16 4 
     
Second round of Gaussian elimination  
 1 2 2 -2 
 0 -2 -3 0 
 0 0 -4 -8 
     
Answers     
x 0    
y -3    
z 2    
 
(v) Gauss-Jordan elimination 
 
Last matrix for Gaussian elimination   
 1 2 2 -2 
 0 -2 -3 0 
 0 0 -4 -8 
     
     
First round of Jordan elimination   
 4 8 0 -24 
 0 -8 0 24 
 0 0 -4 -8 
     
Second round of Jordan elimination   
 32 0 0 0 
 0 -8 0 24 
 0 0 -4 -8 
 
(vi) LU decomposition 
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1 zyx  

 
422  zyx         3.33 

769  zyx  
 
The corresponding matrix is  
 













169

221

111

 

 
  

1111 au  = 1         3.34 

1212 au  = 1          3.35 

11313  au            3.36 

  

112121 / aal  = 1/1  = 1       3.37 
  

113131 / aal   = 1/9  = 9       3.38 

1)1)(1(212
11

21
2222  a

a

a
au

      3.39
 

1)1)(1(213
11

21
2323  a

a

a
au  

3)1(
1

9
6

1

11
12

11

31
32

22
32 


 


  a

a

a
a

u
l             3.40 

5)1)(3()1)(9(1233213313333  ululau     3.41
 

  
Thus, 
  

























 500

110

111

139

011

001

= 












169

221

111

     3.42 

 
W got the decomposition right, as the multiplication of the L and U gives the 
original matrix. 
 
The original equation is equivalent to ywx  LLU , 

yw L  implies 
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






































 7

4

1

139

011

001

3

2

1

w

w

w

       3.44 

 
Solving, 
  

1w  1          3.45 
  

421  ww  or 3)1(44 12  ww     3.46 
739 321  www , or 7)1(9)3(37937 123  www   3.47 

 
wx U  implies:  

  








































 7

3

1

500

110

111

3

2

1

x

x

x

       3.48 

 
By back substitution,  
  

5/73 x = 4.1         3.49 
  

332  xx )5/7(33 32  xx      3.50 

  
6.15/82 x         3.51 

  
1321  xxx         3.52 

  

2
5

10
)5/7()5/8(11 321  xxx     3.53 

 
The solution set is therefore, 
  

21 x , 6.1y , 4.1z .       3.54 
 
Notice that, where necessary, we reverted to fractions to avoid incurring 
rounding errors.  
 

3. Solve the system of equations 26225  zyx , 152203  zyx , 
zyx 154   using: 

 
(i) Jacobi iteration 
(ii)  Gauss-Seidal iteration 
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Assume a starting set of values 0000  zyx  and a  
 
(i) Jacobi iteration tolerance of 7

1 10|| 
  ii xx , 7

1 10|| 
  ii yy , 

7
1 10|| 

  ii zz . 

x  y  z  
0.571429 -0.300000 0.800000 
0.878571 -0.722857 0.805714 
0.910816 -0.907714 0.913429 
0.962490 -0.937833 0.980922 
0.988746 -0.975586 0.982635 
0.992054 -0.991511 0.992485 
0.996710 -0.994481 0.998194 
0.998961 -0.997845 0.998451 
0.999293 -0.999221 0.999346 
0.999711 -0.999510 0.999830 
 
(ii) Gauss-Seidal iteration of 6

1 105|| 
  ii xx , 6

1 105|| 
  ii yy , 

6
1 105|| 

  ii zz . 
 
x  y  z  
0.571429 -0.642857 0.942857 
0.954082 -0.966735 0.995878 
0.996152 -0.997279 0.999681 
0.999692 -0.999783 0.999975 
0.999976 -0.999983 0.999998 
0.999998 -0.999999 1.000000 
1.000000 -1.000000 1.000000 
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Unit 4: Roots of Algebraic and Transcendental Equations 
 
Unit  Structure 
 
4.1  Introduction 
4.2  Objectives 
4.3 Main Content 

4.3.1 Introduction 
4.3.2 Bisection Method 
4.3.3 Merits of the Bisection Method 
4.3.4 Demerits of the Bisection Method 
4.3.5 Newton-Raphson Method 
4.3.6 Merits of the Newton-Raphson Method 
4.3.7Demerits of the Newton-Raphson Method 
4.3.8 Regula-falsi method 
4.3.9Secant Method 

4.4 Conclusion 
4.5 Summary 
4.6 Tutor Marked Assignment 
4.7 References/Further Reading  
 
4.1 Introduction 
 
In Physics, as well as in many other scientific fields, there is always the need to 
find the root of an equation. You have no doubt been tackling such problems 
from high school days. However, up till now, you have been able to handle 
simple cases that a calculator could be employed to do. In this Unit, you shall 
learn how to handle the more complicated cases of roots of algebraic and 
transcendental equations. 
 
4.2 Objectives 
 
By the time you are through with this Unit, you should be able to: 
 
 Find the root of an equation or equivalently the zero of a function. 
 You would also be able to compare the various methods of obtaining the 

zero of a function. 
 
4.3 Main Content 
 
3.1 Introduction 
 
You are probably quite familiar with the concept of the function of a continuous 
variable )(xf , continuous over a certain interval of the independent variable x. 
If we equate )(xf to zero, we obtain the equation 0)( xf . You might even see 
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the process as that of equating two different functions )(1 xf and )(2 xf , where the 
latter is identically zero.  
 

 
Fig. 4.1 
 
Figure 4.1 shows the graph of xxxf 3)( 2

1  . The x-axis can be seen as the 
function  0)(2 xf . Equating the two functions gives )(03)( 2

2
1 xfxxxf 

. The resulting equation, 032  xx , has two solutions 0x  and 3 (the two 
solutions are indicated in Figure 4.1). Let us ‘slide’ )(2 xf  down to 2)(2 xf , 
the lower horizontal line. The equation becomes 232

 xx . This is perhaps 
one of the commonest quadratic equations you ever came across. The solutions 
are: 1.0 and 2.0. You can check this out on Fig. … as well. Shifting )(2 xf  lower 
to 5.2  would ensure that the resulting equation has no real solutions as the 
curve would not intersect the line. 
 
The equations we have dealt with so far have been such that could easily be 
solved using analytical methods. It should be obvious to you that such equations 
should form a small subset of a much larger family of equations, the solutions of 
most of which do not readily lend themselves to analytical methods, especially 
as the power of the polynomial being equated to zero becomes large. Equating a 
polynomial to zero gives an algebraic equation. A transcendental function is a 
function that ‘transcends’ the normal laws of algebra as it cannot be expressed 
as a sequence of the algebraic operations of addition/subtraction, 
multiplication/division, an example being the square root of another function. 
Other examples include logarithmic, trigonometric, exponential functions and 
their inverses. If an equation involves the transcendental expressions, such as 
exponentials, trigonometric, logarithmic functions, the equation is said to be a 
transcendental equation. 

-2.5

-2.0

-1.5

-1.0

-0.5
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We shall assume that the function whose roots we desire, )(xf , is a function of 
x , whose zeros (or the roots of the resulting equation) lie on the real axis. That 
is, the roots of the equation 0)( xf  are real numbers. There are a number of 
methods of finding the roots. We shall now take some of these. 
 
3.2 Bisection Method 
 

 
Fig.  
 
As the name implies, we obtain the points 1x  and 2x , such that 0)()( 12 xfxf , 
meaning that the value of f  has opposite signs at the two points, which points 
to the fact that a root exists between 1x  and 2x . We approximate this root by the 
average of the two, i.e., 2/)( 21 xx  . Let this be 3x . Then we evaluate )( 3xf . 3x  

is then combined with 1x  or 2x , depending on the one at which the sign of the 
function is opposite that of )( 3xf . This gives 4x . This process is repeated until 

)(xf  attains the prescribed tolerance. We have illustrated this in Fig … for the 
root of the equation 033  xx , given that the root lies between 1x = 1.2 and 2x

= 2.4. Then, 2/)( 213 xxx   = 1.8. 0)( 3 xf , so we combine it with 1x  to arrive 

at 2/)( 314 xxx  , and so on. 
 
The convergence of the Bisection method is slow and steady 
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3.2.1 Merits of the Bisection Method 
 

1. As you can see, the root bisection method always converges. This is 
because you would get closer and closer to the root as the distance 
between the two points of interest is halved each time. 

2. You can also keep a tab on the error. If the root lies between the points a 
and b, there will be a sequence: 

 

)(
2

1
...)(

4

1
)(

2

1
1112211 abababab

nnnnnnn 


. But you would recall 

that bb 1  and aa 1 . Thus, 
12 




nnn

ab
ab . On the other hand, we note that the 

first iteration point 3x  is at least as close to the root as half the interval 11 ab  , 

i.e., 
2

|| 11
3

ab
xx


 . Similarly, for the nth iteration 

2
|| nn

n

ab
xx


 . But 

12 




nnn

ab
ab . Hence, 

nnnnn

abab
abxx

222

1
)(

2

1
||

1




. We conclude that 

nnn

abab
xx

222

1
||

1








, and this gives us an idea of the maximum error in our 

estimate of the root. 
 
3.2.2 Demerits of the Bisection Method 

 
1. The convergence is generally slow. 
2. You might actually be approaching a singularity, for example, while 

dealing with functions that are not continuous between the two initial 

points. A classical example is the function 
x

xf
1

)(  , negative for 0x  

and positive for 0x . As you start out with the bisection method with a 
point on the right of 0 and another on the left of 0, you are under the 
impression that there should be a root in-between. If the function is 
continuous between the initial guesses, this problem is eliminated.  

3. The bisection method will not work if the function is tangential to the x-
axis at the desired root. For example, 2)( xxf   is tangential to the x-axis 
at the point 0x  which is the root of the equation 02

x . The function 
is positive on either side of 0x , so you would not even try to get it in 
the first place, as the bisection method imposes the condition that the signs 
on either side be different. 

4. If one of the initial points is close to the root, you would need many 
iterations to arrive at the root. 

5. It does not work for repeated roots. If there are multiple roots within the 
interval given, the scheme narrows down on only one of the roots. 

6. It does not work for repeated roots. 
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Example: Find a zero of the function 3232)( 23  xxxxf  between the 
points 1.4 and 1.7, using the bisection method. Take the tolerance to be 

5
1 10|| 

  jj xx . 

 
Solution 
  

192.0)4.1( f  
  

756.0)7.1( f  
  

55.1
2

7.14.1
3 


x  

  
1104025.1)55.1( f  

  

475.1
2

4.155.1
4 


x  

  
0588.0)475.1( f  

  

5125.1
2

475.155.1
5 


x  

 
You can confirm that Table 4.1 is indeed true. 
 
Table 4.1: Table for Bisection method 
 
n x  )(xf  
1 1.55 0.14025 
2 1.475 -5.88E-02 
3 1.5125 3.22E-02 
4 1.49375 -1.54E-02 
5 1.503125 7.87E-03 
6 1.498437 -3.89E-03 
7 1.500781 1.96E-03 
8 1.499609 -9.76E-04 
9 1.500195 4.89E-04 
10 1.499902 -2.44E-04 
11 1.500049 1.22E-04 
12 1.499976 -6.10E-05 
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3.3 Newton-Raphson Method 
 
Consider Taylor Series 


!2

))((''
)(')()(

2xxf
xxfxfxxf     4.1 

To a first order approximation, we can neglect second order and higher order 
terms. In that case, if 0)(  xxf , then we truncate equation 4.1, leaving only 
the first two terms on the right. Then,  
 

0)(')()(  xxfxfxxf        4.2 
or 

)('

)(

xf

xf
x

 ,          4.3 

 
so that with an initial guess of 0x , we obtain a better approximation xx 0 , i.e., 

)('

)(

0

0
001 xf

xf
xxxx         4.4 

 
It is quite clear that the function )(xf must be differentiable for you to be able 
apply the Newton-Raphson method. 
 
More generally,  

)('

)(
1

i

i
iii xf

xf
xxxx         4.5 

 
With an initial guess of 0x , we can then get a sequence 1x , 2x , …, which we 
expect to converge to the root of the equation. 
 
We can rearrange equation 4.5 to obtain,  

ii

i
i xx

xf
xf






1

)(0
)('         4.6 

 
meaning that Newton-Raphson method is equivalent to taking the slope of the 
function )(xf  at the i th iterative point, and the next approximation is the point 
where the slope intersects the x  axis. See the Fig 4.1: 
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Fig. 4.1: Graph showing the gradient relationship of Newton-Raphson method 
 
3.3.1 Merits of the Newton-Raphson Method 

 
1. The Newton-Raphson method has a fast rate of convergence. 
2. It can identify repeated roots, since it does not explicitly look for changes 

in the sign of )(xf . 
3. It can find complex roots of polynomials if you started with a complex 

initial guess. 
 

3.3.2 Demerits of the Newton-Raphson Method 
 

1. It requires that we compute both )(xf  and )(' xf , which makes the 
scheme taxing.  

2. Some functions might not be so easy to differentiate. In that case, it might 

be useful to take an approximate differential, 
x

xfxxf


 )()(

. 

3. It is quite sensitive to initial condition and may diverge for the wrong 
choice of initial point. 

4. It will not work if 0)(' xf . Also, if the differential is sufficiently close 
to zero, the sequence may diverge away from the root, or converge very 
slowly. 

5. If the derivative changes signs at a test point, the sequence may oscillate 
around a point that may not even be the root. 

6. It cannot detect repeated roots. 
 

  

 
 

 

0 
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Example: Find the zeros of the function 3232)( 23  xxxxf  using the 
Newton-Raphson method, starting with x= 1.4. Take the tolerance to be 

5
1 10|| 

  jj xx .  

 
Solution 
 

3232)( 23  xxxxf  
266)(' 2  xxxf  

4.10 x  

)('

)()('

)('

)(

0

000

0

0
01 xf

xfxfx

xf

xf
xx


  

  

266

3232266

0
2

0

0
2

0
3

00
2

0
3

0






xx

xxxxxx
 

  

266

334

0
2

0

2
0

3
0






xx

xx
 

  

2)4.1(6)4.1(6

3)4.1(3)4.1(4
2

23




  

  
5412.1  

 
5412.11 x ,  1412.0|| 01  xx  

5035.12 x , 0377.0|| 12  xx  
5.13 x ,       0035.0|| 23  xx  

5.14 x ,       0|| 34  xx  
 
3.4 Regula-falsi method 
 
A regula-falsi or a method of false position assumes a test value for the solution 
of the equation.  
 
You would recall that with the root-bisection method, we knew that a root existed 
between 1x  and 2x  if the function was smooth and 0)()( 21 xfxf . Let us again 
choose these two points as in the case of root-bisection.  
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Then, for an arbitrary x and the corresponding y, 
  

12

12

1

1 )()()(

xx

xfxf

xx

xfy









       4.9 

 
gives the equation of the chord joining the points ))(,( 11 xfx  and ))(,( 22 xfx . 
 
Setting 0y , that is, where the chord crosses the x-axis, 
  

)()(
)(

12

12
113 xfxf

xx
xfxx




       4.10 

 
Then, we evaluate )( 3xf . Just as in the case of root-bisection, if the sign is 

opposite that of )( 1xf , then a root lies in-between 1x  and 3x . Then, we replace 

2x  by 3x  in equation 4.10. In just the same way, if the root lies between 1x  and 

3x , we replace 2x  by 1x . We shall repeat this procedure until we are as close to 
the root as desired.  
 
Example 
 
Find the root of the equation 3232)( 23  xxxxf  between x = 1.4 and 1.7 
by the regula-falsi method. 
 
 192.0)4.1( f , 756.0)7.1( f  
 
A solution lies between x = 1.4 and 1.7. Let 4.11 x  and 7.12 x . Then, 

)192.0(756.0

4.17.1
)192.0(4.1

)()(
)(

12

12
113











xfxf

xx
xfxx  

= 4607595.1  
 088983.0)4607595.1( f  

0

1x  2x  3x  
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The root lies between 1.46076 and 1.7. Let 46076.11 x  and 7.12 x . 

)088983.0(756.0

46076.17.1
)088983.0(4607595.1

)()(
)(

12

12
114











xfxf

xx
xfxx  

= 1.485953 
 
Table 4.2 gives the remaining iterations. 
 
Table 4.2: Table for Regula-falsi method 
 
n x  )(xf  

1 1.460759 -0.088983 
2 1.485953 -0.033938 
3 1.495149 -0.011985 
4 1.498346 -0.004118 
5 1.499439 -0.001401 
6 1.499810 -0.000475 
7 1.499936 -0.000161 
8 1.499978 -0.000055 
 
3.5 Secant Method 
 
In the case of the secant method, it is not necessary that the root lie between the 
two initial points. As such, the condition 0)()( 21 xfxf  is not needed. Following 
the same analysis with the case of the regula-falsi method,  
  

12

12

1

1 )()()(

xx

xfxf

xx

xfy









       4.11 

 
Setting 0y  gives 
  

)()(
)(

12

12
223 xfxf

xx
xfxx




       4.12 

 
Thus, having found nx , we can obtain 1nx  as, 
  

)()(
)(

1

1
1











nn

nn
nnn xfxf

xx
xfxx , n = 2, 3, …    4.13 

 
By inspection, if 0)()( 1 

nn xfxf , the sequence does not converge, because 

the formula fails to work for 1nx . The regula-falsi scheme does not have this 
problem as the associated sequence always converges. 
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Example 
 
Find the root of the equation 3232)( 23  xxxxf  between x = 1.4 and 1.7 
by the regula-falsi method. 

1x 1.4, 2x 1.7 
  

192.0)4.1( f , 756.0)7.1( f  
 
A solution lies between x = 1.4 and 1.7. Let 4.11 x  and 7.12 x . Then, 

)192.0(756.0

4.17.1
)192.0(4.1

)()(
)(

12

12
113











xfxf

xx
xfxx  

= 460759.1  
 

)( 3xf 088983.0  
 

756.0088983.0

7.1460759.1
)088983.0(460759.1

)()(
)(

23

23
334











xfxf

xx
xfxx  

 = 1.485953 
 
You can continue with this scheme. Table 4.3 shows the other values obtained 
from the operation. 
 
Table 4.3: Table for Secant Method 
 
n x  )(xf  

1 1.460759 -0.088983 
2 1.485953 -0.033938 
3 1.501487 0.003730 
4 1.499949 -0.000129 
5 1.500000 0.000000 
 
4.0 Conclusion 
 
In this Unit, you learnt to find the zeros of an algebraic or transcendental 
function. We explored a number of methods, and outlined their merits and 
demerits. We were also able to estimate the maximum error in the bisection 
method. 
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5.0 Summary 
 
In this Unit, you learnt: 
 
 to find the zeros of an algebraic or transcendental function using several 

methods. 
 the merits and demerits of the methods. 
 to the maximum error that can be incurred in using the bisection method. 
 
6.0 Tutor Marked Assignment 

 
1. Find the upper bound of the error you are likely to incur in using the 

bisection method in finding the root of an equation if the two starting 
points are 1.4 and 2.5 and you needed 8 steps to achieve the required 
tolerance. 

2. Find a root of the equation 5.0232 23
 xxx  using the following 

methods (tolerance …..): 
 
 Root bisection [starting points1.9 and 2.1 (tolerance |)(| xf

0.001)]. 
 

 Newton-Raphson starting point 2.0 
 Regula-falsi [starting points1.9 and 2.1]. 
 Secant [starting points1.9 and 2.1]. 
 Find a root of the equation xx sin2  using  
 The bisection method, given that the root is between 1.5 and 3, with 

tolerance 02.0|)(| xf . 
 

 Newton-Raphson method, with the starting point 1.35, with tolerance 
610|)(| xf . 

 Regula-falsi [starting points1.5 and 3.0]. 
 Secant [starting points1.5 and 3.0]. 

 
7.0 References/Further Reading  
 
Solutions to Tutor Marked Assignment 
 
1. Find the upper bound of the error you are likely to incur in using the 

bisection method in finding the root of an equation if the two starting 
points are 1.4 and 2.5 and you needed 8 steps to achieve the required 
tolerance. 

 
3

8
10297.4

2

4.15.2
|| 


 xxn  
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3. Find a root of the equation 5.0232 23

 xxx  using the following 
methods (tolerance …..): 

 
(i) Root bisection [starting points1.9 and 2.1 (tolerance  |)(| xf

0.001)]. 
 
Iteration No. ix  )( ixf  

1 2 -0.5 
2 2.05 2.27E-02 
3 2.025 -0.24434 
4 2.0375 -0.11224 
5 2.04375 -4.51E-02 
6 2.046875 -1.13E-02 
7 2.048437 5.72E-03 
8 2.047656 -2.78E-03 
9 2.048047 1.47E-03 
10 2.047851 -6.58E-04 
 
(ii)  Newton-Raphson starting point 2.0 
 
Iteration No. ix  )( ixf  

1 2.05 0.05 
2 2.04792 0.002084 
3 2.04791 3.81E-06 
 
(iii)  Regula-falsi [starting points1.9 and 2.1]. 
 
Iteration No. ix  )( ixf  

1 2.040918 -0.075613 
2 2.047610 -0.003287 
3 2.047899 -0.000142 
 
 
(iv) Secant [starting points1.9 and 2.1]. 
 
Iteration No. ix  )( ixf  

1 2.568354 8.457968 
2 1.912709 -1.30566 
3 2.000387 -0.49613 
4 2.054121 6.79E-02 
5 2.047653 -2.81E-03 
6 2.047911 -1.49E-05 
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2. Find a root of the equation xx sin2  using  

 
(i) The bisection method, given that the root is between 1.5 and 3, with 

tolerance 02.0|)(| xf . 
 

Iteration No. ix  )( ixf  

1 2.25 0.69385361 
2 1.875 -0.0331716 
3 2.0625 0.29944043 
4 1.96875 0.12503812 
5 1.921875 0.04387042 
6 1.8984375 0.00482936 
7 1.886719 -0.0143012 
 
(ii)  Newton-Raphson method, with the starting point 1.35, with tolerance 
 610|)(| xf . 
 
Iteration No. ix  )( ixf  

1 2.420215 1.099376 
2 1.980780 0.146526 
3 1.899250 0.006165 
4 1.895502 0.000013 
5 1.895494 0.000000 
 
(iii)  Regula-falsi [starting points1.5 and 3.0]. 
 
Iteration No. ix  )( ixf  

1 1.731106 -0.243250 
2 1.835347 -0.095074 
3 1.874712 -0.033632 
4 1.888467 -0.011464 
5 1.893136 -0.003858 
6 1.894705 -0.001292 
7 1.895230 -0.000432 
 
(iv) Secant [starting points1.5 and 3.0]. 
 
Iteration No. ix  )( ixf  

1 1.731106 -0.243250 
2 1.835347 -0.095074 
3 1.902230 0.011077 
4 1.895251 -0.000399 
5 1.895493 -0.000002 
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Unit 5 Finite Differences and Interpolation 
 
Unit  Structure 
 
5.1 Introduction 
5.2 Objectives 
5.3 Main Content 

5.3.1  Finite Differences 
5.1.1  Forward Differences 
5.1.2  Error in Finite Difference Table 
5.3.2  Interpolation 
5.2.1  Newton forward interpolation formula 
5.2.2  Newton’s Backward Interpolation Formula 

5.4 Conclusion 
5.5 Summary 
5.6 Tutor Marked Assignment 
5.7 References/Further Reading  
 
5.1 Introduction 
 
Given the function )(xf we can evaluate the values of f  at different x , thereby 
representing a continuous function with a set of discrete data. On the other hand, 
it could be that we have a set of data and we would like to see if they could have 
been got from a polynomial or if indeed we could represent the points by a 
polynomial. Finite differences would help us in this regard. With the aid of finite 
differences, we shall then derive Newton’s forward and Newton’s backward 
interpolation formulas. 
 
5.2 Objectives 
 
By the end of this Unit, you would be able to: 
 
 Deduce a polynomial from its difference table. 
 Derive Newton’s forward and Newton’s backward interpolation 

formulas. 
 Fit a polynomial to a given a set of data 
 Interpolate and extrapolate with Newton’s forward difference 
 Interpolate and extrapolate with Newton’s backward difference 
 
3.0 Main Content 
3.1 Finite Differences 
 
We proceed by defining the finite difference 
 
i. First Forward difference:  
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 iii fff 1   
       5.1 
ii.  First Backward difference:  
 iii fff 

1   
       5.2 
iii.  First Central difference:  

 
 

2/
11

2 i
ii ff          5.3 

 
The table for forward difference would look like Table 5.1. What do you notice 
about this table? You can see that 0y  and the differences related to it appear on 
the first line slanting down to the right. 
 
Table 5.1: Forward difference Table 
 

 
You can see that differences with similar subscripts form a line slanting 
downward to the right from the top. 
 
Table 5.2 is the backward difference table.  
 
Table 5.2: Backward difference table 

x  y  y  y2  y3  

0x  0y     

  0y    

1x  1y   
0

2 y   

  1y   
0

3 y  

2x  2y   
1

2 y   

  2y   
1

3 y  

3x  3y   
2

2 y   

  3y    

4x  4y     

x  y  y  y2  y3  

0x  0y     

  1y    

1x  1y   
2

2 y   

  2y   
3

3 y  

2x  2y   
3

2 y   

  3y   
4

3 y  

3x  3y   
4

2 y   
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Can you spot what makes this table unique? Differences with similar subscripts 
form a line slanting upward to the right from the bottom. 
 
Note that for forward difference, 010

2 yyy  , or generally,  
 

nnn yyy  1
2          5.4 

 
and for backward difference,  
 

1
2


 nnn yyy         5.5 

 
Of course, we can also get a table for central differences, Table 5.3. 
 
Table 5.3: Central difference table 

 
Do you notice that like subscripts appear on the same row. 
 
3.1.1 Forward Differences 
 
Suppose the given function is 32)( 2  xxxf , then we can evaluate f  at 

6,,2,1,0 x , and then with the aid of forward difference, arrive at Table 5.4: 
 
Table 5.4: Forward difference table for 322  xxy  
 

x y  y   y2  
0 3     
    3   
1 6   2 

  4y    

4x  4y     

x  y  y  y2  y3  

0x  0y     

  2/1y    

1x  1y   
1

2 y   

  2/3y   
2/3

3 y  

2x  2y   
2

2 y   

  2/5y   
2/5

3 y  

3x  3y   
3

2 y   

  2/7y    

4x  4y     
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    5   
2 11   2 
    7   
3 18   2 
    9   
4 27   2 
    11   
5 38   2 
    13   
6 51     
 
The second forward difference produces a constant value of 2. 
 
A similar operation carried out on the function xxf 2)(   will produce a constant 
difference after only one forward difference. 
 
It follows that the number of forward differences needed to achieve a constant 
value of difference is the degree of the polynomial, and the constant value in the 
second forward difference is the second differential of the function. 
 
Hence,  

2
2

2


dx

fd
 

 
Integrating, 

12 cx
dx

df
  

 
and finally, 

21
2)( cxcxxf   

 
The values of the constants 1c  and 2c  will be determined from the values of f at 
different values of x .  

3)0( 2  cf  
6431)1( 11  ccf  

 
Thus, 21 c . 
 
The function, therefore, is  

32)( 2  xxxf . 
 
This was the same function we started with. Of course, if what we started with 
was just the table, we could then have obtained the polynomial the way we did.  
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We could extrapolate for values of x  not given on the table, such as for x = 0.2  
or 7.0 or interpolate for values such as x = 3.5 and 4.2. 
 
3.1.2 Error in Finite Difference Table 
 
Consider Table 5.5 for forward difference table into which we have introduced 
an error   through 4x . 
 
Table 5.5: Forward difference table with error 

 
 
The higher the degree of the difference, the more the error involved. Moreover, 
you would notice that the error terms are the binomial coefficient of n)1(  , 
where n is the order of the difference. Thus, for degree 1, it is  . For degree 2, 
it is 22 21)1(   . For 323 331)1(   .  But can you notice one 
thing? The errors in each difference column cancel out. You shall need this 
property later. 
 
Example 
 
Find the wrong entry in the following table, given that they represent a cubic 
polynomial. 

x  y  y  y2  y3  y4  

0x  0y      

  0y     

1x  1y   
0

2 y    

  1y   
0

3 y   

2x  2y   
1

2 y    0
4 y  

  2y    1
3 y   

3x  3y    2
2 y   41

4  y  
   3y   32

3  y   

4x  4y   23
2  y   62

3  y  

   4y   33
3  y   

5x  5y    4
2 y   43

3  y  

  5y    4
3 y   

6x  6y   
5

2 y    4
3 y  

  6y   
5

3 y   

7x  7y   
6

2 y    

  7y     

8x  8y      
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x  0 1 2 3 4 5 6 7 8 
y  -2 4 34 106 238 448 754 1174 1726 
 
Solution 
The forward difference table is as shown below on the left part of Table 5.6. The 
right part of the table would have resulted if there had been no error. 
 
Table 5.6: Forward difference table with error (a) and without (b) 
     
(a)      (b) 
      
From the given Table     
 
What the table would have looked                
       
 like had there been no error        
 
0 -2        0 -2       
    6          6     
1 4   24    1 4   24   
    30   18      30   18 
2 34   42    2 34   42   
    72   20      72   18 
3 106   62    3 106   60   
    134   12      132   18 
4 240   74    4 238   78   
    208   24      210   18 
5 448   98    5 448   96   
    306   16      306   18 
6 754   114    6 754   114   
    420   18      420   18 
7 1174   132   7 1174   132  
    552          552     
8 1726        8 1726       
 
We recall that the third difference should have been a constant. This constant we 
can determine by remembering that you were told the sum of errors in a single 
difference column cancel out. Thus, the sum of the entries in the column 
representing the third forward difference remains the same as it would have been 
had there been no error. This sum is 108. We divide this by 6 to arrive at 18. 
Each entry in that column should have been 18. We notice that the shaded entries 
in the table can be traced backwards to the entry 240 in the values of y. This is 
the entry in error. Moreover,  
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2405  y , 201
3  y , 1232

3  y . But 2
3

1
3 yy  , implying that 

   31220   
 
Solving for  , 84   and 2 . Thus, 24025 y , giving 2385 y . You can 
now see that the table on the left of Table … should have been the correct table 
if there had been no error. 
 
3.2 Interpolation 
 
3.2.1 Newton forward interpolation formula 
 
At times, we would like to represent a set of values ),( ii yx with a function, 
enabling us, among other things, to be able to interpolate or extrapolate values 
that are not in the given set. 
 
Let the interpolating function be a polynomial given by )(xy . Then, we can write 
the polynomial as, 
  
+ ))...()((... 110 

 nn xxxxxxa     5.6 
 

)(xyn  must be equal to the tabulated values of y. Thus, we require that: 
  

0y ( y at 0xx  ) = 0a         5.7 
  

1y ( y at )1xx  = )( 0110 xxaa    
 
which implies  
 

h

y

xx

yy

xx

ay
a 0

01

01

01

01
1






       5.8 

  

2y ( y at 2xx  ) = ))(()( 120220210 xxxxaxxaa    
    
   = ))(()( 12022011210 xxxxaxxxxaa      
      
 = 2

2
1210110 2)()( ahxxaxxaa   (since hxx 202  ) 

     

  = 2
20

1 2 ahh
h

y
y   

  

2
2

0112 2 ahyyyy   
 
from which 
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2
0

2

2
01

2 !22 h

y

h

yy
a

        5.9 

 
Similarly, 
  

3
0

2

3 !3 h

y
a

          5.10 

 
Putting these values in equation 5.6 gives 
  

))((
!2

)()( 102
0

2

0
0

0 xxxx
h

y
xx

h

y
yxy    

    

...))()((
!3 2102

0
3

 xxxxxx
h

y
    5.11 

 
Now, let rhxx  0 . Then, 
  

rhxx  0 , hrhrhxxxxxx )1(1001   
  

hrhhrxxxxxx )2()1(2112   
 
Hence, from equation 5.11,  

 

...
!3

)2)(1(

!2

)1(
)()( 0

3
0

2
000  y

rrr
y

rr
yryrhxyxy  

    

+ … ...
!

))1()...(1(
0 

y
n

nrrr n     5.12 
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This is Newton’s forward interpolation formula. 
 
Note: Newton’s forward interpolation formula is for  
 
(i) interpolating the values of y near the beginning of a set of tabulated 

values, and (ii) extrapolating values of y a little to the left of 0y  
 
3.2.2 Newton’s Backward Interpolation Formula 
 
Let us choose )(xyn  in the form, 
  

))(()()( 1210 
 nnnn xxxxaxxaaxy  

    
))...()((... 11 xxxxxxa nnn 


    5.13 

 
)(xyn  must be equal to the tabulated values of y. Thus, we require that: 

  

ny  ( y at nxx  ) = 0a        5.14 
  

1ny ( y at )1 nxx  = )( 110 nn xxaa 


  
   

h

y

xx

yy

xx

ay
a

nn

nn

nn

n 0

1

1

1

01
1














       5.15 

  

2ny ( y at 2 nxx )  = ))(()( 1222210 
 nnnnnn xxxxaxxaa   

        
= ))(2()2( 210 hhahaa      
  

2ny  = 2
222 ah

h

y
hy n

n    

   
= 2

2
1 2)(2 ahyyy nnn 


 

   
= 2

2
1 22 ahyy nn 


 

 
We can then write 
  

)2(
2

1
1222 

 nnn yyy
h

a  

 
But 122111

2 2)()(


 nnnnnnnnnn yyyyyyyyyy  
 
Hence,  
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ny
h

a 2
22 2

1          5.16 

 
Similarly, 
  

ny
h

a 3
33 3

1          5.17 

  

n
n

nn y
hn

a  1
        5.18 

 
Putting these values in equation 5.13 yields, 
 

)(xyn = ...
2

))(()( 2
2

1  

n
nn

n
n

n y
h

xxxx
y

h

xx
y  

   

...
))...()((

... 11  

m
m

m
mm y

mh

xxxxxx
 

 
Setting rhxx n  , rhxx n  , hrhrhxxxxxx nnnn )1(11 


.  

 
Similarly, 2112 

 nnnn xxxxxx = hrhhr )2()1(  . Thus,  

hnrxx )]1([1  . 
 

...
!3

)2)(1(

!2

)1(
)()( 32

0  nnnn y
rrr

y
rr

yryrhxyxy  

    

+ … ...
!

))1()...(1( 
n

n y
n

nrrr
 

This is the Newton’s backward interpolation formula. 
 
Note: Newton’s backward interpolation formula is for  
 
(i) interpolating the values of y near the end of a set of tabulated values, and  
(ii) extrapolating values of y a little to the right of ny . 
 
Example 
 
Find the cubic polynomial that fits the following table. 
 
x 1 2 3 4 
y 3 9 27 63 
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Solution 
 
The forward difference table gives: 
 
x  y    2  3  
1 3    
  6   
2 9  12  
  18  6 
3 27  18  
  36   
4 63    
 
The step-size, h, is 1. Let rhxx  0 , with 10 x .  
 

...
!3

)2)(1(

!2

)1(
)()( 0

3
0

2
000  y

rrr
y

rr
yryrhxyxy  

    

+ … ...
!

))1()...(1(
0 

y
n

nrrr n  

0xxr  = 1x . 
 
Then, 
 

...6
!3

)3)(2)(1(
12

!2

)2)(1(
6)1(3)(  xxxxx

xxy  

  
= ...)3)(23()23(6663 22  xxxxxx  
  
= ...693231218636 2232  xxxxxxxx  
 
  
= 33  xx  
 
 
Check: Find the value of y when x = 3: 
  

27333)3( 3 y  
 
You could also get the value of y  when x is 0.95, being a little to the left of 0x

= 1. 
 

907375.2395.95.)3( 3 y  
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Let us solve the same problem with Newton’s backward formula. 
 

x  y  y  y2  y3  

1 3    
  -6   
2 9  12  
  -18  -6 
3 27  18  
  -36   
4 63    
 

nxxr   = 4x , since h= 1. 

 

...
!3

)2)(1(

!2

)1(
)( 32  nnnn y

rrr
y

rr
yryxy  

    

+ … ...
!

))1()...(1( 
n

n y
n

nrrr
 

  

= ...6
6

)2)(3)(4(
18

2

)3)(4(
36)4(63 







xxxxx
x  

  
= )65)(4()127(91443663 22  xxxxxx  
  
= 24204651086391443663 2232  xxxxxxxx  
  
= 33  xx  
 
Check: Find the value of y when x = 2: 
  

9322)3( 3 y  
 
You could also have found )9.3(y , x = 3.9 being a point to the left of x = 4: 
  

)9.3(y  = 39.3)9.3( 3  = 58.419 
 
4.0 Conclusion 
 
In this Unit, you have learnt how to carry out the three different difference 
schemes. You have also learnt how to deduce a polynomial from tabulated data. 
Moreover, you can now detect what and where an error has been introduced into 
a difference table. You also derived Newton’s forward and backward 
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interpolation formulas. From the interpolation formulas, you were able get 
interpolating functions. 
 
5.0 Summary 
 
In this Unit, you leant to do the following: 
 
 Carry out any of the three difference schemes. 
 Derive the polynomial that fits a set of tabulated data. 
 Derive Newton’s forward interpolation formula. 
 Derive Newton’s backward interpolation formula. 
 With the aid of Newton’s forward or backward formula, obtain a function 

that takes the values in a set of tabulated data. 
 
6.0 Tutor Marked Assignment 
 

1. Carry out the forward, backward, and the central difference schemes 
on the set of data provided below: 
 

1 2 3 4 5 6 7 
1 12 47 118 237 416 667 

 
2. Starting with the function 12288 23

 xxx , draw up a difference table. 
Deduce the equation that fits the data, starting from the table alone. 

 
3. We have deliberately inserted an error in the data in the table below. If 

the data represents a cubic polynomial, find which of the entries is in 
error. 

 
0 1 2 3 4 5 6 7 8 9 
-12 -14 16 126 366 778 1416 2326 3556 5154 

 
4. Find the quartic polynomial that fits the following table. 

 
(i) Using the Newton’s forward interpolation formula. 
(ii)  Using the Newton’s backward interpolation formula. 
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7.0 References/Further Reading  
 
Solutions to Tutor Marked Assignment 
 
1. Carry out the forward, backward, and the central difference schemes on 

the set of data provided below: 
 

1 2 3 4 5 6 7 
1 12 47 118 237 416 667 

 
Solution 
  
Forward difference:  
 
1 1    
  11   
2 12  24  
  35  12 
3 47  36  
  71  12 
4 118  48  
  119  12 
5 237  60  
  179  12 
6 416  72  
  251   
7 667    
 
Backward difference: 
 
1 1    
  -11   
2 12  24  
  -35  -12 
3 47  36  
  -71  -12 
4 118  48  
  -119  -12 
5 237  60  
  -179  -12 
6 416  72  
  -251   
7 667    
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2. Starting with the function 12288 23

 xxx , draw up a difference table. 
Deduce the equation that fits the data, starting from the table alone. 

 
Solution 
0 -12    
  -2   
1 -14  32  
  30  48 
2 16  80  
  110  48 
3 126  128  
  238  48 
4 364  176  
  414   
5 778    
 
   
The degree of the polynomial is 3. 
   

''48
3

3

y
dx

yd
  

   

Hence, edx
x

cxy 
2

8
2

3  

Substituting in turn three different values of x  yields ,,, edc  respectively –16, 
–2 and –12. 
 
The polynomial is then 12288 23

 xxxy . 
 

2. We have deliberately inserted an error in the data in the table below. 
If the data represents a cubic polynomial, find which of the entries is 
in error. 
 

0 1 2 3 4 5 6 7 8 9 
-12 -14 16 126 366 778 1416 2326 3556 5154 
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Solution 
x  y  y  y2  y3  
0 -12    
  -2   
1 -14  32  
  30  48 
2 16  80  
  110  50 
3 126  130  
  240  42 
4 366  172  
  412  54 
5 778  226  
  638  46 
6 1416  272  
  910  48 
7 2326  320  
  1230  48 
8 3556  368  
  1598   
9 5154    
 
The third difference should have been a constant. The sum of errors in a single 
difference column cancel out. Thus, the sum of the entries in the column 
representing the third forward difference remains the same as it would have been 
had there been no error. This sum is 336. We divide this by 7 to arrive at 48. 
Each entry in that column should have been 48. We notice that the shaded entries 
in the table can be traced backwards to the entry 336 in the values of y. This is 
the entry in error. Moreover,  
  

3665  y , 501
3  y , 4232

3  y . But 2
3

1
3 yy  , implying that 

   
 34250   

 
Solving for  , 84   and 2 . Thus, 36625 y , giving 3645 y . You can 
now see that the table below should have been the correct table if there had been 
no error. 
  



PHY 314       NUMERICAL COMPUTATIONS 
 

74 
 

 

x  y  y  y2  y3  
0 -12    
  -2   
1 -14  32  
  30  48 
2 16  80  
  110  48 
3 126  128  
  238  48 
4 364  176  
  414  48 
5 778  224  
  638  48 
6 1416  272  
  910  48 
7 2326  320  
  1230  48 
8 3556  368  
  1598   
9 5154    
 

3. Find the quartic polynomial that fits the following table. 
 

(iii)  Using the Newton’s forward interpolation formula. 
(iv) Using the Newton’s backward interpolation formula. 
 
x  0 2 4 6 8 
y  8 17 230 1230 3972 
 
Solution 
 
The forward difference table gives: 
 

x  y  y  y2  y3  y4  
0 8     
  9    
2 17  204   
  213  583  
4 230  787  372 
  1000  955  
6 1230  1742   
  2742    
8 3972     



PHY 314       NUMERICAL COMPUTATIONS 
 

75 
 

 
The step-size, h, is 2. Let rhxx  0 , with  

00 x , h = 2. Hence, 
2

/)( 0

x
hxxr   
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2
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yryrhxyxy  

    

+ … ...
!

))1()...(1(
0 

y
n
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Then, 
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)2
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)(1
2
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2204
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(
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2
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

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...372
!4

)3
2

)(2
2

)(1
2

(
2 




xxxx

 

 
this expression,  
    

8
6

25

4

19

48

25

32

31
)( 234  xxxxxy  

 
Solving the same problem with Newton’s backward formula. 
 

x  y  y  y2  y3  y4  
0 8     
  -9    
2 17  204   
  -213  -583  
4 230  787  372 
  -1000  -955  
6 1230  1742   
  -2742    
8 3972     
 

r  = 4
22

8





 xx

h

xx n , since h= 2. 
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)2)(1(

!2

)1(
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y

rr
yryxy  
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+ … ...
!
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n
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
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...372
6
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2

)(2
2

)(3
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)(4
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(

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

xxxx

 

 
Simplifying, we yet again arrive at  
   

8
6

25

4

19

48

25

32

31
)( 234  xxxxxy  
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Unit 6:  Numerical Integration 
 
Unit  Structure 
 
6.1 Introduction 
6.2  Objectives 
6.3 Main Content 

6.3.1 The Newton-Coates Quadrature Formula 
6.3.2 The Trapezoidal Rule 
6.3.3 Simpson’s one-third rule 
6.3.4 Simpson’s three-eighth rule 
6.3.5 Errors in the Quadrature formulas 
6.3.6.1 Error in the Trapezoidal rule 
6.5.2 Error in the Simpson’s one-third rule 
6.3.6 Romberg’s method 

6.4 Conclusion 
6.5 Summary 
6.6 Tutor Marked Assignment 
6.7 References/Further Reading  
 
6.1 Introduction 
 
No doubt, before you could get to this stage of your studies, you integrated quite 
a number of function analytically. Perhaps you were told at the onset that the 
process of analytical integration arose from discretising the function, that is, 
‘slicing’ up the function into vertical bars as shown in Fig. 5.1 and then adding 
up the areas of the bars in the limit as the slivers become infinitesimally narrow. 
Numerical integration goes back to this idea, and represents a continuous 
function by a discrete set of points as this is the way the program compiler can 
handle data. Numerical integration is called quadrature when the function is a 
function of a single variable. In this unit, you shall learn several methods of 
integrating a function numerically. 
 
6.2 Objectives 
 
By the end of this Unit, you should be able to: 
 
 Numerically integrate a given function of a single variable between a 

given set of limits. 
 Know the merits and demerits of various numerical integration schemes. 
 Deduce the error involved in approximating an analytical integral with a 

numerical integral. 
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Fig. 5.1: Discretisation of the interval of integration 
 
6.3 The Newton-Coates Quadrature Formula 
 
As you can see, numerical integration as the process of finding the value of a 
definite integral, 
  


b

a
dxxfI )(          6.1 

 
with bxa   (Fig. 5.1). An approximate value of the integral is obtained by 
replacing the function by an interpolating polynomial. Thus, different formulas 
for numerical integration would result for different interpolating formulas. In our 
own case, we shall be making use of take Newton’s forward difference formula.  
 
We shall divide the interval ],[ ba  into n equal subintervals: 

bxxxa n  ...10 , such that hxx jj 1 , where the interval, habh /)( 

. Hence, we can write hxx  01 , hxhhxhxx 2)( 0012  . It follows 

therefore, that rhxxr  0 . The integral becomes, 
  


nx

x
dxxfI

0

)(         6.2 

 
We can write qhxx  0  and hdqdx  . nhxxn  0 .  
 
Let us make a change of variable from x to q: qhxx  0 . Then, hxxq /)( 0 .  

It follows, therefore, that when 0xx  , 0q ; when nhxxx n  0 , 

nhnhhxxq n  //)( 0 . 
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The integral becomes 
 

 
 nnhx

x
dqqhxfhhdqqhxfI

0 00 )()()(
0

0     6.3
 

 
Let us approximate )()( 0 hqxfxf   by the Newton’s forward difference 
formula. Then, from equation 6.3, and setting )(xfy  , 
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Integrating and putting the limits of integration, 
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           6.5 
This is the Newton-Coates quadrature formula. 
 
By setting n equal to 1, 2, 3, …, we obtain different integration formulas.  
 
6.3.2 The Trapezoidal Rule 
 
Suppose we set n  equal to 1, and take the curve between two consecutive points 
as linear. Thus, we terminate the sequence on the right in equation 6.5 at the 
linear term as the higher difference terms (0

2 y , 0
3 y , etc.) would be zero. Then, 
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Similarly, 
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Do these equations remind you of an old formula for finding the area of a 
triangle? Yes, each of them is the area of a trapezium, hence the procedure is 
known as the trapezoidal rule. 
 
Adding all these integrals, 
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3.3 Simpson’s one-third rule 
 
We set n = 2 in equation 6.5, and assume the function is quadratic between two 
consecutive intervals. Then, 
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Similarly, 
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Adding all these integrals, with the proviso that n be even (this condition is 
necessary as we need two consecutive intervals, kx to 1kx  to 2kx ), 
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With the aid of the summation symbol, 
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This is Simpson’s one-third rule. 
 
3.4 Simpson’s three-eighth rule 
 
In this case, we set n equal to 3 in equation 6.5 and take the curve over each 
interval as a polynomial of order 3. 
  




  

0
3

0
2

00

3

8

1

2

3

2

3
3)(

0

0

yyyyhdxxf
hx

x
    6.14 

 
The student can show that, 
 

  hx

x
dxxf

30

0

)(  = )33(
8

3
3210 yyyy

h
      6.15 

 
Similarly, 
 

)33(
8

3
)( 6543

5

3

0

0

yyyy
h

dxxf
hx

hx
 

      6.16
 

. 

. 

. 
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Adding all these integrals, with the proviso that n be a multiple of 3, 
 

)]...(2)...(3)[(
8

3
)( 3631210

0

0




 nnn

nhx

x
yyyyyyyy

h
dxxf

 6.17 
 
This is Simpson’s three-eighth rule. 
 
Exercise: Integrate the following function of x  with respect toxusing the 
Trapezoidal rule, Simpson’s one-third rule and Simpson’s three-eighth rule. 
 

153 2  xx ; 41  x ; step size 0.5. 
 
Compare your results with the exact value of the integral. 
 
Solution: 
 

3,
2

5
,2,

2

3
,1,

2

1
,0 6543210  xxxxxxx  

19,75.14,11,75.7,5,75.2,1 6543210  yyyyyyy  
  
i. Trapezoidal rule 
 

 Integral 625.252
2

5

1
60 


  

i
iyyy

h
 

 

ii.  Simpson’s 
3

1
rule 

 

Integral 5.2524
3

5

,1

4

,2
60 



   

 oddii evenii
ii yyyy

h
 

 
The exact integral is 25.5. 
 
The Simpson’s one-third rule is a second order approximation to the integral. 
Since the function is quadratic, an accurate result is obtained. 
 
(iii) Simpson’s three-eighth rule 
 

3,
2

5
,2,

2

3
,1,

2

1
,0 6543210  xxxxxxx  

 
19,75.14,11,75.7,5,75.2,1 6543210  yyyyyyy  
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Integral = ]2)(3)[(
8

3
3542160 yyyyyyy

h
    

  

= )]75.7(2)75.1411575.2(3)191[(
2

1

8

3
  

 
 = 25.5 
 
3.5 Errors in the Quadrature formulas 
 
We approximated the function )(xf  with the polynomial )(xP . The error 
involved in the approximation is 
  

 
b

a

b

a
dxxPdxxfE )()(        6.18 

 
The Taylor series expansion of )(xf  about 0x  is, where 0xxh  , 
  

...)(''
!2

)(')()( 0

2

00  xf
h

xhfxfxf      6.19 

 
3.5.1 Error in the Trapezoidal rule 
  

dxxf
h

xhfxfdxxf
hx

x

hx

x   


  0

0

0

0

...)(''
!2

)(')()( 0

2

00    6.20 

 

In the first interval, ],[ 10 xx , trapezoidal rule gives an area ))()((
2

1
10 xfxf  . The 

integral (integrating term by term) on the right side of equation 6.20 gives 
  

...)(''
!23

)('
2

)( 0

3

0

2

0 


 xf
h

xf
h

xhf      6.21 

 
When 1xx  , )()( 1xfxf  . Thus, from equation 6.19, 
  

...)(''
!2

)(')()( 0

2

001  xf
h

xhfxfxf      6.22 

 
Thus, 
  

))()((
2 10 xfxf
h

 = 







  ...)(''

!2
)(')()(

2 0

2

000 xf
h

xhfxfxf
h
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= 


  ...)(''
!2

)(')(2
2 0

2

00 xf
h

xhfxf
h

   6.23 

 
The error in the first interval is therefore (5.21 minus 5.23): 
 




 


  ...)(''
!22

)('
2

)(...)(''
!23

)('
2

)( 0

3

0

2

00

3

0

2

0 xf
h

xf
h

xhfxf
h

xf
h

xhf  

  

= ...)(''
!22

1

23

1
0

3 



 xfh = ...)(''

12 0

3

 xf
h

    6.24 

 

In the interval ],[ 21 xx , the error in the two values is ...)(''
12 1

3

 xf
h

, etc. 

 
The total error, therefore, is 
  

)](''...)('')('')(''[
12 1210

3


 nxfxfxfxf

h
E    6.25 

 
If the largest value of the sequence of the second differentials at different discrete 
values of x  is )ˆ('' xf , then we can write, 
 

)ˆ(''
12

)(
)ˆ(''

12

23

xf
hab

xf
nh

E



      6.26

 

 
since habn /)(   
 
 
3.5.2 Error in the Simpson’s one-third rule 
  

dxxf
h

xhfxfdxxf
hx

x

hx

x   


  2

0

2

00

2 0

0

0

0

...)(''
!2

)(')()(   6.27 

 
In the first interval, ],[ 10 xx , Simpson’s one-third rule gives an area  

))()(4)((
3 210 xfxfxf
h

 . The integral on the right side of equation 6.27 gives 

  

...)(''
!3

8
)('

!2

4
)(2 0

3

0

2

0  xf
h

xf
h

xhf      6.28 

 
When 1xx  , )()( 1xfxf  . Thus, from equation 6.19, 
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...)('''
!3

)(''
!2

)(')()( 0

3

0

2

001  xf
h

xf
h

xhfxfxf    6.29 

 
Setting hxx 20  , )()( 2xfxf   and 

 

...)('''
!3

8
)(''

!2

4
)('2)()( 0

3

0

2

002  xf
h

xf
h

xhfxfxf
   6.30

 

 
Putting equations 6.29 and 6.30 into equation 6.27 and equating to the 
approximate integral in the interval 0x  to hx 20  , 
  

))()(4)((
3 210 xfxfxf
h

         

 

= 






  ...)('''

!3
)(''

!2
)(')(4)(

3 0

3

0

2

000 xf
h

xf
h

xhfxfxf
h  

  







  ...)('''

!3

8
)(''

!2

4
)('2)( 0

3

0

2

00 xf
h

xf
h

xhfxf  

  

= ...)0(
18

5
)(''

!23

8
)('

!2

4
)(2 )(

5

0

3

0

2

0  ivf
h

xf
h

xf
h

xhf         6.31 

 
The error in the interval ],[ 20 xx is therefore 5.28 minus 5.31: 
  




  ...)(''
!3

8
)('

!2

4
)(2 0

3

0

2

0 xf
h

xf
h

xhf  

   




  ...)0(
18

5
)(''

!23

8
)('

!2

4
)(2 )(

5

0

3

0

2

0
ivf

h
xf

h
xf

h
xhf  

  

= ...)(
15

4

18

5
0

)(5 


  xfh iv = ...)(
90 0

)(
5

 xf
h iv     6.32 

 

In the interval ],[ 42 xx , the error in the two values is ...)(
90 0

)(
5

 xf
h iv , etc. 

 
The total error, therefore, is 
  

...])()()([
90 2

)(
1

)(
0

)(
5

 xfxfxf
h

E iviviv     6.33 
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If the largest value of the sequence of the second differentials at different discrete 
values of x  is )ˆ()( xf iv , then we can write, 
  

)ˆ(
90

)(
5

xf
nh

E iv = )ˆ(
902

)( )(
5

xf
hab iv


 = )ˆ(

190

)( )(
5

xf
hab iv   6.34 

since nabh 2/)(  . 
 
3.6 Romberg’s method 
 
Yet again, we refer to the integral, 

 
b

a
dxxfI )(  

You would recall that the error in trapezoidal rule in a subinterval h is  

 )(''
12

)( 2

xf
hab

E


  

Thus, for subinterval of width 1h , the error in the integral is  

)(''
12

)( 2
1

1 xf
hab

E


        6.35 

For subinterval of width 2h , the error in the integral is, 
  

)(''
12

)( 2
2

2 xf
hab

E


        6.36 

 
We expect that )('' xf  and )('' xf  would be almost equal. Dividing equation 6.35 
by equation 6.36, 
  

2
2

2
1

2

1

h

h

E

E
          6.37 

 

It follows that 12
1

2
2

2 E
h

h
E  , so that 



  1

2
1

2
2

1112
1

2
2

12
h

h
EEE

h

h
EE  

  

2
1

2
2

2
1

2
1

2
2

1

1

12

1

1
hh

h

h

h
E

E

EE

E






 

       6.38 

 
We also note that adding the error to the estimate gives the correct integral I. 
  

2211 EIEII          6.39 
 
from which 
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2112 IIEE          6.40 
  

From 
2

1
2

2

2
1

12

1

hh

h

EE

E





, 

  

)()( 212
1

2
2

2
1

122
1

2
2

2
1

1 II
hh

h
EE

hh

h
E      6.41 

 
We can therefore write, 
  

)( 212
1

2
2

2
1

111 II
hh

h
IEII   

          

= 
2

1
2

2

2
12

2
21

2
1

2
2

21
2

1
2

1
2

21 )()(

hh

hIhI

hh

IIhhhI









   6.42 

 
This is a better approximation to the integral, I. Why, do you think? 
 

Let us take a situation where hh 1  and hh
2

1
2  . Then, equation 6.42 gives, 

  

22

2
2

2
1

22

2
2

2
1

)4/(

)4/(

)2/(

)2/(

hh

hIhI

hh

hIhI
I









      6.43 

 
Multiplying through by 4, and denoting I  by )2/,( hhI  
  

3

4
)2/,( 12 II

hhI


         6.44 

 
But )(1 hII   and )2/(2 hII   
 
We can therefore write, 
  

)2/,( hhI 3/)]()2/(4[ hIhI        6.45 
 
We can develop the scheme below by applying equation 6.45 to the estimates of 
the integral over successively halved intervals. 
 

)(hI     
 )2/,( hhI    

)2/(hI   )4/,2/,( hhhI   
 )4/,2/( hhI   )8/,4/,2/,( hhhhI  
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)4/(hI   )8/,4/,2/( hhhI   
 )8/,4/( hhI    

)8/(hI     
 
We continue the table until successive values converge. This gives a better result 
than could have been obtained with the trapezoidal rule. 
 
Example 
 

Let us once again solve the problem .)13(
3

0

2 dxxx   

 
Solution: 
 
Let us choose h= 1.0, 0.5 and 0.25. Then, the following table obtains. 
 

)(hI = 26  
 )2/,( hhI = (425.625-26)/3 = 25.5 

)2/(hI = 25.625  
 )4/,2/( hhI = (425.53125-25.625)/3 = 25.5  

)4/(hI = 25.53125  
 
25.5 is a better approximation to the integral than the trapezoidal method. Indeed, 
in this case, it is the exact integral. 
 
3.0 Conclusion 
 
In this Unit, you derived the Newton-Coates quadrature formula. Also, you learnt 
how to carry out, with several methods, the numerical integration of a function 
between a given limit of integration. Having found the error in the quadrature 
formula for the different integration methods, you were able to link up with the 
Romberg method of numerical integration. 
 
5.0 Summary 
 
In this Unit, you were able to: 
 
 Derive the Newton-Coates quadrature formula, and, consequently, the 

different formulas for integrating a function between limits. 
 Estimate the error in the quadrature formula for different numerical 

integration methods 
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5.0 Tutor Marked Assignment 
 

1. Integrate the function 2
2

5

2

1
)( 2  tttx , 6.00  t , with six 

intervals, using the following methods:  
 

(i) Trapezoidal rule 
(ii)  Simpson’s one-third rule 
(iii)  Simpson’s three-eighth rule 
 

2. Evaluate the integral  2/

0
sin



dxxx  (where x  is in radians) with a step-

size of 16/x , using 
 

(i) Trapezoidal rule 
(ii)  Simpson’s one-third rule 
(iii)  Simpson’s three-eighth rule 
 
 
7.0 References/Further Reading  
 
Solutions to Tutor Marked Assignment 
 

1. Integrate the function 2
2

5

2

1
)( 2  tttx , 6.00  t , with six intervals, 

using the following methods:  
 

(i) Trapezoidal rule 
(ii) Simpson’s one-third rule 
 
  
Formula for Trapezoidal rule: 
 

  



 





b

a
n

n

i

i yyy
x

dxxf
1

1

0 2
2

)(  

 
  
Formula for Simpson’s one-third rule: 
 

  









 







b

a n

n

eveni
i

i

n

oddi
i

i yyyy
x

dxxf
2

,
2

2

,
1

0 24
3

)(  
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Trapez
o 

Simpso
n  

Ste
p  0.1     
x  )(xf      

0 2 First value of )(xf = 2 2  
0.1 2.255     

0.2 2.52   33.7 
 4 times sum of 
odd 

0.3 2.795 
Sum of intermediate values of 

)(xf  28.05  Simpson’s 1-3 rule 

0.4 3.08 (Trapezoidal rule)  11.2 
 2 times sum of 
even 

0.5 3.375     

0.6 3.68 Last value of )(xf = 3.68 3.68  
   33.73 50.58  

 
Result
s Answer 1.6865 1.686  

 
Analytical solution: 
  

 


 
6.0

0

2

2

1
5.22 dttt = 

6.0

0

32

62
5.22

tt
t  = 1.686 

 
(iii) Simpson’s three-eighth rule 
 

Integral = ]2)(3)[(
8

3
3542160 yyyyyyy

h
    

 = )]795.2(2)375.308.352.2255.2(3)68.32[(
8

)1.0(3
    

 = 1.686 
 

2. Evaluate the integral  2/

0
sin



dxxx  (where x  is in radians) with a step-

size of 16/x , using 
 

(i) Trapezoidal rule 
(ii) Simpson’s one-third rule 
 
  
Working with radians 
 

   
Trapezoi
dal 

Simpson’s 
1-3 
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x xsinx     
0 0 First value of )(xf = 0 0  
0.1963
5 

0.0383
06    

 

0.3926
99 

0.1502
79   

10.119577
35 

4 
tim
es 
su
m 
of 
odd 

0.5890
49 

0.3272
58 

Sum of intermediate 
values of )(xf  

8.64790
81  

 

0.7853
98 

0.5553
6   

3.5881194
68 

2 
tim
es 
su
m 
of 
eve
n 

0.9817
48 

0.8162
93    

 

1.1780
97 

1.0884
2 Last value of )(xf = 

1.57079
63 

1.5707963
28 

 

1.3744
47 

1.3480
37    

 

1.5707
96 

1.5707
96    

 

   
10.2187
04 

15.278493
15 

 

  Answer 
1.00321
88 

0.9999748
3 
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Unit 7:  Initial Value Problems of Ordinary Differe ntial   
  Equations  
 
Unit  Structure 
 
7.1 Introduction 
7.2  Objectives 
7.3 Main Content 

7.3.1 Reduction of a higher order ODE to a system of first order ODE 
7.3.2 Methods of Solving First Order Ordinary Differential Equations 
7.2.1 Picard’s Method 
7.2.2 Euler Method 
7.2.3 Modified Euler Method 
7.2.4 Runge-Kutta Methods 
7.3 Fourth-Order Runge-Kutta Scheme for a System of Three Equations 

7.4 Conclusion 
7.5 Summary 
7.6 Tutor Marked Assignment 
7.7 References/Further Reading  
 
7.1 Introduction 
 
Ordinary differential equations abound in Physics. This is because we often have 
to deal with a rate of change of function of a single variable. It could be a time-
rate of change, say velocity or acceleration, or it could be a spatial rate of change 
as you would expect from the variation of temperature over a metallic bar heated 
at one end at any particular fixed instant of time. Unlike analytic differentiation 
of a function, which is most times achievable, the larger number of functions do 
not lend themselves to analytical integration. We therefore have to resort to 
numerical integration when confronted with such functions. In this Unit, you 
shall learn how to numerically integrate a function of a single variable. 
 
7.2 Objectives 
 
By the end of this Unit, you should be able to: 
 
 Write an nth order ordinary differential equation in terms of n first order 

ordinary differential equations. 
 Solve a first order ordinary differential equation. 
 Solve a system of first order ordinary differential equations. 
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7.3 Reduction of a higher order ODE to a system of first order 
 ODE 
 
Every ordinary differential equation can be put in the form  
 

'),( yxyf
dx

dy
         7.1 

 
or a system of such equations. As an example, take the equation of simple 
harmonic oscillation,  
 

0'' 2  xx           7.2 
 
where   is the angular frequency of oscillation. 
 
Let  

'xz            7.3 
 
Then,  

xz 2'           7.4 
 
The last two equations form a system of ordinary differential equations. 
Likewise, a nth order ordinary differential equation can be written as a set of n 
ordinary differential equations. Thus, it suffices to solve the ordinary differential 

equation ),( xyf
dx

dy
 . 

Example 
 
The Henon-Heiles system of equations leads to chaotic motion. We can reduce 
the two second-order differential equations to four first order ordinary 
differential equations. We can then solve the equations with the methods to be 
learnt later in this Unit. 
 
The Henon-Heile’s Hamiltonian is, 

 3
22

2
1

2
2

2
1

2
2

2
1

3

1

22
qqq

qqpp
H 





    

The resulting equations are, 
  

)2( 2112
1

2

qqq
dt

qd
  

)21(2)2( 1
2

2
2

122
2

2

qqqq
dt

qd
  

 
Each of these equations has been broken up into two first order ordinary 
differential equations: 
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1
1 p

dt

dq
  

 )21(2)2( 12111 qqqqp
dt

d
  

 

2
2 p

dt

dq
  

)21(2)2( 1
2

2
2

122 qqqqp
dt

d
  

 
 
3.2 Methods of Solving First Order Ordinary Differential 
 Equations 
 
We shall now take a look at the various methods of solving a first order ordinary 
differential equation. 
 
3.2.1 Picard’s Method 
 
Given the ordinary differential equation 
  

),( yxf
dx

dy
          7.5 

 
we can write 
  

dxyxfdy ),(         7.6 
 
Integrating both sides, 
  

 
x

x

y

y
dxyxfdy

00

),(         7.7 

 
Then, 
  


x

x
dxyxfyy

0

),(0        7.8 

 
We take, as a first approximation to the solution )(xy , the value of y  when  

0xx  , that is, 0y . Then, 
  


x

x
dxyxfyy

0

),( 001         7.9 
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The next approximation to y, that is, 2y , is obtained by substituting 1y  under the 
integral. 
  


x

x
dxyxfyy

0

),( 102         7.10 

 
Thus, we obtain a sequence of approximations to y  which would converge to 
the solution of the ordinary differential equation provided the function ),( yxf  is 
bounded in a region about ),( 00 yx  and satisfies the Lipschitz condition: 
  

|ˆ||)ˆ,(),(| yyMyxfyxf        7.11 
 
where M is a constant. 
 
Obviously, a drawback to this method is that most times, the function has to be 
a simple function that can be easily integrated. As we have discussed before, 
only a limited class of functions satisfies this condition. 
 
3.2.2 Euler Method 
 
We discretize the ordinary differential equation 7.1 as 
 

),(1
jj

jj xyf
x

yy



         7.12 

 
From which it follows that 
 

),(1 jjjj xyfxyy         7.13 

 
This method is self-starting, but is so low in accuracy that it is rarely ever used 
in serious computational work. 
 
Example: With the aid of the Euler method, calculate )8.0(y , given the 
differential equation 
 

yx
dx

dy
 ; 0)0( y ; with 2.0h  

 
Solution: 
 

),(1 jjjj xyfhyy   

0j ;  0,0 00  xy ; 000),( 00 xyf ; 
00*2.00),( 0001  xyfhyy   
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1j ;  
2.0,0 11  xy ; 2.02.00),( 11 xyf ; 04.02.0*2.00),( 1112  xyfhyy   

 
2j ;  

 
4.0,04.0 22  xy ; 44.04.004.0),( 22 xyf ; 

128.044.0*2.004.0),( 2223  xyfhyy  
 

3.2.3 Modified Euler Method 
 
We could write equation 7.1 as 

 ),( yxf
dx

dy
  

 dxyxfdy ),(  
 
Integrating,  
  


1

0

),(01

x

x
dxyxfyy  

 
Rearranging and generalizing, 
  

 



1

),(1

j

j

x

xjj dxyxfyy  

 
With the aid of the trapezoidal rule, we can write the last equation as 
  

)],(),([
2 111   jjjjjj yxfyxf
h

yy      7.14 

 
Indeed, it is best to write equation 7.14 as 
  

)],(),([
2

)(
11

)1(
1

i
jjjjj

i
j yxfyxf

h
yy 


       7.15  

 
This is the modified Euler method. It is an implicit scheme.  
 
The starting value )1(

0y  is obtained by an implicit formula, e.g., the Euler formula. 
Thus, the scheme would look like (for j = 0), 
  

0i  )],(),([
2

)0(
11000

)1(
1 yxfyxf

h
yy   

  

1i  )],(),([
2

)1(
11000

)2(
1 yxfyxf

h
yy   
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This is continued until convergence is achieved. 
 
Example 
 
Using the modified Euler method, find )2.0(y , if 0)('  yxy , given that 

1)0( y . Take a step length of 0.1 and the tolerance as 0001.0|| )1()(  k
i

k
i yy .    

 
Solution 
  

00 x , 10 y  
 
Using Euler’s formula, 
  

),( 000
)0(

1 yxhfyy  = )10(1.01  = 1.1 
 
We now apply the modified Euler formula. 
  

0i  )],(),([
2

)0(
11000

)1(
1 yxfyxf

h
yy   

    
= )]1.11.0()10[(05.01  = 1.11 
  

1i  )],(),([
2

)1(
11000

)2(
1 yxfyxf

h
yy   

    
= )]11.11.0()10[(05.01  = 1.1105 
   

|| )1(
1

)2(
1 yy  = 0005.01.11 - 1.1105   

  

2i  )],(),([
2

)2(
11000

)3(
1 yxfyxf

h
yy   

    
= )]1105.11.0()10[(05.01  = 1.110525 
   

|| )2(
1

)3(
1 yy  = 000025.01.1105 - 1.110525   

 
With the tolerance satisfied, we can now proceed to get 2y , that is, )2.0(y  
 
Using Euler’s formula, 
  

),( 111
)0(

2 yxhfyy  = )110525.10(1.0110525.1  = 1.23155 
 
We now apply the modified Euler formula. 
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0i  )],(),([
2

)0(
22111

)1(
2 yxfyxf

h
yy   

    
= )]23155.12.0()1105.11.0[(05.01105.1  = 1.242603 
  

1i  )],(),([
2

)1(
22111

)2(
2 yxfyxf

h
yy   

    
= )]242603.12.0()1105.11.0[(05.01105.1  = 1.243155 
   

|| )1(
2

)2(
2 yy  = 000552.01.242603 - 1.243155   

  

2i  )],(),([
2

)2(
22111

)3(
2 yxfyxf

h
yy   

    
= )]243155.12.0()1105.11.0[(05.01105.1  = 1.243183 
   

|| )2(
2

)3(
2 yy  = 000028.01.243155 -1.243183   

 
3.2.4 Runge-Kutta Methods 
 
We recall that Taylor’s series is given as 


!2

))((''
)(')()(

2xxf
xxfxfxxf     

 
This we can write as (if we set 1)( yxxf  , ))( 0yxf   and hx  ) 
  

...
!2

)(''
)('

2

01 
hxf

xhfyy  

A first order approximation to the series is  
 

)('01 xhfyy          7.16 

 
This is the Runge-Kutta first order method, which you would also notice is 
the Euler method. 
 
On the other hand, we recall equation 7.14, 
 

)],(),([
2 111   jjjjjj yxfyxf
h

yy  

 
Writing ),(1 jjjj yxhfyy  in equation 7.14 (the modified Euler formula), 
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))],(,(),([
2 11 jjjjjjjj yxhfyxfyxf
h

yy    

 
Let us set  
  

1),( kyxhf jj   

 
and 
  

2111 ),()),(,( kkyxhfyxhfyxhf jjjjjj    

 
Then, we can write  
 

][
2

1
211 kkyy jj 

       7.17
 

 
This is the second-order Runge-Kutta formula.  
 
Example 
 
Find the value of y at x = 0.2 if 02'  yy ; 1)0( y , step-length 0.2. 
 
Solution 
 

))],(,(),([
2 11 jjjjjjjj yxhfyxfyxf
h

yy    

 

))],(,(),([
2 00010001 yxhfyxfyxf
h

yy   

 
Let us set  
  

100 ),( kyxhf  4.0)]1(2[2.0)2(2.0 0  y  
and 
  

24.0)]4.01(2[2.0),( 2101  kkyxhf  
 
Then, we can write  
 

][
2

1
211 kkyy jj   
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]24.04.0[
2

1
1][

2

1
2101  kkyy

 
Hence, 
    

)2.0(y 68.0   
 
The formula for the third-order Runge Kutta method is 
  

)4(
6

1
3211 kkkyy jj         7.18 

 
where 
  

),(1 jj yxhfk   

  




 
2

,
2

1
02

k
y

h
xhfk j  

  
)2,( 213 kkyhxhfk jj   

 
Example 
 
Using the third-order Runge-Kutta method,  find the value of y  when x= 0.2, 
given that yxy ' , 2)0( y , with step length 0.1. 
 
Solution 
  

0j   
  

2.0)20(1.0),( 001  yxhfk  

 




 
2

,
2

1
002

k
y

h
xhfk   

 
      

 085.0)9.005(.1.0
2

2.0
1

2

1.0
01.0 







 


   

  
)2,( 21003 kkyhxhfk   

  
193.0)03.2,1.0(1.0))085.0(2)2.0(2,1.0(1.0  ff  
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)4(
6

1
32101 kkkyy  = )]193.0()085.0(42.0[

6

1
2  = 1.877833 

  
1j   

  
177783.0)877833.11.0(1.0),( 111  yxhfk  

 




 
2

,
2

1
112

k
y

h
xhfk   

 
       

163894.0
2

177783.0
877833.1

2

1.0
1.01.0 







 


   

  
)2,( 21113 kkyhxhfk   

 
152783.0)727828.1,2.0(1.0))163894.0(2)177783.0(877833.1,2.0(1.0  ff  

)4(
6

1
32112 kkkyy    

)]152783.0()163894.0(4177783.0[
6

1
877833.1        = 1.713476 

 
Fourth Order Runge-Kutta Method 
 
The formula is , where h is the step-length, 
 


   ),*(

3

1
),(

6

1
2/12/11 jjjjjj xyfxyfhyy  

 


  ),*(

6

1
),**(

3

1
112/12/1 jjjj xyfxyf   7.19 

 
The computation follows the order 
 
(i) ),( jj xyf          

 7.20  

(ii) 
22/1

h
xx jj          

 7.21 

(iii) ),(
2

* 2/1 jjjj xyf
h

yy        

 7.22 
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(iv) ),*(
2

** 2/12/1 jjjj xyf
h

yy        

 7.23 
(v) ),**(* 2/11 jjjj xyfhyy         

 7.24 
 
(vi) Evaluate 1jy  with equation 7.19.      

   
Another, equivalent, computation scheme is as follows: 
 
(i) ),( jj xyf         

 7.25  
(ii) ),( 001 yxhfk         
 7.26 

(iii) 


  1002 2

1
,

2

1
kyhxhfk       

 7.27 

(iv) 


  2003 2

1
,

2

1
kyhxhfk       

 7.28 
(v)  3004 , kyhxhfk        
 7.29 

(vi) )22(
6

1
4321 kkkkk        

 7.30 
(vii)  Evaluate kyy jj 1        

  
 
Example: Solve the following ordinary differential equation using the Runge-
Kutta Fourth order method. 
 

xy
dx

dy
 ; 1)0( y . Find y  at 2.0x  

 
Solution: 
 

1),(,2.0,1,0 0000  yxfhyx  
  

2.012.0),( 001  yxhfk  
  

2400.0)1.1,1.0(2.0
2

1
,

2

1
1002 


  fkyhxhfk  
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2440.0)12.1,1.0(2.0
2

1
,

2

1
2003 


  fkyhxhfk  

  
  2888.0)244.1,2.0(2.0, 3004  fkyhxhfk  

  

)22(
6

1
4321 kkkkk   

   

2428.0)2888.0488.048.02.0(
6

1
  

  
Hence, 2428.101  kyy  
 
The fourth-order Runge-Kutta method is the most accurate of the Runge-Kutta 
methods. 
 
3.3 Fourth-Order Runge-Kutta Scheme for a System of Three 
 Equations 
 
We shall solve the Lorenz system of equation with the fourth-order Runge-Kutta 
method. The equations are: 
  

)(10 xy
dt

dx
 ),,(1 zyxf  

  

)100( xzyx
dt

dy
 ),,(2 zyxf  

  

)2( zxy
dt

dz
 ),,(3 zyxf  

 
Let us make use of the set of equations given in 7.19-7.24. 
 
There will be three 1k ’s, one each for three variables, three 2k ’s and so on. 
 

),,,( 000011 zyxthfk x   
 

),,,( 000021 zyxthfk y   

 
),,,( 000031 zyxthfk z   

  




  zyxx kzkykxhthfk 101010012 2

1
,

2

1
,

2

1
,

2

1
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


  zyxy kzkykxhthfk 101010022 2

1
,

2

1
,

2

1
,

2

1
 

 




  zyxz kzkykxhthfk 101010032 2

1
,

2

1
,

2

1
,

2

1
 

  




  zyxx kzkykxhthfk 202020013 2

1
,

2

1
,

2

1
,

2

1
 

 




  zyxy kzkykxhthfk 202020023 2

1
,

2

1
,

2

1
,

2

1
 

 




  zyxz kzkykxhthfk 202020033 2

1
,

2

1
,

2

1
,

2

1
 

 
   zyxx kzkykxhthfk 303030014 ,,,   

  zyxx kzkykxhthfk 303030014 ,,,   zyxx kzkykxhthfk 303030014 ,,,   

 
  

)22(
6

1
4321 xxxxx kkkkk   

 

)22(
6

1
4321 yyyyy kkkkk   

 

)22(
6

1
4321 zzzzz kkkkk   

   
  
Hence, xkxx  01  
   

ykyy  01  

   

zkzz  01  
 
4.0 Conclusion 
 
In this Unit, you got to know how to reduce an nth ordinary differential equation 
to n first order differential equations. In particular, you were able to see how a 
pair of second-order ordinary differential equations were reduced to four first-
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order differential equations. You also learnt various methods of solving a first 
order ordinary differential equation.  
 
6.0 Summary 
 
In this Unit, you learnt how to: 
 
 Reduce an nth order ordinary differential equation to n first order ordinary 

differential equations. 
 Numerically solve a first order ordinary differential equation. 
 Numerically solve a system of first order ordinary differential equations. 
 

6.0 Tutor Marked Assignment 
 

1. Given that 2xy
dx

dy
 ; 1)0( y , evaluate )2.0(y  (step length 0.2), using 

the  
 

(i) Modified Euler method. 
(ii)  Fourth order Runge-Kutta method. 
 
2. With a step length of 0.1, find the value of y  at 2.0x  given the ordinary 

differential equation: 0 xy
dx

dy
; 0)0( y . 

(i) Second-order Runge-Kutta method 
(ii)  Fourth-order Runge-Kutta method. 
 
7.0 References/Further Reading  
 
Solutions to Tutor Marked Assignment 
 

1. Given that 2xy
dx

dy
 ; 1)0( y , evaluate )2.0(y  (step length 0.2), using 

the  
 

(iii)  Modified Euler method. 
(iv) Fourth order Runge-Kutta method. 
 
Solution  
   

00 x , 10 y  
 
(i) First using Euler’s formula, 
   

),( 000
)0(

1 yxhfyy  = 22
000 )1(01  yxy = 1  



PHY 314       NUMERICAL COMPUTATIONS 
 

106 
 

 
We can now apply the modified Euler formula. 
   

0i  )],(),([
2

)0(
11000

)1(
1 yxfyxf

h
yy   

     
= 98.0)])1(2.0()1(0[(1.01 22   
   

1i  )],(),([
2

)1(
11000

)2(
1 yxfyxf

h
yy   

     
= 980792.0)])98.0(2.0()1(0[(1.01 22   
    

|| )1(
1

)2(
1 yy  = 000792.(-0.98)- 980792.0-   

   

2i  )],(),([
2

)2(
11000

)3(
1 yxfyxf

h
yy   

    
= 980761.0])980792.0(2.0()1(0[(1.01 22  = 1.110525 

 || )2(
1

)3(
1 yy  = 000031.0)(-0.980792- 980761.0-   

 
Hence, 980761.0)2.0( y . 
 
(v) fourth-order Runge-Kutta method. 
 

2
00 ),(,2.0,1,0 xyyxfhyx   

  
),( 001 yxhfk   

   




  1002 2

1
,

2

1
kyhxhfk  

   




  2003 2

1
,

2

1
kyhxhfk  

   
 3004 , kyhxhfk   

   

)22(
6

1
4321 kkkkk   

  
Hence, kyy  01  
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)0(x  0 -1 )0(y  

Step-size 0.2   

1k  0 -1 0 

2k  0.1 -1 0.02 

3k  0.1 -0.99 0.0196 

4k  0.2 -0.9804 0.03845 
k    0.01961 

1y    -0.98039 
 
2. With a step length of 0.1, find the value of y  at 2.0x  given the ordinary 
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(iii)  Fourth-order Runge-Kutta method. 

 
   

0x = 0 0y  = 0  1x  = 0.1 1y  = -0.00517 

1k  0  1k  -0.0105171 

2k  -0.005  2k  -0.0160429 
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3k  -0.00525  3k  -0.0163192 

4k  -0.01053  4k  -0.022149 
k  -0.00517  k  -0.0162317 

1y  -0.00517  2y  -0.0214026 
 
Elements of C++ Programming 
 
In this chapter we take a look at C++ programming as a tool for numerical 
analysis. This should not be taken as a substitute for a good book on C++ 
programming. Indeed, space would only permit us to treat just what it would take 
you to do write scientific programs. 
 
As is usual with most books on C++ programming language, it would be in order 
to start with a simple program, the ‘Hello World.’ 
 
#include <iostream> 
using namespace std; 
 
int main () 
{ 
// Program to write ‘Hello World’ on the screen. 
 
cout << “Hello World”; 
return (0); 
} 
 
We shall now examine this program with a view to familiarizing you with the 
simplest program in C++ language. 
 
#include <iostream> 
 
A line that begins with # is a directive for the preprocessor. Including this file, 
which is the iostream standard file. This line is necessary as we shall be making 
use of input or output (in this particular case, the standard output stream, cout). 
The symbol << is the insertion operator. In the program, the insertion operator 
inserts the variable “Hello World” into the output stream cout. 
 
using namespace std; 
 
namespace contains all the elements of the standard C++ library. This expression 
enables us to use the elements of the standard C++ library.  
 
int main () 
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This is the statement that begins the definition of the main function. All C++ 
programs are executed beginning from this statement. Thus, it is essential that 
every C++ program has a main function. 
 
After the int main () statement, the bracket opens with ‘{‘signifying the 
beginning of the codes within the main function. This ends with an ‘}’ after the 
return (0); statement. 
 
// Program to write ‘Hello World’ on the screen 
Any statement that begins with two slashes (/) is taken as a comment by the 
compiler. Comments are used to make some ‘thought sense’ of a program. You 
would be surprised a program you wrote a few weeks back might not make any 
sense anymore if you never put enough comments. 
 
cout <<” Hello World”; 
 
Note that apart from the #include statement and int main (), every statement in 
this program ends with the semi-colon.  
 
The basic ideas of C++ programming can be listed under the following broad 
headings: 
 
Declaration Statements 
Array Dimensioning 
Input / Output 
Arithmetic / Logical Expressions 
Looping 
Subroutines and functions 
 
We shall however discuss first the variables and data types. There are several 
types: integer, floating point and string.  
 
An identifier is required by every variable. This distinguishes it from other 
variables. An identifier contains one or more digits, letters and single underscore 
characters. Usually, it begins with a letter, although it might begin with an 
underscore sign, where it does not clash with those reserved for the compiler. 
 
Basic Data Types 
 
It is necessary at this point to mention that the byte (4 bits) is the unit of 
representation in C++. A bit is the smallest. This can store a single character or 
a small integer. Integers could be signed or unsigned. A byte can store an integer 
between 0 and 255 if it is an unsigned integer. For a signed integer, it can store 
between –128 and 127, both limits inclusive in both cases.  
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Table 1 shows each data type, its size and the range of data that it can take. The 
size and range are for a 32-bit system.  
 
Table 1: Data types in C++ 
 
Name Description Size  

(bytes) 
Range 

Char A character or small 
integer 

1  Signed: -128 to 127 
Unsigned: 0 to 255 

short 
int 

A short integer 2 Signed: -32768 to 32767 
Unsigned: 0 to 65535 

Int An integer 4 Signed: -2147483648 to 
2147483648 
Unsigned: 0 to 4294967295 

long int A long integer 4 Signed: -2147483648 to 
2147483648 
Unsigned: 0 to 4294967295 

Float A floating point number 4 +/-3.4 38/10   
double A double precision 

floating point number 
8 +/-1.7 308/10   

long 
double 

A long double precision 
floating point number 

8 +/-1.7 308/10   

wchar_t A wide character 2 or 4 1 wide character 
Bool A Boolean value. It takes 

true or false 
1 True or false 

 
A variable has to be declared to be used in C++. This is achieved by simply 
stating the type of variable it is. For example, int, long, char, short, long (long 
int), short (short int), float, bool, long double, or wchar_t. This is followed by 
the variable name. For example,  
int number;  
or  
float age_goat; 
 
Variables of the same type could be declared using the same statement, e.g., 
long number, year; 
 
Moreover, the default is signed. For an unsigned variable, we would need to 
declare it so. For example, 
unsigned distance; 
 
An exception is char. Char has no default; as such, you have to declare it signed 
or unsigned.  
 
Variable names are case-sensitive, meaning that Happy is not the same variable 
as happy. 
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Strings 
 
These are non-numeric values that are longer than a single character. It is not a 
fundamental type. This necessitates including the header file <string> along with 
<iostream>. 
 
The Span of a Variable 
 
A variable in a program could be local or global. Local variables are declared 
within a block or a function. Their scope is limited to the block or the function 
usually delineated by {…}. Outside the block or the function, the variables are 
of no relevance. As an example, variable chalk has relevance throughout the 
function main (). So does variable chalk_dust, but chalk_dust has relevance only 
within the function minute. 
 
int main () 
 
float chalk; 
{ 
// Program to demonstrate span of variable 
 
int minute () 
    { 
// Span of chalk_dust is only within the function minute. 
float chalk_dust; 
cout <<chalk_dust; 
     } 
return (0); 
} 
 
 
Initialising a Variable 
 
We can fix the initial value of a variable after it might have been appropriately 
declared, as in: 
  
int counter; 
  
counter = 5; 
 
On the other hand, we could also set the initial value of a variable as we declare 
its type, as in: 
  
int counter = 5; 
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Another way of initializing a variable is by writing the initial value in 
parenthesis: 
  
short counter (5); 
 
 
Strings 
 
These are variables that store non-numeric values longer than a character. 
 
To be able to make use of strings, the programmer would need to include the 
standard header file <string>: 
 
#include <iostream> 
#include <string> 
using namespace std; 
 
int main () 
{ 
string My_Name; 
My_Name = Johnson; 
cout << My_Name; 
return 0; 
} 
 
Constants 
 
A constant, as the name implies, has a fixed value. 
 
Constants can be further divided into three categories: Literals, defined constants 
and Declared constants.  
 
Literals state the specific values within a program. These can be further divided 
into three: integer numerals, floating point numbers, Boolean literals and 
character and string literals.   
 
Integer numerals identify integer decimal, octal (base 8) or hexadecimal (base 
16) values. The last two are expressed, respectively, by putting a suffix 0 and  
0x. Thus, decimal 750 is equivalent to 01356, and 0x2ee in hexadecimal.  
 
Integer numerals are by default integers (int), but we could still declare them 
unsigned, long or unsigned long by appending the appropriate letter (l, u or ul), 
where it is immaterial whether the letter is upper or lower case. For example, 
750ul. 
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Floating point numbers are numbers with decimals, and could be with or without 
exponents. Examples include 4.1239, 6.64e-34. Floating point literals are of type 
double by default, but we can still express a floating point literal as float or long 
double. In this case, respectively, we append f or l. For instance, 4.1239f. The 
appended symbol could be lower or upper case. 
 
Boolean Literals have only two values: true and false. Their type is bool. For 
example, Bool Decision. 
 
Character and String Literals are non-numerical constants. Single characters are 
enclosed within single quotes, e.g., ‘t’. A string is expressed within double 
quotes, “Hello World” for example. 
 
Declared Constants are constants the user declares. After the declaration, the 
values of the constants remain unchanged as their values cannot be modified.  
 
For example,  
const int Number. 
 
Defined Constants are constants the user might need quite often in a program. A 
good example is the number pi. Thus, we could define pi as follows: 
#define pi = 3.142 
 
As is usual with all the lines starting with the hatch sign (#), this is a command 
for the preprocessor.  
 
Operators 
 
Assignment operator 
 
This is the operator that assigns a value on the right of the equality sign to the 
variable on the left. Thus,  
int a = 3; 
float b = 4.28; 
 
Arithmetic Operators 
 
These are the operators for carrying out the usual arithmetic operations. They 
are:  
Addition + 
Subtraction – 
Multiplication * 
Division / 
Modulo %  
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Increase and Decrease 
 
The increase operator is ++ and not +, while the decrease operator is --. Thus,  
a++ would mean increase a by 1, or a = a + 1. This could also be written in a 
compound way as a += 1. Likewise, decrease by 1 in b would be written as b-- 
or b-=1.  
 
We could also write ++a or – b. The difference being that in the first case treated 
in the above paragraph, the number is incremented after it has been used, while 
in the second case, the increment is done before the number is used. Thus, 
 
a = 2; 
d = a++; 
cout <<d; 
  
the output is ‘d = 2’. In this case, a will become 3. 
 
a = 2; 
e = ++a; 
cout <<e; 
 
the output is ‘e = 3’. In this case, a is also 3, because the increment had been 
made before the number was stored as variable e. 
 
Relational Operators 
 
The equality operator for comparing two values is the double equality sign. Thus, 
if we would inquire whether variable r is equal to two, we would write  
r = = 2 
 
Note that as a relational, this could be true or false. 
 
The relational operators are: 
Equal to    = 
Not equal to    ! = 
Less than    < 
Greater than    > 
Less than or equal to   <= 
Greater than or equal to >= 
 
Logical Operators 
 
The (Boolean) logical operators are: 
NOT  ! 
AND && 
OR | | 
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The NOT operator changes True to False and vice versa.  
 
A !A 
True False 
False True 
 
The AND and the OR operator are used when there are two expressions that will 
yield a single relational result. The NOT is true only if the two expressions are 
true. It is false otherwise.  
 
AND operator  
 
A B A&&B 
True  True True 
True False False 
False  True False 
False False False 
 
The OR operator is true if either expression is true. It is false if both are false. 
AND operator  
 
A B A&&B 
True  True True 
True False True 
False  True True 
False False False 
 
The Conditional Operator 
 
The conditional operator is represented by the symbol? Thus,  
a = = b? v: w returns v if a is equal to b, but returns w if a is not equal to b. 
 
Explicit Type Casting Operator 
 
This allows us, for example to utilise the integer part of a number that has been 
declared as a floating point number: 
int Johns_Age; 
 
Float JohnsDecimal_Age = 25.36; 
 
Johns_Age = int JohnsDecimal_Age = 25.36; 
cout << Johns_Age; 
 
This program writes 25 years as Johns_Age. 
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Sizeof() 
 
The operator Sizeof() takes one parameter and gives the length (in bytes). Thus, 
Sizeof(char) is 1, as a character variable has a length of one byte. 
 
Basic Input and Output Statements 
 
The basic output statement is the cout. It outputs onto the screen. This, as we 
have seen all along, could be used if we included the header file <iostream>. As 
said earlier << is the insertion operator.  
 
The basic input statement is the cin. It takes the input from the keyboard. The 
syntax is cin >>, where >> is the extraction operator. cin extraction can only take 
one word, because it stops whenever a blank space appears. To get an entire line, 
we use the getline function.  
 
In the example below, String_var will be given as “I am writing a string with the 
getline function”. Later, the String_var will be given the string “It sure is”. You 
will notice that String_var would have been replaced by the new string. 
 
#include <iostream> 
#include <string> 
using namespace std; 
 
int main () 
{ 
string String_var; 
cout <<“What am I doing?”; 
getline (cin,String_var); 
cout <<“That could be fun”; 
getline (cin, String_var); 
return (0); 
} 
 
The output will be: 
 
What am I doing? 
 
I am writing a string with the getline function. 
That could be fun 
It sure is 
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Writing into a file 
 
We would like to write some of our results in an output file. We proceed by 
opening a file, for instance, Arearray.txt. But to allow us to do this we need to 
put  
 
Ofstream myfile; 
 
ofstream myfile; 
 
myfile.open ("Arearray.txt"); 
float Area[5]; 
float s; 
float a[5] = {2.0, 1.5, 4.1, 3.2, 2.3}; 
float b[5] = {2.0, 4.2, 3.5, 1.9, 1.1}; 
float c[5] = {2.0, 3.3, 2.4, 1.4, 2.8}; 
int i=0; 
   
while (i<5)     { 
      
 s = (a[i]+b[i]+c[i])/2.0; 
      
 Area[i]= s*(s-a[i])*(s-b[i])*(s-c[i]); 
 
Myfile <<a[i]<<","<<b[i]<<","<<c[i]<<","<<s<<","<<A rea[i]<<"\n"; 
 
 
Control Structures 
 
Central to the concept of control structures is the block. Each block is enclosed 
in a pair of braces ( ). Thus, the block has one or (usually) more statements 
enclosed inside a pair of braces. Note that if the block has only one statement, 
the braces ( ) are not necessary. 
 
The Conditional Structure 
 
This has the form  
 
if (condition) statement 
 
where condition is a valid C++ expression. The statement is executed if the 
condition is true. If the condition is false, the statement is not executed. The 
program continues after this statement, whether the expression is executed or 
not. As an example, consider the following program that determines the period 
of oscillation of a pendulum, given its length and the acceleration due to gravity. 
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// Program to evaluate the period of oscillation of a pendulum, given the length 
and the //acceleration due to gravity 
 
#include <iostream> 
#include <math.h> 
using namespace std; 
 
int main () 
{ 
float length, acceleration_gravity; 
cin >> length; 
cin >> acceleration_gravity; 
float discri = length/acceleration_gravity; 
if (discri < 0) sqrtdiscri = sqrt(discri); 
} 
 
We could also state what the program should do if the statement is false, using 
the else keyword. 
 
int main () 
{ 
float length, acceleration_gravity; 
cin >> length; 
cin >> acceleration_gravity; 
float discri = length/acceleration_gravity; 
if (discri < 0) sqrtdiscri = sqrt(discri); 
else 
cout << “Imposssible”; 
} 
 
Loop Structures 
 
It might be necessary to repeat a set of codes in the program. This is called a 
loop. We shall examine a few ways of doing this. 
 
The for loop 
The for loop follows the following routine: 
 
for (initialisation, condition, increase) statement; 
 
As an example, we want to write a program that reads from 1 to 10 and adds the 
numbers. 
 
#include <iostream> 
using namespace std; 
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int main () 
{ 
for (int i = 0, i <= 10, i++); 
{ 
int sum = sum + i; 
} 
 
The while loop 
For the while loop, the format is, 
 
while (expression) statement 
 
The while loop repeats the statement for as long as the expression is true. 
The program written with the for loop can be written with the while loop as 
shown below. 
 
#include <iostream> 
using namespace std; 
 
int main () 
{ 
while (i < 50) { 
int sum = sum + i; 
i++; 
} 
 
The do while loop 
The do while loop has the format: 
do statement while (condition); 
 
The program written with the for loop and the while loop can be written with the 
while loop as shown below. 
 
#include <iostream> 
using namespace std; 
 
int main () 
{ 
int sum = sum + i; 
i++; 
while (i < 50); 
} 
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Jump Statements 
 
The goto statement 
With the goto statement, we could jump from one point to another in the 
program. The point to jump to is identified by an identifier, followed by a colon 
(:). 
 
int main () 
{ 
float length, acceleration_gravity; 
new_set: 
cin >> length; 
cin >> acceleration_gravity; 
float discri = length/acceleration_gravity; 
if (discri < 0) sqrtdiscri = sqrt(discri); 
else 
cout << “Imposssible”; 
goto new_set; 
} 
 
In the program segment above, we get the opportunity to pick another set of 
length and acceleration due to gravity to calculate another value of the period of 
oscillation. 
 
As another example,  
#include <iostream> 
using namespace std; 
 
int main () 
{ 
newnumber: 
int sum = sum + i; 
i++; 
if (i < 50); 
goto newnumber; 
} 
 
In this program, we have the goto pairs up with the conditional operator if to 
produce a loop. 
 
The continue statement 
 
The continue statement gives the programmer the opportunity to jump to the 
beginning of the loop. If we would like to skip 25 in the last example, we could 
write: 
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#include <iostream> 
using namespace std; 
 
int main () 
{ 
newnumber: 
int sum = sum + i; 
i++; 
if (i < 50); 
if (i = = 25) continue; 
goto newnumber; 
} 
 
The program would now add from 1 to 50, skipping the number 25. 
 
The break statement 
 
The break statement enables us to leave a loop before the end of the loop. As an 
example, let us again write the program for adding from 1 to 50. 
 
#include <iostream> 
using namespace std; 
 
int main () 
{ 
int sum = sum + i; 
i++; 
while (i < 50); 
if (i = = 25) break; 
} 
 
This program now adds from 1 to 24. 
 
The switch function 
The switch function works in a way similar to the if (condition) statement 
expression works. 
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int main () 
{ 
float length, acceleration_gravity; 
cin >> a; 
cin >> b; 
cin >> c; 
float discri = b*b-4*a*c; 
if (discri < 0) sqrtdiscri = sqrt(discri); 
else 
cout << “Imposssible”; 
else 
if (discri = 0) sqrtdiscri = sqrt(discri); 
else 
cout << “coincident roots”; 
if (discri > 0) sqrtdiscri = sqrt(discri); 
else 
cout << “different roots”; 
} 

int main () 
{ 
switch (discri); 
float length, acceleration_gravity; 
cin >> a; 
cin >> b; 
cin >> c; 
float discri = b*b-4*a*c; 
case <0: 
cout << “Imposssible”; 
break; 
case = 0: 
cout << “coincident roots”; 
break; 
case >0: 
cout << “different roots”; 
} 

 
The switch statement does not use blocks. Rather it uses labels (recall the goto 
statement). 
 
Functions 
 
A function consists of a group of statements that are executed when the function 
is called from a point in the program. 
 
A function is of the form: 
 
type name (parameter1, parameter2, …) (statements) 
 
The function returns the data type specifier type. The name is the identifier by 
which the function will be called within the program. Each parameter has its data 
type specifier declared along with its identifier, e.g., float orange. Finally, the 
body of the function is made up of statements enclosed within braces. 
 
As an example, 
#include <iostream> 
#include <math.h> 
using namespace std; 
 
int main () 
{ 
float root; 
root = root_quadratic (3, 2, 5); 
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return (0); 
} 
 
float root_quadratic (float a, float b, float c)  
{ 
r = b + sqrt(b*b-4*a*c); 
return (r);        
} 
 
math.h is a header file that allows you to do mathematical operations. 
 
The main function calls up the function root_quadratic to provide the value of 
root in the main program. 
 
Notice that 3, 2 and 5 correspond respectively (in order) to a, b and c in the 
function root_quadratic. 
 
The function type void 
When a function needs not return a value, we use type void. This could be 
declared as follows: 
 
void menu (); 
or 
void menu (void); 
 
More on VOID! 
 
Arrays 
 
Arrays are memory locations within the computer that are reserved for some 
values that will eventually be stored in them. An array could be one dimensional 
(a column or row vector) or two or more in dimension (a matrix).  
 
The type of the array is specified along with the size. Thus, the following are 
examples of arrays. 
 
float Abba [4]; is a one-dimensional floating point array that has four memory 
locations. 
 
int forum [3] [4]; is a two-dimensional integer with twelve locations, a 3 by 4 
matrix.  
 
The memory locations for Abba will be filled with floating point numbers; those 
of forum will contain integers. 
 
Initialising an Array 
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A global array is set to zero, unless otherwise initialised. A local array (for 
example, one that is within a function) will not be initialised until some values 
are stored in them. Note that arrays start with zero. For example, Abba [4] has 
the locations Abba [0], Abba [1], Abba [2] and Abba [3]. 
 
Just as any variable could have an initial value stated on the same line as the type 
is declared, an array could also have its initial values declared along with the 
type. For example, 
 
float Abba [4] (1.2, 2.5, 15.4, 12.1, 6.0); 
 
We could also have written  
float Abba [ ] (1.2, 2.5, 15.4, 12.1, 6.0); that is, leaving out the size of the array. 
But the compiler reads in the five values and then gives the array a size: 5 and 
takes the array to be float Abba [5]. 
 
Appendix Ii 
 
Some C++ Programs 
 
// Program to calculate the area of a triangle, using Hero’s formula: // A = 
sqrt(s(s-a)(s-b)(s-c)), given a, b, and c, the sides of the  
// triangle. 
 
#include <iostream> 
#include <fstream> 
using namespace std; 
 
int main () 
{ 
ofstream myfile; 
myfile.open ("Area.txt"); 
float Area; 
float s; 
float a=2.0; 
float b=2.0; 
float c=2.0; 
s = (a+b+c)/2.0; 
Area = s*(s-a)*(s-b)*(s-c); 
myfile << a << ", " << b << ", " << c << ", " << s << ", "<< Area; 
myfile.close (); 
    return 0;  
}  
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We could also write the program in such a way that several values of a, b, and c 
could be read in, and values of A calculated in each case. 
 
#include <iostream> 
#include <fstream> 
using namespace std; 
 
int main () 
{ 
ofstream myfile; 
myfile.open ("Arearray.txt"); 
float Area[5]; 
float s; 
float a[5] = {2.0, 1.5, 4.1, 3.2, 2.3}; 
float b[5] = {2.0, 4.2, 3.5, 1.9, 1.1}; 
float c[5] = {2.0, 3.3, 2.4, 1.4, 2.8}; 
int i=0; 
   
while (i<5)     { 
      
 s = (a[i]+b[i]+c[i])/2.0; 
       
Area[i]= s*(s-a[i])*(s-b[i])*(s-c[i]); 
 
myfile <<i<<","<<a[i]<<","<<b[i]<<","<<c[i]<<","<<s <<","<<Area[i]<<"\n";        
      i++; 
                 } 
myfile.close (); 
    return 0;  
}  
#include <iostream> 
#include <fstream> 
#include <math.h> 
using namespace std; 
 
float root_quadratic (float a, float b, float c)  
{ 
float r; 
float argum = b*b-4*a*c; 
if (argum>=0) 
     
r = b + sqrt(b*b-4*a*c); 
       
return (r);        
 
int main () 
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ofstream myfile; 
myfile.open ("FunctExam.txt");         
 
float root; 
root = root_quadratic (1, 2, -2); 
//cout <<root; 
myfile <<"The root of the equation is" <<"\n"; 
myfile << root; 
return 0; 
//      Newton-Raphson solution of the equation 
//       x**2-3x-2 
#include <iostream> 
#include <fstream> 
#include <math.h> 
using namespace std; 
//       We make the initial approximate solution 0.8 
int main () 
{ 
ofstream myfile; 
myfile.open ("Nraphson.txt");         
//float xold=0.8; 
cout <<"The initial guess is  "; 
float xold, ratio; 
cin >> xold; 
myfile <<xold <<"\n"; 
myfile <<"Successive iterations yield" <<"\n"; 
float f; 
float fprime; 
evaluate: 
f=xold*xold-3.*xold+2.0; 
fprime=2.*xold-3.0; 
ratio=f/fprime; 
float xnew=xold-ratio; 
float Diff; 
Diff = fabs(xnew-xold); 
myfile <<xnew << ",   " << Diff <<"\n"; 
 
if (Diff>0.001)   
     { 
      xold=xnew; 
        goto evaluate; 
} 
myfile <<"The root of the equation is"<< "\n"; 
myfile << xnew << "\n"; 
return 0; 
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//      Bisection Method 
//       2.0x**3-3x**2-2x-0.5 
#include <iostream> 
#include <fstream> 
#include <math.h> 
using namespace std; 
//       We make the initial approximate solution 0.8 
int main () 
{ 
ofstream myfile; 
myfile.open ("bisection1.txt");         
float ratio; 
float x1,x2,x3,fx1,fx2,fx3,multi,dfx3; 
x1=1.9; 
x2=2.1; 
compute: 
fx1=2.0*x1*x1*x1-3.0*x1*x1-2.0*x1-0.5; 
fx2=2.0*x2*x2*x2-3.0*x2*x2-2.0*x2-0.5; 
x3=(x1+x2)/2.0; 
 
fx3=2.0*x3*x3*x3-3.0*x3*x3-2.0*x3-0.5; 
multi=fx1*fx3; 
myfile << x3 << "  " <<fx3 <<"\n"; 
 
if (fx3<0.0){ 
              
dfx3=fx3*-1.0; 
if (fx3>=0.0){ 
              
 dfx3=fx3; 
      
 if (dfx3<0.001)  
      goto evaluate; 
      if (multi<0.0)  
      x2=x3; 
      goto compute; 
             
      if (multi>0.0)  
           { 
      x1=x2; 
      x2=x3; 
      goto compute; 
           } 
 
evaluate:   
myfile << x3 << "  " <<fx3 <<"\n";     
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myfile <<"The root of the equation is"<< "\n"; 
myfile << x3 << "\n"; 
return 0; 
} 
//      Euler Implicit  
//       y'=x*x+y 
#include <iostream> 
#include <fstream> 
#include <math.h> 
using namespace std; 
float f(float x1, float x2); 
int main () 
{ 
ofstream myfile; 
myfile.open ("eulerim.txt");         
float x[10],y[10],b,c,d,e,g,h,diff; 
 
      x[0]=0.0; 
      y[0]=1.0; 
      myfile << x[0] << "  " << y[0] <<"\n";    
      cout<< x[0];  
      e = x[0]; 
      g = y[0]; 
 
//     Step size is 0.1 
      h = 0.1; 
      int m=1; 
 
//     Get y(1) using the Euler method 
       compute:    
      y[1] = y[0]+h*f(x[0],y[0]); 
      int j = 1; 
 
//     Send it for refining by the Modified Euler method 
      loop: 
      b=x[0]+h; 
      c=y[j-1]; 
      d=y[j]; 
      y[j+1]=y[0]+(h/2.)*(f(x[0],y[0])+f(x[0]+h,y[j ])); 
      diff = y[j+1]-y[j]; 
      diff = fabs(diff); 
      if (diff <= .001)  
          { 
      goto write; 
          } 
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      y[j]=y[j+1]; 
      j = j + 1; 
      goto loop; 
     
 
//     Write answers and then get nine other steps 
      write: 
      myfile << x[0]+h << "  " <<y[j+1] <<"\n";     
      x[0]=x[0]+h; 
      y[0]=y[j+1]; 
      e = x[0]; 
      g = y[0]; 
      m = m + 1; 
      if (m < 10)  
          { 
      goto compute; 
          } 
 
     stop:   
   
return 0; 
} 
    
float f(float xx, float yy)                       //function declaration 
  { 
 
 return xx*xx+yy; 
             } 
 
 
 
 
 
 
 
 
 
 
 
 


