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MODULE 1  FUNCTIONS OF COMPLEX VARIABLES 
 
Unit 1    Complex Variables 
Unit 2  Analytic Function 
Unit 3  Residue Theorem 
 
UNIT 1   COMPLEX VARIABLES 
 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0       Main Content 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 
1.0    INTRODUCTION 
  
Complex number can be defined as an expression of the form � � � � ��, 
where ����� are real numbers and �is a ̀ `number'' such that�� � 	1. The 
number is called the real part of ( i.e. a = Re z) and is the imaginary 
part (or imaginary coefficient) of z ( b = Im z).  
 
The set of all complex numbers is denoted . We denote * = - 0.  
 
2.0           OBJECTIVES 
 
 To know complex variable and its properties. 
 To know operations of complex variable and when applicable 
 To know complex variable as a function 
 To know theorems on limits of functions 
 
3.0        MAIN CONTENT 
 
3.1   Definition:  A complex number is an expression of the form � �� � ��, where ����� are real numbers and �is a ``number'' such that�� �	1. The number is called the real part of ( i.e. a = Re z) and is the 
imaginary part (or imaginary coefficient) of z ( b = Im z).  
The set of all complex numbers is denoted . We denote * = - 0.  
 
Properties:  
 

1. Equality: �� � �����
���� � �
������������� � ������.  
2. If �� ∈ ������ � 0.  
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3. If �
��� � 0, is called pure imaginary.  
 
Example  

 is pure imaginary.  
 is real.  

 
Definition (Operations)   Let � � � � ��and �/ � � � ��.  

1. Addition: � � �/ � �� � �� � ��� � ��.  
2. Multiplication: ��/ � ��� 	 ��� � ���� � ��� 

 
These operations have the same algebraic properties as the corresponding 
operations in (associativity, commutativity, etc.; please prove ...). 
Thus, the classical formulas (such as Newton's binomial) are also true in 

.  

.  

.  

.  

. 

.  
 
Example  

.  

.  

.  

.  

 
 
3.2 theorems On Limits of Functions 
 
1. ������ � ������ ��� exists, then it is unique  
2. ��� � �����ℎ�ℎ������  � � and ����  � �, then � � ��, � � ��� ∓����!  � � ∓ � 
3. ��� � �����ℎ�ℎ������and ����  � �, then����. � ��� � �� 

4. ��� � ��, �ℎ
� ����
	���  �  
�)ℎ
*
� + 0 
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Definition: ��� � ��, �ℎ
����� � ).We mean givenℇ - 0, ∃/ - 0 such 
that if � ∈ 0 where0is the domain of���� /� 	 ��/ 2 /, then / � ��� –) / 2 4 
In some applications, ��  S 
 
CONTINUITY : 6
��� ∈ �,)
��7����8�����8�����8��� ��8� ���  �  � ��8�: 
 
 
SEQUENCE 
If 9��:n=1 is an infinite sequence of complex numbers, then we say �ℎ��) �  ����� → ∞. That is, 9��:n=1 converges to W if given ℇ - 0,  
N such that  n  N, then / ��–= / 2 4 
 
3.3 Cauchy Sequence 
 
A sequence {��} is Cauchy if givenℇ>0, ∃ N such that m, � - > such 
that / �� 	 �
/2 4 
 
Example: Every convergent sequence is Cauchy sequence 
By � → ∞, � ���  � �, we mean as � approaches infinity, if for anyℇ -0, ∃M >0 such that /� ��� – 6 /2 4)ℎ
�
?
* /�/- � �7� → ��,� ���  � ∞,we mean for any N>0,���ℎ�ℎ��@ - 0 ���ℎ�ℎ��
  /����/ - >)ℎ
�
?
* 0 2/ �– �8 /2 A 
NOTE:  
1. 
��� � 
�
��8*����, ) ∈ ⱷ 
2. 
�is never zero. 
3. If x is real, 
� - 1 for x >0     
 
� 2 1 for x<0 
4. l
����l = 
�.
�� 
 
Proposition:Given that ������� are two complex variables, then 
 �� � ��CCCCCCCCC  �  ��D � ��D and��. ��CCCCCCC � ��D . ��CCCC 
 
Proof. Denote �� � E� �  �7� and �� � E� �  �7� , where E�, E�, 7�, 7�are 
real numbers. Then 

 
Thus:  
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 = ��D � ��D     
Similarly, 

, thus:  ��. ��CCCCCCC 
 

   

 
 

   

 
 

   

         = ��D . ��D  
 

Definition: (Inverse of a complex)   If z  0, then it has a complex inverse 
. Let � � � � ��, where and are real numbers; then we have:  

 

   

Proof.      ��� � �� �
���� 

Multiply both numerator and denumerator by � 	 �� 
     

 
 

   

 
 

   

 
 

   

Theorem:   Let � ∈ F. There exists a real number such that � � cos J � ����J. 
 
Proof. Denote� � E � �7, where Eand7 are real numbers. Then� ∈ F if, 
and only if, E� � 7� � 1, i.e. the image of in the complex plane is a 
point on the unit-circle. For each point on the unit-circle, there exist a real 
number Jsuch that the coordinates of this point are �cos J, ���J�. 
 
Definition:    The number Jis called an argument of �and is denoted arg ��� . 
Note that this argument is defined up to an additional 2NO, NPQ.  
Example : 12 	 √32  
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In Figure below, a value of the argument of the complex number 
corresponding to a point is diplayed in green.  

 

The unit circle in Cauchy-Argand plane. 
 
Example 1:  
 =*��
���� �  �����ℎ
�8*�����  � ��E, 7� � �?�E, 7� 
Solution:  Using the binomial formula,  
we obtain      ���� � ��E � �7� � �E � �7�� � E� � 4E���7� � 6E���7�� � 4E��7�� � ��7�� � E� � 4�E�7 	 6E�7� 	 4�E7� � 7� � E� 	 6E�7� � 7� � ��4E�7 	 4E7�� � ��E, 7� � �?�E, 7� 
so that  ��E, 7� �   E� 	 6E�7� � 7����?�E, 7� �  �4E�7 	 4E7�� 
 
Example 2:  Express the function  ���� �  �̅�
��� � �� � ��������ℎ
�8*�����  in the form  ����  � ��E, 7� � �?�E, 7�. 
 
Solution.  Using the elementary properties of complex numbers, it 
follows that   ���� � �E 	 �7�E � �E � �7�� � 7 � �2E� 	 7� � 7� ���E7� so that ��E, 7� �   2E� 	 7� � 7���?�E, 7� �  E7. 
 
Examples 1 and 2 show how to find u(x,y) and v(x,y) when a rule for 
computing f is given. Conversely, if u(x,y) and v(x,y) are two real-valued 
functions of the real 
variables x and y, they determine a complex-valued function ����  ���E, 7� � �?�E, 7� 
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 We can use the formulas 

 � =  ���̅� ���� =  ���̅��  to find a formula for f involving the variables �����̅ 
 
Example 3:  Express  �	�
 =  4�� + �4��  by a formula involving the 
variables  �����̅. 
 
Solution.  Calculation reveals that 
 �	�
 =  4 �� + �̅

2 
� +  4{� − �̅
2� }� 

    =  �� + 2��̅ + �̅� − �(�� − 2��̅ + �̅�) 
                              = (1 − �)�� + 	2 + 2�
��̅ + (1 − �)�̅� 

 
 
3.4   Geometric Interpretation of a Complex  Function 
 
 If D is the domain of real-valued functions �(�,�) ����(�,�), the 
equations   
 � = �(�,�) and� = �(�, �) 
describe a transformation (or mapping) from D in the xy plane into the uv 
plane, also called the w plane. Therefore, we can also consider the 
function   
            � = �	�
  = �	�, �
 + ��(�,�) 
 
 to be a transformation (or mapping) from the set D in the z plane onto the 
range R in the w plane.  This idea was illustrated in Figure 2.1. In the 
following paragraphs we present some additional key ideas. They are 
staples for any kind of function, and you should memorize all the terms 
in bold.   
 
If � is a subset of the domain �of �, the set � = {� = �	�
 ∶ z ∈ A}   is 
called the image of the set �,���� is said to map ������.  The image of 
a single point is a single point, and the image of the entire domain, �, is 
the range, �.  The mapping  � = �	�
  is said to be from A into S if the 
image of � is contained in �.  Mathematicians use the notation �: � →�  to indicate that a function maps ������.  Figure below  illustrates a 
function f whose domain is � and whose range is �.  The shaded areas 
depict that the function maps ������.  The function also maps ������, 
and, ofcourse, it ����������. 
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            Figure � = �	�
 maps A onto B.     � =�	�
mapsA into R. 
 
The inverse image of a point w is the set of all points z in D such 
that  � = �	�
.  The inverse image of a point may be one point, several 
points, or nothing at all.  If the last case occurs then the point � is not in 
the range of �.    
 
Example 4:   Express  �	�
 =  �� + 4�� − 6  in polar form. 
 
Solution. We obtain 

 �	�
 = ������� = (����)� + 4(����)� − 6 =   ���� +  4������ −  6 
  =  �� cos 5! +  �� cos 2! −  6 + �( �� sin 5! +
4 �� sin 2!) = "	�,!
 +  �#(�, !) 
So that "	�,!
 =  �� cos 5! +  �� cos 2! −  6 ���#	�,!
 =
 �� sin 5! + 4 �� sin 2! 
 
Example 5:  The ellipse centered at the origin with a horizontal major 
axis of 4 units and vertical minor axis of 2 units can be represented by the 
parametric equation   
 
 �	�
 =  2 cos � +  � sin � = (2 cos � , sin �), for   0 ≤ � ≤ 2$ 
 
Suppose we wanted to rotate the ellipse by an angle of 

	

radians and shift 

the center of the ellipse 2 units to the right and 1 unit up. Using complex 
arithmetic, we can easily generate a parametric equation �(�) that does 
so: �	�
 =  �	�
��	
 +  (2 + �)

= 	2 cos � +  � sin �
 %cos $6 +  sin $
6& +  (2 + �) 
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= %2 cos � cos $6 − sin � sin $
6& + � %2 cos � sin $

6 +  sin � cos $6& +  (2
+ �) 

= '√3 cos � − 1
2 sin � +  2) + �(cos � + √3

2 sin � +  1) 

= (√3 cos � − 1
2 sin � +  2, cos � + √3

2 sin � +  1) 

 
                 

for   0 ≤ � ≤ 2$, Figures below show parametric plots of these ellipses 

 
             Figure (a)  Plot of the original ellipse                 (b)  Plot of the 
rotated ellipse 
                                                              

 
 
Example 6:  Show that the image of the right half plane ��	�
 = � >
1    under the linear transformation � = 	−1 + �
� − 2 + 3�   is the half 
plane > � + 7 .   
 
Solution:  The inverse transformation is given by   � =  � + 2 − 3�

−1 + � =  � + 2 + �(� − 3)
−1 + �  

 
 which we write as   � + �� =  −� + � − 5

2 + � −� − � + 1
2 � = −� + � − 5

2 > 1 

             

Substituting  � = ������
�   into    ��	�
 = � > 1   gives 

������
� >

1       which     simplifies  � > � + 7 .   
 
  



PHY 313       MATHEMATICAL METHODS OF PHYSICS II 
 

9 
 

Figure 2.11 illustrates the mapping. 

 
 Figure 2:  The the linear transformation  � = 	−1 + �
� − 2 + 3�.   
 
4.0 CONCLUSION 
 
In conclusion    Examples 1 and 2above  show how to find u(x,y) and 
v(x,y) when a rule for computing f is given. Conversely, if u(x,y) and 
v(x,y) are two real-valued functions of the realvariables x and y, they 
determine a complex-valued function �	�
  = �	�,�
 + ��(�,�)     We 
can use the formulas 
 
 

  � =  ���̅� ���� =  ���̅��  to find a formula for f involving the variables �����̅ 
 
5.0         SUMMARY 
 
 If D is the domain of real-valued functions �(�,�) ����(�,�), the 
equations   
 � = �(�,�) and� = �(�, �) 
describe a transformation (or mapping) from D in the xy plane into the uv 
plane, also called the w plane. Therefore, we can also consider the 
function   
            � = �	�
  = �	�, �
 + ��(�,�) 
 
 to be a transformation (or mapping) from the set D in the z plane onto the 
range R in the w plane. They are staples for any kind of function, and you 
should memorize all the terms in bold.   
 
6.0        TMA 
 
1  Express  �	�
 =  3�� + ���  by a formula involving the 
 variables  �����̅. 
2 Express  �	�
 =  �
 + 2�� − 1  in polar form. 
3  ������	�
 =  �
���ℎ������	�
  = �	�,�
 + ��(�,�) 
4        Prove that ,cosh,sin,cos zzz  and zsinh are entire functions. 
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5       What is the idea that led to the Cauchy-Riemann equations? 
6 State the Cauchy-Riemann equations from memory. 
7 What is an analytic function? Can a function be differentiable at 

a point 0z without being analytic at 0z . 
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1.0         INTRODUCTION 
 
A function f(z) is analytic at a point �� if its derivative f'(z) exists not only 
at ��but at every point z in a neighborhood of ��. 
 
One can show that if f(z) is analytic the partial derivatives of u and v of 
allorders exist and are continuous functions of x and y. 
 
Thus we have *��*�� = *��*�*� =  *��*�*� =  **� *�*� =  − **� *�*� =  − *��*�� 

 

That is
���
��� + ���

��� = 0 

 
Thus both u(x,y) and v(x,y) satisfy Laplace's equation. 
 
2.0    OBJECTIVES 
 
 To know about analytic functions 
 To know about complex integral 
 To treat theorems and some related examples 
 
3.0  MAIN CONTENT 
 
An analytic function is an infinitely differentiable function such that the 
Taylor series at any point x0 in its domain 

 
converges to ƒ(x) for x in a neighbourhood of x0. The set of all real analytic 
functions on a given set D is often denoted by Cω(D). 
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A function ƒ defined on some subset of the real line is said to be real 
analytic at a point x if there is a neighbourhood D of x on which ƒ is real 
analytic. 
 
If a complex analytic function is defined in an open ball around a point 
x0, its power series expansion at x0 is convergent in the whole ball. This 
statement for real analytic functions (with open ball meaning an open 
interval of the real line rather than an open disk of the complex plane) is 
not true in general; the function of the example above gives an example 
for x0 = 0 and a ball of radius exceeding 1, since the power series 1 − x2 + 
x4 − x6... diverges for |x| > 1. 
 
Any real analytic function on some open set on the real line can be 
extended to a complex analytic function on some open set of the complex 
plane. However, not every real analytic function defined on the whole real 
line can be extended to a complex function defined on the whole complex 
plane. 
 
Theorem:If the derivative of f(z) exists at a point z, then the partial 
derivatives of �and � exist at that point and obey the following 
conditions: *�*� =  *�*�  ��� *�*� =  − *�*� 

 
This above equations are called Cauchy Riemann equations 
Let u and v be real and single valued functions of x and y are called which, 
together with their partial derivatives of the first order, are continuous at 
a point. If those partial derivatives satisfy the Cauchy-Riemann conditions 
at that point, then the derivative of f exists at that point. 
 
3.1 Cauchy Riemann Equation: 
 
A necessary condition that � = �	�
 =  �	�,�
 + �(�,�) be analytic in 
region R is that u and vsatisfy Cauchy Riemann equations. 
 *�*� =  *�*�  ��� *�*� =  − *�*� 

 
Usually u(x,y) and v(x,y) are called conjugate functions. 
 
 
3.2 Analytic Functions 
 
A function f(z) is analytic at a point �� if its derivative f'(z) exists not only 
at ��but at every point z in a neighborhood of ��.  
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One can show that if f(z) is analytic the partial derivatives of u and v of 
all orders exist and are continuous functions of x and y. 
 
Thus we have *��*�� = *��*�*� =  *��*�*� =  **� *�*� =  − **� *�*� =  − *��*�� 

 

That is
���
��� + ���

��� = 0 

 
Thus both u(x,y) and v(x,y) satisfy Laplace's equation. 
 
Example: Show that�	�
: → ℂ defined by �	�
 =  ��is analytic in ℂ and 

that
���
�� =  ��. 

Solution:  Let � = � + ��. 
 
Bu definition, �	�
 =  �� =  ����� = ����� =  �� (cos y + isin �) 
So, �(�, �)  =  �� cos y and �(�, �)  = ��sin � 
To show � is analytic, we verifyCauchy Riemann equations. *�*� = �� cos �  , *�*� = �� sin � *�*� =  −�� sin � , *�*� = �� cos � 

So,
��
�� =  ����  ��� ���� =  − ��

��are satisfied. 

Hence, �	�
 =  ��is analytic.To show
��
�� =  ��, �	�
 = �	�,�
 +��	�, �
 =  �� cos � + ��� sin � 

Since 
��
�� = ��

�� + � ����=�� cos � + ��� sin � = �� (cos y + isin �) =
 ����� =  ����� =  �� 

Hence, 
���
�� =  ��. 

 
 
3.3 Complex Integral 
 
Definition (Definite Integral of a Complex Integrand): Let �	�
 =
 �	�
 + ��(�)   where u(t) and v(t) are real-valued functions of the real 

variable t for � ≤ � ≤ +  .  Then , �	�
���
� =  , 	�	�
 + ��	�
 
���

�     =
 , �	�
���
� +  � , �	�
���

� .            (A) 
 
We generally evaluate integrals of this type by finding the anti derivatives 
of u(t) and v(t) and evaluating the definite integrals on the right side of 
Equation above.  That is, if     "�	�
 =  �(�)   and  #�	�
 = �(�),  we 
have   
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, �	�
���
� =  , �	�
���

� +  � , �	�
���
� = "	+
 −  "	�
 + �(#	+
 −#(�)).       (B) 

 
Example: Show that , (� − 1)��

� �� =  − �

 .   

 
Solution:  We write the integrand in terms of its real and imaginary parts, 
i.e.�	�
 =  (� − 1)� =  �� − 3� + �(−3�� + 1) 
Here,  �	�
 =  �� − 3�  and  �	�
 = −3�� + 1.  The integrals of u(t) and 
v(t) are   
 - �(�)

�

�
�� = - (�� − 3�  )�

�

�
�� =  .�
4 − 3��

2 /
�

�
=  − 5

4 

and          

  , �(�)�
� �� = , (−3�� + 1 )��

� �� =  ⌊−�� + �⌋�� = 0 
Hence, by Definition (A),        
          

 , (� − 1)��
� �� =  , �	�
���

� +  � , �	�
���
� =  − �


 + 0� = − �

 

 
 

Example: Show that , ��������
�
� =  �� %��

� − 1& +  �� %��
� + 1& .   

 
Solution.  We use the method suggested by Definitions (A) and (B) 
above   - �������	

�

�
=  - �������	

�

�
=  - ��(cos � + � sin �)��	

�

�
 

= - �� cos � ��	
�

�
+ � - �� sin � ��	

�

�
 

 
            We can evaluate each of the integrals via integration by parts.  For 
example,   - �� cos � ��	

�

�
=  (�� sin �)���

��	� − - �� sin � ��	
�

�
 

= %�	� sin $
2 −  �� sin 0& −  - �� sin � ��	

�

�
 

=  (�	� . 1 − 1.0) − - �� sin � ��	
�

�
 

=   �	
� −  - �� sin � ��	

�

�
 



PHY 313       MATHEMATICAL METHODS OF PHYSICS II 
 

16 
 

= �	� −  (�� . − cos �)���
��	� + - �� . − cos � ��	

�

�
 

= �	� +  (�� cos �)���
��	� − - �� cos � ��	

�

�
 

= �	
� +  (�	� . 0 − 1.1) − - �� cos � ��	

�

�
 

= �	� −  1 − - �� cos � ��	
�

�
 

              

Adding  , �� cos � ���
�
�   to both sides of this equation and then dividing by 

2 gives, �� cos � ���
�
� =  �� %��

� − 1&  .  Likewise,, �� sin � ���
�
� =

 �� %��
� + 1&  .   

 

Therefore,  , ��������
�
� =  �� %��

� − 1& +  �� %��
� + 1& 

 
Complex integrals have properties that are similar to those of real 
integrals.  We now trace through several commonalities.  Let  �	�
 =
 �	�
 + ��(�)     and 2	�
 =  �	�
 + �3(�)  be continuous on  � ≤ � ≤ +. 
Using Definition (A), we can easily show that the integral of their sum is 
the sum of their integrals, that is 
 , (�	�
 + 2(�))���
� =  , �	�
���

� + , 2	�
���
�     

 (C)       
 
If we divide the interval  � ≤ � ≤ +  into  � ≤ � ≤    and   ≤ � ≤ +  and 
integrate�(�) over these subintervals by using (A), then we get  
  , �	�
���
� =  , �	�
���

� +  , �	�
���
� .                          

  (D)             
Similarly, if  4 + �5 denotes a complex constant, then , ( + ��)�	�
���
� = ( + ��), �	�
���

�   .     
 (E)             
If the limits of integration are reversed, then , �	�
���
� =  −, �	�
���

�   .       
 (F)             
The integral of the product f(t)g(t) becomes    

 , �	�
2(�)���
� = , (�	�
 + ��(�))(�	�
 + �3(�))���

�  

= , (�	�
�	�
 − �(�)3(�))���
� +  � , (�	�
3	�
 − �(�)�(�))���

�     
  (G)             



PHY 313       MATHEMATICAL METHODS OF PHYSICS II 
 

17 
 

 Example: Let us verify property (E).  We start by writing 	 + ��
�	�
 =  	 + ��
��	�
 + ��	�
� 
=  �	�
 − ��	�
 +  �( �	�
 + ��	�
) 

         
Using Definition (A), we write the left side of Equation (E) as   - 	 + ��
��	�
 + ��	�
����

�

=   - �	�
���

�
− �- �	�
���

�
+ � - �(�)���

�

+  �� - �(�)���

�
 

 
which is equivalent to   - 	 + ��
��	�
 + ��	�
����

�

=   - �	�
���

�
+ �� - �(�)���

�
+ � - �(�)���

�

+ ��� - �	�
���

�
 

= 	 + ��
- �	�
���

�
+ �	 + ��
- �	�
���

�
 

= 	 + ��
(- �	�
���

�
+  � - �	�
���

�
) 

6ℎ������� - 	 + ��
�(�)���

�
= 	 + ��
- �(�)���

�
 

 
 It is worthwhile to point out the similarity between equation (B) and its 
counterpart in calculus.  Suppose that U and V are differentiable on  � ≤� ≤ +   and 7	�
 = "	�
 +  �#(�).  Since 7�	�
 =  "�	�
 + �#�	�
 =
 �	�
 + ��	�
 = �(�),  equation (B) takes on the familiar form , �(�)���

� = 7	�
]������ =  7	+
 − 7(�).    
  (H)             
             
where 7�	�
 = �(�) .  We can view Equation (H) as an extension of the 
fundamental theorem of calculus.          , ��	�
���
� =  �	+
 − �(�) .      

  (I)             

  Example:  Use Equation (H) to show that    , ��������
�
� =  �� %��

� − 1& +
 �� %��

� + 1&  
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Solution:  We seek a function F with the property that 7�	�
 =
 �(���)�  .  We note that 7	�
 =  �

��� �(���)�  satisfies this requirement, so - �������	
�

�
=  1

1 + � �(���)�]���
��	� =  1

1 + � �(���)	� − 1
1 + � �� 

= 1
1 + � �	

���	� − 1
1 + � = 1

1 + � ��	
� − 1

1 + � 
= 1

1 + � %��	
� − 1& =  1

2 (1 − �)(−1 + ��	
�) 

= 1
2 %�	

� − 1& + �
2 %�	� + 1& 

 
               

4.0    CONCLUSION 
 
Conclusively, A function f(z) is analytic at a point �� if its derivative f'(z) 
exists not only at ��but at every point z in a neighborhood of ��.  
 
5.0    SUMMARY 
 
A necessary condition that � = �	�
 =  �	�,�
 + �(�,�) be analytic in 
region R is that u and vsatisfy Cauchy Riemann equations. 
 
6.0      TMA 

1   Use Equation (H) to evaluate    , ��������
�
�  

2   Evaluate , (� − 1)��
� ��.   
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UNIT 3 RESIDUE THEOREM 
 
CONTENTS 
 
1.0    Introduction 
2.0      Objectives 
3.0      Main Content 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 
1.0    INTRODUCTION 
 
The residue theorem, sometimes called Cauchy's Residue Theorem in 
complex analysis is a powerful tool to evaluate line integrals of analytic 
functions over closed curves and can often be used to compute real 
integrals as well. It generalizes the Cauchy integral theorem and Cauchy's 
integral formula. From a geometrical perspective, it is a special case of 
the generalized Stokes' theorem. 
 
2.0   OBJECTIVES 
 
 to be able to determine and explain Residue;  
 to be able to use Residue to evaluate integrals; and 
 to show that the Residue integration method can be extended to the 

case of several singular points of )(zf inside C  
 

3.0 MAIN CONTENT 
 
Residue theorem: Suppose U is a simply connectedopen subset of the 
complex plane, and a1,...,an are finitely many points of U and f is a 
function which is defined and holomorphic on U \ {a1,...,an}. If γ is a 
rectifiable curve in U which bounds the ak, but does not meet any and 
whose start point equals its endpoint, then 

 
If γ is a positively orientedJordan curve, I(γ, ak) = 1 and so 

 
 
Here, Res(f, ak) denotes the residueof f at ak, and I(γ, ak) is the winding 
number of the curve γ about the point ak. This winding number is an 
integer which intuitively measures how many times the curve γ winds 
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around the point ak; it is positive if γ moves in a counter clockwise 
("mathematically positive") manner around ak and 0 if γ doesn't move 
around ak at all. 
 
The relationship of the residue theorem to Stokes' theorem is given by the 
Jordan Curve Theorem. The general plane curve γ must first be reduced 
to a set of simple closed curves {γi} whose total is equivalent to γ for 
integration purposes; this reduces the problem to finding the integral of 
fdz along a Jordan curve γi with interior V. The requirement that f be 
holomorphic on U0 = U \ {ak} is equivalent to the statement that the 
exterior derivatived(fdz) = 0 on U0. Thus if two planar regions V and W 
of U enclose the same subset {aj} of { ak}, the regions V\W and W\V lie 

entirely in U0, and henceW ������ 	 W �������\��\�  is well-defined and 

equal to zero. Consequently, the contour integral of fdz along γi=∂V is 
equal to the sum of a set of integrals along paths λj, each enclosing an 
arbitrarily small region around a single aj—the residues of f (up to the 
conventional factor 2πi) at {aj}. Summing over {γi}, we recover the final 
expression of the contour integral in terms of the winding numbers{I(γ, 
ak)}. 
 
In order to evaluate real integrals, the residue theorem is used in the 
following manner: the integrand is extended to the complex plane and its 
residues are computed (which is usually easy), and a part of the real axis 
is extended to a closed curve by attaching a half-circle in the upper or 
lower half-plane. The integral over this curve can then be computed using 
the residue theorem. Often, the half-circle part of the integral will tend 
towards zero as the radius of the half-circle grows, leaving only the real-
axis part of the integral, the one we were originally interested in. 
Example: 
 
The integral 

 
 

 
 

The contour C.Fig. 1 
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arises in probability theory when calculating the characteristic function of 
the Cauchy distribution. It resists the techniques of elementary calculus 
but can be evaluated by expressing it as a limit of contour integrals. 
 
Suppose t> 0 and define the contour C that goes along the real line from 
−a to a and then counterclockwise along a semicircle centered at 0 from 
a to −a. Take a to be greater than 1, so that the imaginary unit i is enclosed 
within the curve. The contour integral is 
 

 
 
Since eitz is an entire function (having no singularities at any point in the 
complex plane), this function has singularities only where the 
denominator z2 + 1 is zero. Since z2 + 1 = (z + i)(z − i), that happens only 
where z = i or z = −i. Only one of those points is in the region bounded by 
this contour. Because f(z) is 
 

 
 

 
 

theresidue of f(z) at z = i is 

 
 
According to the residue theorem, then, we have 

 
The contour C may be split into a "straight" part and a curved arc, so that 

 
and thus 

Type equation here.  
Using estimations it can be shown that ^ 
����� � 1�� _  O��� 	 1�

��
 �� � → ∞. 

Therefore ^ 
����� � 1�� �  O
��

��
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If t< 0 then a similar argument with an arc C' that winds around −i rather 
than i shows that 

 

 

 
The contour C'.Fig. 2 

 ^ 
����� � 1�� �  O
��

��
 

 
and finally we have ^ 
����� � 1�� �  O
�|�|�

��
 

If t = 0 then the integral yields immediately to elementary calculus 
methods and its value is π. 
Example    
 
Show that 
 

 0
sin

       ,
cos

2222





  






dx

xk

sx
e

k
dx

xk

sx ks
)0k   ,0( s  

 
Solution 
 

In fact, 
22 xk

eisz


has only one pole in the upper plane, namely, a simple 

pole  at ikz , and from (4) we obtain 
 

  .
22

Re
22 










 ik

e

z

e

zk

e
s

ks

ikz

iszisz

ikz
 

 
Therefore, 

  .
2

2
22

ks
ksisz

e
kik

e
idx

zk

e 
 






  

 
Since ,sincos sxisxeisx  this yields the above results 
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3.2   Types of Real Improper Integrals 
 
Another kind of improper integral is a definite integral 
 

  dxxf
B

A )(        

 
whose integral becomes infinite at a point a in the interval of integration, 
 
   


)(lim xf

ax
 

 
Then the integral  means 
 

   dxxfdxxfdxxf
B

a

a

Aa

B

A  











)(lim)(lim)(

0
   

 
where and  approaches zero independently and through positive values. 
It may happen that neither of these limits exists, if 0,   independently, 
 
but 

   


   




dxxfdxxf

B

a

a

A 




)()(lim

0
    

 
exists. This is called the Cauchy principal value of the integral. It is 
written 

   pv.v. .)( dxxf
B

A  

 
For example, 

  pv.v. 0lim
1

31 30

1

1 3



   

 



 x

dx

x

dx

x

dx
 

 
the principal value exists although the integral itself has no meaning. The 
 whole situation is quite similar to that discussed in the second part 
of the previous section. 
 
To evaluate improper integral whose integrands have poles on the real 
axis, we use a part that avoids these singularities by following small semi-
circles at the singular points; the procedure maybe illustrated by the 
following example. 
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Example  
 
An Application 
 
Show that 

  .
2

sin
0


 dx

x

x
 

 
(This is the limit of sine integral Si(x) as x ) 
  
Solution 
 

a. We do not consider
z

z)(sin
 because this function does not behave 

suitably at infinity. We consider
z

eiz

, which has a simple pole at 

z=0, and integrate around the contour in figure below. Since 
z

eiz

is 

analytic inside and on C Cauchy’s integral theorem gives 
 

    0 dz
z

e
C

iz

      

 
b. We prove that the value of the integral over the large semicircle 1C

approachesRas approaches infinity. Setting 




idz

dz
deiRdzeRz ii


 , . and therefore 

   


00

deidedz
z

e iziz

C

iz

   ) ( ieRz   

In the integrant on the right, 
  .sinsincos)sin(cos  RRiRiiRiz eeeee 

  

 
We insert this,  sin)sin(   to get an integral from 2  to0  , 
and then  2 (when 20   ); to get an integral that we can 
evaluate: 
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Fig. 3 
 

 

 
 

Fig. 4 
 

   

    


    
0 0

2

0

sinsin dedede dRRiz  

 1

2

0

2 R    as       0)1(2 Ce
R

de RR   
   

Hence the value of the integral over 1C approaches as R  
 

c. For the integral over small semicircle 2C in figure above , we have 

  dz
z

e

z

dz
dz

z

e
C

iz

CC

iz  


222

1
 

 
The first integral on the right equalsi . The integral of the second 
integral is analytic and thus bounded, say, less than some constant 
M in absolute value for all z on2C  and between 2C and the x-axis. 
Hence by the ML inequality, the absolute value of this integral 
cannot exceed rM . This approaches 0r . Because of part (b), 
from (7) we thus obtain 
 

  dz
z

e
dx

x

e
dz

z

e
C

iz

r

ix

C

iz  

 


22 0
limpv.v.  

    0pv.v. idx
x

eix

  

Hence this principal value equalsi ; its real part is 0 and its 
imaginary part is 

   dx
x

xsin
pv.v.      (8) 

 
d. Now the integrand in (8) is not singular at0x . Furthermore, 

Since for positive x the function x1  decreases, the area under the 
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curve of the integrand between two consecutive positive zeros 
decreases in a monotone fashion, that is, the absolute value of the 
integrals 

    

0,1,n                         
sin



n

nn dx
x

x
I  

 
From a monotone decreasing sequence, and ,, 21 II 0nI as n . 

Since these integrals have alternating sign (why?), it follows from the 
Leibniz test that the infinite series  210 III converges. Clearly, the 
sum of the series is the integral 
 

   




b

b
dx

x

x
dx

x

x
00

sin
lim

sin
 

 
which therefore exists. Similarly the integral from 0 to  exists. Hence 
we need not take the principal value in (8), and  
 

    dx
x

xsin
 

Since the integrand is an even function, the desired result follows. 
In part (c) of example 2 we avoided the simple pole by integrating along 
a small semicircle2C , and then we let 2C shrink to a point. This process 
suggests the following. 

 
3.4.3   Simple Poles on the Real Axis 
 

thenaxisrealtheonazatpolesimpleahaszIf  ,          )(   

  ).(Re)(lim
20

zfsidzzf
C azr  

   

 
 

  
      Theorem 1 Fig. 5 

  
 
Proof 
 
By the definition of a simple pole the integrand )(zf has at az the 
Laurent series 

  )(Re          ),()( 1
1 zfsbzg
az

b
zf

az



  
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where )(zg is analytic on the semicircle of integration 
    0        ,:2

ireazC  
and for allzbetween 2C and the x-axis. By integration, 

  dzzgdire
re

b
dzzf

C

i

C i   
22

)()(
0

1 

   

 
The first integral on the right equals ib1 .The second cannot exceedrM
in absolute value, by the ML-inequality and 0rM as 0r . 
 
We may combine this theorem with (7) or (3) in this section. 
 
Thus, 

  



)(Re)(Re2)(pv.v. zsfizsfidxxf     (9) 

 
(summation over all poles in the upper half-plane in the first sum, and on 
the x-axis in the second), valid for rational )()()( xqxpxf  with degree

2 degree  pq , having simple poles on the x-axis. 
 
This is the end of unit 1, which added another powerful general 
integration method to the methods discussed in the chapter on integration. 
Remember that our present residue method is based on Laurent series, 
which we  therefore had to discuss first. 
 
In the next chapter we present a systemic discussion of mapping by 
analytic functions (“conformal mapping” ) .Conformal mapping will 
then be applied to potential theory, our last chapter on complex analysis. 
 
4.0 CONCLUSION 
 
In conclusion, havjng run through this unit we have seen that our simple 
method have been extended to the case when the integrand has several 
isolated singularities inside the contour. We also proof the Residue 
theorem. 
 
5.0  SUMMARY 
 
The residue of an analytic function )(zf at a point 0zz  is the coefficient 

of  
0

1

zz
the power in the Laurent series 
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






2

0

2

0

1
010 )(
)()(

zz

b

zz

b
zzaazf of )(zf which 

converges near0z (except at0z itself). This residue is given by  the 
integral 3.1 

  

C

dzzf
i
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but can be obtained in various other ways, so that one can use (1) for 
evaluating integral over closed curves. More generally, the 
residuetheorem (sec.3.2) states that if )(zf is analytic in a domain D such 
except at finitely many pointsjz and C is a simple close path in D such 

that no jz lies on C and the full interior ofC belongs to D, then 

 

  




j
zzC

zfs
i

dzzf
jj

)(Re
2

1
)(


     (2) 

  
(summation only over thosejz that lie insideC ).   

 
This integration method is elegant and powerful. Formulas for the residue 
at poles are ( m order of the pole) 
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Hence for a simple pole ( 1m ), 
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Another formula for the case of a simple pole of )()()( zqzpzf   
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Residue integration involves closed curves, but the real interval of 
integration  20  is transformed into the unit circle by setting ,iez   
so that by residue integration we can integrate real integrals of the form   
(sec. 3.3) 
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whereF  is a rational function of cos and sin ,such as, for instance, 
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Another method of integrating real integrals by residues is the use of a 
closed contour consisting of an interval RxR  of the real axis and a 
semicircle Rz  . From the residue theorem, if we let ,R we obtain 

for rational )()()( xqxpxf  (with 0)( xq  and 2 degree  pq ) 
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(sum of all residues at poles in the upper-half plane). In sec.3.4, we also 
extend this method to real integrals whose integrands become infinite at 
some point in the interval of integration. 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
1. Explain the term residues and how it can be used for evaluating 
 integrals 
2. Find the residues at the singular points of the following functions; 
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3. Evaluate the following integrals where C is the unit circle  
 (counterclockwise). 
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4. Show that 
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