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1.0 INTRODUCTION

Complex number can be defined as an expressidredbtmz = a + ib,
whereaandb are real numbers arig a ““number" such thidt= —1. The
numbera is called the real part zf (i.e. a = Rarg b is the imaginary
part (or imaginary coefficient) of z (b = Im 2z).

The set of all complex numbers is denocd .We@eCy = C-0,

2.0 OBJECTIVES

o To know complex variable and its properties.

o To know operations of complex variable and wherliegple
o To know complex variable as a function

o To know theorems on limits of functions

3.0 MAIN CONTENT

3.1 Definition: A complex number is an expression of the farm
a + ib, whereaandb are real numbers arnis a ““number" such that=
—1. The numbe a is called the real part2if (i.e.Re=z) ancb is the
imaginary part (or imaginary coefficient) of z €Edm z).

The set of all complex numbers is denoCd .WeteCy» = C-O0.

Properties:

1. Equa“tyZl = ZzifRe(Zl) = Re(ZZ)andIm(Zl) = Im(Zz).
2. If z;, € RIm(z) = 0.
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3. If Re(z) =0, zis called pure imaginary.

Example
e 2:iS pure imaginary.
e 4risreal.

Definition (Operations) Let = a + ibandz/ = ¢ + id.
1. Addition:z+z/ = (a +¢) + i(b + d).
2. Multiplication: zz/ = (ac — bd) + i(ad + bc)

These operations have the same algebraic propastiég® corresponding
operations in R (associativity, commutativity, etplpase prove ...).
Thus, the classical formulas (such as Newton'srial) are also true in
C.

Vi, €0, {542 =27 + g 4+ 28
Vigs,2s €T, (21— 22)° =27 — 2oy2p + 23

e e, B1i—miin+tnj=3—n

. " , A ) W
Vo, €T EN, (m+m) = ) 5%) g
Ry 374

Ve, 2 €T, €N, 2 — o = T AT

Example
(24+3)+ 447 =841

(2434 +7)=(2.4—3 7V +i(2.7+3-4)=—13 =26
B4BEP=242.2 8+ (3 =4 46— 9=—546

(6— 2 =55 —3.5%.2i + 3.5 (26)* — (38} = 135 — 1505 — 60 + Bi = 65 — 143
Pri=Pf P = ra+f=(—-2+w-1)

3.2 theorems On Limits of Functions

1. Iflimz = zyandf (z) exists, then it is unique
2. Ifz = zysuchthatf(z) = A and g(z) =B, thenz=2z,[f (2) +

g(z)] =A+B
3. Ifz = zysuchthatf (z)and g(z) = B,thenf(z).g (z) = AB
4.1fz = Zo,then% = gwhereB * 0

2
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Definition: Ifz = z,, thenf (z) = w.We mean giveé > 0, 30 > 0 such
that if ze S whereis the domain dfand /z —z,/ < d, then /

f@)-w/<E

In some applicationg,e S

CONTINUITY : Letz, € s,wesayfiscontinuousatzoifz =

zof (2) = f (zo0):

SEQUENCE

If {z,}n=1 IS an infinite sequence of complex numbers, then say
thatw = z,asn — oo. That is,{z, }n=1converges to W if giveg > 0, 3

N such that 1= N, then/ z,-W /< E

3.3 Cauchy Sequence

A sequence £,,} is Cauchy if givere>0, 3 N such that mn > N such
that/ z, — z,,/< E

Example: Every convergent sequence is Cauchy sequence

By z » oo, f (2) =1, we mean ag approaches infinity, if for arg/>

0,3IM >0 such thayf (2) - L /< Ewhenever /z/>m

Byz = z, f (z) = oo,we mean for any N>BuchthatS > 0 suchthat
/f(#)/ > Nwhenever 0 </ z-zo0 /<6

NOTE:

1. etV = eZeYforallz,w € ©

2. e?is never zero.

3. If X is real,e* > 1 for x >0
e* < 1 for x<0

4. lex+iy| = eX e

Proposition:Given thatz; andz, are two complex variables, then
71+t 7; = 7y + and z; = 7107,

Proof. Denotez, = x; + iy, andz, = x, + iy, , wherex,, x,, y;, y,are
real numbers. Then

2+ =(z1+ 22) +2ln + 2}

Thus:

& By e jay 4 omat ek Foapsld

={z3 + 22} — 2{yr + ¥2)
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={zy —ty )+ {22 — 1y3}

=7+ 7,
Similarly,
zag = (2122 — t1ya) + Hzyz + 22w )
, thus:

77, = \Eata T bl i+ )

= {%1%3 — fyz) — d{zaya + Tagn
= {21 — o3 J(z2 — 22
= Z1.23
Definition: (Inverse of a complex) If= 0, then it has a complex inverse
# %, Letz =a+ib, wherea ancb are real numbers; then we have:

o3 = . B
& = p %i'zﬁ' - P
o B gt LS
_ 11
Proof. z 1 =-—
— z a+ib

Multiply both numerator and denumeratordy- ib

_ & —3h
{4 ibifs — a9
B =HERS "
_ s—h
ad 4+ b2
& , B
—_

THEIR 1P

Theorem: Let z € U. There exists a real numb¢d such that
cos 0 + ising.

Proof. Denote = x + iy, wherexandy are real numbers. The® U if,
and only if,x* + y?> =1, i.e. the image oz in the complex plane is a
point on the unit-circle. For each point on thetaiicle, there exist a real
numberdsuch that the coordinates of this point @res 6, sind).

Definition: The numbemis called an argument ofand is denoted

arg(z) .
Note that this argument is defined up to an add#idkrm, keZ.

Example :

. -v.—‘""a
® ., % 1 ¥ ® .
1 V3 —epnr 4 inine = arg gﬂ-—MT gzg%%%%é:ﬁ
> T 3 3 _ﬁ a4 B
4
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; umg-mm.%:&amgi}:%-@mm EE.

In Figure below, a value of the argument of the pl@x number
corresponding to a point is diplayed in green.
LY

32

~

The unit circle in Cauchy-Argand plane.

Example 1:

Writef (z) = z*intheformf(z) = u(x,y) + iv(x,y)
Solution: Using the binomial formula,
we obtain  f(z) = f(x + iy) = (x + iy)*
= x* + 4x3(iy) + 6x2(iy)? + 4x(iy)3 + (iy)*
x* + 4ix*y — 6x%y? — 4ixy® + y*
= x* —6x%y? + y* + i(4x*y — 4xy?)
=u(x,y) +iv(x,y)
so thatu(x,y) = x* — 6x%y? + y*andv(x,y) = (4x*y — 4xy3)

Example 2. Express the functiorf (z) = ZRe(z) + z% +
Im(z)intheformf(z) in  the  formf(z) =u(x,y)+iv(x,y).

Solution. Using the elementary properties of carphumbers, it
follows that f(z) = (x—iy)x+ (x+iy)>+y=Qx* —y?*+y)+

E(xy)
so thatu(x,y) = 2x2 —y? 4+ yandv(x,y) = xy.

Examples 1 and 2 show how to find u(x,y) and v(x#en a rule for
computing f is given. Conversely, if u(x,y) and w(xare two real-valued
functions of the real
variables x and y, they determine a complex-valfwetttionf(z) =

u(x,y) +iv(x,y)
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We can use the formulas
+Z —-Z . . . .

x = %andy = % to find a formula for f involving the variables

zandz

Example 3: Expressf(z) = 4x? + i4y? by a formula involving the
variables zandz.

Solution. Calculation reveals that

= 2

= 724 2zZ2+ 7% —i(z* — 222 + Z%)
=1 -0z>+@Q2+2D)zz+ (1—-1i)z*

3.4 Geometric Interpretation of a Complex Functn

If D is the domain of real-valued functiongx,y) andv(x,y), the
equations

u=u(xy)and = v(x,y)

describe a transformation (or mapping) from D i xly plane into the uv
plane, also called the w plane. Therefore, we dan aonsider the
function

W =f(z) =ulx,y) +iv(x,y)

to be a transformation (or mapping) from the st e z plane onto the
range R in the w plane. This idea was illustrateérigure 2.1. In the
following paragraphs we present some additional ikiyas. They are
staples for any kind of function, and you shouldmoeze all the terms
in bold.

If A is a subset of the domalrof f, the seB = {W = f(z) : z€ A} is
called the image of the sétandf is said to maglontoB. The image of
a single point is a single point, and the imagéhefentire domainp, is
the rangeR. The mappinglWW = f(z) is said to be from A into S if the
image ofA is contained inS. Mathematicians use the notatipm —

S to indicate that a function magsntoS. Figure below illustrates a
function f whose domain i® and whose range B. The shaded areas
depict that the function mapsntoB. The function also map&intoR,
and, ofcourse, itnapsDontoR.
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Domain
o Range

| | .

FigureW = f(z) maps A onto B. W=
f(z)mapsA into R.

The inverse image of a point w is the set of alinfgoz in D such
that W = f(z). The inverse image of a point may be one poatesal
points, or nothing at all. If the last case ocdhen the pointv is not in
the range of .

Example 4 Expressf(z) = z° + 4z% — 6 in polar form.
Solution. We obtain

f(2) = f(re?) = (re?)5 + 4(re®®)2 — 6 = ce®? + 41229 — 6

= 1r5¢c0s50 + r?cos20 — 6 +i(r>sin50 +
41%sin20) =U(r,0) + iV(r,0)
So that U(r,0) = r°cos560 + r?>cos260 — 6 andV (r,0) =
r5sin 50 + 4 2 sin 20

Example 5: The ellipse centered at the origin with a hortabmajor
axis of 4 units and vertical minor axis of 2 urué be represented by the
parametric equation

s(t) = 2cost + isint = (2cost,sint),for 0 <t <2m

Suppose we wanted to rotate the ellipse by an ariéélmdians and shift

the center of the ellipse 2 units to the right &nchit up. Using complex
arithmetic, we can easily generate a parametriatemur(t) that does
Sso:

r(t) = s(t)e%r + 2+10)
T

] - 7T - -
= (2cost + isint) (cos€+ smg)+ (24+10)
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(2costcos—sintsin=) +i(2costsin-+ sintcos=) + (2
= (2costcos——sintsin—)+i(2costsin—+ sintcos—
6 6 6 6 (
+ 1)
1 &
= (@cost—zsint + 2) + i(cost+7sint+ 1)

1 V3
= (@Cost—zsint+ 2,cost+7sint+ 1)

for 0 <t < 2m, Figures below show parametric plots of thes@&dis

¥

1.5

u.s\ 1

. . . . - 0.5
0.5 1 1.8

- -1.5 -1 -0.% . . )
-0.5}
5 1 1. £.5 1 2.5

Figure (a)Plot of the original ellipse (b) Plot of the
rotated ellipse

(i ==2cost+aAzint

rit)=s ) et ™y (2 d

Example 6: Show that the image of the right half platgz) = x >
1 under the linear transformation= (=1 + i)z — 2 + 3i is the half
plane>u + 7.

Solution: The inverse transformation is given by
w+2-3i u+2+i(v—3)

7 =

-1+ -1+
whichwe write as
) -u+v—-5 -—u—-v+1 -u+v-5
x+iy= > +1i > x = > >1
—u+v->5 —u+v->5

Substitutingx = into Re(z) =x>1 gives — >
1 which  simplifiesv > u + 7 .
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Figure 2.11 illustrates the mapping.

- =] n T
= e rd

-1

Figure 2: The the linear transformatiow = (—1 + i)z — 2 + 3i.

4.0 CONCLUSION

In conclusion Examples 1 and 2above show howintb u(x,y) and

v(x,y) when a rule for computing f is given. Consely, if u(x,y) and

v(X,y) are two real-valued functions of the realahles x and vy, they
determine a complex-valued functigfz) = u(x,y) +iv(x,y) We

can use the formulas

X = %Z_andy = % to find a formula for f involving the variables
zandz

5.0 SUMMARY

If D is the domain of real-valued functiongx,y) andv(x,y), the
equations

u=u(xy)and = v(x,y)

describe a transformation (or mapping) from D i xly plane into the uv
plane, also called the w plane. Therefore, we dan aonsider the
function

W =f(z) =ulx,y) +iv(x,y)

to be a transformation (or mapping) from the st e z plane onto the
range R in the w plane. They are staples for ang &f function, and you
should memorize all the terms in bold.

6.0 TMA

1 Expressf(z) = 3x?> +iy? by a formula involving the
variableszandz.

2 Expressf(z) = z*+2z>—1 in polar form.

3 Writef (z) = z*intheformf(z) = u(x,y) + iv(x,y)
4 Prove thatosz, sin z, coshz, andsinhzare entire functions.



PHY 313 MATHEMATICAL METHODS OF PHYSICS I

5 What is the idea that led to the CauchyaRien equations?

6 State the Cauchy-Riemann equations from memory.

7 What is an analytic function? Can a function beedentiable at
a pointz, without being analytic at, .

7.0 REFRENCES / FURTHER READINGS

Ablowitz, M. J. & A. S. Fokas, Complex Variablesitdoduction and
Applications (Cambridge, 2003).

Ahlfors, L., Complex Analysis (McGraw-Hill, 1953).

Blair, David (2000-08-17). Inversion Theory and @omal Mapping.
The Student Mathematical Library. Vol. 9. Prende, Rhode
Island: American Mathematical
Society. doi:10.1090/stml/009. ISBN 978-0- 8218-

2636- 2. S2CID 118752074

Carathéodory, C., Funktionentheorie. (Birkhauser950). English

translation, Theory of Functions of a Complex ¥hte (Chelsea,
1954).

Carrier, G. F., M. Krook, & C. E. Pearson, Functoof a Complex
Variable:  Theory and Technigue. (McGraw-Hi966)

Conway, J. B., Functions of One Complex Varialfar{nger, 1973).
Fisher, S., Complex Variables. (Wadsworth & Bro@aé, 1990).

Forsyth, A., Theory of Functions of a Complex Valea(Cambridge,
1893).

Freitag, E. & R. Busam, Funktionentheorie. (Springel995).
English  translation, Complex Analysis. (Sgen 2005).

Goursat, E., Coursd'analysemathématique, tome 2utfier-Villars,
1905). English translation, A course of mathemaacalysis, vol.
2, part 1: Functions of a complex variable. (Gib®16).

Henrici, P., Applied and Computational Complex Arsid (Wiley).
[Three volumes: 1974, 1977, 1986.]

Hildraban,F.BAdvancedCalculusforApplication

Kreyszig, E., Advanced Engineering Mathematics.l€Wil1962).
Lavrentyev, M. & B.

10



PHY 313 MATHEMATICAL METHODS OF PHYSICS I

ShabatMeTozlmTeopI/H/Iq)yHKuHﬁKOMHJIeKCHoro IIEPEMEHHOT 0.
(Methods of the Theory of Functions of a Complex arigble).
(1951, in Russian).

Murray, R. Spieg (19743chaums Outline Series or Theory and Problem
of AdvancedCalculu&reatBritain:McGraw-HillInc.

Markushevich, A. 1., Theory of Functions of a ComplVariable,
(Prentice- Hall, 1965). [Three volumes.]

Marsden & Hoffman, Basic Complex Analysis. (Freentedv 3).
Remmert, R., Theory of Complex Functions. (Sprind8e0).

Rudin, W., Real and Complex Analysis. (McGraw-H1I§66).

Rudin,Walter (1987). Real and Complex
Analysis (PDF).McGraw- Hill Education®7. ISBN 978
-0-07-054234-1.

Shaw, W. T., Complex Analysis with Mathematica (@aichge, 2006).

Stein, E. & R. Shakarchi, Complex Analysis. (Prioce 2003).

Sveshnikov, A. G. &A. N.
Tikhonov, TeopusidpyukimitkoMmiiekcHoit  niepemenHoii. (Nauka
, 1967). English translation, The Theory of Funasiof aComplex
Variable (MIR, 1978).

Stroud,K.A.(1995).8ed EngineeringMathg)Palgraw

Titchmarsh, E. C., The Theory of Functions. (Oxfdréi32).

Verma,P.D.S.(1999ngineeringMathematicNewDelhi: Vikas
PublishingHouse PVTLtd.

Wegert, E., Visual Complex Functions. (Birkhau€r] 2).

Whittaker, E. T.&G. N. Watson, A Course
of Modern Analysis. (Cambridge, 190&d ed.
(1920)

https://www.youtube.com/watch?v=ucj4Rw7nBVo

https://archive.org/details/complexvariables00006abl

https://books.google.com/books/about/Complex VéEmhtml?i

d=2hlhQgAACAAJ
https://people.maths.ox.ac.uk/hewitt/publicatiors/€ notes.pdf
UNIT 2 ANALYTIC FUNCTION

11


https://www.youtube.com/watch?v=ucj4Rw7nBVo
https://archive.org/details/complexvariables0000ablo
https://books.google.com/books/about/Complex_Variables.html?i
https://people.maths.ox.ac.uk/hewitt/publications/C5_6_notes.pdf

PHY 313 MATHEMATICAL METHODS OF PHYSICS I

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

4.0 Conclusion

50 Summary

6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

A functionf(z) is analytic at a poirg, if its derivativef'(z) exists not only
at
z,but at every point in a neighborhood of;,.

One can show that {z) is analytic the partial derivatives ofandv of
allorders exist and are continuous functiong ahdy.

Thus we have
d’u  90%v 0%v a dv 0 ou 0%u

0x? :axay: ayax: @a_ dydy _a_yz

. 0%u  9%u
That Is— + 37 0
Thus bothu(x,y) andv(x,y) satisfy Laplace's equation.

2.0 OBJECTIVES

o To know about analytic functions
o To know about complex integral
o To treat theorems and some related examples

3.0 MAIN CONTENT

An analytic function is an infinitely differentiablfunction such that the
Taylor series at any poig in its domain

=, f (a0 n
1) = Y 0 g
n=>0 '
converges to ] for xin a neighbourhood oé. The set of all real analytic
functions on a given sé&t is often denoted bg”(D).

12
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A function f defined on some subset of the rea s said to be real
analytic at a poinx if there is a neighbourhodd of x on which f is real
analytic.

If a complex analytic function is defined in an aggall around a point

Xo, itS power series expansionxatis convergent in the whole ball. This
statement for real analytic functions (with operl lb@eaning an open

interval of the real line rather than an open diEkhe complex plane) is

not true in general; the function of the examplewabgives an example
for xo = 0 and a ball of radius exceeding 1, since theegpseries 1 %2 +

x4 —x8... diverges fonq > 1.

Any real analytic function on some open set on i@ line can be
extended to a complex analytic function on somenggst of the complex
plane. However, not every real analytic functiofirted on the whole real
line can be extended to a complex function defmethe whole complex
plane.

Theorem:If the derivative off(z) exists at a poing, then the partial
derivatives ofuand v exist at that point and obey the following
conditions:

Ju OJv du Jdv

a: @anda— —a

This above equations are called Cauchy Riemanntiegsa

Letuandv be real and single valued functionsx@indy are called which,
together with their partial derivatives of the fissder, are continuous at
a point. If those partial derivatives satisfy theeuChy-Riemann conditions
at that point, then the derivative foéxists at that point.

3.1 Cauchy Riemann Equation:

A necessary condition th&#f = f(z) = u(x,y) + v(x,y) be analytic in
regionR is thatu andvsatisfy Cauchy Riemann equations.

au_av dau_ ov
ax oy Moy T Tox

Usuallyu(x,y) andv(x,y) are called conjugate functions.

3.2 Analytic Functions

A functionf(z) is analytic at a poir, if its derivativef'(z) exists not only
atz,but at every poinzin a neighborhood of,,.

13
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One can show that f{2) is analytic the partial derivatives ofandv of
all orders exist and are continuous functiong andy.

Thus we have
d°u  0%v d0%v d ov 0 ou _ d0%u

0x? =0x6y= ayax= @&‘ dydy _W

. 0%u | 9%u
That IS@? + a_yz =0
Thus bothu(x,y) andv(x,y) satisfy Laplace's equation.

Example: Show thaf(z): — C defined byf(z) = eZis analytic inC and
tha% = e’

Solution: Letz = x + iy.

Bu definition,f(z) = e? = e**¥ = e*e” = e*(cosy + isiny)

So,u(x,y) = e*cosyand v(x,y) =e*siny
To showf is analytic, we verifyCauchy Riemann equations.

du X av ‘o

— =e*cosy, — = e”*sin
dx Y ox Y
du . av .
— = —e*siny, — = e* cos
dy Y dy Y

ou ov ou ov e
Soa =3 and Pol —--are satisfied.

Hence, f(z) = eZis analytic.To shogog: e, f(z2) =ulx,y)+

iv(x,y) = e*cosy +ie*siny
. af du LOV_ o . X o _ x . .
Since S, = 5. Tigmetcosytietsiny= e (cosy +isiny) =
zZ
exeiy — ex+iy = e?
z

d
Hence == = e,
dz

3.3 Complex Integral

Definition (Definite Integral of a Complex Integrand): Let f(t) =
u(t) +iv(t) where u(t) and v(t) are real-valued functiongha real

variable t fora <t <b . Thenf;f(t)dt = f;(u(t) +iv(t) )dt =
ffu(t)dt + iff v(t)dt. (A)

We generally evaluate integrals of this type bglifig the anti derivatives
of u(t) and v(t) and evaluating the definite intgron the right side of

Equation above. That is, if U/(t) = u(t) andVI(t) = v(t), we
have

14
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[ f®dt = [ u@®dt+ i [ v(t)dt = U®b) — U) + i(V(b) -
V(a)). (B)

Example: Show thatfol(t —1)3dt = —Z .

Solution: We write the integrand in terms of its real amaginary parts,
ef(t)= (t—-1)3=t3-3t+i(-3t?+1)

Here, u(t) = t3 — 3t and v(t) = —3t% + 1. The integrals of u(t) and
v(t) are

fl ot J1(t3 3t )2 dt r;; 32|} 5
u = — = -] = —=
o o 4 2 4
and

[ivyde = [[(=3t2+1)3dt = |-t3 + [} =0
Hence, by Definition (A),

1 1 . rl 5 . 5
Jyt=13%dt = [fu(t)dt+ i [, v(t)dt = —Z+0i=—1

_ T ¥ i( T
Example: Show thatf? e***dt = E(ez — 1) + E(ez + 1) :

Solution. We use the method suggested by DefistiQA) and (B)
above

s s s

2 csit 2 it Z ¢ i
ettitdt = etettdt = e'(cost +isint)dt
0 0 0
Vs Vs

2 2
=f etcostdt+if etsintdt
0 0

We can evaluate each of the integralsnegration by parts. For
example,

T

2 ) t
etcostdt = (e'sint),
0

T
=% z .
_o — | e’sintdt
0
T

Tom z .
:(ez smg— e smO)— e‘sintdt
0

T

T 2
= (e2.1-1.0) — etsintdt
(

0
T

2
— f etsintdt
0

B

= e

15
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T
s

a t t=3 2 ¢
=e2— (e".—cost),_;+ | e.—costdt
OE
z t t=3 2t
=e2+ (e"cost),_, — | e‘costdt

0
T

m n 2
=e2+ (e2.0—1.1)—J et costdt

0
T

T

2
=e2 — 1—J et costdt
0

Adding fofet cos t dt to both sides of this equation and then dividigg

2 giveg2efcostdt = %(eg - 1) . Likewise, [? e’ sint dt =
é(eg + 1) .

T . 1/ = i
Therefore,f02 ettitdt = E(ez — 1) + E(ez + 1)

Complex integrals have properties that are simitarthose of real
integrals. We now trace through several commaaalitLet f(t) =
u(t) +iv(t) andg(t) = p(t) +iq(t) be continuous om <t < b.
Using Definition (A), we can easily show that tiéeigral of their sum is
the sum of their integrals, that is

L@+ gt)de = [] f(0)dt + [ g(e)dt
(C)

If we divide the intervala <t <b intoa<t<c andc<t<»b and
integrate (t) over these subintervals by using (A), then we get

[ f®dt = [ f®dt+ [ fe)dt.
(D)
Similarly, if « + i denotes a complex constant, then
[J(c +id)f(©)dt = (c +id) [, f(D)dt
(E)
If the limits of integration are reversed, then
[ F@®dt = — [ f(t)t
(F)
The integral of the product f(t)g(t) becomes
[} fOg®at = [ @® + iv@®)(p® + ig(®)adt
= [ @®p®) — v(®)q®)dt + i [, @®)q(®) — v(®)p(t))dt
(G)

16
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Example: Let us verify property (E). We start by writing
(c+id)f(t) = (c+id)(u(t) + iv(t))
= cu(t) — dv(t) + i(cv(t) + du(t))

Using Definition (A), we write the left side of Eation (E) as
b
f (c+ id)(u(t) + iv(t))dt

b b b
= cf u(t)dt — df v(t)dt + icj v(t)dt
a b a a
+ idf u(t)dt

whichis equivalento

b
f (c+ id)(u(t) + iv(t))dt
“ b

b b
= cf u(t)dt + idf u(t)dt + icj v(t)dt
a b a a
+idi | v(t)dt
| b
=(c+ ld)J u(t)dt +i(c + ld)f v(t)dt
=(c+ ld)(J u(t)dt + lf v(t)dt)
Thereforej (c+id)f(t)dt = (c+ id)f f(t)dt

It is worthwhile to point out the similarity beter equation (B) and its
counterpart in calculus. Suppose that U and \WWdferentiable ona <
t<b andF(t) =U(t) + iV(t). Since FI(t) = U'(t) +iVI(t) =
u(t) + iv(t) = f(t), equation (B) takes on the familiar form
J; f(©ydt = F(O)iZh = F(b) - F(a).
(H)

whereF!(t) = f(t) . We can view Equation (H) as an extension of the
fundamental theorem of calculus.

[} fl®dt = ) — f(a) .
) i}
Example: Use Equation (H) to show thatf? e***dt = %(ei — 1) +

é(eg + 1)

17
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Solution: We seek a function F with the property thRaft) =

e(1+Dt  We note thaF (t) = —l e(1+0t gatisfies this requirement, so
Vs
fz ettitdt = 1 (1+l)t] 7ZT — 1 e(1+i)% _ 1 20
0 1+ (=0 1+ 1+i
1 % i% 1 1 ; % 1
= eze lesz —
1 I— 1+ 1 +1i 1 + [

= (lez—l) —(1—1)( 1+le2)

2(e2—1) ;(e2+1)

4.0 CONCLUSION

Conclusively, A functiori(z) is analytic at a poind, if its derivativef'(2)
exists not only az,but at every poinzin a neighborhood of,,.

5.0 SUMMARY

A necessary condition th#f = f(z) = u(x,y) + v(x,y) be analytic in
regionR is thatu andvsatisfy Cauchy Riemann equations.

6.0 TMA
1 Use Equation (H) to evaluatef? e***dt
2 Evaluatefol(t —1)°dt.
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UNIT 3 RESIDUE THEOREM
CONTENTS
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5.0 Summary

6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Theresidue theorem sometimes calle@auchy's Residue Theoremn
complex analysis is a powerful tool to evaluate lintegrals of analytic
functions over closed curves and can often be wgecompute real
integrals as well. It generalizes the Cauchy irgkipeorem and Cauchy's
integral formula. From a geometrical perspectives ia special case of
the generalized Stokes' theorem.

2.0 OBJECTIVES

o to be able to determine and explain Residue;
o to be able to use Residue to evaluate integratk; an
o to show that the Residue integration method caextended to the

case of several singular points bfz)inside C

3.0 MAIN CONTENT

Residue theorem:SupposeJ is a simply connectedopen subset of the
complex plane, an@y,...a, are finitely many points ot andf is a
function which is defined and holomorphic @h\ {as,...an}. If yis a
rectifiable curve inU which bounds thex, but does not meet any and
whose start point equals itg endpoint, then

j{f(z} dz = 2m Z I(~, ar)Res( f, az).

) k=1
If v is a_positively orientedJordan curvey, &) = 1 and so
n

j{f(:i) dz = Qwiz Res(f, ai).
K k=1

Here, Red( a) denotes the residuebftax, and I, ax) is the winding
number of the curve about the pointk. This winding number is an
integer which intuitively measures how many times turvey winds
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around the poingy; it is positive ify moves in a counter clockwise
("mathematically positive™) manner arouad and 0O ify doesn't move
aroundax at all.

The relationship of the residue theorem to Stakesirem is given by the
Jordan Curve Theorem. The general plane cunvrist first be reduced
to a set of simple closed curveg}{whose total is equivalent tp for
integration purposes; this reduces the problenintirfg the integral of
fdz along a Jordan curvg with interior V. The requirement thdtbe
holomorphic onUo = U \ {a} is equivalent to the statement that the
exterior derivativd(fdz) = 0 onUo. Thus if two planar regiong andW

of U enclose the same subsef}{of { ak}, the regions\VA\W andW\V lie

entirely inUop, and hencﬁ/\wd(fdz) - fW\Vd(fdz) is well-defined and

equal to zero. Consequently, the contour integrdtdpalongyi=dV is
equal to the sum of a set of integrals along pathsach enclosing an
arbitrarily small region around a singke—the residues of (up to the
conventional factor) at {a}. Summing over {i}, we recover the final
expression of the contour integral in terms of whieding numbers{l{,

a)}.

In order to evaluate real integrals, the residweoithm is used in the
following manner: the integrand is extended todbmplex plane and its
residues are computed (which is usually easy) aapalrt of the real axis
Is extended to a closed curve by attaching a hialfecin the upper or

lower half-plane. The integral over this curve t@n be computed using
the residue theorem. Often, the half-circle parthef integral will tend

towards zero as the radius of the half-circle grdeaving only the real-
axis part of the integral, the one we were oridinaiterested in.

Example:

The integral
e

- gl

The contour (Rig. 1
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arises in probability theory when calculating thamcteristic function of
the Cauchy distribution. It resists the techniqgokslementary calculus
but can be evaluated by expressing it as a limtootour integrals.

Supposé> 0 and define the conto@ that goes along the real line from
—a to a and then counterclockwise along a semicircle cedtat O from
ato —a. Takeato be greater than 1, so that the imaginaryiusiénclosed
within the curve. The contour integral is

Et't:
Lf(z)dz—Lz2+1dz.

Since€® is an_entire function (having no singularitiesay point in the

complex plane), this function has singularities yonivhere the

denominator? + 1 is zero. Sinc# + 1 = ¢ +i)(z - i), that happens only
wherez =1 orz= —. Only one of those points is in the region bounbied
this contour. Becaud¢z) is

Et’t: ﬂ-x'f,::( 1 1 )
z2 41 2t \z—1 z4+1

Et!: Ezt:

T 2i(z—1) 2i(z+1)’
theresidue of(2) atz=1iis

—t
Res,_; f(z) =

e
2i

According to the residue theorem, then, we have
}{ f{z)dz = 2wi - Res. {2} = **MT= = me~*,
£ " 3

The contouC may be split |nto a "straight" part and a curver 8o that

_f . fl2dz + f ?f*&*‘%{wm*%
Jebraight” £
and thus )
j flehde = 5w = g ) de,
Type equation here. #=s JEEG

Using estimations it can be shown that

J‘°° gitz p ma
z < as a — oo,
2%+ 1 a?—-1

Therefore

co itz
e t
f > dz = me
_wZ-t+1
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If t< O then a similar argument with an &cthat winds aroundi—+rather

thani shows that
' . &

The contour CFig. 2

co itz
e t
f dz = me

oZ%+1

and finally we have

oo itz
€ —lt]
> dz = me
—2-t+1

If t = 0 then the integral yields immediately to eletaeyn calculus
methods and its value is

Example
Show that
J-oo kc:zossx _z s J-oo smsx Xx=0 (s> 0, k>0)
+ X k
Solution

In fact, %has only one pole in the upper plane, namely, lsim
+ X

pole atz=ik, and from (4) we obtain

eisz eisz e—ks
Res——— = =|—|
=k k?+z% |2z . |2k

Therefore,

isz —ks
I 2e ~dx= 27 e_ =Tk,
-k 4z 2k  k

Since e®™ = cossx+isinsx this yields the above results
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3.2 Types of Real Improper Integrals

Another kind of improper integral is a definiteagtal
°f (x)dx
[ 1O

whose integral becomes infinite at a poamh the interval of integration,

lim| f (x)| = o0
Then the integral means

°f lim [ f im( f
IA (X)dx = ,'QJ‘A (X)dx+ Hl_rgj‘aw (x)dx

wherer andn approaches zero independently and through positilees.
It may happen that neither of these limits exi$ts,7 —0 independently,

but

ITiLr(l)[ [ £ (dx+ jB” f(x)dx}

exists. This is called th€auchy principal value of the integral. It is
written

B
pV.V. jA f (x)dx
For example,
1 dx . - dx  rdx
pv.v. [ 5 = hm[ Lt IF} =0

the principal value exists although the integrsglithas no meaning. The
whole situation is quite similar to that discussgethe second part
of the previous section.

To evaluate improper integral whose integrands h@oles on the real
axis, we use a part that avoids these singulabidsllowing small semi-
circles at the singular points; the procedure malostrated by the
following example.
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Example

An Application

Show that

J«n Smxdx:ﬂ
0 X 2

(This is the limit of sine integral Si(x) as— «)

Solution

a.

We do not considns(r"‘M because this function does not behave
2

suitably at infinity. We consideeg—, which has a simple pole at

z=0, and integrate around the contour in figur@\lrveBincee—is
z

analytic inside and on C Cauchy’s integral theoggves
§ e—dz: 0
1S4

We prove that the value of the integral over tingdasemicircle€,
approacheB as approaches infinity. Setting

z=Re’.dz=iRe"’d0, d_z and therefore
z=id@
e’ T iz | iz DAl
jc7d+‘joeuda sjoe do (z=Re")
In the integrant on the right,
eiz z‘eiR(cosensinH) z‘eiRcose ‘e—Rsine ze—Rsins_

We insert this,sin(zr - 8) =sind to get an integral fromtor/2,
and thenz > 20/ 7 (when0< 8 < z/2); to get an integral that we can
evaluate:
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Fig. 3

- _.-_.f‘

Fig. 4

iz d@ — J‘:e—Rsiane — I:/Ze—Rsinwﬁde

74
[l
0

< zj':/ze‘m/”dé’ = % l-e®)—>0 as R—«oC,

Hence the value of the integral owerapproaches aR — «

C. For the integral over small semicirdlgin figure above , we have
e” -1
I I dz
C, 7 C, Z C, 7

The first integral on the right equalsi . The integral of the second
integral is analytic and thus bounded, say, legs #ome constant
M in absolute value for all z @@y and betweerC, and the x-axis.
Hence by theML -inequality, the absolute value of this integral
cannot exceellzr . This approaches— 0. Because of part (b),
from (7) we thus obtain

I e—dz=pv.v.J'we—dx+Iim e—dz
C —o ¥

2 7 r—0JC, 7
_pvv_[ —dx a=0

Hence this principal value equais its real part is 0 and its
imaginary part is

pv v_|' wdx— (8)

d. Now the integrand in (8) is not singularxat0. Furthermore,
Since for positivexthe functionl/x decreases, the area under the
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curve of the integrand between two consecutivetipesieros
decreases in a monotone fashion, that is, the @tlesahlue of the
integrals

I =J'M+”wdx n=0,1;---

n nr X

From a monotone decreasing sequeficg) ,|---andl, —0asn— .

Since these integrals have alternating sign (whiy#pllows from the
Leibniz test that the infinite series+ 1, + 1, +----converges. Clearly, the

sum of the series is the integral
smxd T J~ smx

b—w

which therefore exists. Similarly the integral fr@o -« exists. Hence
we need not take the principal value in (8), and

I SInX

Since the integrand is an even function, the deésesult follows.
In part (c) of example 2 we avoided the simple fmjentegrating along
a small semicircl€,, and then we leC, shrink to a point. This process

suggests the following.

3.4.3 Simple Poles on the Real Axis

If (z) hasa simplepoleat z=aonthereal axis,then
Iing . f(2)dz= 7 Resf (2).

Theorem 1Fig. 5

Proof

By the definition of a simple pole the integrarfdz) has atz=athe
Laurent series

(@=-2-+9@,  b=Resf(d
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whereg(z)is analytic on the semicircle of integration
C,:z=a+re’, 0<6=n
and for alk betweenC, and the x-axis. By integration,

jc f(2)dz= Kr%eiremd9+jc 9(2)dz

The first integral on the right equalb, 7 . The second cannot exceddr
in absolute value, by the ML-inequality amizr — 0asr — 0.

We may combine this theorem with (7) or (3) in thestion.

Thus,
pv.vfw f(x)dx= 24 Resf(z) +7 Y Resf(2) (9)

(summation over all poles in the upper half-plamée first sum, and on
the x-axis in the second), valid for ratiorid&k) = p(x)/q(x) with degree

q > degreep+ 2, having simple poles on the x-axis.

This is the end of unit 1, which added another péwegeneral
integration method to the methods discussed icltapter on integration.
Remember that our present residue method is baséduarent series,
which we  therefore had to discuss first.

In the next chapter we present a systemic discussiomapping by
analytic functions “conformal mapping”) .Conformal mapping will
then be applied to potential theory, our last chiaph complex analysis.

4.0 CONCLUSION

In conclusion, havjng run through this unit we haeen that our simple
method have been extended to the case when thlggante has several
isolated singularities inside the contour. We atgoof the Residue
theorem.

5.0 SUMMARY

Theresidue of an analytic functior (z) at a point = z, is the coefficient

of the power in the Laurent series

z- 1z,
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b, b

2
z-2, (z-2,)
converges neaj(except at,itself). This residue is given by the
integral 3.1

b, =%§ f(2)dz (1)

but can be obtained in various other ways, so d¢hatcan use (1) for
evaluating integral over closed curves. More gdhgrathe
residuetheorem(sec.3.2) states that ff(z) is analytic in a domain D such

except at finitely many pointsand Cis a simple close path in D such
that noz, lies on C and the full interior o€ belongs to D, then

f(z)=a,+a,(z—2z)+----+ +----0f f (z)which

§cj f (2)dz= %Z Res f(2) (2)

(summation only over thogethat lie insideC).

This integration method is elegant and powerfutnkdas for the residue
atpolesare (m=order of the pole)

dm—l
lim
(m-1)! H%[dzw1
Hence for a simple poler(=1),

Rest(2) = [(z—zo)mf(z)]j, m=12--  (3)

Resf(2)=lim(z-2)1(2) 3)

Another formula for the case of a simple polefdf) = p(z)/q(2)

Resf(2) = P @)
=2 q'(2)

Residue integration involves closed curves, but bl interval of

integratiorD< @ < 2r is transformed into the unit circle by setting €'’

so that by residue integration we can integrag integrals of the form
(sec. 3.3)

[ F(cospsine)de
whereF is a rational function otos? and sinéd,such as, for instance,
sin? 6

———— etc.
5-4cos8
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Another method of integratinggal integrals by residues is the use of a
closed contour consisting of an interv& < x < Rof the real axis and a
semicirclez = R. From the residue theorem, if we IRt- «, we obtain

for rationalf (x) = p(x)/q(x) (with gq(x) # 0 andq > degreep+2)
[ f(dx=21) Resf(2) (sec.3.3)

I_Zcoss>dx= —27 Im Res[f (z)eisz]
[“sinsxdix= 273" ImRed{f (] (sec.3.4)

(sum of all residues at poles in the upper-hali@)aln sec.3.4, we also
extend this method to real integrals whose intedgédrecome infinite at
some point in the interval of integration.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain the term residues and how it can be dseévaluating
integrals
2. Find the residues at the singular points offtiewing functions;
C0S2z e’
(@) - (b) tarz © ——=
y; (z+ )
3. Evaluate the following integrals where C is tim# circle
(counterclockwise).
dz 7’ +1
(a) §Ccotzdz (b) §C1—ez © { s

4, Show that

IZﬂL _ 2”
0 J2-cosf
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