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Introduction

The course Mathematical Method of Physics 1- is nhea provide
essential methods for solving mathematical problems

In scientific problems, often times we discovertthafactor depends
upon several other related factors. For instarmeeatea of solid depends
on its length and breadth. Potential energy ofd@dylatepends on gravity,

density and height of the body etc. Moreover, tinengith of a material

depends on temperature, density, isotopy and Ssftete.

What You Will Learn in This Course

This is a 3unit course, it is grouped into four i@)dules i.e. modulel, 2,
3 and 4. Module 1 has 2units; module 2 also hag2uvodule 3 has
only one unit while module 4 has 3units. In summaey have four (4)
modules and 8 units.

The course guide gives a brief summary of the todatents contained
in the course material. Functions of several véemlstreamline the
relationship between function and variables, thaiegtion of Jacobian,
down to functional dependence and independencen discussed are
multiple, line and improper integrals.

Course Aim

The overall aim of this course is to provide youthwthe essential
methods for solving mathematical problems in phs/sic

Course Objectives

At the end of this course, you should be able to:

. define linear second-order partial differentialuagon in more
than one independent variable

. use the technique of separation of variables ivireyp important
second order linear partial differential equationphysics

. solve the exercises at the end of this unit

. identify whether a given function is even, odderiodic

. evaluate the Fourier coefficients

. derive and apply Fourier series in forced vibmagooblems

. use Fourier Integral for treating various problemsolving

periodic function
. apply half range expansion to solutions of sonubligms.
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Working through This Course

This course involves that you would be requiregpgend lot of time to
read. The content of this material is very denskraquire you spending
great time to study it. This accounts for the grefibrt put into its
development in the attempt to make it very readahté comprehensible.
Nevertheless, the effort required of you is stéiendous.

I would advice that you avail yourself the opportyrof attending the
tutorial sessions where you would have the oppdsturf comparing
knowledge with your peers.

Course Materials

You will be provided with the following materials:

. Course guide
. Study units

In addition, the course comes with a list of recagnded textbooks,
which though are not compulsory for you to acquirendeed read, are
necessary as supplements to the course material.

Study Units

The following are the study units contained in tdsirse. The units are
arranged into four identifiable but related modules

Module 1  Partial Differential Equations with Applications in

Physics
Unit 1 Partial Differential Equations
Unit 2 Fourier Series

Module 2  Application of Fourier to PDEs (Legendre plynomials
and Bessel Functions)

Unit 1 Legendre Polynomials
Unit 2 Bessel Functions
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Module 3  Application of Fourier to PDEs (Hermite Pdynomials
and Laguerre Polynomials)

Unit 1 Hermite Polynomials
Unit 2 Laguerre Polynomials

Textbook and References

The following editions of these books are recomneendor further
reading.

Hildraban, F. B.(nd)Advanced Calculus for Application.

Murray, R. S.(1974).Schaums Outline Series or Theory and Problem of
Advanced Calculus. Great Britain: McGraw-Hill Inc.

Stephenor, G. (1977)Mathematical Methods for Science Sudents.
London: Longman, Group Limited.

Stroud, K.A. (1995)Engineering Maths (5th ed.). Palgraw.

Verma, P.D.S. (1995)Engineering Mathematics. New Delhi: Vikas
Publishing House PVT Ltd.

Assessment

There are two components of assessment for thisseoT’he Tutor-
Marked Assignment (TMA) and the end of course exation.

Tutor-Marked Assignment

The (TMA) is the continuous assessment componerbof course. It
accounts for 30% of the total score. You will beegi four (4) TMAS’ to
answer. Three of these must be answered beforangallowed to sit
for the end of course examination. The TMAs’ wohé&lgiven to you by
your facilitator and returned after you have ddmedssignment.

Final Examinations and Grading
This examination concludes the assessment fordhese. It constitutes
70% of the whole course. You will be informed okthime of the

examination. It may or may not coincide with theiwgmsity Semester
Examination.



PHY312 MATHEMATICAL METHODS OF PHYSICSI

Presentation Schedule

Your course materials have important dates for éady and timely

completion and submission of your TMAs and attegdurtorials. You

should remember that you are required to submiy@llr assignments
by the stipulated time and date. You should gugalrst falling behind
in your work.

Course Marking Scheme

Assignment Marks
Assignments 1-4 Four TMAs, best three marks of
the four count at 10% each — 30%

of course marks.

End of course examinati 70% of overall course marl
Total 100% of course materials.

At the end of each unit, assignments are givenstishyou to assess
your understanding of the topics that have beetudsed.
Course Overview

Each study unit consists of three hours work. Estaldy unit includes
introduction, specific objectives, directions fdudy, reading materials,
conclusions, and summary, Tutor -Marked Assignme(iis1AsS),
references / further reading. The units direct y@mwork on exercises
related to the required readings. In general, tlee®gecises test you on
the materials you have just covered or require tgoapply it in some
way and thereby assist you to evaluate your pregaesl to reinforce
your comprehension of the material. Together witMAE, these
exercises will help you in achieving the statedresay objectives of the
individual units and of the course as a whole.

How to Get the Most Out of This Course

Implicit interest and regular culture of readinge aof utmost
requirements for getting the best out of this ceutsis paramount that
you should at least purchase one of the textbdukisare recommended
for you. More importantly, attending tutorials sess and completing
your assignments on time will certainly assist yowget the best out of
this course.
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Facilitators/Tutors and Tutorials

There are 16 hours of tutorials provided in supbrthis course. You
will be notified of the dates, times and locatiafishese tutorials as well
as the name and phone number of your facilitaters@n as you are
allocated a tutorial group.

Your facilitator will mark and comment on your agsnents, keep a
close watch on your progress and any difficulties ynight face and
provide assistance to you during the course. Yeueapected to mail
your Tutor -Marked Assignment to your facilitataefore the scheduled
date (at least two working days are required). Tiwdybe marked by
your tutor and returned to you as soon as possible.

Do not delay to contact your facilitator by telepkoor e-mail if you
need assistance.

The following might be circumstances in which yowuM find
assistance necessary. You would have to contactfgoilitator if:

. you do not understand any part of the study or @ksigned
readings

. you have difficulty with the self-tests

. you have a question or problem with assignmentsvith the

grading of assignments.

You should endeavour to attend the tutorials. Thihe only chance to
have face to face contact with your course fatditaand to ask
guestions which are answered instantly. You caserany problem
encountered in the course of your study.

To gain much benefit from course tutorials premapiestion list before
attending them. You will learn a lot from participey actively in
discussions.

Summary

It is expected that, going through this course, lyave learnt how to use
Method of Separation of Variables to Solve Heat dimtion Equation
and Wave Equation respectively.

The use of Fourier transforms to solve some diffeaé Equation,
Boundary values problems etc. You should also heamt the use of
Laplace transformation to solve some initial anduldary value
problems, which are difficult to handle in addititmthe application of
convolution theory in solving problems.
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MODULE 1 PARTIAL DIFFERENTIAL EQUATIONS
WITH APPLICATIONS IN PHYSICS

Unit 1 Partial Differential Equations
Unit 2 Fourier Series

UNIT 1 PARTIAL DIFFERENTIAL EQUATIONS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Definition
3.2 Linear Second-Order Partial Differential Equations
3.2.1 Laplace's Equation
3.2.2 Wave Equation
3.2.3 Heat Conduction Equation
3.2.4 Poisson’s Equation
3.3 Method of Separation of Variables
3.3.1 Application to Wave Equation
3.3.2 Application to Heat Conduction Equation
3.4 Laplace Transform Solutions of Boundary-Value

Problems
4.0 Conclusion
5.0 Summary

6.0 Tutor -Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, we shall study some elementary meshotsolving partial
differential equations which occur frequently in yplts and in
engineering. In general, the solution of the phdifferential equation
presents a much more difficult problem than theutsmh of ordinary
differential equations.

We are therefore going to limit ourselves to a fewalvable partial
differential equations that are of physical intéres
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define linear second-order partial differentialuation in more
than one independent variable

. use the technique of separation of variables ivirggp important
second order linear partial differential equationphysics

. solve the exercises at the end of this unit.

3.0 MAIN CONTENT
3.1 Definition

An equation involving one or more partial derivasvof (unknown)
functions of two or more independent variables aled a partial
differential equation. Theorder of a PDE is the highest order partial
derivative or derivatives which appear in the emumatFor example,

3 2 2
U2 S| 000 e ®
0z oy oy® 0z
is a third order PDE since the highest order tergiven by

U
ay*

A PDE is said to bdinear if it is of the first degree, i.e. not having
exponent greater than 1 in the dependent variabletso partial
derivatives and does not contain product of suomgdn the equation.
Partial derivatives with respect to an independaniable are written for
brevity as a subscript; thus

2 2
Un:aLZJ and ny:au
ot oxoy
The PDE
lu, = 2
C_2Utt _Uxx+Uyy+Uzz ( )

(Where c is a constant) is linear and is of thesdorder while eq. (1)
is an example of a nonlinear PDE.
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Example 1: Important linear partial differential equations of
second order

1)
2 2
6_;1 =c? a_L; One-dimensional wave equation
ot oX
2)
2
ou_ ¢’ 6_121 One-dimensional heat equation
ot oX
3)
0°u  0°u . : .
3C + a_y2 =0 Two —dimensional Laplace equation
4)
0°u . d’u
F+—2 =f(xy) Two —dimensional poissonequation
X= oy
(5)

2 2 2
4 l21+ 0 l:+ 0 121 =0 Three—dimensional Laplace equation
ox~ dy® 0z

3.2 Linear Second-Order Partial Differential Equations

Many important PDEs occurring in science and eraging are second
order linear PDEs. A general form of a second olidear PDE in two
independent variables x and y can be expressed as

2 2 2
a“+Ba”+caf+Da—“+E‘;—”+Fu=G 3)

A 2
0x oxay oy 0X y

where A, B, C...... ,G may be dependent on variableakya If G =0,
then eq. (3) is callelomogeneous;otherwise it is said to be r@on-
homogeneous.

The homogeneous form of Eg. (3) resembles the iequat a general
conic:

ax® +bxy+cy’ +dx+ey+ f =0

We thus say that eq. (3) is of

elliptic B?-4AC <0
hyperbolic type when{ B? -4AC >0
parabolic B?-4AC =0
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For example, according to this classification thveo-tlimensional
Laplace equation

d°%u , 02U
ox? dy?

= 0 (ais a real constant)

is of hyperbolic type. Similarly, the equation

d %u ou
- a —

5 = 0 (ais areal constant)
0 X oy

is of parabola type.

Some important linear second-order partial difféeénequations that
are of physical interest are listed below.

Example 2

Eliminate A and P from the function = Ae™ sin px

2
Z_ p?Ae™ sin px

Solution Let %—f = pAe”sinpx and

2
2

also ?}—Z = pAe” cospx  and 3 =-p”Ae” sin px
X X
2 2
9z, 0Z_
ot*  ox?
ie. p?Ae™ sin px— p?Ae” sinpx=0
Example 3

Solve the equation
0°u _0%u _0%u _
— + 6 =
x>  oxdy oy’
Solution: Let u(x,y) = f (y+mXx) + g(y +m,x)

So that m’ —7m+6=0
This implies thatm=1 or 6

Hence u(x, y): H(y+Xx)+G(y+6Xx)

4
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3.2.1 Laplace‘s Equation

0%u=0 (4)
. . 62 62 62
Where 0% is the Laplacian operatc{rD2 :—2+_2+_2j . The
ox® oy~ oy
function u may be the electrostatic potential inharge-free region or
gravitational potential in a region containing nattar.

3.2.2 Wave Equation

) 1 0 °u
u = 5
vZ ot? ®)
Where u represents the displacement associatedheitivave and v, the
velocity of the wave.

0

3.2.3 Heat Conduction Equation

(;—l: =a0% (6)

Where u is the temperature in a solid at time & Tanstantr is called
the diffusivity and is related to the thermal coactility, the specific
heat capacity, and the mass density of the object.

3.2.4 Poisson’s Equation

O%u=p(x,y,2) (7)

Where the functionp(x, y, z) is called the source density. For example, if

u represents the electrostatic potential in a regiontaining charges,
thenp is proportional to the electric charge density.

Example 4

Laplace’s equation arises in almost all brancheanalysis. A simple
example can be found from the motion of an incosgide fluid. Its
velocity v(x,y,zt) and the fluid densityp(x,y,zt) must satisfy the
equation of continuity:

0p
—+[. =0
p (ov)

If pis constant we then have

Oev=0
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If furthermore, the motion is irrotational, the oeilty vector can be
expressed as the gradient of a scalar function V:

v=-0V
and the continuity becomes Laplace’s equation:

Qv=0c0v)=0 or OV =0
The scalar function V is called the velocity potait

3.3 Method of Separation of Variables

The technique of separation of variables is widegd for solving many
of the important second order linear PDEs.

The basic approach of this method in attemptingdive a differential
equation (say, two independent variables x andsy)oi write the
dependent variable(x,y) as a product of functions of the separate
variablesu(x,t) = X(x)T(t) . In many cases the partial differential
equation reduces to ordinary equations for X and T.

3.3.1 Application to Wave Equation

Let us consider the vibration of an elastic strguyerned by the one-
dimensional wave equation

0’u _ ,0%

by e 8

ot? x> ®)
where u(X, y) is the deflection of the string. &irthe string is fixed at
the ends x = 0 and=I, we have the twboundary conditions

u(0,t)=0, u(l,t)=0 for all t 9)

The form of the motion of the string will depend thie initial deflection
(deflection at t = 0) and on the initial velocitye{ocity at t = 0).
Denoting the initial deflection by f(x) and thetial velocity by g(x), the
two initial conditions are

u(x,0)= (%) % = 9(¥) (10)

This method expresses the solution ugk,t) as the product of two
functions with their variables separated, i.e.

U(xt)=X(X)T () (11)

where X and T are functions of x and t respectively
6
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Substituting eq. (11) in eq. (8), we obtain

XT"=c?X"T
or
X”(X) :iT"(t) (12)
X(x) ¢c* T(t)
In other words
x” 1 T"
= =) 13
X T (13)
The original PDE is then separated into two ODEz, v
X"(X) = AX(X) =0 (14)
and
T"(t)-Ac*T(t) =0 (15)

The boundary conditions given by eq. (9) imply
X(0)T()=0
and
X T@)=0
Since T(t) is not identically zero, the followingraitions are satisfied
X(@©) =0 and X() =0 (16)
Thus eq. (14) is to be solved subject to conditgimen by eq. (16).
There are 3 cases to be considered.
Case 1 A>0
The solution to eq. (14) yields
X(x) =Ae V™ +Be' (17)
To satisfy the boundary condition given by eq. (1% must have

Ae" +Be! =0

Since the determinant formed by the coefficienté @ind B is non-zero,
the only solution is A = B = 0. This yields thevtal solution X(x) = 0.



PHY312 MATHEMATICAL METHODS OF PHYSICSI

Case 2 A=0

The solution to eq. (14) yields
X(X) =A+Bx

To satisfy the boundary condition given by eq. (1% must have

A=0
and

A+BI=0
implying

A=0, B=0

Again for this case, a trivial solution is obtained

Case 3 A<0
LetA=-k?. The solution to eq. (14) yields
X(x) =Acoskx+ Bsinkx (18)

To satisfy the boundary condition given by eq. (1% must have

A=0
and
Bsinkl =0
To obtain a solution wheg#0, we must have
kl=nn n=12,...
Thus
2
A=—K? =—(¥’j (19)

(n=0 corresponds to the trivial solution). The spewalues of A are
known as the eigenvalues of eq. (14) and the quoreng solutions,

viz, Sin(%ij are called theeigenfunctions. Since there are many

possible solutions, each is subscripted by n. Thus
X_(x) =B, sin(%r xj n=123.. (20)
The solution to Eq. (15) with given by Eq. (19) is

T.(t) =E, co{nl—ﬂctj +F, sin(nl—ﬂctj n=123,.. (21)



PHY312 MATHEMATICAL METHODS OF PHYSICSI

WhereE, andF, are arbitrary constants. There are thus manyieohit
for eq. (8) which is given by

U,(x1) =X, ()T, ()
{an co{nl—ﬂctj +b, sin(?ctﬂsinnl—nx (22)

Wherea, =B, E, andb,=B_F,. Since eq. (8) is linear and homogeneous,
the general solution is obtained as the linear ags&ion of all the
solutions given by eq. (22), i.e.

U (x,t) =Z(an cos%t +bnsin$tjsinnl—ﬂx (23)
n=1
Differentiating with respect to t, we have
U, (x,t) :Zg(— ansinnl—mt+bn cos?tjsinnl—ﬂx (24)
n=1

The coefficientsa, and b, are obtained by applying the initial
conditions in eq. (10). Thus,

U(x,0)=f (x):iansinnl—ﬂx (25)
U (x,0)=g(x)=ib{¥’c)sin¥’x (26)

In order to determin@, andb, we use the orthogonality properties of
sin%xin the ranged< x<I, i.e.

|
Jsinmxsinﬂxdx =—0nn (27)
° | | 2
Whered,,, is the Kronecker delta function having the propert
0 z
& [ e (28)
1 n=m

Multiply eq. ((25) bysin?x and integrating between the limits x = 0

and x =1, we get
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| w |
_mrr . mT_ . N
J' f (x)sml— xadx = Zj'ansml— xsin== xdx
0 n=1 o

=a (29)

i
"2
2 . mrr
a, = I_-[ f (x)sml—xdx

0
Similarly multiplying eq. (26) bwin?x and integrating between the

limits x = 0 anck =1, we get

J'g(x)sm—xdx ZJb( Jsinnl—nxsinngdx

n=17

- b,{%f cJ'E (30)

|
Ie. fg(x)sm—xdx
0

With a, andb,, obtained form=1,... «, eq. (23) is the solution to PDE

given by eq. (8) subject to the initial conditioasd the boundary
conditions.

3.3.2 Application to Heat Conduction Equation

The one-dimensional heat flow in a rod boundedneyplanes x = 0 and
X = a is of practical interest. The solution applie the case where the y
and z dimensions extend to infinity. The tempemtdrstribution is
determined by solving the one-dimensional heat gotioh equation

-~ ===z 31
x> v ot (31)
Where drepresents the temperature and
Kk
v=— 32
& (32)

k, C andp are the thermal conductivity, specific heat andstgrof the

material respectively. We shall treat the case whire boundary
conditions are given by

6(x=0,t) =0 (33)

10
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f(x=a,t)=0 (34)

The initial temperature distribution is given by
8(x,t =0) = f(X) (35)

Solution: Using the method of separation of variables, tltegendence
and t-dependence are separated out as expressed by

A(x, t) = X(X)T(t) (36)
Substituting eq. (36) into eq. (31) yields

2
1d >2<:11d_T:a (37)
X dx vT dt

We shall now consider three cases correspondirtifferent values of
the constant .
Case 1 A=0

The separated ODE fox(x) becomes

d?X _
dx?
ie.  X(X)=Ax+B

(38)

The boundary conditions expressed by egs. (33) &w) are
respectively

X(x=0)=0 and X(x=a)=0 (39)
Since T(t) should not be identically zero. Thuséqr (38) to satisfy the
boundary conditions given by eq. (39), we must have0, B = 0. This
gives the steady-state solution where temperatarethe rod is

everywhere zero.

Case 2 A>0
Let a =k?. The ODE for X becomes
d?X

dx?
Therefore X (x) = Ae®™ + Be™

=k2X (40)

Applying the boundary conditions given in eq. (38% get

11
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0=A+B
0= Ae“® +Be™*@

Again we have A=B=0
Case 3 A<0

Let a =-A°. The ODE forX(x) becomes

d?Xx
dx?

=-)2X (41)

Thus X (x) = AcosAx + BsinAx

The boundary conditions require

A=0
Bsinda=0 (42)
i.e. Jda=nn n=1 2,.. (43)

Since there are multiple solutions, eaths designated by a subscript n
as A.. The solution of the ODE for T(t) is readily obstad as

T(t) =Ce ™™ (44)

Thus the general solution which is a superposivbrall admissible
solution is given by

o(x,t) = i D e sinn?ﬂx (45)
n=1
00 2
=>D, ex;{— na7272 vt]sinn?nx (46)
n=1

To complete the solutiod, must be determined from the remaining
initial condition

ie. (=YD, sin%x (47)
=1

12
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In order to determinB,,, we multiply eq. (47) bysin%x and integrate

the limits x=0 and x = a to obtain
J f (x)sinmxdx = z Dn'[an sin® xsin™ xdx= DmE
0 a e a a 2
Thus
jf(x)sm—xdx (48)
0
For the specific case wheffgx) = g, (constant), the solution is given by

f(x.t) = iznlﬂ (2n+1)mex{_ v(2n +21)2n2}

0<x< a (49)

From eq. (49), it can be deduced that a rectanguilse of heigh®, for
0<x< a has the Fourier series expansion given by

4_00Z 1 Sirl(2n +1) 7%
= 2n+1 a

Also if f(x) =%, then

B(x.t) = 2ayz( 1" 1S|n(n” je [{ vn22772 t} (50)

a a

If the end boundaries are maintain at differentgerature i.e.

6(x=0t)=6,
f(x=at)=6, (51)

Then case 1 of the solution wheare= 0, would yield the steady-state

solution given by, +§(¢92 - 6,). The general solution is given by

O(x,t) = gx,t) +6, += (e -6,) (52)

Where ¢(x,t) is the transient solution.

13
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The boundary conditions fag(x,t) are obtained as follows:

atx =0: O(x=0t)=6,=¢(x=0t)+6 = ¢(x=0t)=0
atx = a: O(x=at)=6,=¢(x=at)+6, = ¢(x=at)=0
¢(x,t) is obtained under case 3.

SELF-ASSESSMENT EXERCISE 1

1. State the nature of each of the following equati¢tat is,
whether elliptic, parabolic or hyperbolic)

0’y 0%y
a ~—2i+g—2=
(@) ot? ox?

0’u 0% ou
b —— +y——+3y*—
b)) e Vo T o

2(a) Show thaty(x,t) = F (2x+5t) + G(2x-5t) is a general solution of
0’y _ 2562y

ot o
(b) Find a particular solution satisfying the ddions
y(Oit) =y(7,t) =0, y(x,0)=sin2x, y'(x,0) =0.

3. Solve the following PDEs
0°u

a) —=8xy’+1

(@ 278y

0%u _ou _

— —— =6xe"
oxy oy

(b)

3.4 Laplace Transform Solutions of Boundary-Value
Problems

Laplace and Fourier transforms are useful in sgharvariety of partial
differential equations; the choice of the appradpritiansforms depends
on the type of boundary conditions imposed on treblpm. Laplace
transforms can be used in solving boundary-valwblpms of partial
differential equation.

14
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Example 5

Solve the problem
ou _ 26_2“ (53)
ot  ox?

u(,t) =u(3t) =0, u(x,0) =10sin27x - 6sin47x (54)

Solution: Taking the Laplace transformof Eq. (53) with respect to t

gives

B 7 2

L M| =p| 0

| Ot | 0x
Now

Fou]

Ll — | = pL(u)—-u(x,0

ot | pL(u) —u(x,0)
and

0% 0% % _ 0°
L — |=— | e Pu(x,t)dt =—L|u
[axz} x> | () ox? []

Here 9%/ax* and J':..dt are interchangeable because x and t are
independent.

For convenience, let
U =U(x p) = Lu(xt)] = e Pu(x tydt
0

We then have

U
U -u(x,0)=2L
pU —u(x,0) Ve
from which we obtain, using the given conditiong)(5
2
9 lﬁ 1 pU = 3sin47x —5sin27x. (55)
ox- 2

Then taking the Laplace transform of the given dcios
u(0,t) =u(3t) =0,we have

Lu@t)]=o0, Lu@at]=0
Or
U (@, p)=0, U@ p)=0.

These are the boundary conditiongJgr, p) . Solving eq. (55) subject to
these conditions we find

U(x,p)= 5sin27x _ 3sin47x
' p+167° p+ 647

15
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The solution to eq. (55) can now be obtained byntakhe inverse
Laplace transform

u(x,t) = LU (x, p)| = 56" sin27x — 36e** sin47x.
SELF-ASSESSMENT EXERCISE 2

1. Differentiate between ordinary differential equatiand partial
differential equation.

2. Derive the PDE that give rise to the function
Z=a(x+y)+b(x-y)+abt+c=0

3. Use the method of separation of variable to fimel $olution of
the boundary value problem
o’y _0%
ox2  ot?
y(0,t)=0 t>0
y(Lt)=0 t>0
y(x,0) =sin2x
y'(x,0)=0 0< X<

4.0 CONCLUSION

In this unit, we have studied the notion of a golutof partial
differential equation. Also some elementary methotisolving linear
partial differential equations which occur frequgnin physics and
engineering were dealt with.

5.0 SUMMARY

Here in this unit you have learnt about second ropaetial differential
equation. The classical method of separation ofialbles was
extensively studied along with the Laplace transfosolutions of
boundary-value problems.

6.0 TUTOR- MARKED ASSIGNMENT

1. Form the PDEs whose general solutions are kswol
(@) z=Ae " cospx

(b) z= f(%)

2. Solve the equation
oxdy  dy’

16
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3. Find the solution of the differential equation
0’y _ 0%y
vy
0t)=0 O<t<
Where y@ °
y(0,)=0 O<t<o
y(x,0) = f(X) O<x<L
y(x,0) = g(x) Osx<L
4. Solve by Laplace transforms the boundary-vahoblpm
d°u _10du
— T for x>0, t>0
ox* kot
given thati=u, (a constant) oox=0 for t >0, andu =0 for
x>0, t=0

7.0 REFERENCES/ FURTHER READING

Erwin, K. (1991).Advanced Engineering Mathematics. John Wiley &
Sons, Inc.

Pinsky, M.A. (1991 partial Differential Equations and Boundary-Value
Problems with Applications. New York: McGraw-Hill.
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UNIT 2 FOURIER SERIES
CONTENTS
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1.0 INTRODUCTION

In this unit, we shall discuss basic concepts,sfaotd techniques in
connection with Fourier series. lllustrative exaegpand some important
applications of Fourier series to Partial differahiequations will be

studied.

We will also study the concept of periodic funcsporeven and odd
functions and the conditions for Fourier expansion.

2.0 OBJECTIVES

At the end of this unit, you should able to:

. identify whether a given function is even, oddgeriodic

. evaluate the Fourier coefficients

. derive and apply Fourier series in forced vibragooblems

. use Fourier Integral for treating various problemsolving
periodic function

. apply half range expansion to solutions of sonoblgms.
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3.0 MAIN CONTENT
3.1 Periodic Functions

A function f(x)is said to beperiodic if it defined for all real x and if
there is some positive number T such that

f(x+T)=1(x (1)
This number T is then calledpriod of f (x) .

Periodic functions occur very frequently in manyplkgation of

mathematics to various branches of science. Maeynginena in nature
such as propagation of water waves, light wavegtemagnetic waves,
etc are periodic and we need periodic functionsdéscribe them.
Familiar examples of periodic functions are theesiand cosine
functions.

Example 1

Find the period offanx.

Solution:  Suppose T is its period
f(x+T)=Tan(x+T) =Tanx
so that

Tan(x+T)-Tanx=0
using trigonometric identity, we have

TanT (L-Tan’x) _ 0
1-TanxTanT

This implies that
TanT =0 If and only if1-Tan’x20

T=Tan™0
Hence T=n

3.2 Even and Odd Functions

A function f (x) defined on interva[a, b]is said to be a even function if

f(=x) = f(X) (2)
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It is odd otherwise, that is

f(=x) = —f(X) 3)
Example 2

Let f(x)=sinx
Then f(-x) =-f(x) le. sin(=x)— = -sinx

Thus it is obvious that sine function is always add function while
cosine function is an even function.

3.3 Fourier Theorem

According to the Fourier theorem, any finite, senglalued periodic
function f(x) which is either continuous or possess only a finiienber

of discontinuities (of slope or magnitude), canrgeresented as the sum
of the harmonic terms as

f(x) :%ao +@, COSX+a, CoOS2X + ...+ a, CosnX
+b, sinx+b, sin2x+. . .+b_ sinnx

:%ao +i(an cosnx + b, sinnx) (4)

n=1

3.4 Evaluation of Fourier Coefficients

Let us assume that(x)is a periodic function of periodn which can be
represented by a trigonometric series

f(x)=a, +i(an cosnx + b, sinnx) (5)

n=1

Given such a functiorf (x) we want to determine the coefficients of
a,andb, in the corresponding series in eq. (5).

We first determine,. Integrating on both sides of eq. (4) fremm to
n, we have

_[_7; f(x)dx = j_];{ao + Z(an cosnx +b, sin nx)}dx
n=1
If term-by-term integration of the series is all@y¢éhen we obtain
J:’; f (x)dx =a, J:dx + Z (an J:comxdx +Db, j_’;si nnxdx)
n=1
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The first term on the right equasa,. All other integrals on the right

are zero, as can be readily seen by performingntegration. Hence our
first result is

a, =%T [ 1 (e (6)

We now determine,, a, ,... by a similar procedure. We multiply
Eqg. (5) bycosmx, where m is any fixed positive integer, and then
integrate from-n to 7,

.[_]; f (x) cosmxdx = J:{ao + Z (a, cosnx+b, sin nx)} cosmxdx (7)
n=1
Integrating term-by-term, we see that the rightehaitle becomes
a, j_’;cosmxdx + Z[an J._’;cosnX cosmxdx +b, J._Zsin nx cosmxdx}
n=1

The first integration is zero. By applying trigonetric identity, we
obtain

J_];cosnxcosrm(dx = % J_];cosh +m)xdx + %ﬁcos@ —m)xdx

J_]Tsinnxcosmxdx = %J_” sin(n + m)xdx + %J._ﬂ sin(n — m)xdx.

Integration shows that the four terms on the ragletzero, except for the
last term in the first line which equatswhen n=m. since in eq. (7)

this term is multiplied by, the right-hand side in eq. (7) is equal
toa, 7z, and our second result is

a, = %TJ._]; f (x) cosmxdx m=1 2... (8)
We finally determineb, b, ...... in eq.(5) bysinmx, where m is any fixed

positive integer, and the integrate froaw to n, we have
j_” f (X) sinmxdx = j” {ao +Z(an cosnx+b, sinnx)}sinmxdx (9)
T =1 =1

Integrating term-by-term, we see that the rightehaitle becomes
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aoj'_];sin mxdx + i[an I:Tcomxsin mxdx + b, J'_];sin nxsin mxdx}
n=1

The first integral is zero. The next integral isthé type considered
before, and we know that it is zero for all n 221,.. For the integral we
obtain

j_’;sin nxsinmxadx = % J_’;cosm —m)xdx —%j_’:rcos(n + m) xdx

The last term is zero. The first term on the rightero whem # m and
Is 7whenn=m. Since in eq. (9) this term is multiplied lpy, the right-
hand side in eq. (6) is equal gz, and our last result is

b, == [ f () sinmxcx m=12...
IT—”

Writing n in place of m, we altogether have thecatled Euler
formulas

_1
(@) a,= - j_” f (x)dx
(b) a, :ljﬂ f (x) cosnxdx n=1 2... (20)
IT =

() b, :lr f (X) sinnxdx
]T v/

Example 3 Square wave
Find the Fourier coefficients of the periodic fuoat

-k when -mT<x<0
f(x)= and f(x+2m)="f(x)
k when O<x<rr

Functions of this type may occur as external foaxegg on mechanical
systems, electromotive forces in electric circiets,

Solution: From eq. (10a) we obta@# =0. This can also be seen without

integration since the area under curve of f(x) leet~ 7and nis zero.
From eq. (10b)

a, :lj” f (x) cosnxdx = EUO (k) cosnxdx+.[”kcosnxdx}
o Lo °
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_ 1{ sinnx|’ sinnx|”:| _
S +k =0
T n n |

-

Becausesinnx=0at -7, 0 and nfor all n = 1, 2....Similarly, from Eq.
(10c) we obtain

b, == [ f (sinnxdx = l[f (-Rysinnxce+ [ksinmc|
- L 0

1 { cosnx|’ cosnx|”} _
=—|-k +k =0
T n n |,

-

SincecosfFa) =cosa andcos0 =1, this yields

b, = K [cosO —cos(nm) —cosnr+ cosO] = 2 (L-cosnm)
Nt Nt

Now, cosn = -1, cos27n1 =1, cos3n = -1 etc, in general
-1 for odd n,
1 for evenn,
2 for odd n,
0 for evenn,

COSﬂlT={ and thus

1—COSﬂ7T:{
Hence the Fourier coefficients of our function are

4k 4k 4k
=—, b, =0, =—, b, =0, =
b, =— ) b =—— b by =
and since the, are zero, the corresponding Fourier series is
4—k(sinx+}sin3x+}sin5x+ ....... j (11)
T 3 5
The partial sums are

S =4—ksinx, S, =4—k(sinx+}sin3x} etc,
T m 3

Furthermore, assuming thaf(x) is the sum of the series and
settingx=7n/2, we have

or 1-—+=——=+-...... =
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SELF-ASSESSMENT EXERCISE 1

1. Define the periodic function. Give five examples.
2. Find the smallest positive period T of the follogifunctions.
a. sinx

3. Are the following functions odd, even, or neitheidaor even?
a. e
b. xsinx
4. Find the Fourier series of the following functiomgich are
assumed to have the

a. period 27
f(x) = x?/4 -n<x<n
f (x) =[sinX —n<X<n

oo

3.5 Application of Fourier Series in Forced Vibrations

We now consider an important application of Fouseries in solving a
differential equation of the type

d?x dx
m—-+ —+kx(t) = F(t 12
dt? dt ® ® (12)

For example, the above equation would representaitoed vibrations
of a damped oscillator with representing the damping constant, F(t)
the external force and m and k representing thesraathe particle and
the force constant respectively. We write eq. {(@i2he form

d?x

at?
WherekK :L, af _k and G(t) _F@®
2m m m

+2K%+a§x(t) =G(t) (13)

The solution of the

homogeneous part of eq. (13) can be readily oldzaamel is given by
x(t) = Ae™ cosij —K2) + 6] for  «f >K? (14)
x(t) = (At +B)e™ for «f >K? (15)

In order to obtain the solution of the inhomogersepart of eq. (13), we
first assume F(t) to be a sine or cosine function;definiteness we
assume
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G(t) =bsinat (16)

The particular solution of eq. (13) can be writtetthe form
X(t) = Csinat + D cosat (7)

The values of C and D can readily be obtained Imgtsuting eq. (17) in
eq. (13),
and comparing coefficients afnat and cosat we obtain

2aK
D=- Z b
(w2 -w?)? +40?K? 18
w; - w? (18)
C=- b

(w§ —w2)2 +4w?K ?

Now, if G(t) is not a sine or cosine function, aagel solution of eq. (13)
is difficult to obtain. However, if we make a Farexpansion of G(t)
then the general solution of eq.

(13) can easily be written down. As a specific eglanwe assume
G(t) =at (29)
The Fourier expansion d@(t) can readily be obtained as

G(t) :ibnsinnw: (20)

n=1

Proceeding in a manner similar to that describexvalwe obtained the
following solution for the inhomogeneous part of EB)

X(t) = i[cn sinnat + D, cosnad] (21)
Where )
__ 2naK b
" (e -n2e) anterk? 22)
_ (ah —n°er)

n

2 bn
(e -n?a?f +an2a?K?
thus, if G(t) is a periodic function with period tlien eq. (21) will be
valid for all values
of t.

3.6 Half-Range Expansions

In various physical and engineering problems thera practical need
for applying Fourier series to functiorfgt) which are defined merely
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on some finite interval. The functiof(t) is defined on an interval
O<t<l and on this interval we want represeiit) by a Fourier series.

A half-range Fourier seriesfor a function f (x) is a series consisting of
the sine and cosine terms only.

Such functions are defined on an intery@l)and we then obtain a
Fourier cosine series which represents an eveongieriunction f,(t) of
period T =2l so that

f(t):a0+2ancos¥t o<t<lI
n=1
(23)
and the coefficients are
aozlj'f(t)tdt, a :grf(t)cosn—ntdt n=12..
| Jo "ol I
(24)

Then we obtain a Fourier sine series which reptesan odd periodic
function f,(t) of periodT =2l so that

f(t) =ansin¥’t o<t<l
n=1

(25)
and the coefficients are

b, _—j f(t)sm—tdt n=12..
(26)

The series in eqs.(23) and (25) with the coeffitden egs.(24) and (26)
are callechalf-range expansionsof the given functionf (t)

Example 4
Find the half-range expansions of the function

2|kt when O<t<|§

f(t)=

l—k(l -t) when |—2<t<|
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Solution: From eq. (24) we obtain

1] 2k iz 2K _k
_l{l—jo tdt+—J.”2(I—t)dt}——

= Zﬁ—k (')lzt tdt+—'|. (I —t)cos—tdt}

T
Now by integration by part

1/2 It . 1 2. nn
tcos ™ tdt = ——sin —t|"2 — [ “sin—=tat
0 I nr nrr I
- sin 2+ ’ cos—nﬂ—l
2nr 2’

Similarly,

12 . nm |I? ( nrrj
sin— -——| cosn/r-cos—
nr 2 n*r 2

[ a-v cos”l—”tdt =

By inserting these two results we obtain

u, = ?;2 (Zcosn— cosnsr- 1)
Thus,

a, =-16k/2?°m*, a,=-16k/6°7°, a,=-16k/10°/7

And a, =0 whenn# 2, 6,10, 14,..Hence the first half-range expansion
of f(t)is

f(t)= s—t —5Cos—t+..
O=5""7 6

k 16k( 1 2, 1 61 j
I

This series represents the even periodic expartdidine functionf (t).
Similarly from eq. (26)
b, = 8 K gin”
2

" n’n

and the other half-range expansionfdgf) is

f(t):8 123|n t—i ns—nt islns—ﬂt +..
1 | 3 I 5 I

This series represents the odd periodic extendidit)a
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Example 5

Find a Fourier sine series for

f(x)={g iiz on (0, 3).

Solution: Since the function is odd, they =0
Then b, :IE [ f(x)sin”l—’7 xclx

_ 23 . N7t
—EJO f(x)sm? xdx

:Zr Osindex+gj325index
3% 3 32 3

Now by integration, we have
4 { 2nir }
b, =—| cos——-cosnt
n7r 3
The series thus becomes

f(x) = inin{cosz%T —(—1)”}sin%

n=1

So that

f(x):ﬂ

(1.77(3.2_77(2.377( )
-

Example 6

Find the Fourier cosine series for
f(x)=€e* on (0, n)

Solution: Since f(x) is an odd function, then

b, :I—l'[;exdx = ]—1T(e” —1)

Also
27 n7x 2 ”
b, :—j e cos—dx = — 5 (e COSﬂIT—l)
T V4 m\1l+n

Thus the series becomes

e = ]—ZT(e” —1)+7%§ 1+1n2 [(—1)”e” —1]cosnx
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SELF-ASSESSMENT EXERCISE 2

1. Find the Fourier sine series for
f(x)=¢e* on (0, n)

2. Find the Fourier series for
f(x)=x on 0<x <2
consisting of (a) sine series only (b) cosieses only

3.7 Fourier Integral

Fourier series are powerful tools in treating vasigproblems involving
periodic functions. When the fundamental periodnade infinite, the
limiting form of the Fourier series becomes an gné which is called
Fourier Integral.

3.7.1 Definition

Let f(x) be defined and single valued in the intefval, L] . If
f (x) satisfies the following conditions:

0] f (x)is periodic and of period 2L
(i) f (x)and f'(x) are piecewise continuous

(iii) fw|f(x)|dxis convergent, theri (x) can be expressed as

f(x)= .[: (A(@) cosax + B(a) sinax)dx

(27)

A(a) :lr f (X) cosaxdx
P

(28)

B(a) :lf" f (x)sinaxdx
L

(29)

3.8 Fourier Integrals of Even and Odd Functions

It is of practical interest to note that if a fulect is even or odd and can
be represented by a Fourier integral, and thenrémeesentation will be
simpler than in the case of an arbitrary functiorhis follows
immediately from our previous formulas, as we shail see.

If f(x) is an even function, theB(a) =0

A@) :7% [ f () cosmax (30)
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and eq. (27) reduces to the simpler form
f(x)= J': A(a) cosaxdx (f even) (32)

Similarly, if f(x) is odd, thenA(a) =0in eq. (28), also
B(a)=2 [ ” £ (x)sinaxdx
JTY0

(32)
and

f(x) = jo B(a)sinaxdx (f odd) (33)

These simplifications are quite similar to thosdha case of a Fourier
series discussed.

Example 7
Find the Fourier Integral of (x) = x? —-TTSXSTT

Solution:
Ala) = ljm f (X) cosaxdx
7T —00

1 00
== | x®cosaxdx
7T

Using integration by parts, we obtain

A(a):i{icosax—izsinax} =0
| a a .
Also
1 .
B(a):—j f (X) sinaxdx
]T—oo
1 0 2 .
=—| x°sinaxdx
JTY—
So that
2
B(a) = —i[x—cosax—%cosax} = 2_”(—1)“
T a a L
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From eq. (27)
f(x)= j: (A(@) cosax + B(a) sinax)dx
and
S 27T o 27T o
f(x) :J' (O- cosax+—(-1) smaxjdx =— (-
0 a a
Hence
, 27 o (® 271 o
f(x)=x2 =22(-1) j sinaxdx = =5 (1)
a 0 a
4.0 CONCLUSION
In this unit, you have studied the concept of pHdofunctions,
representations of functions by Fourier seriesplving sine and cosine
function are given special attention. We also biseseries expansion in
the determination of Fourier coefficients and th#-hange expansions.

5.0 SUMMARY

In this unit, you have studied:

. Even and odd functions
. Fourier Integral representations and Fourier sexigansion.
. Application of Fourier Integral technique in thenplification of

even and odd functions.

6.0 TUTOR- MARKED ASSIGNMENT

1. Find the smallest positive period T of the faling functions
a. (i) sin27x
b. (ii) cos@
2. Find the Fourier series for
0 -5<x<0 .
f(x) :{ X where f (x) has period 10
3 0<x<5
3. Find the Fourier series for

f(x)=x* for 0<x<2n

4. Find the Fourier series of function
f(x)=x+n when-n<x<n and f(x+2n)=f(x)
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5. Expand the function

f(t)=t? —% < x<% in a Fourier series to show that
2
f(t)=t>= Ll R coswt—}cosZwt +lcosa1 -..
47| 3 4 9
take . = 27/T
6. Represent the following functions(t) by a Fourier cosine series

(a) f(t):sinlﬂt O<t<l)

(b) f@)=¢  (0<t<l)

7. Find the Fourier integral representation of thecfion
1 when [X <1,
0  when|¥{>1.
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MODULE 2 APPLICATION OF FOURIER TO PDES
(LEGENDRE POLYNOMIALS AND
BESSEL FUNCTIONS)

Unit 1 Legendre Polynomials
Unit 2 Bessel Functions

UNIT 1 LEGENDRE POLYNOMIALS
CONTENTS
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2.0 Objectives
3.0 Main Content
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3.3  The Generating Function
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1.0 INTRODUCTION

In this unit, you will be introduced to the polyn@isolutions of the

Legendre equation, the generating function as asllhe orthogonality
of Legendre polynomials. Also we shall consider somimportant

integrals involving Legendre functions which arecohsiderable use in
many areas of physics.

2.0 OBJECTIVES
At the end of this unit, you should be able:
. derive the polynomial solution of the Legendre duma

. use the generating functions to derive some inapottientities
. determine the orthogonality of the Legendre polyiads.
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3.0 MAIN CONTENT

3.1 Legendre Equation

The equation

@-x7y"(x) = 2xy' () +n(n+Dy(x) =0 1)
where n is a constant is known as tiegiendre’s differential equation.
In this unit we will discuss the solutions of thibogie equation in the
domain-1< x<1. We will show that when

n=0123..
one of the solutions of eq. (1) becomes a polynbniitaese polynomial
solutions are known as theegendre polynomialswhich appear in
many diverse areas of physics and engineering.

3.2 The Polynomial Solution of the Legendre’s Equation

If we compare eq. (1) with homogeneous, linearedéhtial equations of
the type

Y' () +U )Y (x)+V(X)y(x) =0 (2)
we find that the coefficients
U=~ and v =100 ®3)

are analytical at the origin. Thus the point x & @n ordinary point and
a series solution of eq. (1) using Frobenius mettoalild be possible.
Such that

y(x) = C,S, (x) + CiT, (%)

where
5 (0=1-"*D o N-DM+H(+3) b (4a)
2 4
And
T (0 =x- 700+ o (-D-J(+2)N+4) 5

3 9

If n20.1, 2... both egs. (4a) and (4b) are infinite series an/eme
only if ¥ <1.

It may be readily seen that when
n=0.24...
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The even series becomes a polynomial and the adieks s&mains an
infinite series. Similarly for

n=1 3 5...
the odd series becomes a polynomial and the eveessemains an
infinite series.
Thus when

n=0 1 2 3...
one of the solutions becomes a polynomial. The hdge polynomial,
or the Legendre function of the first kind is dextbtby P,(x) and is

defined in terms of the terminating series as below

21(()1()) for n=0, 2, 4, 6,...

P.(¥)=1_" (5)
T () for n=1,3, 5 7,..
T.@

Thus,
1,2
R(0=1 RMX=x Pz(x>:§(3x -1)
P3(x)=%(5x3—3x), P4(x)=:—é(35x4—30x2+3), 6)

R.(X) :%(63%‘ ~ 705 +15x),...
Obviously, P,@®=1 (7)

Higher order Legendre polynomials can easily baioktl by using the
recurrence relation

nP,(x) = (2n=DxF, () = (=D R, (x)

Since for even values of n the polynomi&gx) contain only even

powers of x and for odd values of n the polynom@istain only odd
powers of x, we readily have

P.(-x) = (-1)" P, () and obviously (8)
P,(-1 = (-1 ®)

3.3 The Generating Function

The generating function for the Legendre polynosialgiven by
G(x1) = (1-2xt+t3) 72 =Y P (1" ~1sxslt<l  (10)
n=0
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Let us assume that
G(x 1) = (1-2xt+12)¥2 = 3K, (t" (11)
n=0

WhereK, (x)is a polynomial of degree n. Putting x = 1 in epl)( we
obtain

DK, (0t = (@-2t +1%) 2
n=0

=@-t)™
=1+t +t2+t3 4+ L+t + L

Equating the coefficients af from both sides, we have
K,@=1 (12)

Now, if we can show thak,(x) satisfies eq. (1), theKR (x) will be
identical toP,(x). Differentiating G(x, t) with respect to x andwge
obtain

(- 2xt +t2)%—(t3 = (x-1)G(x,t) (13)
and

t%—f :(x—t)g—f (14)
Using egs. (11), (13) and (14), we have

(1= 2t+t2)3 0K, (0™ = (x=1) 3 K, (9t" (15)
and " "

£ 0K, (0™ = (x=1) 3 K2 (9t (16)

Equating the coefficient af'* on both sides of egs. (15) and (16), we
get

nKn(X) - (2n _1)XKn—1(X) + (n _1)Kn—2(x) =0 (17)
and

XK1 (¥) — K () = (n-DK4(X) (18)

Replacing n by n+1 in Eg. (18), we obtain
XK (X) = K1, (%) = K, () (19)

We next differentiate Eq. (17) with respect to x atiminateK/_, with
help of Eq. (18) to obtain
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K (X)= XK/, (X)-nK,_(x)=0 (20)
If we multiply eq. (19) by x and subtract it frorg.€20), we would get

@-x*)K! -n(K ,-xK )=0 (21)
Differentiating the above equation with respeck.tave have

A-x*)K" = 2xK' —n(K' , —xK' =K, )=0 (22)
Using eqs. (19) and (22), we obtain

@-x*)K!(X) = 2xK ! (X) —n(n+DK, (x) =0 (23)

which shows thak (x)is a solution of Legendre equation. In view of
egs. (7) and (12) and the fact thgj(x) is a polynomial in x of degree n,
it follows that K (x)is nothing butP,(x). eq. (17) gives the recurrence
relation for P, (x)

NP, (X) = (2N =1)XP,;(x) = (=1 P, ,(x) (24)

3.4 Rodrigues’ Formula

Let
@x) = (x*-1)" (25)

Differentiating eq. (25), we get
de_ 2nx(x* -
dx

or

2
1- xz)%ﬁ 2x(n-1)3—f+ 2np=0

Differentiating the above equation n times withpexs to x, we would
get

2
(1—x2)%+2xc:j—qj‘+n(n+l)qq] =0 (26)
where
dn¢ n ) n
= = -1 27
% dax" dx”[(X )] 27)
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This shows that, (x)is a solution of the Legendre’s equation. Furtfter,
IS obvious from eq. (27) that (x)is a polynomial of degree n in x.
Henceg, (x) should be a constant multiple®({x), i.e.

d" (x2 —1)n
dx"

| S PR

dx"
|
=ni(x-1)" + n%(x+l)n(x—1)"'l

=CR,(x) (28)

+—n(nz_1)%:(x+1)2n(n—1)(x—l)"‘2 +... +(x+])"n (29)

It may be seen that all terms on the right hand sideq. (29) contain a
factor (x-1) except for the last term. Hence

(;’Xnn (-1 =2'n (30)

x=1

Using Egs. (7), (28) and (29), we obtain

cC=2"n (32)
Therefore
1 dn 2 n
P = -1 32
n(%) 2"nl dx" (X ) (32)

This is known as thRodrigues formulafor the Legendre polynomials.

For example
2
P,(x) = %%(xz —1)2
= %(3X2 —l)

Which is consistent with eq. (6)
3.5 Orthogonality of the Legendre Polynomials

Since the Legendre’s differential equation is & 8turm-Liouville form
in the interval-1< x<1, with P,(x) satisfying the appropriate boundary

conditions ak=+1. The Legendre polynomials form an orthogonal set
of functions in the intervat1< x<1, i.e
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[ PP, (9dx=0 mzn (33)

The Orthogonality of the Legendre polynomials cam froved as
follows: P,(x) satisfies eq. (1) which can be written in the &tur

Liouville form as

% :(x2 _1)_dP(;)((x)} +n(n+)P,(x) =0 (34)
Similarly i
% _(xz —1)%} +m(m+1)P,(x) =0 (35)

Multiply eq. (34) byP,(x)and eq. (35) by, (x) and subtracting eq. (35)
from eq. (34), we get

9 a-x)(R09P,00 - PR, 0)]

=(Mm-n)(n+m+1)F, (X)R,(X)
Integrating the above equation from x = -1 to x, wé get

(AR A LA
= (m-n)(n+m+1)[" P,(9P, (x)dx

Because of the factof-x*) the left hand side of the above equation

vanishes; hence

J_ll P, (X)P,(x)dx for m#n

To determine the value of the integral
[,P2(x)dx

we square both sides of eq. (10) and obtain

1-2x+t2)* =3 3P, ()P, ()t™ (36)

Integrating both sides of the above equation wegpect to x from -1 to

+1 and using eq. (33), we get
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2n 1 =Lttt
Zt jP(x)dx jll 2xt+t2dx -

= 2(1+}t2 +}t4 +...+it2n +J
3 5 2n+1

Equating the coefficients af" on both sides of the above equation, we
have

1 2
PZ(X)dx = ——— =012 3. 37
[, P? (e el n=01 (37)

Thus we may write

1 2
P (X)P_(X)dx=——0
LR OIP ek =—= 3,
where
0 if n#
5. = .| nZm
1 if n=m
Example

We consider the functiomosrx/2 and expand it in a series (in the
domain-1< x<1) up to the second power of x:

2
cos% =Y C,P.(¥)
n=0
Now

C 2n+1

j s— P (x)dx

n

Substituting for P,(x) from eq. (6) and carrying out brute force
integration, we readily get

2 10 12
C,=—; C =0 C,=—|1-—
L S 2 n( nzj
Thus
K2 10( 12) 3% -1
coOS—=—+—|1-—
2 T T T 2
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3.6 The Angular Momentum Problem in Quantum
Mechanics

In electrostatics the potentidi satisfies the Laplace equation
0%® =0 (38)

We wish to solve the above equation for a perfectigducting sphere
(of radius a), place in an electric field whichimsthe absence of the
sphere was of uniform magnitudgalong z-direction. We assume the
origin of our coordinate system to be at the ceotrthe sphere. Because
the sphere is a perfect conductor, the potentialt®rsurface will be
constant which, without any loss of generality, nteey assumed to be
zero. Thus, eq. (35) is said to be solved subjecthe boundary
condition

®(r=a)=0 (39)

At a large distance from the sphere the field sth@emain unchanged
and thus

E(r - 00) = EOZ
Since

E=-0¢
we have

O — @) =-E,z+C

=-E,rcosd+C (40)

Where C is a constant. Obviously, we should usespierical system of
coordinates so that

D2¢=%i(rzaﬁj+ 21. i(sin&ai)j
r<or or r<sin@ 0@ 06

1 oo
r?sin’ @ ¢’

0 (41)

From the symmetry of the problem it is obvious tldatvould be
independent of the azimuthal coordingteo that eq. (41) simplifies to

%i(rzaﬁj+ 21_ i(siné?ai)jzo 42)
reor or r<sind 0@ 06

Separation of variables

® = R(r)O(6)
will yield
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1d .2 » R 1 d ian—e =aconstant (= A1) (43)
Rdr\' dr) ©singde dé

Changing the independent variable fréhto x by the relation

M1 =cosf
In the angular equation, we get
d G) do

-2U—+10=0 (44)
du

In order that the solution of eq. (44) does not edipe
aty=+1(6=0and n), we must have
A=1(1+1);1=0,1 2...

and then

o) = 2|2 P (cosd) (45)
Thus the radial equation can be written as

1d (rzﬁjzl(l +1)

Rdr dr
or

2
2 4R, o 2—R 11 +1)R=0 (46)

The above equation is the Cauchy'’s differentialadigm and its solution
can readily be written as

B

r|+1

R=Ar'+
Hence the complete solution of eq. (42) is given by

o(r,0) = ZAF F’(0086’)+Z T P (cosf)
lA)P (cosf) + ArP,(cosf) + A,r?P,(cosd) + J
+%PO(COS¢9)+%P1(COSH)+...

Applying the boundary condition given by eq. (40§ get

A=C, A=-E, A =A=...=0
Thus

@d(r,0) = (C + %}Po(cosﬁ) + (— Eor+ %JPl(cosH)
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+%P2(co&9)+ C

Applying the condition at r = a [see eq. (39)], get

(C + %} + (— E,a+ %)Pl(cose)

B B
+a_§ P2(0059)+a—jP3(cose)+ ..=0

Since the above equation has to be satisfied fovadlies ofé and
sinceP, (cosh) form a set of orthogonal functions, the coefintte

of P,(cosd)should be zero giving

B, =-aC, B, =E,a’
B,=B,=B,...=0
Thus

3

o(r,6) =C(1+?j— EO(1+%JFCOSH (47)

The 1/r potential would correspond to a charged sphere tsdefore,
for an uncharged sphere we must have C = 0 giving

d(r,0) =—E,r cos@(l#?—zj (48)

This is the required solution to the problem. One easily determine
the components of the electric field as:

3
E=-2%_g cos&(1+ 2a—3j
or r

19 . a’
E,=———=E,sinfd|1-—
® rog °° ( r3J
- 1 a;‘J:O
rsing og

)=
3.7 Important Integrals Involving Legendre Functions

We give below some important integrals involvinggeadre functions
which are of considerable use in many areas ofipblys

P (%) :]—1TJ: [x+(x2 -1)¥2 cose]nde (49)
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P (cosg) = 711 [ (cosp+isingcoss) de (50)

[ a- x)"/z P,(x)dx = 2?121 (51)

[y Pl o=y (52)

UPJ“(x)] o = . 11) e (53)
2

SELF-ASSESSMENT EXERCISE

1. Show that(n+2)P,(x) = P.,,(X) = P._,(X)
2. Using the Rodrigue’s formula show that

P/ (%) =§n(n+1>

4.0 CONCLUSION

The concept of generating function for the Legerpbiynomials allows
us to readily derive some important identities.

We have also established in this unit, relationshyetween
Orthogonality of the Legendre polynomials and tkaeayating function.

5.0 SUMMARY

This unit deals with Legendre functions and itslaggtions to physical
problems especially in quantum mechanics.

6.0 TUTOR-MARKED ASSIGNMENT

1. Show that
@-x*)P/(X) =nP_, (X) - nxP, (X)
n(n+1)

=g [P =P ()]

2. Determine the coefficients
C,, C,, CZ, C,, in the expansion

sm( j ZC () —1<x<1
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3. Consider the function
-1<
F(x) = {0 1<x<0
1 O<x<1
Show that

(=223 [Pu@-POR0 -1<x<1

4. Show that the generating function

1 00
= =YPxU"
\1-2xu+u? ; )

Hint: Start from the binomial expansion pf/1-v, setv=2xu-u?,
multiply the powers obxu-u®out, collect all the terms involving,
and verify that the sum of these term$jéx)u”.
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1.0 INTRODUCTION

In this unit we shall consider the series solutem well as Bessel
functions of the first and second kinds of order n.

We will also be introduced to some integrals whigte useful in
obtaining solutions of some problems.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. derive the solution of Bessel function of thetfiksd

. prove a relationship between the recurrence oglaind the
generating functions

. derive the solution of Bessel function of the setkind.
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3.0 MAIN CONTENT

3.1 Bessel Differential Equation

The equation

x2%+x;—d§(x2 -n?)y(x)=0 (1)

Where n is a constant knownBsssel’s differential equation.

Since n” appears in eqg. (1), we will assume, without anys lad
generality, that n is either zero or a positive bem The two linearly
independent solutions of eq. (1) are

J. (%) and J_ (x)
Where J, (x)is defined by the infinite series

_ . B r; 5 n+2r
J”(X)_g( D r!r(n+r+1)(2j 2)
or
3 9=—X {1— X _, X - (3)
2'T(n+1)|  2(2n+2) 24(2n+2)(2n+4)

whererl (n+r +1) represents the gamma function.

3.2 Series Solution and Bessel Function of the First Kd

If we use eq. (1) with the homogeneous, lineareddiitial equation of
the type

Y' () +U (XY (x) +V (X y(X) = R(X) (4)
we find the coefficients

U=+ and  V(x=1-1
X X

are singular at x = 0. However, x = 0 is a regsiagular point of the
differential equation and a series solution of (@¢.in ascending powers
of x. Indeed, one of the solutions of eq. (1) iegi by
x? x*

J.(X)=C,x"[1- - ..
22n+2) 24(2n+2)(2n+4)

®)

and whereC, is an arbitrary constant. This solution is analyt x = 0

for n>0and converges for all finite values of x. If weookse
C,=2"T(n+) (6)
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then the eq. (5) is denoted By(x) and is known as thBessel function
of the first kind of order n.

_ 0 e 1 Z n+2r
J”(X)_Z:(;( & r!F(n+r+l)(2)

1 (x) 1 x\"? 1 x\"*
ol el el
rn+)l2) Ur(n+2)\2 2r(n+3)( 2
In particular
(PSS )N ) .

@ @) @)
(x2)” _(x2** , (x2)”* |
r@32) ur(s2) 2r(7/2)

|2 x® x°
= = Xx-=+=-...
TX Y
=1/%sinx (9)

It follows immediately from egs. (7) and (8) that
J,(0)=0 for n>0

Jy,(X) =

and
J,0)=1
If n20,1, 2 3,...then
o (X/Z) n+2r
J_ 10
(9= Z rr(-n+r +1) (10)
Example 1

In this example we will determine the value &f,(x) from eq. (10).

Thus

(x2)** _ (w2 | (x2)” |
r@wz) ar(sr2) 2r(s2)

|2 x* x*

= | Ll1-2 s 2o
TX 21 4
2

= |— cosx
X

Which is linearly independent of,,(x) [see eq. (9)] and it can be
verified thatJ_,,(x) does in fact satisfy eq. (1) for n = %. Thus

I (X) =
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J.,(X) :\/%sinx (11)
2
J_1,(X) :\/%cosx (12)

Using the above two equations and the recurreragar [see EqQ. (21)]
2n
Jn+1(X) :7Jn(x)_‘]n—l(x) (13)

and

We can readily obtain closed form expression for,,(x) ,
Jes2(X) s Juz12(X)

Ja,(X) = %(Sl—;‘x —cosxj (24)

J_3,(X) = 3( Ecosx smxj (15)

Jgn(X) = \/7((3 X)smx—Ecosxj (16)
J_5o(X) = \/7(

Next, we will examine eq.(10) when n is a positiméeger. To be
specific we assume n = 4; then the first, secdndj aand fourth terms in
the series given by eq. (10) will contain the terms

COSX smxj a7

etc.

1 1 1 1
) ) ) Eir]cj______
r=3 =2 reyn r©)
respectively and all these terms are zero. In geriee first n terms of
the series would vanish giving

. (w2
(9= zr'F( n+r+1) (18)

If we put r = k+n, we would obtain
0 n+2k
J = -1 k+n (X/2)
0= O ey

_ (X/z)n+2k
§( D" KIT (K +n+1)

=(-9"J,(x) (19)
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Thus for n=0,1 2 3...,J_,(x) does not represent the second

independent solution of eq. (1). The second indépensolution will be
discussed later.

3.3 Recurrence Relations

The following are some very useful relations inwiedyJd, (x) :

XJ5(%) =, (X) = XJ1 (%) (20a)
=xJ,5 (%) —nd, (%) (20b)
Thus
Jna(X) + 3,4 (X) = J 2 (%) (21)
Also
d n —_ n
& [X ‘]n (X)] =X ‘]n—l(X) (22)

In order to prove eg. (20a) w.r.t x to obtain

xJ' (X) = Z( Ny Lzr)(fj N (23)

= rir(n+r+1) 2 2
or
' _ o r 1 X n+2r
XJ”(X)_an:;‘(_l) r!r(n+r+1)(§j
0 ) 1 X n+2r-1
* X;“’ (r =D)IF(n+r +1) (Ej
0 } 1 n+2r-1
:n\]n(x)—x;(—l) m(gj (24)

or

XJ5(%) =, (X) = XJ,1 (%) (25)
Which proves eq. (20a). eq. (23) can also be wriie

2(n+r)(x/2)™* ™ x

r(n+r+1) 2

_ ) (X/2)n+2r
nZ( & rr(n+r+1)

r=0

=3y S, 9

xJn(x) = Z( iy

or
X3;,(%) = X3, (x) ~nJ, (X (26)
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Which proves eq. (20b). From eq. (25) we readiliaob
d -n -n
S b3,00]=x73,,00

Further, adding egs. (25) and (26) we get
Jn—l(x) - Jr1+1(X) = 2‘];1()()
Using eq. (21) we may write
2
J>(%) =;J1(X) —J,(¥)

3,00=23,(9 = 3,9
:Q%—@Jmn—fJJm
X X
3,00 = 23,09 -3,
:[48—8)%<m—(§§+@de>

X X
etc.
The proof of eq. (22) is simple

S 103,0]= 50309+ x5, %

= X”{Jn_l(X) -2 J (X)} +nx""J,,(X)
=x"J,.,(X) [Using eq. (20b)]

Now using eg. (20a)
Jo(¥) ==J3(x)

Therefore
j J,(x)dx = -J,(X) + Constant
or
j: J,(Qdx =1 [Becausd, (0) =1]

Equation (32) gives us
Jx”\]n_l(x)dx =x"J,(X)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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Example 2

In this example we will evaluate the integral
jx4Jl(x)dx
in terms ofJ,(x) and J,(x) . Since
d
&[prp(x)]z x"J,,(x) [see eq. (22)]

we have
prJp_l(x)dxz x"J,(X)
Thus
Ix4Jl(x)dx= J'xz[szl(x)}ix
= xz[szz(x)]—J2x3Jz(x)dx
=x*J,(X) —2x°J,(X)

=x*J,(X) - 2X3Fx1 J,(X) - Jl(x)}

= (x* —8x2>(§Jl<x) - %(x)j +2x23,(%)

= (4x316x)Jl(x) - (x* -8x*)J,(X)
plus, of course, a constant of integration.

3.4 The Generating Function

Bessel functions are oftefefined through the generating function G(z,t)
which is given by the following equation

G(zt) = ex;{g (t —%ﬂ (37)

For every finite value of z, the function G(z,t)asegular function of t
for all (real or complex) values of t except atrgdi= 0. Thus it can be
expanded in a Laurent series

ex;{g [t —%ﬂ = nit”Jn(z) (38)

In the above equation, the coefficienttdis defined asl,(z); we will
presently show that this definition is consistenthveeries given by eq.
(3). Now, for any finite value of z and fa@r< |t/ < o we may write
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2.2 3,3
211 \2) 20 \2) 3
and
_z] (D zY
ex‘{ Zt} 2 (th
z1 (z2)' 1 z\’ 1
=1l-SH| S| = =2 ==+, 40
2t+(2) 21t? (2) 3!t3+ (40)
Thus the generating function can be expressedsases of the form
z 1 s n
G(zt) =ex;{§(t—Yﬂ = > A2t (41)
or
& z1 (z\°t® (z\'¢
=1+ S+ 2]+ 2] —
n:z_f‘“(z) {Jrzﬂ{zj 2!{2) 3 |
z1 z\* 1 z\’ 1 |
———t = | === ==+... 42
x{l 2:L't+(2j 21t? (2) 3!t3+ | (42)
On the other hand, the coefficienttdfwvill be given by
2 4 6
z 1 z 1 z 1
=l-| S| =t | == =—+... 43
A (ZJ @)ﬁ@ @)’ (ZJ @ “3)
Comparing the above equation with eq. (8), we find
A(2) =30(2)

Similarly, the coefficient ot"on the right hand side of eq. (42) will be
given by

_ E nl E n+2; E n+4 1 _
A‘(Z)_(zj n!+(2) (n+1)[|.'+(2j (n+2)

which when compared with eq. (7) gives us
A=,

Proving

1 <. n
expé(t—;ﬂ =>'t"3.(2)

n=-c

In the abo_ve equation, if we replace t by -1/y,ol&ain

ex g(y—iﬂ =S )"y, = 3y (2)

=

n=-o n=-oc0
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Thus
J.(9=(-D"J_.(2

3.4.1 Derivation of the Recurrence Relations from the
Generating Function

Differentiating eq. (38) w.r.t z, we obtain

%[t —%j ex;{g [t —%ﬂ = nit“J; (2) (44)

Thus

+o0

Zt”“Jn(z)—it”'lJn(z) = it”ZJ;(z)

Comparing the coefficients af , we obtain
‘]n—l(z) - Jn+l(z) = 2‘];1(2)

Similarly, if we differentiate eq. (38) w.r.t t weill obtain
§[1+t12j S't,(2)= 30t (2)

Comparing the coefficients of™*, we get
43,42 - 3,.(2]=2m,(2)

3.5 Some Useful Integrals

Using J,(2) = %Joncos[xsine— n¢9]d9

3,(2)=2 [ cossing)de (45)
T 0
Thus

[rea,090x=2 yo”/ZU:e—m

e i P 7
T°0 | a—isin@ a+isin@
:2_a l2 dé

T a?+sin’d

eixsim‘} + e—ixsinH

dx}d e

(46)

or
1

“e ™I, (X)dx =
J.o 0 1+a°

(47)
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where in evaluating the integral on the right hamde of eq. (46), we
have used the substitution= a cotd. By makingr - 0, we get

f:Jo(x)dle (48)

From eq. (28), we have

23,(¥) =3, 4(x) = 3. (%)
Thus

2[7 310 = [ 3,209~ [ 30u (%)
But

Jy 9:09= 3,05

=0 for n>0

Thus

[ 3000 =] 30009 n>0 (49)
Since

j: 3,0 =1 [see eq. (35)]
and

I:Jo(x) =1 [see eq. (48)]

Using eq. (49), we have
j:Jn(x) =1 n=01 2 3 .. (50)

Replacinga by a +igB in eq. (47), we get
1

AL INE T N T — (51)
! ’ J@+ip?+1
which in the limit ofa — 0becomes
- 1
.[o € /”Jo(x)dx=ﬁ (52)
For g <1, the right hand side is real and we have
J:Jo(x) cosfxdx = 1 - (53)
1-8

and
j:JO(x)sin,&dx: 0

Similarly, B> 1 the right hand side of Eq. (52) is imaginary andhaee
I:Jo(x) cospxdx=0
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I:Jo(x)sin,&(dx: (54)

1- B°
3.6 Spherical Bessel Functions

We start with the Bessel equation eq. (1)] withl +%, i.e.

Ld%y  dy| EZ -
XW-FX&{ (|+2j }y(x)—o (55)

where
=01 2...

The solutions of eq. (55) are
‘].+1(X) and J_I_l(x)
2 2

If we make the transformation
1
f(X) =—=vy(X 56
() &y( ) (56)

we would readily obtain

1 d [xzﬂj{l |(|X+1)}f() 0 (57)

xdx dx

The above equation represents spieerical Bessel equation. From eqgs.
(55) and (56) it readily follows that the two indglent solutions of
eq.(57) are

.(x) and

Tl and L0

The spherical Bessel functions are defined thrabghequations

ORNEIC (58)

X I+2

N0 = (-0, 223 (%) (59)
2X —|‘§

and represent the two independent solutions of(®6). Now, if we
define the function
u(x) = xf(x)

and

then eq. (57) takes the form

dzl;j{1 I(I+1)} (=0 (60)
dx X
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The above equation also appears at many placethampeneral solution
is given by

u(x) = q[xJ, (x)] + cz[xn, (x)] (61)
which also be written in the form
ww=AL&{Juﬁ+%L&ngﬁ (62)

Forl =0, the solutions of eq. (60) are
sinx and cosx

Thus, fol =0the two independent solutions of eq.(57) are
sinx COSX
—= and —
X X

Indeed if we use the definitions g¢f(x) and n (x) given egs. (58) and (59)

respectively, we would readily obtain
sin x

Jo(¥) ==~ (63)

() == (64)

(9 = 2% - €O (65)
X X

n(x) = % - LQX etc (66)

Further, if we multiply the recurrence relation [Eg1)]
2n
Jn+1(X) = ? ‘]n(X) - ‘]n—l(x)

by ‘/2£ and assume =1 _IE’ we would get
X

. 21 -1
100= 4" 00 -n (9 67)
using which we can readily obtain analytic expr@sdor j,(x), j;(x),...
etc.
Similarly,
21 -1
n00=2"Dn 0-n_,( (68)

3.7 Bessel Functions of the Second Kindg;

The Bessel functions of the second kind, denotexj(Ry, are solutions

of the Bessel differential equation. They havergsiarity at the origin
(x = 0).Y,(x)is sometimes also called theeumann function. For non-

integer n, it is related td,(x) by:
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J,(X)cosun—J_,(x)

Y9 = sinumr
(69)
or
Y, (x) = 1[1 3,00-(r2 J_ﬂ(xﬂ (70)
n| ou ou

u=n

We need to show now that(x) defined by eq.(70) satisfies Eq.(1)
where n is either zero or an integer. We know that

2

3%(x) +§JL(X)+(1—%}JN(X) =0 (71)

for any value ofy . Differentiating the above equation with respeqt t
we get
d® 03,09  1d03,(x {1 JGJ 4
X2

— Z’UJ 4 (X) (72)
ou x?

Similarly

2.9J aJ 2314
R [ L P R I ¢
dx® du xdx ou X ou X
From eqgs. (72) and (73), it is easy to show that

;’2 S, () + ——s (x)+(1—”—js,,(x)

:i—’;’[Jﬂ(x>—<—1>“J-ﬂ(x>] (74)
where
S(x>— 9,00~ (1)" 9,0 (75)

ThusY, (x) is the second solution of Bessel's equation foredl values

of n and is known as the Bessel function of theosddkind of order n.
The general solution of eq.(1) can, therefore, bden as

y = Cl‘]n (X) + C2Yn (X) (76)
whereC, andC, are arbitrary constants.

The expression fov, (x)for n=0, 1, 2,...can be obtained by using egs.
(2) and (70) and is given below
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Yn(x):E(In(x/2)+y)3n(x)__[ J_ Z(n—r 1)I(4j

/
23] S L)+ 4] (77)
Where ¢(I‘)=ZS_1; 90 =0

and y= Hrop[¢(n) ~Inn]

Example 3

In this example we will solve the radial part oé tBchrodinger equation

1d( ,dR) (2utE I(1+1

il B PP e = 7
rzdr(r drj+( h r? jR() 0 1=012 (78)
in the region0 <r < a subject to the following boundary conditions that
R(@) =0 (79)

and R(r) is finite in the region 0<r<a. Equation (78) can be
conveniently written in the form

1 d(p2£j+(1—l(l )JR() 0
p?do\" do P’

Where
p=kr; k=(uEIn*)"?

Thus the general solution of the above equati@ivisn by
R(p) = A, (p) + Bn, (p) (80)

But n(p) diverges ato=0, therefore, we must choose B=0. The

boundary condition R(a)=0 leads to the transcerdi@ofuation
ji(ka) =0 (81)

Thus, fol =0, we have
ka=nmn=1 2,.. . (82)

Which will give allowed values of k. Similarly, for1, we get
tanka = ka (83)

3.8 Modified Bessel Functions

If we replace x by ix in eq. (1), we obtain
2.1

X2y" +xy' = (x> +n?)y=0 (84)
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The two solutions of the above equation will oblyube
J.(ix) and Y,(ix)

As these functions are real for all values of n, ue define a real
function as

1, (x) =173, (ix) (85)
or
) X/4)r‘|+2r
; ri(n+r +1)! (89)

This function will be the solution of eq. (84) amsl known as the
Modified Bessel function of the first kind. For ydarge values of x

(87)

X

lum~J%%

The other solution known as the Modified Bessetfion of the second
kind is defined as

K (= 7109 =1a (9 (88)

2 sinn7
For non-integer values of m, and|_, are linearly independent and as
suchK, (x) is a linear combination of these functions [conepaith eq.
(69) which gives the definition of (x)]. When n is an integer, it can be
shown [see eq. (86)] that

=1, (89)
and thereforeX (x) becomes indeterminate for n = 0 or an integer. As
in the case o¥, (x) for n = 0 or an integer, we defire, (x) as

K. (x) = Li {”M} (90)
u-nl 2 sinumr
or
< ( )_( " {alg,(x)_alﬂ(x)} (o1)
u o4 |,

For x very Iarge

=T o

From eq. (88) it follows that
K. (¥) = K, (X) (93)
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Which is true for all values of n. recurrence nelas for |, can be
derived from those 0§ (x) and Eq. (85). They are

X7 ()= X1, (%)=l (%)
(94) X1 1,(x) =l (%) + Xl ., (X)

95) 1,1 (¥)+1,,(x) =21(x) (96)
and similarly

XKy = (K =xK ) (97)
XK, =nK, +xK,., (98)
Kia T Kot = _2Kr'1 (99)
Example 4

In this example we will consider the solutions lué equation

2
rzz ?+r$+ (ken>(r) - )2 -12R() =0 =0, 1. ..(100)
;
= O<r<
Where =M r=a (101)
=n, r>a
andn, <n, k,(a/c) represents the free space wave number. The

guantitys represents the propagation constant and for gumdedes
[?takes discrete values in the domain
ken; < B% <kgny (102)

Thus, in the regionS<r <a andr >a, eq. (100) can be written in the
form

2 2
rzzr?+r$+ U2;—2—I2}R(r):o O<r<a (103)
and
rz?j:?+r$+ W2;—Z+I2}R(r)=0 r>a (104)
where
uz= azlkgnf - ,82J (105)
and
W2 = azlﬁ2 - k§n§J (106)
so that
V?Z =U?+W? =a’kZ(n/ -n?) (107)
is a constant. The solutions of Eq. (103) are
J, (u Lj and Y (U 1) (108)

a a
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and the latter solution has to be rejected avérdes at r = 0. Similarly,
the solutions of eq. (104) are

(e ananw)

and the second solution has to be rejected bedadiserges as

r - o. Thus
% J [u ij 0<r<a

and Ry =10V a (109)
_A K, (WLJ r>a
K, (W) a

where the constants have been so chosen and R@htisiuous at r = a.
Continuity of dR/dr at r = a gives us

LU o KI)

J V) K, (V) (19)

which is the fundamental equation determining tigerevaluesg/k, .

SELF-ASSESSMENT EXERCISE

1. Using
J,(2)=0.22389 J,(2) =0.57672 calculate J,(2), J,(2), and J,(2).

Hint: Use Eq. (21)

2. Show that

a2 _1 .00 _Ja(@3,4(3)
jo J(X)xdx = 2a Jn(a)[l —Jf(a) }

4.0 CONCLUSION

In this unit, we have considered Bessel functiod apherical Bessel
function.

We have also established in this unit, relationshigiween the
recurrence relation and the generating function.

5.0 SUMMARY
This unit is on Bessel functions. It has a lot pplecation that arises in

numerous diverse areas of applied mathematics. Oimiswill be of
significant importance in the subsequent coursgiantum mechanics.
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6.0 TUTOR- MARKED ASSIGNMENT

1. Using
J,(2)=057672 J,(2) =0.35283 calculate J,(2), J,(2), and J.(2).
Hint: Use Eqg. (21)

2. Using the integral

Il (1_ XZ)mX2n+2r+1dX - r(n +r +1)r(m+1) .
0

2r(m+n+r+2)

m>-1 n>-1

Prove that
2 X m+1 1
n 1— 2\m n+lJ d
—F(m+1)(2j [ @-y*)my™3, (xy)dy

3. Hint: Use the expansion given by eq. (2) and integrata tey
term.

J n+m+l(x) =

In problem 2 assumm=n= —%, and use eq. (12) to deduce

_ 2 1cosxyd

J,(¥) ==
(X ”OW

4. Show that the solution of the differential et
y'(x) +(ae* ~b)y(x) =0
is given by(x) = AJ (&) +BJ,(&);  &=2Jae'?; u=2b

7.0 REFERENCES/FURTHER READING
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MODULE 3 APPLICATION OF FOURIER TO PDES
(HERMITE POLYNOMIALS AND
LAGUERRE POLYNOMIALYS)

Unit 1 Hermite Polynomials
Unit 2 Laguerre Polynomials

UNIT 1 HERMITE POLYNOMIALS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Hermite Differential Equation
3.2 The Generating Function
3.3 Rodrigues Formula
3.4 Orthogonality of Hermite Polynomials
3.5 The Integral Representation of the Hermite Polyrateni
3.6  Fourier Transform of Hermite-Gauss Functions
3.7 Some Important Formulae Involving Hermite Polyndsiia
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION
In this unit, we shall consider certain boundarjugaproblems whose
solutions form orthogonal set of functions. It @so be seen in this unit

how the generating function can readily be usedktive the Rodrigues’
formula.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define Hermite polynomials as the polynomial sols of the
Hermite differential equation

. prove the Orthogonality of Hermite polynomials

. derive the Rodrigues’ formula which can be usedobain
explicit expressions for Hermite polynomials

. solve the exercises at the end of this unit.
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3.0 MAIN CONTENT
3.1 Hermite Differential Equation

The equation

Y'(X) -2y’ (x) + (A -Dy(x) =0 1)
where Ais a constant is known as thtéermite differential equation.
When Ais an odd integer, i.e. when

A=2n+1 n=01 2... (2)

One of the solutions of eq. (1) becomes a polynbrifzese polynomial
solutions are calletHermite polynomials.Hermite polynomials appear
in many diverse areas, the most important beinghéveonic oscillator
problem in quantum mechanics.

Using Frobenius method to solve eq.(1), and follmnihe various steps,
we have

Sepl: We substitute the power series
y(x) =Y., x" (3)
r=0

in eq. (1) and_obtain the identity
Cop(p-D+C,(p+I)px+

2C. (p+r)(p+r-1)—C _,(2p+2r-3-A)x' =0
r=2
Sep 2: Equating to zero the coefficients of various powefsx, we
obtain

(1) p=0 or p=1 (4a)
(i)  p(p+1C,=0 (4b)
(i) c =-2P*2r=37A o o (4c)

(p+r)(p+r-1

When p =0, C, becomes indeterminate; hence p = 0 will yield kbt
linearly independent solutions of eq. (1). Thus,geé

_ 2r-3-A1
Cor(r-1)
which gives

C, =uC0

C., forr=2 (5)
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c, =L NE=-N
4
Cszw011 .. .etc
3
Because C,,C,,. . .are related tC, andC,, C,, .. .are related to

C,, we can split the solution into even and odd seriéhus, we may
write

Y(X) =(C, +C, x> +C,x* +. . )+ (Cx+C x> ++. . )
=C4é+1:sz+a—AXrnnx4+..}

2! 4

+C{X+ B=A) s, B=NT-A) s, } (6)
3 51

It may be readily seen that when

A=15 09 ...
the even series becomes a polynomial and the odessemains an
infinite series. Similarly, for

A=3 7,11, ...
the odd series becomes a polynomial and the evesssemains an
infinite series. Thus, when

A=2n+1 n=01 2 ...

One of the solutions becomes a polynomial. If thaltiplication
constantC, or C, is chosen that the coefficient of the highest poofe

in the polynomial becomeg”, then these polynomials are known as
Hermite polynomials of order n and are denotedHyyx) . For example,
for A =9 (n=4), the polynomial solution

y(X) = Co{l— 4x+%x4}

If we choose
C, =12

the coefficient ofx* becomes2*and, therefore
H,(x) =16x* — 48x* +12

Similarly,

for A =7 (n=3), the polynomial solution is given by

y(X) = C{x - % xﬂ

66



MATHEMATICAL METHODS OF PHYSICSI

PHY312
Choosing
C,=-12
we get
H,(x) =8x° —-12x
In general
n-2r
=y e @
o r'(n—2r)!
where
n e
— if niseven
N =) 2
D=2 if nisodd
2

Using eg. (7) one can obtain Hermite polynomialsarious orders, the
first few are given below:

H,(X) =1 H,(X)=2x,  H,(X)=4x*-2
H,(x)=8x>-12x;,  H,(x) =16x" —48x* +12 (8)

Higher order Hermite polynomials can easily be wigd either by using
ed. (7) or by using the recurrence relation (seeey

3.2 The Generating Function

The generating function for Hermite polynomialgigen by

[

G(X,t) — e—12+2xt z

Sl

S | =

H, ()t" (9)

Expandinge™ ande® in power series, we have

et =124 ti- Loy
2 3

2 3
(2x) £2 + (2X) £3 +
2 3

=1+ (2X)t +

Multiplying the above two series, we shall obtaipp@ver series in t
with

67



PHY312 MATHEMATICAL METHODS OF PHYSICSI

Coefficient oft® =1 :%Ho(x)
113 113 — — 1
t=2 _iHl(X)
“ “otP=2x?-1 :%Hz(x) etc

It is also evident that the coefficienttéin the multiplication of the two
series will be a polynomial of degree n and wilhtzon odd powers
when n is odd and even powers when n is even.isnptiiynomial, the
coefficient ofx" can easily be seen to (22/n!) . We then assume that

G(x=e " =¥ 2K, (9" (10)
n=0 '*

WhereK, (x)is a polynomial of degree n. Differentiating eq0)1wvith
respect to t, we get

e > _ > 1 _
2 _2.[ t+2xt: EK tn1: K tnl
@x=20e ™ =3 1K, (9 = 3K (0
or
Z(X_t)z_ Kn (X)t = Z_ Kn+1(X)t (11)
n=0 n! n=0 n!

Comparing the coefficients af on both sides of eq. (11), we obtain
2xK, (X) = 2nK, _;(X) = K, (X) (12)
We next differentiate eq.(10) with respect to xbdain
23 Lk oot =3 Lot (13)
n=0 n! n=0 n!
Comparing the coefficients af on both sides of eq. (11), we get
Ka(x) =2nK, () (14)

If we replace n by (n+1) in eq.(14), we would get
K (¥) =2(n+ DK, (x) (15)

Differentiating eqs.(14) and (12) with respect to we obtain
respectively

K (x) = 2nK, (x) (16)
and
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25K, (X) + 2K , (%) = 20K, () = KLy (X) (17)

Subtracting egs. (17) and (16) and using (15), ete g
Kr(x)—2xK: (x) +2nK (x) =0 (18)

which shows thak,(x) is a solution of the Hermite equation (1) with

A=2n+1, i.e. of the equation
y' () = 2xy'(X) + 2ny(X) = 0 (19)

Since, as discussed befoke,(x)is also a polynomial of degree n (with
coefficient of x" equal to2"), K, (x) is, therefore, nothing but,(x) .
Equations (12) and (14), thus, give recurrenceiogis forH  (x)

2xH,(9) = 2nH ., () + H 1, (%) (20)
and

H.(X) =2nH, (%) (21)
3.3 Rodrigues Formula

In the preceding section we have shown that

[

G(x,t) =e ™ = r11 H. ()t" (22)

n=0

One can rewrite the generating function G(x, thie form
G(X,t) - ex2 e—(t+><)2

It may be easily seen that

"G "
=" (-1 (%’ 23
o me D e (23)

From eq. (22) it follows that
"G
ot" =0

=H, (%) (24)

Using eqs (23) and (24), we obtain
P d” g (25)

Xn

H,(q) =(-D"e"

which is known asRodrigues formula for Hermite polynomials. For

example,
2

H,(x)=¢" OI—e exzi(—er‘Xz)
dx? dx

=e" l 27 +4x% 'XJ
=4x* -2
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Which is consistent with eq. (8). Similarly, we cdetermine other
Hermite polynomials by elementary differentiatidreq. (25).

3.4 Orthogonality of Hermite Polynomials

The Hermite polynomials satisfy eq.(1) fér=2n+1. Thus, we have

d?H dH
D _2Xx—"+2nH (x)=0 26
a2 20 () (26)

In order to derive the Orthogonality condition wartsform eq. (26) to
the Sturm-Liouville form by multiplying it by

exp{— j 2xde =¥ (27)
to obtain

d| e dH,

—e

dx | d
Similarly

dl _e de}

—e

dx | X

= —2n[e‘x2 H, (x)] (28)

=-2me™H_. (x)] (29)

We multiply eq.(28) byH,.(x)and eq.(29) byH,(x), subtract them and
integrate the resulting equation with respect tmm —«~to « to obtain

+oo d 2 dHn _ i 2 de
Lo{”m(x’&[e G0 e G }dx
= 2(m-n)[ "™ H,,()H, (x)dx
Now

LHS= j_*:%{H m(x){e'xz d(';(" } -H, (x){e‘xz ddHXm }}dx

+o00

. dH > dH
- H =X n _H —X m
{ m(X)e ™ a(X)e ™ L,
=0
Thus
fme‘szm(x)Hn(x)dx =0 m# n (30)

which shows that the Hermite polynomials are Ortnad with respect
to the weight functiore™ . Thus if we define the functions

@.()=Ne*?H (x); n=0 1 2... (31)
then eq. (30) assumes the form
f:%(x)% (X)dx =0; m#n (32)
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3.5 The Integral Representation of the Hermite Polyomials
The integral representation of the Hermite polyraind given by
2" (_i)n X2 [T n 2 42ixt
e t"e dt 33
N} (33)

In order to prove the above relation we start \thign relation

H,(x) =

e—x2 - 1 ex2 J'+°°e—12+2ixtdt

g

which can easily be obtained from the well knowmrfola

+00 2 2
J e Adt = \/E exp{’g—}
o a 4a

by assumingr =1and g = 2ix. Now according to the Rodrigues formula
2 dn
Xn
o 1 d" e o
ﬁ(;jxn J‘_w e+
:(_l)n iexzj'+°°(2i)ntne—tz+2ixtdt
J e

from which eq. (50) readily follows.

H,() = (-)"e’ ——e™

— (_1)n e~

3.6  Fourier Transform of Hermite-Gauss Functions

In this section we will show that

e—xz/an(X) — in\/lg_[f:[ekzlen(k)]eikxdk (34)

Implying that the Fourier transform of the Herm@auss function is a
Hermite-Guass function. In order to prove eq. (84) start with the
generating function

G(xt) =" = 3 E,Hn(k)t"

n=01,...

We multiply the above b{ikx—%kzj and integrate over k to obtain

12 [+ _1 2 : ot e —Kk2 /2 jkx
e J'_we{ Ek +(2t+|x)k}dk—n2:;ﬁj'_an(x)e e“dk (35)

71



PHY312 MATHEMATICAL METHODS OF PHYSICSI

Now

i) 2
LHS :e"Z\/ZTexp{(2t +2|X) }

_\/2_ 7 +2ixt 4 =x* 12
= Jame™ ’zg—Hnnfx) (it)"

Comparing coefficients aof' on both sides of eq. (35), we get eq. (34).

3.7 Some Important Formulae Involving Hermite
Polynomials

H, (x+y) :Z—n/zzn‘,m%Hn-p(X\/E)Hp(y\/Z_) (36)

p)!
Hn(x)njm\/i(z—:jn e/ co{w/(Zn +1)x—%Tj (37)

2s _ (ZS)I N HZs—Zn (X)
- 2s Z 1 _ |
2% S51.nl(2s 2n).
X25+1 (25+1)' i Zs+1 2n (X)
221 4 ni(2s+1-2n)!

s=0,1 2,... (38)

SELF-ASSESSMENT EXERCISE

Using the generating function fAr, (x), show that

@) %} cosh2x = 2% H,. (%)

) gsinnax= 3 ot ()
©  ecoRx= 3 (B Hn(9
(d) esin2x= n=%m(—l)“ (2n1+ 5 Hina (00

Hint: To obtain (a) and (b) substitute t = 1 and t sn-4q. (9) add and
subtract the resulting equations. Similarly for &y (d), substitute t = |
and equate real and imaginary parts.

Prove that

J._Jr:e‘x2 H,,(a,X)dx = \/ﬁ%(az _pr
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Hint: Replace x byayin eq.(9), multiply the resulting equation
by e and integrate with respect to y.

4.0 CONCLUSION

Here, in this unit, we have dealt with the Hernpitdynomials which are

Orthogonal with respect to the weight functief . We have also
established that the Fourier transform of the HeErf@iauss function is a
Hermite-Guass function.

5.0 SUMMARY
This unit was on the Hermite polynomials. It hal®taof application in
linear harmonic oscillator problem in quantum metbs The unit will

be of immense importance in the subsequent counselassical
mechanics.

6.0 TUTOR- MARKED ASSIGNMENT
1. If two operators are defined as
a= L(HQJ
V2 dx

= i(x_ij
\2 dx
Show that
ag,(x) =vng,, (¥)

ag,(x) =Vng, (X
2. Prove that

[ Hn(“%xoje_xz’zdxzﬁ X

2
Hint: Multiply Eq. (9) by{—(x+%x()} } and integrate over Xx.

7.0 REFERENCES/FURTHER READING

Erwin, K. (1991).Advanced Engineering Mathematics. John Wiley &
Sons, Inc.

Arfken, G. (1990).Mathematical Methods for Physicists. New York:
Academic Press.
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UNIT 2 LAGUERRE POLYNOMIALS
CONTENTS

1.0 Introduction

2.0  Objectives

3.0 Main Content
3.1 Laguerre Differential Equation
3.2 The Generating Function
3.3 Rodrigues Formula
3.4  Orthogonality of Hermite Polynomials
3.5 The Integral Representation of the LaguerrgriRohials
3.6 Some Important Results Involving Laguerre Poiyials
3.7 The Second Solution of the Laguerre Differdriiguation
3.8 Associated Laguerre Polynomials

4.0 Conclusion

5.0 Summary

6.0  Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In the previous unit, you came across solutionomfiogonal set of
functions. This unit which is the last one in tisok will examine
critically how a Laguerre differential equation che transformed to
Sturm-Liouville form.

It shows that Laguerre polynomials and the assediatnctions arise in
many branches of physics, e.g. in the hydrogen apwvoblem in
guantum mechanics, in optical fibers characterisgd parabolic
variation of refractive index, etc.

We also show that Laguerre polynomials are orthagonthe interval
0< x< o with respect to the weight functieri.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. use Frobenius method to obtain the polynomial gmiubf the
Laguerre differential equations

. determine the Orthogonality of the Laguerre polyraisn

. derive the Rodrigues formula
. derive the second solution of the Laguerre diffea¢mequation.
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3.0 MAIN CONTENT
3.1 Laguerre Differential Equation

The equation

xy'(X) = @=x)y'(x) +ny(x) =0 1)
where nis a constant known as theaguerre differential equation.
When n=0,1 2... (2)

One of the solutions of eq. (1) becomes a polynbrlaese polynomial
solutions are known as th@guerre polynomials.

Using Frobenius method to solve eq.(1), and follmnihe various steps,
we have

Sep We substitute the power series
y(x) = iCrxp”, C, 20
Eqg. (1) and gt;tain the identity
iC,(p+ r)zxp”‘l—icr(pﬂ -n)x”" =0
or - -
Cop?xP™ - i[cr (p+r)?=C._(p+r-n —1)]x"”'l =0 (3)
=

Sep 2 Equating to zero the coefficients of various poweirx in the
identity (3), we obtain

()  p?=0 INDICIAL EQUATION  (4)
(ii) c;"’(*%’;;lc,_l r >1 RECURRENCE RELATION (5)
p+r
Substitutingp =0in eq. (5), we get
c:r:r_rr;_lc:r_l r>1
which gives
__.n _n(n-1
T ey
(:3 ::!]gfl::ggggl::£%2(30 etc
3)
L (__l)n
C =(-1 =
n=( )(n!)z n!
and
C.,=C.,=0....=0

n+l n+2
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Therefore one of the solutions of eq. (1) can bhé&eavwr as
—c J__N n(n-1 »_ a X"
y(X)—Co{l a2 X+ 2 +(-1) } (6)
which is a polynomial of degree n. If the multiglion constanC, is

chosen to be unity so that the constant term besoarety, the
polynomial solution given by eq. (6) is knownlasguerre Polynomial
of degree n and denoted hy(x) . Thus

n

n X+n(n—1) 2 +(_1),1x_

L,(x)=1- 1)’ % o

or

L,(x) = Z( D" (7)

n!
= (n- r)'(r')2
with
L, (0)=1 (8)

The first four Laguerre polynomials can be written

L(x) =1
L (x) =1-x,
Lz(x):1—2x+%x2, 9)

L,(x)=1- 3x+3 2 lx3,...
2 6

Higher order polynomials can easily be obtainetegibby using eq.(7)
or by using the recurrence relation [see eq. (20)].

3.2 The Generating Function
The generating function for Laguerre polynomialgiigen by
G(x,t) :1—1Iex;{ j ZL (ot"; <1 (10)
- n=0

We expand the left hand side of eq. (10) to obtain

4 Xt
@$-t) exr{ 1_&

= (1-1)* - xt(1-1) +—X2t2(;‘t)3 -

2t2

=(L+t+t2 4. ) - xt(L+2t+3t%+.. )+ (1+3t+6t2 L)- (11)
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The right hand side of eq.(11) can be written pswer series in t with
Coefficient oft® =1 =L,(X)

t=1-x =L(x)

t?=1-2x+x*/12  =L,(x)

etc. It is also evident that the coefficienttéfon the right hand side of
ed.(11) will be a polynomial of degree n and tiet constant term in
this polynomial will be unity. We can then assuinat t

ST B U n
G(x,t)—l_texp{ (l—t)} gKn(x)t (12)

whereK, (x)is a polynomial of degree n. Differentiating eg2)dwvith
respect to t, we get

@-x-t) J_ xt |_< n1
T exp{ (l—t)} D K, (0t

n=0
or

1-x-1 K, (9" = (-2t +12)3 0K, (™

Comparing the coefficients af on both sides of the above equation,
we get
(N+DK,,,(¥) = (2n+1-x)K, () +nK ,(X) =0; n=1 (13)

We next differentiate eq.(12) with respect to xobtain

St K, (0" = @-)3 KL (0t (14)

Comparing the coefficients af on both sides of the above equation,
we get
KL (¥) =Ko () ==K 4 (X) (15)

If we replace n by (n+1) in the above equationweelld get
Kha(¥) =Ko (¥) - K (X) (16)

Differentiating eq. (13) with respect to X, we abta
(N+DKL1 (%) = @2n+1-X)K (X) + K, (X) +nK[ () =0 17)

SubstitutingK’_ (x) and K/, (x) from egs. (15) and (16) respectively in

eq. (17), we get
XKL () =K, (X) =nK 4 (X) (18)
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Differentiating the above equation with respecktand using eq. (15),
we have
XK1 (X) + K (%) = =nK . (%) (19)

Subtracting eq. (18) from eq. (19), we get
XK1 (%) + (L= XK, () + 1K, () =0

Showing thatK, (x)is a solution of the Laguerre equation, i.e. of the

equation
Xy (X) —@=x)y'(x) +ny(x) =0

HenceK, (x) nothing butL (x) . Equations (13) and (18) give the
following recurrence relations respectively:

(n+L,.,(¥) = 2n+1-DL,(x) —nL,,(X) (20)
XL (x) =nL, () —-nL,_ (x) (21)

We also have
L,(¥) =L, (%) - L. (X (22)

3.3 Rodrigues Formula

In the preceding section we have shown that

G(x,t) :r;ex;{ j Z L, (x)t"

We can write the above equation as

: 1 _x(1-t-1)
;L”(X)t —l_texp{ = }

or
i L (X)t" =¢" [1_Et ex;{— 1—2)} (23)

Differentiating eq. (23) n times with respect tartd then puttingt =0
we will have

nL,(x) = ex{ 0" {iex;{—i)ﬂ
ot"|1-t 1-t
( 1)f r

{ {Z @-1™r H

t=0

t=0
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ZG{EX‘D'U+DU+2)”“+nq

@-t)""r! o
AMO
= S0
or
L= 2( )(””) (24)
;IX”n (x"e™) :@[Xn;(—l)r ):—:}
R c(n+r)(n+tr=1...(r+1)
_Z_:(_l) r! X
oy (0!
Z:;,() |)2
Thus
L =SS (e (25)

This is known afkodrigues formula for the Laguerre polynomials. For
example, putting n = 2 in the Rodrigues’ formula, ave

xd2

Lw_Zdz

Ze—X)

e d 24X
= E— (2X xX'e )
_ed (2e‘X —4xe™* + x%e™)
2 d

X2

:1—2x+?
Which is consistent with eq. (9). Similarly, we cdetermine other
Laguerre polynomials by elementary differentiatiaf the result
expressed by eq. (25).

3.4 Orthogonality of Hermite Polynomials

As Laguerre differential equation is not of thenfioof Sturm-Liouville
differential equation, its solutions(x) , therefore, do not by themselves

form an Orthogonal set. However, in order to transf Laguerre
differential equation to the Sturm-Liouville forrwe may write eq. (1)
as

)

y' ()-8 yrix+ 1 2y09=0
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Multiplying the above equation by

p(x) = exp{ j ﬂ} =xe™* (26)
X
We obtain
P00 eneryin =0 (27)
x| dx
Thus for Laguerre polynomials, the Sturm-Liouviidem is given by
S |- e 9 (28)
X |
Similarly
dL_ e
[ P (X)} () (29)

Multiply eq.(28) by L, (x) and eq.(29) byL, (x) and subtracting the
resulting equations, we obtain

L (x)—[p(x) a, (X)} L0 [p(x) dLn (X’}
- (m_n)Lm(X)Ln(X) (30)
The left hand side of eq.(30) is simply
{L (P09 -1, (xp(y ) (X’} (31)

Integrating eq.(30) and using eq.(31), we get
(m-n)f"e™L, (L, (X)dX—[p(x){L (x) Zn ) dL (X) L (3™ (x)H

Since p(x) = 0 at x = 0 and at=«, the right hand side vanishes and we
readily obtain

I:e'XLm(x)Ln(x)dx:O for mzn (32)

The above equation shows that the Laguerre polyalsrare Orthogonal
in the interval0 < x< « with respect to the weight functiert. We now
define the functions

@,(x) =N, L, (x)e™" (33)

The constaniN,, is chosen so that the functiongx) are normalised, i.e.
J:wqof(x)dle for m=n (32)
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3.5 The Integral Representation of the Laguerre Pghomials
The integral representation of the Laguerre polyiabia given by

L.(x) = % [ etrat 3, [20) 2ot (33)
In order to prove the above relation we start \thin relation

[Tettrdt [2(xt)”2]dt

[rews e 1) <tx>

S D I .

& (- 1)rxrl'(n+r+1)
‘g (r)?

=S (34)

Using eqs. (24) and (33), we get
["etrat 3,200y ot = e niL (%) (35)
from which eq. (33) readily follows.

3.6 Some Important Results Involving Laguerre Polyomials

We give some important results involving Lagueroéypomials which
can be readily derived:

[ L (xdx=L,(x)-L.,(x) [Use Eq. (22)] (36)

> Y09 e o] @)
o 10 if m<n

JO x"e Ln(x)dx—{(_l)nn! ¢ (38)

> L 0L )= 07 [ 00k = Lua L) (39)

from which eq. (50) readily follows.

3.7 The Second Solution of the Laguerre Differential
Equation

Since the indicial equation [eq. (4)] has two equabts, the two
independent solutions of eq. (1)
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oy
(y) -, and (—j
p=0 ap o
Now

— P p-n (p—n)(p-n+l ,
Y p)=x {1+(|o+1>2X+ (p+)3(p+2)? ©
(p—n(p-n+H(p-n+2) 5 (40)
(p+D)*(p+2)?*(p+3)° o

Thus,
y1(X) = y(x, p=0)
nin-1) , n(n-1)(n-2)

=1-nx+
2)° 3)?

(41)

and

yz(x):g|:{x”lnx{1+ p—n2X+(p—n)(2p—n+%)X2+”}
op (p+D"  (p+D)(p+2)

(1 2 ) p-n 1 2 2 2
+X - X+ - - -

p-n p+1l)(p+1)° p-n p-n+l p+l p+2
x{(|o—n>(2|o—n+9xz+_ | H

(p+D(p+2) o=

=y,(X)In x+{(2n+1)x—%;_lx2+ } (42)

For example, fon=0

Y1(¥) =1= L, (%)

and
223Xt
Y, (X) =Inx+x+ (2)(!)2 + (3!))(2 + (4!);2 +... (43)
Similarly, for n=1
y1(X) =1-x= L1(X)
and
x? x?
yz(x):(l—x)lnx+3x—W+W—... (44)

3.8 Associated Laguerre Polynomials

Replacen by (n+k)in eq. (1), it is obvious that, , (x) will be a
solution of the following differential equation.
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xy"'=(@L-x)y' +(n+k)y=0 (45)

Differentiating the above equation k times, it easily be shown that

_d°
y - dxk [Ln+k (X)] (46)

or a constant multiple of it is a solution of th#etential equation
xy"=(k+1-X)y'+ny=0 47)

Where n and k are positive integers or zero. Thevablequation is
known as théAssociated Laguerre Equation.lts polynomial solutions

[see eq.(45)] are denoted hf/(x) and are defined by

(9= ("l ()] (48)

This is known as théssociated Laguerre Polynomialslt is obvious
from eq. (48) that
Lf(x) is polynomial of degree n in x and that

L°(x) = L, (X) (49)

Using egs. (7) and (48), it follows that

Koy — NO T (n+Kk)! ¢
L= 20 oo

(50)

We will define L (x) for non-integer values of k, we may, therefore,
write the above equation as

k — 3 1\’ r(n+k+1) r
L“(X)_Z:(;( & EDI e LR

(51)

Using the above equation, the first three polyndsn@zan easily be
written as:
Ly(x) =1
L (x) =k +1-x (52)
L4 (x) :%(k+2)(k +1) —(k+2)x+%xz

Differentiating the Laguerre generating functioq.[€10)] k times with
respect to x, one can easily obtain the generafimgtion for the
associated Laguerre polynomials. Thus

— 1 _ Xt S k n
g(xt) = T exp{ 1—t}§ L ()t (53)

Furthermore, from eq.(51)
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_T(n+k+1

L nir(k+1)

(54)

SELF-ASSESSMENT EXERCISE

1. Show that
L (=D)L(X)

X ETE A kD

2. Hint: Use eq. (51 Show that
L. (0)=1
L, (0)=-n

L. (0) :%n(n—l)
Hint: Use Eq. (7).
4.0 CONCLUSION

In this unit, we have established the relationdiepveen Laguerre and
associated Laguerre polynomials. The generatingtium and some
important results involving Laguerre polynomialsrevalso dealt with.

5.0 SUMMARY

This unit deals with Laguerre functions and its leggpions to physical
problems especially in Quantum mechanics.

6.0 TUTOR-MARKED ASSIGNMENT

1. Show that
L (x+y) =Y ()L (v), n=012...
r=0
Hint: Use the generating function.

2. Show that
LllZ(X): (-n" H2n+1(xl/2)

22n+l n! Xl/2

_ -n"
L200 = S HL, 0)

Hint: Use the integral representationldif(x) and H, (x) .

3. Using eq. (53), prove the identity
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7.0

(l—t)%—? +[x- -+ k)g=0

and then derive the recurrence relation [eq. (56)]

Using eq.(53), prove the identity
(l—t)a—g +tg(x,t) =0
ox
and hence derive the following relation

dL () _ dLs,(x)
dx dx

+dLy, () =0

n=1 2,. . .
Show that
[ L®dt=1,00-L,.(9
Hint: Use the relation derived in problem 4.

REFERENCES/FURTHER READING

Erwin, K. (1991).Advanced Engineering Mathematics. John Wiley &
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Arfken, G. (1990).Mathematical Methods for Physicists. New York:

Academic Press.

85






PHY312 MATHEMATICAL METHODS OF PHYSICSI

MODULE 1 PARTIAL DIFFERENTIAL EQUATIONS
WITH APPLICATIONS IN PHYSICS

Unit 1 Partial Differential Equations
Unit 2 Fourier Series

UNIT 1 PARTIAL DIFFERENTIAL EQUATIONS
CONTENTS

8.0 Introduction
9.0 Objectives
10.0 Main Content
10.1 Definition
10.2 Linear Second-Order Partial Differential Equations
3.2.1 Laplace's Equation
3.2.2 Wave Equation
3.2.3 Heat Conduction Equation
3.2.4 Poisson’s Equation
10.3 Method of Separation of Variables
10.3.1Application to Wave Equation
3.3.2 Application to Heat Conduction Equation
10.4 Laplace Transform Solutions of Boundary-Value
Problems
11.0 Conclusion
12.0 Summary
13.0 Tutor -Marked Assignment
14.0 References/Further Reading

7.0 INTRODUCTION

In this unit, we shall study some elementary meshotsolving partial
differential equations which occur frequently in yplts and in
engineering. In general, the solution of the phdifferential equation
presents a much more difficult problem than theutsmh of ordinary
differential equations.

We are therefore going to limit ourselves to a fewalvable partial
differential equations that are of physical intéres
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8.0 OBJECTIVES

At the end of this unit, you should be able to:

. define linear second-order partial differentialuation in more
than one independent variable

. use the technique of separation of variables ivirggp important
second order linear partial differential equationphysics

. solve the exercises at the end of this unit.

9.0 MAIN CONTENT
3.9 Definition

An equation involving one or more partial derivasvof (unknown)
functions of two or more independent variables aled a partial
differential equation. Theorder of a PDE is the highest order partial
derivative or derivatives which appear in the emumatFor example,

3 2 2
U2l 000 e ®
0z dy oy® 0z
is a third order PDE since the highest order tergiven by

U
ay*

A PDE is said to bdinear if it is of the first degree, i.e. not having
exponent greater than 1 in the dependent variabletso partial
derivatives and does not contain product of suomgdn the equation.
Partial derivatives with respect to an independeaniable are written for
brevity as a subscript; thus

2 2
Un:aLZJ and ny:au
ot oxoy
The PDE
lu, = 2
C_2Utt _Uxx+Uyy+Uzz ( )

(Where c is a constant) is linear and is of thesdorder while eq. (1)
is an example of a nonlinear PDE.
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Example 1: Important linear partial differential equations of
second order

1)
2 2
6_;1 =c? a_L; One-dimensional wave equation
ot 0x
2
2
ou_ ¢’ 6_121 One-dimensional heat equation
ot oX
3)
0°u  0°u . : .
3C + a_y2 =0 Two —dimensional Laplace eguation
4)
0°u 0% _ . . . .
F+F =f(xy) Two —dimensional poissonequation
X y
(5)

2 2 2
4 l21+ 0 l:+ 9 121 =0 Three—dimensional Laplace equation
ox~ dy® 0z

3.10 Linear Second-Order Partial Differential Equations

Many important PDEs occurring in science and eraging are second
order linear PDEs. A general form of a second olidear PDE in two
independent variables x and y can be expressed as

2 2 2
au+ au+ au+Da—u+Eg—u+Fu:G 3)

A 2 2
0x oxay oy 0X y

where A, B, C...... ,G may be dependent on variableakya If G =0,
then eq. (3) is callelomogeneous;otherwise it is said to be r@on-
homogeneous.

The homogeneous form of Eq. (3) resembles the iequat a general
conic:

ax® +bxy+cy’ +dx+ey+ f =0

We thus say that eq. (3) is of

elliptic B?-4AC <0
hyperbolic type when{ B? -4AC >0
parabolic B?-4AC =0
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For example, according to this classification thveo-tlimensional
Laplace equation

d°%u , 02U
ax? ay?

= 0 (ais a real constant)

is of hyperbolic type. Similarly, the equation

d %u ou
- a

5 = 0 (ais areal constant)
0 X oy

is of parabola type.

Some important linear second-order partial difféeénequations that
are of physical interest are listed below.

Example 2

Eliminate A and P from the function = Ae™ sin px

2
Z_ p?Ae™ sin px

Solution Let %—f = pAe”sinpx and

2
2

also 9z _ pAe” cospx  and g % =-p”Ae” sin px
0X 0x
2 2
a_Z +a_Z =0
ot?  ox?
ie. p?Ae” sin px— p?Ae” sinpx=0
Example 3

Solve the equation
0°u _ 0 _0%u _
— + 6 =
ox>  oxdy oy’
Solution: Let u(x,y) = f (y+mXx) + g(y +m,x)

So that m’ —7m+6=0
This implies thatm=1 or 6

Hence u(x, y): H(y+Xx)+G(y+6Xx)

4
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3.2.1 Laplace‘s Equation

O%u=0 (4)
. . 62 62 62
Where 0% is the Laplacian operatc{rD2 :—2+_2+_2j . The
ox® o0y° oy
function u may be the electrostatic potential inharge-free region or
gravitational potential in a region containing nattar.

3.2.2 Wave Equation

1 0°u
O %u = 5
v2 ot? )
Where u represents the displacement associatedheitivave and v, the
velocity of the wave.

3.4.3 Heat Conduction Equation

(;—l: =a0% (6)

Where u is the temperature in a solid at time & Tanstantr is called
the diffusivity and is related to the thermal coactility, the specific
heat capacity, and the mass density of the object.

3.4.4 Poisson’s Equation

O%u=p(x,y,2) (7)

Where the functionp(x, y, z) is called the source density. For example, if

u represents the electrostatic potential in a regiontaining charges,
thenp is proportional to the electric charge density.

Example 4

Laplace’s equation arises in almost all brancheanalysis. A simple
example can be found from the motion of an incosgide fluid. Its
velocity v(x,y,zt) and the fluid densityp(x,y,zt) must satisfy the
equation of continuity:

0p
—+[. =0
p (ov)

If pis constant we then have

Oev=0
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If furthermore, the motion is irrotational, the oeilty vector can be
expressed as the gradient of a scalar function V:

v=-0V
and the continuity becomes Laplace’s equation:

Qv=0(ov)=o, or V=0
The scalar function V is called the velocity potait

3.5 Method of Separation of Variables

The technique of separation of variables is widegd for solving many
of the important second order linear PDEs.

The basic approach of this method in attemptingdive a differential
equation (say, two independent variables x andsy)oi write the
dependent variable(x,y) as a product of functions of the separate
variablesu(x,t) = X(x)T(t) . In many cases the partial differential
equation reduces to ordinary equations for X and T.

3.3.1 Application to Wave Equation

Let us consider the vibration of an elastic strguyerned by the one-
dimensional wave equation

0’u _ , 0%

by e 8

ot? x> ®)
where u(X, y) is the deflection of the string. &irthe string is fixed at
the ends x = 0 and=I, we have the twboundary conditions

u(0,t)=0, u(l,t)=0 for all t (9)

The form of the motion of the string will depend thie initial deflection
(deflection at t = 0) and on the initial velocitye{ocity at t = 0).
Denoting the initial deflection by f(x) and thetial velocity by g(x), the
two initial conditions are

u(x,0)= (%) % = 9(¥) (10)

This method expresses the solution ugk,t) as the product of two
functions with their variables separated, i.e.

U(x,t)=X(X)T(t) (11)

where X and T are functions of x and t respectively
6
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Substituting eq. (11) in eq. (8), we obtain

XT"=c?X"T
or
X”(X) :iT"(t) (12)
X(x) ¢c* T(t)
In other words
X” 1 T"
= =) 13
X T (13)
The original PDE is then separated into two ODEz, v
X"(X) = AX(X) =0 (14)
and
T"(t)-Ac*T(t) =0 (15)

The boundary conditions given by eq. (9) imply
X(0)T()=0
and
XN T@)=0
Since T(t) is not identically zero, the followingraitions are satisfied
X(@©) =0 and X(I) =0 (16)
Thus eq. (14) is to be solved subject to conditgimen by eq. (16).
There are 3 cases to be considered.
Case 1 A>0
The solution to eq. (14) yields
X(x) =Ae V™ +Be'M (17)
To satisfy the boundary condition given by eq. (1% must have

Ae +Be! =0

Since the determinant formed by the coefficienté @ind B is non-zero,
the only solution is A = B = 0. This yields thevtal solution X(x) = 0.
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Case 2 A=0

The solution to eq. (14) yields
X(X) =A+Bx

To satisfy the boundary condition given by eq. (1% must have

A=0
and

A+BI=0
implying

A=0, B=0

Again for this case, a trivial solution is obtained

Case 3 A<0

LetA=-k?. The solution to eq. (14) yields

X(x) =Acoskx+ Bsinkx (18)
To satisfy the boundary condition given by eq. (1% must have

A=0
and

Bsinkl =0
To obtain a solution whei#0, we must have

Kl=nn n=12,...
Thus

2
A=—K? =—(¥’j (19)

(n=0 corresponds to the trivial solution). The spewalues of A are
known as the eigenvalues of eq. (14) and the quoreing solutions,

viz, sin(?x} are called theeigenfunctions. Since there are many

possible solutions, each is subscripted by n. Thus
X () =B, sin(%f x) n=123.. (20)
The solution to Eq. (15) with given by Eq. (19) is

T.(t) =E, co{nl—ﬂct) +F, sin(%ctj n=123,.. (21)
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WhereE, andF, are arbitrary constants. There are thus manyieohit
for eq. (8) which is given by

U,(x1) =X, ()T, (1)
{an co{?ct) +hb, sin(nl—ﬂctﬂsin¥7x (22)

Wherea, =B, E, andb,=B_F,. Since eq. (8) is linear and homogeneous,
the general solution is obtained as the linear ags&ion of all the
solutions given by eq. (22), i.e.

U (x,t) :Z(an cosnl—mt +bnsinn|—mt)sinnl—ﬂx (23)
n=1
Differentiating with respect to t, we have
U, (x,t) :Zg(— ansinnl—mt+bn cos?tjsinnl—ﬂx (24)
n=1

The coefficientsa, and b, are obtained by applying the initial
conditions in eq. (10). Thus,

U(x0)=f (x):iansin¥7x (25)
u (x,0)=g(x)=ibn(¥chsin¥Tx (26)

In order to determin@, andb, we use the orthogonality properties of
sin%xin the ranged< x<I, i.e.

|
Jsinmxsindex =—0nn (27)
° | | 2
Whered,,, is the Kronecker delta function having the propert
0 z
& [ e (28)
1 n=m

Multiply eq. ((25) bysin?x and integrating between the limits x = 0

and x =1, we get
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| w |
_mrT . m_ . nir
J' f (x)sml— xadx = Zj'ansml— xsin== xdx
0 n=l o

=a (29)

i
"2
2 . mrmr
a, = I—j f (x)sml—xdx

0
Similarly multiplying eq. (26) bwin?x and integrating between the

limits x = 0 andk =1, we get

Ig(x)sm—xdx ZJb( )sinnl—nxsinngdx

_]_0

- b,{%f cJ'E (30)

|
Ie. =— jg(x)sm—xdx
0

With a,, andb,, obtained form=1,... ©, eq. (23) is the solution to PDE

given by eq. (8) subject to the initial conditioasd the boundary
conditions.

3.3.2 Application to Heat Conduction Equation

The one-dimensional heat flow in a rod boundedneyplanes x = 0 and
X = a is of practical interest. The solution applie the case where the y
and z dimensions extend to infinity. The tempemtdrstribution is
determined by solving the one-dimensional heat gotioh equation

-~ ===z 31
x> v ot (31)
Where 8represents the temperature and
Kk
= 32
ey (32)

k, C andp are the thermal conductivity, specific heat andstgrof the

material respectively. We shall treat the case whiére boundary
conditions are given by

6(x=0,t) =0 (33)

10
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f(x=a,t)=0 (34)

The initial temperature distribution is given by
8(x,t =0) = f(X) (35)

Solution: Using the method of separation of variables, tltegendence
and t-dependence are separated out as expressed by

6(x, 1) = X(X)T(t) (36)
Substituting eq. (36) into eq. (31) yields

2
1d >2<:}1d_T:a (37)
X dx vT dt

We shall now consider three cases correspondirtifferent values of
the constant .
Case 1 A=0

The separated ODE fox(x) becomes

d?X _
dx?
ie.  X(X)= Ax+B

(38)

The boundary conditions expressed by egs. (33) &w) are
respectively

X(x=0)=0 and X(x=a)=0 (39)
Since T(t) should not be identically zero. Thuséqr (38) to satisfy the
boundary conditions given by eq. (39), we must have0, B = 0. This
gives the steady-state solution where temperatarethe rod is

everywhere zero.

Case 2 A>0
Let a =k?. The ODE for X becomes
d?X

dx?
Therefore X (x) = Ae®™ + Be™

=k2X (40)

Applying the boundary conditions given in eq. (38% get

11
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0=A+B
0= Ae“® +Be™*

Again we have A=B=0
Case 3 A<0

Let a =-A°. The ODE forX(x) becomes

d?Xx
dx?

=-)2X (41)

Thus X (x) = AcosAx + BsinAx

The boundary conditions require

A=0
Bsinda=0 (42)
i.e. Jda=nn n=1 2,.. (43)

Since there are multiple solutions, eaths designated by a subscript n
as A.. The solution of the ODE for T(t) is readily olstad as

T(t) =Ce™™ (44)

Thus the general solution which is a superposivbrall admissible
solution is given by

o(x,t) = i D e sin%x (45)
n=1
00 2
=>'D, ex;{— na7272 vt]sinn?nx (46)
n=1

To complete the solutiod, must be determined from the remaining
initial condition

ie. u@=iD§m%& 47)
-1

12
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In order to determinB,,, we multiply eq. (47) bysin%x and integrate

the limits x=0 and x = a to obtain
J f (x)sinmxdx = z Dnjan sin® xsin™ xdx= DmE
0 a e a a 2
Thus
jf(x)sm—xdx (48)
0
For the specific case wheffgx) = g, (constant), the solution is given by

Bxt) = Z 1 (2n-;1)mex{_ v(2n;21)2n2}

T nO2n+1

0<x< a (49)

From eq. (49), it can be deduced that a rectanguilse of heigh®, for
O<x< a has the Fourier series expansion given by

4_:90Z 1 sin (2n+1)7x
= 2n+1 a

Also if f(x) =%, then

B(x.t) = 2ayz( 1)nls|n(n” je [{ vn22772 t} (50)

a a

If the end boundaries are maintain at differentgerature i.e.

6(x=01t)=6,
O(x=at)=6, (51)

Then case 1 of the solution wheare= 0, would yield the steady-state

solution given by, +§(¢92 - 6,). The general solution is given by

A(x,t) = gx,t) +6, += (e -6,) (52)

Where ¢(x,t) is the transient solution.

13
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The boundary conditions fag(x,t) are obtained as follows:

atx=0: O(x=0t)=6,=¢(x=0t)+6 = ¢(x=0t)=0
atx = a: O(x=at)=6,=¢(x=at)+6, = ¢(x=at)=0
¢(x,t) is obtained under case 3.

SELF-ASSESSMENT EXERCISE 1

8. State the nature of each of the following equati¢tat is,
whether elliptic, parabolic or hyperbolic)

P’y 0y
ot? ox?
0%u 0% ou
b —+y— +3y*—
(b) Xax2 yay2 y 0X

(@)

2(a) Show thaty(x,t) = F (2x+5t) + G(2x-5t) is a general solution of
0’y _ 2562y

ot o
(b) Find a particular solution satisfying the ddions
y(O,t) =y(7,t) =0, y(x,0)=sin2x, y'(x,0) =0.

3. Solve the following PDEs

0°u
a) ——=8xy’+1
(@ S z=8y
2
(b) 0u_0u_ o o
oxy 0y

3.6 Laplace Transform Solutions of Boundary-Value
Problems

Laplace and Fourier transforms are useful in sgharvariety of partial
differential equations; the choice of the apprdpritiansforms depends
on the type of boundary conditions imposed on treblpm. Laplace
transforms can be used in solving boundary-valwblpms of partial
differential equation.

14
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Example 5

Solve the problem
ou _ 26_2“ (53)
ot ox?

u(O,t)=u(@t) =0, u(x,0) =10sin27x — 6sin47x (54)

Solution: Taking the Laplace transformof Eq. (53) with respect to t

gives

r 7 2

LM =g |0

| Ot | 0x
Now

ou

Ll — | = pL(u)—u(x,0

ot | pL(u) —u(x,0)
and

0% 0% % _ 0°
L — |=— | e Pu(x,t)dt =—L|u
[axz} x> | () ox? []

Here 9%/ox* and j:..dt are interchangeable because x and t are
independent.

For convenience, let
U =U(x p) = Lu(xt)] = e Pu(x tydt
0

We then have

ou
U -u(x,0)=2L
pU —u(x,0) Ve
from which we obtain, using the given conditiong)(5
2
9 g 1 pU = 3sin47x —5sin27x. (55)
ox- 2

Then taking the Laplace transform of the given dcios
u(0,t) =u(3t) =0,we have

Lu@t)]=o0, Lu@at]=0
Or
U (@O, p)=0, U@ p)=0.

These are the boundary conditiongJgr, p) . Solving eq. (55) subject to
these conditions we find

5sin27x  3sin4rx

Uixp)= p+16° p+64r

15
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The solution to eq. (55) can now be obtained byntakhe inverse
Laplace transform

u(x,t) = LU (x, p)| = 5e'°"" sin27x — 36e** sin47x.
SELF-ASSESSMENT EXERCISE 2

4. Differentiate between ordinary differential equatiand partial
differential equation.

5. Derive the PDE that give rise to the function
Z=a(x+y)+b(x-y)+abt+c=0

6. Use the method of separation of variable to fimel $olution of
the boundary value problem
o’y _0%
ox2  ot?
y(0,t)=0 t>0
y(Lt)=0 t>0
y(x,0) =sin2x
y'(x0)=0 0< x<o

7.0 CONCLUSION

In this unit, we have studied the notion of a golutof partial
differential equation. Also some elementary methotisolving linear
partial differential equations which occur frequgnin physics and
engineering were dealt with.

8.0 SUMMARY

Here in this unit you have learnt about second ropaetial differential
equation. The classical method of separation ofialbles was
extensively studied along with the Laplace transfosolutions of
boundary-value problems.

9.0 TUTOR- MARKED ASSIGNMENT

1. Form the PDEs whose general solutions are kswol
(@) z=Ae " cospx

(b) z= f(%j

2. Solve the equation
oxdy  dy’

16
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3. Find the solution of the differential equation
0’y _ 0%y
vy
0t)=0 O<t<
Where y@o ®
y(0,)=0 O<t<o
y(x,0) = f(X) O<x<L
y(x.0) = g(x) Osx<L
4. Solve by Laplace transforms the boundary-vahoblpm
d°u _10u
— T for x>0, t>0
ox* kot
given thati=u, (a constant) oox =0 for t >0, andu =0 for
x>0 t=0
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8.0 INTRODUCTION

In this unit, we shall discuss basic concepts,sfaotd techniques in
connection with Fourier series. lllustrative exaegpand some important
applications of Fourier series to Partial differahiequations will be

studied.

We will also study the concept of periodic funcsporeven and odd
functions and the conditions for Fourier expansion.

9.0 OBJECTIVES

At the end of this unit, you should able to:

. identify whether a given function is even, oddgeriodic

. evaluate the Fourier coefficients

. derive and apply Fourier series in forced vibrafooblems

. use Fourier Integral for treating various problemsolving
periodic function

. apply half range expansion to solutions of sonoblgms.

18
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10.0 MAIN CONTENT
3.1 Periodic Functions

A function f(x)is said to beperiodic if it defined for all real x and if
there is some positive number T such that

f(x+T)=1(x (1)
This number T is then calledpriod of f (x) .

Periodic functions occur very frequently in many plgation of

mathematics to various branches of science. Maeypginena in nature
such as propagation of water waves, light wavestemagnetic waves,
etc are periodic and we need periodic functionsdéscribe them.
Familiar examples of periodic functions are theesiand cosine
functions.

Example 1

Find the period offanx.

Solution:  Suppose T is its period
f(x+T)=Tan(x+T) =Tanx
so that

Tan(x+T)-Tanx=0
using trigonometric identity, we have

TanT (L-Tan’x) _ 0
1-TanxTanT

This implies that
TanT =0 If and only if1-Tan’x#0

T=Tan™0
Hence T=n

3.2 Even and Odd Functions

A function f (x) defined on interva[a, b]is said to be a even function if

f(=x) = f(X) (2)

19
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It is odd otherwise, that is

f(=x) = -f(X) 3)
Example 2

Let f(x)=sinx
Then f(-x) =-f(x) le. sin(=x)— = -sinx

Thus it is obvious that sine function is always add function while
cosine function is an even function.

3.11 Fourier Theorem

According to the Fourier theorem, any finite, senglalued periodic
function f(x) which is either continuous or possess only a finiienber

of discontinuities (of slope or magnitude), canrgeresented as the sum
of the harmonic terms as

f(x) :%ao +@, COSX+a, CoOS2X + ...+ a, CosnX
+b, sinx+b, sin2x+. . .+Db_ sinnx

:%ao +i(an cosnx + b, sinnx) (4)

n=1

3.12 Evaluation of Fourier Coefficients

Let us assume that(x)is a periodic function of periodn which can be
represented by a trigonometric series

f(x)=a, +i(an cosnx + b, sinnx) (5)

n=1

Given such a functiorf (x) we want to determine the coefficients of
a,andb, in the corresponding series in eq. (5).

We first determine,. Integrating on both sides of eq. (4) frem to
n, we have

_f_’; f(X)dx = j_];{ao + i(an cosnx+ b, sin nx)}dx
n=1
If term-by-term integration of the series is all@y¢hen we obtain
J'_’; f (x)dx =a, J'_];dx + Z (an J'_];comxdx +Db, .[_:si nnxdx)
n=1

20
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The first term on the right equasa,. All other integrals on the right

are zero, as can be readily seen by performingntegration. Hence our
first result is

a, =%T [ 1 (e (6)

We now determine,, a, ,... by a similar procedure. We multiply
Eqg. (5) bycosmx, where m is any fixed positive integer, and then
integrate from-n to 7,

.[_]; f (x) cosmxdx = J:{ao + Z (a, cosnx+b, sin nx)} cosmxdx (7)
n=1
Integrating term-by-term, we see that the rightehaitle becomes
a, J_’;cosmxdx + Z[an J'_’;cosnx cosmxdx + b, I_’;sin nx cosmxdx}
n=1

The first integration is zero. By applying trigonetric identity, we
obtain

J:Tcosnxcosnudx = % J_];cosh +m)xdx + %J'_];cos@ —m)xdx

J_ﬂsinnxcosmxdx = %J_” sin(n + m)xdx + %J._ﬂ sin(n — m)xadx.

Integration shows that the four terms on the ragletzero, except for the
last term in the first line which equatswhen n=m. since in eq. (7)

this term is multiplied by, the right-hand side in eq. (7) is equal
toa, 7z, and our second result is

a, = %TJ._]; f (x) cosmxdx m=1 2... (8)
We finally determineb, b, ...... in eq.(5) bysinmx, where m is any fixed

positive integer, and the integrate froaw to n, we have
j_” f (X) sinmxdx = j” [ao +Z(an cosnx +b, sin nx)}sinmxdx (9)
T =T =1

Integrating term-by-term, we see that the rightehaitle becomes

21
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aoj'_];sin mxdx + i[an .[:Tcosnxsin mxdx + b, J'_];sin nxsin mxdx}
n=1

The first integral is zero. The next integral isthé type considered
before, and we know that it is zero for all n 221,.. For the integral we
obtain

j_’;sin nxsinmxadx = % J_’;cosm — m)xdx —%j_’;cos(n + m) xdx

The last term is zero. The first term on the rightero whem #m and
Is 7whenn=m. Since in eq. (9) this term is multiplied tpy, the right-
hand side in eq. (6) is equal gz, and our last result is

b, == [ f (x)sinmxcx m=12...
ﬂ—ﬂ'

Writing n in place of m, we altogether have thecatled Euler
formulas

_1¢
(@) a,= - j_” f (x)dx
(b) a, :lr f (x) cosnxdx n=1 2... (20)
IT =

(c) b, :lr f (X) sinnxdx
]T /e

Example 3 Square wave
Find the Fourier coefficients of the periodic fuoat

-k h -7<x<0
F(x) = when X and  f(x+2m) = f(x)
k when o<x<rr

Functions of this type may occur as external foaxeg on mechanical
systems, electromotive forces in electric circiets,

Solution: From eq. (10a) we obta&# =0. This can also be seen without

integration since the area under curve of f(x) leet~ 7and nis zero.
From eq. (10b)

a, :lj” f (x) cosnxdx = EUO (-k) cosnxdx+.[”kcosnxdx}
o Lo °
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_ 1{ sinnx|’ sinnx|”:| _
=2k +k =0
Vi n n |

|-

Becausesinnx=0at -7, 0 and nfor all n = 1, 2....Similarly, from Eq.
(10c) we obtain

b, == [ f (sinnxdx = EUO (-Rysinnxce+ [ksinmcx|
T L 0

1 { cosnx|’ cosnx|”} _
=1k +k =0
T n n |,

-

SincecosfFa) =cosa andcos0 =1, this yields

b, = K [cosO —cos(nm) —cosnr+ cosO] = 2 (L-cosnm)
Nt Nt

Now, cosn = -1, cos271 =1, cos3n = -1 etc, in general
-1 for odd n,
1 for evenn,
2 for odd n,
0 for evenn,

COSHITZ{ and thus

1—cosnﬂ:{
Hence the Fourier coefficients of our function are

4k 4k 4k
=—, b, =0, =—, b, =0, -
b =", =0 b=_, b=0 b=
and since the, are zero, the corresponding Fourier series is
4—k(sinx+}sin3x+}sin5x+ ....... j (11)
Vg 3 5
The partial sums are

S =4—ksinx, S, =4—k(sinx+lsin3x} etc,
T m 3

Furthermore, assuming thaf(x) is the sum of the series and
settingx=7n/2, we have

or 1-—+——=+—-...... =
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SELF-ASSESSMENT EXERCISE 1

5. Define the periodic function. Give five examples.
6. Find the smallest positive period T of the follogifunctions.
a. sinx

7. Are the following functions odd, even, or neitheidaor even?
a. e
b. xsinx
8. Find the Fourier series of the following functiomgich are
assumed to have the

d. period 27
f(x) = x*/4 -n<x<n
f. f (x) =[sinX —n<X<n

@

3.13 Application of Fourier Series in Forced Vibrations

We now consider an important application of Fouseries in solving a
differential equation of the type

d?x dx
m—-+ —+kx(t) = F(t 12
dt? dt ® ® (12)

For example, the above equation would representaitoed vibrations
of a damped oscillator with representing the damping constant, F(t)
the external force and m and k representing thesraathe particle and
the force constant respectively. We write eq. {(@i2he form

% o & afx(t) = G(t) (13)

dt?
F@©

dt
WhereK:L, wgzh and G(t)=—*= The solution of the
2m m m

homogeneous part of eq. (13) can be readily oldeaamel is given by
x(t) = Ae™ coslq/‘wg —K2) + 6’] for «f >K? (14)
x(t) = (At +B)e™ for «f >K? (15)

In order to obtain the solution of the inhomogersepart of eq. (13), we
first assume F(t) to be a sine or cosine function;definiteness we
assume
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G(t) =bsinat (16)

The particular solution of eq. (13) can be writtetthe form
X(t) = Csinat + D cosat (7)

The values of C and D can readily be obtained Imgtsuting eq. (17) in
eq. (13),
and comparing coefficients afnat and cosat we obtain

2aK
D=- : b
(w2 -w?)? +40?K? 18
w; - w? (18)
C=- b

(a)§ —w2)2 +4w?K ?

Now, if G(t) is not a sine or cosine function, angel solution of eq. (13)
is difficult to obtain. However, if we make a Farexpansion of G(t)
then the general solution of eq.

(13) can easily be written down. As a specific eglanwe assume
G(t) =at (29)
The Fourier expansion d@(t) can readily be obtained as

G(t) :ibnsinnax (20)

n=1

Proceeding in a manner similar to that describexvalwe obtained the
following solution for the inhomogeneous part of E)

X(t) = i[cn sinnat + D, cosnad] (21)
Where }
__ 2naK b
" (@ -nter) +anterk? 22)
_ (ah —n°er)

n

2 bn
(af -n?a?f +an2a?K?
thus, if G(t) is a periodic function with period tien eq. (21) will be
valid for all values
of t.

3.14 Half-Range Expansions

In various physical and engineering problems thera practical need
for applying Fourier series to functiorfgt) which are defined merely
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on some finite interval. The functiof(t) is defined on an interval
O<t<l and on this interval we want represefit) by a Fourier series.

A half-range Fourier seriesfor a function f (x) is a series consisting of
the sine and cosine terms only.

Such functions are defined on an intery@l)and we then obtain a
Fourier cosine series which represents an eveongieriunction f,(t) of
period T =2l so that

f(t):a0+Zancos¥Tt o<t<l
n=1
(23)
and the coefficients are
aozlj'f(t)tdt, a :grf(t)cosn—ntdt n=12..
| Jo "ol I
(24)

Then we obtain a Fourier sine series which reptesam odd periodic
function f,(t) of periodT =2l so that

f(t) =ansin¥’t o<t<l
n=1

(25)
and the coefficients are

b, _—j f(t)sm—tdt n=12..
(26)

The series in eqs.(23) and (25) with the coeffitgen egs.(24) and (26)
are callechalf-range expansionsof the given functionf (t)

Example 4
Find the half-range expansions of the function

2|kt when O<t<|5

f(t)=

I—k(l ~t) when |—2<t<|
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Solution: From eq. (24) we obtain

1] 2k iz 2K _k
_l{l—jo tdt+—J'”2(I—t)dt}——

= Zﬁ—k (')lzt tdt+—j ( —t)cos—tdt}

T
Now by integration by part

1/2 It . 12 nNn
tcos ™ tdt =——sin —t|"2 — [ “sin—=tdt
0 I nir nir° I
- sinf e ’ cos—nﬂ—l
2nr 2 't

Similarly,
12 nm |2 nir
sin— - —— COSI’I]T—COS7

| N7t
| —t)cos—tdt =—
J'/Z( ) I nr 2 n*r

By inserting these two results we obtain

u, = ?;2 (Zcosn— cosnsr- 1)
Thus,

a, =-16k/2?°m*, a,=-16k/6°7°, a,=-16k/10°/7

And a, =0 whenn# 2, 6,10, 14,..Hence the first half-range expansion
of f(t)is
k 16k 2, 1 677
f)=——-—- s—t —5Cos—t+..
®= 2 ( 6° | j
This series represents the even periodic expartdidine functionf (t).
Similarly from eq. (26)

b, = 8 K qin”
" 2

and the other half-range expansionfdgf) is

sin— t—— in—t + —sm—t +.

f(t):8 (1 1 . 3mr, 1 .57 j
m\27 I & | 5 |

This series represents the odd periodic extendidit)a
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Example 5

Find a Fourier sine series for

f(x):{g i:z on (0, 3).

Solution: Since the function is odd, they =0
Then b, :IE [ f(x)sin”l—”xdx

_ 23 . N7t

-EL f(x)sm? xadx

=Zr 0sin” xdx+g'[323inM xdx

3% 3 3% 3

Now by integration, we have

_ 4 { 2nir }

b, =— cosT—cosnrr

nsr
The series thus becomes

f(x) = ini;?[cosz%T —(—1)“}sin%

n=1

So that
401 . x 3 . 2k 2 . 31K
f(x):—( )
T\ 2

Example 6

Find the Fourier cosine series for
f(x)=€e* on (0, n)
Solution: Since f(x) is an odd function, then
_1 ! X — 1 T
bO—T'[Oe dX —]—T(e 1)
Also

b, ZEJ”excos@dx = E(
b g Vg

2

Ton )(e” cosnn—l)

Thus the series becomes

e = ]—ZT(e” _1)+7%§1+1n2 [(—1)“e” —1]cosnx
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SELF-ASSESSMENT EXERCISE 2

1. Find the Fourier sine series for
f(x)=¢e* on (0, n)

9. Find the Fourier series for
f(x)=x on 0<x <2
consisting of (a) sine series only (b) cosieses only

3.15 Fourier Integral

Fourier series are powerful tools in treating vasigproblems involving
periodic functions. When the fundamental periodniagde infinite, the
limiting form of the Fourier series becomes an gné which is called
Fourier Integral.

3.15.1Definition

Let f(x) be defined and single valued in the intefval, L] . If
f (x) satisfies the following conditions:

0] f (x)is periodic and of period 2L
(i) f (x)and f'(x) are piecewise continuous

(iii) f;|f(x)|dxis convergent, ther (x) can be expressed as

f(x)= J: (A(@) cosax + B(a) sinax)dx

(27)

A(a) :lr f (X) cosaxdx
PN

(28)

B(a) :lj” f (x)sinaxdx
L

(29)

3.16 Fourier Integrals of Even and Odd Functions

It is of practical interest to note that if a fulect is even or odd and can
be represented by a Fourier integral, and thenrémeesentation will be
simpler than in the case of an arbitrary functiorhis follows
immediately from our previous formulas, as we shail see.

If f(x) is an even function, theB(a) =0

A@) :7% [ f (9 cosmax (30)
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and eq. (27) reduces to the simpler form
f(x)= jo A(a) cosaxdx (f even) (31)

Similarly, if f(x) is odd, thenA(a) =0in eq. (28), also
B(a)=2 [ ” £ (x)sinaxdx
JTY0

(32)
and

f(x) = j: B(a)sinaxdx (f odd) (33)
These simplifications are quite similar to thosdha case of a Fourier
series discussed.

Example 7

Find the Fourier Integral of (x) = x —-MTSXSTT

Solution:
Ala) = lj.w f (X) cosaxdx
7T —00

1 00
== | x®cosaxdx
7T

Using integration by parts, we obtain

=0

-

Ala) = i{i cosax —izsinafx}
m | a a

Also

B(a)==[" f (x)sinaxdx
]T —00
— 1 0 2 -
=—| X°sinaxdx
7T —00
So that

2
B(a) = _l[x_ cosax—%cosax}
T a a

=g
a

-
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From eq. (27)
f(x)= j:(A(a) cosax + B(a) sinax)dx
and
S 27T o 27T o
f(x)= j (o- cosax+ <= (<1) smaxjdx =22(-))
0 a a
Hence
, 27 o (® 271 o
f(x)=x2 =52(-1) j sinaxdx = =5 (1)
a 0 a
11.0 CONCLUSION
In this unit, you have studied the concept of pHdofunctions,
representations of functions by Fourier seriesplving sine and cosine
function are given special attention. We also biseseries expansion in
the determination of Fourier coefficients and th#-hange expansions.

12.0 SUMMARY

In this unit, you have studied:

. Even and odd functions
. Fourier Integral representations and Fourier sexigansion.
. Application of Fourier Integral technique in thenplification of

even and odd functions.

13.0 TUTOR- MARKED ASSIGNMENT

1. Find the smallest positive period T of the faling functions
c. (i) sin27x
d. (i) co@
2. Find the Fourier series for
0 -5<x<0 .
f(x) :{ X where f (x) has period 10
3 0<x<5

10. Find the Fourier series for
f(x)=x* for 0<x<2n

11. Find the Fourier series of function
f(x)=x+n when-n<x<n and f(x+2n)=f(x)
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12. Expand the function

f(t)=t? —% < x<% in a Fourier series to show that
2
f(t)=t>= T i—{coswt—}cosZax+lcosa1—...j
47| 3 4 9
take « = 277/T

13. Represent the following functions(t) by a Fourier cosine series
@ f@ :sinlﬂt O<t<l)

(b) f@)=¢  (0<t<l)

14. Find the Fourier integral representation of thecfion

1 when |x <1,
f(x)_{O when [x >1.

14.0 REFERENCES/FURTHER READING
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Ghatak, A.K.; Goyal, I.C. & Chua, S.J. (1998)athematical Physics.
Macmillan India Ltd.

Carslaw, H.S. (1950)ntroduction to the Fourier Series and Integral.
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MODULE 2 APPLICATION OF FOURIER TO PDES
(LEGENDRE POLYNOMIALS AND
BESSEL FUNCTIONS)

Unit 1 Legendre Polynomials
Unit 2 Bessel Functions

UNIT 1 LEGENDRE POLYNOMIALS
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2.0 INTRODUCTION

In this unit, you will be introduced to the polyn@isolutions of the

Legendre equation, the generating function as asllhe orthogonality
of Legendre polynomials. Also we shall consider somimportant

integrals involving Legendre functions which arecohsiderable use in
many areas of physics.

7.0 OBJECTIVES
At the end of this unit, you should be able:
. derive the polynomial solution of the Legendre duma

. use the generating functions to derive some inapottientities
. determine the orthogonality of the Legendre polyiads.
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8.0 MAIN CONTENT

3.1 Legendre Equation

The equation

(L= x7y"(x) —2xy'(x) +n(n+1)y(x) =0 1)
where n is a constant is known as tiegiendre’s differential equation.
In this unit we will discuss the solutions of thibogie equation in the
domain-1< x<1. We will show that when

n=0123..
one of the solutions of eq. (1) becomes a polynbniitaese polynomial
solutions are known as theegendre polynomialswhich appear in
many diverse areas of physics and engineering.

3.6 The Polynomial Solution of the Legendre’s Equation

If we compare eq. (1) with homogeneous, linearedéhtial equations of
the type

Y' () +U)Y(x)+V(X)y(x) =0 (2)
we find that the coefficients
UK =--2 and v =100 ®3)

are analytical at the origin. Thus the point x & @n ordinary point and
a series solution of eq. (1) using Frobenius mettoalild be possible.
Such that

y(X) = S, (X) + CiT, (%)

where
s (0=1-"*D o NN-DM+H(+3) W (4a)
2 4
And
T (0 =x- 70+ o (-D-J(+2)N+4) 5

3 9

If n20.1, 2,... both egs. (4a) and (4b) are infinite series an/eme
only if [ <1.

It may be readily seen that when
n=0.24...
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The even series becomes a polynomial and the adies s&mains an
infinite series. Similarly for

n=1 3 5...
the odd series becomes a polynomial and the eveessemains an
infinite series.
Thus when

n=0 1 2 3...
one of the solutions becomes a polynomial. The hdge polynomial,
or the Legendre function of the first kind is dextbtby P,(x) and is

defined in terms of the terminating series as below

21(()1()) for n=0,2, 4, 6,...

P.(¥)=1_" (5)
T () for n=1,3, 5 7,..
T.@

Thus,
1,2
R(0=1 RMX=x Pz(x>:§(3x -1)
P3(x)=%(5x3—3x), P4(x)=:—é(35x4—30x2+3), 6)

R.(X) :%(63%‘ ~ 705 +15x),...
Obviously, P,@®=1 (7)

Higher order Legendre polynomials can easily baioktl by using the
recurrence relation

nP,(x) = (2n=DxP, () = (=D R, (x)

Since for even values of n the polynomi&gx) contain only even

powers of x and for odd values of n the polynom@istain only odd
powers of x, we readily have

P.(-x) = (-1)" P, (x) and obviously (8)
P,(-D = (-1 ®)

3.7 The Generating Function

The generating function for the Legendre polynosialgiven by
G(x1) = (1-2xt+t3) %2 =Y P (t"; ~1xslt<l  (10)
n=0
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Let us assume that
G(x ) = (1-2xt+12)¥2 = 3K, (t" (11)
n=0

WhereK, (x)is a polynomial of degree n. Putting x = 1 in epl)( we
obtain

DK, (0t = (@-2t +t%) 2
n=0

=@-t™
=1+t +t2+t3 4+ L+t L

Equating the coefficients af from both sides, we have
K,@)=1 (12)

Now, if we can show thakK,(x) satisfies eq. (1), theKR (x) will be
identical toP,(x). Differentiating G(x, t) with respect to x andwge
obtain

(- 2xt +t2)%—(t3 = (x—-t)G(x,t) (13)
and

t%—f :(x—t)g—f (14)
Using egs. (11), (13) and (14), we have

1= 2t+t2)3 0K, (0™ = (x=1) 3 K, (t" (15)
and " "

£ 0K, (0™ = (x=1) 3 K2 (9t (16)

Equating the coefficient af'™* on both sides of egs. (15) and (16), we
get

nKn(X) - (2n_1)XKn—1(X) + (n_l)Kn—z(X) =0 (17)
and

XK1 (¥) — K () = (n-DK4(X) (18)

Replacing n by n+1 in Eg. (18), we obtain
XK (X) = K1, (%) = K, () (19)

We next differentiate Eq. (17) with respect to x atiminateK/_, with
help of Eq. (18) to obtain
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K (X)= XK/, (X)-nK, _(x)=0 (20)
If we multiply eq. (19) by x and subtract it frorg.€20), we would get

@-x*)K! -n(K ,-xK )=0 (21)
Differentiating the above equation with respeck.tave have

A-Xx*)K" = 2xK' —n(K' , - xK' =K, )=0 (22)
Using eqs. (19) and (22), we obtain

@-x*)K!(X) = 2xK ! (X) —n(n+DK, (X) =0 (23)

which shows thak (x)is a solution of Legendre equation. In view of
egs. (7) and (12) and the fact thgj(x) is a polynomial in x of degree n,
it follows that K (x)is nothing butP,(x). eq. (17) gives the recurrence
relation for P, (x)

NP, (X) = (2n=1)XP,;(x) = (=1 P, ,(x) (24)

3.8 Rodrigues’ Formula

Let
@Ax) = (x*-1)" (25)

Differentiating eq. (25), we get
de_ 2nx(x* -t
dx

or

2
- xz)%ﬁ 2x(n-1)3—)¢(’+ 2np=0

Differentiating the above equation n times withpexs to x, we would
get

2
a- xz)% + ZXCL—?‘ +n(n+1)¢g =0 (26)
where
dn¢ n ) n
= = -1 27
% dx" dx”[(X )] 27)
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This shows that, (x)is a solution of the Legendre’s equation. Furtfter,
IS obvious from eq. (27) that (x)is a polynomial of degree n in x.
Henceg, (x) should be a constant multiple®({x), i.e.

d" (x2 —1)n
dx"

o | S PR

dx"
|
=ni(x-1)" + n%(x+1)n(x—1)"'l

=CR,(¥) (28)

+—n(nz_1)%:(x+1)2n(n—1)(x—1)“‘2 +... +(x+])"n (29)

It may be seen that all terms on the right hand sideq. (29) contain a
factor (x-1) except for the last term. Hence

(;’Xnn (-1 =2'n (30)

x=1

Using Egs. (7), (28) and (29), we obtain

cC=2"n (32)
Therefore
1 dn 2 n
P = -1 32
n(%) 2"nl dx" (X ) (32)

This is known as thRodrigues formulafor the Legendre polynomials.

For example
2
P,(x) = %%(xz —1)2
= %(3x2 —1)

Which is consistent with eq. (6)
3.9 Orthogonality of the Legendre Polynomials

Since the Legendre’s differential equation is & 8turm-Liouville form
in the interval-1< x<1, with P,(x) satisfying the appropriate boundary

conditions ak=+1. The Legendre polynomials form an orthogonal set
of functions in the intervat1< x<1, i.e
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[ PP, (9dx=0 mzn (33)

The Orthogonality of the Legendre polynomials cam froved as
follows: P,(x) satisfies eq. (1) which can be written in the &tur

Liouville form as

% :(x2 _1)_dPgb((x)} +n(n+YP,(x) =0 (34)
Similarly i
% _(xz —1)%} +m(m+1)P,(x) =0 (35)

Multiply eq. (34) byP,(x)and eq. (35) by, (x) and subtracting eq. (35)
from eq. (34), we get

9 a-x)(R9P,00 - PR, )]

=(m-n)(n+m+1)F, (X)R,(X)
Integrating the above equation from x = -1 to x, wé get

=PI (IR, = PO O],
= (m-n)(n+m+1)[" P,(9P, (x)dx

Because of the factof-x*) the left hand side of the above equation

vanishes; hence

.[-11 P.(X)P,(x)dx for m#n

To determine the value of the integral
[,P2(x)dx

we square both sides of eq. (10) and obtain

1-2xt+t2)* =3 3P, ()P, (t™ (36)

Integrating both sides of the above equation wegpect to x from -1 to

+1 and using eq. (33), we get
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2n 1 =Lttt
Zt JP(x)dx jll 2xt+t2dx -

= 2(1+}t2 +}t4 o .+itZn +J
3 5 2n+1

Equating the coefficients af" on both sides of the above equation, we
have

1 2
PZ(X)dx = ——— =012 3. 37
[, P? (e el n=01 (37)

Thus we may write

1 2
P (X)P_(X)dx=——0
[P OIP k==,
where
0 if n#
5 = .| nzm
1 if n=m
Example

We consider the functiomosrx/2 and expand it in a series (in the
domain-1< x<1) up to the second power of x:

2
cos% =Y C,P.(¥)
n=0
Now

C 2n+1

j s— P (x)dx

n

Substituting for P,(x) from eq. (6) and carrying out brute force
integration, we readily get

2 10 12
C,=—; C =0 C,=—|1-—
L S 2 n( nzj
Thus
K2 10( 12) 3% -1
coOS—=—+—|1-—
2 T 0T T 2
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3.6 The Angular Momentum Problem in Quantum
Mechanics

In electrostatics the potentidi satisfies the Laplace equation
0%d =0 (38)

We wish to solve the above equation for a perfectigducting sphere
(of radius a), place in an electric field whichimsthe absence of the
sphere was of uniform magnitudgalong z-direction. We assume the
origin of our coordinate system to be at the ceotrthe sphere. Because
the sphere is a perfect conductor, the potentialt®rsurface will be
constant which, without any loss of generality, nteey assumed to be
zero. Thus, eq. (35) is said to be solved subjecthe boundary
condition

®(r=a)=0 (39)

At a large distance from the sphere the field sth@emain unchanged
and thus

E(r - 00) = EOZ
Since

E=-0¢
we have

®(r - w0)=-E,;z+C

=-E,rcosd+C (40)

Where C is a constant. Obviously, we should usespierical system of
coordinates so that

D2¢:%i(rzaﬁj+ 21. i(sin&ai)j
reor or r<sin@ 06 06

1 oo
r?sin’ @ ¢’

0 (41)

From the symmetry of the problem it is obvious tldatvould be
independent of the azimuthal coordingteo that eq. (41) simplifies to

%i(rzaﬁj+ 21_ i(sin@ai)jzo 42)
reor or r<sind 0@ 06

Separation of variables

® = R(r)O(6)
will yield
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1d .2 » dR 1 d ian—e =aconstant (= A1) (43)
Rdr\' dr) ©singde dé

Changing the independent variable frénhto u by the relation

M1 =cosf
In the angular equation, we get
d G) do

-2U—+10=0 (44)
du

In order that the solution of eq. (44) does not edjpe
aty=+1(6=0and n), we must have
A=1(1+1);1=0,1 2...

and then

o) = 2|2 P (cosf) (45)
Thus the radial equation can be written as

1d (rzd—Rj:I(l +1)

Rdr dr
or

2
2 4R, o 2—R 11 +1)R=0 (46)

The above equation is the Cauchy'’s differentialadigm and its solution
can readily be written as

B

r|+1

R=Ar'+
Hence the complete solution of eq. (42) is given by

o(r,0) = ZAF F’(0086’)+Z T P (cosh)
lA)P (cosf) + ArP,(cosf) + A,r?P,(cosd) + J
+%PO(COS¢9)+%P1(COSH)+...

Applying the boundary condition given by eq. (40§ get

A=C, A=-E, A =A=...=0
Thus

d(r,0) = (C +%jPo(cosH) + (— Ejr+ %JPl(cosH)
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+%P2(co&9)+ C

Applying the condition at r = a [see eq. (39)], gedt

(C +%j + (— E.,a+ %)Pl(cose)

B B
+a_§ P2(0059)+a—jP3(cose)+ ..=0

Since the above equation has to be satisfied fovadlies ofé and
sinceP, (cosh) form a set of orthogonal functions, the coefintte

of P,(cosd)should be zero giving

B, =-aC, B, =E,a’
B,=B,=B,...=0
Thus

3

o(r,6) =C[1+?j— EO(1+%JFCOSH (47)

The 1/r potential would correspond to a charged sphere tosdefore,
for an uncharged sphere we must have C = 0 giving

d(r,0) =—E,r cos@(l#?—zj (48)

This is the required solution to the problem. One easily determine
the components of the electric field as:

3
E="2%_g cos@(1+ 2a—3j
or r

19 . a’
E,=———=E,sinfd|1-—
® rog ° ( r3J
- 1 a;‘):O
rsing 0@

)=
3.7 Important Integrals Involving Legendre Functions

We give below some important integrals involvinggeadre functions
which are of considerable use in many areas ofipblys

P.(X) :]—1Tf: [x+(x2 -1)¥2 cose]nde (49)
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P (cosg) = 711 [/ (cosp+isingcoss) de (50)

[ a- x)"/z P, (x)dx = 2?121 (51)

[y Pl o=y (52)

L[Pﬁ‘(x)] o= . 11) o (53)
2

SELF-ASSESSMENT EXERCISE

3. Show that(n+2)P, (x) = P.,,(X) = P._,(X)
4. Using the Rodrigue’s formula show that

P/ (%) =%n(n+1>

9.0 CONCLUSION

The concept of generating function for the Legerpbiynomials allows
us to readily derive some important identities.

We have also established in this unit, relationshyetween
Orthogonality of the Legendre polynomials and tkaeayating function.

10.0 SUMMARY

This unit deals with Legendre functions and itslaggtions to physical
problems especially in quantum mechanics.

11.0 TUTOR-MARKED ASSIGNMENT

4, Show that
@-x*)P/(X) =nP,_, (X) - nxP,(X)
n(n+1)

=g [P =P ()]

5. Determine the coefficients
C,, C, CZ, C,, in the expansion

sm( j ZC (x)  —1<x<1
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6. Consider the function
-1<
F(x) = {0 1<x<0
1 O<x<1
Show that

((9=>->3[Pu@-POR00 -1<x<1

4. Show that the generating function

1 00
= _=YPxU"
\1-2xu+u? ; )

Hint: Start from the binomial expansion pf/1-v, setv=2xu-u?,
multiply the powers oPxu-u®out, collect all the terms involving,
and verify that the sum of these term$jéx)u”.
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1.0 INTRODUCTION

In this unit we shall consider the series solutem well as Bessel
functions of the first and second kinds of order n.

We will also be introduced to some integrals whigte useful in
obtaining solutions of some problems.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. derive the solution of Bessel function of thetfksd

. prove a relationship between the recurrence oglaind the
generating functions

. derive the solution of Bessel function of the setkind.
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3.0 MAIN CONTENT

3.1 Bessel Differential Equation

The equation

x2%+x;—d§(x2 -n?)y(x)=0 (1)

Where n is a constant knownBsssel’s differential equation.

Since n” appears in eqg. (1), we will assume, without anys lad
generality, that n is either zero or a positive bem The two linearly
independent solutions of eq. (1) are

J. (%) and J_ (x)
Where J,(x)is defined by the infinite series

_ . B r; 5 n+2r
J“(X)_g( D r!r(n+r+1)(2j 2)
or
3 9=—X {1— X _, X - (3)
2'T(n+1)|  2(2n+2) 24(2n+2)(2n+4)

whererl (n+r +1) represents the gamma function.

3.4 Series Solution and Bessel Function of the First Kd

If we use eq. (1) with the homogeneous, linearedditial equation of
the type

Y' () +U (XY (x) +V(X) y(X) = R(X) (4)
we find the coefficients

U =21 and  V(x=1-1
X X

are singular at x = 0. However, x = 0 is a regsiagular point of the
differential equation and a series solution of (@¢.in ascending powers
of x. Indeed, one of the solutions of eq. (1) egi by
x? x*

J.(X)=C,x"[1- - ..
22n+2) 24(2n+2)(2n+4)

®)

and whereC, is an arbitrary constant. This solution is analyt x = 0

for n=0and converges for all finite values of x. If weookse
C,=2"T(n+) (6)
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then the eq. (5) is denoted By(x) and is known as thBessel function
of the first kind of order n.

_ © e 1 Z n+2r
J”(X)_;( & r!F(n+r+1)(2)

1 (x)" 1 x\"? 1 x\"*
ol el el
rn+)l2) Ur(n+2)\2 2r(n+3)( 2
In particular
(PR )N ) .

@ @? @)
(x2)” _(x2** , (x2)” |
r@32) ur(s2) 2r(7/2)

|2 x® x°
= = X==+=-...
TX 3 5
=1/%sinx (9)

It follows immediately from egs. (7) and (8) that
J,(0)=0 for n>0

Jyp (%) =

and
J,0=1
If n20,1, 2 3,...then
o (X/Z) n+2r
J_ 10
(9= z rr(-n+r +1) (10)
Example 1

In this example we will determine the value &f,(x) from eq. (10).

Thus

(x2)** _ (w2 | (x2)” |
r@wz) ar(sr2) 2r(s2)

|2 x* x*

= | Ll1-2 s 2 -
TX 21 4
2

= |— cosx
X

Which is linearly independent of,,(x) [see eq. (9)] and it can be
verified thatJ_,,(x) does in fact satisfy eq. (1) for n = %. Thus

I (X) =
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J.,(X) :\/%sinx (11)
2
J_1,(X) :\/%cosx (12)

Using the above two equations and the recurreragar [see Eq. (21)]
2n
Jn+1(X) :7Jn(x)_‘]n—l(x) (13)

and

We can readily obtain closed form expression for,,(x) ,
Jes2(X) s Juz12(X)

J,,(X) = %(SI_)I‘(IX —cosxj (24)

J_3,(X) = 3[ Ecosx smxj (15)

Jgn(X) = \/7((3 X)smx—Ecosxj (16)
J_52(X) = \/7(

Next, we will examine eq.(10) when n is a positiméeger. To be
specific we assume n = 4; then the first, secdndj aand fourth terms in
the series given by eq. (10) will contain the terms

COSX smxj a7

etc.

1 1 1 1
) ) ) Eir]cj______
r=3 r=2 reyn r©)
respectively and all these terms are zero. In geriee first n terms of
the series would vanish giving

. (w2
(9= zr'r( n+r+1) (18)

If we put r = k+n, we would obtain
00 n+2k
J = -1 k+n (X/2)
w09=2,() (K + )T (k+1)

_ o ok (X/z)n+2k
_;( & KIT(k +n+1)
=(-1)"J,(¥) (19)
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Thus for n=0,1 2 3...,J_,(x) does not represent the second

independent solution of eq. (1). The second indépensolution will be
discussed later.

3.5 Recurrence Relations

The following are some very useful relations inwiedyJd, (x) :

XJ5(%) =, (X) = XJ,1 (%) (20a)
=xJ,5 (%) —nd, (%) (20b)
Thus
Jna(X) + 3,4 (X) = J 2 (X) (21)
Also
d n —_ n
& [X ‘]n (X)] =X ‘]n—l(X) (22)

In order to prove eg. (20a) w.r.t x to obtain

xJ' (X) = Z( Ny Lzr)(ﬂ N (23)

=0 rir(n+r+H\ 2 2
or
' _ o r 1 X n+2r
XJ“(X)_an:;‘(_l) r!r(n+r+1)(§j
0 } 1 X n+2r-1
* X;(_l) (r =1)IF(n+r +1) (Ej
0 ) 1 n+2r-1
:n\]n(x)—x;(—l) m(gj (24)

or

XJ5(%) =, (X) = XJ 1 (%) (25)
Which proves eq. (20a). eq. (23) can also be wriie

2(n+r)(x/2)™* ™ x

r(n+r+1) 2

_ ) (X/2)n+2r
nZ( & rr(n+r +1)

r=0

_ e gy (X1
_X;( & rr(n+r) N ()

xJn(X) = Z( iy

or
X3;,(%) = X3, (¥) ~nJ, (X (26)
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Which proves eq. (20b). From eq. (25) we readiliaob
d -n -n
S b3,00]=x73,.00

Further, adding egs. (25) and (26) we get
Jn—l(x) - Jr1+1(X) = 2Jr'1(x)

Using eq. (21) we may write
2
J>(%) =;J1(X) —J,(¥)

3(0= 3,09 -3,(9
=[%—1le(x)—i‘Jo(x>
X X
3,00 = 23,09 =,
:[48— 8)%(@—(%‘ +1]Jo<x>

X X
etc.
The proof of eq. (22) is simple

%[Xan(X)] =x"J (X) +nx""J_(X)
= Xn|:‘]n—l(x) ‘2 Jn(X)} +nx"J,,(x)
=x"J,.,(X) [Using eq. (20b)]

Now using eg. (20a)
Jo(¥) ==J3(x)

Therefore
j J,(x)dx = -J,(X) + Constant
or
j: J,(Qdx =1 [Becausd, (0) =1]

Equation (32) gives us
Jx”\]n_l(x)dx =x"J,(X)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)
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Example 2

In this example we will evaluate the integral
jx4Jl(x)dx
in terms ofJ,(x) and J,(x). Since
d
&[prp(x)]: x"J,,(x) [seeeq. (22)]
we have
prJp_l(x)dx: x"J,(X)
Thus
J'x“\]l(x)dx:J'xz[szl(x)}ix
= xz[xz\]z(x)]—f2x332(x)dx
=x*J,(X) —2x*J,(X)

=x*J,(X) - 2X3Fx1 J,(X) - Jl(x)}

= (x* —8x2>(§Jl<x) - Jo<x)j +2x23,(%)

= (4x316x)Jl(x) - (x* -8x*)J,(X)
plus, of course, a constant of integration.

3.4 The Generating Function

Bessel functions are oftefefined through the generating function G(z,t)
which is given by the following equation

G(zt) = ex;{g (t —%ﬂ (37)

For every finite value of z, the function G(z,t)asegular function of t
for all (real or complex) values of t except atrgdi= 0. Thus it can be
expanded in a Laurent series

ex;{g [t —%ﬂ = nit”Jn(z) (38)

In the above equation, the coefficienttdis defined asl,(z); we will
presently show that this definition is consistenthveeries given by eq.
(3). Now, for any finite value of z and fa@r<|t| < o we may write
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2.2 3,3
:1+El+ Ej t_+(5j t_+_ . (39)
211 \2) 20 \2) 3
and
_z]o (D zY
STt
z1 (z)' 1 z\’ 1
=1l-—CH| S| = =2 ==+ 40
2t+(2J 21t? (2) 3!t3+ (40)
Thus the generating function can be expressedsases of the form
z 1 < n
G(zt) :ex;{a(t—Yﬂ = > A2t (41)
or
& z1 (z)\°t* (z\'¢
=1+ S+ 2]+ 2] —
n:z_f‘“(z) {Jrzﬂ{zj 2!{2) 3 |
z1 z\’ 1 z\’ 1 |
——— = | == ==+... 42
x{l 2:L't+(2j 21t? (2) 3!t3+ | (42)
On the other hand, the coefficienttdfwvill be given by
2 4 6
z 1 z 1 z 1
=l-| S| = | == =+... 43
a (ZJ (ﬂ)“@ @)’ (ZJ @ “3)
Comparing the above equation with eq. (8), we find
A(2) = J,(2)

Similarly, the coefficient ot"on the right hand side of eq. (42) will be
given by

_ E nl E n+2; E n+4 1 _
A‘(Z)_(zj n!+(2) (n+1)[|.'+(2j (n+2)

which when compared with eq. (7) gives us
A(2=3,2

Proving

1 <. n
expé(t—;ﬂ =>'t"3.(2)

n=-c

In the abo_ve equation, if we replace t by -1/y,0bé&ain

ex g(y—%ﬂ - iﬁ(—l)“y'“%(z) = iﬁy“%(z)

o]
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Thus
J.(9=(-D"J_.(2

3.8.1 Derivation of the Recurrence Relations from the
Generating Function

Differentiating eq. (38) w.r.t z, we obtain

%[t —%j ex;{g [t —%ﬂ = nit“J; (2) (44)

Thus

+o0

Zt"“Jn(z)—it”'lJn(z) = it“ZJr’](z)

Comparing the coefficients af , we obtain
‘]n—l(z) - Jn+1(Z) = 2‘];1(2)

Similarly, if we differentiate eq. (38) w.r.t t weill obtain
g[utlzj S't,(2)= 30t (2)

Comparing the coefficients of™*, we get
43,12~ 3,.(2]=2m,(2)

3.9 Some Useful Integrals

Using J,(2) = %Joﬂcos[xsine— n¢9]d9

3,2)=2 [ cossing)de (45)
T 0
Thus

[rea,090x=2 jo”/ZU:e—w

e i P S
T°0 | a—isin@ a+isin@
:2_a 72 dé

T a?+sin’d

eixsinH + e—ixsinH

dx}d v

(46)

or
1

“e ] (X)dx =
J.o 0 1+a°

(47)
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where in evaluating the integral on the right hamde of eq. (46), we
have used the substitution= a cotd. By makingzr - 0, we get

f:Jo(x)dle (48)

From eq. (28), we have

23,(¥) =3, ,(x) =3, (%)
Thus

2[7 310 = [ 30209~ [ 3,4 (%)
But

Jy 3:09= 3,5

=0 for n>0

Thus

[ 3000 =] 30a09 n>0 (49)
Since

j: 3,0 =1 [see eq. (35)]
and

j:Jo(x) =1 [see eq. (48)]

Using eq. (49), we have
j:Jn(x) =1 n=01 2 3 .. (50)

Replacinga by a +ig in eq. (47), we get
1

RRGALN I E T N T — (51)
! ’ J@+ip?+1
which in the limit ofa — 0becomes
o 1
.[o € /”Jo(x)dx=ﬁ (52)
For g <1, the right hand side is real and we have
J:Jo(x) cosfxdx = 1 - (53)
1-8

and
j:JO(x)sin,&dx: 0

Similarly, B> 1 the right hand side of Eq. (52) is imaginary andhaee
J:Jo(x) cospxdx =0
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I:Jo(x)sin,&(dx: (54)

1-p?
3.10 Spherical Bessel Functions

We start with the Bessel equation eq. (1)] withl +%, i.e.

Ld%y  dy| EZ -
XW-FX&{ (I+2j :ly(x)—O (55)

where
=01 2...

The solutions of eq. (55) are
‘].+1(X) and J_I_l(x)
2 2

If we make the transformation
1
f(X) =—=vy(X 56
() &y( ) (56)

we would readily obtain

1 d [xzﬂj{l |(|X+1)}f() 0 (57)

xdx dx

The above equation represents spieerical Bessel equation. From eqgs.
(55) and (56) it readily follows that the two indglent solutions of
eq.(57) are

.(x) and

Tl and 0

The spherical Bessel functions are defined thrabghequations

ORNEINC (58)

X I+2

N0 =(=D'\[223 (%) (59)
2X —|‘§

and represent the two independent solutions of(®6). Now, if we
define the function
u(x) = xf(x)

and

then eq. (57) takes the form

dzl;j{1 I(I+1)} (=0 (60)
dx X
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The above equation also appears at many placethampeneral solution
is given by

u(x) = q[xJ, (x)] + cz[xn, (x)] (61)
which also be written in the form
ww=AL&{Juﬁ+@L&ngﬁ (62)

Forl =0, the solutions of eq. (60) are
sinx and cosx

Thus, fol =0the two independent solutions of eq.(57) are
sinx COSX
—= and —
X X

Indeed if we use the definitions g¢f(x) and n (x) given egs. (58) and (59)

respectively, we would readily obtain
sin x

Jo(¥) ==~ (63)

() == (64)

(9 = X - €O (65)
X X

n(x) = % - L)TX etc (66)

Further, if we multiply the recurrence relation [Eg1)]
2n
Jn+1(X) = ? ‘]n(X) - ‘]n—l(x)

by ‘/2£ and assume =1 _IE’ we would get
X

. 21 -1
100= 400 -n (9 67)
using which we can readily obtain analytic expr@sdor j,(x), j;(x),...
etc.
Similarly,
20 -1
n00=2"Dn 0-n_,( (68)

3.11 Bessel Functions of the Second King;

The Bessel functions of the second kind, denotexj(Ry, are solutions

of the Bessel differential equation. They havergsiarity at the origin
(x = 0).Y,(x)is sometimes also called theeumann function. For non-

integer n, it is related td, (x) by:
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J,(X)cosumn—J_,(X)

Y9 = sinumr
(69)
or
Y,(x) = 1[1 3,00-(r2 J_ﬂ(xﬁ (70)
n| ou ou

u=n

We need to show now that(x) defined by eq.(70) satisfies Eq.(1)
where n is either zero or an integer. We know that

2

3%(x) +§J;,(x)+(1—%jaﬂ(x) =0 (71)

for any value ofy . Differentiating the above equation with respeqt t
we get
d® 03,00  1dd3,(x {1 JGJ 4 ()
X2

— 2’UJ 4 (X) (72)
ou x?

Similarly

2.9J aJ 2314
R [ L P R I ¢
dx®  du xdx ou X ou X
From eqgs. (72) and (73), it is easy to show that

jz S, () + ——s (x)+(1—”—js,,(x)

:i—’;’[Jﬂ(x>—<—1>“J-ﬂ(x>] (74)
where
S(x>— 9,00~ (1)" 9,0 (75)

ThusY, (x) is the second solution of Bessel's equation foredl values

of n and is known as the Bessel function of theosddkind of order n.
The general solution of eq.(1) can, therefore, bden as

y = Cl‘]n(x) +C2Yn(x) (76)
whereC, andC, are arbitrary constants.

The expression fov, (x)for n=0, 1, 2,...can be obtained by using egs.
(2) and (70) and is given below
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Yn(x):E(In(x/2)+y)3n(x)__[ J_ Z(n—r 1)(4}

/
-2 2] S L) 0 4] (77)
Where ¢(r)=Zs'l; 90 =0

and y= I;[T[¢(n) -In n]

Example 3

In this example we will solve the radial part oé tBchrodinger equation

1d(,dR 2LE 1(1+1)

- - /= = 7
rzdr(r drj+( h r? jR() 0 1=012 (78)
in the region0 <r < a subject to the following boundary conditions that
R(@) =0 (79)

and R(r) is finite in the region 0<r<a. Equation (78) can be
conveniently written in the form

1 d(pzﬁj{l—'(' )JR() 0
p?do\" dp P’

Where
p=kr; k=(uUEIn*)"?

Thus the general solution of the above equati@ivisn by
R(p) = A, (p) + Bn, (p) (80)

But n(p) diverges ato=0, therefore, we must choose B=0. The

boundary condition R(a)=0 leads to the transcerdi@ofuation
ji(ka) =0 (81)

Thus, foil =0, we have
ka=nmn=1 2,.. . (82)

Which will give allowed values of k. Similarly, for1, we get
tanka = ka (83)

3.12 Modified Bessel Functions

If we replace x by ix in eq. (1), we obtain
2.1

X2y" +xy' = (x> +n?)y=0 (84)
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The two solutions of the above equation will obiyube
J.(ix) and Y,(ix)

As these functions are real for all values of n, ue define a real
function as

1, (¥) =173, (ix) (85)
or
) X/4)n+2r
; ri(n+r+1)! (89)

This function will be the solution of eq. (84) amsl known as the
Modified Bessel function of the first kind. For ydarge values of x

(87)

X

|4m~J%£

The other solution known as the Modified Bessetfion of the second
kind is defined as

K (= 7109 =1a(9 (88)

2 sinn7
For non-integer values of m, and|_, are linearly independent and as
suchK, (x) is a linear combination of these functions [conepaith eq.
(69) which gives the definition of (x)]. When n is an integer, it can be
shown [see eq. (86)] that

=1, (89)
and thereforeK (x) becomes indeterminate for n = 0 or an integer. As
in the case o¥, (x) for n = 0 or an integer, we defire, (x) as

K. (x) = Lim {”M} (90)
u-n| 2 sinumr

or

< ( )_( " {alg,(x)_alﬂ(x)} (o1)

u o4 |,

For x very Iarge

Kn(¥) =™ (92)

From eq. (88) it follows that

K_,(X) =K, (X) (93)
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Which is true for all values of n. recurrence nelas for |, can be
derived from those 0§ (x) and Eq. (85). They are

X1 () = X1, (%)=l (%)
(94) X1 ,(x) =l (%) + Xl ., (X)

95) 1,,()+1,.,(x)=21,(x) (96)
and similarly

XKy = (K =xK ) (97)
XK, =nK, +xK,., (98)
Kia t Koy = _ZK; (99)
Example 4

In this example we will consider the solutions lué equation

2
rzz ?+r$+ (kzn2(ry - g2} -17JR@ry =0 =0, 1...(100)
;
= O<r<
Where =M r=a (101)
=n, r>a
andn, <n, k,(a/c) represents the free space wave number. The

guantitys represents the propagation constant and for gumdedes
[?takes discrete values in the domain
ken; < B% <kgny (102)

Thus, in the regionS<r <a andr >a, eq. (100) can be written in the
form

2 2
rzzr|§+r$+ U2;—2—I2}R(r):o O<r<a (103)
and
r22:§+r$+ W2;—Z+I2}R(r)=0 r>a (104)
where
uz= azlkgnf - ,82J (105)
and
w? = azlﬁ2 - kgngj (106)
so that
V?Z =U?+W? =a’kZ(n/ -n3) (107)
is a constant. The solutions of Eq. (103) are
J, (u Lj and Y (U 1) (108)

a a
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and the latter solution has to be rejected avérdes at r = 0. Similarly,
the solutions of eq. (104) are

() ananw)

and the second solution has to be rejected bedadiserges as

r - o. Thus
% J [u 1) 0<r<a

and Ry =,V a (109)
_A K, (WLJ r>a
K, (W) a

where the constants have been so chosen and R@htisiuous at r = a.
Continuity of dR/dr at r = a gives us

LW o KI)

J V) K, (V) (19)

which is the fundamental equation determining tigerevaluesg/k, .

SELF-ASSESSMENT EXERCISE

3. Using
J,(2)=0.22389 J,(2) =0.57672 calculate J,(2), J,(2), and J,(2).

Hint: Use Eq. (21)

4. Show that

a2 _1 200 _Ja(@J,4(2)
jo J(X)xdx = 2a Jn(a)[l —Jf(a) }

4.0 CONCLUSION

In this unit, we have considered Bessel functiod apherical Bessel
function.

We have also established in this unit, relationshigiween the
recurrence relation and the generating function.

5.0 SUMMARY
This unit is on Bessel functions. It has a lot pplecation that arises in

numerous diverse areas of applied mathematics. Oimiswill be of
significant importance in the subsequent coursgiantum mechanics.
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6.0 TUTOR- MARKED ASSIGNMENT

1. Using
J,(2)=057672 J,(2) =0.35283 calculate J,(2), J,(2), and J.(2).
Hint: Use Eqg. (21)

2. Using the integral

Il (1_ X2)mx2n+2r+1dx - r(n +r +1)r(m+1) .
0

2r(m+n+r+2)

m>-1 n>-1

Prove that
2 X m+1 1
n 1— 2\m n+lJ d
—F(m+1)(2j [ @-y*)my™3, (xy)dy

3. Hint: Use the expansion given by eq. (2) and integrata tey
term.

J n+m+l(x) =

In problem 2 assumm=n= —%, and use eq. (12) to deduce

_ 2 1cosxyd

J,(¥) ==
(X ”OW

4. Show that the solution of the differential et
y'(x) +(ae” ~b)y(x) =0
is given by(x) = AJ (&) +BJ,(&);  &=2Jae'?; u=2b

7.0 REFERENCES/FURTHER READING

Erwin, Kreyszig (1991).Advanced Engineering Mathematics. John
Wiley & Sons, Inc.

Arfken, G. (1990).Mathematical Methods for Physicists. New York:
Academic Press
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MODULE 3 APPLICATION OF FOURIER TO PDES
(HERMITE POLYNOMIALS AND
LAGUERRE POLYNOMIALYS)

Unit 1 Hermite Polynomials
Unit 2 Laguerre Polynomials

UNIT 1 HERMITE POLYNOMIALS
CONTENTS

8.0 Introduction
9.0 Objectives
10.0 Main Content
10.1 Hermite Differential Equation
10.2 The Generating Function
10.3 Rodrigues Formula
10.4 Orthogonality of Hermite Polynomials
10.5 The Integral Representation of the Hermite Polyradéni
10.6 Fourier Transform of Hermite-Gauss Functions
10.7 Some Important Formulae Involving Hermite Polyndsiia
11.0 Conclusion
12.0 Summary
13.0 Tutor-Marked Assignment
14.0 References/Further Reading

4.0 INTRODUCTION
In this unit, we shall consider certain boundarjugaproblems whose
solutions form orthogonal set of functions. It @so be seen in this unit

how the generating function can readily be usedktive the Rodrigues’
formula.

5.0 OBJECTIVES

At the end of this unit, you should be able to:

. define Hermite polynomials as the polynomial sols of the
Hermite differential equation

. prove the Orthogonality of Hermite polynomials

. derive the Rodrigues’ formula which can be usedobain
explicit expressions for Hermite polynomials

. solve the exercises at the end of this unit.
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6.0 MAIN CONTENT
3.1 Hermite Differential Equation
The equation

Y'(X) -2y’ (x) + (A -Dy(x) =0 1)
where Ais a constant is known as thtéermite differential equation.
When Ais an odd integer, i.e. when

A=2n+1 n=01 2... (2)

One of the solutions of eq. (1) becomes a polynbrifzese polynomial
solutions are calletHermite polynomials.Hermite polynomials appear
in many diverse areas, the most important beinghévenonic oscillator
problem in quantum mechanics.

Using Frobenius method to solve eq.(1), and follmnihe various steps,
we have

Sepl: We substitute the power series
y(x) = Y Cx" (3)
r=0

in eq. (1) and_obtain the identity
Cop(p-D+C,(p+I)px+

2C. (p+r)(p+r-1)—C _,(2p+2r-3-A)x' =0
r=2
Sep 2: Equating to zero the coefficients of various powefsx, we
obtain

(1) p=0 or p=1 (4a)
(i)  p(p+1C,=0 (4b)
(i) c =-2P*2r=37A o o (4c)

(p+r)(p+r-1

When p =0, C, becomes indeterminate; hence p = 0 will yield kbt
linearly independent solutions of eq. (1). Thus,geé

_ 2r-3-A1
Cor(r-))
which gives

C, =uC0

C., forr=2 (5)
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) Sl
4
Cszw011 .. .etc
3
Because C,,C,,. . .are related t€C, andC,, C,, .. .are related to

C,, we can split the solution into even and odd seriéhus, we may
write

Y(X) =(C, +C, x> +C,x* +. . )+ (Cx+C x> ++. . )
:C{é+1:AX2+a—AXLnDX4+..}

2! 4

+C{X+ B=A) s, B=NT-A) s, } (6)
3 51

It may be readily seen that when

A=15 09 ...
the even series becomes a polynomial and the odessemains an
infinite series. Similarly, for

A=3 7,11, ...
the odd series becomes a polynomial and the evesssemains an
infinite series. Thus, when

A=2n+1 n=01 2 ...

One of the solutions becomes a polynomial. If theltiplication
constantC, or C, is chosen that the coefficient of the highest poofe

in the polynomial becomeg", then these polynomials are known as
Hermite polynomials of order n and are denotedHyyx) . For example,
for A =9 (n=4), the polynomial solution

y(X) = Co{l— 4x+%x4}

If we choose
C, =12

the coefficient ofx* becomes2*and, therefore
H,(x) =16x* —48x* +12

Similarly,

for A =7 (n=3), the polynomial solution is given by

y(X) = C{x - % xﬂ
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PHY312
Choosing
C,=-12
we get
H,(x) =8x® —12x
In general
9=y e ™
—ri(n—-2r)!
where
n if niseven
N=J2
D=2 if nisodd
2

Using eg. (7) one can obtain Hermite polynomialsarious orders, the
first few are given below:

H,(x) =1 H,(X)=2x,  H,(X)=4x*-2
H,(x)=8x>-12x;,  H,(x) =16x" —48x* +12 (8)

Higher order Hermite polynomials can easily be wigd either by using
ed. (7) or by using the recurrence relation (seeey

3.5 The Generating Function

The generating function for Hermite polynomialgigen by

[

G(X,t) — e—12+2xt z

Sl

S | =

H, ()t" (9)

Expandinge™ ande® in power series, we have

et =124 ti- Loy
2 3

2 3
(2x) £2 + (2X) t3 +
2 3

=1+ (2X)t +

Multiplying the above two series, we shall obtaipp@ver series in t
with
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Coefficient oft® =1 :%Ho(x)
113 113 — — 1
t=2 _iHl(X)
“ “ot2=2xt-1 :%Hz(x) etc

It is also evident that the coefficienttéin the multiplication of the two
series will be a polynomial of degree n and wilhtzon odd powers
when n is odd and even powers when n is even.isnptiiynomial, the
coefficient ofx" can easily be seen to (22/n!) . We then assume that

G(x=e " =¥ 2K, (9" (10)
n=0 '*

WhereK, (x)is a polynomial of degree n. Differentiating eq0)1wvith
respect to t, we get

2 > _ > 1 _
2 _2.[ t+2xt: EK tn1: K tnl
@x=20e ™ =3 LK, (9 = 3K (0
or
Z(X_t)z_ Kn(X)t = Z_ Kn+1(X)t (11)
n=0 n! n=0 n!

Comparing the coefficients af on both sides of eq. (11), we obtain
2xK, (X) = 2nK, _;(X) = K., (X) (12)
We next differentiate eq.(10) with respect to xbdain
23 Lk, oot =3 2k ot (13)
n=0 n! n=0 n!
Comparing the coefficients af on both sides of eq. (11), we get
Ka(x) =2nK, () (14)

If we replace n by (n+1) in eq.(14), we would get
K (¥) =2(n+ DK, (x) (15)

Differentiating eqs.(14) and (12) with respect to we obtain
respectively

K1 (x) = 2nK, (x) (16)
and

68



PHY312 MATHEMATICAL METHODS OF PHYSICSI

20K, (X) + 2K , (%) = 20K () = Ky (X) (17)

Subtracting egs. (17) and (16) and using (15), ete g
Kr(x)—2xK/ (x) +2nK (x) =0 (18)

which shows thak,(x) is a solution of the Hermite equation (1) with

A=2n+1, i.e. of the equation
y' () = 2xy'(X) + 2ny(X) = 0 (19)

Since, as discussed befoke,(x)is also a polynomial of degree n (with
coefficient of x" equal to2"), K, (x) is, therefore, nothing but,(x) .
Equations (12) and (14), thus, give recurrenceiogis forH  (x)

2xH,(9) = 2nH ., () + H 1, (%) (20)
and

H.(X) =2nH, (%) (21)
3.6 Rodrigues Formula

In the preceding section we have shown that

[

G(x,t) =+ = r11 H. ()t (22)

n=0

One can rewrite the generating function G(x, thie form
G(X,t) - ex2 e—(t+><)2

It may be easily seen that

"G "
=" (-1 ~(tx° 23
o me D e (23)

From eq. (22) it follows that
"G
ot" =0

=H, (%) (24)

Using eqs (23) and (24), we obtain
P d” g (25)

Xn

H,(9) =(-D"e"

which is known asRodrigues formula for Hermite polynomials. For

example,
2

H,(x)=¢" OI—e exzi(—er‘Xz)
dx? dx

= e l 27 +4x% 'XJ
=4x* -2
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Which is consistent with eq. (8). Similarly, we cdetermine other
Hermite polynomials by elementary differentiatidreq. (25).

3.7 Orthogonality of Hermite Polynomials

The Hermite polynomials satisfy eq.(1) fér=2n+1. Thus, we have

d?H daH
L _2Xx—"+2nH (x)=0 26
T 2X o 20H, (9 (26)

In order to derive the Orthogonality condition wartsform eq. (26) to
the Sturm-Liouville form by multiplying it by

exp{— j 2xde = (27)
to obtain

dl _edH | _ e

&_e r } = —Zn[e H n(x)] (28)
Similarly

d e dr ’“} =-2me™'H m(x)] (29)

dx | X

We multiply eq.(28) byH . (x)and eq.(29) byH,(x), subtract them and
integrate the resulting equation with respect tmm —«to « to obtain

+00 d 2 dHn _ i _deH_m
L{”m(x’&[e B0 e G, }dx

= 2(m-n)[ e H,,()H, (x)dx
Now

LHS:JT:%{H m(x){e‘X2 d(TX” } -H, (x){e‘X2 —ddHXm }}dx

+00

> dH > dH
- H =X n _H —X m
{ m(X)e ™ a(X)e ™ L)
=0
Thus
fme‘szm(x)Hn(x)dx =0 m# n (30)

which shows that the Hermite polynomials are Ortnad with respect
to the weight functiore™ . Thus if we define the functions

@.()=Ne*?H (x); n=0 1 2... (31)
then eq. (30) assumes the form
f:%(x)% (x)dx =0; m#n (32)
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3.5 The Integral Representation of the Hermite Polyomials
The integral representation of the Hermite polyraind given by
2n(_i)n X2 [T ¢ n 2 +2ixt
e t"e dt 33
=< (33)

In order to prove the above relation we start vihign relation

H,(x) =

2 1 2 pto o
e = exJ' et+2|xtdt

i

which can easily be obtained from the well knowmrfola

+00 2 2
J e W Adt = \/E exp{’g—}
o a 4a

by assumingr =1and g = 2ix. Now according to the Rodrigues formula
. d"

Xn

: 1 d" J‘*°°e—t2+2ixtdt

frdx” -
- (-1 Ler ["@)rtret et
7 b

from which eq. (50) readily follows.

H\(0) = (-)"e” ——e™

— (_1) naX

3.6  Fourier Transform of Hermite-Gauss Functions

In this section we will show that

e—xz/an(X) — in\/lg_[f:[ekzlen(k)]ewdk (34)

Implying that the Fourier transform of the Hermidauss function is a
Hermite-Guass function. In order to prove eq. (84) start with the
generating function

G(xt) =" = 3 E,Hn(k)t“

n=01,...
We multiply the above b{ikx—%kzj and integrate over k to obtain

12 [+ _1 2 : ot e —Kk2 /2 jkx
e L,‘{ Ek +(2t+|x)k}dk_nz:éﬁj._mHn(x)e e"*dk (35)
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Now

LHS =e"2\/5'rex;{(2t+—ix)2}

_\/2_ 742Xt =X 12
= ame ™ /ZE—H:EX) (it)"

Comparing coefficients of' on both sides of eq. (35), we get eq. (34).

3.7 Some Important Formulae Involving Hermite
Polynomials

H, (x+y) :2—nIZZ:“p!(+!_p)!Hn_p(x\/E)Hp(y\/2_) (36)

H.(X) n:o\/i(z—enjn e/ co{w/(Zn +1)x—%Tj (37)
2s _ (2S)I N H 2s-2n (X)
P ; nl(2s— 2n)!

X25+1 (23+1)' i Zs+1 2n(X)
2% 41 nl(2s+1-2n)!

s=0,1 2,... (38)

SELF-ASSESSMENT EXERCISE

Using the generating function fAr, (x), show that

@) é cosh2x = 2% H,. (%)

(b) é sinh2x = ; (2n1+ py Hana 9

(©) ecos2x= ni...(_l)n ﬁ H,. (%)

(d) esin2x= n:%...(_l)n (2n1+ 5 Hina (00

Hint: To obtain (a) and (b) substitute t = 1 and t sn-4q. (9) add and
subtract the resulting equations. Similarly for &y (d), substitute t = |
and equate real and imaginary parts.

Prove that

J._Jr:e‘x2 H,,(a,X)dx = \/ﬁ%(az _)r
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Hint: Replace x byayin eq.(9), multiply the resulting equation
by e and integrate with respect to y.

10.0 CONCLUSION

Here, in this unit, we have dealt with the Hernpitdynomials which are

Orthogonal with respect to the weight functief . We have also
established that the Fourier transform of the HeErf@iauss function is a
Hermite-Guass function.

11.0 SUMMARY
This unit was on the Hermite polynomials. It hal®taof application in
linear harmonic oscillator problem in quantum metbs The unit will

be of immense importance in the subsequent counselassical
mechanics.

12.0 TUTOR- MARKED ASSIGNMENT
1. If two operators are defined as
a= i(x.pi)
V2 dx

= i(x_ij
\2 dx
Show that
ag,(x) =vng,, (%)

ag,(x) =Vng,(x)
2. Prove that

o[ g e g

2
Hint: Multiply Eq. (9) by{—(x+%x()} } and integrate over Xx.

7.0 REFERENCES/FURTHER READING
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1.0 INTRODUCTION

In the previous unit, you came across solutionomfiogonal set of
functions. This unit which is the last one in tisok will examine
critically how a Laguerre differential equation che transformed to
Sturm-Liouville form.

It shows that Laguerre polynomials and the assediatnctions arise in
many branches of physics, e.g. in the hydrogen apwvoblem in
guantum mechanics, in optical fibers characterisgd parabolic
variation of refractive index, etc.

We also show that Laguerre polynomials are orthagonthe interval
0< x< oo with respect to the weight functieri.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. use Frobenius method to obtain the polynomial smiubf the
Laguerre differential equations

. determine the Orthogonality of the Laguerre polyraisn

. derive the Rodrigues formula
. derive the second solution of the Laguerre diffea¢mequation.
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3.0 MAIN CONTENT
3.1 Laguerre Differential Equation

The equation

xy'(X) = @=x)y'(x) +ny(x) =0 1)
where nis a constant known as theaguerre differential equation.
When n=0,1 2... (2)

One of the solutions of eq. (1) becomes a polynbrlaese polynomial
solutions are known as th@guerre polynomials.

Using Frobenius method to solve eq.(1), and follmnihe various steps,
we have

Sep We substitute the power series
y(x) = iCrxp”, C, 20
Eqg. (1) and gt;tain the identity
ic,(p+ r)zx"”‘l—icr(pﬂ -n)x”" =0
or - -
C,p*x"* -i[cr(w 1)? ~C,(p+r-n-Dx»* =0 3)
r=1

Sep 2 Equating to zero the coefficients of various poweirx in the
identity (3), we obtain

()  p?=0 INDICIAL EQUATION  (4)
(i) C =p(++‘r)‘;1c,_l r >1 RECURRENCE RELATION (5)
p+r
Substitutingp =0in eq. (5), we get
C. :r_rr;_lc:r_l r>1
which gives
__.n _n(n-1
e ST ey
_n(n-H(n-2)
L (__l)n
C =(-1 =
n=( )(n!)z n!
and
C.=C., =0 ...=0

n+l n+2
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Therefore one of the solutions of eq. (1) can bhé&eavwr as
n(n 1) 2 n n
=C X+ 6
y(X) O{ (1)2 (2')2 ( ) } ( )
which is a polynomial of degree n. If the multiglion constanC, is

chosen to be unity so that the constant term besoarety, the
polynomial solution given by eq. (6) is knownlasguerre Polynomial
of degree n and denoted hy(x) . Thus

n

n X+n(n—1) 2 +(_an_

L,(x)=1- 1) % o

or

L,(x) = Z( D" (7)

n!
= (n- r)'(r')2
with
L,(0)=1 (8)

The first four Laguerre polynomials can be written

Lo(¥) =1,

L (xX) =1-x,

Lz(x):1—2x+%x2, (9)
L,(x)=1- 3x+3 2 lx3,...
2 6

Higher order polynomials can easily be obtainetegibby using eq.(7)
or by using the recurrence relation [see eq. (20)].

3.2 The Generating Function
The generating function for Laguerre polynomialgiigen by
G(x,t) :1—1'[ex;{ j ZL (ot <1 (10)
- n=0

We expand the left hand side of eq. (10) to obtain

4 Xt
@$-t) exr{ 1_&

= (1-1)* - xt(1-1) +—X2tzg‘t)3 -

2t2

=(+t+t2 4. ) - xt(L+ 24+ 3% +.. )+ (1+3t+6t2 L)- (11)
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The right hand side of eq.(11) can be written pswer series in t with
Coefficient oft® =1 =L,(X)

t=1-x =L(x)

t?=1-2x+x*/12  =L,(x)

etc. It is also evident that the coefficienttéfon the right hand side of
ed.(11) will be a polynomial of degree n and tiet constant term in
this polynomial will be unity. We can then assuinat t

NPV SR U n
G(x,t)—l_texp{ (1—t)} gKn(x)t (12)

where K, (x)is a polynomial of degree n. Differentiating eg2)dwvith
respect to t, we get

@-x-t) J_ xt |_< n1
T exp{ (l—t)} DK, (0t

n=0
or

A-x-1 K, (9" = (-2t +12)3 0K, (™

Comparing the coefficients af on both sides of the above equation,
we get
(N+DK,,,(¥) = (2n+1-x)K, () +nK,,(X) =0; n=1 (13)

We next differentiate eq.(12) with respect to xobtain

St K, (0" = @-1)3 KL (0t (14)

Comparing the coefficients af on both sides of the above equation,
we get
KL (¥) =K1 () ==K (X) (15)

If we replace n by (n+1) in the above equationweelld get
Kha () =Ko (¥) K, (X) (16)

Differentiating eq. (13) with respect to X, we abta
(N+DKL1 (%) = (@2n+1-X)K () + K, (X) +nK[ 4 (x) =0 17)

SubstitutingK’_, (x) and K/, (x) from egs. (15) and (16) respectively in

eq. (17), we get
XKL () =nK,, (X) =nK 4 (X) (18)
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Differentiating the above equation with respecktand using eq. (15),
we have
XK1 (X) + K (%) = =nK (%) (19)

Subtracting eq. (18) from eq. (19), we get
XK (%) + (L= XK, () + 1K, () =0

Showing thatK, (x)is a solution of the Laguerre equation, i.e. of the

equation
Xy (X) —@=x)y'(x) +ny(x) =0

HenceK, (x) nothing butL (x) . Equations (13) and (18) give the
following recurrence relations respectively:

(n+L,,,(x) = (2n+1-D)L,(x) —nL,,(X) (20)
XLj (%) = N, (X) =N, 4 (X) (21)

We also have
L, () =L, (%)~ L. (X) (22)

3.3 Rodrigues Formula

In the preceding section we have shown that

G(x.1) =1—ftex;{ j Z L (t"

We can write the above equation as

o a1 T x@-t-1)
nZ:(;Ln(x)t —1_texp{ = }

or
ZL Xt"=e [1—1'[e ;{ 1Xtﬂ (23)

Differentiating eq. (23) n times with respect tartd then puttingt =0
we will have

nL,(x) = ex{ 0" {iex;{—i)ﬂ
ot"|1-t 1-t
( 1)f r

{ {Z @-t™r H

t=0

t=0
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o y T D+ 2).. . (r +n)
_e{;( ) L-t) ™l }

t=0

:exi(_l)r (n+r)t

r=0 (r!)Z
or
L =5 2( )(””) (24)
;IX”n (x"e™) :@[Xn;(—l)r ):—:}
R c(n+r)(n+tr=1...(r+1)
_Z:(;(_l) r! X
e
ZO( 1) |)2
Thus
L) =SS (e (25)

This is known afkodrigues formula for the Laguerre polynomials. For
example, putting n = 2 in the Rodrigues’ formula, ave

xd2

L(X)_Zdz

Ze—X)

e d 24X
= E— (2X xX'e )
_ed (2e‘X —4xe™* + x%e™)
2 d

X2

:1—2x+?
Which is consistent with eq. (9). Similarly, we cdetermine other
Laguerre polynomials by elementary differentiatiaf the result
expressed by eq. (25).

3.4 Orthogonality of Hermite Polynomials

As Laguerre differential equation is not of thenfioof Sturm-Liouville
differential equation, its solutions(x) , therefore, do not by themselves

form an Orthogonal set. However, in order to transf Laguerre
differential equation to the Sturm-Liouville forrwe may write eq. (1)
as

)

y' ()-8 yrix+ 1 2y09=0
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Multiplying the above equation by

p(x) = exp{ j ﬂ} =xe™* (26)
X
We obtain
P00 eneryin =0 (27)
x| dx
Thus for Laguerre polynomials, the Sturm-Liouviidem is given by
S |- e (28)
X |
Similarly
dL_ e
[ P (X)} () (29)

Multiply eq.(28) by L, (x) and eq.(29) byL, (x) and subtracting the
resulting equations, we obtain

L (x)—[p(x) a, (X)} L0 [p(x) dLn (X’}
- (m_n)Lm(X)Ln(X) (30)
The left hand side of eq.(30) is simply
{L (P09 -1, (xp(y ) (X’} (31)

Integrating eq.(30) and using eq.(31), we get
(m-n)f"e™L, (L, (X)dX—[p(x){L (x) Zn ) dL (X) L (3™ (x)H

Since p(x) = 0 at x = 0 and at=«, the right hand side vanishes and we
readily obtain

I:e'XLm(x)Ln(x)dx:O for mzn (32)

The above equation shows that the Laguerre polyalsrare Orthogonal
in the interval0 < x< « with respect to the weight functiert. We now
define the functions

@,(x) =N, L, (x)e™" (33)

The constaniN,, is chosen so that the functiongx) are normalised, i.e.
J:wqof(x)dle for m=n (32)
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3.5 The Integral Representation of the Laguerre Pghomials
The integral representation of the Laguerre polyiabia given by

L.(x) = % [ et 3, [20) 2ot (33)
In order to prove the above relation we start \thin relation

[Tettrdt [2(xt)”2]dt

[rews e 1) <tx>

S D I .

& (- 1)rxrl'(n+r+1)
‘g (r)?

=S (34)

Using eqs. (24) and (33), we get
["etrat 3,200y ot = e niL (%) (35)
from which eq. (33) readily follows.

3.6 Some Important Results Involving Laguerre Polyomials

We give some important results involving Lagueroéypomials which
can be readily derived:

[ L (xdx=L,(x)-L.,(x) [Use Eq. (22)] (36)

> Y09 e o] @)
o 10 if m<n

JO x"e Ln(x)dx—{(_l)nn! ¢ (38)

> L 0L = 07 [0k = Lua L) (39)

from which eq. (50) readily follows.

3.9 The Second Solution of the Laguerre Differential
Equation

Since the indicial equation [eq. (4)] has two equabts, the two
independent solutions of eq. (1)
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oy
(y) -, and (—j
p=0 ap o
Now

— P p-n (p—n)(p-n+l ,
Y p)=x {1+(|o+1>2X+ (p+)3(p+2)? ©
(p—n(p-n+H(p-n+2) 5 (40)
(p+D)*(p+2)?*(p+3)° o

Thus,
y1(X) = y(x, p=0)
nin-1) , n(n-1)(n-2)

=1-nx+
2)° 3)?

(41)

and

yz(x):g|:{x”lnx{1+ p—n2X+(p—n)(2p—n+%)X2+”}
op (p+D"  (p+D)(p+2)

(1 2 ) p-n 1 2 2 2
+X - X+ - - -

p-n p+1l)(p+1)° p-n p-n+l p+l p+2
x{(|o—n>(2|o—n+9xz+_ | H

(p+D(p+2) o=

=y,(X)In x+{(2n+1)x—%;_lx2+ } (42)

For example, fon=0

Y1(¥) =1= L, (%)

and
223Xt
Y, (X) =Inx+x+ (2)(!)2 + (3!))(2 + (4!);2 +... (43)
Similarly, for n=1
y1(X) =1-x= L1(X)
and
x? x?
yz(x):(l—x)lnx+3x—W+W—... (44)

3.10 Associated Laguerre Polynomials

Replacen by (n+k)in eq. (1), it is obvious that, , (x) will be a
solution of the following differential equation.
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xy"'=(@L-x)y' +(n+k)y=0 (45)

Differentiating the above equation k times, it easily be shown that

_d°
y - dxk [Ln+k (X)] (46)

or a constant multiple of it is a solution of th#etential equation
xy"=(k+1-X)y'+ny=0 47)

Where n and k are positive integers or zero. Thevablequation is
known as théAssociated Laguerre Equation.lts polynomial solutions

[see eq.(45)] are denoted hf/(x) and are defined by

(9= ("l ()] (48)

This is known as théssociated Laguerre Polynomialslt is obvious
from eq. (48) that
Lf(x) is polynomial of degree n in x and that

L°(x) = L, (X) (49)

Using egs. (7) and (48), it follows that

Koy — NO T (n+Kk)! ¢
L= 20 oo

(50)

We will define L (x) for non-integer values of k, we may, therefore,
write the above equation as

k — 3 1\’ r(n+k+1) r
L“(X)_Z:(;( & EDI e LR

(51)

Using the above equation, the first three polyndsn@zan easily be
written as:
Ly(x) =1
L (x) =k +1-x (52)
L4 (x) :%(k+2)(k +1) —(k+2)x+%xz

Differentiating the Laguerre generating functioq.[€10)] k times with
respect to x, one can easily obtain the generafimgtion for the
associated Laguerre polynomials. Thus

— 1 _ Xt S k n
g(xt) = T exp{ 1—t}§ L ()t (53)

Furthermore, from eq.(51)
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_T(n+k+1

L nir(k+1)

(54)

SELF-ASSESSMENT EXERCISE

1. Show that
L (=D)L(X)

X ETE A kD

2. Hint: Use eq. (51 Show that
L. (0)=1
L, (0)=-n

L. (0) :%n(n—l)
Hint: Use Eq. (7).
4.0 CONCLUSION

In this unit, we have established the relationdiepveen Laguerre and
associated Laguerre polynomials. The generatingtium and some
important results involving Laguerre polynomialsrevalso dealt with.

5.0 SUMMARY

This unit deals with Laguerre functions and its leggpions to physical
problems especially in Quantum mechanics.

7.0 TUTOR-MARKED ASSIGNMENT

1. Show that
L (x+y) =Y ()L (v), n=012...
r=0
Hint: Use the generating function.

2. Show that
LllZ(X): (-n" H2n+1(xl/2)

22n+l n! Xl/2

_ -n"
L200 = S HL, 0)

Hint: Use the integral representationldif(x) and H, (x) .

3. Using eq. (53), prove the identity
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7.0

(l—t)%—? +[x- -+ k)g=0

and then derive the recurrence relation [eq. (56)]

Using eq.(53), prove the identity
(l—t)a—g +tg(x,t) =0
ox
and hence derive the following relation

dL () _ dLs,(x)
dx dx

+dLy, () =0

n=1 2,. . .
Show that
[ L®dt=1,00-L,.(9
Hint: Use the relation derived in problem 4.
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