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Introduction 
 

You would have become familiar with concepts of Statistics  and  

Mechanics as the prerequisite to this course as you are encouraged to 

develop an enquiring attitude towards the Mechanics of Statistics with  

which you interact every day. 

 

It is the objective of this course to build upon the lessons learnt in the 

prerequisite courses (PHY211, MTH251 and MTH102). 

 

The Course 
 

This course comprises four units distributed across  two  modules  as 

follows: 

 

Module 1 is composed of 2 units Module 2 is composed of 2 units 

 

In Module 1 Probability Spaces, Measure and Distribution are treated in 

Unit 1 while Unit 2 explains Distribution of Random X1  covers  

expectation of random variables and Unit 2 is devoted to limit theorem. 

 

Course Aims and Objectives 
 

The aim of PHY311 is to further intimate you with probability stochastic 

processes; particularly the theorems, the rules and their application. The 

Random, Probability and Distribution functions and their relevance  to  

actual physical observations in the real world. 

 

You are therefore required to reciprocate by studying and working 

through this course conscientiously, upon completion of which you 

should confidently be able to: 

 

 Understand the meaning of probability space and its notation. 

 Define Sample space and event, and Event Space. 

 Discuss Probability Measure and State its Theorems 

 Discuss Probability Distribution for Continuous Random 

Variables 

 Understand the meaning of random variables 

 Classify random variables into discrete and continuous random 

variable with example 

 Define and state the properties of distribution function 

 State the distribution function for discrete and continuous random 

variables and solve example on each 

 Show the graphical representation of random variables 

 State the joint distributions for two random variables which are 

either both discrete or both continuous 
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 State the independent of random variables for independent and 

dependent events 

 State the conditional probability function for discrete and  

continuous random variables 

 Solve related problems on the distribution of random variables 

spaces 

 Define Expectation of random variable 

 Express mathematically the Expected Value of Mean for discrete 

and continuous random variables 

 State and prove Theorems on Expectation 

 State Variance and Standard Deviation for Discrete and 

Continuous Random Variables 

 Find the Mathematical Expectation of Moments and Moments 

Generation Function for Discrete and Continuous random 

variables 

 Find the characteristic function of a given random variable 

 Solve related examples on the mathematical expectation of random 

variables 

 State and prove Tchebyshev’s inequality 

 Define Convergence of random variables 

 State and prove some theorems on convergence in measure 

 State and prove weak law of large numbers 

 State the strong law large numbers and in addition you will know: 

 The meaning of probability space and its notation 

 Important definition of sample space, event and event space 

 Probability measure and its properties 

 Part of probability distribution of a continuous random variables 

 Meaning of random variables and its classification 

 Distribution functions for discrete and continuous random 

variables 

 Graphical representation of random variables 

 Joint distribution for discrete and  continuous random  variables 

 Independence  and conditional  probability of random variables 

 Worked examples on each concept of random variables 

 Meaning of Expectation for Discreet and Continuous random 

variables 

 Mathematical Expectation for discreet and continuous random 

variables 

 Expected Value for Variance and Standard Deviation 

 Theorems on the Expectation of Random Variables 

 Moment,   Moment   Generating Function  for Discrete and 

Continuous Random Variables 

 Characteristic Functions of Random Variables 

 Working examples on the Mathematical Expectation of Random 

Variables 

 Tchebyshev’s Inequality 
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 Convergence of Random Variables 

 Demovre’s Theorem 

 Central limit Theorem 

 Weak law of Large Numbers 

 Strong law of Large Numbers 

 Relevant examples on the theorems are treated 

 

Working Through the Course 
 

This course requires you to spend quality time to read.  Whereas  the  

content of this course is quite comprehensive, it is presented in clear, 

illustrative language that you can easily relate to. The presentation style 

might appear rather qualitative and descriptive. This is deliberate and it  

is  to ensure that your attention in the course content is sustained as a 

terser approach can easily “frighten” particularly when new concepts are 

being introduced. 

 

You should take full advantage of the tutorial sessions because this is a 

veritable forum for you to “rub minds” with your peers – which provides 

you valuable feedback as you have the opportunity of  comparing  

knowledge with your course mates. 

 

Course Material 
 

You will be provided course material prior to commencement of  this  

course, which will comprise your Course Guide as well as your  Study 

Units. You will receive a list of recommended textbooks which shall be 

an invaluable asset for your course material. These textbooks are however 

not compulsory. 

 

Textbooks and Video Resource 
 

There are more recent editions of some of the recommended textbooks 

and you are advised to consult the newer editions for your further reading. 

 

Heer, C. V. (2014). Statistical Mechanics, Kinetic Theory, and Stochastic 

Processes. Elsevier Science, Saint Louis. 

 

Pathria, P. K. & Harald, J. W. (2021). Statistical mechanics (4th ed.). 

United States: Elsevier/Academic Press. 

 

Alexander M. M., Franklin A. G., & Duane C. B. (2001). Introduction to 

the Theory of Statistics, 3rd ed. Tata McGraw-Hill. 

 

Sturge M. D. (2018). Statistical and Thermal Physics: Fundamentals and 

Applications. CRC Press. 
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Gould H. & Tobochnik J. (2021) .Statistical and Thermal Physics with 

Computer Applications, 2nd edition. Princeton University Press. 

 

https://ocw.mit.edu/courses/8-333-statistical-mechanics-i-statistical- 

mechanics-of-particles-fall-2013/video_galleries/video-lectures/ 

 

Assessment 
 

Assessment of your performance is partly through Tutor Marked 

Assessment which you can refer to as TMA, and partly through the End 

of Course Examinations. 

 

Tutor Marked Assignment 
 

This is basically Continuous Assessment which accounts for 30% of your 

total score. During this course you will be given 4 Tutor Marked 

Assignments and you must answer three of them to qualify to sit for the   

end of year examinations. Tutor Marked Assignments  are  provided  by 

your Course Facilitator and you must return the answered Tutor Marked 

Assignments back to your Course Facilitator within the stipulated period. 

 

End of Course Examination 
 

You must sit for the End of Course Examination which accounts for 70%   

of your score upon completion of this course. You will be notified in 

advance of the date, time and the venue for the  examinations which may,   

or may not coincide with National Open University of Nigeria semester 

examination. 

 

Summary 
 

Each of the two modules of this  course has been designed  to stimulate  

your interest in probability stochastic processes through the fundamental 

conceptual building blocks in the study and practical application of 

Statistical Mechanics. 

 



 
 

Module 1

 

Unit 1: Basic Concept of Statistical Mechanics.

 

1.0 Introduction 
2.0 Objective 
3.0

 

Main Content 
3.1

 

Elementary Probability Theory 
3.2

 

Entropy and Probability 
3.3

 

Concept of Statistical Mechanics 
3.4

 

Statistical Ensembles 
3.5

 

Distribution Frictions 

1.0 Introduction

 

This unit focuses on Statistical mechanics, elementary definition 
SE 
probability theory, entropy and probability are highlighted. The 
concept of statistical mechanics and statistical ensembles with 
the relevant working examples on each concept are treated to 
make the learning more meaningful. 

2.1

 

Objective 
At the end of this unit student should be able to: 



 

Define and Understand the Probability terms. 


 

Differentiate Entropy and Probability 


 

State the Basic Concepts of Statistical Mechanics 


 

Discuss the three types of stated Ensemble 


 

Derive the Distribution Function for a System Obeying Classical 
Statistics. 
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First

 

Coin

 

H

 

T

 

2nd

 

Coin

 

H

 

HH

 

HT

 

T

 

TH

 

TT

 

3.1 Elementary Probability Theory
Statistical mechanics is a branch of physics that applies 
probability 
theory, which contains mathematical tools for dealing with large 
populations, to the study of the thermodynamic behavior of 
systems composed of a large number of particles. We invariably 
compute the averages of physical quantities of interest and then 
establish the connection between these values and the 
experimentally observed values. So it is essential to know the 
basic concepts of probability theory. 

3.1.1 Basic Terminology
Suppose we toss two coins together the possible outcomes can be 
listed 
as follows:

3.0   Main Contents
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That is, there are four outcomes of this statistical experiment, which may be 
listed as: Ω = *(H,H), (H,T), (T,H), (T,T)+ 
The set of all the possible outcomes is called the sample space of the 
experiment and each of the element or individual outcome like ( HH, HT, TH, 
TT) that make up a sample space (Ω) is called sample point. 

 
Thus, we have four sample points in the Ω which is known as cardinality of Ω 
and is denoted by n (Ω) i.e. n (Ω) = 4. 

 
An event is a possible outcome in a random experiment. It is thus the subset of 
the sample space and is usually associated with a specified rule, for example the 
event of getting an odd number in a throw of a die is (1,3,5) while the event of 
obtaining the same faces in a throw of two coins is {HH, TT}. 
We introduce the basic operations of Union and Intersection, which can be used 
to define new events. 
E1UE2 Either E1 or E2 occurs, or both occur (at least one of E1 or E2 occurs) 

E1 E2  Both E1  and E2  occur. If there are no sample points common to E1 

and E2, the E1 n E2 = Ø and the events are said to be disjoint or mutually 
exclusive. It can be shown below. 

 

Fig a fig b fig c 

 From the fig (a) the shaded portion represent E1 u E2 (b) The Shaded portion 

represents E1 E2  and (c) There is no overlap between E1and E2 

From the figure (b), we have Ω = E1 u E2 and from the first figure 
Ω = 𝐸1

 

𝑢

 

𝐸2

 

𝑢

 

𝐸3

 

𝑢

 

𝐸4

 

𝑢

 

𝐸5

 
In general, if the distinct simple events are 𝐸1, − − − − − − 𝐸𝑛, we have 

𝑛

 
Ω =  1𝑈𝐸2  − − − − − − 𝑈𝐸𝑛 = ⋃ 𝐸i

 
i−1

 

Having introduced the concept of a sample space, we now define the probability 
of an event. 
Let us consider the simple case in which Ω has a finite number of points and all 
the outcomes are equally likely. Let A be any subset of Ω. Then we define the 
probability of the event A to be 
P (A) = n(A) 
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n(Ω) 

 

Example I: (a) An unbiased die is rolled write down the sample space for the 
experiment (ii) n coins are tossed, what is the sample space? 
Solution 
(i) Ω (Die) = {1,2,3,4,5,6} 

n (Ω) = 6 
(ii) Ω(Coin) = *H,T+ 

n(Ω) = n(2)=2n 

 

Example 2: Two coins are tossed. What is the probability that (a) two head 
appears (b) at least one tail appears. 
Solution 
Ω = *HH, HT, TH, TT+ 
n (Ω) = 4, n(HH) = 1 
P (HH) = 1/4 
It is easy to verify that: 
i.        O ≤ P(A) ≤ = 1 and (ii) P(Ω) = 1, P (Ø) = 0 
E1 and E2 are called independent event. If P (𝐸1

 

𝑛

 

𝐸2) = (𝐸1) 𝑃(𝐸2)

 

In other words, if the probability of the simultaneous occurrence of two events 
is the product of their individual probabilities, then they are independent 
events. 

3.1.2

 

Elementary Combinatorial

 

We begin by stating the multiplication rule. 

Multiplication Rule

 

If there are m ways in which an event U can take place, and n ways in which an 
independent event V can occur, then there are mn ways in which the two events 
can occur jointly. An alternative formulation of this result is that if an operation 
can be performed in m ways and after it is performed in any one of these ways, 
a second independent operation can be performed in n ways. Then the two 
operations can be performed in m by n ways. 
Example 3: Four coins are flipped in succession. Find the total number of 
possible outcomes. 
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𝑟

 

A permutation is any arrangement of a set of objects in a definite order. The 

number of permutation of n elements taken r at a time is 
𝑛!

 

(𝑛−𝑟)!

 

It is denoted by the symbol 
𝑛

𝑟Combinatorial. 

 

A combination is a selection of n distinct objects without regard to order. The 

number of combination of n element taken r at a time is 
𝑛!

 

(𝑛−𝑟)! 𝑟!

 

it is denoted 

by 
𝑛

𝑟

 

or simply 
𝑛

These are just the binomial coelficients because they appear to newtons 
binomial expansion 

 

(𝑥

  

+ 𝑥

  

)𝑛  = 𝑥

  

+ 𝑛𝑥

 

𝑛−1𝑥

 

𝑛

 

+ … . + 𝑥𝑛 = 
𝑛

   

𝑥n−r𝑥r

 

1 2 1 1 2

 

2

 

∑

 

.
𝑟

/   1

 

2

 

𝑟=0

 
 

Where n is a positive integer 
Example 4: Seven physicists assembled for a meeting shake hands with one 
another. How many handshakes take place? 

Solution 
This is equal to the number of ways of choosing two physicist from a set of 
Seven, which is 

7
2

 

7! 
= 

2! 7 − 2 ! 

7! 
= 

2! 5! 

7 × 6 × 5! 
= = 21 

2 × 1 × 5! 

 

 

 

 

Solution 
There are two possible outcomes head (H) or Tail (T) fit each case, Hence, the 
total number of possible outcomes= 2 × 2 × 2 × 2 = 16. 
When we are dealing with a large collection of objects, it is often necessary to 
complete the number of permutation and combinations of the objects. 

PERMUTATIONS 
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2

 

1

 

particles whose properties fall within a given range. In general, each macrostate 
contains a large number of microstates. Examples: Imagine a gas consisting of 
just 2 molecules. We want to consider whether the molecules are in the left or 
right half of the container. 

 
 

 

There are 3 macrostates molecules on the left, both on the right, and one on 
each side. 

3.2 Entropy and Probability 
(A statistical view) 
Entropy ~ a measure of the disorder of a system 
A state of high order = low probability 
A state of low order = high probability. 

In an irreversible process, the universe moves from a state of low probability to 
a state of higher probability. 
We will illustrate the concepts by considering the free expansion of a gas from 
volume  i  to  volume𝑉f .  The  gas  always  expands  to  fill  the  available  space.  It 
never spontaneously compresses itself back into the original volume. 
First two definitions: 

Microstate: A description of a system that specified the properties (Position 
and/or momentum, etc) of each individual particle. 

Macrostate: A more generalized description of the system, it can be in terms of 
macroscopic quantities, such as P and V, or it can be in terms of the number of 
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There are 4 microstates: 
LL, RR, LR, RL 

How about 3 molecules? Now we have: 
LLL, (LLR, LRL, RLL), (LRR, RLR, RRL), RRR 

 

(all L) (2L, 1R) (2R, 1L) (all R) 
i.e. 8 microstates,, 4 macrostates. 

 

How about 4 molecules? Now there are 16 microstates and 5 macrostates. 
(all L) (3L, 1R) (4C, 2R) (1L, 3R) (all R) 

     

1 4 6 4 1 
Number of microstates. 

In general N W M 
1

 

1

        

1

 

2

 

2

 

1

 

2

 

1

       

2

 

4

 

3

 

1

 

3

 

3

 

1

      

3

 

8

 

4

 

1

 

4

 

6

 

4

 

1

     

4

 

16

 

5

 

1

 

5

 

10

 

10

 

5

 

1

    

5

 

32

 

6

 

1

 

6

 

15

 

20

 

15

 

6

 

1

   

6

 

64

 

7

 

1

 

7

 

21

 

35

 

35

 

21

 

7

 

1

  

7

 

128

 

8

 

1

 

8

 

28

 

56

 

70

 

56

 

28

 

8

 

1

 

8

 

256

 

 

2N

 9

 

 

N+1

 

This table was generated using the formula # of permutations for picking n 
items from N total: 

W𝑁.𝑛

 

= 
𝑁! 

𝑁! (𝑁 − 𝑛)! 
i. 𝑒. W6.2

 

= 
6! 

2! 4! 
= 15 

“Multiplicity” 
Fundamental Assumption of Statistical Mechanic: 
All microstates are equally probable. 

 

Thus, we can calculate the likelihood of finding a given arrangement of 
molecules in the container. 
Thus, events such as the spontaneous compression of a gas (or spontaneous 
conduction of heat from a cold body to a hot body are not impossible, but they 
are so improbable that they never occur. We can relate the # of microstates W 
of a systems to its entropy S by considering the probability of a gas to 
spontaneously compress itself into a smaller volume. If the original volumes is 
𝑉i , then the probability of finding N molecules in a smaller volume 𝑉f is 
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i

i

𝑃𝑟𝑜𝑏𝑎𝑏i𝑙i𝑡𝑦 = 
Wf⁄

 

i

 
𝑁

 

= (
𝑉f⁄

 

,

 

 

 

𝑙𝑛
 
(
Wf⁄W , = 𝑁𝐼𝑛

 
(
𝑉f⁄𝑉

 
, = 𝑛𝑁𝐴

 
𝑙𝑛

 
(
𝑉f⁄𝑉

 
,
 

i i

 

i

 
 

 

We have seen for a free expansion that ∆𝑆 = 𝑛𝑅𝐼𝑛 (
𝑉f⁄ , 

 So 

∆𝑆 = (𝑅⁄

 

) 𝑙𝑛 (
Wf⁄W , = 𝐾𝑙𝑛 (

Wf⁄W ,
 𝐴

 

i

 

i

 

 
Or 

𝑆f − 𝑆i  = 𝐾

 

𝑙𝑛

 

(Wf) − 𝐾𝑙𝑛 (Wi) 

 
Thus, we arrive at an equation first deduced by Ludwig Boltzmann, relating the 
entropy of a system to the number of microstates. 

𝑆 = 𝐾𝑙𝑛 (W) 
He was so pleased with this relation that he asked for it to be engraved on his 
tombstone. 

3.3

 

Concept of Statistical Mechanic

 
Statistical mechanics provides a framework for relating the microscopic 
properties of individual atoms and molecules to the macroscopic bulk 
properties of materials that can be observed in everyday life, therefore 
explaining thermodynamics as a result of classical and quantum-mechanical 
description of statistics and mechanics at the microscopic level. 

 
Statistical Mechanics provides a molecular level interpretation of macroscopic 
thermodynamic quantities such as work, heat, free energy, and entropy. It 
enables the thermodynamic properties of bulk materials to be related to the 
spectroscopic data of individual molecule. This ability to make macroscopic 
predictions based on microscopic properties is the main advantaged of 
statistical mechanic over classical thermodynamics. Both theories are governed 
by the second law of thermodynamics through the medium of entropy. 
However, entropy in thermodynamics can only be known empirically, whereas 
in statistical mechanical, it is a function of the distribution of the system on its 
microstates. 

W
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The essential problem in statistical thermodynamic is to calculate the 
distinction of a given amount of energy E over N identical systems. The goal of 
statistical thermodynamics is to understand and interpret the materials in term 
of the properties of their constituent particles and the interactions between 
them. 
This is done by connecting thermodynamic functions to Quantum-Mechanical 
Equations. Two central quantities in statistical thermodynamic are the 
Boltzmann factor and the partition function. 
Lastly, and most importantly the formal definition of entropy of a 
thermodynamic system from a statistical perspective is called statistical 
entropy, and is defined as:  

Where 
𝑆 = 𝐾𝐵𝐼𝑛 Ω 

 
𝐾𝐵 = Boltzmann’s constant 1.38066 𝑥 10−23 𝐽𝐾−1 𝑎𝑛𝑑 Ω is the 

number of microstates corresponding to the observed thermodynamic 
macrostate. This equation is valid only if each microstate is equally accessible 
(each microstate has an equal probability of occurring). 
In conclusion the, concepts of statistical mechanics which are critically 
important and underline all other results in order of dependence are the 
following. 
1. Conservation of energy 
2. Equilibrium, Temperate and Entropy 
3. The Boltzmann distribution 
4. Multiplicity defies energy (or entropy attracts heat) 

3.4 Statistical Ensembles 
The modern   formulation   of   statistical   mechanics   is   based   on   the 
description of the physical system by an ensemble that represents all 
possible configurations of the system and the probability of realizing each 
configuration. 
Each ensemble is associated with a partition function that, with 
mathematics manipulation, can be used to extract values of 
thermodynamic properties of the systems. According to the relationship 
of the system to the rest of the universe, one of the three general types of 
ensemble may apply in order of increasing complexity. 

- Micro canonical Ensemble: This describes a completely isolated system, 
having constant energy as it does not exchange energy or mass with the 
rest of the universe. 

- Canonical Community: This describes a system in thermal equilibrium 
with its environment. It may only exchange energy in the form of heat 
with the outside. 
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Summary

 

of

 
Ensembles

 

us

 

in

 
statistical

 

mechanics

 

Ensembles

 
Micro

 

canonical

 

Canonical

 

Grand

 

Canonical

 Constant

 

Variable

 

𝐸,

 

𝑁,

 

𝑉°𝐵

 

𝑇,

 

𝑁,

 

𝑉°𝐵

 

𝑇,

 

𝜇,

 

𝑉°𝐵

 
Microscopic

 
Features

 

Number

 

of

 
Microstates

 

Canonical

 
Partition

 
Function

 

𝑍

 

=

 

∑

 

𝑒−𝛽∈𝐾

 

𝐾

 

Grand

 

Canonical

 
Partition

 

Function

 
Ξ

 

=

 

∑

 

𝑒−𝛽(∈𝐾−𝜇𝑁𝐾)

 
𝑘

 Macroscopic

 
Function

 

𝑆

 

=

 

𝐾𝛽𝐼𝑛fi

 

𝐹

 

=

 

−𝐾𝛽𝑇

 

𝐼𝑛

 

𝑍

 

𝐹

 

−

 

𝐺

 

=

 

−𝑃𝑣

 
=

 

−𝐾𝛽𝑇

 

𝐼𝑛

 

Ξ

 
 

Micro

 

canonical

 

Ensemble:

 

In

 

this

 

ensemble

 

N,

 

V

 

and

 

E

 

are

 

fixed.

 

Since

 

the

 

second

 

law

 

of

 

thermodynamics

 

applies

 

to

 

isolated

 

systems,

 

the

 

first

 

case

 

investigated

 

will

 

correspond

 

to

 

the

 

case

 

of

 

Micro

 

canonical

 

ensemble

 

describes

 

an

 

isolated

 

system.

 

The

 

entropy

 

of

 

such

 

a

 

system

 

can

 

only

 

increase,

 

so

 

that

 

the

 

maximum

 

of

 

its

 

entropy

 

corresponds

 

to

 

an

 

equilibrium

 

state

 

for

 

the

 

system.

 

Because

 

an

 

isolated

 

system

 

keeps

 

a

 

constant

 

energy,

 

the

 

total

 

energy

 

of

 

the

 

system

 

does

 

not

 

fluctuate.

 

Thus,

 

the

 

system

 

can

 

access

 

only

 

those

 

of

 

its

 

micro-states

 

that

 

correspond

 

to

 

a

 

given

 

value

 

E

 

of

 

the

 

energy.

 

The

 

internal

 

energy

 

of

 

the

 

system

 

is

 

then

 

strictly

 

equal

 

to

 

its

 

energy.

 

Let

 

Ω

 

(E)

 

be

 

the

 

number

 

of

 

microstates

 

corresponding

 

to

 

the

 

value

 

of

 

the

 

system’s

 

energy.

 

The

 

macroscopic

 

state

 

of

 

maximal

 

entropy

 

for

 

the

 

system

 

is

 

the

 

one

 

in

 

which

 

all

 

micro-states

 

are

 

equally

 

likely

 

to

 

occur

 

with

 

Probability

 

I/Ω(E),

 

during

 

the

 

system

 

fluctuations.

 

𝗇(∈)

 𝑆

 

=

 

−𝐾𝐵

 

∑

 

{

  

1

 

fi(∈)

 

i=1

 

𝐼𝑛

  

1

 

}

 

fi(∈)

 =

 

𝐾𝐵

 

𝐼𝑛

 

(fi(∈))

 
 

Where,

 

S

 

is

 

the

 

system

 

entropy

 

and

 

𝐾𝛽

 

is

 

Boltzmann’s

 

constant.

 

Canonical

 

Ensemble:

 

Main

 

article

 

in

 

canonical

 

ensemble

 

N,V

 

and

 

T

 

are

 

fixed.

 

Invoking

 

the

 

concept

 

of

 

the

 

canonical

 

ensemble,

 

it

 

is

 

possible

 

to

 

derive

 

the

 

probability

 

Pi

 

that

 

a

 

macroscopic

 

system

 

in

 

thermal

 

equilibrium

 

with

 

its

 

environment,

 

will

 

be

 

in

 

a

 

given

 

microstate

 

with

 

energy

 

Ei

 

according

 

to

 

the

 

Boltzmann

 

distribution.

 

- Grand Canonical: Used in open systems which exchange energy and mass 
with the outside?
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i

 
 

Where 

𝑒−𝛽𝐸i 

𝑃i = 
∑j𝑚𝑎𝑥 𝑒−𝛽𝐸i

 

𝛽 = 
1

 
𝐾𝐵𝑇 

The temperature T arises from the fact that the system is in theronal 
equilibrium with its environment. The probabilities of the various microstate 
must add to one and the normalization factor in the denominator is the 
canonical partition function 

i𝑚𝑎𝑥 

𝑍 = ∑ 𝑒−𝛽𝐸i 

i 

where Ei are the energy of the ith microstate of the system. The partition 
function is a measure of the number of states accessible to the system at a given 
temperature. 
The article canonical ensemble contains a derivation of Boltzmann factor and 
the form of the partition function from first principles. 
To sum up, the probability of finding a system at temperature T is a particular 
state with energy Ei is 

𝑃i = 
𝑒−𝛽𝐸 

 
 

𝑍 
Thus the partition function looks like the weight factor for the ensemble. 

3.5 The distribution function. 
Consider an ideal monoatomic gas made up of N particles enclosed in a 

volume V and having total internal energy U. The state of the system at any time 
t is represented by a point in a 6N dimensional phase space. This means that 

every particle is associated with six dimensional phase space, also called the 

space, Stands for the first letter of molecule. The particles are moving 
independently of each other and the contributions of individual particles 
remain separate. 

To give a microscopic description of the system, we divide the -space into 
cells of volume ℎ3. Recall that in classical statistics, we can choose h as small as 
we like. Each particle will be found to occupy a cell in this network. Suppose the 
cells are numbered 1,2,…..let the energy of a particle in the ith cell be denoted 
by si. Then, we have and 

𝑁 = ∑ 𝑛i − − − −(5.6.1) 

i 

𝑈 = ∑ 𝑛isi − − − − (5.6.2) 
i 
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𝑛

𝑛 

𝑛 ,𝑛 

The macrostate  (, , ) can be realized  in a number  of different  ways. In order to 
proceed with our argument, we advance the hypothesis that all microstates are 
equally  probable . In other  words , equal  phase  elements  in phase  space  are 
associated  with equal  probabilities  it corresponds  to the assumption  that the 
faces of a die are equally probable. 

 

This hypothesis is known as the postulate of 
equal  a priori  probabilities . The thermodynamic  probability  W is simply  the 
number of ways of placing N distinguishable  objects in cells such that there are 
no objects in the first cell, 𝑛2

 

in the second and so on. This number is given by 
 

W = 
𝑛! 

𝑛1! 𝑛2! − − 
= 

𝑁! 

∏i=1 𝑛i!
 

 

− − − −(5.6.3) 
 

We can easily prove this result by noting that there are . 𝑛 / number of ways of 
i 

chossing ni objects that are to be placed in the first cell. Then we will be left 

with  (N-ni)  objects.  Out  of  these  (N-ni)  objects  there  are  .𝑛−𝑛i/  ways  of 
2 

chossing 𝑛2 objects to be placed in the second cell. We can continue in this 
fashion till all objects are placed in given cells. Then the total number of ways 

W = (
𝑁

* (
𝑁 − 𝑛1

* (
𝑁 − 𝑛1 − 𝑛2

* − − − 1 − − − (5.6.4) 

𝑛i 𝑛2 

W = 
𝑁! 

(𝑁 − 𝑛i)! 𝑛i! 

𝑛3 

(𝑁 − 𝑛i)! 
 

 

(𝑁 − 𝑛i − 𝑛2)𝑛2! 

(𝑁 − 𝑛i − 𝑛2)! 
 

 

(𝑁 − 𝑛i − 𝑛2 − 𝑛2)! 𝑛3! 

= 
𝑁! 

𝑛1! 𝑛2! 

 
− − − −(5.6.5) 

Symbolically, we write this as . 𝑁 
1    2 

/ and call it a multinomial coefficient. We 

know that equilibrium corresponds to maxi maximum of the thermodynamic 
probability W. since 𝑆 = 𝐾𝐵𝑙𝑛W, it is more appropriate to look at 𝑙𝑛W rather 
than W itself. 
(Since 𝑙𝑛W is a monotonically increasing function of W, its extreme point will 
coincide with those of W) 
By taking the loge (𝑙𝑛) of the least equation, we have 

 

( 0𝑔𝑒 𝑙𝑛W =
 𝑙𝑛 𝑁!  

𝑙 (𝑛1! 𝑛!) 
 

𝑙𝑛𝑤 = 𝑙𝑛𝑁! − s𝑙𝑛 𝑛i! − − − − − (5.6.6) 

*
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For most systems of practical interest, N is a very large number. By the same 
reasoning, most of the nis will be sufficiently large so that we can simplify the 
relation using stirling formular. 

𝑙𝑛𝑥! = (𝑙𝑛𝑥 − 1) − − − −(5.6.7) 

For small 𝑛i, 𝑙𝑛 𝑛i! will be small and hence not of any consequence. By inserting 
the stirling formula in eqn (5.6.7) into eqn (5.6.6) the result is 

𝑙𝑛𝑤 = 𝑁𝑙𝑛 𝑁 − 𝑁 − ∑(𝑛i𝑙𝑛 𝑛i − 𝑛i) 

i 

= 𝑁𝑙𝑛𝑁 − ∑ 𝑛i𝑙𝑛 𝑛i − − − (5.6.8) 
i 

Since s𝑛i 
=   

You would recall that we set our goal to determine the set (ni) which 
maximizes 𝑙𝑛W. The condition for maximum probability is 𝛿𝑙𝑛𝑤 = 0 
We now calculate a small change in 𝑙𝑛𝑤 and equate it to Zero. This gives 

𝛿𝑙𝑛 W = − ∑ 𝑛i𝛿𝑙𝑛 𝑁i − ∑(𝑙𝑛 𝑛i) 𝛿𝑛i = 0 − − − −(5.6.9) 

This expression has been derived by assuming that N and U are constant 

𝛿𝑁 = ∑ 𝛿𝑛i = 0 − − − − − −(5.7.0) 

i 
 

𝛿𝑢 = ∑ ∑i 𝛿𝑛i = 0 − − − − − (5.7.1) 

i 

By equating the RHS of Eqn (5.6.9) to zero we have. 

∑ 𝑛i𝛿 (𝑙𝑛𝑛i) = ∑ 𝑛i (1⁄𝑛i+ 𝛿𝑛i = ∑𝛿𝑛i = 0 
i i 

Then equation (5.6.9) reduces to 

∑ 𝑙𝑛𝑛i𝛿 𝑛i = 0 

To accommodate the conditions embodies in eqn (5.70) and (5.7.1) we employ 
the method of langrage multipliers by Xply (5.70) by 𝖺 and (5.71) by 𝛽and this 
will lead to 

∑(𝑙𝑛 𝑛i+𝖺 +𝛽𝗌i
) 𝛿𝑛i = 0 − − − − − (5.7.2) 

i 

Since the variations 𝛿𝑛i are arbitrary, this relation will hold only if the 
coefficient of each term vanishes. Hence, we must have 

𝑙𝑛 𝑛i +𝖺 +𝛽𝑒i = 0 
Or 

𝑛i = 𝑒−𝖺−𝛽𝑒i 

 
1 

= 
𝐴 

𝑒 

 

−𝛽𝗌i − − − − − (5.7.3) 
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Where we have put A = 𝑒𝖺 -------(5.7.4) equation (5.7.3) constitutes what is 
called the Maxwell – Boltzmann distribution. 
You will note that we wished to know the set (𝑛i) which characterised the 
equilibrium state. But we find that eqn (5.7.3) contains two unknown langrange 
multipliers 𝖺 and 𝛽 We must now evaluate them in terms of known quantities. 
Evaluation of langrange multipliers: The partition function. 
The constant A (or 𝖺) is determined using the normalization condition. The 
probability that the state with energy si is occupied and is given by eqn (5.7.3) 
with A defined by eqn (5.7.4). Since∑ 𝑛i = 𝑁, 
We can write. 

∑ 𝑛i = 𝑁 = 
1 

∑ 𝑒−𝛽𝐸i 

𝐴 

Or 

 

If we now define 

i 
 

1 
 

 

𝑁𝐴 

i 

 
 

∑ 𝑒−𝛽𝐸i = 1 

i 

𝑍 = ∑ 𝑒−𝛽𝗌i − − − −(5.7.5) 

We can write the degeneracy parameter A as 

𝐴 = 
𝑍 

− − − − − (5.7.6) 
𝑁 

The sum∑𝑒(−𝛽si), denoted by Z, is called the single partition function. It is 

called the phase integral. 
 

The name partition function is due to Darwin and Fowler (1922) which arises 
from the observation that when systems 1 and 2 are in thermal contact, the 
partitioning of energy between them is determined by the corresponding 
partition functions Z1 and Z2. 

 
Planck (1921) called ∑𝑒−𝛽𝑒i   Zustandssume (sum over states) and denoted it by 
Z we shall follows Planck’s rotation here. It is important to remark that 
partition function occupies a pivotal position in statistical mechanics because 
all thermodynamics functions can be written in terms of Z and also important to 
remark that the partition function characterizes a sum over discrete spectrum. 
But in classical physics, the energy is taken to be continuous. 

 
However, if the levels are very closely spaced even the discrete sum becomes a 
continuum and it is possible to replace the summation, and it is possible to 
replace the summation by integration as illustrated in the following examples. 
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3 

Example 5: Obtain Maxwell’s law of distribution of velocities from the distn 

given in eqn (5.7.3) with 𝐴 = Z 
𝑁 

 

Solution: 1 
𝛽 i 

 

𝑛i = 
𝐴 

𝑒 − 
𝑒 −𝛽 i 

𝐴 = 
𝑛i 

𝑎𝑛𝑑 

𝐴 = 
𝑍

 
𝑁 

 

By comparism i.e( 𝑒−
𝛽 i   

= Z) 𝑛i = exp .−𝛽 
 

   

= Z/ 
 

 

𝑛i 𝑁 𝑁 𝗌i 𝑁 

For an ideal monatomic gas 𝑍 = 𝑉 
ℎ 

(2𝜋𝑚𝐾𝐵𝑇)3⁄2 

Hence, using the normalization condition 
s𝑛i 

= 1
 

𝑁 
We get 

1 
∑ 𝑒 −𝛽𝗌i = 1 

𝑍 
i 

If the energy states are very closely spaced, we can replace summation by 
integration: 

 

∑ 𝑒 −𝛽𝗌i Ξ ∫ ∫ ∫ ∫ ∫ 𝑒 −𝛽𝗌      
 

𝑑 𝑑𝑝 
 

𝑑𝑝 = 
𝑉  

∫ ∫ ∫ 𝑒 −𝛽𝗌 𝑑𝑝 
 

𝑑𝑝 
 

𝑑𝑝 

i 
v p 

𝑥 𝑦 𝑧 𝑦 𝑧 ℎ3 p
 𝑥 𝑦 𝑧 

 

Where we have replaced ∫ ∫ ∫ 𝑑𝑥 𝑑𝑦 𝑑𝑧 by the ratio of volume in the cartesian 

space to the volume of one cell (= ℎ3). Morever if we asume azimuthal 

symmetry, we can write ∫ ∫ ∫ 𝑑𝑝𝑥 𝑑𝑝𝑦 𝑑𝑝𝑧 = ∫ 4𝜋𝑝2𝑑𝑝 
Hence, 1 . 𝑉 / 4𝜋∫ 𝑒 −𝛽𝗌 𝑃2𝑑𝑝 = 1 

  

Z   ℎ3 
 

On substituting for Z, we get 4𝜋 
(2𝜋𝑚𝐾𝐵𝑇)

3⁄2 
𝐼 = 1 (1) 

Where  
∞ 

I = ∫ exp(−𝛽s)𝑝2𝑑𝑝 
0 

To evaluate this integral, we write p=mv so that dp=mdv. Also we know that 

s = (1⁄2+ 𝑚𝑣2.Hence 
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=

∞ 
𝑚𝑣2 

𝐼 = 𝑚3 ∫ 𝑒𝑥𝑝 

0 

(− 
2𝐾𝐵 𝑇

) 𝑉2𝑑𝑣 

 

Inserting this in eqn (1), we get 
3⁄ 

∞ 
2

 

4𝜋 ( 
𝑚 

* 
2𝜋𝐾𝐵𝑇 

2 

∫ 𝑒𝑥𝑝 

0 

(− 
𝑚𝑣 

2𝐾𝐵𝑇 
) 𝑉2𝑑𝑣 = 1 

 

Hence, the number of molecules having speeds between V and V + dv is given 
by 

𝑚 3⁄2 𝑚𝑣2 
𝑑𝑁𝑉 = 4𝜋𝑁 (

2𝜋𝐾𝐵𝑇
* 

2 

𝑒𝑥𝑝 (− 
2𝐾𝐵𝑇

)   𝑣 (2) 

This is Maxwell’s law for distribution of speeds. 
 

We now proceed to express thermodynamic variables in terms of partition 
function. To this end, we substitute for 𝑛i from eqn (5.7.3) into eqn (5.6.8). 

 
This gives 

𝑙𝑛 𝑤 = 𝑁 𝑙𝑛 𝑁 − ∑ 𝑛i (𝑙𝑛𝑁 − 𝑙𝑛 𝑍 − 𝛽𝗌i) = 𝑁 𝐼𝑛 𝑍 + 𝛽𝑈 
i 

Now use of Boltzmann relation gives 
𝑆 = 𝑁𝐾𝐵𝐼𝑛 𝑍 + 𝛽𝐾𝐵𝑈 (5.7.7) 

We can use the relation to introduce the concept of temperature by relating 
entropy and internal energy of a system: 

1 ∂𝑠 ( * 
 

  = 
𝑁𝐾𝐵 

(
∂𝑧

*
 

 
  (

∂𝛽
*

 
 

 

+ 𝐾 𝛽 + 𝐾 𝑈 (
∂𝛽

* 
 

 

(5.7.8) 
 

𝑇 ∂𝑢 𝑉 𝑍 ∂𝛽 𝑉 
∂𝑢  𝑉 𝐵 𝐵 ∂𝑢 𝑉 

From eqn (5.7.5), we note that 

(
∂𝑧 

*
 

∂𝛽  𝑉 
= ∑ si 

i 

exp(−𝛽si) (5.7.9) 

On combining eqn (5.7.1) and (5.7.3), we get 

𝖴 = ∑ 𝑛isi = 𝑁/𝑍 ∑ si exp(−𝛽si) 
i i 

Using this result in eqn (5.7.9) we get, 

(
∂𝑧

*
 

∂𝛽 𝑉 
= 

𝑍𝑢 

𝑁 
(5.8.0) 

Combining it with eqn (5.7.8), we get 
∂𝑆 

(
∂𝑢

*
𝑉

 = 𝐾𝐵𝛽 (5.8.1) 

So that 𝛽 = (𝐾𝐵𝑇)−1 (5.8.2) 
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From eqn (5.8.0), we have .6𝑧/ = .6𝑧/ .
6𝛽

/
 = − 1 .

6𝑧 
/
 

 = 
𝑢 Z 

 

6   6   6𝑇   𝑉 𝐾𝐵𝑇2 6   𝐾𝛽𝑇2   
 

Hence, 𝖴= 𝑁𝐾𝐵𝑇2 1 .
6𝑧

/
 = 𝑁𝐾𝐵𝑇2 6 (𝐼𝑛𝑍) (5.8.3) 

Z 6𝑇 𝑉 6𝑇 
 

The Helmholtz free energy, F, defined as 
𝐹 = 𝑈 − 𝑇𝑆 i𝑠 𝑔i𝑣𝑒𝑛 𝑏𝑦 𝐹 = −𝑁𝐾𝐵𝑇 𝐼𝑛 𝑍 (5.8.4) 

 

Since 

𝑆 = 𝑁𝐾𝐵 𝑙𝑛 𝑍 + 
𝑈
 
𝑇 

 

(5.8.5) 

The pressure exerted by a classical gas is related to Helmholtz free energy 

through the relation 𝑃 = − .6𝐹/ 

So that 
6𝑉   𝑇 

𝑃 = 
𝐾𝐵𝑇𝑁 

𝑍 
(
∂𝑍

*
 

∂𝑉  𝑇 
(5.8.6) 

We have now seen that all the thermodynamic functions can be related to the 
partition function Z. It means that once we evaluate Z, which of course may not 
always be easy, we can readily determine a thermodynamic function of interest 
which will be a subject of discussion of the next unit. 

4.0 SUMMARY 
From this unit the students have learnt the following concepts on statistical 
mechanics. 
- Basic definition of probability terms. 
- Differentiate between probability and entropy 
- State the basic concepts of statistical mechanics 
- Relate Entropy and Thermodynamic Probability by the Relation 

𝑆 = 𝐾𝐵 𝑙𝑛 𝑤 
- State Maxwell Boltzmann Distribution Formula. 
- Express Thermodynamic Variables in Terms of Partition Function. 
- Evaluate Z from any Thermodynamic Function of Interest. 

5.0 CONCLUSION 

As in summary 

Exercise 
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1. Draw the phase space for a linear harmonic oscillator. What will happen if 
we consider the same problem from the point of view of quantum theory? 

2. Consider two systems having 𝑁 and 𝑁′ particles, respectively. Let them be 
brought in thermal contact. Show that 𝛽 is the same for the two assemblies. 

3. Draw the phase space for a particle having energy 𝐸, constrained to move in 
one dimension. 

6.0 Tutor Marked Assignment (TMA) 

1. Consider a system of N particles and a phase space consisting of only two 
cells with energies 𝑂 𝑎𝑛𝑑 ∈ (∈ > 𝑂), respectively. Calculate the 
partition function and the internal energy. 

2. Consider a chain of N links, hanging vertically with a constant weight F 
pulling on the bottom. Each link in the chain has length L, and can be in 
one of 3 positions: left, right or down. Note that this system is simplified 
because it has no kinetic energy (which will leads to having a finite 
maximum energy, even at arbitrarily large temperature). 

Questions: (i) What is the low temperature average vertical length of the 
chain? 

(ii) What is the high temperature vertical length? 
3. What is the average length at temperature T? 

7.0 References/Further Reading 
1. Eric, L. M. (2023). Funky Statistical Mechanics Concepts. [Unpublished 

manuscript]. 
 

2. Huang, K. (1987). Statistical Mechanics. John Wiley & Sons.. 
3. Rice, O. K. (1967). Statistical Mechanics Thermodynamics and Kinetics. 

W. H. Freeman & Company, San Francisco and London. 
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MODULE 1

 
 

Unit 2.0 The Partition Function

 

1.0 Introduction 
2.0 Objectives 
3.0

 

Main Content 
3.1

 

The Partition Function of an ideal Monatomic Gas. 
3.2

 

The Sacker-Tetrode Formula 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment (TMA) 
7.0 References/Further Reading/Other Resources. 

Unit 2: The Partition Function

 

1.0    Introduction. 
This unit concerns with the Partition Functions which has been previously 
explained in the last unit. Partition function as a normalization factor, 
computing average energy, everything about system. The partition function 
about an ideal Monoatomic Gas are also highlighted and the Sackur-Tetrode 
formaula. 

2.0 Objective 
At the end of this unit stardust should be able to 
- Define Partition Function and its computation for Thermodynamic 

system. 
- Compute the Partition Function of an ideal Monatomic Gas and workout 

all the Thermodynamic functions. 
- Point out the flow in the expression for entropy. 
- calculate the Rotational and Vibrational contributions to heat capacities 

of diatomic gases. 
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3.0

 

Main Content 

3.1

 

The Partition Function Z

 

The Partition Function is defined for all systems for which the Boltzmann 
distribution applies from single atoms to macroscopic systems. In other words, 
the partition function can be defined for all systems in thermal equilibrium with 
a heat bath. 
i.e. 𝑍 = ∑𝑔i𝑒 −𝛽

  

𝑔 = degeneracy of the energy level 

𝛽 = 1⁄𝐾𝑇

 

(Adiabatic Bulk Modulus). 

In quantum mechanics 𝐸i = energy. 

 

The probability P(𝐸i) that a system will be in a state ith energy 𝐸i is given by 
𝑃

 

(𝐸i) = 𝑛i = 1

 

𝑔i𝑒 −𝛽

 

i

 

𝑁 Z

 

The mean energy Ē = ∑ 𝑃i𝐸i = ∑si

 

1

 

Ē = 
1

 

𝑍

 

𝑒 −𝛽

 

i

 

∑ si𝑒−𝛽

 

i

 

𝑆

 

𝑃𝑟 = 𝐺(𝐸𝑜) − 𝛽(𝐸i) 

𝑇𝑜𝑡𝑎𝑙

 

𝑃𝑟𝑜𝑏𝑎𝑏i𝑙i𝑡𝑦 = 1 

s 𝑃𝑟  =  ∑𝐺𝑒𝑆/𝐴(𝐸𝑜)𝑒 −𝛽(𝐸i)  =  1 

s 𝑃𝑟 = 𝐺𝑒𝑆/𝐾(𝐸𝑜)∑𝑒 −𝛽(𝐸i) = 1

 

𝐺 = 
1

 

𝑒𝑆/𝐾 ∑𝑒−𝛽𝐸r

 

(𝑒𝑆/𝐾−𝛽𝐸r)

 

𝑒 −𝛽𝐸r 

s 𝑃𝑟 = 
∑𝑒−𝛽𝐸r

 

1 
3 ∑𝑃𝑟 = 

2
𝑒−𝛽𝐸r
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 The expression gives us the probability that a system when placed in a heat 
bath the system should be in a particular state 𝐸i. 

Recall that Boltzmann distribution gives the relative probability of a system in 
thermal equilibrium with a heat bath, to be in a single microstate of given 
energy 

Pr(𝑚i𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒
 
𝑜ƒ 𝑒𝑛𝑒𝑟𝑔𝑦

 
𝐸i) = exp(−𝐸i/𝐾𝑇) 

That is PF is the “sum of relative probabilities of all the microstates” and it is 
applicable as listed below: 
1.

 
Partition function as a normalization factor. 

2.
 

Using PF to compute average energy. 
3.

 
Partition function tell us all 

4.
 

Partition function and free energy. 

The Partition Function as a Normalization Factor: As it is shown on the 
Boltzmann distribution, Z (𝛽) is the sum of relative probabilities of all the 
microstates or equivalently, the sum of the relative probabilities of each energy 
value. It is defined only for a system in thermal equilibrium (which means it can 
endanger energy with a temperature bath). 

 𝑎𝑙𝑙

 

𝑠𝑡𝑎𝑡𝑒𝑠

 (𝛽) = ∑ exp(−𝛽𝐸𝑠) = 
𝑠=1 

𝑎𝑙𝑙

 

𝑒𝑛𝑒𝑟g𝑦

 𝑙𝑒𝑣𝑒𝑙

 ∑ gj exp(−𝛽𝐸j)
 j=1

 Where gj =multiplicity of even energy Ej

 𝑎𝑙𝑙

 

𝑒𝑛𝑒𝑟g𝑦

 𝑙𝑒𝑣𝑒𝑙𝑠

 Z(𝛽) = ∑ Rel Fr(𝐸j)
 j=1

 
Note that for a system held in a heat both, the system energy is a variable (not a 
constraint). The system may have more energy than the average, or less, all the 
way down to zero. That is very unlikely for most systems, but for mathematical 
expedience it is still counted as a possibility in (𝛽). 
Since the partition function is a sum of relative probabilities. 

 The partition function includes an arbitrary multiplicative constant. 

 This arbitrariness also reflects the arbitrary zero of energy. Changing the zero 
energy simply multiplies the PF by a constant with no effect on the physics. 
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The PF serves as the (inverse of the) normalization factor to convert the 
relative probability of the system being in some microstate, or having some 
energy, into an absolute probability: 

Pr (State = S) = 
 
 
 
 

Pr (Energy = E) 

Rel Pr (𝐸𝑠) exp (−𝛽𝐸𝑠) 

 

𝑎𝑙𝑙

 

𝑠𝑡𝑎𝑡𝑒𝑠

 

=

 

∑Rel Pr (Stater) 
Z(𝛽)

 

𝑟=1

 
 

 

Rel Pr (E) Rel Pr (E) 
𝑎𝑙𝑙𝑒𝑛𝑒𝑟g𝑦

 

𝑙𝑒𝑣𝑒𝑙

 

=

 

∑Rel Pr (𝐸j) 
Z(𝛽)

 

j=1

 

But this is trivial, and simply uses the letter Z for something that is already well 
known. 

 

Partition Function For Average energy, and such: another use for Z(𝛽) is to 
compute average energy (this is also trivial and provides no new physical 
insight) Recall from basic statistics that for any discrete random variable, say E: 
(E) = ∑ Pr (𝐸i) 𝐸i

 

(1) 
 
 

Therefore, for the energy of a system we have: 
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𝑎𝑙𝑙

 

𝑠𝑡𝑎𝑡𝑒𝑠

 

= 𝑎𝑙𝑙

 

𝑠𝑡𝑎𝑡𝑒𝑠

 

(E) = Rel Pr(𝐸
 

) =
 

1 𝑎𝑙𝑙

 

𝑠𝑡𝑎𝑡𝑒𝑠

 
 

 

∑Pr (𝐸𝑠) 
  

=
 

𝑛=1

 ∑
 

𝑠=1 
Z(B) 

𝑠

 

𝐸𝑠

 

Z(𝛽) ∑ e -
 
𝐵s𝑠

 

j=1

 c𝑠

 

 

But purely as a mathematical trick, with no deep physical meaning, we notice 
that the factor 

𝑒−𝛽𝐸

 

𝐸𝑠

 

= 
𝛿

 

𝛿𝛽
 𝑒−𝛽𝐸

 
✑

 
(𝐸) = 

1 

2(𝛽)
 

𝑎𝑙𝑙

 

𝑠𝑡𝑎𝑡𝑒

 
∑–  

∂ 

𝛿𝛽
 𝑒−𝛽𝐸

 

= 
−1 

𝑍(𝛽) 

𝛿
 

 
 

𝛿𝛽
 ∑ 𝑒−𝛽𝐸

 

= 
−1𝛿

 

𝑍(𝛽)𝛿𝛽
 

𝑆=1 

𝑍(𝛽)
 

 

But this gives us nothing new, since the partition function includes all the terms 
needed for the fundamental formula for average value.  

From eqn (1) above we could have more easily computed the average energy 
from the fundamental formular. 

− 1 𝛿
 

 
 

𝑍(𝛽)𝛿𝛽
 𝑍

 
(𝛽) = 

𝛿 

𝛿𝛽
 𝑙𝑛

 
𝑍 (𝛽) 

 

This has the advantage, however that 𝑙𝑛 (𝛽) Ξ free energy, so there is some 
physical significance to this and it leads directly to 

(𝐸) = 
−𝛿 

𝛿𝛽
 𝑙𝑛

 
𝑍

 
(𝛽) = 

𝛿 

𝛿𝛽
 𝐴 (𝛽) 

Where A (𝛽) free energy of the system. 

Example: Average energy 

Pr(𝐸 =  𝐸j) = 
𝑔j𝑒𝑥𝑝𝛽𝐸j 

∑𝑎𝑙𝑙

 

𝑒𝑛𝑒𝑟g𝑦

 

𝑙𝑒𝑣𝑣𝑒𝑙

 

𝑔j𝑒𝑥𝑝
 
(𝛽𝐸j)

 
= 

𝑔j𝑒(−𝛽𝐸j)
 

𝑍 (𝛽)  

𝑎𝑙𝑙

 

𝑒𝑛𝑒𝑟g𝑦

 

𝑙𝑒𝑣𝑒𝑙𝑠

 

(𝐸) = ∑ 𝐸 j Pr(𝐸 = 𝐸j) = 
𝐸j𝑔j𝑒𝑥𝑝 (−𝛽c) 

𝑍 (𝛽) 
j−1

 

= 
−1𝛿

 

𝑍(𝛽) 𝛿𝛽
 𝑍(𝛽) = − 

𝛿 

𝛿𝛽
 

 

𝑙𝑛
 
𝑍(𝛽) 

 

Partition Function Tells All: 
In the end, given the partition function (𝛽) for all values of 𝛽, we can compute 
every (thermodynamic) thing that is to know about the system. That is a system 
is fully characterized by its partition function and by its energy density of 
states. 

j=1
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𝐸𝑚i𝑛

 

Therefore, knowing the partition function and knowing the density of states are 
equivalent. 
How are the two related? 
Recall the PF for continuous systems: - 

 

𝑍

 

(𝛽) Ξ ∫
∞

 

𝑑(𝐸) exp(−𝛽𝐸) Where 

𝑔

 

(𝐸) Ξ Energy density of states. But this is the definition of the Laplace 
transform of (𝐸), with transform variable 𝛽. Recall the Laplace transform is 
uniquely related to the original function. Therefore the 𝑃𝐹 (𝛽)is the Laplace 
transform of the density of states 𝑔(𝐸)so knowledge of one is equivalent to 
knowledge of the other. But in practice, you usually need to know 𝑔

 

(𝐸) to find 
the partition function. 
Example: A zipper has 𝑁

 

» 1 links. Each link has two states: closed with energy 
O, and open with energyG. The zipper can only unzip from the left and the 5th 

link cannot open unless all of the links to its left (1, 2, − − − − − − 𝑆 − 1) are 
already open. 
(a)

 

Find the partition function for the zipper. 
(b)

 

Find the mean number of open links. 
Evaluate your result in both the high and low temperature limit. 

𝑎𝑙𝑙

 

𝑠𝑡𝑎𝑡𝑒𝑠

 

𝑁

 

𝑁

 

a.   (𝛽) = 
∑ exp(−𝛽𝐸𝐾) =   ∑ exp(−𝛽𝐸) =  ∑,exp(−𝛽s)-S

 

Use 

𝑘

 

 

𝑛−1

 

∑ 𝑎𝑟i = 𝑎 =

 

i−0

 

 
 

1 − 𝑟𝑛

 
 

 

1 − 𝑟

 
𝑠=0 

 

 

→ 𝑍

 

(𝛽) = 

𝑠=0 

 

1 − 𝑒((−𝑁 + 1)𝛽s) 

 
 

1 − 𝑒(− 𝛽s) 

(𝑆) = 
(𝐸) 

= 
−1 ∂ 

 

ln(𝑍(𝛽)) 
s G ∂𝛽

 

= 
−1 

∑ 

∂ 

∂𝛽

 

− ,(1 − exp(𝑁 + 1)𝛽c) − 𝑙𝑛 (1 − exp(− 𝛽c))- 

 

= 
−(𝑁 + 1) exp(−(𝑁 + 1)𝛽G) 

+ 
exp(−𝛽G) 

  

1 − exp(−(𝑁 + 1)𝛽G) 
 

1 − exp(−𝛽G) 
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Mathematically, compute the compute sum 
Z Ξ sum of all state relative probabilities. 

 

Since the most probable state and the complete sum are equivalent, we do 
whatever easier. The equilibrium microstate of a system is simply the most 
likely macrostate in thermal equilibrium; this in turn is that microstate with the 
largest number of likely microstates. i.e. largest product of (Boltzmann factor) x 
(#microstates). 

c𝑚𝑜𝑠𝑡

 

𝑙i𝑘𝑒

  

= 𝑚𝑎𝑥(𝑔j 𝗀−𝛽 j) j 

= 𝑎𝑙𝑙

 

𝑒𝑛𝑒𝑟𝑔i𝑒𝑠

 

Therefore in principle, we can find the equilibrium macrostate by first 
identifying all the macrostates, their probabilities, and the macrostate for each, 
and pick that microstate with the largest number of likely microstates. This is 
only meaningful if the most likely microstate has probability near 1, so that all 
other macrostates are so unlikely they can be ignored. For systems with a large 
number of subsystems, N (e.g. large number of particles), this condition is true 
only one macrostate has any reasonable chance of occurring. 

 

We can now show that for systems with a large number of component 
subsystems (system of large N) there is a single approximation to the 
Helmholtz free energy of the system from the partition function. 

 

𝐴

 

(𝛽) ≈ −𝐾𝑇

 

𝑙𝑛

 

𝑍 (𝛽) (Large System) 

 

Here’s why: for large N, there will be only a few terms in the partition function 
which dominate not only all the other terms, but all the other terms combined. 

 

These few terms all have very nearly the same energy, so they can be lumped 
together as a single multiplicity for that energy. 

 

  
 

  

 
  

  

 

  
 

 

 
 

 

 

 
  

 
  

 

Free Energy and the Partition Function:
When considering the possible macrostate of a system, what really matters is 
the most probable macrostate of a system, and to be meaningful, it must be the 
only macrostate with any significant chance of occurring. 

To compute free energy from the PF, we use the general conclusion that, for 
macroscopic systems, the partition function is dominated by the one most 
probable macrostate. 
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replace the sum of the few 𝑔𝑚 near 𝐸𝑚𝑎𝑥 with a single geff, since they all have 
essentially the same energy, 𝐸𝑚𝑎𝑥. 

𝑚

𝑎𝑙𝑙 𝑒𝑛𝑒𝑟g𝑦
𝑙𝑒𝑣𝑒𝑙

𝑠𝑡𝑎𝑡𝑒 𝑛𝑒𝑎𝑟

𝐸
𝑚𝑎𝑥i𝑚𝑢𝑚

𝐸
(𝛽) = ∑ 𝑔j 𝑒𝑥(−

j=1

j ) ≈ ∑ 𝑔 𝑒𝑥𝑝(− 
𝐾𝑇

𝑚

𝑚𝑎𝑥
)

𝐾𝑇

Where 𝐸𝑚𝑎𝑥 is the dominant energy in the sum. This means that the probability 
of the system being at 𝐸𝑚𝑎𝑥 is essentially 1: 

Pr(𝐸 ) = 
∑ 𝑔𝑚 exp(𝐸𝑚𝑎𝑥/𝐾𝑇) 

= 
𝑍(𝛽) 

= 1
𝑚 𝑍(𝛽) 𝑍(𝛽) 

This is as we expect for systems of large N in thermal equilibrium, there is only 
1 realistic macrostate. Now if Z(𝛽) has only one significant energy 𝐸𝑚𝑎𝑥 than 
we can rewrite Z(𝛽) is Z(T) to follow the reasoning of free energy. We can 
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(𝑇) ≈ 𝑔𝑒ff 𝑒𝑥𝑝 (−𝐸𝑚𝑎𝑥 * 𝑤ℎ𝑒𝑟𝑒 𝐸𝑚𝑎𝑥 i𝑠 𝑡ℎ𝑒 𝑑𝑜𝑚i𝑛𝑎𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑙𝑒𝑣𝑒𝑙 i𝑛 𝑡ℎ𝑒 𝑠𝑢 𝑛. 
𝐾𝑇 

= 𝑒(𝑙𝑛 𝑔𝑒ff) 𝑒𝑥𝑝(−𝐸𝑚𝑎𝑥/ 𝑘𝑇) 

= 𝑒𝑥𝑝 (𝐾𝑇 𝑙𝑛 
𝑔𝑒ƒƒ⁄𝐾𝑇) 𝑒(= 𝐸𝑚𝑎𝑥/𝐾𝑇) 

= 𝑚𝑎𝑥−𝑇𝑆 (𝐸𝑚𝑎𝑥) Where 
𝐾𝑇 

S(c𝑚𝑎𝑥) Ξ 𝐾𝑙𝑛 𝑔𝑒ff i𝑠 𝑡ℎ𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑜ƒ 𝑡ℎ𝑒 𝑚𝑎𝑐𝑟𝑜𝑠𝑡𝑎𝑡𝑒 𝑤i𝑡ℎ 𝑒𝑛𝑒𝑟𝑔𝑦 𝐸𝑚𝑎𝑥. 
 

= 𝑒𝑥𝑝 (− 
𝐴(𝑇)

 
𝐾𝑇 

where A(T)is the free energy of the macrostate at temprature T. 
 

Once again, we are simply quantifying how multiplicity defies energy, as before, 
and measuring multiplicity, in units of energy. 
Solving for A(T) yields the result above. 
(𝑇) ≈ −𝐾𝑇 𝑙𝑛 (𝑇) (large system). 

 
Note that since Z is defined only up to a multiplicative constant, A(T) is defined 
only up to an additive constant, which is always true for energy (free or 
otherwise). Note that for small systems, such as atoms, “temperature” is not 
defined, and therefore, neither is free energy. The above approximation only 
works for large systems, where the thermal equilibrium macrostate is sharply 
defined. 

 
The partition function is calculated for a given set of constraints, just like the 
various kinds of free energies. 

 
For a system constrained as for Helmholtz free energy (fixed T. no work done) 
we compute Z(T) within those constraints, and 𝐴 = − 𝐾𝑇 𝑙𝑛 𝑍 gives Helmholtz 
free energy. If the system had different constraints such as those of Gibbs free 
energy (fixed T and P) then Z(T) is different and 𝐺 = − 𝐾𝑇 𝑙𝑛 𝑍 gives Gibbs 
free energy. 

3.2 The Partition Function of an Ideal Monoatomic Gas 
Consider an ideal monoatomic gas consisting of N particles, each of mass 

m and occupying a volume V. 
 

This means that the energy of the system is wholly translational. That is, the 
potential energy is zero since intermolecular forces are absent. 

)
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𝑥 
𝑥
 

𝑥 
𝑥
 

The energy of a particle in the ith cell is given by 

 
𝑃2 

Gi = 
2𝑚

 

and the single particle partition function is 
−𝛽𝑃2 

𝑍 = ∑ 𝑒−𝛽Gi = ∑ 𝑒𝑥𝑝 

i i 

(− i ) − − − − − (6.2.1) 
2𝑚 

 

If energy is a continuous variable, we can rewrite it as 

𝑍 =  
1 

∫ ∫ ∫ ∫ ∫ ∫ 𝑒𝑥𝑝 [−  
𝛽  

(𝑃2 + 𝑃2 + 𝑃2)] 𝑑𝑥 𝑑𝑦 𝑑𝑧  𝑑𝑝𝑥 𝑑𝑝𝑦 𝑑𝑝𝑧 − −(6.2.2) 

ℎ3 2𝑚 𝑥 
𝑦 𝑧 

 

Integration over the space variable, gives V so that 
∞ 

𝑍 =  
  

∫  ∫ ∫ 𝑒𝑥𝑝 {−  
𝛽 

(𝑃2 + 𝑃2 + 𝑃2)} 𝑑𝑃 𝑑𝑃 𝑑𝑃 
 

  

= (6.2.3) 
ℎ3 2𝑚 𝑥 

−∞ 

𝑦 𝑧 𝑥 𝑦 𝑧 

 

Note that the three integrals are identical and it is sufficient to evaluate any one 
of them. 
Let us consider 

∞ 

I𝑥 Ξ ∫ 𝑒𝑥𝑝 

−∞ 

𝛽 𝑃2 
(− ) 𝑑𝑃 

2𝑚 

 

∞ 𝛽𝑃2 ∞ 𝛽𝑃2 
=   ∫ 𝑒𝑥𝑝 (− 𝑥 ) 𝑑𝑃𝑥 + ∫ 𝑒𝑥𝑝 (− 𝑥 ) 𝑑𝑃2 = (6.2.4). 

2𝑚 
−∞ 0 

2𝑚 𝑥 

 

By putting 𝑃𝑥 = −𝖺 in the first integral, you can easily show that both integrals 
are alike and we can write 

 

∞ 

𝐼𝑥 = 2 ∫ 𝑒𝑥𝑝 
0 

− 𝛽𝑃2 
( ) 𝑑𝑃 = (6.2.5) 

2𝑚 

 

𝛽𝑃2 

If we now introduce a charge of variable by writing 

We find that 

  𝑥 

2𝑚 

𝑃𝑥 

Or 

𝑑𝑃𝑥 = 
𝑚 

𝛽 
𝑑𝑟 

 
𝑑𝑃𝑥 

 
 

 𝑚 
√

2𝛽 
𝑟 1⁄2 𝑑𝑟 = 
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2𝑚 𝛽

and the integral 
 
𝐼𝑥 

 

∞ 

= √
2𝑚 

∫ 𝑒−𝑟𝑟−1⁄2 𝑑𝑟 − − − − − −(6.2.6) 
𝛽 

0 

 
 

is a standard gamma function of order (1⁄2+ if value is √𝜋 so that 

∞ −𝑃2 2𝑚𝜋 
 

1/2 

𝐼𝑥 Ξ ∫ 𝑒𝑥𝑝 ( 𝑥 𝛽) 𝑑𝑃𝑥 = ( * − − − − − − − (6.2.7) 

0 

 

You will obtain the same expression for 𝐼𝑦𝑎𝑛𝑑 𝐼𝑧 hence Eqn (6.2.2) gives 
𝑉 2𝑚𝜋 3/2 𝑉 

𝑍 = 
ℎ3 ( 

𝛽 
* = 

ℎ3 
(2𝑚𝜋 𝐾𝐵𝑇)3/2 − − − −(6.2.8) 

This is the partition function in 𝜇 space for individual particles. Since we are 
discussing a monoatomic gas consisting of N particles the N-particles partition 
function 

 
 

Where 

Thus 

𝑍𝑁 =  ∑ 𝑒−𝛽𝐸i 

i 

 

𝐸i = 𝐸1 + 𝐸2 − − − +𝐸𝑁 

𝑍𝑁 = ∑ 𝑒−(𝐸1 + 𝐸2 + − − − + 𝐸𝑁) 

i 

=  ∑(𝑒−𝛽𝐸i)(𝑒𝛽𝐸2) − − − (𝑒−𝛽𝐸𝑁) 

Within the framework of classical statistics we assume that these particles are 
distinguishable and independent. So we can rewrite it in a compact form as 

𝑁 

𝑍𝑁 = (∑ 𝑒−𝛽 𝐸i+ 
i 

Where Z is given by E (6.2.1), Hence 

=  𝑍𝑁 

𝑍𝑁 = 𝑍𝑁 = 
𝑉𝑁 

ℎ3𝑁 
( 

2𝑚𝜋
*
 

𝛽 

3𝑁⁄2
  
− − − − − −( 6.2.9) 

Having got an expression for the partition function for a N-particle ideal gas, we 
can now calculate for others. 
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𝑉 

{ 3 

)

3.2.1 Thermodynamic Functions. 
You will recall that all thermodynamic functions are related to the P.F via 

equations (5.8.3) to (5.8.6). To proceed with calculation of these functions, we 
first take natural login both sides of eqn (6.2.9). 

And this gives 

𝐼𝑛 𝑍 = 𝑁 𝑙𝑛 𝑉 + 
3𝑁 

𝑙𝑛 (
2𝜋𝑚

* − 
3𝑁 

𝑙𝑛 𝛽 − − − −(6.3.0) 
𝑛 2 

ℎ2 2 

From eqn (5.8.3), we recall that 𝑈 = − .𝑑 𝑙𝑛 Z𝑁/ 
𝑑𝛽 𝑉,𝑁 

Hence, internal energy of 

a N-particle gaseous system is given by 

𝑈 = 
3𝑁 3 

 

2𝛽 
= 

2 
𝑁𝐾𝐵𝑇 − − − − − − − (6.3.1) 

The heat capacity at constant volume is 

𝐶𝑉 
𝛿𝑢 

= (
𝛿𝑇

* 
3 

= 
2 

𝑁𝐾𝐵 − − − − − −(6.3.2) 

We can calculate the average pressure exerted by the gas using the relation. 

𝑃 = 
𝑁 

(
𝛿𝑙𝑛𝑍

*
 

  

 
From eqn (6.3.0), we have 

𝛽 𝛿𝑉 𝛽,𝑁 

𝑃 = 
𝑁

 
𝛽 

1 
(
𝑉

* 

= 
𝑁𝐾𝛽𝑇 

= 
2 𝑈 

  

𝑉 3 𝑉 
This is the familiar ideal gas equation. You will note that neither 
thermodynamics nor kinetic theory of gases enables us to establish its exact 
form. It means that natural explanation of molecular chaos lies in statistical 
arguments, which are more profound. 

 
The Helmholtz free energy expressed in terms of Z is 

𝐹 = −𝑁𝐾𝛽 𝑇 ln 𝑍 

= −𝑁𝐾𝐵 𝑇 𝑙𝑛 
𝑉 
ℎ (2𝜋𝑚𝐾𝐵 𝑇)3⁄2} − − − − − −(6.3.3) 

From the previous limit, you would recall that entropy and partition function 
are connected by the relation 

𝑆 = 𝑁𝐾𝐵 𝑙𝑛 2 + 
𝑈

 
𝑇 

On substituting for in Z and U from eqns (0.2.8) and (6.3.1), we get 
𝑆 = 𝑁𝐾 [𝐼𝑛 𝑉 − 3 𝑙𝑛 ℎ + 

3 
𝑙𝑛 (2𝜋𝑚𝐾 𝑇 + 

3 
𝑙𝑛 𝑇] + 

3 
𝑁𝐾 

𝛽 2 𝐵 2 2 𝐵 
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)

2

(2𝜋𝑚𝐾𝐵𝑇)
3⁄2 3⁄ 

= 𝑁𝐾𝐵 , 
ℎ3 𝑒 2- − − − − − (6.3.4) 

 

This is the classical expression for the entropy of an ideal monoatomic gas. 

3.2.2 Gibbs Paradox 

From eqn (6.3.4), we note that entropy of an ideal gas depends on V, T and N. 
moreover, the functional dependence on volume and temperature is the same 
as obtained from thermodynamic considerations. But we note that as T→S 𝑂𝑘, 
S→ −∞. Thus is not physically meaningful and contradicts the third law of 
thermodynamic (which states that S→ 𝑂as T→ 𝑂). 

 
However, you should not be unduly concerned but you should have expected 
this result because classical statistics is a good description only at high 
temperatures. The explanation has genesis in quantum mechanics which you 
will learn in detail in the next unit. 

 
A more serious objection against eqn (6.3.4) is its implication that entropy does 
not behave as an extensive quantity. Let us increase both V and N by a factor 𝖺 
eqn (6.3.4) contains a term N 𝑙𝑛 V. Hence, S will not increase in the same 
proportion. This can be clearly understood by considering intermixing of two 
ideal gases. 

 
The entropy of a system of N particles occupying a volume V is given by 

𝑆 = 𝑁𝐾 [𝐼𝑛 𝑉 − 3 𝑙𝑛 ℎ + 
3 

𝑙𝑛 (2𝜋𝑚𝐾 + 
3 

i𝑛 𝑇] + 
3 

𝑁𝐾 
𝐵 2 𝐵 2 2 𝐵 

 

With 

= 𝑁 .𝑙𝑛 𝑉 + 3 𝑙𝑛 𝑇 + 𝜎/ − − − − − − − (6.3.5) 

 

3 
𝜎 = 

2 
ln (2𝜋𝑚𝐾𝐵) − 𝐼𝑛 ℎ3 + 

3
 

2 

=   {(
2   𝜋𝑚𝐾𝐵 

* 
ℎ2 

3⁄2
 

𝑒3⁄2} 

= 𝑙𝑛 0(2𝜋𝑚 
𝐾𝐵⁄ℎ 

3⁄2
 

2) 𝑒3⁄21 
 

Let us now consider two ideal gases contained in two chambers of volumes 
𝑉1and 𝑉2 and separated by a rigid partition as shown from the figure below 
suppose that the gases are in equilibrium at temperature T. Then the entropy of 
each gas is given by 
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1 1 𝐵 1 1 

2 2   𝐵 2 2 

2

2

 

 
and 

𝑆   = 𝑁 𝐾 (𝑙𝑛 𝑉 + 
3 

𝑙𝑛 𝑇 + 𝜎 * 
2 

 

𝑆   = 𝑁 𝐾 (𝑙𝑛 𝑉 + 
3 

𝑙𝑛 𝑇 + 𝜎 * 
2 

 

  

(a) (b) 
Fig. (a) The system divided by partition 1 and 2. 
Fig. (b) A system of N-particles in a volume V. 
So, the total initial entropy of these gases is 

3 3 
𝑆i = 𝑆1 + 𝑆2 = 𝑁1𝐾𝐵 [𝑙𝑛 𝑉1 + 

2 
𝑙𝑛 𝑇 + 𝜎1] + 𝑁2𝐾𝐵 [𝑙𝑛 𝑉2 + 

2 
𝑙𝑛 𝑇 + 𝜎2] 

Now we remove the partition and these gases mix by diffusing into one another. 
We can regard it as free expansion of each gas to volume 𝑉 = 𝑉1 + 𝑉2. Then final 
entropy of the system is 

3 3 
𝑆f  = 𝑁1𝐾𝐵 [𝑙𝑛 𝑉 + 

2 
𝑙𝑛 𝑇 + 𝜎1] + 𝑁2𝐾𝐵  [𝐼𝑛 𝑉 + 

2 
𝑙𝑛 𝑇 + 𝜎2] 

You would recall that diffusion is an irreversible process which implies that the 
entropy will increase and to discover that it is actually so, we compute the 
difference ∆𝑆= 𝑆f − 𝑆i 

𝑆f − 𝑆i Ξ ∆𝑆 = (𝑁1 + 𝑁2 )𝐾𝐵 
3 

[𝑙𝑛 𝑉 + 
2 

𝑙𝑛 𝑇] 

−𝑁1𝐾𝐵 0𝑙𝑛 𝑉1 + 3 𝐼𝑛 𝑇1 − 𝑁2𝐾𝐵 0𝑙𝑛 𝑉2 + 3 𝑙𝑛 𝑇1 
2 2 

= 𝑁1𝐾𝐵  . 𝑉 / + 𝑁2𝐾𝐵  . 𝑉 / − − − − − −(6.3.6) 
𝑉1 𝑉2 

 

Obviously, ∆𝑆 is greater than zero. For the special case, 𝑁1 = 𝑁2 = 𝑁 𝑎𝑛𝑑 𝑉1 = 

𝑉2 = 𝑉 we find that ∆𝑆= 𝑁𝐾𝐵 𝑙𝑛2 − − − − − (6.3.7) 

This is in conformity with thermodynamic results. 

Let us consider that the same gas is put in the two chambers show is fig. (a) and 
(b). We expect that removal or subsequent insertion of partition is a completely 
reversible process. It should not influence the macroscopic behaviour of the gas 
and distribution of particles over accessible microstates. Therefore the entropy 
of mixing should be zero. But this contradicts eqn (6.3.6) since its derivation 
does not depend on the identity of the gases. That is, even for self-mixing eqn 
(6.3.6) gives the same increase in entropy which is certainly not tenable. It 
implies that S depends on the history of the system and cannot be a function of 
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( ) 

the thermodynamic state only. That is, we can manage to change entropy by 
factors extraneous to the system. This is known as the Gibbs paradox. 

 
If we carefully re-examine our analysis, we can identify the root cause of this 
trouble in that we have treated all N particles as distinguishable. This amount to 
tacitly assuming that interchange of two particles leads to a physically distinct 
state of the gas. This of course, is not correct and eqn (6.3.6) over estimates the 
number of accessible states. You would recall that the number of permutations 
of N particles among themselves is N! For identical particles, these 
permutations lead to the same physical situation. 

3.3 The Sacker - Tetrode 
The correct way to treat a system of indistinguishable particle is to use 

quantum statistics. 
 

However, we can use an ad-hoc procedure suggested by Gibbs. This is known as 
correct Boltzmann counting. We begin by looking at eqn (5.6.3) for the 
thermodynamic probability W. Treating the particles as indistinguishable 
amounts to dividing W by N!. Hence, 

W = 
1

 
∏i=1 𝑛i! 

In the P function for an ideal gas made up of N indistinguishable particles, it is 
reflected in the form. 

𝐶 
𝑍𝑁 

 
 

𝑉𝑁 
 

 

2𝜋𝑚𝐾𝐵𝑇 
 

 

3𝑁/2 

𝑍𝑁 Ξ (𝑍𝑁)𝑟𝑟𝑒𝑐𝑡 = 
𝑁! 

= 
Take cogent of both sides, we get 𝑁! 

(
 ℎ2 * − − − −(6.3.8) 

 

𝐶 
3 

 
 

3 2𝜋𝑚 
 

𝐼𝑛 𝑍𝑁 = 𝑁 [𝑙𝑛 𝑉 + 
2 

𝑙𝑛 (𝐾𝛽𝑇) + 
2 

𝑙𝑛 ( 
ℎ2 *] − 𝑙𝑛 𝑁! 

 

For large 𝑁1we can use stirlings approximation 𝑙𝑛 𝑁! = 𝑁 𝑙𝑛 𝑁 − 𝑁 to obtain 
𝑙𝑛 𝑍𝐶 = 𝑁 [𝑙𝑛 𝑉 3 + 𝑙𝑛   𝐾 

 
  

3 2𝜋𝑚   + 𝑙𝑛 ( * + 1] 
 

  

𝑁 (
𝑁

* 
2

 𝐵 2 ℎ2 
 

Since U and P depend on the derivative of Z, the presence of the factor N! leaves 
their expression unchanged. However, for entropy, the expression is modified 

3⁄ to 𝑆 = 𝑁𝐾  *𝐼𝑛 (𝑉𝑇 2) + 𝛿 + − − − −(6.3.9) 
𝐵 𝑁 

With 

0 

 
 

2𝜋𝑚𝐾𝛽   
3⁄2 5⁄ 

Hence 

𝛿0 = 1 + 𝛿 =  ,. 
ℎ2 / 𝑒 2- − − − −(6.4.0) 
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  3 

3

𝑁𝜆 3

[  3 

𝑁 

𝑆 = 𝑁𝐾𝐵𝐼𝑛 {( 𝑉 
𝑑𝛽 

* 𝜋3⁄2𝑒5⁄2} − − − − − −(6.4.1) 

 

Where 𝜆𝑑𝐵 is 𝑑𝑒 Broglie Wavelength associated with the gaseous particles at 
temperature T. 

 
This eqn is known as sacker - Tetrode Equation. It has been established 
experimentally that this is the correct expression for the entropy of an ideal 
monoatomic gas at high temperature. 
Example 6.3.1 shows that sacker-Tetrode eqn is free from Gibbs paradox. 

Solution 
The Helmholtz energy is given by 

3 
ƒ = 𝑈 − 𝑇𝑆 = 

2 
𝑁𝐾𝛽𝑇 − 𝑁𝐾𝛽𝑇  ,( 

𝑉 
) 𝜋 3⁄2𝑒

 5⁄2-
 

= −𝑁𝐾𝐵 

𝑁𝜆𝑑𝐵 

𝑇 𝑙𝑛 *(
   𝑉 

) 𝜋3⁄2 𝑒+ 
𝑑𝛽 

Example 6.3.2: = Consider a system of N classical linear harmonic oscillators. 
Calculate (i) the partition function (ii) the free energy (iii) entropy (iv) Cv and 
Cp. 

 

 

Solution 
1. We have 

𝑆 = − (
𝛿𝐹

* 
𝛿𝑇 𝑉 

= 𝑁𝐾𝐵 𝑙𝑛 { 
𝑉

 
ℎ3 

(2𝜋𝑚𝐾𝐵 𝑇)3⁄2} + 𝑁𝐾𝐵 𝑇 ( 
3 

* 
2𝑇 

 

= 𝑁𝐾𝐵 𝑙𝑛 
𝑉 ℎ 

(2𝜋𝑚𝐾𝐵 𝑇)
−3⁄2𝑒

3⁄2] 

Similarly, 𝑃 = − .ðf/ 
ð   

= 
𝑁𝐾𝐵𝑇 

3
 

𝑉 

2. 𝑙𝑛W = − ∑ 𝑙𝑛 𝑛i! = − ∑i(𝑛i𝑙𝑛 𝑛i − 𝑛i) = 𝑁 − ∑i 𝑛i 𝑙𝑛 𝑛i − − − −(i) 
and from Maxwell Boltzmann’s distribution 𝑛i = 𝑁 𝑒𝛽𝗀i − − − −(ii) 

Z 

Substitute the value of ni into eqn (i) 
We have 

𝑙𝑛 W = 𝑁 − 
𝑁 

∑ 𝑒−𝛽𝗌i, 𝑁 − 𝑙𝑛𝑧 − 𝛽s 
 

 

 

- = 𝑁 − 𝑁𝑙𝑛𝑁 + 𝑁𝐼𝑛𝑍 + 𝛽 𝖴 
𝑍 i

 
i 

Therefore, 𝑆 = 𝐾𝐵𝑙𝑛 𝑤 = 𝑁𝐾𝐵𝐼𝑛𝑍 + 𝐾𝐵𝛽𝑈 + 𝑁 (1 − 𝑙𝑛𝑁) − − − (iii) 
in other words (𝑍 ) 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = Z𝑁 − − − − − −(i𝑣) 

𝑁! 

3. we have  𝑆1 = 𝑁1𝐾𝐵 0𝐼𝑛  .𝑉1 / + 3 𝐼𝑛 𝑇 + 𝛿01 
𝑁1 2 
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𝑟1 1 𝑟2 𝑚2 

𝑟 
C 

𝑁 

𝑆2 = 𝑁2𝐾𝐵 0  .𝑉2 / + 3 𝐼𝑛 𝑇 + 𝛿01 
𝑁2 2 

 

∴ 𝑆1 + 𝑆2 = 𝑆1 = 𝑁1𝐾𝐵   .𝑉1 / + 𝑁2𝐾𝐵 𝑙𝑛  .𝑉2 / + 3 𝑁𝐾𝐵 𝑙𝑛 𝑇 + 𝑁𝐾𝐵 𝛿0 
𝑁1 𝑁2 2 

On removing the partition, there will be N particles in space V and the final 

entropy of the system is 𝑆f  = 𝑁𝐾𝐵  0𝑙𝑛  .𝑉/ + 𝛿01 

Hence, change in entropy 𝑆f − 𝑆i is 
∆𝑆 = 𝐾 (𝑁 +  ) ( 

𝑉1 + 𝑉2 
* − 𝑁 𝐾 

 
 

𝑙𝑛 
 

𝑉1 − 𝑁 𝐾 𝐼𝑛 
 

𝑉2 
 

𝐵 1 2 𝑁1 + 𝑁2 1   𝐵 (
𝑁1

* 2   𝐵 (
𝑁2

* 
The densities of the two samples must be equal if the gases are at the same 
temperature and pressure. 

𝑁1 
= 

𝑁2 
= 

𝑁 
= 𝑃 

   

 

Thus, we have 
𝑉1 𝑉2 𝑉 

∆𝑆 = 𝐾 [𝑁 𝑙𝑛 
1 

− 𝑁 𝑙𝑛 
1 

− 𝑁 
 

  

𝑙𝑛 
1 

= 0 
 

𝐵 (
𝑃

* 1 (
𝑃

* 2 (
𝑃

*] 
Thus, in distinguish ability of particles of an ideal monoatomic gas is the key to 
the resolution of Gibbs paradox. 

3.4 Diatomic Gases 
Consider a diatomic molecule like HCL. It may be treated as a two particle 

(atom) system hold by inter-atomic forces along the line joining the particles. 
Let the masses of atoms be 𝑚1 and 𝑚2 (assumed to be point like) and separated 
by a distance r. 

 
This is known as the dumb-bell model of a molecule and is depicted in the 
figure below: 

𝑚1 
𝑟 

𝑟2 
 

 

The figure above shows dumb-bell model of diatomic molecule. 
 

Let us choose 𝑥 -axis along the line joining the masses. The moments of inertia 
about the two axes at right angles to the line connecting 𝑚1 and 𝑚2 and passing 
through the centre of gravity 𝐶2 is given by 

𝐼𝑦 = 𝐼𝑧 = 𝐼 = 
𝑚1𝑚2

 

𝑚1+ 𝑚2 
𝑟2 = 𝜇𝑟2 𝑤ℎ𝑒𝑟𝑒 𝜇 =   

𝑚1𝑚2
 

𝑚1+𝑚2 
Is the reduced mass of the molecule. The moment of inertia about the line 
joining the molecule is taken to be equal to zero. The kinetic energy of the 
molecule is 

1 
𝐸 = 

2 
𝐼𝑦𝑤 

1 
2

𝑦 + 
2 

𝐼𝑧𝑤 
2

𝑧 =
 1⁄2 (𝑤 2

𝑦 + 𝑤 2
𝑧) − − − (6.4.1.1) 
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2

 

If the bonding is not perfectly rigid, these atoms can vibrate about their 
respective equilibrium positions. The simplest assumption is that each atom 
executes simple harmonic motion. The motion of these atoms can be reduced to 
the harmonic vibration of a single point mass 𝜇 about an equilibrium position. 
Thus, for a diatomic molecule, we can have two vibrational degrees of freedom, 
apart from translational and rotational degrees of freedom. 
The total number of degrees of freedom 

ƒ = ƒ𝑡𝑟𝑎𝑛 + ƒ𝑟𝑜𝑡 + ƒ𝑣i𝑏 − − − − − (6.4.1.2) 
= 3 + 2 + 2 = 7 = (6.4.1.2) 

 
Since each degree of freedom in classical physics is associated with energy 
(𝐾𝛽𝑇/2). We find that 

7 
Ē = 

2 
𝐾𝐵𝑇 

So that heat capacity for the gas made of ¥ particles is 𝐶𝑉 = 7 𝑅 and the ratio of 

head capacities 

 

. 

 
9 

𝛾 = 
7 

= 1.29 

 

It shows that heat capacity of a gas is constant; independent of temperature and 
same for all gases. And 𝛾, for a diatomic gas is less than the value for a 
monatomic gas. In the table below, we have listed the values of 𝛾, obtained by 
measurements of the velocity of sound at room temperature for some diatomic 
gases of interest. 

 

Gas 𝛾 

𝐻2 
𝑂2 
𝑁2 
𝐶𝑂 
NO 

1.410 
1.401 
1.404 
1.404 
1.400 

 
You will note that 𝛾 is close to 1.4 and agreement with theoretical value is not 
very good. However, if we take ƒ = 5, we find that 

7
𝛾 =  = 1.4 

5 

This suggests that around room temperature, either relational or vibrational 
degree of freedom, not both, contribute to mean energy. It is as if, some degrees 
of freedom are ‘frozen’ and hence do not show up in experiments. This led 
Summerfield to remark that ‘Degrees of freedom should be weighted not 
counted’. 
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SAQ 
Calculate 𝛾 for a polyatomic gas having ƒ degrees of freedom. 

 
As the number of atoms increases, ƒ also increases and 𝛾 decreases. This is well 
borne out by experiments. In fact, 𝛾 is found to satisfy the inequality. 

𝐼 < 𝛾 < 1.67 − − − − − −(6.4.1.3) 
It may be remarked here that qualitative features of heat capacity of diatomic 
gases predicted by theory are borne out by experiments. However, if we look at 
its temperature variation, we find that the agreement is very poor. In most 
cases, heat capacity increases as temperature is raised and decreases as 
temperature is lowered. For examples, the heat capacity of hydrogen at 20𝑘 is 
j𝑢𝑠𝑡 3 𝑅. 𝑇ℎ𝑎𝑡 i𝑠, i𝑡 𝑏𝑒ℎ𝑎𝑣𝑒𝑠 𝑙i𝑘𝑒 𝑎 𝑚𝑜𝑛𝑎𝑡𝑜𝑚i𝑐 𝑔𝑎𝑠 𝑎𝑛𝑑 𝑟𝑜𝑡𝑎𝑡i𝑜𝑛𝑎𝑙 𝑎𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠 

2 

vibrational degrees of freedom are effectively ‘frozen’. 
A correct explanation is provided by quantum statistics. The basic argument is 
very simple and can be introduced without a detailed discussion of the basic 
features of quantum statistics. In the quantum description of a system, we have 
a set of allowed discrete energy levels. 

 
Let the separation of the levels around the mean energy be denoted by ∆𝐸. If 

∆𝐸 << 𝐾𝐵𝑇     (6.4.1.4) 
The discrete nature of the spectrum is not and the equi-partition theorem 
should be a good approximation. This is certainly time at sufficiently high 
temperatures. If the discrete nature of the spectrum becomes important then 

A𝐸 = 𝐾𝐵𝑇 − − − − − −(6.4.1.5) 
If we introduce a characteristic temperature, 𝜃, defined by 

𝜃 = 
∆𝐸 

− − − − − (6.4.1.6) 
𝐾𝐵 

Eqs (6.4.1.4) and (6.4.1.5) respectively take the form 
𝑇 >> 𝜃 𝑎𝑛𝑑 𝑇 = 𝜃 − − − − − − − (6.4.1.7) 

We now turn to a calculation of rotational and vibrational partition functions. 

3.4.1 Rotational and Vibration Partition Functions. 

The rotational energy levels of a diatomic molecule are given by 
ℎ2 

𝐸j = 
8𝜋2𝐼 

𝐽 (𝐽 + 1) , 𝐽 = 0,1,2, − − − − − − − (6.4.1.8) 

And each energy level is (2J+1) fold degenerate. 
The partition function for rotational motion of a hetero-nuclear molecule - a 
molecule consisting of two different kinds of atoms such as HCL is given by 
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∞ −(𝐽 + 1) 
𝑍𝑟𝑜𝑡 = ∑(2𝐽 + 1) 𝑒𝑥𝑝 ( 

𝐽=0 
𝑇 

) 𝑂𝑟𝑜𝑡 − − − − − (6.4.1.9) 

= 1 + 3𝑒𝑥𝑝 (− 
20𝑟𝑜𝑡

* + 5𝑒𝑥𝑝 (
−6𝜃𝑟𝑜𝑡

* + − − − − −(6.4.2.0) 
  

Where 
𝑇 𝑇 

𝜃𝑟𝑜𝑡 =  
ℎ2 

8𝜋2𝐼𝐾𝐵 
defines the characteristic rotational temperature. You will note 

that 𝜃𝑟𝑜𝑡 is low for heavier molecules. For example, 𝜃𝑟𝑜𝑡=15.2k for HCL, 2.1k for 
O2   and 0.3k for C12. On the other hand, 𝜃𝑟𝑜𝑡= 85.5k for hydrogen. When 
𝑇 << 𝜃𝑟𝑜𝑡, the thermal energy of the system. (∼𝐾𝛽𝑇)is not sufficient to take the 
molecule to higher rotational levels so it is very likely that the hetero-nuclear 
diatomic molecule is in its ground state of rotational motion. When 𝑇 >> 𝜃𝑟𝑜𝑡, 
the significant number of rotational states are excited and the spacing between 
consecutive levels is much smaller compared to 𝐾𝛽𝑇. 

 
Then, energy can be treated as continuous and we can replace the summation 
in eqn (6.4.1.9) by integration. 

∞ 

𝑍𝑟𝑜𝑡 
= ∫(2𝐽 + 1) exp {−𝐽 (𝐽 + 1) 

𝜃𝑟𝑜𝑡
} 𝑑𝐽 − − − − − − (6.4.2.1) 

𝑇 
0 

 

To evaluate this integral, we introduce a change of variable by defining 

𝑥 = (𝐽 + 1) 𝜃r𝑜𝑡 
T 

so that 𝑑𝑥 = 𝜃r𝑜𝑡 (2j + 1)𝑑𝐽. 
T 

Substituting these in the above expression, we get 
∞ 

 
 
 

Hence, 

𝑍𝑟𝑜𝑡 
= (  

𝑇
 

𝜃𝑟𝑜𝑡 

* ∫ 𝑒−𝑦𝑑𝑦 = 
𝑇

 
𝜃𝑟𝑜𝑡 

0 

= 
8𝜋 𝐼𝐾𝐵 𝑇 

− − − − − (6.4.2.2) 
ℎ2 

 

𝑙𝑛 𝑍𝑟𝑜𝑡 = 𝑙𝑛 (
8𝜋 𝐼𝐾𝐵

* + 𝑙𝑛 𝑇 
ℎ2 

For 𝑇 >> 𝜃𝑟𝑜𝑡, the mean energy for rotational motion of a molecule is given by 
𝖴 = 𝑁𝐾 

𝑇2   .
6𝐼𝑛Zr𝑜𝑡/

 =  𝐵𝑇
2  

= 𝑁𝐾 
 

 

𝑇 − − − − − −(6.4.2. ) 
𝑟𝑜𝑡 𝐵 

and 
6𝑇 𝑉,𝑁 𝑇 𝐵

 

(𝐶𝑉)𝑟𝑜𝑡 
=  

  
𝖴 = 1

 
 

  

(6.4.2.3) 
𝑅 𝑑𝑇 𝑟𝑜𝑡 

A somewhat more accurate expression for rotational, contribution to heat 
capacity is obtained by using Euler-Maclaurin formula in evaluating the integral 
contained in eqn (6.4.2.2) we will just quote the result: 

(𝐶𝑉)𝑟𝑜𝑡 1 𝜃𝑟𝑜𝑡   
2

 

𝑅 
= 1 + 

45 
( 

𝑇  
* + (6.4.2.4) 
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You will note that as 𝑇 → ∞, (𝐶𝑉)𝑡 → 𝑅 
 

Since (𝐶𝑉)𝑡 must approach zero at 𝑇 → 0, eqn (6.4.2.3) suggested that (𝐶𝑉)𝑟𝑜𝑡 versus 
T curve should show a maximum. 

Low Temperature Limit 
For low temperatures, the series in eqn (6.4.2.0) can be used directly to 
calculate (𝐶𝑉)𝑟𝑜𝑡. To do so, we note that 

𝑑𝑍𝑟𝑜𝑡 
= (

𝑑𝑍𝑟𝑜𝑡
* [6 exp (− 

2𝜃𝑟𝑜𝑡
* + 30 exp (− 

6𝜃𝑟𝑜𝑡
* + − − −] 

    

So that 
𝑑𝑇 𝑇2 𝑇 

  1   𝑑𝑍𝑟𝑜𝑡 
=  

 

𝑇 

ln 𝑍 
𝑍𝑟𝑜𝑡 𝑑𝑇 

 
 

𝑑𝑇 
𝑟𝑜𝑡 

= 
𝜃𝑟𝑜𝑡 

[6 𝑒𝑥𝑝 (− 
2𝜃𝑟𝑜𝑡

* + 6𝑒𝑥𝑝 (− 
2𝜃𝑟𝑜𝑡

* 

𝑇2 𝑇 𝑇 

+ 30 𝑒𝑥𝑝 (− 
6𝜃𝑟𝑜𝑡

* + 1 + 3 𝑒𝑥𝑝 (− 
2𝜃𝑟𝑜𝑡

* + 5 𝑒𝑥𝑝 (− 
6𝜃𝑟𝑜𝑡

* + − −] 
𝑇 𝑇 𝑇 

 

Hence, mean rotational energy at low temperature is 
−2𝜃r𝑜𝑡 

 
−2𝜃r𝑜𝑡 

𝖴 = 𝑁𝐾 𝑇2 (  
1

 
𝑟𝑜𝑡 𝐵  
𝑍𝑟𝑜𝑡

 

𝑑𝑍𝑟𝑜𝑡
* =

 
𝑑𝑇 

6𝑁𝐾𝐵𝜃𝑟𝑜𝑡 [𝑒 
 

1 + 3𝑒 

𝑇 + 5𝑒 

−2𝜃r𝑜𝑡 

𝑇 + 5𝑒 

𝑇 + − − − −] 

−2𝜃𝑟𝑜𝑡 
𝑇 

Hence, 
= 6𝑁𝐾𝛽𝜃𝑟𝑜𝑡𝑒 

−2𝜃r𝑜𝑡 

𝑇 − − − − − −(6.4.2.5) 

(𝐶𝑉)𝑟𝑜𝑡 𝜃𝑟  
2

 2𝜃𝑟𝑜𝑡 

𝑅 
= 12 ( 

Vibrational Partition Function. 
𝑇  

*
𝑒  

− 
𝑇 

− − − − − (6.4.2.6) 

 

The vibrational partition function can be written as 
∞ ∞ 

𝑍𝑣i𝑏 
= ∑ 𝑒−𝛽   = ∑ 𝑒−𝛽hw (𝑛 + 

1
* = 𝑒−𝛽h𝜔/2  ∑ 𝑒−𝛽hw𝑛 

2 

Since 
𝑅 𝑅=0 

 
∞ 

𝑛−0 

∑ 𝑒−𝑛𝑥 = 1 + 𝑒−𝑥 + 𝑒−2𝑥 + − − −−= 
1

 
1 − 𝑒−𝑥 

We find that 
𝑛−𝑜 

 

𝑒−𝛽h𝜔⁄
2

 

 

 
−𝜃𝑣i𝑏 

 

−𝜃𝑣i  
−1

 

𝑍𝑣i𝑏 = 
1 − 𝑒−𝛽hw  

= 𝑒 2𝑇 (1 − 𝑒 𝑇 * − − − − − − (6.4.2.7) 

+
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𝐾 
Where 𝜃𝑣i𝑏 = h𝜔 defines the characteristic vibrational temperature. For an HCL 

𝐵 

molecule. 𝜃𝑟i𝑏 = 4130𝑘, whereas for Hz, 𝜃𝑣i𝑏 = 6130𝑘. This show that 
vibrational states of diatomic molecules are not excited around room 
temperature. 

 
4. For a system with f degrees of freedom 

ƒ ƒ 
𝑈 = 

2 
𝑁𝐾𝐵𝑇 = 

2 
𝑅 𝑇 

∴ 𝐶 = ∂ 𝖴 ƒ 
 

and 

 

Hence, 

𝑉 
 
 

𝐶𝑃 = 𝐶𝑉 

( 
∂𝑇 

*
𝑉 

= 
2 

𝑅 

+ 𝑅 = 
ƒ + 2 

𝑅 
2 

𝛾 = 
𝐶𝑃 

= 
ƒ + 2 

= 1 + 
2

 
   

𝐶𝑉 2 ƒ 
 

Clearly 𝛾 decreases as ƒ increases. 
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𝐾 

2𝑇 

4.0 Summary 
From this unit you have learned 
- Definition of partition function 
- Ways of expressing partition function as a normalization factor, 

Compute Average energy and free energy 
- The partition function of an ideal monoatomic gas is given by 

𝑍 = 𝑉
𝑁 

(2𝜋𝑚𝐾 
 

 𝑇)
3𝑁⁄2

 
𝑁 ℎ3𝑁 𝐵 

The internal energy 𝖴= 3 𝑅 𝑇 𝑎𝑛𝑑 ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐i𝑡𝑦 𝐶𝑉 = 3 𝑅 
2 2 

- The classical expression for the entropy of an ideal monoatomic gas 
(2𝜋𝑚𝐾𝐵𝑇)

3⁄2 3⁄ 
 

is 𝑆 = 𝑁𝐾𝐵 𝑙𝑛 [ 
ℎ2 𝑒 2] 

- The sacker-tetrode formula accounts for indistingquishability of 
3⁄ 𝑉 2𝜋𝑚𝐾𝐵𝑇 2 5⁄ 

 

molecules and is given by𝑆 = 𝑁𝐾𝐵 𝑙𝑛 *
𝑁 

. 
ℎ2 / 

- The Rotational Partition Function 

𝑒 2+ 

𝑍𝑟𝑜𝑡 = 
𝑇 

𝜃𝑟𝑜𝑡 
𝑇 » 𝜃𝑟𝑜𝑡 

= 1 + 3𝑒−2 (
𝜃𝑟𝑜𝑡

* + 5𝑒−6 (
𝜃𝑟𝑜𝑡

* + − − −𝑇 << 𝜃 

 
Where 
𝜃𝑟𝑜𝑡 

𝑇 𝑇 

= 
ℎ2 

 

8𝜋𝐾𝐵𝐼 

𝑟𝑜𝑡 

- The Vibrational Partition Function 

Where 𝜃𝑣i𝑏 = hw 
𝐵 

𝑍𝑣i𝑏 = 
1 

2𝑆i𝑛ℎ  .
𝜃𝑣i𝑏/ 

 

6.0 Tutor Marked Assignment (TMA) 
(1) Obtain the entropy and pressure of Helmholtz energy. 
(2) Consider a classical ideal gas consisting of N particles. The energy s of a 

particle is given by s = 𝑐𝑝. where C is a constant and P is the magnitude 
of the momentum. Calculate (i) the partition function of the system (ii) 
internal energy and (iii) CV. 

(3) Show that the change in entropy of an ideal gas in two chambers doubles 
its volume without change in temperature (i.e. ∆𝑆 = 𝑁𝐾𝐵 𝑙𝑛 2) 

7.0 References/ Further Reading/Other Resources. 
(1) Thermodynamics and statistical mechanics by Indira Gandhi National 

Open University (1999). 
(2) Eric, L. M. (2023). Funky Statistical Mechanics Concepts. [Unpublished 

manuscript]. 
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MODULE 2 

Unit 1: Equi-partition of Energy and Classical Statistics 
1.0 Introduction 
2.1 Objective 
3.0 Main Content 

3.1 Equipartition Theorem 
3.2 Classical Statistics 
3.3 Probability and Distribution Function 
3.4 Ideal Gases of Atoms and Electrons 
3.5 Maxwell Velocity Distribution 
3.6 The Boltzmann Factor 

4.0 Summary 
5.0 Conclusion 
6.0 Tutor Marked Assignment (TMA) 
7.0 References 

1.0 Introduction 
The equal partition theorem on energy is stated and the theorem is used to 
derive the Average-Translational Kinetic Energy of a particle in a gas and the 
use of standard equations from statistical mechanics to derive the internal 
energy of the system. 

 
The basic concept of classical mechanics like the fundamental of ideal gases and 
statistical distributions are highlighted. 

2.0 Objective 
At the end of this unit student should be able to 
- State and use Equipartition theorem on energy to prove translational kinetic 

energy of particle and internal energy of the system. 
- Explain Classical mechanics. 
- State the basic concepts of classical mechanics. 
- State and apply all the formulas on classical mechanics. 

 
3.0 Main Content 

3.1 Equipartition Theorem 
The equilpartitionl theorem states that energy is shared equally amongst all 
energetically accessible degrees of freedom of a system. This is a system that 
will generally try to maximize its entropy (i.e. how ‘spread out’ the energy is in 
the system) by distributing the available energy evenly amongst all the 
accessible modes of motion. 
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To give a rather contrived example, consider a container in which we have 
placed a number of ping-pong balls. Initially the balls are stationary. Imagine 
we now throw some energy randomly into our box, which will be shared out 
amongst the ping-pong balls in some way such that they begin to move about. 
While you might not realize it, intuitively you know what this motion will look 
like. For example you would be very surprised if the particle motion looked like 
this: 

You would probably predict something more like this: 
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i.e. completely random motion of the ping-pong balls. This is exactly the same 
result as predicted by the equipartition theorem - the energy is shared out 
evenly amongst the X, Y and Z translational degrees of freedom. 

 

The equipartition theorem can go further than simply predicting that the 
available energy will be shared evenly amongst the accessible modes of motion, 
and can make quantitative predictions about how much energy will appear in 
each degree of freedom. Specifically, it states that each quadratic degree of 
freedom will on average process an energy ½KT. A quadratic degree of freedom 
is one of which the energy depends on the square of some property. Consider 
the kinetic and potential energies associated with translational, rotational and 
vibrational energy. 

Translational degrees of freedom K = ½Mv2 

Rotational degrees of freedom K = ½I𝜔2 

Vibrational degrees of freedom         K = ½Mr2

 

V = ½Kx2

 

These three types of degrees of freedom all have a quadratic dependence on the 
velocity (or angular velocity in the case of rotation) and therefore all follow the 
equipartition theorem. 

 

Note that when considering vibration in a harmonic oscillator potential (V, 
above) we consider both the kinetic energy and the potential i.e. the P.E. counts 
as an additional degree of freedom. All the point about vibrations is that 
vibrational motion in molecules is highly quantized, and at room temperature 
most molecules are in their vibrational state and higher levels are not thermally 
accessible. As a consequence, equipartition contributions from vibrational 
degrees of freedom need only usually be considered at very high temperatures. 
Conversely, at room temperature many rotational and translational states are 
occupied, and they can be treated classically (i.e. as if their energy levels were 
not quantized) to a very good approximation. 

 

A simple derotation of the equipartition result for translational motion. 
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2

𝑚 2𝑚

2

We can use the Maxwell Boltzmann distribution of moleculer speeds to 
determine the average kinetic energy of partition in a gas, and show that it 
agrees with the equipartition result. 

 
The Maxwell Boltzmann distribution of molecule speeds is 

ƒ(𝑉) = 4 . 𝑚  
2𝜋𝐾𝑇 

3⁄2
 

/ 𝑉2 exp .− 
𝑚𝑣2

/
 

2𝐾𝑇 

The average kinetic energy of a particle in the gas is their 
1 

2 
∞ 1 

2
 

 

𝐾 = 
2 

𝑚𝑣 = ∫ 𝑚𝑣 
0 

ƒ(𝑣)𝑑𝑣 

Substituting for ƒ(𝑣) and taking the constant terms outside the integrals gives 
1 𝑚 

𝐾 = 
2 

𝑚 4 . 
 

3⁄2
 

/ 
∞ 

∫  2 exp (− 𝑚𝑣2 
 

 

) 𝑑𝑣 
2𝜋𝐾𝑇 0 2𝐾𝑇 

We can evaluate the integral by using the general result that 
∞ (2𝑠 − 1) 𝜋 1⁄2 

∫  X2𝑠 exp(−𝑎𝑥2) = 
0 2𝑆+1      

.
𝑎

/ 

Where n!! indicates on double factorial, 𝑛(𝑛 − 2)(𝑛 − 4) 𝑒𝑡𝑐. Identifying 

X=Vand𝑎 = 𝑚⁄2𝐾𝑇 in our integral above gives 
∞ −𝑚𝑣2 3                 2𝜋𝐾𝑇 1⁄2

 3    2 2𝜋𝐾𝑇 1⁄2
 

∫  4 exp ( 2 
) 𝑑𝑣 = 

𝑚 2 ( 
𝑚 

* 
 

= ( * 
  

( 
𝑚 

* 
 

0 8( ⁄2𝐾𝑇) 2 𝑚 

Substituting back into our expression for k gives 

1 𝑚 
𝑘 = 

2 
𝑚 4 . 

3⁄2 3 
/ (

𝐾𝑇
*

 
(
2𝜋𝐾𝑇 

1⁄2
 

* 
 
𝐾 = 

3 
𝐾𝑇. 

The average translational 𝑘. Energy of a particle in a gas is therefore 
3 𝐾𝑇, 𝑜𝑟 1⁄ 𝐾𝑇 per translational degree of freedom. In agreement with the 
2 

equipartition theorem, a more general derivation of the Equipartition theorem 
requires statistical machanics which we have learnt in the previous unit. 

 
The partition function in statistical mechanics tells us the number of quantum 
state of a system that are thermally accessible at a give temperature. 
It is defined as: 𝑞 = ∑ 𝑒𝑥𝑝 (−𝐸i/𝐾𝑇) 

i 

Where 𝐸i are the energies of the quantum states i. Once we know the partition 
function, we can calculate many of the macroscopic properties of our system 
using standard eqns from statistical mechanics. 

 
We will use the P function to calculate the internal energy u associated with a 
single degree of freedom of the system and we need to consider the difference 
between a quantum and a classical system. 

2𝜋𝐾𝑇 2

2
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( ) 

−∞ 

If we are treating the particular motions classically, it doesn’t make sense to 
express the partition function as a sum of discrete terms as we have above but 
classically, the position and moment of a particle can vary continuously and the 
energy levels are also continuous. As a result, the classical partition function 
takes the form of an integral rather than a sum. 

𝑞 = ∫ 𝑒𝑥𝑝 (
−𝐸(X1X2 − − − − 𝑃1𝑃2 − − −)

) 𝑑𝑥
 

 
 

𝑑𝑥 − − − 𝑑𝑃 𝑑𝑃 − − − − 
𝐾𝑇 1 2 1 2 

Where the energy 𝐸can be a function of the particle positions Xi and momenta 
𝑃i. 
If we assume that we can write the energy as a sum of contributions from each 
degree of freedom, then the exponential functional dependence on the energy 
means that we can separate the integral into the product of integrals over each 
degree of freedom i.e. 

𝐸(X1, X2 − − − 𝑃1𝑃2 − − −) = 𝐸(X1) + 𝐸(X2) + − − +(𝑃1) + (𝑃2) + − − − 
 
 

So 

𝑒𝑥𝑝 (
− 𝐸(X1X2 − − − 𝑃1𝑃2)

) = 𝑒𝑥𝑝
 

 
 

−𝐸(X1). 𝐸(X2) − −(𝑃1). (𝑃2) 
 

𝐾𝑇 ( 
𝐾𝑇 

) 
= 𝑒𝑥𝑝 (

−(𝑥1)
) 𝑒𝑥𝑝 

 
 

−(𝑥1). 𝐸(X2) − − − (𝑃1). ∈ (𝑃2) 
 

𝐾𝑇 
( 

𝐾𝑇 
)

 
= 𝑒𝑥𝑝 (

−(𝑥1)
) 𝑒𝑥𝑝 

−𝐸(𝑥2)
) − −𝑒𝑥𝑝 (

−𝐸𝑝1
* 𝑒𝑥𝑝 (

−𝐸𝑝2
* 

 

𝐾𝑇 ( 
𝐾𝑇 

𝐾𝑇 𝐾𝑇 

 

And the integral may be written 
𝑞 = ∫ 𝑒𝑥𝑝 (

−∈ (𝑥1)
) 

 
 

∫ 𝑒𝑥𝑝 −∈ (𝑥2) 
 

 

𝑑X − − − − 

𝐾𝑇 
𝑑K1 

( 
𝐾𝑇 

) 2 

∫ 𝑒𝑥𝑝 
−∈ (𝑃1) 

 
 

∫ 𝑒𝑥𝑝 −∈ (𝑃2) 
 

𝐾𝑇 
𝑑𝑝1 

( 
𝐾𝑇 

) 
𝑑𝑝2 

= 𝑞(X1) 𝑞(X2) − − − (𝑃1) (𝑃2) 

The consequence of this is that we here separated the partition into the product 
of partition functions for each degree of freedom. In general, we may write the 
𝑃. ƒ for a single degree of freedom in which the energy depends quadratically 

on the coordinate 𝑥(i. 𝑒. ∈ (𝑥)) = 𝐶X2 𝑤i𝑡ℎ 𝐶 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) as 
∞ −𝐸(𝑥) ∞ −𝐶X2 𝜋𝐾𝑇 1⁄2

 

𝑞(𝑥) = ∫ 𝑒𝑥𝑝 ( 
−∞ 𝐾𝑇 

) 𝑑𝑥 = ∫ 𝑒𝑥𝑝 ( 
𝐾𝑇 

) 𝑑𝑥 = ( 
𝐶  

* 

Where we have used the standard integral 
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∞ 𝜋 1⁄2
 

∫ 𝑒𝑥𝑝 
−∞ 

(𝑎𝑥2)𝑑𝑥 = .
𝑎

/ 

Once we know the 𝑃. ƒ, we can calculate the internal energy of the system 
according to the standard result from statistical mechanics∴ 

𝖴= 𝐾𝑇2 
(𝑙𝑛 𝑞) 

𝑑𝑇 
Substituting in an 𝑃. ƒ,  the internal energy associated with one degree of 
freedom is therefore 

𝑑 𝜋𝐾𝑇 1⁄2 1
 𝑑 𝜋𝐾𝑇 

𝖴= 𝐾𝑇2 
𝑑𝑇 

𝑙𝑛 (  
𝐶  

* = 
2 

𝐾𝑇2 
𝑑𝑇 

𝑙𝑛 ( 
𝐶   

* (𝑠i𝑛𝑐𝑒 𝐼𝑛 𝑥𝑛 = 𝑛 𝑙𝑛 𝑥) 

𝐾𝑇2 𝐶 𝜋𝐾 𝑑𝑙𝑛𝑦 1 𝑑𝑦 1 
= 

2 𝜋𝐾𝑇 𝐶  
(𝑠i𝑛𝑐𝑒 

𝑑𝑥 
= 

𝑦 𝑑𝑥
* = 

2 
𝐾𝑇

 
 

The energy appreciated with each quadratic degree of freedom is therefore 
1/2KT, and we have proved the equipartition theorem. 

3.2. Classical Statistics 
Classical Maxwell Boltzmann statistics is introduce to calculate the occupancy 
of states. 

 
It is derived on the basis of purely classical physics arguments. The basic 
concepts of classical statistics will be derived and the fundamentals of ideal 
gases and statistical distributions are summarized since they are the basis of 
semi conductor statistics. 

3.3 Probability of Distribution Function: 
Consider a large number N of free classical particles such as atoms, 

molecules or electrons which are kept at a constant temperature T, and which 
interact only weakly with one another. The energy of a single particle consists 
of kinetic energy due to translatory motion and an internal energy for example 
due to rotations, vibrations, or orbital motions of the particle. In the following, 
we consider particles with only kinetic energy due to translator motion. 

 
The particles of the system can assure an energy E, where E can be either a 
discrete or a continuous variable. If 𝑁i particles out of N particles have an 
energy between ∈i 𝑎𝑛𝑑 ∈i+ 𝑑c, the probability of any particle having any 
energy within the interval ∈i and ∈i+ 𝑑 ∈, is given by 

 

ƒ(∈ )𝑑c = 
𝑁i

 
 

 

 
− − − − − −(7.4.1) 

i 𝑁 

Where ƒ(∈)the energy distribution function of a particle system in statistics is 
ƒ(∈) is frequently called the probability density function. The total number of 
particles is given by 
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0

𝑟𝑚𝑠

 

∑ 𝑁i = 𝑁 − − − − − −(7.4.2) 
i 

Where the sum is over all possible energy intervals. Thus, the integral over the 
energy distribution function is 

∞ 

∫ ƒ (𝐸 
0 

) = ∑ 
𝑁i

 

𝑁 
i 

= 1 − − − − − − − (7.4.3) 

In other words, the probability of any particle having an energy between zero 
and infinity is unity. Distribution functions which obey 

∞ 

∫ ƒ (𝐸)𝑑𝐸 =  1 − − − − − − − (7.4.4) 
0 

are called normalized distribution functions 
 

The average energy or mean energy Ē of a single particle is obtained by 
calculating the total energy and dividing by the number of particles, that is 1 ∞ 

( ) 
 

Ē = 
𝑁 

∑
i
𝑁i𝐸 = ∫ 𝐸 ƒ 𝐸 

𝑑𝐸 − − − − − −(7.4.5) 

In addition to energy distribution functions velocity distribution functions are 
valuable. Since only the kinetic translatory motion (no rotational motion) is 
considered, the velocity and energy are related by 

1 
𝐸 = 

2 
𝑚𝑣2 − − − − − −(7.4.6) 

The average velocity and the average energy are related by 

Ē = 
1 

𝑚 v2− − − − − (7.4.7) 
 

2    
𝑉𝑟𝑚𝑠 = √v2− − − − − −(7.4.8) 

And the velocity corresponding to the average energy 

Ē = 
1

 
2 

𝑚𝑣2 − − − − − −(7.4.9) 

 

In analogy to the energy distribution we assume that 𝑁i particles have a 
velocity within the interval 𝑉i and 𝑉i + 𝑑𝑣. Thus, 

ƒ(𝑣)𝑑𝑣 = 
𝑁i 

− − − −(7.5.0) 
𝑁 

Where ƒ(𝑣) does the normalized velocity distribution know ƒ(𝑣), relations 
allow one to calculate the mean velocity, the mean square velocity, and the root 
mean square velocity. 

∞ 

v = ∫   
0 

ƒ(𝑣)𝑑𝑣 − − − − − (7.5.1) 

 

∞ 

v2 = ∫ 𝑣2 
0 

 
ƒ(𝑣)𝑑𝑣 − − − − − (7.5.2) 

PHY 311 KINECTIC THEORY AND STATISTICAL MECHANICS

48



 
 

   ∞ 
1⁄2 

𝑉𝑟  = √v2  = *∫   𝑣  ƒ(𝑣)𝑑𝑣+ 
0 

− − − − − (7.5.3) 

 

Up to now we have considered the velocity as a scalar. A more specific 
description of the velocity distribution is obtained by considering each 
component of the velocity 𝑉 = (𝑉𝑥, 𝑉𝑦, 𝑉𝑧). If 𝑁i particles out of N particles have a 
velocity in the value element 𝑉𝑥 + 𝑑𝑉𝑥, 𝑉𝑦 + 𝑑𝑉𝑦, and 𝑉𝑧 + 𝑑𝑉𝑧, the distribution 
function is given by 

ƒ(𝑉 , 𝑉 , 𝑉 ) 𝑑𝑉 𝑑𝑉 𝑑𝑉 = 
𝑁i  

− − − −(7.5.4) 
𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑁 

Since ∑i 𝑁i = 𝑁, the velocity distribution function is normalized, i.e. 
∞ ∞ ∞ 

∫ ∫ ∫ ƒ(𝑉𝑥, 𝑉𝑦, 𝑉𝑧) 𝑑𝑉𝑥 𝑑𝑉𝑦 𝑑𝑉𝑧 = 1 − − − − − −(7.5.5) 
−∞  −∞   −∞ 

 

The average of a specific propagation direction, for example 𝑉𝑥 is evaluated in 
analogy to eqn (7.5.1 - 7.5.3). One obtains 

 

∞ ∞ ∞ 

v𝑥= ∫ ∫ ∫ 𝑉𝑥ƒ(𝑉𝑥, 𝑉𝑦, 𝑉𝑧) 𝑑𝑉𝑥 𝑑𝑉𝑦 𝑑𝑉𝑧 − − − − − −(7.5.6) 
−∞  −∞   −∞ 

 
∞ ∞ ∞ 

v2 = ∫ ∫ ∫ 𝑉2ƒ(𝑉 , 𝑉 , 𝑉 ) 𝑑𝑉 𝑑𝑉 𝑑𝑉 − − − − − −(7.5.7) 
𝑥 𝑥 𝑥 

−∞  −∞   −∞ 

 
   ∞ ∞ ∞ 

𝑦 𝑧 𝑥 𝑦 𝑧 

1⁄2
 

𝑉𝑥,𝑠 = √v2 = *∫ ∫ ∫ 𝑉2ƒ(𝑉 , 𝑉 , 𝑉 ) 𝑑𝑉 𝑑𝑉 𝑑𝑉 + − − − − − (7.5.8) 
𝑥 𝑥 

−∞  −∞   −∞ 
𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 

 

In a closed system the mean velocities are zero, that is v𝑥=v𝑦=v𝑧= 0. However, 

the mean square velocities are, just as the energy not equal to zero. 

3.4 Ideal gases of Atom and Electrons 
The basis of classical semi conductor statistics is ideal gas theory. It is 

therefore necessary to make a small excursion into this theory. The individual 
particles in such ideal gases are assumed to interact weakly, that is collisions 
between atoms or molecules are a relatively seldom event. It is further assumed 
that there is no interaction between the particles of the gas (such as 
electrostatics interaction), unless the particles collide. The collisions are 
assumed to be (i) elastic (i.e. total energy and momentum of the two particles 
involved in a collision are preserved) and (ii) of very short duration. 

 
Ideal gases follow the universal gas equation 

𝑃𝑣 = 𝑅𝑇 − − − −(7.5.9) 

PHY 311 KINECTIC THEORY AND STATISTICAL MECHANICS

49



 
 

Where P is the pressure, V the volume of the gas, T its temperature, and R is the 
universal gas constant. This constant is independent of the species of the gas 
particles and has a value of 𝑅 = 8.314 𝐽𝐾−1𝑚𝑜𝑙−1 

 
 
 
 

 

The figure show the cubic volume confining 

one mole (𝑁𝐴𝑉0 = 6.023 × 1023 𝑎𝑡𝑜𝑚𝑠/ 

𝑚𝑜𝑙𝑒) of an ideal gas exerted in side of the 

cube. (shaded area) is calculated in the text. 
 

 

Next, the pressure P and the kinetic energy of an individual particle of the gas 
will be calculated. For the calculation it is assumed that the gas is confined to a 
cube of volume 𝑉1 as shown in the figure above. The quantity of the gas is 
assumed to be 1 mole, that is the number of atoms or molecules is given by 
Avogadros number, 𝑁𝐴𝑉0 = 6.023  × 1023 particles per mole. 

Each side of the cube is assured to have an area A = V2/3. If a particle of mass in 

and convention MVx (along the x direction) is elastically reflected from the 

wall, it provides a convention 2MVx to reverse the particle momentum. If the 

duration of the collision with the wall is dt, then the force acting on the wall 

during the time dt is given by 

𝐹 = 
𝑑𝑝 

− − − − − −(7.6.0) 
𝑑𝑡 

where the momentum charge is 𝑑𝑝 = 2𝑚𝑣𝑥, the pressure P on the wall during 

the collision with one particle is given by 

𝑑𝑝 = 
𝐹 

= 
1 𝑑𝑝 

− − − − − (7.6.1) 
   

𝐴 𝐴 𝑑𝑡 

where A is the area of the cubes walls. Next we calculate the total pressure P 

experienced by the wall if a number of 𝑁𝐴𝑉0 particles are within the volume V. 

for this purpose we first determine the number of collisions with the wall 

during the time dt. If the particles have a velocity Vx, then the number of 

particles hitting the wall during dt is (𝑁𝐴𝑉0/V) 𝐴𝑣𝑥 𝑑𝑡. The fraction of particle 

having a velocity Vx is obtained from the velocity distribution function and is 

given by ƒ(𝑉𝑥, 𝑉𝑦, 𝑉𝑧) 𝑑𝑣𝑥 𝑑𝑣𝑦 𝑑𝑣𝑧. Consequently, the total pressure is obtained 

by integration over all positive velocities in the 𝑥 – direction. 

𝑦 

𝑥 

𝑧 
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𝑥

∞ ∞ ∞ 𝑁𝑎𝑣𝑜 2𝑚𝑣𝑟 
𝑃 = ∫ ∫ ∫ 

𝑉 
𝐴𝑣𝑥𝑑𝑡 ƒ(𝑉𝑥, 𝑉𝑦, 𝑉𝑧)𝑑𝑣𝑥 𝑑𝑣𝑦 𝑑𝑣𝑧 

𝐴𝑑𝑡 
− − − − − (7.6.2) 

−∞  −∞   0 

 

Since the velocity distribution is symmetric with respect to positive and 

negative 𝑥-direction, the integration can be expanded from −∞ 𝑡𝑜 + ∞ 

𝑁𝑎𝑣𝑜 
 

 

∞ ∞ ∞ 2 𝑁𝑎𝑣𝑜 
 

𝑃 = 
𝑉 

𝑀 ∫ ∫ ∫ 𝑉𝑥 ƒ(𝑉𝑥, 𝑉𝑦, 𝑉𝑧) 𝑑𝑣𝑥 𝑑𝑣𝑦 𝑑𝑣𝑧 = 
𝑉 

𝑀 v𝑥 
−∞  −∞   −∞ 

 

Since the velocity distribution is isotropic, the mean square velocity is given by 
 

v2=v2+v2 +v2    v2 = 
1

 
 

 

v2 − − − − − −(7.6) 
𝑥 𝑦 𝑧 𝑥 3 𝑦 

 

The pressure on the wall is then given by 
 

𝑃 = 
1

 
3 

v2 
𝑁𝐴𝑉0 

𝑚 − − − − − −(7.6.5) 
𝑉 

Using the universal gas equation (Ē = ½ 𝑚𝑣2𝑟𝑚𝑠) one obtains. 
 

2 1 
2

 
 

𝑅𝑇 = 
3 

𝑁𝐴𝑉0 
2 

𝑚 v 
− − − − − − − (7.6.6) 

 

The average Kinetic Energy of one mole of the ideal gas can then be written as 

Ē = Ē𝐾i𝑛 = 3⁄2 𝑅𝑇 − − − − − − − (7.6.7) 

The average K.E of one single particle is obtained by division by the number of 

particles i.e 

Where K = 𝑅 
𝑁𝐴70 

Ē = Ē𝐾i𝑛 = 3⁄2 𝑅𝑇 − − − − − −(7.6.8) 

is the Boltzmann constant. The preceding calculation has been 

carried out for a three dimensional space. In a one-dimensional space (One 

degree of freedom), the average velocity is v2= v2 and the resulting kinetic 

energy is given by 

Ē𝐾i𝑛 = ½ 𝐾𝑇 (𝑃𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜ƒ ƒ𝑟𝑒𝑒𝑑𝑜𝑚) − − − − − (7.6.9) 

Thus the kinetic energy of an atom or molecule is given by (1/2) KT. Equation 

(7.6.9) is called the equipartition law, which states that each degree of freedom 

contributes (1/2) KT to the total kinetic energy. 
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Let us focus on the energetic distribution of electrons. The properties which 

have been derived in this section for atomic or molecular gases will be applied 

to free elections of effective mass in a crystal. To do so, the interaction between 

the electrons and the lattice must be negligible and election – election collision 

must be a relatively seldom event. Under these circumstance we can treat the 

election system as a classical ideal gas. 

3.5 Maxwell velocity Distribution 

The Maxwell velocity distribution describes the distribution of velocities 

of the parties of an ideal gas. It will be shown that the Maxwell velocity 

distribution is of the form. 

.
1

/MV2 
 

ƒ𝑚 (𝑉) 𝐹𝑚 (𝑣) = 𝐴𝑒𝑥𝑝 (− 2 
KT 

) − − − − − −(7.7.0) 

 

Where (½)2 is the kinetic energy of the particles, if the energy of the particles is 

purely kinetic? 

If the energy of the particles is purely kinetic, the Maxwell distribution can be 

written as ƒ𝑚 (𝐸) =  𝑥𝑝  .− 𝐸/ − − − − − (7.7.1) 
𝐾𝑇 

 

The proof of the Maxwell distribution of equation (7.70) is conveniently done in 

two steps. In the first step, the   exponential   factor is   demonstrated,   i.e. 

ƒ𝑚 (𝐸) = 𝐴𝑒𝑥𝑝 (−𝖺 𝐸). In the second step it is show that 𝖺 = 1/(𝐾𝑇) 

In the theory of ideal gas it is assured that collisions between particles are 

elastic. The total energy of two electrons before and after a collision remains 
the same, that is 𝐸1 + 𝐸2 = 𝐸1 + 𝐸1 − − − − − −(7.7.2) 

1 2 
 

Where E1 and E2 are the electron energy before the collision and E1
1 and E2

1 are 

the energies after the collision. The probability of a collision of an election with 

energy E1 and of an election with energy E2 is proportional to the probability 

that there is an election of energy E1 and a second election with energy E2. If the 

probability of such a collision is P, then 

𝑃 =  ƒ𝑚 (𝐸1)ƒ𝑚 (𝐸2) − − − − − (7.7.3) 

where B is a constant. The same consideration is valid for particles with 

energies E1 and E2. Thus, the probability that two electrons with energies E1
1 

and E2
1 collide is given by 

𝑃1 =   ƒ𝑚 (𝐸1 )ƒ𝑚 (𝐸1) − − − − − (7.7.4) 
1 2 
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2

 

2

 

2

 

If the change in energy before and after the collision is Δ𝐸, 

 

then Δ𝐸 = 𝐸1 – 𝐸1

 

𝑎𝑛𝑑 Δ𝐸 = 𝐸2 – 𝐸1 . 
1 2

 

Furthermore, if the electron gas is in equilibrium, then 𝑃 = 𝑃1 and one obtains 

ƒ𝑚

 

(𝐸1)ƒ𝑚

 

(𝐸2) = ƒ𝑚

 

(𝐸1 + Δ𝐸)ƒ𝑚 (𝐸2– Δ𝐸) − − − − − −(7.75)

 

Only the exponential function satisfies this condition, that is 

ƒ𝑚

 

(𝐸) = 𝐴𝑒𝑥𝑝

 

(−𝖺

 

𝐸) − − − − − −(7.76) 

Where 𝖺

 

is a positive yet undetermined constant. The exponent is chosen 

negative to assure that the occupation probability decreases with higher 

energies. It will become obvious that 𝖺

 

is a universal constant and applies to all 

carrier systems such as electron, heavy or light hole systems. 

Next, the constant 𝖺

 

will be determined it will be shown that 𝖺

 

= 1/KT using 

the results of the ideal gas theory. The energy of an election in an ideal gas is 

given by 

𝐸 = ½ 𝑚𝑣

 

2 = ½ 𝑚 (𝑉2 + 𝑉2 + 𝑉2) − − − − − (7.7.7) 
𝑥

 

𝑦

 

𝑧

 

The exponential energy distribution of (7.7.6) and the normalization condition 
of eqn (7.5.5) yield the normalized velocity distribution. 

ƒ(𝑉

 

𝑉

 

𝑉 ) = 𝑚

 

𝖺

 
 

 

3/2 1

 

𝑒𝑥𝑝 [− 𝑚

 

𝖺

 

(𝑉 + 𝑉 +  )] − − − −(7.7.8)

 
 

 

𝑥,

 

𝑦,   𝑧

 

. 
2𝜋

 

/

 

2 𝑥

 

𝑦

 

𝑧

 

The average energy of an electron is obtained by (First) calculating the mean 
spare velocities v2,v2 ,v2 from the distribution and (second) using eqn (7.7.7) 

𝑥

 

𝑦

 

𝑧

 

to calculate E from the mean square velocities. One obtains 

𝐸 = (3⁄2) 𝖺−1− − − − − (7.7.9) 

We now use the result from classic gas theory which states accordingly to eqn 
(7.6.8) that the kinetic energy equals E = (3/2) KT. Comparison with eqn 
(7.7.9) yields. 

𝖺

 

= (𝐾𝑇)−1 − − − − − −(7.80)

 

Which concludes the proof of the Maxwell distribution of Eqn(7.70) and (7.7.1). 

Having determined the value of 𝖺, the explicit form of the normalized 

Maxwellian velocity distribution in Cartesian co-ordinates is 
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ƒ𝑚

 

(𝑣)

 

𝑣𝑝

 

v

 

𝑉𝑟𝑚𝑠

 

transformation we note that (𝑉𝑥,

 

𝑉𝑦,

 

𝑉𝑧) 𝑑𝑣𝑥,

 

𝑑𝑣𝑦,

 

𝑑𝑣𝑧 = ƒ𝑚(𝑣)𝑑𝑣, and that a 

volume element 𝑑𝑣𝑥,

 

𝑑𝑣𝑦,

 

𝑑𝑣𝑧 is given by 4𝜋𝑣2𝑑𝑣 in spherical coordinate. The 

Maxwell velocity distribution in spherical coordinates is then given by 

3⁄ 
1 2

 

ƒ𝑚

 

(𝑣) = . 
𝑚

 

/

 

2𝜋𝐾𝑇

 

2

 

(4𝜋𝑣2)𝑝

  

− 
2 

𝑚𝑣

 

𝐾𝑇

 

/ − − − − − (7.8.2)

 

 

The Maxwellain velocity distribution is shown in the figure below. The peak of 

the distribution, that is the most likely velocity is 𝑉𝑃 = (2𝐾𝑇/𝑚)1⁄2. The mean 

velocity is given by v = (8𝐾𝑇)/(𝜋𝑚)1⁄2. 

The root mean square velocity can only be obtained by numerical integration. 

 

𝑉𝑝

 

𝑉

 

The figure shows the schematic 
Maxwellian velocity   distribution 
ƒ𝑚

 

(𝑣) of an ideal electron gas. The 
velocity with the highest probability, 
𝑉𝑃

 

is lower than the mean velocity v

 

and the root mean  square velocity, 
𝑉𝑟𝑚𝑠

 

 
 
 
 

  

 
 
  

 
 
 

 
 

 

 

 

  

3/2 − 
1

𝑚 (𝑉2+𝑉2+𝑉2)
ƒ(𝑉 𝑉 𝑉 ) = .  𝑚  / 𝑒𝑥𝑝 * 2 𝑥 𝑦 z + − − − − − (7.8.1) 

𝑥,   𝑦,    𝑧 2𝜋𝐾𝑇 𝐾𝑇

Due to the spherical symmetry of the Maxwell velocity distribution, it is useful 

to express the distribution in spherical coordinates. For the coordinate 
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Boltzmann distribution does not take into account the quantum mechanical 
properties of an electron gas. The applicability of the distribution is therefore 
limited to the classical regime i.e. for E >> KT. 

3.5.1 The Boltzmann Factor:
The Maxwellain velocity distribution can be changed to an energy 

distribution can be changed to an energy distribution by using the substitution 
𝐸 = (1/2) 𝑚𝑣2. Noting that the energy internal and the velocity internal are 
related by 𝑑𝐸 = 𝑚𝑣 𝑑𝑣 and that the number of electrons in the velocity 
internal, ƒ𝑚 (𝑣) 𝑑𝑣, is the same as the number of electrons in the energy 
internal ƒ(𝐸 𝑑𝐸), then the energy distribution is given by

ƒ𝑚𝐵
(∈) = 

2

√𝜋

√∈

(𝐾𝑇)3⁄2
𝑒−∈⁄𝐾𝑇 − − − − − (7.8.3) 

which is the Maxwell Boltzmann distribution. For large energies, the 
exponential term in the Maxwell Boltzmann distribution essentially determines 
the energy dependence. Therefore, the high energy approximation of the 
Maxwell-Boltzmann distribution is 

ƒ(𝐸) = 𝐴𝑒−𝐸⁄𝐾𝑇 − − − − − (7.8.4)
which is the Boltzmann distribution. The exponential factor of the distribution 
𝑒𝑥𝑝 (− 𝐸/𝐾𝑇) is called the Boltzmann factor or the Boltzmann tail. The 
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7.7 Summary 
This unit has covered the following: 

- Equipartition theorem, kinetic energy = 3/2 KT or ½ KT. 
- Probability of any particle having an energy between 0 and infinity is 

unity i.e. 
∞ 

∫ ƒ (𝐸)𝑑𝐸 = 1 
0 

- Average energy or mean energy 1 ∞ 

( ) 
 

𝐸 = 
𝑁 

∑ 𝑁i𝐸 = ∫   ƒ    𝑑𝐸 i 0 
- The average kinetic energy of one mole of an ideal gas is given by 

Ē = Ē 
3

 
 

 

(ƒ𝑜𝑟 𝑡ℎ𝑟𝑒𝑒 𝑑i𝑚𝑒𝑛𝑠i𝑜𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒) 

𝑘i𝑛 = 
2 

𝐾𝑇 

Ē = 1⁄2 𝐾𝑇 (ƒ𝑜𝑟 𝑜𝑛𝑒 𝑑i𝑚𝑒𝑛𝑠i𝑜𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒 𝑝𝑒𝑟 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜ƒ ƒ𝑟𝑒𝑒𝑑𝑜𝑚) 

- Maxwell velocity distribution 
− 1⁄ (𝑉2 + 𝑉2 + 𝑉2) 

𝑚 
ƒ(𝑉𝑥, 𝑉𝑦, 𝑉𝑧) = . 

3⁄2
 

/ 
𝖥 

𝑒𝑥𝑝 I 
2 𝑥 𝑦 𝑧 1 

I 
 

2𝜋𝐾𝑇 I 
[ 

𝐾𝑇 I 
] 

(𝑚𝑣 𝑑i𝑠𝑡𝑟i𝑏𝑢𝑡i𝑜𝑛 i𝑛 𝐶𝑎𝑟𝑡𝑒𝑠i𝑜𝑛 𝑐𝑜𝑜𝑟𝑑i𝑛𝑎𝑡𝑒𝑠) 

(  ) 
𝑚  3⁄

2  
( 2) −1⁄2𝑚𝑣2 

 - ƒ𝑚 𝑣 = . / 
2𝜋𝐾𝑇 

4𝜋𝑣 𝑒𝑥𝑝 { 
𝐾𝑇 

} 
(𝑚. 𝑣. distribution for spherical coordinates) 

 
- Boltzmann Factor 

ƒ (𝐸) = 
2

 
 

 

√𝐸 𝑒−𝐸⁄𝐾𝑇 
𝑚𝐵  

√𝜋 (𝐾𝑇)3⁄2 

(𝐸𝑛𝑒𝑟𝑔𝑦 𝐷i𝑠𝑡𝑟i𝑏𝑢𝑡i𝑜𝑛) 

ƒ(𝐸) = 𝐴𝑒−𝐸⁄𝐾𝑇 

(𝐸𝑛𝑝𝑜𝑛𝑒𝑛𝑡i𝑎𝑙 ƒ𝑎𝑐𝑡𝑜𝑟 𝑜ƒ 𝑡ℎ𝑒 𝑑i𝑠𝑡𝑟i𝑏𝑢𝑡i𝑜𝑛 i𝑠 𝑡ℎ𝑒 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛 ƒ𝑎𝑐𝑡𝑜𝑟). 

7.9. Tutor Marked Assignment (TMA) 
1. Consider a classical linear oscillator with 

𝑃2 

𝐸 = 
2𝑚 

+ 𝑏𝑥4 
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2.

 

Prove that (i) 𝐾. 𝐸 = 3/2 𝐾𝑇 (ii) 𝖴 = 1/2 𝐾𝑇, Using equipartition 
theorem. 

7.10.
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where b is a constant. Assuming that the oscillator is in thermal 
equilibrium with a heat reservoir at temperature T, calculate (i) The 
mean kinetic energy (ii) The mean potential energy and (iii) 𝐶𝑉 for an 
assembly of N such oscillators. 
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Schrodinger equation. Quantum statistics help us to correct all the inadequacies 
of classical theory like (i) Inability to correctly deal with indistinguishable 
particles led us to Gibbs paradox and this can be corrected by resorting to a 

MODULE 3

Unit 1 Quantum Statistics
1.0 Introduction 
2.0 Objective 
3.0 Main Content 
3.1 Towards Quantum Statistics 
3.2 Ideal Bose-Einstein Gas 
3.3 Ideal Fermi-Dirac Gas 
4.0 Summary 
5.0 Conclusion 
6.0 Tutor mark Assignments 
7.0 References and Further Readings 

1.0 Introduction
Quantum Mechanic Fermi-Dirac statistics are introduced to calculate the 
occupancy of states. Special attention is given to analytic approximations of the 
Fermi-Dirac integral and to its approximate situations in the non-degenerate 
and the lightly degenerate regime. 

In addition, some numerical approximation to the Fermi-Dirac integral is 
summarized. 

Quantum statistics takes into account two results of quantum mechanics, 
namely (i) The Pauli exclusion principle which limits the number of electrons 
occupying a state of energy 𝐸 and (ii) The finiteness of the number of states in 
an energy interval𝐸𝑎𝑛𝑑 𝐸 + 𝑑𝐸. The finiteness of states is a result of the
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purely ad-hoc device of dividing the thermodynamic probability by 𝑁! (ii) 
Problem of black body radiation cannot be handled within the domain of 
classical method but max plank propose a remarkable idea for the resolution of 
the problem by deriving the Planck’s law of black body radiation. 
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2.0 Objective 
After studying this unit the students should be able to 

- Point out the inadequacies of the classical theory. 
- Derive expressions for the Bose-Einstein and Fermi-Dirac distribution 

functions. 
- Apply Bose-Einstein statistics to an assembly of photons. 
- Explain the behaviour of liquid Helium at low temperatures 
- Explain the concept of zero point energy 
- Explain Temperature dependence of heat capacity of electrons and 
- Predict Thermodynamic functions of degenerate 𝐵. 𝐸 and 𝐹. 𝐷 gases 

 
3.0 Main Content 

3.1 Towards Quantum Statistics 
In classical physics we postulate that it is possible to determine the 

position and momentum coordinates of a gaseous molecule/atom 
simultaneously as precisely as we like. All that we have to do is to follow its 
trajectory as it moves in space. This means that these particles are 
distinguishable and can be labelled, but this is not true. 

 

You will recall that Heisenberg’s un-certainly principle forbids determination of 
the position. If the uncertainties in the measurements of q and p are ∆𝑞 𝑎𝑛𝑑 ∆𝑝, 
respectively, we have 

∆𝑞 ∆𝑝 ≥ 
ℎ

 
4𝜋 − − − − − −(8.1.1) 

Where (ℎ = 6.63 × 10−34 𝐽𝑠) is Planck’s constant. That is, the product ∆𝑞 ∆𝑝 
cannot be made less than ℎ/4𝜋. So it does not make much sense to talk about 
the trajectory of a particle. Moreover, the task of labeling particles is just 
impossible and when we study the behaviour of an assembly of identical 
particles statistically, we should treat it as a collection of indistinguishable 
particles. 

 
Lord Kelvin spoke about two dark clouds on the horizon of classical physics, the 
heat capacity of solids and the black body radiation and this shook the edifice of 
classical physics to its very foundations. The paragraphs that follow are devoted 
to these two aspects. 

 

Heat capacity of solids 
You would recall that solids behave as a collection of independent harmonic 
oscillators, and energy associated with them is equal to 3𝑁𝐴𝐾𝐵𝑇, where 𝑁𝐴 is 
Avogadros number. Hence, heat capacity at constant volume is constant, equal 
to 3𝑅 regardless of the substance. 

𝐶 = (
∂𝑢

* = 3𝑅 = 24.9 𝐽 𝑚𝑜𝑙−1𝑘1 − − − − − (8.1.2) 
𝑉 ∂𝑇 𝑉 
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𝐾 𝑇 

2

( * 

The famous Dulang and Petit’s law does not exhibit what experiments reveal 
about temperature variation of heat capacity. 

 
The deviations from this law, particularly in the low temperature region are 
striking, as shown in the figure below. 

 
As T decreases below room temperature, 𝐶𝑉 also decreases and becomes zero 
at absolute zero. 
𝐶𝑉 
3𝑁𝑘𝐵 

 
 
 
 
 
 

100 200 300 
T

 
(Temperature variation of constant volume lent heat capacity of a solid) 
A qualitative theoretical explanation was provided by Einstein, using Planck’s 
idea on quantization of energy. 

 
The key to Einstein’s success was that he discarded the law of equipartition of 
energy. The mean energy of a classical oscillator is given by Ē = 𝐾𝐵𝑇. 
In the quantum theory, we have 

 

Ē = {
1 

+ 
1

 
 

 
} h𝜔 − − − − − −(8.1.3) 

2 
 

Where h = ℎ 
2𝜋 

𝑒𝑥𝑝 .
 h𝜔 

/ − 1 
𝐵 

For a system of 𝑁𝐴 oscillators vibrating with Einstein frequency 𝜔c, this gives 
 

1 
𝑈 = 3𝑁𝐴 h𝜔𝐸 [ + 

1 
h𝜔c 

 
] − − − − − (8.1.4) 

So that 

𝑒𝑥𝑝 .𝐾 𝑇/ − 1 

3𝑁𝐴 h𝜔c 𝑒h𝜔𝗀/𝐾𝐵𝑇 h𝜔c 
  = 

*𝑒𝑥𝑝 (h𝜔c/𝐾𝐵𝑇) − 1+2   
(

𝐾𝐵𝑇2
*

 
 

h𝜔c 2 
𝑒h𝜔𝗀/𝐾𝐵𝑇 

= 3𝑅 (
𝐾𝛽𝑇

) 
 

 

,h𝜔𝗀/𝐾𝐵𝑇 − 1-2 

 

= 3𝑅 
𝜃𝐸

 

𝑇 

2 𝑒𝜃𝐸/𝑇 

,𝐸/𝑇−1-2 
− − − − − (8.1.5) 
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2

 

Where we have introduced Einstein temperature 𝜃𝐸 = h𝜔c/𝐾𝐵. For Copper, a 
plot of this equation is shown in the figure below. 

 
You will note that this relation reproduces all the general features of the 
observed curve at least qualitatively. However, there are disagreements in 
details, particularly near absolute zero. 

 

6 

4 

3 

2 

1 

0 0.5 1.0 1.5
 

 𝑟/𝜃
 

 
 
 
 
 
 
 2.0 

The figure above shows the plot of eqn (8.1.5) for cooper. 

 Debye (1912) subsequently refined Einstein’s theory and obtained an excellent 
agreement with experiments. 

 The heat capacities of metals also pose an interesting puzzle, in fact a challenge, 
to the classical physicists. You know that every metal contains free electrons. If 
we assume that these electrons constitute a monoatomic gas, they should 

contribute an amount 3

 
𝑅

 
𝑡𝑜

 
𝐶𝑉. Hence, the heat capacity of a metal should be 

3𝑅 + 3

 
𝑅 = 9/2 𝑅.   However,   we   experimentally   find that   metal   obey   the 

2

 Dulong-Petit’s law as good as do insulators. This raises the question: Why do 
electrons not contribute to thermal processes? The fact is that we should not 
analyze this problem on classical arguments. 

 -
 

Electrons obey Fermi-Dirac Statistics. 
A satisfactory explanation was given by Summerfield in 1928 on the basis of 
quantum statistics. 

 The Problem of Black Body Radiation
 We now consider the common place phenomenon of black body radiation. It 

deserves a unique place in physics because it gave birth to the quantum theory. 

 When a body is heated, it emits electromagnetic waves (from its surface) in all 
directions over a broad range of frequencies. The spectrum of radiated 

𝐶
𝑉

 
𝐶

𝑎
𝑙𝑚

𝑜
𝑙𝑒 

𝐾
−

1
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frequencies from 𝑜 to 𝜔 peaks at a frequency which is proportional to the 
absolute temperature of the body. Suppose that such thermal radiation is 
contained in side a hollow cavity whose walls are opaque to radiation and 
maintained at a constant temperature. 

 

The radiation in the interior must, therefore have exactly the same spectral 
distribution as that of black body radiation. In other words, the energy 
distribution over various wave lengths becomes a function of temperate, 
independent of the shape and size in one of the walls enables us to study 
experimentally the emerging radiation. 

 

Such experiments were carried out by a large number of investigators in the 
period 1895 - 1900. We may make particular mention of Rubens and Kurlbaum. 
The results of these experiments established beyond doubt the inability of 
classical theories to reproduce experimental curves. 

 

Let 𝖴𝑉

 

𝑑𝑉 denote the energy density (energy per unit volume) between 
𝑣

 

𝑎𝑛𝑑

 

𝑣 + 𝑑𝑣 as shown in (fig b) shows the experimental curves for 𝑢 at two 
different temperatures. 

 

∆𝑢𝑉

 

∆𝑉

 
Plank 

Rayleijh Jeens 

Wien 
 

(a) 

 

(a)

  ℎ𝑉

 

2 4 6 8 
𝐾𝐵𝑇

 
 

(a)

 

The electromagnetic radiation inside an oven is treated as a photon gas in 
equilibrium with the oven walls. 

 

(b)

 

Spectral distribution of energy in black body radiation. 
 

Lord Rayleigh studied the problem using ideas of classical physics and obtained 
an expression for 𝖴𝑉

 

𝑑𝑉, Jeans discovered a numerical error in his formula and 
subsequently corrected it. This so called Rayleigh Jean Law is of the form. 

8𝜋𝑣2

 

𝖴𝑉

 

𝑑𝑉 = 
𝐶3 𝑑𝑣s − − − − − −(8.1.6𝑎) 
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𝖴𝑉

 

𝑑𝑉 =

 

8𝜋𝑣2

 

𝐶3 𝐾𝐵𝑇

 

𝑑𝑣 − − − − − (8.1.6𝑏) 

 

For small values of 𝑉, it reproduces the experimental curve very well. However, 
for 𝑣 → ∞, eqn (8.1.6b) has a serious law: it predicts that the total energy

 

density will be infinite. 
∞

 

𝖴= ∫ 𝖴𝑉

 

𝑑𝑉 = ∞ − − − − − (8.1.7)

 

0

 

This unphysical   situation   was   termed   the   ultraviolet   catastrophe   by   P. 
Ehrenfest. Wien carried out thermodynamic analysis of blackbody radiation 
spectrum and showed that 𝖴𝑉, is of the form 

𝖴𝑉

 

𝑑𝑉 = 𝑉3𝐹

 

𝑉

 

(
𝑇

*

 

− − − − − − − (8.1.8) 

You can easily verify that this result gives a finite 𝖴 which varies as 𝑇4, in 
accordance with Stefan’s law. 
Moreover, the frequency at which 𝖴𝑉, is maximum is directly proportional to T. 

3.4

 

Ideal Bose-Einstein Gas.

 

We shall first derive the Bose-Einstein distribution law, and this will pave 
the way for Bose’s derivation of Planck’s law. When Planck was not convinced 
of the physical basis of his derivation, Bose proposed the correct method for 
treating a system on the basis of quantum statistics. Einstein extended his ideas 
to the case of materials particles obeying Bose statistics. 

 

During his investigations, Einstein came to the remarkable conclusion that Bose 
Einstein Gas can tend to a highly ordered state. This phenomenon, known as 
Bose-Einstein condensation, was invoked by F. London to explain the 
superfluidity exhibited by liquid 4He.

 

3.4.1

 

Bose-Einstein Distribution Function

 

Consider a system of N non-interacting bosons occupying a volume V and 
sharing a given energy U levels of the system are very closely spaced. 

 

In the limit of large V, the energy levels of the system are very closely spaced. 

 

Hence, we can bracket the energy levels into groups, which may be called the 
energy cells. 

Where s is the mean energy of an oscillator, Lord Rayleigh and Sir James Jean 
used the law of equipartition of energy and used s = 𝐾𝐵𝑇 using this result in 
the above equation, we obtain
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This is known schematically in the figure below. 
 
 
 
 

i𝑡ℎ 𝑐𝑒𝑙𝑙 

 
 

1𝑠𝑡 𝑐𝑒𝑙𝑙 

𝑔j𝑁j − sj 

 
𝑔i𝑁i − si 

 
 

(Energy level of a system bracketed into cells). 
We assume, without any loss of generality, that the number of levels in the 
i𝑡ℎ 𝑐𝑒𝑙𝑙, 𝑔i, is very much greater than one (𝑔i » 1). 

It is still reasonable to talk about the energy of the level in the i𝑡ℎ 𝑐𝑒𝑙𝑙 as si, 
since they are lying very close to each other. Let Ωi denote the number of ways 
in which 𝑁i particles can be distributed amongst the 𝑔ii levels of the i𝑡ℎ 𝑐𝑒𝑙𝑙. 
This number is already available to us from eqn 

 
 

. 
We have 

{Ω = 𝑁i + 
𝑔i 

− 1} 
𝑁i 

Ω = (𝑁 + 
𝑔i 

− 1* = 
(𝑔i + 𝑁i − 1)! 

− − − − − −(8.1.9) 
i 𝑁i

 
𝑁i! (𝑔i − 1)! 

Denoting by (𝑁1, 𝑁2 − − − − 𝑁2, − − −) = (,𝑁i-), the number of ways in which 
we can put 𝑁1 particles in group 𝑔1, 𝑁2 particles in group 𝑔2, −−, 𝑁i particles in 
group 𝑔i, we have 

 

 
(*𝑁 +) = п fi = 𝖦 

(𝑔i + 𝑁i − 1)! 
− − − − − (8.2.0) 

 
 

i i i 𝑁i! (𝑔i − 1)! 
 

We maximize 𝑤 subject to the conditions 

∑ 𝑁i = 𝑁 − − − − − − − (8.2.1𝑎) 

i 
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∑ 𝑁i si = 𝑈 − − − − − − − (8.2.1𝑏) 

i 
 

Then eqn (8.2.0) gives 

𝑙𝑛 𝑤 = ∑, (𝑔i + 𝑁i − 1)! − 𝑙𝑛 (𝑔i − 1)! − 𝑙𝑛 𝑁i!- 

Using stirling formula, we have 

𝑙𝑛 𝑤 = ∑,(𝑔i + 𝑁i − 1)𝑙𝑛 (𝑔i + 𝑁i − 1) − (𝑔i + 𝑁i − 1) − (𝑔i − 1)𝑙𝑛 (𝑔i − 1) 

+ (𝑔i − 1) − 𝑁i 𝑙𝑛 𝑁i + 𝑁i- 

= ∑,(𝑔i + 𝑁i − 1)𝐼𝑛 (𝑔i + 𝑁i − 1) − (𝑔i − 1)𝑙𝑛 (𝑔i − 1) − 𝑁i 𝑙𝑛 𝑁i- 

i 

 

= ∑,(𝑔i + 𝑁i)𝑙𝑛 (𝑔i + 𝑁i) − 𝑔i𝑙𝑛𝑔i − 𝑁i𝑙𝑛𝑁i- − − − −(8.2.2) 

i 

 

Since 𝑁i and 𝑔i >> 1 

The condition for maximum probability is 𝛿 𝐼𝑛 𝜔 = 0 
On combining this with eqn (8.2.2), we get 

𝛿𝑙𝑛𝑤 = ∑ [(  + 𝑁 ) 
1 

𝛿𝑁i + 𝑙𝑛(𝑔 + 𝑁 )𝛿𝑁 − 𝛿𝑁 − 𝛿𝑁 𝑙𝑛𝑁 ] = 0 
i i  (𝑔i + 𝑁i) 

Or 

i i i i i i 

∑, (𝑔i + 𝑁i) − 𝑙𝑛 𝑁i- 𝛿𝑁i = 0 − − − −(8.2.3) 
i 

Since 𝑁 𝑎𝑛𝑑 𝖴 are fixed, we have from eqn (8.2.1a) and (8.2.1b) 

𝛿𝑁 = ∑ 𝛿𝑁i = 0 − − − −(8.2.4𝑎) 

and 

𝛿 𝖴= ∑ si 𝛿𝑁i = 0 − − − − − −(8.2.4𝑏) 

i 
 

Multiplying eqns (8.2.4a) and (8.2.4b) by 𝖺 𝑎𝑛𝑑 𝛽, respectively and adding to 
eqn (8.2.3), we obtain 

∑, (𝑔i + 𝑁i) − 𝑙𝑛 𝑁i+𝖺 −𝛽𝗌i- 𝛿𝑁i = 0 − − − −(8.2.5) 
i 

Since the variations 𝛿𝑁i are arbitrary, the coefficient of each term in eqn (8.2.5) 
must vanish. Hence we have 

𝑙𝑛 (
𝑔i + 𝑁i

* = −𝖺 +𝛽 

𝑁i 
𝗌i 

i
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Or 
𝑁i 

= 
1 

 

 

− − − − − (8.2.6) 
𝑔i 𝑒−𝖺+  − 1 

 

As before, we put 𝑒𝖺 equal to A. Then eqn (8.2.6) take the form 
𝑁i 

= − 
1

 
 

− − − − − − − (8.2.7) 
𝑔i 𝐴−1 𝑒𝛽𝗌i − 1 

 

 

Yet another way of rewriting eqn (8.2.6) is to define a parameter called the 

fugicity as 𝑍 = 𝑒−𝖺 = 𝑒−𝛽𝜇 − − − − − −(8.2.8) 

Where N is the chemical potential, eqn (8.2.7) becomes 
𝑁i 

= 
1 

 

− − − − − (8.2.9) 
𝑔i (𝗌i−𝜇) − 1 

 

If we treat energy as a continuous variable, the number of particles with energy 
s is given by 

𝑁(s) 
= 

1 
= 

1 
  

− − − − − (8.3.0) 
𝑔(s) (𝗌−𝜇) − 1 𝐴−1 𝑒  − 1 

 

This is known as the Bose-Einstein distribution. 

3.4.2 Bose Derivation of Planck’ Law. 

S.N Bose and Indian Physicist gave a very elegant derivation of Planck’s 
law in 1924. He communicated his work to Einstein, who immediately 
recognized its significance. 

 
He translated its findings into German language, got it published and his paper 
marks the birth of quantum statistics. 

 
We consider the equilibrium properties of electromagnetic radiation enclosed 
in a cavity of volume V at temperature T. You should recall that the distribution 
of energy among the various frequencies is independent of the nature of the 
walls of the container; it is a function of T and V only. We now wish to 
determine the form of this function. From a quantum mechanical point of view, 
the radiation in the cavity can be considered as a collection of photons of 
different frequencies moving with speed of light completely randomly. The 
photons of the same frequency are indistinguishable. 

 
This is a perfect example of a system of non-interacting, indistinguishable 
particles. 
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(  * 

The energy of a photon of frequency 𝑣 is taken to be ℎ𝑣. We should also 

remember that photons are particles with zero rest mass and spin . Each 
photon can have two kinds of polarization. There are the two transverse modes, 
which have no longitudinal photons. 

 
In other words, the propagation vector and the polarization vector (giving the 
direction of polarization of the electric field associated with the photon) are 
normal to each other. (This is a consequence of the transversality of the electric 
field, i.e.  . 𝐸 = 0). 

 
You would also appreciate the fact that atoms can emit or absorb photons and 
the total number of photons is not constant. 

 
In other words, we have only one constant, namely 𝖴= constant. This 
essentially means that in eqn (8.3.0), we need only one langrage multiplier 
𝛽 𝑎𝑛𝑑 𝖺 = 0 𝑜𝑟 𝐴 = 1. 

 
Then eqn (8.3.0) reduces to 

𝑁𝑉 
= 

1 
 

− − − − − (8.3.1) 
𝑔𝑉 𝑒𝛽ℎ𝑣 − 1 

Let 𝑔𝑉 𝑑𝑉 denote the number of quantum states between 𝑣 𝑎𝑛𝑑 𝑣 + 𝑑𝑣. We can 
derive an expression for this using the principles of quantum mechanics. 
However, a simple argument can be used to get the result. 
Let us first calculate𝑔𝑃 𝑑𝑃, the number of quantum states between 𝑃 𝑎𝑛𝑑 𝑃 + 
𝑑𝑃. 

 
The volume of phase space occupied by a particle in a box of volume V and with 
momentum between 𝑃 𝑎𝑛𝑑 𝑑𝑃 i𝑠 𝑉𝑑3𝑃. 
Since 𝑑3𝑃 = 𝑃2𝑑𝑝 𝑠i𝑛 𝜃𝑑𝜃𝑑Ø, integration over 𝜃 𝑎𝑛𝑑 Ø gives 4𝜋. Since each cell 
has volume ℎ3, we have 

𝑔𝑃 𝑑𝑃 = 

From the Brag lie’s relation 

4𝜋𝑃2𝑑𝑝 

ℎ3 𝑉 − − − − − (8.3.1) 

 
 

and 

ℎ 
𝑃 = 

𝜆 
= 

ℎ𝑣 
 

 

𝐶 

𝑃2𝑑𝑝 = 
ℎ

 
𝐶 

Inserting this result in eqn (8.3.1) we get 

3 

𝑉2𝑑𝑣 
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𝐾 𝑇 

𝑔𝑉 𝑑𝑣 = 
4𝜋𝑉 

𝐶3 

 
𝑉2𝑑𝑣 

 

Since photons can have two kinds of polarization, we have 

 
 

So that 

𝑔𝑉 

 
8𝜋𝑉 

𝑑𝑣 = 
8𝜋𝑉 

𝐶3 

 

𝑉2𝑑𝑣 

𝑉2𝑑𝑣 

𝑁𝑉 = 
𝐶3 𝑒𝛽ℎ𝑣 − 1 

− − − −(8.3.2) 

 

Let 𝐸𝑉𝑑𝑣 denote the energy lying in the frequency range 𝑣 𝑎𝑛𝑑 𝑣 + 𝑑𝑣. 
Combining eqns (8.3.0) and (8.3.2), we obtain 

𝐸𝑉𝑑𝑣 = 𝑁𝑉 ℎ𝑉 𝑑𝑉 = 
8𝜋ℎ𝑉 

 
 

𝐶3 

𝑉3𝑑𝑉 
 

 

𝑒𝛽ℎ𝑣 − 1 
 

We prefer to speak of energy density rather than total energy because the total 
energy of photons depends on the size of the oven but the energy density does 
not. If we let U, represent energy density, we have 

𝖴𝑉 𝑑𝑉 = 
𝐸𝑉 𝑑𝑉 

=
 

𝑉 

8𝜋ℎ 
 

 

𝐶3 

𝑉3𝑑𝑣 

𝑒𝑥𝑝 .
 ℎ𝑣 

/ − 1 
− − − − − (8.3.3) 

𝐵 
 

It is important to note that Planck had derived the law by combining classical 
electromagnetic theory and the quantum hypothesis. On the other hand, Bose in 
a manuscript to Einstein in 1924 treated electromagnetic radiation as a system 
of indistinguishable particles which have the same properties as particles of 
light that we now call photons. Subsequent investigations led Einstein to the 
concept of stimulated emission, which culminated in the development of 
masers and lasers devices finding use in medicine, industry, energy production 
in fusion reactors, and military application. 

 
Limiting cases 
Let us now discuss limiting cases of Planck’s radiation law. At short frequencies 

(long wavelengths) we note that if ℎ𝑣 
𝐾𝐵𝑇 

<< 1, the exponential term 

 
 

So that 

 
 

Hence, eqn (8.3.3) reduces to 

𝑒ℎ𝑣/𝐾  Ξ 1 + 
ℎ𝑣 

𝐾𝐵𝑇 

𝑒ℎ𝑣/𝐾𝐵𝑇−1 =   
ℎ𝑣 
𝐾𝐵𝑇 

𝖴𝑉 𝑑𝑉 = (
8𝜋 

𝐶3 𝐾𝐵 𝑇* 𝑉2𝑑𝑣 − − − − − (8.3.4) 
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0

0

8𝜋 𝐾 

0

 

This is the Rayleigh Jean law. 

For ℎ𝑣 
𝐾𝛽𝑇 

>> 1, we can neglect T in comparison with the exponential term in the 

denominator. Then we find that 
8𝜋ℎ𝑉3 

 
 

 
 − ℎ𝑣/𝐾 𝑇 

   = 
𝐶3 𝑒 

𝐵    𝑑𝑣 − − − −(8.3.5) 
 

This is Wien’s law, it is straight forward to calculate the total area under the 
Planck or the Wien curve. 

 

These are given by 𝜋
4 

Ξ 6.49 𝑎𝑛𝑑 6 respectively. It is obvious that the area 
15 

under the Rayleigh Jeans curve from eqn(8.3.4), will be infinite! 
 

Thus, you will recall, is Ehrenfestis ultraviolet catastrophe. 
 

It is also possible to relate Stefan’s constant 𝜎 and Wien’s constant 𝑏 to Planck’s 
constant. To illustrate this we calculate the total energy density, U, in the cavity. 
From eqn (8.3.3), we have 

∞ 8𝜋ℎ ∞ 𝑉3𝑑𝑣 
𝖴= ∫  𝑈𝑉 𝑑𝑣 = 

0 𝐶3 ∫ 
𝑒ℎ𝑣/𝐾𝐵𝑇 − 1 

− − − − − (8.3.6) 

 

To evaluate this integral, we change the variable of integration by defining 

 
 
 

So that 

ℎ𝑣 
 

 

𝐾𝐵𝑇 
= 𝑥 

𝑉3𝑑𝑣 = ( 
𝐾𝐵𝑇

* 
ℎ 

𝑥3𝑑𝑥. 

Substituting this result in eqn (8.3.6), we get 
8(𝐾𝐵𝑇)4 ∞ 𝑥3 

𝖴 = 

Using method of integration 

(𝐶ℎ)3 
∫

 
 

 

𝐶𝑥 − 1 
𝑑𝑥 

 
 

So that 

 
 
 

8𝜋5 

∞ 𝑥3 

∫ 
𝑒𝑥 − 1 

( )4 

𝑑𝑥 = 

 
 4 

𝜋4 
 

 

15 

( ) 

Where 

𝖴= 
15(𝐶ℎ)3 

𝐾𝐵𝑇 = 𝑎𝑇 − − − − − 8.3.7 

5 4 

𝑎 = 𝐵 = 7.56 × 10−16𝐽𝑚−3𝐾4 
15ℎ3𝐶3 

4
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  𝐵  

0

0

3    3 

If we consider the sun as blackbody whose interior consists of photon gas at 
constant temperature of 3 × 106 𝑘, we find that energy density 

𝑈 = (7.56 × 10−16𝐽𝑚 − 3𝑘 − 4) × (3 × 106𝑘)4 = 6.1 × 1010𝐽𝑚−3 

The total volume of the sun is nearly 1.4 × 1027𝑚3 
So that 

𝑈 = 𝑢𝑉 = (6.1 × 1010 𝐽𝑚−3) × (1.4 × 1027𝑚3) = 8.6 × 1037𝐽 
 

If we assume that photons effuse out of a small hole in the blackbody (sun), the 
net rate of flow of radiation per unit area 

 

Where 

 
𝑅 = 

1 2𝜋5𝐾4 
𝑈𝐶 = 

4 15ℎ3𝐶2 

2𝜋5𝐾4 

 
𝑇4 = 𝜎 𝑇4 − − − − − −(8.3.8) 

𝜎 = 𝐵 = 5.67 × 10−8𝐽𝑚−2𝑆−1𝐾−4 
15ℎ3𝐶2 

is Stefan Boltzmann constant 

3.4.3 Radiation Pressure and Entropy of Photons 
We can write the partition function for photons as (Eqn 8.3.1) 

𝑍𝑃 ℎ = 𝜋 
1

 
1 − 𝑒−𝛽𝗌7 

− − − − − (8.3.9) 

∴ 𝑙𝑛 𝑍𝑃ℎ = − ∑  ,1 − 𝑒𝑥𝑝 (−𝛽s𝑉)- 

We replace the summation by integration. This gives 

𝑙𝑛 𝑍𝑃ℎ = − ∑  ,1 − 𝑒𝑥𝑝 (−𝛽s𝑉)- 

We replace the summation by integration. This gives 

8𝜋 ∞  
2 ,

 
 

 

( )- 

𝑙𝑛 𝑍𝑃ℎ = − (
𝐶3 * 𝑉 ∫   𝑙𝑛 1 − 𝑒𝑥𝑝 

Hence, Helmholtz free energy is given by 

−𝛽ℎ𝑉 𝑑𝑣 

8𝜋𝐾𝐵𝑇 ∞  
2 ,

 
 

 

( )- 
𝐹 = −𝐾𝐵𝑇 𝐼𝑛 𝑍𝑃ℎ = ( 

𝐶3 * 𝑉 ∫ 𝑉 𝐼𝑛 1 − 𝑒𝑥𝑝 −𝛽ℎ𝑉 𝑑𝑣 

To simplify this expression, we introduce a change of variable by defining 
𝑥 = 𝛽ℎ𝑉 

So that 𝑉2𝑑𝑣 = 𝑥
2 𝑑𝑥 

On substituting it in the above integral, we obtain 
𝛽  ℎ 

8𝜋𝐾4𝑇4 ∞ 

𝐹 = ( 𝛽 ) 𝑉 ∫  2 𝑑𝑥 𝑙𝑛 (1 − 𝑒−𝑥) 
ℎ3𝐶3 

0
 

On integrating by parts, we get 
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2 ( −𝑥) 

  𝐵  

  𝐵 

∞ 1 ∞ 𝑥3𝑒−𝑥 1 ∞ 
∫    𝑙  1 − 𝑒 𝑑𝑥 = − ∫ 𝑑𝑥 = − ∫ 

 
   

𝑥3 𝑑𝑥 = − 
1

 ( ) 
 

0 

= −𝜋4/45 

3 0      1𝑒−𝑥 3 0 𝑒𝑥 − 1 
3 

4 ((4) 

Hence, the expression for Helmholtz free energy reduces to 
8𝜋5𝐾4 

𝐹 = − ()  = 45ℎ3𝐶3 

1 
𝑢𝑉 

3 
 

 

The radiation pressure, defined as 

𝑃 = − (
∂𝐹

* 
∂𝑣 𝑇 

Is given by  
8𝜋5𝐾4𝑇4 

𝑃 = = 
45ℎ3𝐶3 

(𝑇) 3 

It is interesting to note that for photon gas, 𝑃𝑉 = 𝖴 and the pressure exerted by 
3 

ideal gas, 𝑃 = 2 𝐸. So can draw a useful analogy that radiation behaves like 
3 

particles. 
 

Now, entropy of an assembly of photons is given by 

𝑆 = − (
∂𝐹

* 
 

32𝜋5𝐾4 
∂𝑇 𝑉 

 

and 

=  − (  𝐵) 𝑉𝑇3 − − − (8.4.0) 
45ℎ3𝐶3 

𝐶𝑉 = 𝑇 (
∂𝑆

* 
∂𝑇 𝑉 

= 3𝑆 − − − − − −(8.4.1) 

 

This shows that entropy of the system is proportional to 𝑉𝑇3. 
If radiation undergoes an adiabatic change (S=constant), we find that 
𝑉𝑇3 = Constant. 

 
In terms of pressure and volume, the equation for the adiabatic of the system 
takes the form P𝑣4/3 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − − − − − (8.4.2). 

 

From this, you may conclude that the ratio of specific heats at constant pressure 
to that at constant volume for a photon gas is 4/3. Actually, this ratio is infinite! 
Bose Statistics finds useful application in explaining the remarkable 
phenomena exhibited by liquid helium, particularly at low temperature. 

3.4.4 Liquid 4He and Bose-Einstein Condensation 
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Hydrogen, the first element in the periodic table, has contributed in a 
large measure to the development of new concepts and theories in physics. The 
second element, Helium is still more remarkable because of its existence from 
the sum which was discovered during a solar ellipse in India in 1868. Helium 
derives its name from the Greek word Helios, which means the sun. Among all 
the elements, helium has the unique distinction of not solidifying even at the 
lowest attainable temperatures. 

 
It is due to very weak forces between helium atoms. (Its solid phase can be 
obtained only under an external pressure of about 25 atmosphere). The P-T 
diagram, shown in the next figure indicates the absence of a triple point. At 
atmospheric pressure, helium condenses into a normal liquid at 4.2k. As the 
temperature is lowered further, liquid helium exhibits another phase transition 
at 2.18k. 

 
You may expect helium to solidify. Instead it changes into another liquid very 
surprising, in fact unique properties. The new phase is called liquid He II to 
distinguish it from the phase above 2.18k, which is termed liquid HeI. You may 
recall that helium transition is a second order phase transition. The point at 
which the phase transition occurs is called the λ point. This nomenclature is 
used because the shape of heat capacity curve resembles the Greek letter 
‘Lambda’ 

 

P 
𝛽 

100 
 

50 

4 100 

HeII 

 
 
 

 
HeI 

 
 
 
 
 
 
C gas 

CV   30 

25 

20 

15 
10 

05 

(a) 1 2 3 4 5 T(k) (b) 1.4 1.6 1.8 20 2.2 2.4 2.6 2.8 T(k 
 

From the figure above (a) P-T diagram of 4He, (b) temperature variation of heat 
capacity of helium near λ – point. 

 
A more dramatic manifestation of the unusual properties of liquid He II is its 
ability to flow through very narrow channels with zero viscosity. This property 
is known as super fluidity. 

 
A series of beautiful experiments have been designed to illustrate the 
consequences of this property. Here, we shall discuss only one of them, viz, the 
fountain effect. 
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We take a U – tube and immerse it in a bath of liquid He II as shown in the figure 
below. The lower portion of the tube is filled with emery powder. On shining a 
beam of light on the powder heat is absorbed and the super fluid tends to flow 
from the bath to the hotter region. 

 
The motion is so violent that a jet of helium is forced up through the vertical 
tube and emerges as a fountain going as high as 30cm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

F. Loud 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

F. London (1938) suggested that the λ – transition should be identified with 
Bose Einstein condensation. Einstein proposed a simple model that allows us to 
apply 𝐵𝐸 statistics to liquid helium in order to gain insight into its peculiar 
behaviour. Following him, we assume that the distribution of excited states 
accessible to the atoms of liquid helium is that of a quantum gas and treat the 
ground state separately. If there are N atoms in all, let 𝑁g be in the ground state 
and 𝑁𝑒𝑥 in the excited state. 

Then 
𝑁 = 𝑁g + 𝑁𝑒𝑥 − − − − − − − (8.4.3𝑎) 

Helium 
Fountain 

Liquid 
Helium 

Energy 

Heater 

   

Powder    

Cotton 
Plugs 

The Fountain Effect 
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𝑒

𝐵 

2

2

 

Or 
∞ s1⁄2𝑑s 

 
 

and 

𝑁 − 𝑁g = 𝐶𝑣 ∫ 
0 

1  
𝗌⁄𝐾𝐵𝑇 

𝐴 

− − − −(8.4.3𝑏) 
− 1 

𝐶 = 
2𝜋 

ℎ3 
(2𝑚𝐾𝐵 𝑇)3⁄2 

To evaluate this integral, we make the substitution s⁄𝐾 𝑇 = 𝑥. Then 

s1⁄2𝑑s = (𝐾𝐵𝑇)3⁄2𝑥1⁄2 𝑑𝑥 so that for a completely degenerate gas (A = 1), we 
get 

𝑁 − 𝑁g = 𝐶𝑣 (𝐾𝐵𝑇)3⁄2 (3⁄2) (3⁄2) − − − −(8.4.4) 

 
 

 

Where   
3 𝜋   

=   is   gamma   function   and   (3/2)  =  2.612   is   the 
2 

Riemann Zeta function of order (3/2). 
 

It shows that number density of excited particles is a function of temperature. 
As 𝑇 → 0, 𝑁𝑒𝑥→0 𝑎𝑛𝑑 𝑁 → 𝑁g i.e. all particles condense into ground state. This 
phenomenon is referred to as Bose-Einstein condensation. However, as T 
increases 𝑁𝑒𝑥 also increase, it may become arbitrarily large. But N is finite and 
𝑁𝑒𝑥 has to be necessary less than (at best equal to) N. We therefore postulate 
that eqn (8.4.4) holds only as long as 𝑁𝑒𝑥 ≤ 𝑁. 

If 𝑇𝑐 is the maximum temperature which satisfies it, then 

𝑁𝑒𝑥 = 𝐶𝑣 (3⁄2) (3⁄2) (𝐾𝐵𝑇)3⁄2 ƒ𝑜𝑟 𝑇 ≤ 𝑇𝑐 = 𝑁 

𝐹𝑜𝑟 𝑇 > 𝑇𝑐 − − − − − −(8.4.5) 
That is, at low temperature, the number of atoms in excited states increases as 

𝑇3⁄2 until all atoms are in the excited state at temperature 𝑇𝑐. So we can write 

𝑁 = 𝐶𝑣 (3/2) (3/2) (𝐾𝐵𝑇𝐶) 2/3 

Or 

𝖥 
1 I 𝑁 

 
2/3 

1 
I ℎ2 𝑁 2/3 𝑇𝐶 = 

𝐾𝐵 
I 

3
 

3 
I = 

2𝜋𝑚𝐾𝐵 
[
2.612𝑣

]
 − − − − − −(8.4.6) 

I𝐶𝑣 ( 
[ 

⁄2) ( ⁄ ) I 
] 

𝑇𝐶 is known as the Bose Einstein condensation temperature. 
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𝑁 = 𝑁 

In the framework of this model, we can write 𝑁g 𝑎𝑛𝑑 𝑁𝑒𝑥 in terms of N. 

To do so, we note that 

𝑁 𝑒𝑥 
= (

 
𝑁 

Or 

𝑇 

𝑇𝐶 

3⁄2
 

* 

 
 

Hence, 

𝑇 
𝑒𝑥 (

𝑇𝐶 
* 

3⁄2
  
− − − − − (8.4.7) 

𝑁𝑒𝑥 𝑇   3/2 

𝑁g = 𝑁 − 𝑁𝑒𝑥 = 𝑁 (1 − 
𝑁 

* = 𝑁 (1 − 
𝑇𝐶 

* − − − − − −(8.4.8) 

It shows that at 𝑇 = 𝑜, all particles condense into the lowest energy state. 
 

The figure below shows how 𝑁𝑒𝑥 and 
𝑁𝑔 vary with temperature. 

𝑁 𝑁 
 

If you use 𝑁⁄𝑉 = 2.2 × 1028 𝑚−3 𝑎𝑛𝑑 𝑚 = 6.65 × 10−27𝑘𝑔. in this expression 

for 𝑇𝐶, you will get 
𝑇𝐶 = 3.13𝑘 

Which is close to the observed value of 2.18k for the onset of condensation in 
liquid helium 

𝑁ℎ 

All in excited 

States for 𝑇 > 𝑇𝐶 

𝑁𝑒𝑥 

 
𝑁g 

 
 
 

 

𝑇𝐶 𝑇 

The figure above shows the plot of 𝑁𝑒𝑥 𝑎𝑛𝑑 𝑁g as a function of temperature 

according to Einstein model. 
 

We can now say that helium II consists of two components, a normal fluid 
component and a superfluid component, which is characterized by remarkable 
properties like apparently zero viscosity and infinite thermal conductivity. This 
means that irrespective of where you heat the liquid, it will evaporate from the 
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i i 

top surface (on the contrary, fluids such as water vaporize from wherever the 
heat input is). 

 
The HeI → HeII phase transition is visually characterized by the disappearing of 
bobbles and boiling. 

 
The 2.18k phase transition from HeI to HeII can be explained, at least 
qualitatively, using Bose-Einstein statistics. 

 
It tells us that condensation into the ground state is a necessary condition for 
the occurrence of super fluid behavior. 

3.4.5 Ideal Fermi-Dirac Gas 
We have seen that the wave function of a system of indistinguishable particles 
possesses definite symmetry properties. For bosons, the wave function is 
symmetric whereas for fermions it is asymmetric. 

 
You may now ask, can it be a combination of symmetric and anti-symmetric 
wave function? It cannot be so. To determine the thermodynamic properties of 
an ideal Fermi-Dirac Gas. Let us first obtain the distribution function. 

3.4.5.1 Fermi-Dirac Distribution Function 
We can subject fermions equation to Pauli’s principle and not more than 

one particle can occupy a state. 
 

You would recall that the number of ways in which we can distribute 

𝑁 particles into𝑔   states (cells) of level i  is given by .gi/.  The total number of 
𝑁i 

ways whereby we can put N particles into the various levels are 
 

W(𝑁 ) = 𝖦 (
𝑔i

* = 𝖦 
𝑔i

 
 

 

 
− − − − − −(8.4.9) 

i 𝑁 
i 

(𝑔i − 𝑁i)! 𝑁i! 

This distribution is subject to the conditions that total number of particles in 
the system and the energy of the system remain constant. That is 

𝛿𝑁 = ∑ 𝛿𝑁i = 0 − − − − − (8.5.0𝑎) 

And 

𝛿𝑢 = ∑ 𝛿𝑁i si = 0 − − − − − (8.5.0𝑏) 

As before, we wish to know the most probable distribution by finding the set of 
numbers which maximize W. By maximizing the logsithum of W, rather than 𝜔 
itself, using the method for Maxwell Boltzmann and 𝐵𝐸 distributions. Thus we 
set 

i
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i

𝛿𝐼𝑛𝑤 = 0 
By taking the logarithm of both sides of eqn (8.4.9), we obtain 

 
∑, 𝑔i! − 𝑙𝑛 (𝑔i − 𝑁i)! − 𝑙𝑛 𝑁i!- − − − − − (8.5.1) Using 

stirlings approximation, we get 

𝑙𝑛 𝜔 = ∑,i 𝑙𝑛 𝑔i − 𝑔i − (𝑔i − 𝑁i)𝑙𝑛 (𝑔i − 𝑁i) + (𝑔i − 𝑁i) − 𝑁i𝑙𝑛𝑁i + 𝑁i- 

i 
 

 
 

Hence, 

= ∑,i 𝑙𝑛 𝑔i − (𝑔i − 𝑁i)𝑙𝑛 (𝑔i − 𝑁i) − 𝑁i𝑙𝑛𝑁i 

i 

 

𝛿𝐼𝑛𝜔 = ∑ {(𝑁 −  ) 
1 

(−𝛿𝑁 ) + 𝛿𝑁 𝑙𝑛 (𝑔 
 

 

−  ) − 𝑁 
1 

𝛿𝑁 
 

 

i i   (𝑔i − 𝑁i) i
 

𝑔 
i i i i 𝑁i 

i 

− 𝑙𝑛 𝑁i𝛿 𝑁i} = ∑ [  ( i − 1*] 𝛿𝑁i 
𝑁i 

i 
Equating 𝛿𝐼𝑛𝜔 to zero, we obtain 

∑ 𝑙𝑛 (
𝑔i 

− 1* 𝛿𝑁 
 

 

= 0 − − − −(8.5.2) 
𝑁i 

i
 

This expression is subject to the conditions given by eqns (8.5.0a) and (8.5.0b). 
To incorporate these and obtain a general expression we multiply eqn (8.5.0a) 
by 𝖺 and eqn (8.5.0b) by – 𝛽 and add to eqn (8.5.2). This gives 

∑ [𝑙𝑛 (
𝑔i 

− 1* + 𝖺 − ] 𝛿𝑁  = 0 
𝑁 𝗌i i 

i 

Since the 𝛿𝑁i are arbitrary and can be varied independently, we can set the 
coefficient of each 𝛿𝑁i equal to zero. This gives 

𝑙𝑛 (
𝑔i 

− 1* + 𝖺 −𝛽 = 0 
𝑁i 

Or 
𝑁i 

= 
1 

 

𝗌i 

𝑔i 𝑒−𝖺+𝛽𝗌i+1 

Using the same notation as in𝐵𝐸 distribution, we can rewrite it as 
𝑁i 

= 
1 

= 
1 

  

− − − − − (8.5.3) 
𝑔i 𝐴𝑒𝛽𝗌i  + 1 (𝗌i−𝜇) + 1 

This defines the Fermi-Dirac distribution for continuous distribution, the Fermi 
function 

ƒ(s) = 
1

 
(𝗌−𝑢) + 1 − − − − − −(8.5.4) 

Let us pause for a moment and compare it with expressions for 𝐵𝐸 and 𝑚𝐵 
distribution functions: 

ƒ𝑚𝐵 = 
1 

𝑒𝛽(𝗌−𝑢) 

i
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= 

 

ƒ𝐵𝐸 

ƒ𝐹𝐷 

= 
1 

(𝗌−𝑁) − 1 
 

= 
1 

(𝗌−𝑢) + 1 

A close examination of these expressions reveals that inspite of the great 
differences in the assumptions used to arrive at these expressions, they have a 
similar appearance. In fact, we can combine them into just one expression: 

ƒ = 
1

 
𝑒𝛽(𝗌−𝜇) + 𝑘 

Where 

 
 

𝐾 0 𝑀𝐵   𝑑i𝑠𝑡𝑟i𝑏𝑢𝑡i𝑜𝑛 
1 𝐹𝐷   𝑑i𝑠𝑡𝑟i𝑏𝑢𝑡𝑡i𝑜𝑛 

−1 𝐵𝐸 𝑑i𝑠𝑡𝑟i𝑏𝑢𝑡𝑡i𝑜𝑛 
 

This logically raises the question: what are its in describing 
the behaviour of a system? To discover the enormous consequences of 𝑘 under 
the comparison of 𝐵𝐸, 𝑎𝑛𝑑 𝐹𝐷 𝑎𝑛𝑑 𝑀𝐵 distributions in diagram, you will note 
that 𝐵𝐸 distribution is skewed towards highly occupied low energy states FD 
distribution is skewed to high energy states composed with classical (𝑀𝐵) 
distribution. 

 

You will note that at 𝑇 = 0 (𝛽 = ∞), the exponent becomes −∞ for s < , 
whereas for s < , the exponent becomes infinite so that 

ƒ (s) = 1  ƒ𝑜𝑟 s < 

0 ƒ𝑜𝑟   s < − − − − − −(8.5.5) 
Mathematically speaking, it defines a step function. Physically, it implies that at 
absolute zero, up to certain energy all levels are occupied and higher energy 
states are empty. This energy is known as Fermi energy, s𝐹. You will know 
about it in the next section. The figure (a) and (b) below shows the effect of 
raising the temperature. The curve develops a tail, which is symmetrical about 
s = s𝐹. 
Moreover, at this energy ƒ(s) = 1/2 

ƒ(s) ƒ(s) 
 

𝑇1 
 

𝑇2(> 𝑇1) 
 

𝑜 𝜇 
s 

s=N 
s
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3

3 

𝐹

𝐹 
𝐹   

 

(a) The Fermi function at 𝑇 = 0: complete Degeneracy 
(b) 𝑇 > 0 (s − 𝜇 » 1): Strong Degeneracy. 

For s » , 𝛽(s − ) » 1𝑎𝑛𝑑 𝑦𝑜𝑢 𝑐𝑎𝑛 i𝑔𝑛𝑜𝑟𝑒 𝑜𝑛𝑒. 𝑇ℎ𝑒𝑛 ƒ(s) = 𝑒−𝛽(𝗌−𝜇)  and 
the distribution behaves like a classical (𝑀𝐵) distribution. 

 
If the temperature is finite, above absolute zero, the fermions in region I shift to 
region II, bringing about deviations in the step function. 

 
It means that as we increase temperature, fermions below the Fermi energy 
jump to energy states above Fermi energy. 

 
However, the width of this region is of the order of 𝐾𝐵𝑇. Normally deviations 
from the step function (𝑇 = 0) are important only for those values of s for 

which [𝛽(s − )] is of the order of one. 

For large values, the exponential term will either be zero or one. Thus a thermal 
reshuffling of the particles is confined to 𝐾𝐵𝑇 arounds = sƒ. That is, the number 
of electrons which contribute to thermal processes is proportional to T. 
However, the major proportion of distribution is not influenced by the rise in 
temperature. 

3.4.6 Fermi Energy 
Consider a system of N fermions enclosed in volume V. We know that 

because of Pauli’s principle, only one fermions can be accommodated in a given 
state. You have already learnt that the highest energy possessed by a fermions 
at 𝑇 = 0 is called the Fermi energy, s𝐹, let us now derive an expression for s𝐹. 

We know that the number of quantum states of a particle with momentum in 

the interval 𝑃 𝑎𝑛𝑑 𝑃 + 𝑑𝑝 i𝑠 4𝜋𝑉 𝑃2𝑑𝑝. We have to multiply this number by 
ℎ 

(2S+1). 
For electrons, S = ½ so that the required number of states is 8𝜋𝑉 𝑃2𝑑𝑝. Denoting 

ℎ 

the highest momentum by Pv, we have 

𝑁 = 
8𝜋𝑉 

ℎ3 

∞ 

∫  2𝑑𝑝 = 
0 

8𝜋𝑉 

ℎ3 

𝑃 
3 

3 
− − − − − (8.5.6) 

This yield an expression for Fermi momentum, Pv: 
3𝑁 1/3 

𝑃𝑣 = (
8𝜋𝑣

* 

and the Fermi energy 

ℎ − − − − − −(8.5.7) 

 𝑃
2 

s =  = 
2𝑚 

ℎ2 

2𝑚 

3𝑁 
(
8𝜋𝑣 

2/3 

* − − − − − (8.5.8) 
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𝐹  

If we draw a sphere with radius 𝑃𝐹, all the particles will be found inside the 
sphere. This is called the Fermi surface. In the case of alkali and the noble 
atoms, the surface is a sphere. 

 

In other cases, the shape can be quite complicated. We define what is known as 
Fermi temperature, 𝑇𝐹, through the relation 

𝑇𝐹 = 
s𝐹 

𝐾𝐵 
− − − − − (8.5.9) 

 

The values of s𝐹 range from about 2𝑒𝑉 𝑡𝑜 15𝑒𝑉. It is the lowest for 𝐶𝑆 (1.58𝑒𝑉) 
and highest for 𝐵𝑒 (14.14𝑒𝑉). The corresponding Fermi temperatures are of 
order 104𝑘 − 105𝑘. To get exact ideas about these values, you should solve the 
following 

Example II: - Calculate 𝐶𝐹 for copper, given density= 9g𝑐𝑚−3, atomic weight = 
63.5 and valency equal to one. 

 
The ground states energy is given by 

8𝜋𝑉 
 

 

𝑃𝐹 𝑃2 
2

 
 

𝐸0 = 
3 ∫ 

0 

 

= 
8𝜋𝑉 

ℎ3 

 

= 
8𝜋𝑉 

 
 

2𝑚 
𝑃
 

  𝑃
5 

10𝑚 

𝑃3 s 

𝑑𝑝 

5ℎ3 
𝐹 𝐹 

 

Using eqn (8.5.7), we obtain 

3 
𝐸0 = 

5 
𝑁s𝐹 

The mean energy per fermions for a completely degenerate electron  gas is 
given by 

š= 
𝐸0 3 

 

For conduction electron in copper 𝑁 
= 

5 
s𝐹 

š= 
3 

× (7.0𝑒𝑉) = 4.2𝑒𝑉 
5 

 

This energy corresponds to several thousand Kelvin of temperature to which an 
electron, if treated classically, would have to be raised. This shows that unlike a 
classical particle, fermions have appreciable energy even at absolute zero! That 
is, a fermions system is quite alive. This is a quantum effect arising out of the 

ℎ
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s 

Pauli principle and brings out the inadequacy of classical statistics in describing 
the behaviour of systems at extremely low temperatures. 

 

Since   = .6𝗀/ 
6   

, eqn (8.5.9) implies that heat capacity of a fermions system 

drop to zero at absolute zero. Similarly, we can show that entropy of a F.D 
system also vanishes at 0 𝑘𝑒𝑙𝑣i𝑛. This is consistence with the third law of 
thermodynamics. 

 
Now you may ask: Is it true for pressure also? We know that 𝑃 = 2 ∈. So we find 

3 𝑉 

that pressure exerted by a fermion system at 𝑂 𝑘𝑒𝑙𝑣i𝑛 is equal to 2 .𝑁/ . This 
5   𝑉 𝗌𝐹 

shows that if electron in a metal were neutral they would exert a pressure of 
almost 106 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒! Does it make we experience this enormous pressure? 
If not, why? Do electrons evaporate spontaneously? Actually this pressure is 
counter balanced by coulomb attraction of electrons by ions. 

 
The Fermi energy is the kinetic energy of electrons in the highest occupied 
state. We can relate it to the work function of a metal. According to the diagram 
shown below, it shows a potential well in which the electrons reside and the 
filled states up to s𝐹. If the well is s𝐹 = 𝑤 − Ø. So once we know Ø 𝑎𝑛𝑑 𝑤, we 
can get estimate of s𝐹. 

 
We have so far considered a FD system at absolute zero. To know the behaviour 
of  its  heat  capacity  and  entropTyh, ewefigmuruest sehxotwensdtthheisrsetlautdioyntsohitpemperatures 
above  absolute  zero.  In  particbueltawr,eewnewweill  dceopntfhinFeeromurisenveersgyt,o  electrons. 
However, it is impo

𝐸
rtant to noteanthdawt fork𝑇fu<n<cti𝑇o𝐹n, tfhoer melecatnroonccsuinpaation number 

𝑤 
does not differ much from 𝑉 the vmalueteaal.t 𝑂𝑘𝑒𝑙𝑣i𝑛. Such a fermion system is said to 
be   strong   by   degenerate.   WeHokrniozownttahl at lifnoers coinndduicatitoen   efillelcetdrons   are   in 
extremely degenerate conditioneenveerngyulnedveerlsn. ormal conditions. 

 
Very few of these are free. By far most of them are trapped in low lying states 
with nowhere to go. 

 

3.4.7 Electronic Heat Capacity 
You will recall that correct explanation of heat capacity of metals 

remained a puzzle for a long time. Of course, it should be no surprise to you that 
classical statistics fails to give the right answer because an assembly of 
electrons (electron gas) obeys F.D. statistics. 

 
We can easily show, using F.D statistics, that electronic heat capacity varies 
linearly with temperature. Moreover, heat capacity of a metal at low 
temperatures is the sum of an electronic contribution which is proportional to 
T, and the lattice contribution which is proportional to T3. 
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𝐵 

𝐵 

𝐵 

 

Experiments reveal that the contribution of electronic heat capacity is about 1% 
of the total. 

 

To show this we assure that only those electrons which occupy energy states up 
to 𝐾𝐵𝑇 of Fermi level participate in thermal processes. Hence, the fraction of 
particles thermally excited is proportional to 𝐾𝐵𝑇/s𝐹. Since the thermal energy 
per excited particles is 𝐾𝐵𝑇. 

 
 

Hence, 

𝖴≈ (𝐾𝐵𝑇 ) 
𝐾𝐵𝑇 

s𝐹 

𝑁 𝐾2𝑇2 
𝑁 = 

s𝐹 

(𝐶𝑉)𝗌
i
 

∂ 𝖴 
= ( 

∂𝑇 
*
𝑉
 

𝑁 𝐾2𝑇 
= 𝑁𝐾𝐵 ( 

s𝐹 

𝑇 

𝑇𝐹 
* − − − −(8.6.0) 

 

That is, for 𝑇 << 𝑇𝐹, the electronic heat capacity of fermions varies linearly 
with temperature. At room temperature, 

𝑇 
 

 

𝑇𝐹 
= 

300 

104 
∼0(10−2) 

A more exact, but somewhat difficult, calculation gives the following result: 

 
 

Where 

(𝐶𝑉 )i = 
𝑁𝐾𝐵𝜋2 

2𝑇𝐹 
𝑇 = 𝑎𝑇 − − − − − (8.6.1) 

𝑎 = 
𝑁𝐾𝐵𝜋2 

 
 

2𝑇𝐹 

𝑁 𝐾2𝜋2 
= 

2s𝐹 

is known as the Summerfield constant. The total heat capacity of a metal is 
made up of two parts. The electronic contribution dominates at low 
temperatures. 

 

But around room temperature, the electronic contribution is a small fraction of 
the total 

(𝐶𝑉)𝑇𝑜𝑡𝑎𝑙 = 𝑑𝑇 + 𝑏𝑇3 − − − − − (8.6.2𝑎) 
Or 

(𝐶𝑉)𝑇𝑜𝑡𝑎𝑙 
= 𝑎 + 𝑏𝑇2 − − − − − (8.6.2𝑏) 

𝑇 

A plot of eqn (8.6.2b) is shown below as a function of 𝑇2 for potassium, sodium 
and copper the typical values are 2.08, 1.38 and 0.695, respectively. 

These are a variety of other F.D. systems which are of great interest. Examples 
are the protons and neutrons in nuclear matter, electrons in white dwarf stars. 
3He, etc. 
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𝑉 𝑉 3 
( * 

  𝐵 

 

𝑦 

1-0 

0-8 

0-6 

0-4 

0-2 

 

=  1 − 𝑒−𝑥 
𝑦 = 

𝑥
 

5 

1 2 3 4 5 6 X 
The figure above shows the plot of eqn (8.6.2b) as a function of T2. 

5.0 Summary 

- The Bose-Einstein distribution function is given by 
𝑁i 

= 
1 

𝑔i 𝑒𝑥𝑝 [(si − )] − 1 
 

For continuous distribution, we can write 

𝑁(s) = 
𝑔(s)

 

𝑒𝑥𝑝 [𝛽(s − )] − 1 

- Planck’s law of blackbody radiation tells us that the spectral energy 
density is given by 

   = (
8𝜋ℎ

* 
𝐶 

 

𝑒𝑥𝑝 

𝑉3 

 ℎ𝑣   
𝐾𝛽𝑇 

𝑑𝑣 
− 1 

 

In the limit ℎ𝑣 << 𝐾𝐵𝑇, we obtain the Rayleigh Jeans law: 

𝑈𝑉 𝑑𝑉 = 
8𝜋2 

 
 

𝐶3 
(𝐾𝐵𝑇 )𝑑𝑣 

 

On the other hand, ℎ𝑣 >> 𝐾𝐵𝑇, we obtain Wien’s law: 
8𝜋ℎ𝑣3 ℎ𝑣 

𝑈𝑉 𝑑𝑉 = 

The total energy density 

𝐶3 𝑒𝑥𝑝 (− 
𝐾𝐵𝑇

* 𝑑𝑣 

And Stefan’s constant 

- Radiation Pressure 

8𝜋5 
𝑈 = 

15(𝑐ℎ)3 

2𝜋5𝐾4
 

15𝐶2ℎ3 

(𝐾𝐵𝑇)4 
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2

8𝜋5 
𝑃 = 

45(𝑐ℎ)3 

 
(𝐾𝐵𝑇)4 = 

𝑈 

3 

- Liquid 4He undergoes a phase transition, the so called λ transition, at 
𝑇𝐶 = 2.18𝑘. 
The phase below 𝑇𝐶, HeII, exhibits superfluidity. Some of its properties can 
be explained on the basis of Bose-Einstein condensation. 

- The Fermi-Dirac distribution function is given by 
𝑁i 

= 
1 

𝑔i 𝑒𝑥𝑝 [(si − ) + 1] 
 

For continuous distribution, we can write 

ƒ(s) = 
1

 

𝑒𝑥𝑝 [𝛽(s − ) + 1] 

- The Fermi energy s = 
ℎ2  

. 
3𝑁 

 
 

 
2/3 

𝐹 2𝑚 
8𝜋𝑉

/ 
- The pressure exerted by a F.D. gas at 𝑇 = 0 i𝑠 𝑃𝐹  = 2 .𝑁/ s𝐹 

5   𝑉 
 

- The electronic contribution to the heat capacity of a metal is given by 
(𝐶)𝑐𝑙 = 𝑎T 

𝑁𝐾2𝜋2 

Where the Somerfield constant 𝑎 = 
 

Exercises 

𝛽 
 

2𝗌𝐹 

1. Rewrite equation (3.4.3) in terms of energy; integrate the resulting 
expression to compute the average number of photons in an enclosure. 

 

2. Calculate the Fermi temperature for (i) liquid 3He and (ii) electrons in a 
white dwarf star using the known experimental data on the two systems. 

 
3. Helium has two isotopes, viz, 3He and 4He. Classify these as fermions and 

bosons. Justify your conclusion. 

6.0 Tutor Marked Assignment (TMA) 
1. Using 𝐹 .𝑉/ =  𝑒−𝐶2𝑉/𝑇 , where 𝐶   is a constant, calculate U from eqn 

𝑇 

𝑈𝑉 𝑑𝑉 = 𝑉3 𝐹 
𝑉 

(
𝑇

* 

2. In classical statistics, the numbers of ways in which 𝑁i particles can be 
distributed among 𝑔i states is 𝑔i𝑁i dividing this by 𝑁i! and obtain the 
Maxwell Boltzmann distribution. 
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(b) Calculate the number  of  way  in  which  𝑁i fermions can be 
accommodated in 𝑔i𝑐𝑒𝑙𝑙 iƒ 𝑁i < 𝑔i. 

3. Calculate s𝐹 for copper, given density= 9𝑔𝑐𝑚−3 , atomic weight = 6.3.5 and 
valiancy equal to one. 

7.0 References/Further Reading 
1. Thermodynamics and statistical mechanics (September 1999) Indira 

Gandhi National Open University. 

2. Rice, O. K. (1967). Statistical Mechanics Thermodynamics and Kinetics. W. 
H. Freeman & Company, San Francisco and London. 

3. Wilson, A. H. (1957). Thermodynamics & statistical mechanics. 
Cambridge University Press.  

4. Pathria, P. K. & Harald, J. W. (2021). Statistical mechanics (4th ed.). United 
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