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INTRODUCTION

Quantum Mechanics began with the work of Plancka®ide Broglie,
Heisenberg, Bohr, Schrodinger, and Einstein frond01% 1930. It
became a necessity as classical mechanics, whithuppao that time
answered all questions concerning the motion afdypfailed to explain
some physical phenomena. It became clear that mgtieaves as a
particle or as a wave. In other words, a partieledves as a wave; a wave
also behaves like a particle. For example, lightvegabehave like
particles, called photons. On the other hand, aithappropriate ‘slit,’
electrons can be diffracted just like any other evdvbecame necessary,
therefore, to develop a wave equation that givesltfmamics of a particle
— the Schroedinger equation. But then, if mattev behaves like a wave,
it becomes necessary to give a statistical proiséibiinterpretation to the
possibility of finding a particle at any particulaoint, or within a given
range of space available for the particle. In otwerds, it no longer
makes sense to say with certainty that a partscée a particular position,
rather, it spreads out over a given range of mositihe electron in the
hydrogen atom is indeed smeared over the entirerspbutside the
nucleus. This is encapsulated in the Heisenbergetienaty Principle: It
is impossible to measure the position and the fine@mentum of a body
with infinite accuracy, simultaneously. If the atasnnot polarised, it is
as if half the electron resides in each hemisphere.

You wonder why we do not realise this in day-to-éaperience. This is
because the uncertainty in your position is so krhatause uncertainty

is related to Planck’s constant, which is of thdeorof 10°'Js At the

atomic scale, this number is no longer ‘small.” Asch, quantum
mechanics becomes inevitable at the atomic andtuio@a range of
distances and masses. Another consequence of tleenagure of matter
is that physical quantities can no longer takerginaou range of values.

You would recall, for instance, that waves on angtrwithin rigid
supports, as well as sound waves in a pipe openeaxhe or either end
can only take a set of frequencies. It then becarmaagal for the electron
in the hydrogen atom can only occupy a certaims&tilowed energies.’
That was what Bohr tried to explain with some ad-assumptions of
allowed orbits.

With what you have seen in this introduction, ibsvious that quantum
mechanics is an interesting, area of physics,fthds application in all
life, particularly at the atomic level and belowu@tum mechanics is
therefore the present and the future of physickd State devices such as
transistors, which are the building blocks of elecics and computers;
any material, since all matter is composed of ajdhesordinary light you
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deal with every day, Lasers, elementary partickss, are just a few of
the applications of quantum mechanics.

THE COURSE
PHY 309 (3CREDIT UNITYS)

This 3-unit course, Quantum Mechanics |, is quitghamatical, and we
shall start the course with a review of the mathesgou would need to
understand the course. These include vector spandsoperators,
orthogonality and some element of matrix algebradMe 1, therefore,
addresses your mathematical needs.

Module 2 opens with the inadequacies of classicathanics, and the
need for a new way of doing physics. Then, a quafmechanical

equation of motion, the Schroedinger equation igoduced. The

postulates of quantum mechanics, a set of assunggtiat give credence
to quantum mechanics conclude the Module.

Module 3 teaches you how to find the possible statel energies a body
in a particular potential can attain — the infinites well as the finite

potential wells. It also discusses what proportcam be reflected or

transmitted of a mechanical particle behaving &keave when incident

on a potential barrier.

Module 4 gives the quantum-mechanical treatmenthef harmonic
oscillator, as well as the ladder operator wayobfiag the same problem.

We wish you success.
COURSE AIMS

The aim of this course is to teach you about thehaeics of the atomic
and subatomic particles.

COURSE OBJECTIVES

After studying this course, you should be able to

o Understand the mathematics needed to understandtugua
mechanics.
o Know the inadequacies of classical mechanics, ahdtwas

needed to get around the related difficulties.

° Derive the equation for quantum-mechanical motion.

Xi
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o Statistically interpret the wavefunction associakgith a particle.

o Find the possible states in which a quantum-mechéampiarticle
could be found.

o Get the probability that the quantum-mechanicatigaris in any
particular state.

o Understand the quantum-mechanical harmonic osmillat
WORKING THROUGH THE COURSE

Quantum Mechanics is the foundational material far good
understanding of electronics. It is hoped that ipgathis in mind, the
student would find enough motivation to thorougivyrk at this course.
THE COURSE MATERIAL

You will be provided with the following materials:

Study Material containing study units

At the end of the course, you will find a list @commended textbooks
which are necessary as supplements to the coutseiahaHowever, note
that it is not compulsory for you to acquire oreed read them.
STUDY UNITSFOR QUANTUM MECHANICSI

The following modules and study units are contaimetthis course:
MODULE 1: VECTOR SPACES AND OPERATORS

Unit 1 Vector Spaces

Unit 2 Orthogonality and Orthonormality
Unit 3 Operators

MODULE 2: INADEQUACIES OF CLASSICAL
MECHANICSAND THE SCHROEDINGER
EQUATION

Unit 1: The Inadequacies of Classical Mechanics

Unit 2: The Schroedinger Equation

Unit 3: Postulates of Quantum Mechanics

Xii
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MODULE 3: TIME-INDEPENDENT SCHROEDINGER

Unit
Unit

EQUATION IN ONE DIMENSION |

1: Bound States
2: Scattering States

MODULE 4: TIME-INDEPENDENT SCHROEDINGER

EQUATION IN ONE DIMENSION 11

Unit 1: The Simple Harmonic Oscillator

Unit 2: Raising and Lowering Operators for thadanic
Oscillator

TEXTBOOKS

Some reference books, which you may find usefel garen below:

Xiii

Mathematical Methods for Physics and Engineerifgley, K. F.,
Hobson, M. P. and Bence, S. J. Third EditiorQ&Available
at:

https://www.astrosen.unam.mx/~aceves/Metodos/eholeks h

obson bence.pdf

Mathematical Methods in Physics: Distributions, deit Space
Operators, Variational

Methods, and Applications in Quantum Physics — ylipbe
Blanchard, and Erwin

Briining. Second Edition, 2015. Available at:
https.//link.springer.com/book/10.1007/

978- 3-319-14045-27

Introduction to Quantum Mechanics, 2nd Edition byl Blinder.
Published

2021. ISBN 978-0-12-822310-9 DOI
https://doi.org/10.1016/C2019-0-04431-7

Quantum Mechanics: Concepts and Applications — byrbidine
Zettili. 3rd Edition, 2022 ISBN: 978 -1-118 -3078® Available
at:

https://www.wiley.com/en-
ae/Quantum+Mechanics%3A+Concepts+and+Applications%



https://www.astrosen.unam.mx/~aceves/Metodos/ebooks/riley_h
https://link.springer.com/book/10.1007/
https://doi.org/10.1016/C2019-0-04431-7
https://www.wiley.com/en-
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ASSESSMENT

There are two components of assessment for thisseohe Tutor
Marked Assignment (TMA), and the end of course d@ration.

TUTOR MARKED ASSIGNMENT

The TMA is the continuous assessment componenaf gourse. It
accounts for 30% of the total score. You will beegi 4 TMA'’s to answer.
Three of these must be answered before you aneeadlto sit for the end
of course examination. The TMA’s would be givenyiou by your

facilitator and returned after they have been gilade

END OF COURSE EXAMINATION

This examination concludes the assessment fordtese. It constitutes
70% of the whole course. You will be informed oftlime for the
examination. It may or may not coincide with thavensity semester
examination.

SUMMARY

This course is designed to lay a foundation for f@uurther studies in
guantum mechanics. At the end of this course, ywilbe able to answer
the following types of questions:

o What was wrong with classical mechanics, that wae a new
kind of mechanics?

o What is the quantum-mechanical view of a particle?

o What is the equation that govern the quantum-meacahn
dynamics of a particle?

o How do you interpret the wavefunction that arisesnt the
guantum-mechanical equation of motion?

) What are the possible states or values of energgracle can
occupy?

o What is the probability that a particle occupiegaaticular state,
or has the corresponding energy?

° What is the behaviour of an electron confined withmfinite or
finite potential well?

o What proportion of the wave corresponding to a iglartis
reflected at a barrier?

° What is the essential difference between the daksind the

guantum-mechancial treatment of the harmonic @goil?

We wish you success.

Xiv
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MODULE 1: VECTOR SPACES AND OPERATORS

Unit 1 Vector Spaces
Unit 2 Orthogonality and Orthonormality
Unit 3 Operators

UNIT 1 Vector Spaces
Contents

1.1 Introduction
1.2 Objectives
1.3 Main Content
1.4 Vector Spaces
1.5 Linear Independence
1.6 Basis Vector
1.7 Inner or Scalar Product
1.8 Norm of a Vector
1.4 Conclusion
1.5 Summary
1.6  Tutor-Marked Assignment (TMA)
1.7 References/Further Readings

1.0 Introduction

In order to grasp Quantum Mechanics, you need tcobgersant with Vector Spaces
and other basic ideas of mathematics. The vectEespf twice integrable functions
enable you to define a set of functions that wdahih a set of ‘coordinates’ for the
vector-like functions, such that as we expand amiector in 2-dimensional Euclidean
space as a linear combination likerbj, we could also expand a given ‘quantum-
mechanical function’ as a linear combination ofgkeof functions. This Unit will teach
you how to go about setting up the set of functidhat we shall call an orthonormal
set. You shall learn to expand a given functioterms of the orthonormal set, and get
to know how to recover the coefficient of expansbm particular function.

2.0 Objectives
By the end of this Unit, you should be able to:

Define the term Vector Spaces

Give examples of Vector Spaces

Define linear independence

Understand Inner or Scalar product of two vectors
Normalise any given vector
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3.0 Main Content

3.1 Vector Spaces

No doubt, you are quite familiar with the conceptiorector. With vector spaces, we
are generalising this basic idea. In other wordsskall have ‘vectors’ that are no longer
just ordinary geometrical vectors, but vectors difeerent kind, but all having similar
properties. We shall come across matrices thatifumethat you could give the same
treatment as you did geometrical vectors.

Definition
Given a setv,,v,,....v, }= S. If

o Vi+Vv; €S Vi,j=12..n 11
J aVv, e S Vi,=12..,n; 1.2

ae K, whereK is a field, e.g., the real number linR Y or the complex planeq),

then, S is called avector space orlinear space. The vector space igaal vector space
if K =R, and acomplex vector spaceif K=C.

Condition (i) says that if you add any two vectofghe vector space you will get a
member of the space. Condition (ii) shows that@dr multiplication of any two vectors
produces a vector also in the vector space. Thtdiol makes sense, doesn't it? You
don’'t want a situation where you add two vectorganr space and get a vector not in
the space. Moreover, you avoid a situation wherkiphying by a constant takes your
vector away from the space. We are now safe toy aaut either operation without
worrying whether the vector we get is a ‘sensilglettor, because we are sure it is.

A way to remember these two conditions is: Addiyijcondition (i)] + homogeneity
[condition (ii)] = linearity.

We now give you some examples of vectors spaces:
Example 1: The set of Cartesian vectors in 3-dimensiofs,

a,bev,, 1eR.

() a+bev, 1.3
(i) iaev, 1.4

Of course, you know that when two 3-dimensionateecare added, you also get a 3-
dimensional vector. Moreover, multiplying a 3-dirs@amal vector by a real constant
will give you a 3-dimensional vector.

Example 2. mxn matrices under addition and scalar multiplicatidh,,

2
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A BeM_,AeRorC
. A+BeM, 1.5
. AL eM, 1.6

You would recall that the addition of twax nmatrices gives you amxn matrix.
Similarly, multiplying anmx n matrix by a real number or a complex number yialas
mxn matrix.

Example 3: A set of functions ok, {f (x),g(x),....}=F
f(x), g(x)eF, AeRorC

° f(X)+g(x)e F 1.7
° Af(X)eF 1.8

Adding two functions ofx will result in a function ofx. It just has to be. Also,
multiplying a function of by a real number, you get a functionxof

3.2 Linear Independence

Given a setv, | ,. If we can write
aVv,+av,+---+av, =0 1.9

and this implies the constants=a, =---=a, = 0, then we sayv, |

_, Iis a linearly
independent set.

If even just one of them is non-zero, then thesskhearly dependent. Think of it: a 3-

dimensional Cartesian vector will be a zero ve@pnotice the boldface type (not zero
scalar), if and only if the three components adependently zero. Thus, for instance,
I, j, andk, the traditional unit vectors in 3-dimensional ©aran space are linearly

independent. Mathematically, this means &atgj+yk=0 if and only if

a=pB=y=0.

Some other examples are in order here:

Example

1. Check if the sefi,2i,j} is linearly independent.
Solution

We form the expression
Cifhy +Co, +C3p3 =0
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whereg, =i, ¢, =2i andg, = j
Thus,ic, + 2ic, +jc, =0
ori(c,+2c,)+jc; =0

QUANTUM MECHANICSI

which impliesc, + 2c, =0 andc, =0, sincei andj are non-zero vectors.

We see that, =-2c¢,,c, =0

c, andc, do not necessarily have to be zero.

Conclusion: The set is not linearly independent.

2. Show thafi,2k,j} is a linearly independent set.

Solution

ic, + 2kc, +jc; =0
¢,=01c¢,=0c¢c,=0
The set is linearly independent.

Note that we have made use of the fact that

Xi+Yyj+zk =0 impliesx=0,y=0,z=0

1
3. Show that the s€{ 0|,
1

o R R,

Solution
1 1 1

¢|O|+c,|1|+c52(=0
1 0 1

from which we obtain
c,+C,+¢, =0
Cc,+2c,=0

c,+c, =0

From (iii),

G =-GC

and from (ii),

C, =—2¢C,

Putting (iv) and (v) in (i), gives
-C;—2c;+¢;=0
-2c;=00rc,=0
¢ =—-¢C=0c,=-2c,=0

1
,| 21+ is linearly independent
1

(i)

(i)
(iii)
(iv)

v)
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C,=C,=C;=0
Hence, we conclude the set is linearly independen

Note that we could have written the set of thregtans as{i +k,i+j,i+j+k}.  Try
this out on your own, and be sure you can.

These vectors are not mutually orthogonal, yetesthey are linearly independent, we
can write any vector in 3-dimensional Euclideancgpas a linear combination of the
members of the set.

Now, take the determinant of the matrix formed hgleof the set in the examples and
convince yourself that there is another way of &iverif a set of vectors is linearly
independent. We give two examples:

1 2
0 0 11=0
00

111
01 2=11-0-10-)+1(0-1)=1+1-1+0
101

Conclusion: The set is linearly independent if deéerminant is not zero, it is linearly
dependent if the determinant is zero. Does thatgstrange? Look at the two rows or
columns of a matrix such that one can be got frioenather by a linear combination.
The determinant of the matrix must be zero, meatinag the vectors are linearly
dependent.

3.3 BasisVector

Let V be ann- dimensional vector space. Any setrofinearly independent vectors
e.e,, e, forms a basis fow . Thus, any vector eV can be expressed as a linear

combination of the vectors,e,,--e,, i.€.,

X=X + X,€, + X, €, 1.10
Then we say that the vector spaceis spanned by the set of vectorge ,e,, e} .
{e,e,, €} is said to be dasisfor V.

If we wish to write any vector in 1 (say, direction, we need only one (if possible, a
unit) vector. Any two vectors in the direction must be linearly dependent, for we can
write one asa,i and the othen,i, wherea, anda, are scalars.

We form the linear combination

c(aji)+c,(ai) =0 1.11
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wherea, anda, are scalar constants.

Obviously, ¢, andc, need not be zero for the expression to holdplf@f—cZ% would

also satisfy expression (1.11).
We conclude therefore that the vectors must batigpelependent.

Can you then see that we can say that in genenahal vectors in am-dimensional
space must be linearly dependent?

Example

You are quite familiar with the set of vectorsj{ as the normal basis vectors in 2-
dimensional space or a plane. Show ftftatj,i —j) is also a set of basis vectors for the

plane.

Solution

We check for linear independence.
a(i+))+p(-j)=0

Then,
i@+ B)+i(a-p)=0

This means that
a+ =0

and

a-p=0

Adding the last two equations makes us concludedha0. Consequentlys is also

0. We conclude that the two vectors are lineargependent. Since these are two
linearly independent vectors in two dimensionaldlilean) space (a plane), they form
a basis for the plane.

3.4 Inner or Scalar Product

Here, we shall expand your idea of the inner prodtitwo vectors. In your first year
in the University, you came across the dot or inmeduct of two vectors. In this
section, we shall extend that idea, as mathemasi@a, to other vector-like quantities.
But first, let us take a look at the propertiegofinner product.

Properties of the Inner Product
Let V be a vector space, real or complex. Then, the ipregluct ofv, w eV ,written
as

(v,w), has the following properties:

6
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o (v,v) =0

o (v,v) =0ifand only ifv =0
1.12

) (v,w) = (w,v) (Symmetry)
1.13

] (cv,w) = c* (v,w); (v,cw)= c(v,w)

] (V,w+2)=(v,w)+(v,2)

o (vw=|vw

wherec* is the complex conjugate of the scatar

PHY 309

1.11

1.14
1.15
1.16

Example 1. Given the vectora andb in 3-dimensions, i.e,, we define the inner

product as
(a,b)=a"b

wherea' is the transpose of the column matrix represerdinthis is the dot product
you have always been familiar with.

1 2
a=|0|,andb=(1].a"=[1 0 1]
1 1
2
(ab)=a'b=[1 0 1]1|=3
1
Do not
d,
(c,d):ch:[cX c, cz] d,
d,
C, cd, cd,
cod” =|c, [d, d, d,]=|c,d,
C, cd, cd,

mix

—cd,+c,d, +cd,=[d, d

CXdZ

CZdZ

Example 2: The space ofmxn matrices,M,, :
The inner product of andBe M . is defined as

(A,B) = Tr(A*B)

this

CX
d,]lc, |=(d,0), with
C

y

z

c,d, c,d,|#dc", generally.

1.17

up

whereA* = A", the complex conjugate of the transposA dihdeed, it does not matter
in what order, so it could also be the transpogb®tomplex conjugate &f. If A is a
real matrix, then there is no need taking the cempbnjugate. In that casa,” = AT.
Tr (P) is the trace of the matrR, the sum of the main diagonal element® of
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e.g.,letA:[I O} andB:{O _'}
11 1 0

ar [ oA AT [ T
01 01

ngoaeo| Lo 1ot -2
- “lo 1/|1 ol |1 o
(A,B)=Tr(A*B)=1+0=1

Example 3: The space of square integrable complex valued ifumgtF,, over the

. . . . b, 2
interval[a,b], i.e., f(x) e F, implies thatja|f(x)| dx <.

We define the inner product on this space by
(f.9)= f*()g(x)dx 1.18

where f * (x) is the complex conjugate df(x) .
Later, you shall see that this space is of utmmapbrtance in Quantum Mechanics.

3.5 Norm of aVector
Let X be a vector space oveét, the real or complex number field. A real valued

function|{ on X isanormonx (i.e.|[{: X — R) if and only if the following conditions
are satisfied:

I o B 1.19
. IX| =0 if and only if x =0 1.20
. I+ y] <|X| +]] Vx,ye X (Triangle inequality) 1.21
. lox|=|o|¥| ¥xeX andaeC (Absolute homogeneity) 1.22

The norm of a vector is its “distance” from thegimi Once again, you can see the basic
idea of the distance of a point from the origimigegeneralised to the case of the vectors
in any vector space.

IX| is called the norm of.
In the case wher& = R, the real number line, the norm is the absolutae(4»<|.

If the norm ofv in the vector spac¥ is unity, such a vector is said to be normalised.
In any case, even if a vector is not normalisedcae normalise it by dividing by the
norm.

Example 1: Given the vectoa inV;, the norm ofa is

RENCEY 1.23

8
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1
Thus, ifa=| 0], then
1
1
(aa)=[1 0 1J0|=2
1

= iaa) =2

We see thaa is not normalised.
1

1 0| is normalised.

a _
H 2|,

However,c =

Example 2: The space oimx n matrices:
Given themx n matrixA, then the norm oA is defined as

|Al|=/Tr(A,A) 1.24

i 0
.g., letA =
co.len=|, ||

welo o ]
waslo 3l 3 [E

Tr(A*A)=2+1=3

Therefore,

Al - 3

A is not normalised, b = A = i[' 0} is normalised.
YA

Example 3: The space of square integrable complex valued lumstF,, over the
interval[a,b],
Let f(x) e F,, then we define

[f]=(f, ) 1.25

where (f, f) = j"| (%)) dx

f might not be normalised, b= Is normalised.

f
J(f, )

It is now obvious that we have to deal with a squategrable set of functions. We
want to deal with only functions that we can nolisal
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Examples

Exercise

0] Normalise each member of the set, and hence exhandector{4i + 3j — 4k} as
a linear combination of the normalised set.

1\(-2)(1
(i) Isthesei| 2| 0 ||2]|} linearly dependent or independent? Normalise each
3/ 4 )(1

vector.
4.0 Conclusion

In this unit, you have learnt about vector spaaageneralisation of the idea of vectors
you have all along been familiar with, expandeddawer matrices, certain functions and
all mathematical structures that satisfy the blsis of vector spaces. You also came
across linear independence, and saw the examptbeotectorsi andj in two-
dimensional Euclidean space, and with the helpn&fakly independent vectors, we
were able to define a basis with which we coulccBpany vector in any given vector
space. Then, you were introduced to the idea ohtlim, a generalisation of the idea
of the distance of a vector from the origin. Figajlou learnt how to normalise a vector.

5.0 Summary
In this Unit, you learnt the following:

) Vector spaces are sets that contain some vec®riilantities that satisfy certain
conditions.

How to check whether a set of vectors is lineatjependent.

A set of linearly independent vectors is necestappan a space.
n-dimensional vector spadgé is spanned by the set oh vectors.
The norm of a vector is its distance from the ‘orig

Dividing a vector by its norm normalises it, sotth&a length is unity.

6.0 Tutor-Marked Assignment (TMA)

Tutor Marked Assignment

o Show that the following are vector spaces oveirieated field:
o The set of real numbers over the field of real nerab

o The set of complex numbers over the field of reahhbers.

o The set of quadratic polynomials over the compiebdf

10
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4.

lo 3

5.

(i)

(if)
(iii)

Check whether the following vectors are lineamyependent.
(1) 2i+3j-k, —i+j+3k and-3i +2j+k

Show whether or not the S%Eﬂ( J} is a basis for the two-dimensional

Euclidean space.

, , 1
Find the coordinates of the vec{or2
- |

1 ol oo 5

Find the inner product of the following vectors:

2| . .
} with respect to the basis

i 2
-2l and| -1
2 3

ix?+2 and2x—-3 0<x<2.

. 2 11 -1 -1 2
A,BeM_ If A= andB = :
-1 31 1 3 1

Find the norm of the following:

2i 1 -1 2
(i) -1] (i) ix2+2,0<x<1 (i) D={2 1 3
3 3 1 2
1\ (-2)\(1
Normalise each vector in the seR|,| 0 || 2
3 4 1

7.0 Referencesfor further studies

Textbooks:

Mathematical Methods for Physics and Engineeriijley, K. F., Hobson, M.  P.

and Bence, S. J. Third Edition,  2006. Available at:
https://www.astrosen.unam.mx/~aceves/Metodos/elioleys hobson_bence.p
df
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Mathematical Methods in Physics: Distributions,ldgitt Space Operators, Variational
Methods, and Applications in Quantum Physics — hifigpe Blanchard, and Erwin
Briining. Second Edition, 2015. Available at:
https://link.springer.com/book/10.1007/978-3-31848-2

VideosLinks
https://youtu.be/61 eczjhrkO?list=PL]WGaTJbXZXYM%mkFFdebDIx6BXv
mZC
https://youtu.be/gF5mIgNYymqg?list=PL]WGaTJbXZXYM9mFFdebDIx6B
XvmC
https://youtu.be/5fN2J8wY nfw
https://youtu.be/NcPUI7aPFhA

Solutions to Tutor Marked Assignment
1. Show that the following are vector spaces oveirieated field:
0] The set of real numbers over the field of neambers.

Let the set b®& be the set of real numbers, then,
a+beR v a,beR

and JlaeR vV aeR,1eR

(i)  The set of complex numbers over the field of reahhers.
Let the set b€ be the set of complex numbers, then,
c,+c,eC V a,beC

and «aceR vV ceC,aeC

(i)  The set of quadratic polynomials over the guex field.
Let this set be P. TheR =ax*+bx*+c,and P, =a,x* +b,x* +c, are in P,
wherea,,a,,b,,b,,c,,c,are constants.
a, x> + b x? + ¢, + a,x* +b,x* +c,
=(a, +a,)X° + (b, +b,)x+(c,+c,) e PV PR, R,e P
A (ax* +bx+c)e PV P, eP, 1 ethe complex field.

2. Check whether the following vectors are lineanyependent.

0] 2i+3j—-k, —i+j+3k and-3i+2j+k

2 -1 -3 0

3|+b 1 |+¢ 2 (=|0

-1 3 1 0
2a-b-3c=0
3a+b+2c=0
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-a+3b+c=0
The solution set is (0, 0, 0), i.a.sb=c=0.
The vectors are linearly independent.

Alternatively,

2 -1 -
3 1 2|=21-6)+13+2)-309+1)
-1 3 1

= 2(-5)+5-30=-35%0

o [0 e
NIRRTV,

Expanding,

ai+2b-c-id=0 0]
a+b+2c+2id=0 (i)
—2a-ib+3c+id=0 (i)
2ia+2ib—ic-2d =0 (iv)

Multiplying (i) by 2 and adding to (ii),
a(l+2i)+5b=0 (v)

Multiplying (iii) by i and adding to (iv) gives
(1+2i)b+2ic—3d =0 (vi)
Multiplying (i) by 2 and adding to (iii),
(2-i)b+7c+5id =0 (vii)
Multiplying (vi) by 5i and (vii) by 3 and adding,
5i(1+ 2i)b—10c—15d =0 (Vi)
3(2-i)b+21c+15d =0 (vii)
(5 —10)b—10c —15d = 0

(6-3)b+2Ic+15d =0

(-4+2)b+11c=0 (viii)

al+2) _ 11

. d (i) b= - _
rom (v) and (viii),b c 54

13
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Hence,

L 3M+2)2-4) _ 8+6i
55 55

Substituting for b and c in equation (vi),

1+ 2i)(—Ma)+2i(— 8+6 a)—Bd -0
5 55
G-4), 16-12_ .
5 55
33-44i-16+12_  45-60  9-12 .
a= a= a=d (iIX)
165 165 55

Puttingb, ¢, d in (i),

ai+2[_a(1+2|))+8+6|a+ilZ|—9a=0
55 55
. 2a 4al 8a 6a 12a 9ia
g -——-—t+—4—-—-—=0

5 5 55 565 55 55
. 4 6 9 8 2 12
if1-g 4 o) o - )<

5 55 55 55 5 55
55-44+6-9 . 8-22-12
al+a =0
55 55
18. 26 _ .
5—5| ——SJ =0. Hence, a = 0, meaning thatc, andd are also zero.
ai+2b-c-id=0 0]
a+b+2c+2id=0 (i)
—2a-ib+3c+id=0 (i)
2ia+2ib—ic-2d =0 (iv)
[ 2 -1 —i
1 1 2 2
Check if | 20
-2 —-i 3 i
20 20 —-i -

3. Show whether or not the s%ﬁj( J} is a basis for the two-dimensional

Euclidean space.

For the set to be a basis, the vectors must barlyjnendependent.

14
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a-b=0, a-b=

a andb do not have to be zero. Hence, the vectors aréneairly independent. Sketch
the vectors and satisfy yourself that they areeddeearly dependent: one can be got
from the other because they degenerate into a line.

Alternately,
1 —
=0
-
1 2 . .
4. Find the coordinates of the vec{o ) i} with respect to the basis
0 -i||1 0
ol|o -1
{1 2} a[ } b{° o1 oo
2 i 10 i 0 0 -1

l=a+d 0]
2=b-ic (i)
—-2=Db+ci (iii)
i=a-d (iv)
Adding (i) and (iv):
1+i
2
(i) — (iv):
Ly
2
(i) + (iii):
0=b
(iii) — (ii):
—_—2=2i=c
|
Hence,
{1 2} 1+i[1 o} [o 1} _{o —i} 1—{1 o}
= +0 +2i| | +—
-2 i 2101 10 i 0 210 -1
5. Find the inner product of the following vectors:

15
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[ 2
(1) -2 and| -1
2 3
2
(i -2 2)-1|=-21+2+6=8-2
3

(i) ix*+2 and2x-3 0<x<2.
(0% +2) *x(2x-F)dx = [ (-ix? +2) * x(2x~ 30)lx

2 . .
= _[0 (2ix® — 3x? + 4x — 6i)dx

x* ?
=[i——x3 + 2X%? —6ix}
2

0

=8 -8+8-12
—4i
. 2 11 -1 -1 2
(i) A,BeM_ If A= anyB = .
-1 31 1 3 1
2 -1 1 1 2] -2-1 -2-3 4-1
(AB)=Tr(A'B)=Tr||1 3 [1 3 1 =Tr|-1+3 -1+9 2+3
1 1 - -1+1 -1+3 2+1
-3 -5 3
=Tr| 2 8 5|=8
0 2 3
6. Find the norm of the following:
2 1 -1 2
0] -1| (i) ix*+2,0<x<1 (i) D=2 1 3
3 3 1 2
(i)
2i
(-2 -1 3)-1|=+4+1+9=414
3
(i)
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j:(ix2 +2) * (ix2 + 2)dx = j:(—ix2 + 2)(ix? + 2)dx

5 1
=Il(4+x4)dx: ax+ X :4+E=2—1
0 5 5 5

0

Norm = ,/2—1
5

1\ (-2)\(1
7. Normalise each vector in the seR|,| 0 || 2
3 4 1
1
Norm of | 2| is V1+4+9 =+/14
3
1 1
The normalised vector is—| 2
14
3
1 [72 ik
Similarly, ——| 0 | and—=| 2| are normalised.
SR iy
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Unit 2: Orthogonality and Orthonomality

Contents

2.1 Introduction
2.2 Objectives
2.3 Main Content
2.3.1 Definitions
2.4 Bra and Ket (Dirac) Notation
2.5 Orthogonal Functions
3.4  Gram-Schmidt Orthonormalisation
2.4.1 Example from function vector space
2.4.2 Example fronR"
2.53 Some Useful Mathematics on Matrices
2.5.4 Orthogonal Matrices
2.5.5 Symmetric Matrices
2.5.6 Hermitian Matrices
2.5.7 Unitary Matrices
2.5.8 Normal Matrices
2.4  Conclusion
2.5 Summary
2.6  Tutor-Marked Assignment (TMA)
2.7 References/Further Readings

1.0 Introduction

Orthogonal functions play an important role in Quam mechanics. This is because
they afford us a set of functions ‘which do not rhjust the way you could resolve a
vector in two dimensions in the x and y directiamspectively, with the unit vectors
andj. The dot product of the two unit vectors gives yewo. We would also like to
resolve our vectors in some ‘directions.’” Thus, yeed to know about orthogonal and
orthonormal functions. The orthonormal functionsuoform the possible states you
can find a system. You know such states shouldmiat’ In this Unit, you will learn
about orthonormality and orthogonality; how to ¢esan orthogonal and subsequently,
an orthonormal set and expand a given functioreims$ of an orthonormal set. This
would naturally lead to an analysis of the probgbdf finding a system in any of the
states in the orthonormal set. This Unit also giv@s an insight into some elements of
matrix algebra.

2.0 Objectives

This Unit will equip you with the knowledge of:

. Orthogonal functions
. Orthonormal functions

18



MODULE 1 PHY 309

. Expansion of a given function as a linear comberatf a set of orthonormal
functions (states).

. Recovering the coefficient of the expansion.

. Finding the probability of finding the system igi@en state.

. Some elements of matrix algebra.

3.0 Main Content
3.1 Definitions

o We say, andv, in a vector spac® are orthogonal if their inner product is
zero, that is(v,,v,) =0.

) Suppose there exists a linearly independentgstt |, i.e., {4, 4,, - 4,}, such
that(¢,,¢,) =0, i # j, then,{ |, is an orthogonal set.

o If in addition to condition (i) above(g,,4,) =1, then/g,}", is an orthonormal
set.

For an orthonormal set, therefore, we can wigtep,) = &
delta, equalto O if= j and equalto 1 if=j.

whereg; is the Kronecker

ij ?

As we have seen earlier, if any vector in the vespace)V , can be written as a linear
combination

V=ag tag, o tagd, =Y ag 2.1

i=1
then we say the space is spanned by the complénormal basidg, |, , where
(¢m’¢n) = 5mn 2'2

If {4}", is an orthonormal set, It follows that we can semothe coefficient of

i=1
expansion as follows:

6, V)= 6, Y a0) =2 80.4)-2 23
Moreover,
(v,v) = (Zak¢klzai¢i) :Zak*zai(¢j'¢i) :Z|a1'|2 2.4

If, in addition, the vectov is normalised, then
lal =1 2.5
i=1

Do you remember what you learnt about probabilityStatistics? The sum of the
probability for various possible events is unithug, we can interpret tHe|* as the
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probability that the system which hagossible states, assumes statath probability
la]”. In other words, the probability that the systerinistatei is [a|°.

3.2 Braand Ket (Dirac) Notation

We have written the inner product in the fo(ry). We could also write it in the form
of a bra,|->, and a ket<-|. This is the Dirac notation. Putting the bra ahd ket
together forms a ‘bracket -|->. The set of vectorfp;} |, can be seen as a set of bra

vectors (space of vector§)¢, >}7_,. Then, we would need a dual set of vectors (dual
space of vectorg)< ¢, [}, to be able to write the inner product. Why? Rettadt we

needed to change our column vectors to row vetidre able to take the inner product
of two column vectors? IfB > is a column vector, thenB | is the dual vector, the row

vector but with the entries being the complex cgaje of what they were 48 > .

It follows from the foregoing, that we can writeetBxpansion of a wavefunction
y=Yc¢ asy=yc ¢ > 2.6
j =1

Moreover, (¢,,a¢;)=a(s;.¢;,) and (ag,.¢,)=a*(4,.¢,). It follows that
a(g;.4,) = (¢,,a0,) = (@* ¢,,9,) = (@) * (¢,,¢,) . We can extract the following rule from
this:

(¢j1a¢j)=(a*¢j'¢j) 2.7

More generallya could be an operatoks. Then,

(¢j’A¢j)=(A+¢j’¢j) 2.8

We can write this in the form,
<¢j |A|¢j >=< A+¢j |¢] >

Equations 2.3 and 2.4 now become,
<¢jlv>:<¢j|Zai|¢i>zzai<¢j|¢i >= 8, 2.9
i=1 i=1

<vive=<ad dad >=3ar.a <4l >=>fal" 210

i=1
3.3 Orthogonal Functions

An even function is symmetrical about theaxis. In other words, a plane mirror placed
on the axis will produce an image that is exactlg function across the axis. An
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example is shown in Fig ...a. An odd function willedeto be mirrored twice, once
along they axis, and once along the axis to achieve the same effect. Fig. ... b is an

example of an odd function.

A function f (x) of x is said to be an odd function if(-x) = f(x), e.g.,sinx, x*™*, and
a function f (x) of x is said to be an even functionfi{—-x) = f(x), e.g.,cosx, x*"
wheren= 012,....

0] = o1 °*

Odd function Even function
Fig. ...
Some real-valued functions are odd; some are dliernmest are neither odd nor even.
However, we can write any real-valued function asuamn of an odd and an even

function.

Let the function béeh(x) , then we can write
h(x) = f(X) + g(x) 2.11

where f (x) is odd andg(x) is even. Thenf (-x) = —f (x) and g(-x) = g(x)
h(-=x) = f(=X) + g(—x) = — f (X) + g(X) 2.12

Adding equations (2.11) and (2.12) gives
h(x) +h(=x) = 29(x)

Subtracting equation (2.12) from equation (2.11gsi
h(x) - h(=X) = 2 (X)

It follows, therefore, that
h(x) — h(-x)

f(x)= 2 2.13
and

() = MR 214
Example

Write the functionh(x) = e sinx as a sum of odd and even functions.
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Solution
h(x) = e sinx, h(-x) = e *sin(-x) = —e *sinx
Therefore, the odd function is

_ 2X —2X i 2X —2X
(x) = h(x) — h(—x) _e7sinx+e”sinx e~ +e sinx
2 2
= cosh2xsinx
The even function is
_ 2X A 2X qj 2X 472X
g(x):h(x)+h( x):e sinx—e™sinx e~ —e sinx
2 2
= sinh2xsinx

It is obvious that the odd function is a producaofodd function and an even function.
Likewise, the even function is a product of two dddctions. We conclude, therefore,
that the following rules apply:

Evenx Even = Even 2.15
EvenxOdd = Odd 2.16
OddxOdd = Even 2.17

The integral

f‘af(x)dx=o if f(x) is odd 2.18
faf(x)dx= 2j:f(x)dx if f(x) is even 2.19

Recall that the inner product in the space of twitegrable complex valued functions
of two complex valued functiong(x) and g(x) over the intervah < x<bis defined as

(.9)= [ F* (9g(xdx.

Two functions f(x) and g(x) are said to berthogonal over an intervala< x<b if
their inner product is zero.

Example
Show thatsinmx andsinnx are orthogonalm=n, -z <x<r.

Solution
The inner product i{rsin mxsinnxdx = %J'_” [cos(Mm— n)x— cosm+ n)x]dx

T

+

-

sin(m+ n)x

1 1
:—{ sin(m-n)X
2l m-n

22
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3.4 Gram-Schmidt Orthogonalisation Procedure

This provides a method of constructing an orthogsetfrom a given set. Normalising

each member of the set then provides an orthon@atal he method entails setting up
the first vector, and then constructing the nextrner of the orthogonal set by making
it orthogonal to the first member of the set unclamstruction. Then the next member
of the set is constructed in a way to be orthogtmé#the two preceding members. This
procedure can be continued until the last memb#reget is constructed.

3.4.1 Examplefrom function vector space

Construct an orthonormal set from the {a,et x2,...} over the intervak-1<x<1. Thus,
given the sef{f,, f,, f,,..}, we want to construct an orthogonal §gt¢,,4..,..}, i.e.,

fl¢i (X)¢,(¥)dx =0, if i # j, then we normalise each member of the set.

Letg, =f, =1,andg, =, +ag =x+a

Then, we determine, subject to

(¢17¢2) =0

2
[ (x+aydx=">

1 1
+m<4 =0 2.20
2 1
- -1

Let ¢, = f, + ag, + Bp, = X* + ax+
subject to(¢4,,4,) =0 and (¢,,¢,) =0

>a=0
Thus, ¢, = x

The first condition gives:

fll-(x2 +ax+ f)dx=0 2.21
or
3 2 2 1
X2 ad =2 opd =0 222
3 -1 2 -1 N 3 0
%4_2’3:0 2.23
or
1

-z 2.24
F=-3
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The second condition gives
Ijlx- (X* +ax+ f)dx = J'_ll(x3 +ax? + X)dx

or

4 3 2|1
X +’BX =0 2.25
4, 31, 2|,

20"

=0

3 o
or

a=0 2.26

Putting the values of and g from equations (2.24) and (2.26) into the expogss
¢, = f, +ag, + Bp, = X* + ax+ B, we arrive at
1

X2 = 2.27
3 = X 3

4,95, €tc., can be got in a similar fashion.

To normaliseg, , we multiply the function by a normalisation cargt A, say, and
invoke the relation
flA2¢j2(x)dx=1 2.28
For ¢,, this becomes
[[A%12dx=2[ Adx=1
-1 0
from which

2A% =1
or

A=.,—=
2

The normalised function

1 2.29

Wl:\/i

Similarly,
12,2
LA x“dx=1
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Thus, A? = \/§
2

Hence, the normalised function,

3
Wy, = EX

In like manner,

2
Il Az(x2 —E) dx = ZIlAZ(x4 —sz +E)dx: 1
-1 3 0 3 9

from which

5 3 1
op X 2 Xy
5 9 9

or
2A2(E—Z+EJ=1
5 9 9
80

Therefore— A% =1
45

The normalised functiog, = %5()(2 _%j

3.4.2 Examplefrom R"

We define the projection operator
<u,Vv>

u
<u,u>

Proj,v =

u,=Vv,
u,=Vv,—-Pr v,

u;

U, =Vv,—Pr

Uy

vV, —Pr, v,

u;

n-1

u, =v, —ZPrui v,

i=
We can then normalise each vector
uk

e =
lu |l

Note thatPr, v projects vectov orthogonally onto vectar.

2.30

2.31
2.32

2.33

2.34

2.35

PHY 309
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3.5 SomeUseful Mathematicson Matrices

You shall be needing the following because we offtgmesent an operator in quantum
mechanics by a matrix. We shall take as the usasthn 3-dimensional spaceg { e,

, e;,}. You may also see this basis asj{k}.

3.5.1 Orthogonal Matrices

A tensor Q such that(Qa)-(Qb)=a-b v a, beE is called amorthogonal matrix.
Since (Qa)- (Qb) =b-{Q"(Qa)} =b-{(Q'Q)a} , a necessary and sufficient condition for
Q to be orthogonal is

QQT — | 236
or equivalently,
Q—l — QT 237
Note that
detQQ") = det@Q)det@Q")

= det(Q) det@)

- (detQ))* =1
— det(Q) = +1 2.38

Qis said to be aroper orthogonal matrix if det@Q) =1 and animproper orthogonal
matrix if det@Q)=-1.

If det(Q) =1, then

detQ-1) = det@Q - 1) detQ")
=det@QQ" — Q") (det(A) det(B) = det(AB) for any 2 square matrices)
=det( -Q") (QQ" =1 for an orthogonal matri€Q)
=det(" -Q™) (detA=detA’ for any square matrif.)
= +det(l —Q) (I"=1 andQ™ =1)

=—detQ-1) (detA) = —det(A) for any square matrik.)

=0 (if a number is equal to its negative, it musizero)

Therefore, 1 is an eigenvalue so that, > Qe, =e,.

Choosee,, e, to be orthonormal te,. In terms of this basis,
a b 0
Q=(c d O 2.39
0 01

26



MODULE 1 PHY 309

a c O
Q'=|b d 0 2.40
0 01
1 0 0] |a*+b*> ac+bd O
QQ"=|0 1 O|=|ca+bd c*+d* O 2.41
001 0 0 1
a’+b”>=1=c*+d? 2.42
ac+bd=0=ca+hd 2.43
Also,
det@Q)=1=ad -bc 2.44
From equation 2.43 = —%
Putting this in 2.43 gives
2
ad +%=1 2.45

= a(c®* +d?) =d = a=d Use equation 2.43 in equation 2.42 to get-b.

Therefore,
a b o0

Q=|-b a 0 2.46
0O 01

with a? +b* =1.

Thus,360, > a=co¥, b=sind,

SO
cosy sind 0
Q=|-sind cos¥ O 2.47
0 0 1

If you represent the three unit vectors in 3-din@mel Euclidean space hyj, k, this
corresponds to a rotation about an axis perperatitok .
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3.5.2 Symmetric Matrices
For a symmetric matrid, A= A’

Choosee,, e,,e,as eigenvectors of, with eigenvaluest ;, 4 ,, 1 ,.

Ae, =1 .6 2.48
A (e -€)) = Ae € 2.49
=e -Ale
=€, - A,
=1,(e -€)).

This means that ift, = 4,, thene, -e; =0
Choosee,,¢,,€, to be unit vectors, thewr, -e, =5, .

This means that we could represent a symmetricixregra diagonal matrix with only
the entriesA, = A;:

N

., 0 0
A= A, O 2.50
0 A,

o O

This result is referred to as theectral representation of a symmetric matrix.
3.5.3 Hermitian Matrices

TheAdjoint (or Hermitian conjugate) of a matrix A is given by
Adj(A) = A =((A)T )* 251

A Hermitian matrix is the complex equivalent ofeamk symmetric matrix, satisfying
A" =A 2.52

3.5.4 Unitary Matrices
The complex analogue of a real orthogonal matreusitary matrix, i.e., AA* = | or,
equivalently,

At = A" 2.53
3.55 Normal Matrices
A normal matrix is one that commutes with its Hermitian jogate.
le.,

AAT = ATA 2.54
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40 Concluson

This Unit introduced you to the concepts of orthegjay and orthonormality. They are

so important in Quantum mechanics in that wherdaogy they guarantee that different
vectors lie in specific directions that do not ‘mig’ just the way the traditional unit

vectors in 3-dimensional space do not ‘mix up’ whesolving them. You also came
across the bra and ket or Dirac notation, anotlesr ef dealing with vectors and their
inner products. Odd and even functions were broughd make it easier for you to

integrate functions within symmetric intervals. Yalso learnt about different types of
matrices. With Gram-Schmidt orthonormalisation yleave a way of creating an

orthonormal set of vectors. With an orthonormal set can proceed to define the
statistical probability with which a measurementgshysical quantity would result in

a certain value. You also learnt about certain &iofdmatrices.

50 Summary

o The inner product of a pair orthogonal vectorseioz

o A basis that consists of orthogonal vectors ongnsrthogonal basis.

o With an orthogonal basis, we can define the prdib&si of measurement.

o The Gram-Schmidt orthonormalisation scheme can be used ¢ateran

orthogonal basis.

6.0 Tutor-Marked Assignment

1. Which of the following functions are even andathones are odd?
(i) x* sinxcoshx (i) |e*|cosh2x (iii)) secx

2. Write the following as a sum of odd and evercfioms.
(1) e * coshx @)  xInx

3. Evaluate the following integrals
i) [D>™d, n=012... (i) [ x"dx,n=012..

4. Show that
(1) sinmx andcosnx are orthogonal;- r < x<r.
(i)  sinmx andsinnx are orthogonalm=n, -z <x<r.

|3 X]|. o
5. If the matrix 1 2} Is a proper orthogonal matrix, find

6. If the matrix |

Iz} Is Hermitian, find the value of
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https://www.astrosen.unam.mx/~aceves/Metodos/eboleks hobson bence

-pdf

2. Mathematical Methods in Physics: Distributiondjlbert Space Operators,
Variational Methods, and Applications in Quantumy$lbs — by Philippe
Blanchard, and Erwin Brining. Second Edition, 20l&vailable at:
https://link.springer.com/book/10.1007/978- 3 -3B45-2

Video Links
https://youtu.be/VGCqgf30nOfk
https://youtu.be/rZcGXo4nyLlI

Solutionsto Tutor Marked Assignment

1. Which of the following functions are even andiethones are odd?
(i) x*sinxcoshx (i) |e*|cosh2x (iii)) secx
0] Is odd, being the product of two even functions anadd function.
(i) is an even function, a product of two even funcfon
(i) is an even function:
1
secfx) = = secx

cosX)  Cosx

2. Write the following as a sum of odd and evercfioms.
() e coshx @i  xInx
() h(x)=e™coshx, h(—x) = e* cosh{-x) = * coshx

f () =§[h(x) —h(-x)] =

e ¥ coshx—e* coshx et —e*
= —coshx

2
= —coshxsinhx
003 = L[h(x) + h(_x)] = & cosix+e”coshx _ COShXI:e +e }
2 2
= cosl? x
3. Evaluate the following integrals
(i) [>™dx, n=012... (i) [ x"dx, n=012...

0] fax2”+1dx: 0, the integrand being an odd function.
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on+l | @ 2n+1

X L, a
2n+]J0 2n+1

(ii) I_szndx = Zjoa x*"dx = 2

4, Show that

(i) sinmx andcosnx are orthogonal-z <x<r.
(i) sinmx andsinnx are orthogonalm=n, -z <x<r.

() [ sinmxcosnxdx =0, the integrand is an odd function

(i) J:sin mxsinnxdx = J:%[cos(m— n)x — cosfn+ n)xJdx

I sin(m+n)><4 }=0
m+n

-

il 1
=—{ sin(m-n)X
2l m-n

-

|3 : L
5. If the matrlx[1 )2(} Is a proper orthogonal matrix, find
3 X
de =6-x=1,0r x=5
1 2

y
i

The matrix is Hermitian if it is equal to its Hetran adjoint, i.e.,

© [[—yi Iz eaual to[—yi .2}
MR BRI

The matrix is Hermitian.

6. If the matrix '2} is Hermitian, find the value of

31



PHY 309 QUANTUM MECHANICSI

Unit 3: Operatorsand Related Topics

Contents

3.1 Introduction

3.2 Objectives

3.3 Main Content
3.1 Linear Operators
3.1.1 Eigenvalues of a Linear Operator
3.2  Expectation value
3.3 Commutators and simultaneous eigenstates
3.4  Matrix Elements of a Linear Operator
3.5 Change of Basis

3.4 Conclusion

3.5 Summary

3.6  Tutor-Marked Assignment (TMA)

3.7References/Further Readings

3.1 Introduction

Operators are quite important in Quantum mechabesause every observable is
represented by a Hermitian operator. The eigensadfiehe operator are the possible
values the physical observable can take, and thectaxtion value of the observable in
any particular state is the average value it takethat particular state. Commuting
operators indicate that the corresponding physitelervables can have the same
eigenstates, or equivalently, they can both be uredssimultaneously with infinite
accuracy. You shall get to learn about all thesgismUnit.

3.2 Objectives

By the end of this Unit, you should be able to e following:

. Define a linear operator.

. Find the eigenvalues of a linear operator.

. Calculate the expectation value of a physical olzd®@e in a given state.
. Do commutator algebra.

. Find the matrix elements of a linear operator.

. Write the matrix for a change from one basis tatlagio

3.3 Main Content
3.1 Linear Operators

A linear map, or linear transformation or lineareogor, is a functionf : X —»Y

between vector spaceX and Y which preserves vector addition and scalar
multiplication, i.e.,
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FOG+%)= 104)+ F(x,)
f(Ax)= 4 f(x) for 1K, a constant, and, ,x, € X

Equivalently, f (ax, +bx,) = af (x,) + bf (x,) .

As am example, the differential operator is a lmgaerator.
d d d
&(a )+ 6 1,(x) = o f1(x) +ﬂ& f2(%)

wherea and g are constants (scalars) in the underlying field.

3.1.1 Eigenvaluesof a Linear Operator

Let A be an operator andl the associated eigenvalue corresponding to amegéor
v . Then, we can write

Ay =y 3.1

Frequently, the operatoA is a matrix, and the eigenvectepr a column matrix. It
follows that
(A=A1)y =0 3.2

where | is the appropriate identity matrix, that is, aagumatrix that has 1 along its
main diagonal and zero elsewhere.

For a non-trivial solution, we require that theetdatinant vanish, that is,
|A-41|=0 3.3

Solving the resulting characteristic (or seculayation, we obtain the possible values
of 1, called the eigenvalues. Then armed with the eigjeles, we can then obtain the
associated eigenfunctions.

Example

. 13 =2 . . . .
Given the matnx{1 ) } , find the corresponding eigenvectors and the eigieles.

Solution

U,

Let the eigenvector be{ } , and the corresponding eigenvaluebeThen,

U,

R NN

or
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(PP P

‘3—,1 -2

=0
S

or A%-51+6+2=0

A?-51+8=0
,_5+425-32 5 W7
2 27 2
5 7

Let 2, = §+i7' Then, the corresponding eigenvector can be found:

Rl

B e

3u, —2u, = [§+i£]ul
2 2

u, +2u, = (g+ [ g]uz

From (i), 2u, = 3u, —[g +i ﬁ]ul = [1 —i ﬂjul

()

2 2 2

Thus, choosing;,= 1, we getu, = %[éqg]

. . . 1
Hence, an eigenfunction for the matrl{is ) 7}
—i

1

Similarly, choosingv = L\;
2
5 7

. V.
A ,=——i~—, we can get the eigenvectoe| *|.
2 2 v,

} as the other eigenvector with a correspondingneigieie

Central to the theory of quantum mechanics isdlea bf an operator (as we have seen
earlier). We have indeed come across some oper&ecsll

Hy (X) = Ew(X) 3.4
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whereH is an operator. For the time-independent Schrgediaquation:

Hiyp(x) = —g—m% V) 35

H is thetotal energy operator or Hamiltonian?

We identify some other operators:

0] The kinetic energy operatdr

R 2 42
fo A 36
2m dx?

(i)  The linear momentum operatgr

N . d
=—ih— 3.7
P dx

(i)  The position operatok
X=X 3.8

3.2 Expectation value

The expectation value of a quantity is the sta@étipredicted mean value of all
measurements.

The (statistical) average value of the numbersx,, ..., x, is i:lz x, . However,
n<
=1

if there is a distribution, such that there dreof the valuex;, i=1, 2, ...,n, then the
average becomes

Zm: fiXi 1 m
X:”%—:EZ fix , sinced f, =n 3.9
fi i=1 i=1
i=1

sincen is the total number of observations.

In the case of quantum mechanics, the average ,valuexpectation value, of an
operator is

<->= [w* O 3.10

Thus, the expectation value ®fis

<x>= [ p* (Oxp(x)dx 3.11
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Thus, if y = Esin(%j, with n= 2, ando < x< L,

<x>——J. sm—xsdex 3.12
——I Xsin? 2”de
LJo
2 L* L
=X — = —
L 4 2

The expectation value of the momentum for the sease above is
<p>= r w (x)(—ihdijz//(x)dx 3.13

_2ih . 27x d ( 27zx)
= sm—— sin—- |dx
0 L dx L

_2ih 27 (Y . 27nx 2#X

2|h 27 (Y1 . 4nx
- X— —sin——dx

L L Jo2

27k L 47X
= X —COS——
L>  A4r L

0
The energy expectation value of for the groundestéthe simple harmonic oscillator:

2 s 2 (1 1 ® 1
<E>= I_ woHydx = I_ wo(zha)ojwo = Eha)oj._ 1//01//0dX=§ha)o 3.14

sincey, is normalised.

This is a special case of the general result
<a>—jl// aydx=1 l// *ydx =4 3.15

Thus, we see that for any eigenstate of an oper#ter expectation value of the
observable represented by that operator is theregdee.

More generally, we would write the expectation eabf an operatord, in a certain
statey , as

<y |Aly>.
Example
1 2 -1 2i
The expectation value of a matrix operatd, -1 1 |instate| 1 |is
1 3 2 -1

36



MODULE 1 PHY 309

1 2 -1Y2 2i+3) ( 4-6i
(-2 1 <12 -1 1|1|=(-2 1 -1)4di-2|=| 4i-2
1 3 2)-1 2i+1) (-2i-1

3.3 Commutatorsand simultaneous eigenstates

Consider an operatd? that represents a physical observable of a systam,energy
or momentum. Suppose that the statbas a particular valug of this observable, i.e.,

Py = py. Suppose further that the same state also havale q of a second
observable represented by the operaioi.e., Qy = qy . Then p andq are called

simultaneous eigenvalues. Then,

QPy = Qpy = pQy = pay 3.16
Similarly,
PQy = Pqy =qPy = gpy 3.17

Since p and q are just real numbers, thegp= pq. Thus, the condition for
simultaneous eigenstates is ti#@Qy = QPy or
PQ-QP =0 3.18

PQ-QP is said to be theommutator of P and Q and operators that satisfy the
condition PQ - QP = 0 are said to commute. The commutator is normalltevr[P, Q]

Examples

1. Show thafT, p].

. n? d*( .. d . d n? d?
T, ply= - —| —ii— | —i— || -——
[T, Pl 2mdx2( ! dle// ( ! dxj( 2mdx2}//

2m dx®  2m dx®
2. Calculatg x, p] .

(% By = x(— ih%}u —[— ih%}(xw

= _inx 3 ing +inx 3Y
dx dx

=ihy
Thus, we can writgx, p] = ix
The fact thatk and p do not commute lead to the uncertainty relationp > 7 .
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Indeed, when two operators do not commute, it mehas the two associated
observables cannot be measured with infinite acgusamultaneously. Thus, an
attempt to measure the momentum of a particle withite accuracy will cause an

infinite error in the position as is easily seerthe equation,Ax:Ai. On the other
p

hand, the momentum and the energy of such a systarbe measured simultaneously
with infinite accuracy. Other non-commutating opers includeE and f, i.e., the
energy operator and the time operator.

The potential operator is just=V , just asX = x.

34 Matrix Elementsof aLinear Operator

We can represent any operadmy a squarax nmatrix

A :<¢i|A|¢j>,i,j=1,n 3.19
Examples
1. For the identity operatar,
g, >=¢, >
A =<¢i|A|¢j>:A]‘ =<¢i|¢j>:5ij 3.20
Hence,
1 0 ..0
o1 ..0
l=. . . . . 3.21
00 . .1

0)(0\(1
2. Consider the basisB=3/0|,|1|0|;. Suppose we want to change to
1){0)\0

0)\(0
111,l0]|}. Then, the matrix of transformation is
0/{1

0
A= |0
1
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<B/|C,> <B/|C,> <B/|C;>
Note thatA, =| <B,|C, > <B,|C,> <B,|C,>
<B;|C,> <B;|C,> <B,|C,>

3.5 Changeof Basis

The basis for a vector space is not unique. Weeaaily construct a linear map (matrix)
that takes a basis vector in one basis to anodiseseen in example 2 above. Let us
considerR" as a vector space.

Let{u;}!, be a basis in the vector space. We can write antova in the vector space

a
a2
asa=| . | . Then, we can write
an
al u11 u21 unl
a2 u12 u22 un2
=CU, +CU,+...4+4C U, =C| . [+Cp| . |+...+C, 3.22
an uln u2n unn
It follows that
a1 = Clu11 + CZU21 + ...+ Cnunl
a2 = Clu12 + CZU22 + ...+ Cnunz
an = Cluln + C2U2n +...+ Cnunn
We can write this compactly as
a Uyg Uy - o Uy (G
&, Up Uyp . - Uy | G
= . S . 3.23
a'n u1n u2n unn Cn
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& C,
a'2 CZ

or . |=8B| . 3.24
aﬂ Cﬂ

whereB is a matrix formed by arranging the vectats u,, ..., u, in order.

It follows immediately that we can write

G &
C, a

=B . 3.25
C a

But we might as well have writtemin another basigv }7_,, as

al Vll V21 o an dl dl

a'2 V12 V22 - Vn2 d2 d2
=dv, +d,v, +...+d v, =| . Ce . |=D

an Vln V2n Vnn dn dn
Vll V21 : : an
V12 V22 o Vn2

whereD=| . S 3.26

Vln V2n Vnn

Therefore, equation 3.25 becomes

Cl a:l. dl
CZ a2 d2

=B? . |=B™D| . 3.27
C a d
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Conversely,
Cll Cl
d2 C2
=D'B| . 3.28
dn Cn
Example 1

Given the basis {(2, 3), (1, 4)}, can we write #gression for a transformation to {(O,
2), (-1, 5)}?

Solution

21 0 - L, 1(4 -1 4 15 1
B= 1D: 1B == 1D ==
3 4 2 5 5(-3 2 2{-2 0
4 -1)(0 -1 -2 -9
B-lD:E -1
5(-3 2 )2 5 5{ 4 13
5 1)(2 1 13 9
D‘lel :1
2(-2 0)\3 4 2\-4 -2

Boef2)- 3 ()
el 2 R ()

3.3 Concluson

Linear operators are so important in Quantum mdackdrecause every observable has
an associated linear operator. So, we introducead tgolinear operators, and then

outlined how to get the eigenvalues and eigenveaibla given linear operator. The

eigenvalues are the possible values a measureniiépield, and the eigenstates are

the possible states we can find the system. Yaula&nt about the expectation value
of a physical observable represented by a linearatpr. We then went on to discuss
commutators and saw that simultaneous eigensteggsoasible for a pair of operators

if they commutate. You learnt, thereafter, to chltaithe matrix elements of a linear

operator. You might need to change from one s&iasfs to another. You also learnt

how to do this, so that you might have a picturevbft a vector in the space would

look like in another basis.
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40 Summary

o A linear operator is needed for each physicallyeobsble physical quantity in
Quantum Mechanics.

o The eigenvalues of an operator are the possibleesah measurement of the
physical observable will yield.

o The eigenstates or eigenvectors of an operatothar@ossible states in which
the system under consideration could be found.

o The matrix representing a linear operator can beroened.

o The basis for a certain vector space is not unéguge can construct more bases

as may be needed.

4.1 Tutor-Marked Assignment (TMA)

la. Find the eigenvalues and the correspondingiigetions of the matrix.

b. If this matrix represents a physically obsereadutribute of a particle, what is
the expectation value of the attribute in eacheffossible states. Comment on
your results.

2. You are given the s& = {Gj[—llj}

o Are the linearly independent?
o Are they orthogonal?
o Are they normalised? If not, normalise them.

) 3
° Write the vector(dj

o] in terms of the usual basis in the Euclidean plane.
. 1)(1
0 In terms of the basi§, = {[J[ J}
o Write the matrix of transformation from basss to basiss ?

3. Find the matrix of transformation between thsdx{éj GJ} and {@ ( 11}

3) . .
. Hence, express the vec(oij in the two different bases.

4. Write the matrix of transformation between th#diving bases inR®, the 3-
dimensional Euclidean plane.
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1)(2) (0 1\( 2 1
O[|21|]3|F and{[2]|-1}| 1
2)\0) (5 1){1)(-1

7.0 Referencesfor further Studies
Textbooks:

1. Mathematical Methods for Physics and Engineeriigjley, K. F., Hobson, M. P.
and Bence, S. J. Third Edition, 2006. Available : at
https://www.astrosen.unam.mx/~aceves/Metodos/eliolelys hobson_bence.p
df

2. Mathematical Methods in Physics: Distributiodgbert Space Operators,

Variational Methods, and Applications in Quantuny$tbs — by Philippe Blanchard,
and Erwin  Brining. Second Edition, 2015. Availableat:
https://link.springer.com/book/10.1007/978- 3-3¥B45-2

Videos Links

https://youtu.be/IPjJJGoabaRc
https://youtu.be/solszjHu7jY

Solutionsto Tutor-Marked Assignment

la. Find the eigenvalues and the correspondingiigetions of the matrix.

0 01
A=/0 0 O
1 00
b. If this matrix represents a physically obsereadutribute of a particle, what is
the expectation value of the attribute in eacheffossible states. Comment on
your results.
-2 0 1
a. The characteristic equation is formed by -2 0(=0
1 0 -4
-2 +1=0
Eigenvalues are 0, 1 and.
0 0 1][a,
For 2= 0, eigenvector is given by 0 0} a,
1 0 0} a,
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a 0
Orla,|=|1
a, 0
a 0
The normalised eigenfunctionyg =|a, |=| 1
a, 0
-1 0 1]|&a 0
i=1. |0 -1 0| a,|=|0
1 0 -1f 4 0
aQ 1
a, =0
a, 1
a 1
The normalised wavefunction i8, =| a, _1 0
V2
a, 1
1 0 1][a] [O
4i=-1:/0 1 Ol|a,|=|0
1 0 1][a,| [O
a | [-1
a, |=
a, | 1
a -1
Normalised wavefunction ig, =| a, 1 0
V2
a, 1
1
b.  The expectation value Afin state| 0| is
1
0O 0 1|0 0
<y, |Aly,>=[0 1 00 0 ofj1|=]0 1 0]0|=0
1 0 0}|0 0
0 01 1 1
<1//2|A|1//2>=i[1 0 1o o ol-L|o =1[1 0 1o NENP
V2 1 00 V2 1 2 1 2
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1 ORI 1
<1//3|A|1//3>:T[—1 0 1o o OT 0 :E[_l 0 1) 0 |=2x-2=-1
2 100 1 -1

Comment: The expectation values are the eigenvalgegot earlier. This is another
way of getting the eigenvalues of an operator.

2. You are given the se§, = {Gj(—ll}

(@) Are the linearly independent?
(b)  Are they orthogonal?
(c) Arethey normalised? If not, normalise them.

(d)  Write the vector[jj
0] in terms of the usual basis in the Euclidean plane.

(i) In terms of the basi§, = {(3(_11}}

(e)  Write the matrix of transformation from bassg to basiss, ?

Solution

n

(@ Given a setv,}’,,

a, =a,=---=a, = 0, then we say, |, is a linearly independent set.

= (i

To check if they are linearly independent.
D, [1)=(0
1) "% —1)7 o

Hence,c, +c, =0 and ¢, -c¢, =0. From the last equatiorg, =c,. Putting this in the
first equation,c, + ¢, =0, or ¢c,;= 0. Consequently;,= 0. Set is linearly independent.

if we can writea,v, +a,v, +---+a,v, = 0 and this implies

(b)  To check orthogonality(a,b) =a"b = (1 1)[ 11j =1-1=0
(They are orthogonal)
(c) Arethey normaliseda,a) = (1 1)@ =2,0r|lalE2. (b,b)=( —1)( llj =2.
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They are not normalised.

iﬁ i( 1) are normalised
V2(1)' 2 -1 '

The set {%@ %(

In the usual basis,,

o))

In the basisS
W

Hence,a + #=3J2 anda - g =42
200 =742 and2p = -2

Jzalaalm 2l

3. Find the matrix of transformation between thsdsa{((lj (2}} and {GJ ( 11}

3) . .
. Hence, express the vec(o4rj in the two different bases.

1 :
J} forms an orthonormal basis fd??.

Therefore,

. . : 1 . C
The matrix from basisS, is B=[O ﬂ and the matrix from basi§ is
D:[l 1] B_l{l o] oi_ L [—1 —1}:1{1 1}
1 -1 01 -2|-1 1 211 -1

. . . 11
The matrix of transformation fror§, to S is B'D=D = [1 J.

' ' : 11
The matrix of transformation fror§, to S, is D'B=D" = %L J
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3. 3 1 113 7 712].

So,| |in S, transforms toD'B _1 _1 = in S.
4 41 2(1 -1{|4| 2|-1 -2

Crosscheck! Does this transform ir[tj?} the other way?
. 7 1 17 6 3.
[7/2} in S, transforms t(B‘lD[l{ D:E{ }{ }=1{ }:{ }m S, -
-2 2|-1 2|1 -1j|-1| 2|8 4

3. Write the matrix of transformation between thedwling bases irR?, the 3-
dimensional Euclidean plane.

1)(2) (0 1\( 2 1
O[|1]3|F and{|2]|-1}| 1
2)\0) (5 1){1)(-1
1)(2) (0 1\( 2 1
Lets, =:/0||1||3]|f,andS, =4|2||-1|| 1
2)\0) (5 1){1)(-1
1 20 1 2 1
The matrix related ts, isB=|0 1 3|, while the one related t§,is|2 -1 1
2 05 1 1 -1

We need to get the inverse Df, since we need 'B. The inverse of a matrix is the
matrix of cofactors divided by the determinantsEiwe evaluate the determinantof

Determinant oD is
11-10)-2(-2-1)+12+1) =9

The inverse oD is the transpose of the matrix of cofactors dididg the determinant:

(-1 1] 2 1] |2 =17
112‘1 111‘ 1112 o 3 3T103 3
Dlo2|_ _ 33 2 1| =33 -2 1
ol 1 -1 1 - 11| "o 9
) . U 3 1 -5 3 1 -5
_‘_1 _‘2 _1_
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1 2 10 3 3 9 0O 1 00
1 2 -1 13 -2 1 =% 0 9 0/=(010
1 1 -1|3 1 -5 0 09 0 01

We have got the inverse righdD " = | . The matrix of transformation from
of transformation from tc, is, and that of transformation fros) to S, is

1 0O 3 3|1 20 1 6 3 24
D‘lB=§ 3 -2 11|01 3 ) 5 4 -1
3 1 -5||2 05 -7 7 =12
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MODULE 2 INADEQUACIES OF CLASSICAL
MECHANICS AND THE SCHROEDINGER
EQUATION

Unit 1 The Inadequacies of Classical Mechanics

Unit 2 The Schroedinger Equation

Unit 3 Postulates of Quantum Mechanics

Unit 1 The Inadequacies of Classical Mechanics

Contents

1.1 Introduction

1.2 Objectives

1.3 Main Content

1.3.1 Blackbody Radiation

1.3.2 Photoelectric Effect

1.4 Compton Effect

1.5 Bohr's Theory of the Hydrogen Atom
3.5 Heisenberg’'s Uncertainty Principle
3.6 Wave-particle duality

Conclusion

Summary

Tutor-Marked Assignment (TMA)
References/Further Readings

abrwdN

1.1 Introduction

If classical mechanics had no inadequacies, thenddvhave been no
need for a new theory. Up until the turn of thetaey) it was thought that
Newton’s laws could account for all physical phemeo, irrespective of
the size of the particle involved, and for any joéettravelling at whatever
speed.

By now, you are familiar with the basic ideas adsdical mechanics,
based on Newton’s laws of motion. It would app&at bnce you know
the equation of motion of a body, you can simultarsty and accurately
predict its position and linear momentum at anyeotiime. Moreover,
you would expect that an electron confined withlie tvalls of a finite
potential well, provided the energy is less tham lieight of the well,
would have no effect outside the borders of thel.w@f course, the
harmonic oscillator you came across could have erengy.

In this unit, you will get to know that matter belka like wave or like a
particle; that the highest velocity with which pbelectrons emitted from
a photometal is independent of the intensity ofiticedent radiation.
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2.0 Objectives

. After going through this Unit, you should be alie t

. Discuss the phenomena that pointed to the waverpi@nd the
ones that required a particle nature of matter.

. Appreciate the dual nature of matter: the wave tedparticle
pictures.

3.0 Main Content
3.1 Blackbody radiation

Everybody at a temperature higher than absolute ragliates energy as
the internal energy (thermal) is converted to etenagnetic radiation.

The spectrum of frequencies emitted by the bodyeddp on its

temperature. Thus, at low energies, lower frequendjor longer

wavelengths) are predominant. At higher temperatutbe higher

frequencies (shorter wavelengths) are more proniriewould be seen

that the peak of the spectrum of radiation movegatds the higher

frequencies as the temperature of the body incsease

A blackbody is the perfect absorber and emitteadfation. An example
of a blackbody would be a tiny hole in a heatedtgaRadiation falling
on such a hole would be bounced up and down inkiele€avity, due to
reflection, until all the radiation is absorbed.

The radiation emitted by a blackbody per unit tippet unit area in the
range of wavelength between

Before the time of Planck, Stefan and Boltzmanneamwith a formula
for finding the total radiant energy emitted byladibody per unit surface
area per unit time, as

j*=oT* 1.1

where o is the Stefan-Boltzmann constant, equal to 5.6704
x10°%Js'm?K ™, andT is the absolute temperature of the body. With this
law, Stefan was able to determine the temperatuiteecsun.

Rayleigh and Jeans predicted, based on the prenoipéquipartition of

energy, that the radiation emitted by a blackboelyymit time, per unit
area is given as
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87 VKT
u=

CS

1.2

wherek is the Boltzmann constant,is the frequency of the radiation and
T is the temperature of the body.

However, neither the Stefan-Boltzmann nor the Rghldeans formula
could give the true picture (experimental); that neither fitted the
observed spectrum of radiation. The former agreetd @bservation at
high frequencies while the latter was fairly good Ibw frequencies.

By making the assumption that radiant energy coulg be emitted or
absorbed in quanta (or little packets of energyanék arrived at the
formula

_8h VP

u= /KT _q

e
1.3

This formula agrees with observation at all frequies. Fig. 1 shows the
spectrum for three temperatures: 2000 K, 3000 K4t K. The figure
also shows that the classical theory fits obseswatonly at low
frequencies (long wavelength range).

7.E-16 -

6.E-16 -
—~ 5.E-16 -
=
- —— 2000 K
= 4.E-16 -
o ™ ——3000K
(D)
Z 3E16 - —— 4000 K
g ——Classical
T 2E-16 -

1.E-16 -

0.E+00 : . .

0.E+00 5.E-06 1.E-05 2.E-05

Wavelength (m)

Fig. 1: The spectrum of radiation for 2000, 300@ #000 K, and the
classical result.
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3.2 Photoelectric Effect

Photoelectric effect is the phenomenon in whiclttebms are emitted
from matter due to irradiation by electromagnetiaves of suitable
frequency.

Classical mechanics predicts that the higher ttensity of the incident

wave, the higher the velocity of the emitted electiMoreover, it expects
any frequency of light to emit electrons. This waswever, not observed
in nature. To start with, the electrons were nesmrtted unless the
frequency of the incident wave was a certain vdluether words, there
is a threshold below which the incident radiatioawd not emit any

electrons.

Einstein assumed that the incident radiation cteief little packets of
energy, quanta of light, called photons, each efgnE = hf , whereh is

the Planck’s constant ands the frequency of the incident radiation.

The assumption was that an electron would eithgordoa photon or not.
In the event that the electron absorbs this endhgy, part of the energy
would be used in overcoming the work function @& thetal, that is, the
energy binding the electron to the metal. The exeg®rgy would then
be available for the electron to move away fromrigtal. In other words,

if the energy of the photon is just enough to owere the work function,

the electron would be emitted, but would not haveugh energy to leave
the surface of the metal.

Thus, the formula guiding photoelectric effect is
E=hf=¢+K__ =¢+%mv2

1.4
K 1S the maximum kinetic energy of an emitted el@t®

It follows that the maximum velocity an emittedalen can have is

Vmax =4 2(hf _¢)

1.5

It is clear from equation 1.5, that f@&= hf less than the work function,
no electron is emitted, meaning that, sincga constant, if the frequency,
f, is less than a threshold, no electron is emitlégdis, the maximum

kinetic energy a photon can havé,- ¢, is independent of the intensity
of the radiation, being a function only of the fuegcy, provided the

metal remains the same (i.e., the work funcgoremains constant).
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We can also write the work functiop as ¢ =hf,, where f, is the

threshold frequency, below which no electron wal &mitted. We can
therefore now write

v=.2h(f - f,)
1.6
From equation 1.6, it is clear that no electron bd emitted if f < f,,

the threshold frequency.

For a given metal and a given radiation, the intgref the radiation is
directly proportional to the number of electronsiteed. This is because
more electrons would be exposed to the radiation.

The experimental set-up for photoelectric effeahsists of an emitter
plate and a collector plate. What opposing potewitald stop the most
energetic electrons from reaching the oppositeméthe collector?

S =6y,

1.7
where e is the charge on the electron awid is the stopping potential,

since the potential energy just balances the kiregtergy. Solving fov,

VO — max
1.8
3.3 Compton effect
Let a photon with wavelength collide with an electron at rest. After the

collision, the photon is scattered in directienrelative to its initial
direction. The electron is also scattered at areapigvith respect to the

reference direction as shown in Fig. ... We shall lapelativistic
conditions, meaning that the speeds involved amgel@nough to be
considered relativistic.

Figure

Conservation of energy

E+E,=E+E, 19

hv+m,c? = hv+y p,2c? + (Mm.c?)?

1.10
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since the relativistic energy-momentum relation

E.? = p, c* +(mc?)
1.11

Conservation of linear momentum

p+pe = pl+pe'

1.12
But p, =0. Hence,
P=p+P.

1.13

From equation 1.10,

hv+my,c? —hv= \/pe.202 +(m.c?)?
1.14

Squaring both sides,

(hv+mc? —hv)? = p,*c? + m*c*
1.15

Hence,

p,c? = (hv+ mc? —hv)? —m*c*
1.16

From equation 1.13, we can write,

Pe =p—p'
1.17

Taking the dot product of both sides,

Pe Pe =P =(P-p)-(P-p') = p*+ p*-2ppcosd
1.18

Multiplying through withc?,
p,’c? = p’c® + p? c? —2pp'c? cosd
1.19

Setting pc=hv
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p.2c? = (hv)? + (hv)? — 2(hv)(hv) cosd
1.20

Equating the right sides of equations 1.16 and,1.20
(hv+mc? —hv)2 —mc*= (hv)? + (hv)? — 2(hv)(hv) cosd

(hv)? + (m.c?)? + (hv)? + 2(hv)(m.c?) — 2(hv)(hv) — 2(hv)(m.c?) - m *c*
= (V)2 + (hv)? — 2(hv)(hv') cosd)
or

2(hv)(m,c?) — 2(hv')(m,c?) - 2(hv)(hv') = —2(hv)(hv') cosd
1.21

from which we obtain,

hvm.c® — hvm_.c? = 2h*vww-2h?vw' cosd
m, A
1.22

Dividing through byhvwm.,
cC C h

(L-cosh)

v V.. mgc
1.23

But c/v=2 aid c/v'= 1'. We can therefore write equation 1.23 as
h
m.C

e

.

(L-cosh)

1.24

Example

Find the change in wavelength if a photon is soadt@t an angle of 23
after its collision with an electron initially agst.

Solution

The change in wavelength is
6.626x10%

1—c0s23°) =1.9294x 103 m
91x10 3 x3x10° ( ) 8

A= (1 cosp) =
m.C

According to Classical electromagnetism, the wavgile of the scattered
rays should remain the same, but this did not agréeexperiments. The
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latter found that the wavelengths of the scatteegd were greater than
the initial wavelength as borne out by equatior 1.2

Thus, for Compton effect to be explained, we havenake recourse to
radiation consisting of particles that have enengg momentum.

3.4 Bohr’'s Theory of the Hydrogen Atom

Rutherford tried to explain the structure of themaby proposing a central
nucleus, with the electrons moving in orbits rotimel nucleus. However,
guite a number of things were not right with hisdalo For instance, you
would have been taught before now, that an acaelgraharge would
radiate energy. Remember that a body on curvilingeation is
accelerating even if the magnitude of the velocgynains constant
(centripetal acceleration). As such, you would expa electron moving
round the nucleus to lose energy and subsequaitlinfo the massive
nucleus. We therefore would have expected a camtisispectrum of
energy as against the line spectra obtained ityeBlohr attempted to
solve this problem by making some postulates:

0] An electron can only orbit the nucleus at certatfiir such that
the conditionmvr=n#i, where all symbols have their usual
meanings. Thus, the radii are quantised; not jogt radius
would do. While in such an orbit, the electron wbubt radiate
energy.

(i) Electrons can make a transition from one allowatbtst (or
correspondingly, energy level) to another by ahsgrior
emitting the difference in energy, as the case beayrhat is,
the energy difference ig, - E, = hv wherev is the frequency

of the emitted photong;, and E, being the initial and the final
energy levels respectively.

Taking into consideration the Coulombic force bedwehe proton and
the electron in the hydrogen atom, Bohr arrivethatallowable radii of
the form,

r, =Cn’
whereC is a constant. Correspondingly, the energy leardsalso of the
form

E =—

whereD is a constant.

Clearly, you can see again the fact that quantis&tnters into the picture.

56



MODULE 2 PHY 309

Even though Bohr’s theory would also not meet thisnate needs of

physics, it afforded a bridge from classical medtgro quantum

mechanics. Now you know that the electron in tloenas actually not to

be seen as a particle anymore, as it is as if agbar resides in every
region in the atom, aside the nucleus. So, welseelectron as a cloud
of sorts, and apply the laws of statistics in isribution, especially in

view of the Heisenberg’s uncertainty principle whroakes it impossible
to simultaneously predict accurately the positinod the momentum of a
particle.

3.5 Wave-particle duality

So far, we have considered radiant energy and ph@t® being quantised.
On the other hand, according to de-Broglie (1924aiter has a wave
nature, with the wavelength given by

h= pA

1.25

This formula was later confirmed experimentally glactron diffraction.
Other phenomena that support the wave nature ltfiglude refraction,
diffraction and interference.

From the foregoing, it is quite clear that matteh&wves as if composed of
particles or as a wave, hence the term wave-padighlity.

3.6. Heisenberg's Uncertainty Principle

Classical physics claims to know the future stéi@ny particle, provided
the position and the momentum are known at anytpélaisenberg’s
uncertainty principle excludes the possibility ofmsltaneously
measuring the position and the linear momentum nyf abject with
infinite accuracy. Indeed, any attempt to measune af the quantities
with infinite accuracy leads to infinite uncertaint the other. Indeed, if
the uncertainty in positiomx and that of the linear momentum of the
particle isAp, then,

h
AXAp =2 —
P 2

Thus, our whole world of classical mechanics serhave melted away.
However, classical mechanics has been tested astédrfor so long.
Why does it now seem to fail? It is because we tmaen dealing with

matter on the large scale. Quantum mechanics ntageakfference when
we have to deal with small objects, for exampletlien scale of atoms.
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Indeed, quantum mechanics has to agree with cgshgsics in certain
limits, in conformity with the correspondence pipie.

4.0 Conclusion

You have taken a look at the inadequacies of daksnechanics, and
have by now seen that there is the need to desmgwamechanics, one
that would treat a particle as a wave. You have sesves behaving as
particles and particles behaving as waves. You lseen also, that
guantisation is a part of nature: the energy leaalglectron can have in
an atom, Planck’s treatment of the radiation emhitig a blackbody, and
the likes. We also noticed that we cannot simubbasky measure certain
guantities with infinite accuracy.

5.0 Summary

o Classical mechanics is not adequate to describéeomatt the
atomic level.

o Matter behaves like a wave.

o Matter has the particle behaviour.

o Indeed, matter exhibits the wave-particle duality.

o A blackbody emits or absorbs energy in quanta.

o Compton scattering is explained by the particleireadf light.

o We need to assume that electromagnetic radiatiowsists of

particles (photons) to explain photoelectric effect

° Heisenberg’s uncertainty principle stipulates thva¢ cannot
simultaneously measure certain pairs of physidaibates of a
body with infinite accuracy.

6.0 Tutor Marked Assignment

1. Find the maximum kinetic energy with which alecé&ron is
emitted from a metal of work functio®2x10*J when a radiation
of energyE = 3.313x10*J falls on it, given that the work function
is 32x10°%°J.

2. What value does Rayleigh-Jeans formula prédrdhe radiation
of frequency6x10*Hzemitted by a blackbody per unit time, per
unit area at 2500K. Compare this value with that predicted by
Planck.

3. What is the wavelength of the wave associatithl &n electron
moving at 10°m/s.
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7.0 References for further Studies

Quantum Mechanics: Concepts and Applications — byrbidine Zettili.
3rd Edition, 2022 ISBN: 978-1-118-30789-2. Availabht:
https://www.wiley.com/enae/Quantum+Mechanics%3A-+Capt
s+and+Applicatio%

Video Links

https://youtu.be/6JQJMFIBPek
https://youtu.be/KXZ7gbO5Kfg

Solutions to Tutor Marked Assignment

1. Find the maximum Kkinetic energy with which areotton is
emitted from a photometal of work functid®2x10*J when a
radiation of energ\e = 3.313x10*J falls on it, given that the
work function is32x10*J.

The maximum kinetic energy is given by
%mvz =E-W = (3313x10% - 32x107*)J = 113x10*°J

2. What value does Rayleigh-Jeans formula predictie radiation
of frequency6x10*Hzemitted by a blackbody per unit time, per
unit area at 2500K. Compare this value with that predicted by
Planck.

87 Vv?kT _ 87(6x10")? x1.381x10 > x 2500

Rayleigh-Jeans: u=
YIelg y c? (3x10°)3

=1.1569x 107 J

Planck:

8rh 87 x 6.626x107% 1.381x10°%
U=————xt = 513 X =y 3
| (3x10°) ox 6:626x107x6x107) |
1.381x10% x 2500
=3.9379x10°%J

3. What is the wavelength of the wave associatedd am electron

moving at 10°m/s.
h=pi
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34
a=he 9?%?2}0106 = 728x10%°m
p LLX X
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UNIT 2:  The Schroedinger Equation

2.1  Introduction
2.2  Objectives
2.3  Main Content
2.3.1 The Schroedinger Equation
2.3.2 Interpretation of the equation and its sohsi
2.4  Conclusion
2.5 Summary
2.6  Tutor-Marked Assignment (TMA)
2.7 References/Further Readings

2.1 Introduction

The fact that matter behaves like a wave implies We would need an
equation or a set of equations to describe the wahaviour of matter.

As such, we would expect to have an equation deegrthe wave nature
of the electron. Likewise, the quantum-mechanicehtiment of the
harmonic oscillator would involve an equation ddsog the wave

behaviour of the oscillator. In this unit, we shadlrive the appropriate
differential equations for the wavefunction, andhsequently, describe
the probability with which the particle would beufdd at different points
within the appropriate region of confinement, andgbly beyond.

2.2  Objectives

By the end of this unit, you would be able to de tbllowing:

. Derive the time-dependent Schroedinger equation
. Deduce the time-independent Schroedinger equation
. Interpret the Schroedinger and its solutions

2.3 Main Content

We have seen in Unit 1 of this Module, that maltehaves as a wave.
Indeed, we noticed that the electron in the hydnagiem is best seen as
a cloud. Moreover, you also saw that the wave-garduality begs for a
wave equation to describe the nature of partieles, pushes our analysis
into the statistical domain. The Schroedinger equatoes this job.

2.3.1 The Schroedinger Equation
We are quite aware that you know that the totallhraeal energy of a
body is the sum of the kinetic energyand the potential energy. Of

course, you also remember that the kinetic enefgybmdy of massis
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2.,2
L o imv_po 2.1
2 2 m 2m

Then, the sum of its kinetic and potential energtést is, the total

mechanical energy is:
2

E-T+v=P_4v
2m
2.2

You surely recall that we can write= 72k andE =z . Substituting these
into equation (2.2) gives

21,2
ho = L +V
2m
2.3
Let us consider the case of a free partisle-Q). Then,
21,2
A h°k
2m
2.4
Let us try

P(x,t) = Agl

Then,
82
e

%‘P(x,t) = i AP = _j pP(x,1)

P(x,t) = —k2A®N = k2 (x 1)

2
hm and the second byt gives

Multiplying the first equation byz—

h? 8* .0
———Y¥Y(xt) =1a—PY(xt
2m ox> (x1) ot (%)

which is in line with equation (2.4).
For a particle that is not freg(x,t) = 0, and we arrive at
n* o’

.. 0
—%yllf(x,t) +V (X, 1) P(X,1) = |hE‘P(X,t)

2.5
This is thetime-dependent Schroedinger equation
Now, suppose the potential is time-independentnThe
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_ia_zly(x t) +V(X)W(xt) = ihﬁ‘P(x t)
2mox® e
2.6

Let
P (x,t) =w (X))

You would recognise this equation as showing tiét,t) is variable

separable, that is, we can write it as a produ@ ftinction ofx only,
multiplied by a function of only.

——;“ O (O +V Ry (O] = in-ly ()6 (0] 2.7

m OX ot

{0k 4 Ve ) =ity () L s 2.8
m dx dt

Dividing through equation (2.8) by (x)#(t),

1 n* d? 1 d
_W%WW(X) +V(X)=|hma¢(t) 2.9

Notice that we could carry out this algebra onlgdaese the potential is a
function ofx alone. That is, the potential is time-independ¥ot would
also observe that the partial differentials havecobee ordinary
differentials since they now apply to a functioraddingle variable in each
case.

In equation 2.9, a function only vis equated to a function only ©fThis
means that they must be separately equal to aaan$¥e know from
the left part of equation 2.9, that the constanhéskinetic energy of the
particle,E. Then,

.1 d

h——¢ ()= E

I i 0 OIt¢5()
2.10

We can rewrite this equation as
9 sty =Edi-—Eg
4 (t) i h
2.11

Integrating,

iE

Ing(t)=——t
ne(t) - +C

2.12
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wherec is an arbitrary constant.

Taking the exponential of both sides,

o) = ex;{—%t + c}

— De—iEt/h
2.13

whereD = e°

But we can seD equal to unity as we shall be writing the wavetiorc
asy (x)¢(t), and in any case, the wavefunction has not beanaised.

Hence, the time-dependent part of the wavefungsion

¢ (t) — e—iEt/h
2.14
The time-independent part of the equation is
n* d’
—%W‘//(X) +V(Xy(x)=E
2.15
Rearranging,
d’ 2m
WW(X) +?[E—V(X)]l//(><) =0
2.16

This is thetime-independent Schroedinger equatiapplicable when the
total (mechanical) energy of a system is constant.

We would not be able to solve equation 2.16 unéilkmow the specific
form of the functionv (x).

We conclude that in the case where the potentisddependent of the
time,

P(x,t) = l//(x)e—iEt/h

2.17

3.2 Interpretation of the equation and its solutions
1. Generally, the solution¥(x,t) of this equation is generally a
complex function. You already know that the magmaof a complex

function might not make any sense physically. Bwg square of the
magnitude (the intensity) certainly does, beingaglsva positive real

64



MODULE 2 PHY 309

number. Indeed, it is a measure of the probahiftyhe particle being
described arriving somewheref){u(x,t)|2 is, therefore, a probability

density. Of course, this implies thd®(x,t)“dx is the probability of
finding the particle betweer and x+ dx at timet.

¥(x,t) is theprobability amplitudeand is thevave functiofd This is the

function that describes the behaviour of a parasea function o and
t. This is the Born interpretation &f .

2. The solutions for equation 2.16 for a given tions V(x) are

possible for many solutions, each with a correspandnergyE. This
ensures that only certain values®fare allowed (energy quantisation).

3. For a system in which the particle is in on¢heise levels,
\P(X,t) — l//(x)e—iEt/h

Then, [P (x,t)|* =|w(X) since‘e“E“’"Z: 1 and the probability of finding

the particle at any point is independent of timectSa state is called a
stationary state.

4. Any function which satisfies the time-independ8chroedinger
equation must be

(a) single valued (b) continuous; (c) smoothly wagy and (d) tend to
zero as
X —> to0 .,

5. The probability of finding the particle alongethchosen 1-
dimension is 1, Hence,

J‘w|l//(x)|2dX: 1,
2.18

This is the normalisation condition and it expresses the certainty
(probability 1) of finding the particle anywheretime range-« < x <.

4.0 Conclusion

In this Unit, we have derived both the time-dependend the time-
independent Schroedinger equation. We saw thattithe-dependent
solution occurs when the potential involved is adtinction of the time,
so that we can apply the variables separable meathsedlving the time-
dependent Schroedinger equation. In addition, youtg know the
wavefunction is generally complex, and that the sitslly relevant
function is the product of the wavefunction anccibsnplex conjugate, or
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the square of the magnitude, which is consequeddéined as the
probability density: the probability of finding thparticle betweerx and
X+ dx at timet.

5.0Summary

o Schroedinger equation gives the dynamics of a quant
mechanical particle.

o The time-independent Schroedinger is applicable nwhiee
potential is time-independent.

o The square of the amplitude of the solution of Sulroedinger
equation gives the probability density.

o The normalisation condition requires that the irakgf the
probability density over the whole of the relevaahge equals
unity.

6.0 Tutor-Marked Assignment (TMA)

1. By solving the time-dependent Schroedinger egador a free

particle ¥ = 0), find the condition imposed on the angular

frequency and the wavenumber.

2. By applying the method of separation of variaplsolve the
differential equation

2 2 2
62+62+62 d=0
ox® oy° oz

3. Which of the following functions would you recorend as a
possible eigenfunction in quantum mechanics?

i) y(9=e> (il) (9 =2x (i) y(x)=xe>

4. What would the potential function be if(x) :(l
XO
eigenfunction of the Schroedinger equation? Asstimaé when

X—o, V(X) > 0.

n
j e >%is an

7.0 References for further Studies

Textbooks:

1. Introduction to Quantum Mechanics, 2nd Edition &aM. Blinder.
Published 2021.
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ISBN 978-0-12-822310-9 DQilttps://doi.org/10.1016/C2019-0-04431-7

2. Quantum Mechanics: Concepts and Applicationsy—Nburedine
Zettili. 3rd Edition, 2022 ISBN: 978-1-118-30789&\ailable at:

https://www.wiley.com/en-
ae/Quantum+Mechanics%3A+Concepts+and+Applications%

Video Links

https://youtu.be/solszjHu7jY

https://youtu.be/AR23uxZruhE
https://youtu.be/sOI4DIWQ 1w
https://youtu.be/Usu9xZfabPM

Solutions to Tutor Marked Assignment

1. By solving the time-dependent Schroedinger egandor a free
particle ¢ = 0), find the condition imposed on the angular
frequency and the wavenumber.

h? 8* 0 :
———Y¥Y(x,t) =1a—PY(xt I
o o (x1) p (x,1) (i)
Solution
Let
P(x,t) = Agkn
Then,
02 :
?\P(x,t) =—k2Ae® M = _Kk2P(x,t)
X

%l{f(x,t) =—iw Ad™ = _j 0P (x,1)

Putting these into the equation (i), we see that
h2k?
- 2m

ho

2. By applying the method of separation of variaplsolve the
differential equation

2 2 2
62+62+62 d=0
ox° oy° oz
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Solution

We shall assume that
D(x,y,2) = X(X)Y(Y)Z(2)
Putting this in equation (133),

1 d?X 1 d*% 1 d?z .
-+ ~+ > =0 0]
X(x) dx= Y(y) dy- Z(2) dz

For i.e., equation (i) to be valid, each term oa lgft must be separately
equal to a constant.

1 d°X _ 2. 1 d% _ . 1 d°Z
X(x) dx®  UUY(y)dy? ? Z(2) dZ

- k32

subject to the condition:
kZ+k,>+k>=0

We can see that not all these constants can baaeealll imaginary. At
least one of them must be real and one imagindrg.tfird may be real
or imaginary. Which constants are real and whi@hiaraginary will be
decided by the physical situation of the problemanedealing with.

k” =-a?, k,” =-p% andk,” = y*

Then,

1 d*X 1 d?Y 1 d?’z
7= = =

X(x) dx Y(y) dy Z(2) dz

The solutions are:

X(x) = Ae™ + Ae"™ (i)
Y(y)=Be” +Be"” (ii)
Z(2) =Ce” +C,e* (iii)

These are just a particular solution of the paditierential equation. As
there may be other values®f g andy which could give valid solutions,

the general solution is:
(D(X, Y, Z) — Z(Arleiarx + Arze—ia,xXleeiﬂsy + Bsze—iﬂSYXCtle;/tz + Ctzehz)

r,st
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3. Which of the following functions would you recorend as a
possible eigenfunction in quantum mechanics?

(M) y(=e~ (i) w(x)=2x (i)  y(x)=xe*
Answer

0] This is a bell-shaped function tends to zera tends to + infinity
and — infinity. In addition, it is twice differemible, continuous,
and normalisable.

(i) The function is not normalisable even though ddatinuous. This
is because it continues to grow a9 pecomes large.

(i)  Thisis also a valid function. Ag | grows, the exponential function
tames the function, preventing from tending to ni§i. It is
continuous and twice differentiable.

X

4. What would the potential function be yjf(x) {x J e >/%is an

0
eigenfunction of the Schroedinger equation? Asstimmewhenx — «,
V(x) > 0.

Solution

dF X"t 2(xY

- = n_e_ZX/Xo _c\ 2 e—2x/x0
dx X, Xy \ X,

n- n- n- 2 n
E — n(n_:DX_:e—Zx/x0 + nx_nl (__Zje—Zx/xo _E nx_l e—2x/x0 +(£J (lj e—Zx/x0
dx X X'\ % X

n-| n= n- 2 n
= n(n_j_)x_: e—2x/x0 _ ’{EJX_: e—2x/x0 _ E X_nl e—2x/><0 +(£j (l] e—2x/xO
Xo %) % %) % %) (X%

n-2
= n(n—l)x—ne‘zx’XO —~ n(i X
X

X 0 /) Xp Xy Xy
n(n-1) x" 4 | x" 2V x)
— . - e—2x/x0 _ n( - e—2x/x0 + = A e—2x/><O
X2 %, XXy ) X, X, ) %,

2_ n
[ e
X XX, Xo ) | %y
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2
_ n(nz—l)_n 4 . 2 (%)
X XX, Xo
Putting this into the Schroedinger equation,

h_zdzw(X)_K[”(”;l)_n( 4 HXEJ ]l//(X)=(V—E)l//(X)

2m dx¢  2m| x XX, .

When x — «, V(x) — 0, meaning that,
2n*

2

mX,

E=-

as the two terms that haxen their denominator tend to zero.
Therefore,

V(x)=h—2 nn-1) [ n
2m|  x? XX,
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UNIT 3 Postulates of Quantum Mechanics

3.1 Introduction

3.2  Objectives

3.3 Main Content
3.3.1 Postulates of Quantum Mechanics
3.3.2 The Correspondence Principle

3.4 Conclusion

3.5 Summary

3.6  Tutor-Marked Assignment (TMA)

3.7 References/Further Readings

3.1 Introduction

So far, in the first units of this module, we halezived the Schroedinger
equation, and have also interpreted its solutiothis unit you shall learn
the postulates of quantum mechanics. You shalllalm how to expand
a given wavefunction in terms of a complete setoothonormal
eigenstates, which are the states the system aaibpoexist, recover the
coefficient of each eigenstate in the expansiod, then determine the
probability that it is indeed in any given statasinecessary to know what
value you should expect when you carry out a measent of a physical
observable. This you shall learn this with appragriexamples in this
Unit as well. You shall also get to know in whaili quantum mechanics
must agree with classical mechanics through thewledge of the
Correspondence Principle.

2.00Dbjectives

By the time you are through with this Unit, you sltbbe able to:

. State and explain the postulates of quantum meckani

. Expand a given wavefunction as a linear combinatérthe
possible orthonormal eigenstates

. Recover the coefficient of each eigenstate in ¥paersion

. Calculate the probability that the system is in giwen eigenstate

. Find the (statistical) expectation value of a pbgkobservable in
any given eigenstate of the system

. Learn the limit in which quantum mechanics shoubtform to

classical mechanics
3.1 Postulates of Quantum Mechanics
A postulate is a something that is assumed to lbegeent, requiring no
proof, used as a basis for reasoning. The postulafe Quantum

Mechanics are the minimum conditions that must basfeed for
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Quantum Mechanics to hold. If Quantum mechanicksbased on these
postulates, it means that the postulates are true.

(1) There exists a function, called st&atéx,t) . This gives the state of
the system. It containall that are relevant mechanically in the
system. In other words, it gives the spatial angpiaral (space and
time) evolution of the quantum-mechanical particle.

¥ is single-valued inx, differentiable inx andt, ¥(x¢t) is square
integrable inx.

(2) To every measurement (of attributes of theesythere is a linear
self-adjoint (Hermitian) operator, called an obsdrte, A,
operating on the wave function. E.@¥ = ® . That is, the operator
acting on a state functio® produces a state functiab. If @ is
a multiple of ¥, say ® = A¥, then, A¥Y =A¥. Then¥ is an
eigenvector and an eigenvalue dk. The eigenvaluegi} are the
values physically obtainable in measuring thelaita that ha#\
as its observable. We therefore expectitisgo be real. Hermitian
operators are associated with real observablesubedhey need
to have real eigenvalues (possible measurements).

For example, the operator corresponding to theggnefra system is the
2 2

Hamiltonian, which is written as-;l—% +V(x,t). There are two
m dx

operators involved, and you would remember th@tassical Mechanics,

the two parts of the Hamiltonian are the kinetiergly and the potential

energy. Clearly, you can see that the kinetic gnepgrator in Quantum
2 2

Mechanics is—g—%, and the potential energy operatoni&,t) . But
m ax
2

do you also remember that classically we writekinetic energy asz%

? Can you then see that in Quantum Mechanics, cangp#e two
: : . d : :
expressions, we must wntep:—uhd—. Square this expression and
X

2
confirm that indeed it gives youhz%. Applying the energy operator
X
to the state function, we get,
n* d?
{—%W +V(X,t)j|\P(X,t) = E\P(X,t)

(3.1)

Depending on the potentigl(x,t), we could get the possible values of the
energy,E,, of the particle. This is the idea behind quatitbsa
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(3) Let{p,} form a basis oH . Then,

¥=3cg, ., with ¢, = (¢, ¥) (3.2)

There are many possible states for a quantum-mechaystem, usually
infinite in number withn in equation 3.2 tending to infinity. Hence, the
wavefunction¥(x,t) is a linear combination of all these possibleestat

This means the system describedibyan be found in any of the possible
statesg,. We can recover the coefficient of each of thesjie states

using equatiort. = (¢,,'¥) Once we have done that, that is, we have found
¢, we could find the probability that the systenmishat particular state
(i), Ic, |?, provided the wavefunctiow is normalised, and the sgt }',

is an orthonormal set. Refer to Unit ...

(4) The expectation value of any propemyx) can be found by
obtaining the expectation value of the correspamadiperator with
respect to the wavefunction.

<w>=[7 W ()W (X) dx

wherew is the operator associated with the physical qtyawt

(5) Reduction Doctrine: If we make a measuremendtate ¥ and
obtain 4, out of all the possible statég;} 7., , then if immediately

after that measurement we make another, we obtairwith
probability |c, |= 1, i.e., the process of measurement reduices
to ¥, .

(6) The time evolution of the wavefunction is givienthe equation
. 0
h—Y(xt) =H¥Y(xt
Lo (x,t) (x,t)
(3.3)

As an illustration of the postulates of quantum haatcs, we take the
following example:

Example
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An electron whose normalized state function at timed is found to be
Y (x,t =0) =§x is confined within the infinite time-independent

00<x<L

potential well given by (x) =
w, elsewhere

The allowed eigenstates afg(x) = \/75|n— for0O<x<L;n=1,2,3,

... The coefficientc,,, of ¢, in the expansion in the normalis&x) is
. ﬁ 2
L m?z?’

M Find the probability that the electron is it&m= 2.
(i)  What is the expectation value of the displaeatand the linear
momentum in state = 3?

232
(i)  The energy is measured and found to—QéTe'Z—. What is the state
me

of the system immediately after measurement?
(vi) Time evolution

Solution

0] The probability that the electron is in state= 2:

C =_\/§><L
m L~ m?z?
C=—\/§x 2 [ 3
® L 32z2 \8ir’

The probability that the electron is in states 2 is|c, |*=

32
8iLz*
(i)  The expectation value of the displacementtatesm = 3 is (since

the operator fox is X= X):

<x>= [ g% ()5 (X)lx
In this caseg, is non-zero only between O and Hence, the integral

becomes
Ll (2 . 37X 2 37 X
< x>:j —sin——| X ,|— sin—— |dX
ol VL L L L

=2 Lxsinzﬂdx
LJo L
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= g.[Lx><1 1- co{zmj dx (sincesin® @ =£[1— cos26 1)
Lo 2 L 2

"Ll [roref

:%IOL xdx (the second integral is zero; can you show

it?)
_L_L

2L 2

This is to be expected. You can check this by logkip Fig. ...

The expectation value of the linear momentum iteste= 3 is (since the

operator fopis p= —ih%):
» . d
<X >= I_wqﬁ - (x)(— |h&j¢3(x)dx

In this caseg, is non-zero only between 0 and Hence, the integral
becomes

6r L1 3T X
02

=ih—| ~co 2—jdx(since
L L

sind cosd = %00520 )

L? L
:—th—Zx L sin(—Gﬂ Xj =0
L 6xrX L ),

(i)  The measured energy is equivalent to the gynstaten = 2, since

. . 22ﬂ2h2 n2ﬂ_2h2
we can write It as 5 = 5
2me 2me

principle, immediately after the measurement, feeteon will be

. Therefore, from the reduction
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found with probability 1 in the state = 2, that is with

: . 2 .2
eigenfunctiony, = 3 —sin—-.
(iv)  We can therefore write the wavefunction as

j7x
w(x,0) = ZC \/75|nT

Attimet >0,

w(xt) = Zc (0) sm LX g Ent/h

3.2 The Correspondence Principle

The correspondence principle states that as thetgpmanumbern
becomes large, quantum mechanics should approxirskssical
mechanics. For a new theory to be acceptable,st oanform to the well-
tested existing theories. In this vein, the spabiabry of relativity, which
Is important only when the velocities involved &ge, must conform to

Newtonian mechanics when the velocities involveslsanall day to day
values. As an instance of this law, we considerHlgdrogen atom as
treated by Bohr. The frequency of the radiationtedior absorbed in a
transition between statesandn' is,

1 1
Enn‘ = RE (F - F)
(3.4)

where R; is the Rydberg energy.

Now, classical mechanics predicts a continuoustspec while Bohr’s
theory gives rise to discrete lines. Let us takas being equal ta+1.
Then,

E, = RE(
(3.5)

! —LJ: R[(N+1)7? —n"?]

(n+1)? n?

Applying Binomial expansion,
R[(N+)?-n?]= R [n?-2n°+(Q@B)Nn* -...—n7?]
(3.6)

Hence,
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2
Enn' ~ _F RE

(3.7)

This tends to zero as tends to infinity. We conclude therefore, thahas
tends to infinity, the spectrum becomes continuass,predicted by
classical mechanics.

4.0 Conclusion

In this Unit, you have learnt about the postulateguantum mechanics,
which are the minimum requirements for quantum raags to work.

You learnt how to expand a given wavefunction fpagticle in terms of
the relevant eigenstates. Thereafter, you alsdogkhow how to get the
probability that the particle described by the wawnetion is in any

particular one of the possible eigenstates.

5.0 Summary

In this Unit, you learnt the following:

The postulates of quantum mechanics

How to expand a given wavefunction as a linear doatlon of
the possible orthonormal eigenstates?

How to recover the coefficient of each eigenstathe expansion?
How to calculate the probability that the systenmisany given
possible eigenstate?

How to find the (statistical) expectation value af physical
observable in any given eigenstate of the system?

o Learn the limit in which quantum mechanics shoubtform to
classical mechanics

6.0 Tutor-Marked Assignment

1. A particle of mass m is confined within a onexdnsional box of
length L /2, subject to a potential:

0,0<x<L/2
V(x) =

w0, elsewhere
If at t,, the wavefunction ig/(x) = Ax(L — x/2), i.e.,w(x,0) = Ax(L — x/2)
0] normalisey , and hence, determine the valuedof

(i)  write w(x,t) as a series, whete- 0.
(i) write an expression for the coefficients metseries.
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2. w(X) = Alax—x?) for | x|< a. Normalise the wavefunction and find
<X>, <x?> andAx.

3. A patrticle is confined within a one-dimensionagion0< x< L.

Attimet = 0, its wavefunction is given a{l— cos”TX}sin”TX.

0] Normalise the wavefunction.

(i)  Find the average energy of the system at tiree0 and at an
arbitrary timet,.

(i)  Find the average energy of the particle.

(iv)  Write the expression for the probability that theetjele is found
within 0<x<L/2?

4. A particle trapped in the well
V- {O, O<x<a

o0, elsewhere

is found to have a wavefunction
i 12 . (#7nX 2 . (37X 2 . (3xXx
—.[—SInf — [+ ,/— SIN — SN
2\Va a 3a a 16a a

(@) Ifthe energy is measured, what are the possibldtseand what is
the probability of obtaining each result?

(b)  What is the most probable energy for this particle?

(c) What is the average energy of the particle?

5. A patrticle in a one-dimensional b@x x<a is in state:

1 . zx A . 27X 3 . 37X
w(X) =——=sin—+

—SINn + SN
Jsa a +Ja a ea a

(@) Find A so thaty(x) is normalized. A 2/+/20
(b)  What are the possible results of measurementseoérlergy, and
what are the respective probabilities of obtaireagh result?

232
(c) The energy is measured and found to%gehT. What is the state
me

of the system immediately after measurement?
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7.0 References for further Studies
Textbooks:

1. Introduction to Quantum Mechanics, 2nd Edition &8M. Blinder.
Published 2021. ISBN 978-0-12-822310-9 DOI
https://doi.org/10.1016/C2019-0-04431-7

2. Quantum Mechanics: Concepts and Applicationsy—Nburedine

Zettili. 3rd Edition, 2022 ISBN: 978-1-118-30789&ailable at:
https://www.wiley.com/enae/Quantum+Mechanics%3A+€amis+and
+Applications%

3. Quantum Mechanics demystified by David McMal®&econd Edition,

2006.
https://theswissbay.ch/pdf/Gentoomen%20Library/Mbsanystified%?2
0Series/McGrawHill%20%20Quantum%20Mechanics%20D ¢ifre
%020%282006%29.pdf

Videos Links

https://youtu.be/o8LcfS RhCY
https://youtu.be/eOMt9z40B-Q
https://youtu.be/ppvk2hSYcG4

Solutions to Tutor Marked Assignment

1. A particle of mass m is confined within a onexdnsional box of
length L /2, subject to a potential:

0,0<x<sL/2
V(X) =
o, elsewhere

If at t,, the wavefunction ig/(x) = Ax(L — x/2), i.e.,w(x,0) = AX(L — x/2)
0] normalisey , and hence, determine the valuedof

(i)  write w(x,t) as a series, whete- 0.
(i)  write an expression for the coefficients metseries.

Solution
2 3 4 5 L/2
() az Lo X ax= A2 oLy
0 2 3 4

_ a2;5 I N L)
960

1 1 17 31
24 64 160
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Hence, A=\/962= \/155. The normalised wavefunction is
311 31
8 V15 X(L-x/2).
V31°
(i)  The allowed eigenfunctions for the well candexluced from those
of the well
0 |xkL
V(x) = | x|
©, elsewhere

by making a transformatiob — L /2.

Recall that for the latter well, (x) = [smm For the well at hand,
then, ¢, (x) = sin 27X \/7 2NTX _ sinznﬂx, and the
Li2 L
nzﬂ,zhz 2h2
energy eigenvalues afg, = — —— as against, = for the
2m(L /2) 2mL?

well of lengthL.

We can therefore Write the wavefunction as

w(x,0) = ZC Tsm 2)7 X

Attimet >0,
2j7 X LE, t/h

w(x,0) = Zc (O)Tsm e

wherec, (0)=(¢j,l//(x,0))=J'0L/2(\/2Esin2jl_ﬂx jgxu x/2)]
16\/_5]-L/2( _
L3J/317°

X x(L—x/2)jdx

_16/15 31 48415
TUVBL jr 4
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Details of the integration

We first carry out the integration

2
IOL/ZX(L— x/12) sinwxdx= LJ'Olexsinwxdx— IOL/ZX?sinwxdx. We shall later

make the identificationw:ZJT”. We shall evaluate these integrals

separately so that you can make use of them at stimee time, if need
be.

L/2 .
I, = IO xsinwxadx

Let x=u. Then,dx=du. Let sinwxdx=dv. Then,v= —lcoswx
w

Applying the formula for integration by parfsudv=uv- [ vdu,

L/2
X L pL/2
|, =——cosw +—I coswxdx
w 0 w0

L/2 L/2
X 1 .
|, =——cosw +—sinw
w

w 0 0
Li2x? .

I, :j —sinwxdx
o 2

L/i2 2 .
21, :J'O X~ sinwxdx

We have integrated2l,, so you would know how to integrate
I x* sinwxdx.
Let x*=u. Then, 2xdx=du. Let sinwxdx=dv. Then,
1
v=—wcoswx

Applying the formula for integration by parfsudv=uv- [ vdu,

L/2
X2 L2
2], =——cosw + 2.[0 X coswxdx
w

0

In the integral, letx=u. Then, dx=du. Let dv=coswxdx. Then,

1 .
V=—sInwx
W
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Applying the formula for integration by parfsudv=uv- [ vdu,

x? 2ol x Y21 e
2], =——cosw +— —sinw{ ——_[ sinwxdx
w o  W|w o w0
2 L/2 ol L/2 1 L/2
2], =——cosw +—| —sinw +—,cosw
w o  W|w 0 w 0
The integral we are interested iniss LI, -1, = LI, —%ZIZ.
Therefore,
L )<<L/2 L ><<L/2 % L2 of ><<L/2 1 L/27]
| =<——cosvx +—Ssinv. ——4——COSVX +—|—SinWX +—COosV
w o W o | 2| w . w o W o
L )<<L/2 L )<<L/2 2 L/2 111 )<<L/2 1 L/27)
| =<——Xcosvx +—Sinwv +9—COSVX ——|—XSINWX ——;COsV
w o W 0 2w . w o 2W 0

Putting in the limits,

| = —L{LCOSWE—OCOSO}+L2 sinwk—sino}
w| 2 2 w” | 2
) _
(L/2) COiWL O ~—~—cos0 —i Esinwk—Osino}—i[co&vk—coso}
2w 2 | 2w w2 2 W
L{L L} L { . L]
| ={——| —cosw— +— | sinw—
wi| 2 2| w 2
(L/2)? L 1L . L 1 L
+9| —=——CoSW—_ || -—| —sinw— |- ——|cosw_ -1
2w 2 w| 2 2| 2w 2
But W=2J—ﬂ, orwL=2jr

(L/

2)2

I ={—\I/_VI:I£COQJ-7Z':|+\AI;2[S“’QJ-7Z']}+{|:
| ={_V£v{;cosz,4+o}+{< L g

82

. 1L . . 1 .
w COQJ7ZZ|—\N2|:28IYQJ7{|—2V\P[COQJ7T—1]}

|- }



MODULE 2 PHY 309
I CCa R R
w| 2 2w w w

S S B B S S
2jr 2 22jr) | djz 16jx jm

2. w(X) = Alax—x?) for | x|< a. Normalise the wavefunction and find
<X>, <x?> andAx.

Solution
j_aaz//* (X (X)dx = j A?(ax— x?)2dx

= 2I:A2(ax— x?)?dx, since the integrand is an even function, and

the limit of integration is from ato a.
2_[0aA2(ax— x?)?dx = 2A2J.a(a2x2 +x* — 2ax®)dx

5
_2A2(a2a a——2a—) 2a Az(l E—lj
3 5 3 5 2
=2a5A210+—6_15=2a5A2i=1
30
30/2a°

0 I_aax(ax— x?)2dx =0, since the

2a°

30
< X>=
2a5 _

integrand is an odd function.
0 (a
. 0xz(ax— x?)?dx=0,

< X% >=

since the integrand is an even function.

30 60
20 )o

x Z(ax—x?)?dx= — 5 x*(a®x® + x* — 2ax®)dx
a’

=30a° jo(a2x4 +x° — 2ax®)dx

30 1 1 1 ,21+15-35 30a* 2a’
==a’ Z-Z|=30a = =
a 5 7 105 105 7

2
AX:\/<XZ>_<X>2:\/2a —-0% = \/Zi= Z
7 7 7

3. A particle is confined within a one-dimensioregion0< x< L.
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At timet = 0, its wavefunction is given a{l cosT} sm”TX

0] Normalise the wavefunction.
(v) Find the average energy of the system at tiree0 and at an
arbitrary timet,.

(vi) Find the average energy of the particle.
(vii)  Write the expression for the probability that theetjele is found
within 0<x<L/27?

Solution

2
I Az{l— cos”TX} sin® ”Txdx= 1

or Azj sin? =X 4 sin2 "X co2 X _2c0s™ X sin? TX lax=1
L L L L L

But sin? 2% =1-cog? ZX = 1[1— cos@]
L L 2 L

AZIL 1 [1—00522(] +}[1—coszix] x}[1+coszﬂ]—200572( x}[l—coszix] x=1
02 L™ 2 L™ 2 L L 2 L

AZIL 1 [1—coszix] /A [1—coszix] X [1+coszix]—200572( x}[l—coszix] x=1
0\ 2 L™ 2 L™ 2 L L 2 L

= AZJ‘L E—ECOS@ 1 [1_ 27[ X] _ COS”X + COS” XCOSZﬂ'X dx

= A2J'L|:E—1COS@ 1[1__{1 COS@}] COS”X+CosﬂXc052” x} dx
012 2 L 1 i 1

= Azj-LF_Ecos@Jr[l_l 034_}] —cos X+COS”XC052”X:|dx
o2 2 L 8 8 L L 1 L

Now, cosacosb = %[cos@w b) + cos@ - b)]. Hence,

X 27x 1 37 X X ,
cosTcost— CoS + COS ik sincecos(-x) = cosx

We can now integrate
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AZ

1 1 27zx 1 1 4r zx 1] 37x 7 X

I ———C0S——+ [———cos—}] 0S— +—| cos + COS dx
ol2 2 L 8 8 L 2 L L

Jx L . 2rx x L . 4rx L. ax L . 3rx L . #2x]
Al = ——sin—=+ = ———sin—= ——sin~—~ +—sin—= + —sin~—~
2 4r L 8 32r L T L or L 27 L o

The normalized wavefunction g (1— cos”Tstin”TX

(i)  We know that the allowable solutions are ofethHorm

2 nz
Vo =11 —sin —— 3 Xland the energy eigenvalues are (from equation

3.2, Module 3, Unit 1)
2h2
E, = ,n=1,2,3,
2mL?

Any wave functiony (x,t) can be expressed in, as

p(xt) =D A 0w, (x0)

where
A® = A ©0) exr{— 'Eh“tj
In this case,
w(x,0) = \/7(1 cos—Jsm—
\/78 ___\/7 27 x
we have,

2 1
== = -0 forn=1, 2.
A (0) N A, (0) 3 A (0)=0 forn=1,
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(xt,) = 8 _iz’nt, ____ _iznt )
VAR L) =451 2mL2 \/ mL2

(i)  The average energy of the system is

<E>=Y <y, [Ely, >

=3 A 0)E,

4_ 1
=—E +—E
57 20 °°
_A4xtnt 1 4xtht _172x°h° _17x°n’
52mz® 20 2me?2 20 m&®  10mé’

(iv)  The probability of finding the particle withid<x<L/2 is
2
IL/2|1// ? dx=J'Li(1— cos” 2 X) sin? 2% dx
0 0 5L L L

4. A particle trapped in the well
V- {0, O<x<a

|, elsewhere

is found to have a wavefunction
i |12 . (7X 2 . (3rx 2 . (3xx
—.—SInf — [+ ,/— SIN — SN
2\Va a 3a a 16a a

(d) Ifthe energy is measured, what are the possikldteeand what is
the probability of obtaining each result?

(e) What is the most probable energy for this particle?

() What is the average energy of the particle?

Solution

(@) The allowable wavefunctions are of the fO{/n:3|nLX Hence
a

the expansion in terms of these eigenfunctions is,
i—sin¢ +isin¢ —E\/zsinﬂ
27" 37 "% 2Va a

The possible results of the measurement of theygraae:
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nh°r
E, = ,withn=1,2,3
2mc

Respectively, the possible results are:
h 7l 22h27r2 2h%m 2 3?2 9nir?
E, = By = 2 s By = 2 2
2me? 2me me 2me 2me

Sincec, =i /2, ¢, =1/4/2, ¢, = 1/4, the probability, respectively, that the

particle wiII be found in these statens=( 1,2, 3):
-i 1

¢ P==x—==,]c =
||224|2|\/—\/—2|3|

(Lo
2 4

N|H

2_2
(b) The most probable energy of the particIeE§=22h—”2, with
me
probability% .
3
I:)iEi 3
(c) The average energy of the particle PE, , since the
Pi i=1
i=1

3
wavefunctiony is normalized, so thaz =1.

i=1

Hence, the average energy of the particle IS

1n’z® 120°2° 19n°z° _1h’z° 8n'z* 9n’z® 9z’

42me® 2 m&  42me 8me | 8me 8 ma  ame

5. A patrticle in a one-dimensional b@x x<a is in state:
1 . zx A . 2zx 3 . 3rX

w(X) = ——=sin— +—sin +

sin
Vsa© a Ja a Jea a

(d)  Find A so thaty(x) is normalized. A =/+/20
(e) What are the possible results of measurementseoérlergy, and
what are the respective probabilities of obtaireagh result?
2 2
) The energy is measured and found tog—)ge— What is the state

of the system immediately after measurement?
Solution

We first puty in the form of the allowable eigenfunctions:

7zX A . 27X 3 . 37X
Sin

1
X) = —Sin— +— + Sin
v Ja ' a vaa Jea & a
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\/5\/73|nﬂx \/_\/73|n2”x \/_\/73|n@
\/—\/73|nﬂx \/_\/73|n27;X 2\/_\/73|nm

:E% +E¢z +2—\/5¢3

For y to be normalized,
v (¥),w(x) =1

1 A 3 1 A 3
or (E¢l +E¢2 +2—\/€¢3|E¢1 +E¢2 +m¢3j =1

=
1 A> 9
—t—+—=
10 2 24
or A2 _2(1_i_ij_2(120—45—12j_§3
24 10 120 60

Hence,A=1/@
60

The normalisedy is therefore,

_i¢+ E¢ +i¢
ml 12022\/€3

The possible values of the energy are:

2__2 2__2
El_hﬂ E_2h72'2 ,E3=9h72'2’
2me® me 2me
- . - ,_ 63 9
and the probabilities, respectively, arg|*= | c, |’= Toc" e, P =22

97r2h2 327r2h2
2me? - 2me?

(d)  Then, the energ so thanh = 3. The state of the

(e) system immediately after the measuremer{/%ssm%x

X A . 27X 3 . 37X
Sin

1 .
X) =—SIN—+4+— + Sin
v Jsa a 4a a +/6a a

(g) Find A so thaty(x) is normalized. A =1/+/20

(h)  What are the possible results of measurementseoértiergy, and
what are the respective probabilities of obtaireagh result?
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232
0] The energy is measured and found to%gehT. What is the state
me

of the system immediately after measurement?
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MODULE 3 TIME-INDEPENDENT SCHROEDINGER
EQUATION IN ONE DIMENSION |

Unit 1 Bound States
Unit 2 Scattering States

Unit 1: Bound States

1.1  Introduction
1.2 Objectives
1.3 Main Content
1.3.1 Bound States
1.3.2 Particle in an Infinite Potential Well
1.3.3 Particle in a Finite Potential Well
1.4 Conclusion
1.5 Summary
1.6  Tutor-Marked Assignment (TMA)
1.7 References/Further Readings

1.1 Introduction

In Module 2, Unit 1, we were able to review thedegquacies of classical
mechanics, and the need to evolve a wave desceripfi@ particle. In
Module 2, Unit 2, we derived the differential eqaatthat describes the
wavefunction associated with a particle. We haws heen provided the
tool needed to describe the quantum-mechanicalndigseof a particle.

We shall take a look at the particle in differeypes of wells, and then
compare our results with those of classical medsani

1.2 Objectives

By the end of this Unit, the student should be &ivle

Explain what is meant by bound states

Sketch the infinite potential well

Write and solve the Schroedinger equation fornffieite potential
well

. Apply the necessary boundary conditions to obthendondition
for bound states.

3.1 Bound States

You would recall that a body in simple harmonic imotbounces back
and forth between the two points where the totallhmaical energg, of
the body is equal to the potential energy. As tinetic energy becomes
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zero, the body must turn back. In just the same,veayguantum-
mechanical oscillator is a particle inside an i@mpotential well. You
shall see that indeed, the solutions will be sirdapjust the way it is
with a harmonic oscillator. Such a state is an gtarof a bound state.
More specifically, we shall say a system is in armbstate if E <V (-»)

. As such the wavefunction involved must die anity, that is,y (x) — 0
asx - two. E>V(-w)or/andE >V (+») Is called a scattering state.

Another way of seeing a bound state is to sayttieaparticle is subjected
to an attracting potential.

For a bound state, the following conditions apply:

o w IS continuous across the boundary
o The first derivativey ', is continuous across the boundary

3.2 Particlein an infinite potential well

This is also callea@ particle in a box. Fig. 1.1 illustrates a particle in an
infinite potential well.

Fig. 1.1: The infinite square well potential comfig a particle to a region
of width L

Inside the well, the potential is zero. Outside Well, the potential is
infinite. We expect that the wavefunction outside well will be zero.

. Q% 2m
We recall Schroedinger equat|%n7+F(E—V)z// =0.
X

WhenV =0,

d’» 2m

+—Ey=0
ax a7
(1.1)
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which we can write as
2

d
dT‘/Z’JrkZ(//:o

(1.2)

The general solution of this equation is,
p(X) =c,e"™ +c,e™
(1.3)

wherec, andc, are constants to be determined, subject to thadaoy

conditions andi =+/~1. (In the case of the infinite potential well, the
condition of continuity of the first differentiakiredundant, and you
should know why.)

Since

0] w(x)=0 forx=0
l//(O) — CleikO + Cze_iko _ 0
= c,+¢,=0 = =-C,=C
= y(x)=ce™ -e™) = Asinkx,
where A= 2ic.

(i) w(x)=0for x=L
AsinkL=0= kL =nz, wheren=0, 1, 2, ...

It follows that the values dt are quantised, such thlq;:nT”.
n’k,  n?h?
Thus, the corresponding energy = —"-=——, and the
2m  8mL
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wavefunction corresponding to this energy/jgx) = A, sinnTm( :

N
g N
N

RN

X=0

Fig. 1.2: The lowest three wavefunctions (for 1, 2 and 3) in the infinite
square well potential.

Notice that the energy increases wittasn?, i.e., forn=1, 2, 3, ...,E
= E,, 4E,, 9E,, ...

E, is the energy of the ground state<(1) andE, = 4E, is the energy of
the first excited staten(= 2).
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PHY 309
| _ n=3
n=2
n=1
X=0

T

Fig. 3.3: The probability of finding a particle d@ifferent values ofx for
the energy levelsa= 1, 2 and 3 in the infinite square well potential.

A,, called the normalisation constant is obtained dpplying the

normalisation condition:
J'_ () dx=1

(1.4)
le.,

AIZJALsinZ%dx:l
0 L
(1.5)
or A’ ><1 =1,
2

from which it follows that,

2
A
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We can therefore write
t//n(x):\/%sinnTﬂX for0<x<L:n=1,23, ..
(1.6)

You can now see that the eigenstates we dealt saitextensively in
Module 2, Units 2 and 3 are the eigenstates alltevaiside an infinite
potential well.

You would also notice that very much like harmoaszillation in the
classical case, the allowable wavefunctions anassiiaal.

Example

Let the total wavefunction of the particle in thetgntial well above be
¥ = Dx. Where D is a normalisation constant. Find the probabilist
the particle is in state 0, 1, 2 and 5.

The first thing to do is to normalise the wavefuos y (x), which we
have done. Next, we normalige.

L 2t 2
J.Dxdx: DX— =DL_:1
0 2 o 2

Therefore,D = L—ZZ , Implying that

Then, the total wavefunction can be expanded asearl combination of
the set of wavefunctiong, (x), as

0

Y) =D Ca(¥)

n=1

(1.8)
.. 2 nzx 2
The coefficientc, = (v,,,\V) =( L COST’?X]
12 2t nzx
= —x—zj XCcos—— dx
L 0 L
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Integrating by parts,

[2 2 L . nx|" (‘L . nm
C, =4~ X—|| X—sin— | —| ——sin—-dx
L L nz L |, Jonmx L

Could you comment on this result? The probabilitfirading the particle
In a particular eigenstate reducesnascreases. Thus, it is more likely
that you find the particle in a lower eigenstatantiin a higher one. You
may also compare this expression with that of tlgdrdgen atom
according to Bohr. Can you write an expressionthar probability of
finding the particle in state?

3.3 TheFinite Potential Well

In the last section, we dealt with the case ohdinite potential well, with
the resulting wavefunctions being zero at the baued. In the case of a
finite potential well, the wavefunctions “spill avento the region outside
the potential well. Let us see how.

—V,
E
Region | Region Il | Region llI
V=0
x=-L/2 x=L/2

Fig. 1.3: The finite potential well of depth and widthL . WhenE <V,

, & particle in the potential is said to be bouddmpared to the infinite
potential well, it is more convenient to take tlemire of the well ax =
0.

96



MODULE 3 PHY 309

Solutions:
2
Region I %—wz”+2;n2Ez//”:O, which can be written (where
X
k?=2mE/h*) as
d2
d)lijzll +k*y, =0
(1.10)

The solution can be written in the form:
v, = Asinkx+ Bcoskx
(1.11)

This consists of an odd and an even solution.

We first consider the even solutiop;, = Bcoskx

|: dzl/jl _2m(VO_E)
dx? h?

a’ :2m(\/O—E)/h2

as

d%y
dle ey =

Region w, =0, which can be written (where

The solution can be written in the form:
v, =Ce™ + De™
(1.13)

However, we cannot allow an exponentially growiagm; so we seD
equal to zero.

p, =Ce™
(1.14)
2 —
Region IlI: d l/fz”' - 2m(\/02 E) v, =0, which can be written as
dx h
d2
dxl//;” _azl//m =0
(1.15)

The solution can be written in the form:
w, =Fe™+Ge™
(1.16)
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However, we cannot allow an exponentially growiagm; so we sefF
equal to zero.
w,, =Ce® (why C again?)
(1.17)

The solutionsy anddy /dx in the three regions can be written as:

Region | Region I Region I
W Ce™ B coskx Ce ™™
y' o Ce™ —kBsinkx —a Ce™

At x=+L/2, bothy andy' are continuous. Thus, at=L/2, we have

Bcosk?l' =Ce /2

(1.18)

and

kBsink—zL =q Ce™/?

(1.19)

Dividing one by the other, we get:
kL «
tan— =—
2 kK

(1.20)

This is the equation that determines the valuds afhd hence the energy
E for even parity solutions.

For the odd parity solutions,

Region | Region I Region I
W Ce™ Asinkx -Ce ™™
y' o Ce™ KAcoskx a Ce™

At x=+L/2, bothy andy' are continuous. Thus, at=L/2, we have

Asink—zL =_—Ce“/?

(1.21)
and
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kAcosk—zL =q Ce™'?
(1.22)
Dividing one by the other, we get:
kL o
cot—=——
2 k
(1.23)

This is the equation that determines the valuds afhd hence the energy
E for odd parity solutions.

Observation:

Notice that unlike the classical case in which pirebability of finding
the particle outside the well is zero, in the quamimechanical case, the
probability of finding the particle outside the Wwisl not zero. It is finite
within a finite distance from the bounds of the weVen though it tends
to zero ax becomes large, since the solutions decreases expailfy.

You can also see that if the region of finite patdns finite, there is a
possibility of finding the particle outside the lmlaries of the finite
potential. Ordinarily, though, the two wells shogigde bound states, as
the solutions for even the finite potential muse dis x increases.
Ordinarily, that is, provided the extents of thetguaial V, is large

enough.
40 Concluson

In this Unit, you have learnt how to deal with ihé&nite potential well
as well as the finite potential well, the lattertire case where the total
kinetic energ)E is less than the height of the potential well. Tifenite
potential well definitely gives bound states, amel probability of finding
the particle outside the well is zero. In both sadmund states exist,
except in the finite case, if the potential is tiotk enough.

50 Summary

You have learnt in this Unit:

o What is meant by a bound state, and what kind ¢¢mg@l can
give rise to it.

o How to solve the time-independent Schroedinger &guéor both
the finite and the infinite potential well.
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o How to apply the appropriate boundary conditionsnder to get
the conditions for bound states.

6.0 Tutor-Marked Assignment (TMA)

What are the allowable eigenfunctions and energgreialues of the
infinite potential well?

0 -L<x<L
V(X) =
o0, elsewhere

7.0 Referencesfor further Studies
Textbooks

1. Quantum Mechanics: Concepts and Applicationsy—Nburedine
Zettili. 3rd Edition.

https://www.wiley.com/enae/Quantum+Mechanics%3A+€amis+and
+Applications%

2. Quantum Mechanics demystified by David McMalteecond Edition,
2006.
https://theswissbay.ch/pdf/Gentoomen%20Library/¥Mismysti
fied%20Series/McGra-Hill%20-
%20Quantum%20Mechanics%20Demystified%20%282006%29.

pdf

Video Links

https://youtu.be/sPZWitZ8vtlw
https://youtu.be/Dt VKsSggAo

Solution Tutor Marked Assignment

What are the allowable eigenfunctions and energgreialues of the
infinite potential well?

0 -L<x<L
V(X) =
oo, elsewhere
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Solution

potential well.

Fig. 3.1: The infinite square well potential comfig a particle to a region
of width L

Inside the well, the potential is zero. Outside Well, the potential is
infinite. We expect that the wavefunction outside well will be zero.

. Q% 2m
We recall Schroedinger equat|%n7+h—2(E -V)y =0.
X
WhenV = 0,
2

d_l/2/+@ — O

dx h

(1.1)
which we can write as

d’w .

——+k“w=0

dx? v

(1.2)

The general solution of this equation is
w(X) = Acoskx + Bsinkx

(1.3)

where A and B are constants to be determined, subject to thadaoy
conditions.

Since
w(x)=0 for x=-L
w(—L) = Acos(kL) + Bsin(—kL)
AcoskL — BsinkL =0
(i)

w(x)=0forx=L
AcoskL + BsinkL =0 (ii)
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Adding (i) and (ii)

AcoskL =0

For this to be satisfied,
nxz
K=—>,forn=1,2, .. (iii)

Therefore,
= Acosn—ﬂx =
4 oL , =12, ..
(iv)
These solutions are the even-parity solutiong/ @ = (-X) .

The allowable energies are then given by

2mE
k? = y;

or

2

nz 2

21,2 (jh
Ezhk _ 2L

"o2m 2m

Pz’
"o8mL?

(ii) — (i):

BsinkL =0

In this case,

kL=n7 forn=1, 2, ...

k=27
L

Hence, for the odd-parity solution,

w(X) = Bsinm
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The allowable energies are then given by
K2 2mE

2

nz 2

21,2 (jh
ek _(L

n= =

2m 2m
n2ﬂ,2h2
T E

or

We normalise the odd-parity solution.
(v,w)=A I_LSIn o dx
= AZIL L1 cos?X |ax
L2 L

L
_1 Az{x+—|‘ sin 2nm X}
-L

2 2Nz L

=%A2[L—(—L)]=A2L=1

Hence, the normalisation constant is

1
A=—
JL
The odd parity solution is
1 . nzX
(X)=—=sin——,n=1, 2, ...
() =sinTp
You can also show that the even parity solution is
(x)—icosm n=1,2
l// \/I 2|_ 1 ’ 3 v
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UNIT 2 Scattering States

Contents

2.1 Introduction
2.2  Objectives
2.3  Main Content
2.3.1 The Potential Step
2.3.2 The Potential Barrier
2.4  Conclusion
2.5 Summary
2.6  Tutor-Marked Assignment (TMA)
2.7 References/Further Readings

2.1 Introduction

In Unit 1, we discussed the infinite and the firpigtential wells. In this
Unit, we shall consider two cases: the potentiep sind the potential
barrier for the case where the energy of the parig less than the
potential and when it is higher. These are theegag cases, as we have
mentioned in Unit 1. Rather than bound states, ni@eancerned in these
cases with reflection and transmission coefficieltst again, we shall
compare our results with those of the equivalesdsital case.

2.2 Objectives

By the end of this Unit, the student should be &ile

Write the Schroedinger equations for the scattestates
Solve the appropriate Schroedinger equations

Apply the boundary conditions
Obtain the reflection and the transmission coedhts

2.3 ThePotential Step
We have investigated the case of the infinite &edinite potential well.

What happens when a particle approaches a ‘bumgobéntial as
indicated in Fig. 2.1 with enerdy?
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Fig. 2.1

We can write this potential as

0, x<0
V =
Vy, x>0

Let us consider the two possibilitieg:>V, and E <V,. The former is

such that the energy of the incident particle ghkr than the potential
step. Classically, the particle will pass the pt&rstep and move on to
the right, pask = 0. In the cas& <V,, classical mechanics predicts that

the particle will be reflected to the left at- 0. We now take these cases
one at a time.

Casel: E>V,

Then, Schroedinger equation fek 0 is

2
%+ Z;EE w, =0, the subscript denoting the region to the left o=
X
0.
The solution to this equation is of the form:
w, = Ae"™ +Be™ 2.1
(2.1) (2.1)

where

k:,/z;:;E 2.2

For the region to the right af= 0,

2 —
d z//zR N 2m(E2 V,) =0
dx h 2.3

and we can write the solution as
x = Ce'** + De™'** 2.4

where

o = /Zm(iz—vo) 25

105



PHY 309 QUANTUM MECHANICSI

From our knowledge of classical mechanics, we waxdect perfect
reflection at the barrier. We can take the incideave as beingpe™ for

x <0 from the left andDe'** for x>0 from the right, since the latter
originated from the potential step and is travelibg the left.
Experimentally, we should have a source to only ©ide of the step. If
we assume that the incident wave is from the teén we have to s&

= 0. In that cas@8e ™ is the wave reflected at= 0 andCe*is the wave
transmitted ak = 0. We can now write the following:

Vi = AE™ 2.6
()
v,y = Be™ 2.7
()
l//trans = Ceiax 2'8
()

Now we match these solutions xat= 0, that is, bothy, and ' are
continuous at this point.

w o Ae*00 4 Bg KO0 = Cgl* (=0 = A+B=C 2.9

' IKAGKO _ikBe k00 —jg Ce) = ikA—ikB=iaC
2.10

From equation 2.1(A-B)=aC 211
()
Putting equation 2.9 in equation 2.11,
k(A-B)=a(A+B) 2.12
()
Hence,
KA—-kB=a A+aB 2.13
or
(k-a)A=(k+a)B 2.14
()
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We conclude, therefore, that

B=[::ZJA 2.15
()

and

C=A

+k—aA: kA+aA+kA—aA=( 2k JA 216
kK+a k+a

()

Since the flux intensity is proportional to the gwot of the velocity and
the probability, we make the following identificarti:

K+a

Incident flux is proportional tw,R, .
Reflected flux is proportional te,P,,

Transmitted flux is proportional te,P

rans

Pre = Vin/ine = (AE) * (A*) = A A < AP 2,17
Similarly,
P, =|BF 2.18
()
and
Prans =IC [ 219
()

The transmission coefficient is

2
: 2 VZ(ZKJ |AF
1 transmittdlux _ VR _ V2 ICI° _ “lk+a

— = = > 5 2.20
incidentflux ViP. Vv |A] v, | Al
Hence,
UL 2.21
v, (K+a)? '
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The reflection coefficient is,

(k‘“f||2

v,P 2\ k+a

R refl.ectedlux _ ViR« =|B|2 _\k+a : 2 22
incidenfflux  vP. |A] | Al

or

(k=)
(k +a)?

1
K= [2mE /Zmimvl _my
n n h 2.24
1
~ 2m—v,
g [BEN) - 2® ™ 505
h h h
kK_v 2

.26

2.23

a v,
Adding,
R+T:(k_a)2 v, 4k® :(k—a)2+a 4&* (k-a)? 4kor

k+a)? v (k+a) (kra) KK+a) (kta)  (K+a)

2 2 2 2
:k +a —2k052+4ka:k2+a2+2ka:1 297
(k+ @) k*+a” + 2ka

implying the conservation of particles acrass 0.

Note: Sincek #«, R=0. This implies that even particles with>V,

could be reflected. Classical mechanics predietsadh the particles with
energyE >V, cross the poink =0 into a region of finite potential,, no

particle should be reflected. They should onlylbeved down, as part of
their energy has been used to overcome the pdtertia indeed is why
your simple pendulum slows down as it approachegian wheree =V,

, and then changes direction as soon as it geftetpointE =V,. That is
why it oscillates between the two positions whee-V,. Thus in
classical mechanics no particle with energy gredéten V, will be

reflected, andR would have been zero. In the limiting case wherées
just slightly greater thaxt,, k is almost the same asandR will be close

to zero, meaning that only a very small number aftiples will be
reflected. The fact that some particles are rede@ven where >V, is
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due to the fact that particles have a wave natwe.would expect part
of a wave to be reflected at such a point, woulglaii?

Case2: E<V,
Equations 2.1 and 2.2 remain unchanged.
Then, Schroedinger equation fRk 0 is

d’w, 2mE
+ —_
dx>  &®

v, =0 2.28

the subscripL denoting the region to the left &= 0.
The solution to this equation is of the form:
x = Ae*™ +Be™ 2.29 (

where

k=, |2ME 2.30
h

For the region to the right af= 0,

dzl//R _2m(\/O_E)l// _O

dx’ h’ " 2.31

and we can write the solution as
X =Ce’* + De #* 2.32

where

B = /% 233

In this case, we have to set=0 as we do not want solutions that grow
exponentially as they cannot be normalised.

In this case,

.. = A 2.34
()
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W =Be™ 2.35
()

P 2.36
()

Now we match these solutions xat= 0, that is, bothyy and ' are
continuous at this point.

w AU 4 Be k(=0 — pge(=0) = A+B=D 2.37
w' kA =9 —ikBe ¥ = _p De /™0 = ikA-ikB=-pD  2.38

From equation 2.38,

k(A-B)=igD (asl/i=-i) 2.39
()

Putting equation 2.37 in equation 2.39,
k(A-B)=ig (A+B) 2.40

()
Hence,
kKA-kB=iBA+iBB 2.41
or
(k—iB)A=(k+iB)B 2.42

()
We conclude, therefore, that
B=(k__iﬂJA 2.43

K+ip

()

and
D:A+k—!/3A: kA+|,BA+_kA—|,BA:( 2k_ jA 2 44
k+ip k+if k+ip

Since the flux intensity is proportional to the gwot of the velocity and
the probability, we make the following identificarti:

P =l AF 2.45 (

110



MODULE 3 PHY 309

P, =|BF 2.46
and
Prans =I D 2.47

The reflection coefficient is,

k—ip 2| AP
_reflectedlux _ViRy |BF |k+ip
incidenflux  vP._. |AF | AP

inc

2.48

or
Rolk=iB F _ (k=ip)* (k=ip) _(k+ip)K=1f) 1 5 4q
k+iB F (+ip)* (k+18)  (K=iB)Kk+ip)

Thus, all the incident particles are reflected. ldwer, the probability of
finding the particle at a point&>0 is

|De”*P=| D [ e¥* 2.50

This is finite for finite x. In the classical situation, the particles are
definitely reflected atx=0. That is also what ‘common sense’ would
predict. But the fact that particles behave alke Waves necessitates that
‘some of the wave’ would be found beyoré: 0. However, note that the
probability decays exponentially, so that the pholig is finite only if
the distancex>0 is. If V, >> E, then g is very large, meaning that the

decay of the probability will be much faster. e ixtreme, limiting, case,
whereV, tends to infinity, there is perfect reflectiontla¢ barrier, just as

you had it for the infinite potential well.
3.2 ThePotential Barrier
We have seen both the finite and the infinite puaémwell, as well as the

potential step. Now, what happens if the poteigiattually a rectangular
barrier of heightv,of width a as shown in Fig. 2.2.

Fig. 2.2: The potential barrier
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We identify three regions, one to the lefbof 0 (region 1), betweenx=0

and x=a (region Il), and beyond=a (region lIlI).

More compactly, we would write this as

0, x<0
V=4V,,0<x<a
0, x>a
Region I:
d2w+@ —0
o
d% 2m
dxl/Z/Jr?(E_VO)l//=O
3.2

The solutions are,

w, = A€ + Be™

w, =Ce“*+ De'*"

w, = E6* + Fe™

wherek=1/2n;E ,anda = w
h h

Bear in mind that ifE <V,, we can writex =i, where

_ [2mv,-B)
ﬂ_ hz

Matching the solutiong/, andy, at x=0,

v, 0) =y, (0)

d
ax ¥,

_4d
- dXWl

v, (@ =y, (a)

x=0

= A+B=C+D

— ik(A-B) =i« (C-D)

— Ce“* + De*® = Ee*

3.1

3.3

3.4

3.5

3.6

3.7

3.8
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d
dx

d

:&l//m

W, =ia Cé*®—iaDe'“* =ikE€"® 3.9

X=a X=a

Multiplying equation 3.6 byk, we obtain

ikA+ikB =ikC +ikD 3.10

Adding equations 3.7 and 3.10,

2ikA=ikC +ikD+ia C—iaD=i(k+a)C+i(k-a)D 3.11

Hence,

p-Kra o koap 3.12
2k 2k

Multiply equation 3.8 byi¢ and add to equation 3.9.
2ic Cé“? =i E€"® +ikEE" =i (o + k) E€™®
or

= a2_+k Eg(k-»a 3.13
o

C

We can also gdd as follows:
Multiplying equation 3.8 by-ia and adding to equation 3.9.
—2iaDe? =i(k - ) E€"® 3.14

D :az—_kEei(km)a 3.15
a

Putting equations 3.13 and 3.14 into equation 3vE2¢onclude that,

=k+0{ a+kEi(k—a)a+k_aa_kEi(k+‘7‘)a 3.16
2k 2a 2k 2a
Therefore,

A _ (k +a) g(k-ma _ (k-a)? gl(k+ma

E Akor Akor 3.17
or

é: (k+a) g(k-ma _ (k-a)? gl(k+ma 318
E Ak Akor
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We have assumed thaf < E, and this resulted in some wave being
transmitted beyond the poixt= 0.

ForV,>E, « =i, meaning that, from equation 3.18,

é (k+|ﬂ) d(k-(Ma _ (k- 'ﬂ) gl (k+(ip)a 3.19

E  4ikp 4ikp

_ (k+ip)? glik+fa _ (k- 'ﬂ) glik-pa 3.20
4ikp 4ikp '

— (k+|18 )2 eikaepa (k Iﬂ) elkae 3.21
4ikp 4ikp |

— ﬂ ; 2. 8a _ (1, i 2n-Ba

s (krip e~ (c-ip Ye ] 3.22

But (k +iB)2 =k?— B %+ 2k, and (k—iB)2 =k? + § - 2ikp  3.23

Hence, ify k*— B %+ 2ik3, theny* =k* — g >- 2ikp

2 a 2 2_ pa
E 4kﬂ[(k _ B 2+ 2kB) — (K2 + B - 2ikp)e e 3.24

(ﬁj* €7 [k p 2 akp) - (<2 + % 2kp)e ]

E) -4ikp 3.25
Hence, ify =k® - g 2+ 2ikg , theny* =k — B >~ 2ikp 3.26
A €@ _

A_ o xgha 3.27
* —|ka
2] e
E) —4ikp 3.28
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Multiplying equations 3.27 and 3.28,

(B8] - sageber v embbron o] a2
16kﬂ — e - -+ 1y Ee?] 330
| | (ezﬂa —Z,Ba) [( ) +( *) ]
16kﬂ [}/ ’ ’ ] 3.31

y2= (K2 = B %+ 2ikB)2 = K* + B “— 4Kk 2= 2K2B 2~ 4ikpB >+ 4ik2S
3.32

(7*) 2= (K> = B *-2ikB)* = k* + B "~ 4K*B >~ 2K* B >+ 4ikp >~ 4ik*p
3.33

72 (*)? = 2k* —12k°B %+ 2 *=

2(k* - 2k*B = 4K*B >+ B %)

= 2k = 2K?B %+ B ) - 8K 2

= 2(K*= B 2> —8K*B 3.34

|y P=yy*= (K= B *+2KkB)(K* - p *~2kB) = (K" -  *)*
3.35

since| z['= (Rez)* for any complex number.

Hence,

é é*z 1 2 _ 2\2(,2P3a -2pay _ 2 _ AV 2 2
(E](E] Toap 7A@ e~ 2K - p Y -8 7

— 1 2 2(
o [2(k -4

e?ha | —Zﬂa)
2

2(k2 _ﬁ 2)2 +8k2ﬁ 2:|

_ (kz—ﬂ 2)2 (eZﬂa+e—2ﬂa) _1+ 4k2ﬂ 2
16k?B 2 2 (K= ?)?
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_ (kz—ﬂ 2)2

L B
Ik {cosheﬁa) 1+ 2}

(k*-5%) 3.36

But

e’ +e? |e+e’ 2+ e
2 2 2

or
cosh@é) = coslt 8 +sinh? @

But, we also know that

e’ +e”’ 2_ e’ -e”’ 2_e29+e‘2‘9+2_e29+e‘29—2_1
2 2 4 4

or
coslf @ —sinh’9 =1
cosh26 = coslt 6 + sinh? @ =1+ sinhé + sinh@ =1+ sinh? & or
cosh26 —1=sinh?6..

Therefore,

(_AJ(_AJ* LD sintt(pay+ R
E E 8k2ﬂ 2 (k2 _ﬂ 2)2
(K-8

BT ~——1_* sinh (ﬁa)+ 37

The transmission coefficient is,

2 1

K*-p%? 1
8 ? S|nh2(,8a)+

T -
A

3.38

As you can see, the transmission coefficient iszepb as predicted by
classical physics for a particle with energy Idemtthe potential barrier.
This is what is called tunnelling, as the particées effectively tunnelled
through the barrier.

. Write the Schroedinger equations for the scattestates
. Solve the appropriate Schroedinger equations
. Apply the boundary conditions
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. Obtain the reflection and the transmission coedfits
4.0 Conclusion

You have learnt how to solve the potential stefblemm as well as the
potential barrier in this Unit. We obtained the leetion and the

transmission coefficients in each case. For themi@t step, you noticed
that unless the step is much higher than the no¢ghanical energy of the
particle, a part of the wave is found beyond thiafeo= 0. In the case of
the potential barrier, you also observed that therthe possibility of

finding the particle beyond = 0 unlessv/, —» «. In the latter case, there

Is perfect reflection at the poirt= 0. The fact that a part of the particle
is found beyona = 0 is due to the wave nature of the particlehincase
of the potential barrier, if the barrier is thinoeigh, the particle can tunnel
through it. However, we noticed that, unlike thassical case in which
the particle is only slowed down, provided the ltatachanical energy is
greater than the potential step in each case, sbthe particle is reflected
at the pointx = 0.

5.0 Summary

You learnt in this Unit that:

ForE >V,:

o In both kinds of potential, a part of the partidereflected, quite
unlike the classical prediction that the partid@w@d only slow
down.

J For a finite potential, ifg <V,:

o Due to the wave nature of a particle, providedgbtential is not
infinite, there is a finite probability of finding beyond the point
x=0.

o In the case of potential barrier, there is a polgsitof finding the
particle beyondc = 0, if the potential is finite.

o If the barrier is thin enough, the particle cannirthrough it.

6.0 Tutor-Marked Assignment (TMA)

1. A particle of massn is incident from the left on the potential
step shown in Fig. Find the probability that il we scattered
backward by the potential if
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(& E>V,,and
(b) E<V,

]

2. Calculate the reflection probability of a padeiof massnincident
from the left with energy E in the potential barg@own in Figure
below, if the reflection coefficient tends to 1.

*

2. Find the equation governing the bound states cdréighe of
mass  mconfined in the potential well below.

tad
gf{!

v

O 21
7.0 Referencesfor further Readings

Quantum Mechanics: Concepts and Applications — byrbidine Zettili.
3rd Edition, 2022. ISBN: 978-1-118-30789-2. Avalmbat:
https://www.wiley.com/enae/Quantum+Mechanics%3A+Capt
s+and+Applications%

https://youtu.be/-2CROQNInhVA
https://youtu.be/3SGJI5x3ito
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Solutionsto Tutor Marked Assignment

1. A patrticle of masm is incident from the left on the potential step
shown in Fig. Find the probability that it willebscattered
backward by the potential if

(& E>V,,and

(b) E<V,
LE
A
v,
0 a "X
Solution
@ E>V,:

Reg|0n I l//l = eik(x—a) + Re‘ik(x_a)

Region II: y, =Te**® (wave travelling to the right only)

wherek = ZTE and k'=1/w :
h h

Matching the wavefunctions at=a,
1+R=T

and the first derivative at=a,
ik—ikR=ik'T

from which we deduce that
k—kR=-k'(l+R) =k'R+Kk’

Therefore,
k=K
Ck+k'
"2
The probability of reflection i$R[*= S:E;Z :

(b) E<V,
We identify two regions:
Region l:V =0,0<x<a
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Region I}V =V,,x>a
The solutions are:
Region I:y, =e** 4 Re k02

Region Il: y,, =Te ¥

wherek = ZTE and k'=1/w .
h h

Matching the wavefunctions at=a,
1+R=T

and the first derivative at=a,
ik—ikR=-k'T

from which we deduce that
ik —ikR=-k'(l+R) = —-k'R-K’

Therefore,
R !k+k
ik-k'
. o k?+k* . .
The probability of reflection I$R|2=W=1’ since the amplitude of
+

incidence is unity.

2. Calculate the reflection probability of a pddiof massnincident
from the left with energy E in the potential bars@&own in Fig. if
the reflection coefficient tends to 1.

U -
There are two regions:
Regionl:  y,(x)=€*+Re™, x<0
Regionll:  y,(x)=(R+)e**, O<x<a

wherek=1/2n;E : anda=1/%2_E).
h h
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w,'(0) =y, '0): ik—ikR=—a(R+1)

or
ik+a=(k-a)R
Hence,
R ?k+a
ik—«o
T-Rile !k+a+1= |k+g+|k—a _ 2ik
ik -« ik—o ik—a

3 Find the equation governing the bound states @fragte of mass
m confined in the potential well below.

v

i} 2L
We identify three regions:

0,X<0
V(X)=<0,<x2L
V,, x> 2L
Two regions are of interest: within the well (I)daio the right of the well

().

. diw(x) 2m
: d? 2
Region II: ‘//(X)+ T(E—Vo)z//(x)=0

a2  n?

For bound statest <V,, meaning that the second term in the equation
for region Il is indeed negative so that we maytevthe equation for
region Il as,

d(x) 2m

e 5z Ve B =0
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where the second term is now positive. We can tr#e the equations
as

Region I: dd"’/gx) E w(x)=0
Region II: ddz(x) 2m(\/0 E)w(x)=0

The solutions are:

Region I:  y,(X) = Asinkx+ Bcoskx

Regionll:  y, (x) =Ce”* + De“”

_2m(V, - E)
h? '

wherek? =

Obviously, we have to s&= 0 (conditiony, =0 at x=0). We also set
C =0 as we don’t want a solution that grows»xabecomes large.

RegionI:  y, (x) = Asinkx
RegionIl:  y, (x) = De™**

Boundary conditions:

v, (2a) =y, (2a): Asin2ka = De™**?
g v, (2a) = d p (2a): 2kAcos2ka = —a De?*®

Hence, we conclude that,

cot2ka = _Z - 1 Vo—E
2k 2 E
or
tan2ka = —2—k =2 E
a V,—-E

122



MODULE 4 PHY 309

MODULE 4 TIME-INDEPENDENT SCHROEDINGER
EQUATION IN ONE DIMENSION 11

Unit 1 The Simple Harmonic Oscillator
Unit 2 Raising and Lowering Operators for the Hanm
Oscillator

UNIT 1 The Simple Har monic Oscillator

Contents

1.1 Introduction
1.2 Objectives
1.3 Main Content
1.3.1 The Harmonic Oscillator
1.4 Conclusion
1.5 Summary
1.6  Tutor-Marked Assignment (TMA)
1.7 References/Further Readings

1.1 Introduction

Perhaps one of the most important concepts in Béysithat of the
harmonic oscillator. This is because a lot of ptgisiphenomena are
fashioned after this kind of idealized motion. Yioust be quite familiar
with the motion of a harmonic oscillator: it is ¢med within the two
positions where the total mechanical enefgyis equal to the potential
energy. At these positions, the kinetic energgquivalently, the velocity
Is zero, and the particle has to change directibnghis Unit, you will
learn about the quantum-mechanical equivalent. Wluthen see that
the energy can only take specific values, andttieground state energy
IS not zero.

1.2 Objectives

By the end of this Unit, you would have learnt:

. How to derive the Schroedinger equation for thentwanic
oscillator?

. How to derive the dimensionless form of the equmtod the
guantum oscillator?

. How to solve the Schroedinger equation for the loanim
oscillator?

. The allowed energy levels (energy eigenvalues) dhd

corresponding eigenstates
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1.3 Thesimple harmonic oscillator

You would recall that the potential for the simplErmonic oscillator is
V(x)= %ma)(fx2

1.1
wherema,’ is the force constant.

The time-independent Schroedinger equation thearhes:
n? d%y

2m dy?
1.2

+%mw§x21// =Ey

As we do at times, we consider an extreme value, oh this case large
values ofx whereV >> E . We can then modify the function that satisfies
the large values of by multiplying by a polynomial when the extreme
condition is no longer valid.

The equation approximates in the limit of lakge,

dw o1,

omd 2otV
Let
w(X) = Aexp(x>/2a%) 1.4
Then,
dy X 2 2
—= =—— Aexp(-x’ /2a%) 1.5
dx a

2 2
d—l/zf = —iz Aexp(x® /2a%) + X—4 Aexp(x* /2a%)

dx a a
d%y 1 x?

ae = B
or

2 2
dy _xt 1.7
dx a

sincex is large.

Substituting in equation (1.3) and rearranging,
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h? x? 1 2 5

Tomat . 20

le.,
h2

a’ = — 1.8
m°e,

We conclude thaiy(x) = Aexp(-x*/2a®) is a solution of the ordinary
hz
m’w,”

differential equation provided* =

For small x, the approximationv >>E is no longer valid, and the
wavefunction must be modified appropriately. Asfien the practice, we
shall multiply  for the extreme value afby a polynomial, which in this

X
a
eigenfunctions, we write the trial function in tfoem,

case is H( J To take into consideration the various possible

v, (X) = Ath(gJexp(—x2 /2a%) 1.9

where A, is the normalisation constant afd is a polynomial inx/a.
For the ground state, let us choose the simpldghpmial,H,(x/a) =1.

So, we try the solutiop,(x) = A, exp(x* /2a%).

Dividing through equation (1.2) b%ma)oz, we get

d
—mza)zdXZ+Xl//=mw2 1.10
0 0
2
Putting—— =a*, we obtain
mo,
2
_at 8V e, 2BV 1.11
dx? mo,”
0
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Substituting ford?y / dx* from equation (1.6),

2 2E
—a4[—i2+x—4jw+ Xy = ——2 1.12
a

a ma)02

giving, by comparing terms in powers»qf

x°:  a’= > 1.13
ma,

X2 E, =£ma)02a2 =£ha)o 1.14
2 2

The normalisation is determined from

Jm|z//|2dx= Aszwoexp(—x2 la?)dx= A a7 1.15
Therefore,
o (X) = |—— expx? 12a°) 1.16
0 a\/;
and
1
E, = o, 1.17

Before we take on the excited states, we shalvddhe dimensionless
form of the time-independent Schroedinger equatmnthe harmonic
oscillator.

We recall that,

‘;‘/’ 2M e v(xly
X

dl// dl//dX dz//add l//_azdzl//

Let us setR=x/a. Then, > .
df  dx dF  dx dR dx

implying that,

1 d? 2m
—zdR‘/Z’ =~ T IE-V(Xly 1.18
or
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d’%  2ma’
=— E-V(x
e 2 [ (X 119
2ma’ q 2ma’
Lete = 2 E andW(R) = 2 V(R)

Then, we get the time-independent Schroedinger teguan a
dimensionless form:

d2
dR‘/Z’ = {e-W(R)]w 1.20
or
d%y
~ R +W(Ry = ey 1.21

We recall that we made the substitutions

2ma’ 2ma’

R=x/a, ¢= 2 E andW(R) = 2

V(R)

These are all dimensionless quantities. We can skernthat the energy

. . E V(R)
scale isi?/(2ma’),i.e.,e=——— andW(R) = ——~2—.
( ) 2 e? (R h?/2me?

hel2m
Let us writee = E/E,. Then, equation 1.21 becomes

2 2
2 d l//+?l//=6‘l// 1.22

dx?

—a

Further substitutindr= x/a we get another dimensionless form,

2

W
T + Ry =y 1.23

Let w, = AH, (R exp(R?*/2)

Then,
dy 2 dH 2
D =A expR°/2 " -RAH (R expR-/2
pr= A, exp( )OIR AH.(R)expt ) 124
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d%y , - d?H , - dH
n=A expR°/2 " _RA expR°/2 n
A, exp( )dF<2 A, exp( )OIR

dR?

- A H_ (R exptR?*/2) - RA exp(-R? /2)%+ R’A H_ (R expR?/2)
1.25

Substituting equation 1.25 for the second diffaegmf , with respect
to Rin equation 1.23 withy, = A H_ (R)exp(-R*/2),

d’H dH,
dR? dR

- [Aj expR?/2) " RA expR*/2)

— A H_ (R exp-R?/2) - RA exp(-R® /2)%+ R’A H_(R)exp(-R’ /2)}

+R*AH (R expR*/2) =& ,AH, (R expR* /2) 1.26
(| OHR)_pdH.(R) (R)—R%+R2H (R)}
dR? dR " dR "

+R*H,(R)=¢ H, (R

or
2
d Hz R e _pH -0
dR dR 1.27

an ordinary differential equation known as Hermite’s equation

Recall that we are proposing solutions of the form
H, =a,R"+a, ,R" +...

Let us now substitutéi, =a,R" +a, ,R"” +... into equation 1.27:

ddi” =na R +(n-2a, _,R"+...
dan n-2 n-4
e =n(n-Ya,R"“+(n-2)(n-3)a, ,R"" +... 1.28
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dH

-2R—" =-2naR"-2(n-2a, ,R"*+... 1.29
dR
(e,-DH, =(¢,-D(@,R"+a, ,R"*+..) 1.30

Adding equations 1.28, 1.29 and 1.30,

2
d HZ“ —2RdH” +(e,—DH,
dR dR

=n(n-1)a,R"? +(n-2)(n-3)a, ,R"* +...
-2na,R" -2(n-2)a, ,R"? +...
+(,-D(@,R"+a, ,R"*+..)

=a [n(n-1)R"*-2nR" + (¢, -)R"] + terms inR"?, R, ... = 0
1.31

But this would be true for all values & and can therefore only happen
if the coefficient of R" vanishes, i.e., if-2n+(¢,-9) =0, ie., if
g, =2n+1. Thus,

2 2 2 2 2
E - h 52 _I’e Mo, _h's mo, =£ha)o _ (2n+1)ha)0 =[n+£jhwo
2ma® 2m 2E, 2m 2heo, 4 4 2
2E §
where we made use of? =—=2 ¢ = 2m2a E.
ma, h

It follows that the energy levels are equispacdtk Tirst three of these
are shown in Fig. 1.1.

A

Shap, 712

i, /2

3 !
ﬁw& i2

Fig. 1.1: The energy levels of the quantum-meclanitarmonic
oscillator
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Let us see if we can find the wavefunctions. Weblyysubstituting a trial
wavefunction into Hermite’'s equation. We choose sieeond excited

state = 2) H,(R) =1+bR?. Then,

2
dH, =2bR and d"H,

=2b
dR dR?

Substituting, we geeb—2Rx 2bR+ 4(1+bR?) =0 and hencér=-2.

Thus,

2

w,(X) = A{l— 2%} expEx® /2a%) 1.32

The constantA, can be found by normalisation.

We list the first three energy eigenvalues and wWwawions for the
simple harmonic oscillator. For the graph in Fig, ve have chosea=
1.

n E Wavefunction
0 1 1/2
—ho, 1 j ex 2 2
— pEx© /2a)
avr

1 3 1/2
S hog 1 j Z(zjex Cx? [2a?
2 Za\/; a p( )
2 5 1/2 2
- hog 1 ] 2—4(§j exp(x2 /2a®
2 8a\/; [ a Pt )

3 7 12 3
—ho, 1 X)) g X (2 2
| (e AT

Notice thatg, = (n+%)ha)0; and thus, the ground state energy is not zero,

but %ha)o.

But, you may ask, why do we not observe the gratate in everyday
Physics. It is because the numbeis so small that only when the system
is very small (typically atomic and subatomic) thditecomes significant.

This is because some other parameters, such agmseand distances are
also small.
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Fig. 1.2: Eigenfunctions of the quantum-mechart@amonic oscillator
4.0 Concluson

You have learnt how to derive the Schroedinger gguéor the quantum-
mechanical harmonic oscillator. You learnt how twdve a physical
problem by first taking one limit and then multiply your solution with
a polynomial (in this case, the Hermite polynomji&dsarrive at a solution
valid for all the possible values of the independemiable. In the course
of studying this Unit, you also found that the eyetevels of the
harmonic oscillator are quantised, quite unlikedlassical oscillator that
can assume any energy within the allowable regfots anotion.

50 Summary

In this unit, you have learnt:

o That the quantum-mechanical harmonic oscillator @aly attain
a set of quantised energies.

o That the ground state energyiis,, as is the case with the classical
oscillator.

o The energy levels are equispaced.

o The ground state is not observed in day to dayiPhyecause:
is such a small number.

° Hermite polynomials are related to the eigenfumgiamf the
harmonic oscillator.
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6.0 Tutor-Marked Assignment (TMA)

Tutor Marked Assignment

1. Normalise the eigenfunction(x) = Aex;{—%xzj. Hence, find

the probability that the particle subjected to hamio oscillation
lies in the rang® < x < w.

2. A quantum-mechanical oscillator of mass moves in one
dimension such that its energy eigenstate
w(X) = (721 7)"* exply?x® 12) with energyE =#r%y? /2m.

(@) Find the mean position of the particle.
(b)  Find the mean momentum of the particle.

7.0 Referencesfor further Studies
Textbooks

1. Quantum Mechanics demystified by David McMah8&econd Edition
, 2006
https://theswissbay.ch/pdf/Gentoomen%20Library/¥Mismysti
fied%20Series/McGra-Hill%20-
%20Quantum%20Mechanics%20Demystified%20%282006%?29.

pdf

2. Quantum Mechanics: Concepts and Applicationsy—Nburedine
Zettili. 3rd Edition, 2022. ISBN:978-1-118-30789A ailable at:
https://www.wiley.com/en-
ae/Quantum+Mechanics%3A+Concepts+and+Applications%

3. Quantum Theory Demystified: Continuous Creaidrthe Atom —
(The David Rowland series) Paperback — 2021. Byida
Rowland.https://www.Quantum-TheoryDemystified-Continuous-
Creation/dp/1549664808

Video Links

https://youtu.be/bomGqghM-tUk4
https://youtu.be/OdizRUe84bg
https://youtu.be/Kb9twGd25P0
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Solutionsto Tutor Marked Assignment

1. Normalise the eigenfunctiop(x) = Aexp{—%xzj. Hence, find

the probability that the particle subjected to hamio oscillation

lies in the range® < x < % :

Solution

o 2
J. AZ (e—ma)x /2h)2dx A2 e—max /hdx

Mo
Wherea = 7

AZJ' e X dx = A2><l\/Z
A2j e ¥ dx = A2\/7 AT AZ,/h”
mow/h

Equating this expression to unity,

pe M7 _q
Mo

1010]

Mo 1/4
(2
hr

o2 )
hr 2h

The probability of finding the oscillator betwerr 0 and% is

I:w(x)dx:f:[(%j exp{-%ﬁﬂ
= (mjllzjwex;{—mszdx

hr 0 h
= \/%I: exp(— B X )dx
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Nz 2\ Var 2\mo 2
This makes sense, right? If the probability of fingd the oscillator
between-« and is unity, since the wavefunction is normalisearth
the probability of finding it between 0 andmust be half.
3. A guantum-mechanical oscillator of mass moves in one
dimension such that its energy eigenstate
w(X) = (721 7)"* exply?x? 12) with energyE =#%y? /2m.

(@) Find the mean position of the particle.
(b)  Find the mean momentum of the particle.

Solution

(@ <x>= j"‘;l// (X)X (X) dx = (2 /ﬂ)l’zj:xexp(—yzxz) dx

=(y? /z)l’zf xexpEy*x?) dx
Let y=exply>x?). Then,% = -2xexpy’x?).
X

Hence,

dy = —2xexpy2x?) dx

I dy= —ZI xexpEy2x?)dx=y+c
But y=exp(y?x?).

Therefore,
I xexpEy®x?)dx = %exp(—yzxz) +C

Hence,

=0

—o0

< X>= %exp(—yzxz)

(b)
<p>=["yp* (x)(—ih%(}//(x) dx=(*/7)"*[" expéyzxz)(—ih%()expéyzxz)dx
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= (-in)(r* 1 2)"* [ (-2 *X) expy*x°) dx
= (in)y *(r* 1 7)"? [ 2xexpEy°x*) dx

= (i) 202 1)V exply %) =0
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UNIT 2.  Operator Method for the Harmonic Oscillator

Contents

2.1 Introduction

2.2  Objectives

2.3 Main Content
2.3.1 Raising and Lowering Operators of the Harmonic {xor
2.4  The Number Operator

2.4  Conclusion

2.5 Summary

2.6  Tutor-Marked Assignment (TMA)

2.7References/Further Readings

2.1 Introduction

In this Unit, we introduce the ladder operatorstha harmonic oscillator.

These are also referred to as the raising andothiering operators. As
the name implies, once a certain state is knovghgrior lower states can
all be obtained by applying the appropriate laduserator. You would

also come across the number operator,

2.2 Objectives

By the time you are through with this Unit, you altb be able to
understand and work with:

. The ladder operators.
. The number operator.

1.0 Main Content

3.1 Raising and Lowering Operators for the Harmonic

Oscillator
2
We recall that for the harmonic oscillatcﬁ’,zzp—+V(q)
m
2 2,2
g o P meTx
2m 2

Let
aswlm(x+i—pJ 3.1
2h mo

and the Hermitian adjoint
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a’ =1/m(x—£j 3.2
2h mao

[a,a"]= aa" —a’a

_ ma)(x+ [ |p)

2h mo 1419)
_ ma)(0+ Al . Al +0)
2h me Mo
ma)(0+ h N h Oj
— 2h Mo Mo
=1 3.3
Therefore,

aa" —a‘a=1
a‘ta=aa -1

. _ Mo ip ip
a'a = - +
1 )

2

_Mmof . P~ i
T (q iy mw(pq qp)j

=H-=ho 3.4

Dividing through byae means that in units dfe,

H N 1
—=a'a+—
ho 2 35

Note that(a*a)* =a*(a*)" =a*a

Let v be an eigenvector af*a. Then, we can write
(@'a)y =y 3.6

Then,
(v, @)= Aly,y) 3.7

To show thati > 0:
(v,(@a)y) = (ay,ay) =lay ’= A(y.y)
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Now, |ay |°> 0, hence the result.
Let us considefa*a)y = Ay
(a+a)l//n = j“nl//n 38

Let a"act on(aa”)y
a’(aa’)y = (a'aa)y,

=a'(a'a+dy,

=a'A,y,+a'y, (since(@a)y=Ay)

=a" (4 ,+Dy,

= A )@y, (sinceA +1isjustanumber) 3.9

We conclude that, ify, is an eigenvector with eigenvalue, of a*a,
thena*y,, is an eigenvector with eigenvalue +1 of a*a.

Similarly,
(@"aa)y,= (aa” —Day,
= a(@"a)y, —ay,
=a(d w,)-ay,
= (1 ,~Day, 3.10

If w, is an eigenvector with eigenvalug, of aa*, then ay, is an
eigenvector with eigenvalue -1 of aa".

Hence,a" is a raising or creation operator and
a is a lowering or annihilation operator?

Hence,

ay, =¥,
aqay, =ay | =Y,
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There exists a lowest value df. Let the eigenvector corresponding to
this eigenvalue be,. We also know that since all, >0, 1, >0.

But then, we know that we cannot go lower thangtaind state. Then
we can write,

ay, =0
mao ip
2h ( ma)jwo
[Hij% _
Mo
[x+L d ]l//o =0
me dq
a4, _me,
dx Yo 5 Yo
Mo
X) = Aexg ——— x° 3.11
wo(X) F{ oh j
Normalising, we again arrive aj,(x)= iexp(—x2 /2a*) Recall
a1
a’=nlmo.
pi(X) = a'y,

- /m(x_ii)
2h me dx)7°
2
= Bxexp — Mo X
2h

. _ me hnod
v, =a'y= | X ———— |y,

2h me dx
2
= (2 + d)ex;{— Mo X J
2%
ma x>
=H - 3.12
e o 72

where{H }” , are Hermite polynomials.
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Ao=2aay,= Ay,

a'0=74,=4,=0

Ah=1,+1=1
Ay=A,+1=2
A,=n 3.13

E, =[zn +1)hw=(n+1jha) 3.14
2 2
1
E, =5 >0 3.15
E, = ho 3.16
2

Alternatively, you would recall that,

H . 1

—=a'a+=
ho 2
3.17

and this means we can write the Hamiltonian as,
H = ha)(a+a+%j 3.18

Let us allow this operator to act on the energgesgate which we shall
denote byE,, or simplyn.

Then,
H |n>=ha)(a+a+%j|n> 3.19

ho a+a|n>+%hw|n>
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Now, a|n>=(n-1)|n>, so that
a'(aln>)=a’[(n-Y|n>]=n|n> 3.20

This shows that the energy eigenstate is an eigenstate ofl =a*a,
and the eigenvalue s for we could have written

N|[n>=a'a|ln>=n|n> 3.21

This is why we callN = a*a the number operatgrand|n > called the
number state.

Hence, we can write equation 3.19 as

ho a+a|n>+%hw|n>zhwn|n>+%hw|n>

=hon|n >+£ha)| n>= ha)(n+£j [n>
2 2
We conclude, therefore, that
1
H |n>=ha)(n+§J|n>

Could you relatet , ton? That we have done before.

2.0 Conclusion

In this Unit, you learnt another way of treating ttpuantum-mechanical
oscillator: the operator method. The results yotaioled in Unit 1 were

all got by applying one operator or another. Thieghmajor operators are:
the creator, the annihilator and the number operatou found that the

ladder operators are Hermitian adjoint of eachrothe

3.0 Summary

o In this Unit, you have learnt how to obtain theuteswe got in
Unit 1 via the ladder operators

o Once a state is obtained, the ladder operatorsdeaapplied to
obtain higher and lower states.

o The number operator acting on a given state giveerergy
eigenvaluen.
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6.0 Tutor-Marked Assignment (TMA)
la. Given that the ladder operatorsa= ,/ a)(x+—j

a’ = ,/mw(x P j and the position and momentum operators are given

,/ x and p= ‘/ p M What is the value of the

commutator[x, p].

(i)  Show thatf<=%(a+a*), @:‘T;(a-aw.

(i)  For the ground state, find%* > and < p* >.

b. Given that the expectation of the position @mel momentum
operators under consideration are zero in the gra@tate of the

oscillator, prove that the following expressiondsk x* >< p® >

1 2
=~ k[x .
4 I<[x p] >|

7.0 Referencesfor further studies

Textbooks

1. Quantum Mechanics demystified by David McMahon. ddekc
Edition,2006.
https://theswissbay.ch/pdf/Gentoomen%20Library/¥Mismysti
fied%20Series/McGraw-Hill%20-
%20Quantum%20Mechanics%20Demystified%20%282006%29.

pdf

2. Quantum Mechanics: Concepts and Applicationsy—Nburedine
Zettili. 3rd Edition, 2022. ISBN: 978-1-118-30789/&%ailable at:
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ae/Quantum+Mechanics%3A+Concepts+and+Applications%
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Video Links

https://youtu.be/yGvigRfwl1BE
https://youtu.be/yG Ot9rsNaw
https://youtu.be/6QarvzNJyfU

Solutionsto Tutor Marked Assignment

la.  Given that the ladder operatars ,|— M (x + i) :
2h Mo

a’ =, r;;’(x—r:q—pJ and the position and momentum operators are given
[0

=™ andp=.|—~p,()  Whatis the value of the
h mho

commutatof X, p] .

. ~ 1 L =
i Show thatk=—=(a+a*), p=—=(a-a").
(i) ﬁ( ), P JE( )
(iv)  For the ground state, find%* > and < p® >.
b. Given that the expectation of the position @mel momentum
operators under consideration are zero in the grstate of the

oscillator, prove that the following expressiond®k x* >< p* >

= L xplsp.

a= mew(x i} a" = m(x—iij
2h mo 2h mo
Y — @X N — i
Vo O P Ve P
M % p]-,/m”w/ ~x pl= —m—u

IS

(ii) a=%(§<+i|@) anda’ =%(§(—|p)
Hence,i:i(a+a+), p= i(a—a*)

2
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(AX)? =< X? > — < x>,
(Ap)* =< p*>-<p>*

For the harmonic oscillator in its ground states >=< p >=0.
A2 1 + + + At
(i) <X >:§<O|aa+aa +a‘a+a‘a’ |0>

<0J]aa" |0>

N =

N

" 1
<p®>= —5< Olaa—aa" -a‘a+a‘a" |0>

<0J]aa" |0>

N

N

o
A
>
v
A

o
%
I
NI

2
<xX?><p?>=—
P 4
[x, p] = i%

I<[X, p] >= A*

Therefore,

<xX?><p®>= %|<[x, p] >I*

144





