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Course Introduction 
 

In Optics I you studied the nature of light. There you studied that light is a 

wave motion. A very important characteristic of wave motion is the 

phenomenon of interference. 

 

The term interference refers to the phenomenon that waves, under certain 

conditions, intensify or weaken each other. The phenomenon of interference is 

inseparably tied to that of diffraction. In fact, diffraction is more inclusive; it 

contains interference and, in a sense, even refraction and reflection. It is only 

because diffraction is mathematically more complex that we treat interference 

and diffraction in separate Blocks, and discuss interference first. 

 

The prerequisite of all interference is the superposition of waves. If light from 

a source is divided by suitable apparatus into two beams and then superposed, 

the intensity in the region of superposition is found to vary from point to point 

between maxima, which exceed the sum of the intensities in the beams, and 

minima, which may be zero. This phenomenon is called interference. 

 

There are two general methods of obtaining beams from a single beam of 

light, and these provide a basis of classifying the arrangements used to 

produce interference. In one method, the beam is divided by passage through 

apertures placed side by side. This method, which is also called division of 

wave front, is useful only with sufficiently small sources. Alternatively, the 

beam is divided at one or more partially reflecting surfaces, at each of which, 

part of the light is reflected and part transmitted. This method is called 

division of amplitude. It can be used with extended sources, and so effects 

may be of greater intensity than with the division of the wavefront. In either 

case, it is convenient to consider separately the effects which result from the 

superposition of more than two beams (multiple beam interference). 

 

The phenomenon of interference, is explained on the wave model of light. 

What may puzzle you is the fact that light casts shadows of objects, i.e., light 

appears to travel in straight lines rather than bending around obstacles. This 

apparent contradiction was explained by Fresnel. You will learn that the ease 

with which a wave bends around corners is determined by the size of the 

obstacle relative to wavelength of light. The wavelength of light is about  10 m 

and the obstacles used in ordinary experiments are about  times bigger. 

However, a large number of obstacles, whose sizes are comparable to the 

wavelength of light, do exhibit diffraction of light. 

 

The phenomenon of diffraction was first observed by Grimaldi and a 

systematic explanation is due to Fresnel. According to him, in diffraction 

phenomenon, interference takes place between secondary wavelets from 

different parts of the same wavefront. Diffraction is classified in two 

categories: Fresnel diffraction and Fraunhofer diffraction.  

 

Unit 1 begins with the study of wave motion. Being familiar to most students 

from their study of Oscillations and Waves, it will serve primarily as a review. 

With the help of the principle of superposition, we have explained the 
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phenomenon of interference. In this unit, we discuss in detail the phenomenon 

of interference produced by the division of the wavefront of light wave.  

 

In Unit 2, we will consider the formation of interference pattern by the 

division of amplitude. Such studies have many practical applications. Finally 

we briefly mention these applications.  

 

Unit 3 is devoted to interferometry. It deals with Michelson interferometer, 

which is an example of two beam interference and Fabry-Perot interferometer 

which is an example of multiple beam interference. Finally, an appendix given 

at the end of the unit provides a brief introduction to complex amplitudes. You 

might like to read it to enrich your knowledge. However, you will not be 

examined on it.  

 

For Fresnel diffraction, discussed in Unit 4, the experimental arrangement is 

fairly simple. The source or the observation screen or both are at a finite 

distance from the obstacle. But theoretical analysis of Fresnel diffraction, 

being essentially based on geometrical construction, is somewhat 

cumbersome. Nevertheless, Fresnel diffraction is more general; it includes 

Fraunhofer diffraction as a special case. 

 

In Fraunhofer diffraction, the source of light and the observation screen (or 

human eye) are effectively at infinite distance from the obstacle. The 

Fraunhofer diffraction from a single slit is of particular interest in respect of 

the general theory of optical instruments. This is discussed in detail in Unit 5. 

You will learn that when a narrow vertical slit is illuminated by a distant point 

source, the diffraction pattern consists of a series of spots along a horizontal 

line and situated symmetrically about a central spot. For a circular aperture, 

the diffraction pattern consists of concentric rings with a bright central disc. 

 

In Unit 6 you will learn about double slit and  -slit diffraction patterns. A 

distinct feature of double slit pattern is that it consists of bright and dark 

fringes similar to those observed in interference experiments. The  -slit 

diffraction pattern shows well-defined interference maximum. The sharpness 

of interference maximum increases as N increases. For a sufficiently large 

value of N, interference maxima become narrow lines. This is why diffraction 

gratings are an excellent tool in spectral analysis. 

 

An important point to learn is that fringed (diffracted) image of a point source 

is not a geometrical point. And diffraction places an upper limit on the ability 

of optical devices to transmit perfect information about any object. That is, all 

optical systems are diffraction limited. In Unit 7 you will learn to characterise 

the ability of an optical instrument to distinguish two close but distinct 

diffraction images of two objects or wavelengths based on the Rayleigh 

criterion. 
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UNIT 1   INTERFERENCE BY DIVISION OF WAVEFRONT 

Structure 

1.1 Introduction 

Objectives 

1.2      Wave Motion 

1.3       Principle of Superposition 

1.4 Young's Double-slit Experiment  

White Light Fringes  

Displacement of Fringes 

1.5  Fresnel’s Biprism 

1.6  Some Other Arrangement for Producing Interference by Division of Wavefront 

1.7  Summary 

1.8  Terminal Questions 

1.9 Solutions and Answers 

 

1.1   INTRODUCTION 
Anyone with a pan of water can see how the water surface is disturbed in a variety of 

characteristic patterns, which is due to interference between water waves. Similarly, 

interference occurs between sound waves as a result of which two people who hum 

fairly pure tones, slightly different in frequency, hear beats. But if we shine light from 

two torches or flashlights at the same place on a screen, there is no evidence of 

interference. The region of overlap is merely uniformly bright. Does it mean that there 

is no interference of light waves? The answer is 'No.' 

 

The interference in light is as real an effect as interference in water or sound waves, 

and there is one example of it familiar to everybody — the bright colours of a thin film 

of oil spread out on a water surface. There are two reasons why the interference of light 

is observed in some cases and not in others? Firstly, light waves have very short wave-

lengths — the visible part of the spectrum extends only from 400 mm for violet light 

to 700 mm for red light. Secondly, every natural source of light emits light waves only 

as short trains of random pulses, so that any interference that occurs is averaged out 

during the period of observation by the eye, unless special procedures are used. 

 

Like standing waves and beats, the phenomenon of interference depends on the 

superposition of two or more individual waves under rather strict conditions that will 

soon be clarified. When interest lies primarily in the effects of enhancement or 

diminution of light waves, these effects are usually said to be due to the interference of 

light. When enhancement (or constructive interference) and diminution (or destructive 

interference) conditions alternate in a spatial display, the interference is said to produce 

a pattern of fringes as in the double slit interference pattern. The same condition may 

lead to enhancement of one colour at the expense of the other colour, producing 

interference colours as in the case of oil slicks and soap film about which you will study 

in next unit. 

 

In this unit, we will consider the interference pattern produced by waves originating 

from two-point sources. However, in the case of light waves, one cannot observe 

interference between the waves from two independent sources, although the 

interference does take place. Thus, one tries to derive the interfering waves from a 

single wave so that the constant phase difference is maintained between the interfering 

waves. This can be achieved by two methods. In the first method a beam is allowed to 

fall on two closely spaced holes, and the two-beam emanating from the holes interfere. 

This method is known as division of wavefront and will be discussed in detail in this 

unit. In the other method, known as division of amplitude, a beam is divided at two or 

more reflecting surfaces, and the reflected beams interfere. This will be discussed in 

the next unit. 
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As the phenomenon of interference can be successfully explained by treating light as a 

wave motion, it is necessary to understand the fundamentals of wave motion. We shall 

therefore begin this unit with the study of wave motion which will serve as a 

recapitulation. 

 

In the next unit we will study how interference takes place by division of amplitude of 

light wave. 

 

Objectives 
After studying this unit, you should be able to 

 use the principle of superposition to interpret constructive and destructive 

interference, 

 distinguish between coherent and incoherent sources of light, 

 describe the origins of the interference pattern produced by double slit, 

 describe the intensity distribution in interference pattern, 

 express the fringe-width in terms of wavelength of light, 

 describe various arrangements for producing interference by division of 

wavefront, 

 appreciate the difference between Biprism and Lloyd's mirror fringes. 

 

1.2 WAVE MOTION 

 

Study Comment 

 

You may find it useful to go through the Unit 6 of the course "Oscillations and Waves." 

 

Simple Harmonic Motion 
A simple harmonic motion is defined as the motion of a particle which moves back and 

forth along a straight line such that its acceleration is directly proportional to its 

displacement from a fixed point in the line, and is always directed towards that point. 

 

The best and elementary way to represent a simple harmonic motion is to consider the 

motion of a particle along a reference circle (See Fig. 5.1). Suppose a particle P travels 

in a circular path, counterclockwise, at a uniform angular velocity  . The point N is 

the perpendicular projection of P on the diameter AOA' of the circle. When the particle 

P is at point B, the perpendicular projection is at 0. As the particle P starts from B, and 

moves round the circle, N moves from 0 to A, A to A' and then returns to O. This back-

and-forth motion of N is simple harmonic. Let us obtain expressions for displacement, 

velocity and acceleration and define few terms. 

 

 
Fig. 5.1. Reference Circle (Left) and Simple Harmonic Motion (Right) 
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Displacement 

Suppose the particle P starts from B and traces an angle   in time t. Then its angular 

velocity   is 

 

 
t


   

 

where the angle   is measured in radians. The displacement, y, of N from O at time t, 

is thus given by 

 NPOOPONy sin  

 

  = sina   [  POBNPO ] 

 

But 
t


  , so that t   

 

 tay sin         

 (1.1) 

 

This is the equation of simple harmonic motion. 

 

SAQ 1 

See Fig. 1.1. If you have studied the motion of the point M, which is the foot of the 

perpendicular from the point P on the x -axis, then write down the equation of simple 

harmonic motion. 

 

Velocity: The velocity of N is given by 

 

 
22cos yata

dt

dy
       

 (1.2)  

 

Acceleration: The acceleration of N is 

 

 yta
dt

yd 22

2

2

sin         

 (1.3) 

 

Periodic Time: The periodic time, T, of N is time taken by N to make one complete 

vibration. Thus 



2
T         

 (1.4) 

 

Amplitude: Amplitude of vibration is equal to the radius of the reference circle i.e., a. 

 

SAQ 2 

A particle is executing simple harmonic motion, with a period of 3s and an amplitude 

of 6 cm. One-half second after the particle has passed through its equilibrium position, 

what is its (a) displacement, (b) velocity, and (c) acceleration? 
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Phase: The phase of a vibrating particle represents its state as regards 

 

(i)      the amount of displacement suffered by the particle with respect to its mean 

position, and 

 

(ii)      the direction in which the displacement has taken place. 

 

In Fig. 1.1, we have conveniently chosen t = 0 as the time when P was on the x-axis. 

The choice of the time t = 0 is arbitrary, and we could have chosen time t = 0 to be the 

instant when P was at 'P (see Fig. 1.2). If the angle P'OX =  , then the projection on 

the y-axis at any time t would be given by  

 

 
 

Fig. 1.2 At t = 0, the point P  is at 'P  and, therefore, the initial phase is   

 

 )sin(   tay        

 (1.5) 

 

The quantity )(  t is known as the phase of the motion and   represents the initial 

phase. It is obvious from the discussion that the value of   is quite arbitrary, and 

depends on the instant from which we start measuring time. 

 

We next consider two particles, P and Q rotating on the circle with the same angular 

velocity   and P' and Q' are their respective positions at t = 0. Let the angle P'OX 

and Q 'OX be   and   respectively (see Fig. 1.3). 

 

 
Fig.1.3:  The points N and N' execute simple harmonic motion with the same frequency 

 . The  

 initial phases of N and N' are   and   respectively 
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Clearly at an arbitrary time t  the distance of the foot of perpendiculars from the origin 

would be 

 

 )sin(   tayP
       

 (1.6a) 

 

 )sin(   tayQ        

 (1.6b) 

 

The quantity 

 

   )()( tt       

 (1.7) 

 

represents the phase difference between the two simple harmonic motions and if  

= 0 (or an even multiple of  ) the motions are said to be in phase, and if   =   

(or an odd multiple of  ), the motions are said to be out of phase. If we choose a 

different origin of time, the quantities   and   would change by the same additive 

constant; consequently, the phase difference (   ) is independent of the choice of 

the instant t = 0. 

 

Energy: A particle performing simple harmonic motion possesses both types of 

energies: potential and kinetic. It possesses potential energy on account of its 

displacement from the equilibrium position and kinetic energy on account of its 

velocity. These energies vary during oscillation; however, their sum is conserved 

provided no dissipative forces are present. Since the acceleration of vibrating particle 

is y2 , the force needed to keep a particle of mass m at a distance y from O is m y2

. If the particle is to be displaced through a further distance dy, the work to be done will 

be m y2 dy. Now the potential energy of the particle at a displacement y is equal to 

the total work done to displace the particle from O through a distance y. 

 

 P.E. = 
22

0

2

2

1
ymdymyy

y

       

 (1.8) 

 

Using Eq. (1.2), the kinetic energy of the particle is given by 

 

 K. E. = )(
2

1

2

1 222

2

yam
dt

dy
m 








     

  (1.9) 

 

The total energy of the particle at any distance y from 0 is given by  

 

Total energy = K.E. + P.E. = 
22222

2

1
)(

2

1
ymyam    

 

    = 
22

2

1
am     

 (1.10) 
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Therefore, the total energy (intensity) is proportional to (amplitude)2, and, since 

f 2 , f being the frequency, the energy is also proportional to (frequency)2. 

 

If I  represents the intensity associated with a light wave then 

 

 
2aI   

 

where a represents the amplitude of the wave.  

 

Wave-motion 

So far, we considered a single particle, P, executing simple harmonic motion. Let us 

consider a number of particles which make a continuous elastic medium. If any one 

particle is set in vibration, each successive particle begins a similar vibration, but a little 

later than the one before it, due to inertia. Thus, the phase of vibration changes from 

particle to particle until we reach a particle at which the disturbance arrives exactly at 

the moment when the first particle has completed one vibration. This particle then 

moves in the same phase as the first particle. This simultaneous vibrations of the 

particles of the medium together make a wave. Such a wave can be represented graphi-

cally by means of a displacement curve drawn with the position of the particles as 

abscissa and the corresponding displacement at that instant as ordinate. If the particles 

execute simple harmonic motion, we obtain a sine curve as shown in Fig. 1.4. 

 

 
 

 

Fig. 1.4. Graphical representation of a wave 

 

It will be seen that the wave originating at a repeat itself after reaching i. The distance 

ai, after travelling which the wave-form repeats itself, is called the wavelength and is 

denoted by  . It is also evident that during the time T, while the particle at a makes 

one vibration, the wave travels a distance  . Hence the velocity v of the wave is given 

by 

 

 
T

v


   

 

If n  is the frequency of vibration then f  = 1/T. Hence, we have 

 

 nv           

 (1.11) 

 

Particles in Same Phase 

Particles a and i have equal displacements (= zero) and both are tending to move 

upwards. They are said to be in the same phase. The distance between them is one 

wavelength. Hence, wavelength is the distance between two nearest particles vibrating 

in the same phase. Two vibrating particles will also be in the same phase if the distance 

between them is n , where n is an integer. 
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Particles in Opposite Phase 

Particles a and e both have the same displacement (= zero), but while a is tending to 

go up, e is tending to move downwards. They are said to be in opposite phase. The 

distance between them is 2/ . The particles are out of phase if the distance between 

them is 2/)12( n , where n  is an integer. 

 

Equation of a Simple Harmonic Wave 

Fig. 1.5 shows the wave travelling in the positive x -direction. The displacement y of 

the particle at 0 at any time t  is given by  

 

tay sin         

 (5.1) 

 

 
 

Fig. 1.5 A simple harmonic wave travelling towards right 

 

Let v be the velocity of propagation of the wave. Then the wave starting from 0 would 

reach point A, distant x from 0 in vx /  seconds. Hence, the particle at A must have 

started its vibration vx /  seconds later than the particle at 0, Consequently, the 

displacement at A at the time t would be same as was at O at time vx /  seconds earlier, 

i.e., at time 
v

x
t  . Substituting 

v

x
t   for t  in Eq. (1.1) we obtain the displacement at 

A at time t, which is given by 

 

 









v

x
tay sin  

 

Using the relation T/2  and Tv / , we get 

 

)(
2

sin xvtay 



       

 (1.12) 

 

This equation represents the displacement of a particle at a distance x from a fixed point 

at a time t. This is, therefore, the equation of the wave. The wave shown in Fig. 1.5 is 

generated along a stretched string and in a rope. Such types of waves are called 

transverse waves. From Unit 4 of Optics I, you already know that light travels in the 

form of transverse waves, therefore Eq. (1.12) represents a light wave. 

 

Relation between Phase Difference and Path Difference 

The equation of simple harmonic wave is given by Eq. (1.12). If there are two particles 

1P  and 
2P  at distance 1x  and 

2x  from the origin, then,  
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the phase angle of 
1P  at a time t  equals )(

2
1xvt 




 

 

the phase angle of 
2P  at a time t  equals )(

2
2xvt 




 

 

 

 phase difference between 
1P  and 

2P equals  

)(
2

)(
2

21 xvtxvt 







= )(

2
12 xx 




   

  

 

But )( 12 xx   is the path difference between 
2P  and 

1P . 

 

 Phase difference = 


2
(path difference) 

 

When two or more sets of waves are made to overlap in some region of space, 

interesting effects are observed. For example, when two stones are dropped 

simultaneously in a quiet pool, two sets of waves are created. In the region of crossing, 

there are places where the disturbance is almost zero, and others, where it is greater 

than that given by either wave alone. These effects can be explained using a very simple 

law known as the principle of superposition. We will use this principle in investigating 

the disturbance in regions where two or more light waves are superimposed. Let us now 

briefly study this principle. 

 

1.3   PRINCIPLE OF SUPERPOSITION 
In any medium, two or more waves can travel simultaneously without affecting the 

motion of each other. Therefore, at any instant the resultant displacement of each 

particle of the medium is merely the vector sum of displacements due to each wave 

separately. This principle is known as "the principle of superposition." It has been 

observed that when two sets of waves are made to cross each other, then after the waves 

have passed out of the region of crossing, they appear to have been entirely 

uninfluenced by the other set of waves. Amplitude, frequency and all other 

characteristics of the waves are as if they had crossed an undisturbed space. 

 

As a simple example, we consider a long-stretched string AB (see Fig. 1.6). The end A 

of the string is made to vibrate up and down. This vibration is handed down from 

particle to particle of the string. Let the string be vibrating in the form of a triangular 

pulse, which propagates to the right with a certain speed v. We next assume that from 

the end B an identical pulse is generated which starts moving to the left with the same 

speed v. 

 

The expression 


2
(path difference) can be obtained in a less formal manner by 

remembering that a difference in phase of 2  corresponds to a path difference of 

one wavelength and calculating the required phase difference by proportion. 
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Fig. 1.6 The propagation of two triangular pulses in opposite directions in a stretched 

string. The  

solid line gives the actual shape of the string; (a), (b), (c), (d) and (e) correspond 

to different instants of tune. 

 

Fig. 1.6(a) shows the position of pulse at 0t . At a little later time, each pulse moves 

close to the other as shown in Fig. 1.6(b), without any interference. Fig. 1.6(c) 

represents the position at an instant when the two pulses interfere; the dashed curves 

represent the profile of the string, if each of the impulses were moving all by itself, 

whereas the solid curve shows the resultant displacement obtained by the algebraic 

addition of each displacement. Shortly later in Fig. 1.6(d) the two pulses overlap each 

other and the resultant displacement is zero everywhere. At a much later time, the 

impulses cross each other (Fig. 1.6(e)) and move as if nothing had happened. This could 

hold provided the principle of superposition is true. 

 

Let us consider the following case of superposition of waves. 

 

Superposition of Two Waves of Same Frequency but having Constant Phase 

Difference 

Consider two waves of same frequency but having constant phase difference, say  . 

Since they have same frequency, i.e., the same angular velocity, we write 

 

 tay sin11   

and  

 )sin(22   tay  

 

where 
1a  and 

2a  are two different amplitudes, and   is the common angular 

frequency of the two waves. By the principle of superposition, the resultant 

displacement is 

 

 y  = 
21 yy   

  = )sin(sin 21   tata  

  =  sincoscossinsin 221 tatata   

  = )sin(cos)cos(sin 221  ataat   

 

Let us write 



PHY 306             OPTICS II 

10 

 

  coscos21 Aaa        

 (1.14a) 

and 

  sinsin2 Aa         

 (1.14b) 

 

where A  and   are new constants. This gives 

 

  sincoscossin tAtAy   

or 

 )sin(   tAy  

 

Hence the resultant displacement is simple harmonic and of amplitude A . Squaring 

and adding Eq. 1.14a and 1.14b, we get 

 

 
2

2

2

21

2222 )sin()cos(sincos  aaaAA   

 

or 

 

 cos2 21

2

2

2

1

2 aaaaA   

 

Thus, the resultant intensity I  which is proportional to the square of the resultant 

amplitude, is given as 

 

 cos2 21

2

2

2

1

2 aaaaAI       

 (1.15)  

 

(Here we have taken the constant of proportionality as 1, for simplicity). 

 

Thus, we find that the resultant intensity is not equal to the sum of the intensities due 

to separate waves i.e., )( 2

2

2

1 aa  . Since the intensity of wave is proportional to square 

of amplitude,
2

11 aI   and 
2

22 aI  . As before, taking the proportionality constant as 

1 , we can rewrite Eq. (1.15) as 

 

 cos2 2121 IIIII        

 (1.16) 

 

In Example 1, see how Eq. (1.16) has been used to find the resultant intensity. 

 

Example 1 
Consider interference due to two coherent waves of the same frequency and constant 

phase difference having intensities I  and I4 , respectively. What is the resultant 

intensity when the phase difference between these two waves is 2/  and  ? 

 

 

 

Solution 
According to Eq. (1.16) 
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 I  = cos2 2121 IIII   

  

Given: 

 II 1
 and 

2I = I4 , so 

 I  = cos425 II   

  = cos45 II   

Hence 

 

 2/I  = 
090cos45 II  = I5  

  

 I  = cos45 II     = I  

  

Thus, there is a variation of intensity due to interference phenomenon. 

 

Refer again to Eq. (1.16). The intensity I  is maximum when 1cos  , that is, when 

phase difference is given by 

 

  n2  (even multiple of  ) 

 

From Eq. (1.16) 

 

 2121max 2 IIIII   

 

The resultant intensity is, thus, greater than the sum of the two separate intensities. If 

 

 
21 II  , then, 1max 4II   

 

The intensity I  is minimum when 1cos  , i.e., when   is given by 

 

  )12(  n  (odd multiple of  ) 

 

We have from Eq. (1.16) 

 

 2121min 2 IIIII   

 

The resultant intensity is thus less than the sum of two separate intensities. If 
21 II  , 

then 
minI = 0, which means that there is no light. 

 

SAQ 3 

Two waves of same frequency and constant phases difference have intensities in the 

ratio 81:1. They produce interference fringes. Deduce the ratio of the maximum to 

minimum intensity. 

 

 

In general, for the two waves of same intensity and having a constant phase difference 

of  , the resultant intensity is given by 

 

 I  = cos22 11 II   

  = )cos1(2 1 I  
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  = 
2

cos4 2

1


I  

 

Therefore, we find that when two waves of the same frequency travel in approximately 

the same direction and have a phase difference that remains constant with the passage 

of time, the resultant intensity of light in not distributed uniformly in space. The non-

uniform distribution of the light intensity due to the superposition of two waves is 

called interference. At some points the intensity is maximum and the interference at 

these points is called constructive interference. At some other points the intensity is 

minimum and the interference at these points is called destructive interference. 

 

 

SAQ 4 
Fig. 1.7 shows two situations where waves emanating from two sources, A and B, arrive 

at point C and interfere. Which of the two situations indicate constructive interference 

and destructive interference? Give reasons. (Eq. (1.13) will help you in answering this 

question.) 

 

 
 

Fig. 5.7 

 

 

After solving the above SAQ one can infer that: for constructive interference, 

 

path difference = n , where n = 0, 1, 2, 3, …    

 (1.18) 

 

for destructive interference, 

 

path difference = 
2


m , where m  =1, 3, 5, 7, …    

 (1.19) 

 

For the production of stationary interference patterns, i.e., definite regions of 

constructive and destructive interference, the interfering waves must have (1) the same 

frequency, and (2) a constant phase difference (and they must be travelling in the same 

or nearly the same direction). If these conditions are satisfied, we say the wave sources 

and the waves are coherent. Sources can readily be found with the same vibrating 

frequency; however, the phase relationship between the waves may vary with time. In 

Usually, when two light waves are made to interfere, we get alternate dark and 

bright bands of a regular or irregular shape. These are called interference fringes. 
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the case of light, the waves are radiated by the atoms of a source. Each atom contributes 

only a small part to the light emitted from the source and the waves bear no particular 

phase relationship to each other; the atoms randomly emit light, so the phase "constant" 

of the total light wave varies with time. Hence, light waves brought together from 

different light sources are coherent over very short periods of time and do not produce 

stationary interference patterns. Light from two lasers (about this you will study in 

Optics III) can be made to form stationary interference patterns, but the lasers must be 

phase-locked by some means. How, then, was the wave nature of light originally 

investigated, since lasers are a relatively recent development? In the following sections 

we will discuss the various arrangements, which provide coherent sources and enable 

us to observe interference phenomenon. Thomas Young had first demonstrated the 

interference of light. In the next section we will describe the experiment done by him. 

 

1.4   YOUNG'S DOUBLE-SLIT EXPERIMENT 
One of the earliest demonstrations of such interference effect was first done by Young 

in 1801, establishing the wave character of light. Young allowed sunlight to fall on a 

pinhole 0S , punched in a screen A as shown in Fig. 1.8. The emergent light spreads out 

and falls on pinholes 
1S  and 

2S , punched in the screen B. Pinholes 
1S  and 

2S act as 

coherent sources. Again, two overlapping spherical waves expand into space to the 

right of screen B, Fig. 1.8 shows how Young produced an interference pattern by 

allowing the waves from pinholes 
1S  and 

2S  to overlap on screen C. 

 

 
 

Fig.1.8 Young's double slit experiment. The pinholes S, and S2 act as coherent sources 

and an  

interference pattern is observed on the screen C. 

 

Fig. 1.9 shows the section of the wavefront on the plane containing 0S , 
1S  and 

2S . 

Since the waves emanating from 
1S  and 

2S  are coherent, we will see alternate bright 

and dark curves of fringes, called interference fringes. The interference pattern is 

symmetrical about a bright central fringe (also called maximum), and the bright fringes 

decrease in intensity, the farther they are from the central fringe. 
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Fig. 1.9 Sections of the spherical wavefronts emanating from 0S , 
1S  and 

2S  

 

 

 
 

Fig. 1.9: Sections of the spherical wavefronts emanating from 0S , 
1S  and 

2S  

 

To analyse the interference pattern and investigate the spacing of the interference 

fringes, consider the geometry in Fig. 1.10. Let S be a narrow slit illuminated by 

monochromatic light, and 
1S  and 

2S  two parallel narrow slits very close to each other 

and equidistant from S. The light waves from S arrive at 
1S  and 

2S  in the same phase. 

Beyond 
1S  and 

2S , the waves proceed as if they started from 
1S  and 

2S  with the 

same phase because the two slits are equidistant from S. 
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Fig. 1.10 The geometry of Young's experiment: The path difference of the light from 

the slits  

  arriving at P on the screen is sind  

 

It is assumed that the waves start out at the same phase, because the two slits 
1S  and 

2S  are equidistant from S. Furthermore, the amplitudes are the same, because 
1S  and 

2S  are the same size slits and very close to each other. (So the amplitude does not vary 

very much.) Hence these waves produce an interference pattern on a screen placed 

parallel to 
1S  and 

2S . 

 

To find the intensity at a point P on the screen, we join PS1
 and PS2

. The two waves 

arrive at P from 
1S  and 

2S  having traversed different paths PS1
 and PS2

. Let us 

calculate this path difference PSPS 12  . Let  

 

y  = distance of P from P0, the central point on the screen  

 

d  = separation of two slits S} and S2  

 

D  = distance of slits from the screen 

 

The corresponding path difference is the distance S2A in Fig. 1.10, where the line AS1
 

has been drawn to make S1 and A equidistant from P. As Young's experiment is usually 

done with dD  , the angles   and ''  are nearly same and they are small. 

 

Hence, we may assume triangle S1A S2 as a right-angled triangle and S2A = d sin '  = d 

sin   = d tan , as for small  , sin  = tan  . As can be seen from the Fig. 1.10, tan 

  = y/D. 

 

 
D

y
dASPSPS  212       

 (1.20) 

 

Now the intensity at the point P is a maximum or minimum according as the path 

difference PSPS 12   is an integral multiple of wavelength or an odd multiple of half 

wavelength (See Eq. 1.18 and Eq. 1.19). Hence, for bright fringes (maxima), 
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 012 
D

yd
PSPS ,  , 2 , 3 , … = m  

 

where m = 0, 1, 2, ..... 

 

 dmDy /      (bright fringes)     

  (1.21) 

 

The number m is called the order of the fringe. Thus the fringes with m = 0, 1, 2,.... etc. 

are called the zero, first, second.... etc. orders. The zeroth order fringe corresponds to 

the central maximum, the first order fringe (m = 1) corresponds to the first bright fringe 

on either side of the central maximum, and so on. For dark fringes (minima), 

 














2

1
...,,

2

5
,

2

3
,

2
12 m

D

yd
PSPS    

 

where m = 0, 1, 2, … 

 

 
d

D
my












2

1
 (dark fringes)     

 (1.22) 

 

Eq. (1.21) or Eq. (1.22) can be used to find out the distance v« of the nth order bright 

(or dark) fringe. Try to solve the following SAQ. 

 

SAQ 5 
Monochromatic light passes through two narrow slits 0.40 mm apart. The third-order 

bright fringe of the interference pattern, observed on a screen 1.0 meter from the slits, 

is 3.6 mm from the centre of the central maximum. What is the wavelength of the light 

? 

 

 

Fringe Width 

If ny  and 1ny  denote the distances of the nth and the )1( n th bright fringes, then 

 

 n
d

D
yn   

and 

 dn
d

D
yn )1(1   

 

The spacing between the nth and the )1( n th fringes (bright) is given by 

 

 dDn
d

D
n

d

D
yy nn /)1(1    

 

It is independent of n. Hence, the spacing between any two consecutive bright fringes 

is the same. Similarly, it can be shown that the spacing between two dark fringes is also 
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d

D
. The spacing between any two consecutive bright or dark fringes is called the 

fringe-width, which is denoted by  . Thus 

 

 
d

D
  

 

One also finds, by experiment, that fringe-width 

 

(i)    varies directly as D, 

 

(ii)    varies directly as the wave-length of the light used, and  

 

(iii)    inversely as the distance d between the slits. 

 

The fringe-widths are so fine that to see them, one usually uses a magnifier or eyepiece. 

 

To make certain that you really understand the meaning of the fringe width, try the 

following SAQs. 

 

 

SAQ 6 

In a two-slit interference pattern with  = 6000 Å, the zero order and tenth order 

maxima fall at 12.34 mm and 14.73 mm respectively. Find the fringe width. 

 

 

 

SAQ7 

If in the SAQ 6, A is changed to 5000 A, deduce the positions of the zero order and 

twentieth order fringes, other arrangements remaining the same. 

 

 

Shape of the Interference Fringes 

In Fig. 1.11, suppose 
1S  and 

2S  represent the two coherent sources. At the point P, 

there is maximum or minimum intensity according as 

 

nPSPS  12
 

or 

 
22

1
12










 nPSPS  

 

Thus, for a given value of n, the locus of points of maximum or minimum intensity is 

given by 

 

 PSPS 12  = constant 

 

which is the equation of a hyperbola with 
1S  and 

2S  as foci. In space, the locus of 

points of maximum or minimum intensity for a particular value of n will be a 

hyperboloid of revolution, obtained by revolving the hyperbola about the line 
21SS . 
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Fig. 1.11 Shape of the fringes 

 

In practice, fringes are observed on a screen XY in a plane normal to the plane of the 

figure and parallel to the line joining 
21SS . Hence the fringes that are observed are 

simply the sections of the hyperboloids by this plane, i.e., they are hyperbolae. Since 

the wavelength of light is extremely small (of the order of 
510

cm), the value of 

)( 12 PSPS   is also of that order. Hence these hyperbolae appear, more or less, as 

straight lines. 

 

Intensity Distribution in the Fringe-System 

To find the intensity, we rewrite Eq. (1.15), taking 
21 aa  , as follows 

 

 
2AI   = )cos1(2 2 a  

 

  = 
2

cos4 22 
a  

    

If the phase difference is such that  = 0, 2 , 4 , …, this gives 
24a  or 4 times the 

intensity of either beam. If   , 3 , 5 , …, the intensity is zero. 

 

In-between, the intensity varies as 2/cos2  . Fig. 1.12 shows a plot of intensity 

against the phase difference. When the two beams of light arrive at a point on the 

screen, exactly out of phase, they interfere destructively, and the resultant intensity is 

zero. One may well ask what becomes of the energy of the two beams, since the law of 

conservation of energy tells us that it cannot be destroyed. The answer to this question 

is that the energy, which apparently disappears at the minima, is actually still present 

at the maxima, where the intensity is greater than would be produced by the two beams 

acting separately. In other words, the energy is not destroyed, but merely redistributed 

in the interference pattern. The average intensity on the screen is exactly what would 

exist in the absence of interference. Thus, as shown in Fig. 1.12, the intensity in the 

interference pattern varies between 4A2 and zero. Now each beam, acting separately, 

would contribute 
2A , and so, without interference, we would have a uniform intensity 

of 
22A , as indicated by the broken line. Let us obtain the average intensity on the 

screen for n fringes. We have 
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Fig. 1.12 Intensity distribution for the interference fringes from two waves of the same 

frequency 

 

 averageI  = 
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2
coscos1 2   

  = 
 0

22 ]sin22[ AA   

   

  = 


22A
 

 

  = 
22A  

 

Thus, the average intensity is equal to the sum of the separate intensities. That is 

whatever energy apparently disappears at the minima is actually present at the maxima. 

There is no violation of the law of conservation of energy in the phenomenon of 

interference. 

 

Till now we have considered interference pattern produced when a monochromatic 

light from a narrow-slit falls on two parallel slits. What happens if white light is used 

to illuminate slits? Read the following sub-section. 

 

1.4.1   White-Light Fringes 
If white light is used to illuminate the slits, we obtain an interference pattern consisting 

of a central 'white' fringe, having on both sides a few coloured fringes and then a general 

illumination. 

 

A pair of white light coherent sources is equivalent to a number of pairs of 

monochromatic sources. Each monochromatic pair produces its own system of fringes 

with a different fringe-width  , since   depends on   









d

D
 . 
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At the centre of the pattern, the path difference between the interfering waves is zero. 

Therefore, the path difference is also zero for all wavelengths. Hence, all the different 

coloured waves of the white light produce a bright fringe at the centre. This 

superposition of the different colours makes the central fringe 'white'. This is the 'zero 

order fringe'. 

 

As we move on either side of the centre, the path difference gradually increases from 

zero. At a certain point it becomes equal to half the wavelength of the component 

having the smallest wave-length, i.e., violet. This is the position of the first dark fringe 

of violet. Beyond this, we obtain the first minimum of blue, green, yellow and of red 

in the last. The inner edge of the first dark fringe, which is the first minimum for violet, 

receives sufficient intensity due to red, hence it is reddish. The outer edge of the first 

dark fringe, which is minimum for red, receives sufficient intensity due to violet, and 

is therefore, violet. The same applies to every other dark fringe. Hence, we obtain a 

few coloured fringes on both sides of the central fringe. 

 

As we move further away from the centre, the path difference becomes quite large. 

Then, from the range 7500 - 4000 Å, a large number of wavelengths (colours) will 

produce maximum intensity at a given point, and an equally large number will produce 

minimum intensity at that point. For example, at any point P, we may have 

path difference 

 path difference 












































(minima) etc,,...,
2

1
13

2

1
12

2

1
11

(maxima) etc,...,131211

'

3

'

2

'

1

321





 

 

Thus, at P, we shall have 11th, 12th, 13th, etc., bright fringes of 
1 , 

2 , 3 , etc., and 

11th, 12th, 13th, etc., dark fringes of 
'

1 , 
'

2 , 
'

3 , etc. Hence, the resultant colour at P is 

very nearly white. This happens at all points, for which the path difference is large. 

Hence, in the region of large path difference uniform white illumination is obtained. 

 

 

 

 

 

 

 

SAQ 8 

Let the path difference 
5

21 1030  PSPS  cm What are the  ’s for which the 

point P is a maximum? 

 

In the usual interference pattern with a monochromatic source, a large number of 

interference fringes are obtained, and it becomes extremely difficult to determine the 

position of the central fringe. Hence, by using white light as a source the position of 

central fringe can be easily determined. 

 

 

 

 

For maxima, path difference = n , where n = 0, 1, 2, ….  

For minima, path difference = 









2

1
n , where n = 0, 1, 2, … 
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1.4.2    Displacement of Fringes 
We will now discuss the change in the interference pattern produced when a thin 

transparent plate, say of glass or mica, is introduced in the path of one of the two 

interfering beams, as shown in Fig. 1.13. It is observed that the entire fringe-pattern is 

displaced to a point towards the beam in the path of which the plate is introduced. If 

the displacement is measured, the thickness of the plate can be obtained provided the 

refractive index of the plate and the wavelength of the light are known. 

 

 
 

Fig. 1.13: If a thin transparent sheet (of thickness t ) is introduced In one of the beams, 

the fringe  

   pattern gets shifted by a distance dtD /)1(   

 

Suppose a thin transparent plate of thickness t and refractive index   is introduced in 

the path of one of the constituent interfering beams of light (say in the path of PS1
, 

shown in Fig. 1.13). Now, light from 
1S  travels partly in air and partly in the plate. For 

the light path from 
1S  to P, the distance travelled in air is ( tPS 1

), and that in the 

plate is t. Let c and v be the velocities of light in the air and in the plate, respectively. 

If the time taken by light beam to reach from 
1S  to P is, T, then 

 

 
c

t

c

tPS
T 


 1  

or, 

 

 
c

t

c

tPS
T





 1  











c
v   

     = 
c

tPS )1(1  
 

 

Thus the effective path in air from 
1S  to P is ])1([ 1 tPS   , i.e., the air path PS1

 

is increased by an amount t)1(  , due to the introduction of the plate of material of 

refractive index,  . 
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Let O be the position of the central bright fringe in the absence of the plate, the optical 

paths OS1
and OS2

 being equal. On introducing the plate, the two optical paths 

become unequal. Therefore, the central fringe is shifted to 'O  such that at 'O  the two 

optical paths become equal. A similar argument applies to all the fringes. Now, at any 

point P, the effective path difference is given by 

 

 ])1([ 12 tPSPS    = tPSPS )1()( 12    

 

From Eq. (1.20), y
D

d
PSPS  12  

 Effective path difference at ty
D

d
P )1(    

 

If the point P is to be the centre of the nth bright fringe, the effective path difference 

should be equal to n , i.e., 

 

  nty
D

d
n  )1(  

or  

 ])1([ tn
d

D
yn         

 (1.24) 

 

In the absence of the plate (t = 0), the distance of the nth bright fringe from O is n
d

D

. 

 Displacement 0y  of the nth bright fringe is given by 

 

  n
d

D
tn

d

D
y  ])1([0  

 

 t
d

D
y )1(0          

 (1.25) 

 

The shift is independent of the order of the fringe, showing that shift is the same for all 

the bright fringes. Similarly, it can be shown that the displacement of any dark fringe 

is also given by Eq. (1.25). Thus, the entire fringe-system is displaced through a 

distance t
d

D
)1(   towards the side on which the plate is placed. The fringe-width is 

given by 

 

   = nn yy 1  

 

  = ])1([])1()1[( tn
d

D
tn

d

D
    (see Eq. (1.24)) 

 

which is the same as before the introduction of the plate. 
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Eq. (1.25) enables us to determine the thickness of extremely thin transparent sheets 

(like that of mica) by measuring the shift of the fringe system. 

 

Now, apply this strategy yourself to SAQ 9. 

 

SAQ 9 
In a double slit interference arrangement one of the slits is covered by a thin mica sheet 

whose refractive index is 1.58. The distances 
21SS  and AO (see Fig. 1.13) are 0.1 cm 

and 50 cm, respectively. Due to the introduction of the mica sheet, the central fringe 

gets shifted by 0.2 cm. Determine the thickness of the mica sheet. 

 

 

1.5   FRESNEL'S BIPRISM 
With regard to Young's double-slit experiment, objection was raised that the bright 

fringes observed by Young were probably due to some complicated modification of the 

light by the edges of the slits and not due to interference. Soon after, Fresnel devised a 

series of arrangements to produce the interference of two beams of light which was not 

subject to this criticism. One of the experimental arrangements, known as Fresnel's 

Biprism arrangement, is shown in Fig. 1.14. 

 

 
 

Fig. 1.14: Diagram of Fresnel's Biprism experiment 

 

S is a narrow vertical slit illuminated by monochromatic light. The light from S  is 

allowed to fall symmetrically on the Biprism P, placed at a small distance from S and 

having its refracting edges parallel to the slit. The light emerging from the upper and 

lower halves of the prism appears to start from two virtual images, 
1S  and 

2S  of S , 

which act as coherent sources. The cones of light ebS1
and caS2

, diverging from 
1S  

and 
2S , are superposed and the interference fringes are formed in the overlapping 

region be. 

 

If screens M and N are placed as shown in the Fig. 1.14, interference fringes are 

observed only in the region be. When the screen ae is replaced by a photographic plate, 

a picture like the upper one, in Fig. 1.15, is obtained. 

 

The closely spaced fringes in the centre of the photograph are due to interference, while 

the wide fringes at the edge of the photograph are due to diffraction. These wider bands 

are due to the vertices of the two prisms, each of which acts as a straight edge, giving 

a pattern of diffraction (about this you will learn in Optics III). When the screens M 

and N are removed from the light path, the two beams overlap over the whole region 
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ae. The lower photograph in Fig. 5.15 shows for this case the equally spaced 

interference fringes superimposed on the diffraction pattern, of a wide aperture. 

 

 
 

Fig. 1.15 Interference and diffraction fringes produced in the Fresnel Biprism 

experimental  

  arrangement 

 

With such an experiment, Fresnel was able to show the interference effect without the 

diffracted beams through the two slits. Just as in Young's double slit experiment, this 

arrangement can also be used to determine the wavelength of monochromatic light. The 

light illuminates the slit S and interference fringes can be easily viewed through the 

eyepiece. The fringe-width   can be determined by means of a micrometer attached 

to the eyepiece. If D is the distance between source and screen, and d the distance 

between the virtual images 
1S  and 

2S , the wave-length is given by 

 

D

d
          

 (5.26) 

 

The distances d and D can easily be determined by placing a convex lens between the 

Biprism and the eyepiece. For a fixed position of the eyepiece, there will be two 

positions of the lens, shown as 
1L  and 

2L  in Fig. 1.16 where the images of 
1S  and 

2S  be seen at the eyepiece. Let 
1d  be the distance between the two images, when the 

lens is at the position 
1L  (at a distance 

1b  from the eyepiece). Let 
2d  and 

2b  be the 

corresponding distances, when the lens is at 
2L . Then it can easily be shown that 

 

 21ddd          

 (1.27a) 

and  

21 bbD          

 (1.27) 
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Fig. 1.16 Fresnel's biprism arrangement. C and L represent the position of cross wires 

and the 

eyepiece, respectively. In order to determine d a lens is introduced between 

the biprism and cross wires. 
1L  and 

2L  represent the two positions of the 

lens where the slits are clearly seen. 

 

Use Eq. (1.26) and (1.27) to solve the following SAQ. 

 

SAQ 10 

In a Fresnel's Biprism experiment, the eyepiece is at a distance of 100 cm from the slit. 

A convex lens inserted between the Biprism and the eyepiece gives two images of the 

slit in two positions. In one case, the two images of the slit are 4.05 mm apart, and in 

the other case 2.10 mm apart. If sodium light of wavelength 5893 Å is used, find the 

thickness of the interference fringes. 

 

 

1.6 SOME OTHER ARRANGEMENT FOR PRODUCING INTERFERENCE 

BY  

         DIVISION OF WAVEFRONT 
Two beams may be brought together in several other ways to produce interference. In 

Fresnel's two-mirror arrangement, light from a slit is reflected in two plane mirrors 

slightly inclined to each other. The mirror produces two virtual images of the slit, as 

shown in Fig. 1.17. 

 

 
 

Fig. 1.17 Fresnel's two mirror arrangement. 

 

They are like the images in Fresnel's biprism, and interference fringes are observed in 

the region bc, where the reflected beams overlap. 
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Even a simpler mirror method is available. This is known as Lloyd's mirror. Here the 

slit and its virtual image constitute the double source. 

 

Lloyd's Mirror 

It is a simple arrangement to obtain two coherent sources of light to produce a stationary 

interference pattern. It consists of a plane mirror MN (Fig. 1.18) polished on the front 

surface and blackened at the back (to avoid multiple reflection). 
1S  is a narrow slit, 

illuminated by monochromatic light, and placed with its length parallel to the surface 

of the mirror. Light from 
1S  falls on the mirror at nearly grazing incidence, and the 

reflected beam appears to diverge from 
2S , which is the virtual image of 

1S . Thus, 

1S  and 
2S  act as coherent sources. The direct cone of light EAS1

 and the reflected 

cone of light BS2C are superposed, and the interference fringes are obtained in the 

overlapping region BC on the screen. 

 

 
 

Fig. 5.18 Lloyd's mirror 

 

Zero-Order Fringe 
The central zero-order fringe, which is expected to lie at 0 (the perpendicular bisector 

of 
21SS ) is not usually seen since only the direct light, and not the reflected light, 

reaches O. It can be seen by introducing a thin sheet of mica in the path of light from 

1S , when the entire fringe system is displaced in the upward direction. (You could see 

this yourself while solving SAQ 11.) 

 

 

SAQ 11 

Interference bands are obtained with a Lloyd's mirror with light of wavelength 
51045.5  cm. A thin plate of glass of refractive index 1.5 is then placed normally in 

the path of one of the interfering beams. The central dark band is found to move into 

the position previously occupied by the third dark band from the centre. Calculate the 

thickness of the glass plate. 

 

 

With white light the central fringe is expected to be white, but actually it is found to be 

'dark'. This is because the light suffers a phase change of   or a path-difference of 
2


 

when reflected from the mirror. Therefore, the path difference between the interfering 

At grazing incidence, almost the entire incident light is reflected so that the direct and the 

reflected beam have nearly equal amplitudes. Hence the fringes have good contrast. 
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rays at the position of zero-order fringe becomes 
2


 (instead of zero), which is a 

condition for a minimum. Hence the fringe is dark. 

 

Determination of Wavelength 

Let d be the distance between the coherent sources 
1S  and 

2S , and D the distance of 

the screen from the sources. The fringe-width is then given by 

 

 
d

D
   

 

Thus, knowing  , D and d, the- wavelength   can be determined. 

 

Acromatic Fringes and their Production by Lloyd's Mirror 
A system of white and dark fringes, without any colours, obtained by white light are 

known as 'achromatic fringes'. 

 

Ordinarily, with white light, we obtain a central white fringe, having on either side of 

it a few coloured fringes (as you have studied in subsection 1.4.1). This is because the 

fringe-width 
d

D
   is different for different wavelengths (colours). If however, the 

fringe-width is made the same for all wavelengths, the maxima of each order for all 

wavelengths will coincide, resulting into achromatic fringes. That is, for achromatic 

fringes, we must have 

 

 
d

D
= constant 

or 
d


= constant 

  

We can easily realise this condition with a Lloyd's mirror by using a slit illuminated by 

a narrow spectrum of the white light as shown in Fig. 1.19. The narrow spectrum 
11VR  

is produced by a prism, or, preferably, by a plane diffraction grating. The Lloyd's mirror 

is placed with its surface close to the violet end of the spectrum and such that 
11VR  is 

perpendicular to its plane. 

 
Fig. 1.19 Achromatic fringes produced by Lloyd's mirror 

 

11VR , and its virtual image, 
22VR , formed by the mirror act as coherent sources. They 

are equivalent to a number of pairs of sources of different colours. Thus, the pair 21RR  

produces a set of red fringes, and the pair 21VV  a set of violet fringes. The intermediate 
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pairs produce the sets of fringes of intermediate colours. The red and violet fringes will 

be of the same width if 

 

d


= constant 

 

i.e., 
v

v

r

r

dd


   

or 
v

r

v

r

d

d




  

 

where 
rd  is the distance 

21RR , and vd  the distance 
21VV .  

 

Hence, the last expression gives 

 

 
v

r

VV

RR






21

21  

 

Therefore, if the distance of the violet end 
1V  from the surface of the mirror is so 

adjusted by displacing the mirror laterally that the above condition is satisfied, the red 

and violet fringes will have the same width, and will exactly be superposed on each 

other. Since, in a grating spectrum, the dispersion is accurately proportional to the 

wavelength, the condition )/( d = constant is simultaneously satisfied for all the 

wavelengths. Thus, when this adjustment is made, fringes of all colours are superposed 

on one another. Hence, achromatic fringes are observed in the eyepiece E placed in the 

over-lapping region. 

 

Difference between Biprism and Lloyd's Mirror Fringes 

The following are the main points of difference between the biprism and Lloyd's mirror 

fringes. 

 

(1)        In biprism, the complete pattern of fringes is obtained. In Lloyd's mirror, 

ordinarily, only a few fringes on one side of the central fringe are visible, the 

central fringe itself being invisible. 

 

(2)       In biprism the central fringe is bright, while in Lloyd's mirror it is dark. 

 

(3)       The central fringe in biprism is less sharp than that in Lloyd's mirror. 

 

The coherent sources in the biprism are 
11BA  and 

22BA  (Fig. 1.20a) the virtual images 

of a slit AB. In Lloyd's mirror, the coherent sources are a slit 
11BA  itself and its virtual 

image 
22 AB  (Fig. 1.20 b). In both cases, 

1A  and 
2A  form one extreme pair of coherent 

point-sources, and 
1B  and 

2B  another extreme pair. In the biprism, the zero-order 

fringes corresponding to 
11BA  and 

22BA  are formed at A0 and B0, which lie on the 

right bisectors of 21AA  and 21BB , respectively. Hence, the zero-order fringe extends 

from 0A  to 0B . In Lloyd's mirror, on the other hand, all pair of coherent sources have 

a common perpendicular bisector, so that zero-order fringes due to all of these are 

formed in one and the same position. Hence the zero-order fringe is sharp in this case. 
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Fig. 1.20 Showing the difference between biprism and Lloyd's mirror fringes 

 

(4) In biprism dBBAA  2121
. Hence, the fringe-width 

d

D
   is the same 

for 

all pairs of coherent sources. In Lloyd's mirror arrangement d is different for 

different pairs of coherent sources, e.g., 
2121 BBAA  . Hence, the fringe-

width is different for different pairs of coherent sources. 

 

1.6   SUMMARY 

 The relationship between phase difference and path difference is:  

 

phase difference = 


2
(path difference) 

 If two waves of same frequency and of amplitudes 
1a and 

2a  and phase 

difference   are superposed then, according to principle of superposition, the 

amplitude A of the resultant wave is given by 

 

  cos2 21

2

2

2

1

2 aaaaA   

 

 Two sources are said to be coherent if they emit light waves with constant or 

no phase difference. 

 When two waves of the same frequency travel in approximately the same 

direction and have a phase difference that remains constant with time, the 

resultant intensity of light is not distributed uniformly in space. This non-

uniform distribution of the light intensity is due to the phenomenon of 

interference. 

 

 For constructive interference 

 

path difference = n , where n = 0, 1, 2, ...  

 

and for destructive interference 

 

path difference = 
2


m , where m  = 1, 3, 5, 7, … 

 

 In an interference pattern, the distance between any two consecutive maxima 

or minima is given by 
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d

D
   

 

where   is called the fringe-width, A is the wavelength of light used, d is the 

distance between the two coherent sources, and D is the distance between the 

sources and the screen. 

 

 When a thin transparent plate of thickness t and refractive index   is 

introduced in the path of one of the constituent interfering beams of light, the 

entire fringe system is displaced through a distance t
d

D
)1(  . 

 

 Just as in Young's double slit experiment, the wavelength of light can be 

determined from measurement of fringe-width produced by the biprism by the 

following relation: 

  

  
D

d
   

 

where 21ddd   and 
21 bbD   

 

id  is the distance between the two images, when the lens is at the position 
1L  

at a distance 
1b  from the eyepiece. d2 and b2 are the corresponding distances 

when the lens is at 
2L . 

 

 

 Some other devices for producing coherent sources are: Fresnel's two-mirror 

arrangement and Lloyd's mirror. 

 

 Lloyd's mirror produces achromatic fringes. 

 

5.7   TERMINAL QUESTIONS 
(1)         Young's experiments is performed with light of the green mercury line. If the 

fringes are measured with a micrometer eyepiece 80 cm behind the double slit, 

it is found that 20 of them occupy a distance of 10.92 mm. Find the distance 

between two slits. Given that the wavelength of green mercury line is 5460 Å. 

 

(2)         In a certain Young's experiment, the slits are 0.2 mm apart. An interference 

pattern is observed on a screen 0.5m away. The wavelength of light is 5000 Å. 

Calculate the distance between the central maxima and the third minima on the 

screen. 

 

(3)         A Lloyd's mirror, of length 5 cm, is illuminated with monochromatic light (  

= 5460 Å) from a narrow slit 0.1 cm from its plane, and 5 cm, measured in that 

plane, from its near edge. Find the separation of the fringes at a distance of 120 

cm from the slit, and the total width of the pattern observed. 
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5.8 SOLUTIONS AND ANSWERS 

 

SAQs 
 

(1) The distance OM is given by cosa . Hence the equation is cosax   or 

tax cos . 

 

(2) t
T

atay



2

sinsin   

 If we replace   by 180°, and put a = 6 cm = 0.06 m, and T = 3 s, we get 

 

  ty
3

1802
sin)06.0(

0
  

 

(a) Thus displacement after 0.5 sec is,  

y  = t
3

1802
sin06.0

0
 

 = 0.06
060sin  

 

 = 0.052 m 

 

 (b) velocity v  = ta  cos  

    = t
TT

a
 2

cos
2

 

    = 0.06 5.0
3

1802
cos

2 0





T


 

    = 0.06
060cos

2


T


 

    = 0.063 m/s  

(c) acceleration = y2   = ta
T




sin
2

2









 

           = t
TT

 2
sin06.0

2
2









 

    = 5.0
3

1802
sin06.0

3

2 02











 
 

    = 0.228 
2ms  

 

(3) We have  

  
 
 221

2

21

2121

2121

min

max

2

2

II

II

IIII

IIII

I

I









  

 

 Now, 
1

81

2

1 
I

I
 or 

1

9

2

1 
I

I
 or 21 9 II   
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 Hence, 
 
  16

25

64

100

)8(

)10(

9

9
/

2

2

2

2

2

22

2

22

minmax 





I

I

II

II
II  

 

(4) The phase difference is related to the path difference by Eq. (5.13) as follows 

 

phase difference = )(
2

BCAC 



 

   = 



)34(

2
  

   = 2  

  

This is the condition of maximum intensity. So the waves interfere, 

constructively, in Fig. 1.7(a). 

 

In the case of Fig. 1.7(b) 

 

phase difference = )(
2

BCAC 



 

   = 



)5.23(

2
  

   =   

 

This is the condition of minimum intensity. 

 

Here the waves are completely out of phase and destructive interference 

occurs.  

 

(5)        Given: d = 0.40 mm, D = 103 mm, y = 3.6 mm, and m = 3. Using Eq. (1.21), 

we get 

  
4

3
108.4

103

)40.0)(6.3( 



mD

yd
 mm = 

5108.4   cm 

 

Hence, the light is in the blue-green region of the visible spectrum. 

 

6. With  = 6000 Å, the distance between zero-order and tenth order fringe is  

14.73 mm – 12.34 mm = 2.39mm, so that the fringe width is 2.39 mm/10 = 

0.239 mm. 

 

7. 
d

D
  . Therefore 

   

  
5

6

5000

5000

)(

)(

5000

6000 



 

  239.0
6

5
)(

6

5
)( 60005000   = 0.199 mm 

 

Thus, with  = 5000 Å, the zero-order fringe will still be at 12.34 mm, while 

the twentieth order fringe will be at  
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12.34 mm + (0.199 mm 20) = 16.32 mm  

 

(8) For maxima, the path difference = n  

 

or  
51030   cm  

 
n

51030 
 cm 

where n = 1,2,3,4 ... 

 

(9)        0y = 0.2 cm; d = 0.1 cm; D = 50 cm 

Hence 
58.050

2.01.0

)1(

0









D

yd
t  

  

= 
4107.6  cm 

 

(10)      The fringe-width is given by 

 

  
d

D

2


  , where 21 ddd   

 

 Here, 05.41 d  mm = 0.405 cm and 
2d = 2.10 mm = 0.210 cm 

 

  210.0405.0 d = 0.292 cm 

 

 Also, D = 100 cm and  = 5893 Å = 5893
810  cm. 

  
292.0

105893100 8
 = 0.0202 cm 

 

(11)      By introducing a glass plate of thickness t in one of the interfering beams, t cm 

of air  

(  = 1) are replaced by t cm of glass (  = 1.5). t cm of glass are optically 

equivalent to t  or 1.5 t cm of air. The, increase in the length of the path = 

ttt 5.0 . This produces a shift of 2 in the interference bands 

 

  
51045.5225.0  t  

 and 
5

5

108.21
5.0

1045.52 





t  cm  

 

TQs 

 (1) The fringe width   in Young's experiment is dD /  . 

Since 20 fringes occupy a distance of 10.92 mm, the fringe width   is 

)20/92.10( mm = (10.92/20) mm « (10.92 
310 /20) m.  

Also      D = 80 cm = 0.8 m, and   = 
710460.5  m 

  
3

7

1092.10

208.010460.5







d m = 

4107912.0  m 
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2. See Fig. (1.10). Suppose the required distance on the screen is y.  

 

Here       
4102 d  m (slit separation) 

 
7105  m (wavelength) 

 
1105 D  m (distance between slit to screen) 

 

The minima is observed when the phase difference between the two waves is 

an odd multiple of  , i.e., when 

 

    , 3 , 5 , 7 , … 

 

At the third minimum,  5  

 

From Eq. (1.13), path difference = )5(
22










  

 

But from Fig. 1.10, the path difference between the waves arriving at P is sind  

 

Hence,  )sin(
2

5 



 d  

 

or 
4

7

1022

1055
)5(

1

2
sin




















d
 

 

                    = 6.25
310  

 

From Fig. 1.10, the required distance on the screen tanDy   

 = 
31 1025.6105sin  D    sintan   

 = 3.1 m 

 

3) Let MM´ (Fig. 1.21) the Lloyd's mirror be 5 cm long. The source 
1S  is as 

shown in the figure. The interference pattern is observed in the region AB. 

 

The fringe width   is given by 
d

D
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Fig. 1.21 

 

Given   = 5460 Å = 5.460 
710  m; D = 120 cm = 1.20 m and d = 0.2 cm 

=                2 
210  m 

   

3

7

102

12010460.5







 m = 3.276 

410 m 

 

          = 0.3276 mm.  

 

The total width of interference pattern is obviously AB. From Fig. (1.21), 

 

  5/1.0tan 1   and 10/1.0tan 2   

 

Also from right angled CBM ' , 

  

2tan'/ CMBC  or )10/1.0(110BC = 1 cm 

 

 BCACAB  = 2.3 – 1.1 = 1.2 = 1.2
310 cm 
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UNIT 2 INTERFERENCE BY DIVISION OF AMPLITUDE 
Structure 

2.1         Introduction 

Objectives 

2.2  Stokes' Analysis of Phase Change on Reflection 

2.3  Interference in Thin Films 

2.4  Interference by a Wedge-shaped Film 

2.5  Newton's Rings 

2.6  Applications of the Principle of Interference in Thin Films 

2.7  Summary 

2.8  Terminal Questions 

2.9 Solutions and Answers 

 

2.1   INTRODUCTION 
We have all seen the marvellous rainbow colours that appear in soap bubbles and thin 

oil films. When a soapy plate drains, coloured reflections often occur from it. A similar 

effect occurs when light is reflected from a wet pavement that has an oil slick on it. 

Have you ever wondered what causes the display of colours when light is reflected 

from such thin oil film or soap bubble? 

 

All these effects are due to interference of light reflected from the opposite surfaces of 

the film. Thus the phenomenon owes its origin to a combination of reflection and 

interference. 

 

In the last unit, we discussed the interference of light, but there, the two interfering light 

waves were produced by division of wavefront. For example, in Young's double slit 

experiment, light coming out of a pin hole was allowed to fall into two holes, and the 

light waves emanating from these two holes interfered to produce the interference 

pattern. But the interference of light waves, which is responsible for the colour of thin 

films, involves two light beams derived from a single incident beam by division of 

amplitude of the incident wave. When a light wave falls on a thin film, the wave 

reflected from the upper surface interferes with the wave reflected from the lower 

surface. This gives rise to beautiful colours. However, one must initially consider how 

the phase of a light wave is affected when it is reflected. 

 

In the last unit, you noted that in Lloyd's mirror, the interference takes place between 

waves coming direct from the source and those reflected from an optically denser 

medium. As a consequence of this, the central fringe is found to be 'dark' instead of 

'bright'. This was explained by assuming the fact that a phase change of   takes place 

when light waves are reflected at the surface of a "denser" medium. We will begin this 

unit by giving proof of the statement made above; this proof will be based on the 

principle of reversibility of light. 

 

It is also possible to observe interference using multiple beams. This is known as 

multiple beam interferometry, and it will be discussed in the next unit. It will be shown 

there that multiple beam interferometry offers some unique advantages over two beam 

interferometry. 

 

Objectives 
After studying this unit, you should be able to: 

 prove that when a light wave is reflected at the surface of an optically denser 

medium, it suffers a phase change of n. 

 

 describe the origin of the interference pattern produced by a thin film, 
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 describe the formation, shape and location of interference fringes obtained 

from a thin wedge-shaped film, 

 describe how Newton's rings are used to determine the wavelength of light, 

 explain why a thin coating of a suitable substance minimizes the reflection of 

light from a glass surface. 

 distinguish between fringes of equal inclination and fringes of equal thickness. 

 

2.2   STOKES' ANALYSIS OF PHASE CHANGE ON REFLECTION 
To investigate the phase change in the reflection of light at an interface between two 

media, Sir G.C. Stokes used the principle of optical reversibility. This principle states 

that a light ray, that is reflected or refracted, will retrace its original path, if its direction 

is reversed, provided there is no absorption of light. 

 

Fig. 2.1 (a) shows the surface MN separating media 1 and 2, the lower one being denser. 

Suppose medium 1 is air and medium 2 is glass. 

 

 
 

Fig. 2.1 (a) A ray is reflected and refracted at an air-glass interface, (b) The optically 

reversed situation; the two rays in the lower left must cancel. In both cases, 
12 nn   (

1n  and 
2n  are the refractive indices of the media). 

 

An incident light wave, AB, is partly reflected along BC and partly transmitted 

(refracted) along BD. Let a  be the amplitude of the incident wave AB, r be the fraction 

of the amplitude reflected, and t be the fraction transmitted when the wave is travelling 

from medium 1 to 2. Then the amplitudes along BC and BD are ar and at, respectively. 

 

Now, suppose the directions of the reflected and transmitted (refracted) waves are 

reversed. As shown in Fig. 2.1(b), the wave BC, on reversal, gives a reflected wave 

along BA, and a transmitted (refracted) wave along BE. The amplitude of the reflected 

wave along BA is ar.r = ar2 and the amplitude of transmitted wave along BE is art. 

Similarly, the wave BD, on reversal, gives a transmitted wave along BA and a reflected 

beam along BE. Let r' and 't  be the fractions of amplitude reflected and transmitted 

when the wave is travelling from medium 2 to medium 1. Then the amplitude of the 

transmitted wave along BA is 'att  and the amplitude of reflected wave along BE is 

'atr . But, according to the principle of reversibility of light, the reflected and 

transmitted waves BC and BD, when reversed, should give the original ray of amplitude 

a along BA only. Hence, the component along BE should be zero and that along BA 

should be equal to a. That is, 
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 0' atrart         

 (2.1) 

and 

 aattar  '2
        

 (2.2) 

 

From Eqs. (2.1) and (2.2), we get 

 

 rr '          
 (2.3) 

and 

 

 
21' rtt          

 (2.4) 

 

Eqs. (6.3) and (6.4) are known as Stake's relations. 

 

You must be aware that a transverse wave in a spring undergoes a 180° phase change 

when reflected from a rigid support. A similar phase change occurs for the reflection 

of a light wave from the boundary of a medium having a greater index of refraction. 

The optically denser medium corresponds to a rigid support. A light wave reflected 

from the boundary of a medium whose index of refraction is greater than that of the 

medium in which the incident wave travels undergoes a 1800 phase change. 

 

Now, observe carefully Eq. (2.3). Here r is the fraction of amplitude reflected when the 

incident wave is travelling from a rarer to denser medium, and r' when incident wave 

is travelling from a denser to a rarer medium. The two fractions are numerically equal 

but have opposite signs. Hence, they are exactly out of phase with each other, i.e., their 

phase difference is '' . If no phase change occurs when a light wave is reflected by a 

denser medium then there must be a phase change of   when a light wave is reflected 

by a rarer medium—and conversely, if no phase change occurs when a light wave is 

reflected by a rarer medium then there must be a phase change of   when a light wave 

is reflected by a denser medium. Now, out of the two alternatives mentioned above, the 

second one is correct because it has been experimentally observed (See Section 1.6 in 

connection with Lloyd's mirror) that the phase change of   occurs when the light 

strikes the boundary from the side of rarer medium. Hence, light reflected by a material 

of higher refractive index than the medium in which the rays are travelling undergoes 

a 180° (or  ) phase change. 

 

Reflection by a material of lower refractive index than the medium in which the rays 

are travelling causes no phase change. 

 

The following SAQ will provide a useful check of your understanding of this section. 

 

SAQ 1 
In Fig. 2.2, we have illustrated four situations. In the two examples on the left, the 

refractive index between the surfaces is higher than that outside; in the two examples 

on the right, it is lower. This determines whether or not there is a phase change. In Fig. 

2.2(a) and (b), we have indicated the phase change taking place at the points marked 

by an arrow. Redraw the Fig. 2.2(c) and (d), indicating the phase change taking place 

at the points marked by an arrow. 
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Fig. 2.2 

 

2.3   INTERFERENCE IN THIN FILMS 
Suppose a ray of light from a source S strikes a thin film of soapy water, at A, see Fig. 

2.3(a). Part of this will be reflected as ray (1) and part refracted in the direction AB. 

Upon arrival at B, part of the latter will be reflected to C, and part refracted along BT1. 

At C, the ray will again get partly reflected along CD and refracted as ray (2) along 

CR2. A continuation of this process yields two sets of parallel rays, one on each side of 

the film. In each of these sets, of course, the amplitude decreases rapidly from one ray 

to the next. Considering only the first two reflected rays (1) and (2) we find that these 

two rays are in a position to interfere. This is because, if we assume S to be a 

monochromatic point source, the film serves as an amplitude-splitting device, so that 

ray (1) and (2) may be considered as arising from two coherent virtual sources S' and 

S" lying behind the film, that is, the two images of S formed by reflection at the top and 

bottom surfaces of the film, as shown in Fig. 2.3 (b). If the set of parallel reflected rays 

is now collected by a lens, and focussed at P, each ray has travelled a different distance, 

and the phase relationship between them may be such as to produce destructive or 

constructive interference at P. It is such interference that produces the colours of this 

film when seen by naked eyes. 

 

 
Fig. 2.3: (a) Multiple reflection in a soap film, (b) The interference pattern produced 

due to rays  

(1) and (2) is approximately the same as would have been produced by two 

coherent point sources S' and S" 

 

Now, we know that the two rays reinforce each other, if the path difference between 

them is an integral multiple of  , where   is the wavelength of light, which is being 
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used to illuminate the film. Hence, let us first find out the path difference between the 

reflected rays (1) and (2). 

 

Path Difference in Reflected Light 
Let the ray of light falling on the thin film of soapy water at A be incident at an angle 

i, as shown in Fig. 2.4. Let the thickness of the film be t and refractive index be )1(

. At A it is partly reflected along AR1 giving the ray (1) and partly refracted along AB 

at an angle r. At B it is again partly reflected along BC and partly refracted along BT1, 
Similar reflections and refractions occur at C. Since, the rays AR1 and CR2, i.e., ray (1) 

and ray (2) have been derived from the same incident ray, they are coherent and, in a 

position, to interfere. Let CN and BM be perpendiculars to AR1 and AC. As the paths of 

the rays AR1 and CR2 beyond CN are equal, the path difference between ray (1) and (2) 

is given by 

 

 (path ABC in film-path AN in air) 

 

  path difference = ANBCAB  )((     

 (2.5) 

 

Here  
r

t

r

BM
BCAB

coscos
 . 

 

 
 

Fig. 2.4 Optical path difference between two consecutive rays in a multiple reflection 

 

and AN  = iACsin  

 

Now, AC  = MCAM   

 

  = rBMrBM tantan   

 

  = rt tan2  

 

 AN  = irt sintan2  

  = )(sin
cos

sin
2 i

r

r
t  
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= )sin(
cos

sin
2 r

r

r
t   







 

r

i

sin

sin
  

= 
r

r
t

cos

sin
2

2

  

    

Substituting these values of AB, BC and AN in Eq. (2.5) we get, 

 

path difference   = 
r

r
t

r

t

r

t

cos

sin
2

coscos

2

 







  

 

   = )sin1(
cos

2 2 r
r

t



 

 

 path difference = rt cos2       

 (2.6) 

 

However, we must take account of the fact that ray (1) undergoes a phase change of 
at reflection while ray (2) does not, since it is internally reflected (See SAQ 1). The 

phase change of   is equivalent to a path difference of 
2


. Hence, the effective path 

difference of between ray (1) and rays (2) is 

 

 
2

cos2


 rt         

 (2.7) 

 

The sign of the phase change is immaterial. Here we have chosen the negative sign to 

make the equation a bit simpler in form. 

 

As you know from Unit 1, if this path difference is an odd multiple of 
2


, we might 

expect rays (1) and (2) to be out of phase, and produce a minimum of intensity. Thus 

the condition 

 

 
2

cos2


 rt = 
2

)12(


n , where n = 1, 2, … 

or  nrt cos2        

 (2.8) 

 

becomes a condition for destructive interference as far as rays (1) and (2) are concerned. 

 

Next, we examine the phases of the remaining rays, (3), (4), (5), ... Since the geometry 

is the same, the path difference between rays (3) and (2) will also be given by Eq. (2.6). 

But, here, only internal reflections are involved, so the effective path difference will 

At A, the ray is reflected while going from a rarer to a denser medium and suffers a 

phase change of  . At B,  the  reflection takes place when the ray is going from a 

denser to a rarer medium, and there is no phase change. 
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still be given by Eq. (2.6). Hence, if the condition given by Eq. (2.8) is fulfilled, ray (3) 

will be in the same phase as ray (2). The same holds true for all succeeding pairs, and 

so we conclude that, under the condition given by Eq. (2.8), rays (1) and (2) will be out 

of phase, but rays (2), (3), (4),....., will be in phase with each other. Now, since ray (1) 

has considerably greater amplitude than ray (2), we might think that they will not com-

pletely annul each other, that is, the condition given by Eq. (6.8) may not produce 

complete darkness. But it is not so. We will now prove that the addition of rays (3), (4), 

(5), ... which are all in phase with ray (2), will give a net amplitude, just sufficient to 

make up the difference and to produce complete darkness. Fig. 2.5 shows the amplitude 

of successive rays in multiple reflection. 

 

 
 

Fig. 2.5 Amplitude of successive rays in multiple reflection 

 

Adding the amplitudes of all the reflected rays but the first, on the upper side of the 

film we obtain the resultant amplitude: 

 

 A  = ...'''' 753  tatrtatrtatratrt  

  = ...)1(' 642  rrratrt   

Since r is, necessarily, less than 1, the geometrical series in parentheses has a finite sum 

equal to )1/(1 2r , giving 

 

 
21

1
'

r
atrtA


  

 

But from Stoke's treatment, Eq. (2.4), f
21' rtt  , we obtain  

 

arA          

 (2.9) 

 

This is just equal to the amplitude of the first reflected ray, hence, we conclude that 

under the condition of Eq. (2.8), there will be complete destructive interference. On the 

other hand, if the path difference given by Eq. (2.7) is an integral multiple of  , i.e., 

when 

 

 
2

cos2


 rt = n , where n = 0, 1, 2, etc.,  

or 

 
2

)12(cos2


  nrt        

 (2.10) 
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then ray (1) and (2) will be in phase with each other and gives a condition of 

constructive interference. But rays (3), (5), (7), ... will be out of phase with rays (2), 

(4), (6), ... Since (2) is more intense than (3), (4) is more intense than (5), etc., these 

pairs cannot cancel each other. As the stronger series combines with ray (1), the 

strongest of all, there will be maximum of intensity. 

 

Thus, when a thin film is illuminated by monochromatic light, and seen in reflected 

light, it appears bright or dark according as rt cos2  is an odd multiple of 2/  or 

an integral multiple of  , respectively. 

 

 

 

 

 

 

 

 

Before moving further, answer the following SAQ. 

 

SAQ 2 

Using Eq. (2.7), state whether the following statement is true or false. Give reasons. 

"An excessively thin film seen in reflected light appears perfectly black". 

 

Now we are in a position to know the reason of the production of colours in thin film 

of soap water. 

 

Colours in Thin Films 
The eye looking at the film receives rays of light reflected at the top and bottom surfaces 

of the film. These rays are in a position to interfere. The path difference between the 

interfering rays, given by Eq. (2.7), depends upon t (thickness of the film) and upon r, 

and, hence, upon inclination of the incident rays (the inclination is determined by the 

position of the eye relative to the region of the film, which is being looked at). The 

sunlight consists of a continuous range of wavelengths (colours). At a particular point 

of the film, and for a particular position of the eye (i.e., for a particular t and a particular 

r), the rays of only certain wavelengths will have a path difference satisfying the 

condition of maxima. Hence, only these wavelengths (colours) will be present with the 

maximum intensity. While some others, which satisfy the condition of the minima will 

be missing. Hence, the point of the film being viewed will appear coloured. 

 

We are working out an example so that the phenomenon of production of colours in 

thin film is clear to you. 

 

Example 1 

A thin film of 
5104  cm thickness is illuminated by white light normal to its surface 

)0( 0r . Its refractive index is 1.5. Of what colour will the thin film appear in 

reflected light? 

 

Solution 
The condition for constructive interference of light reflected from a film is 

 

 
2

)12(cos2


  nrt , where n = 0, 1, 2, ... 

2
)12(cos2


  nrt   (condition of maxima) 

 nrt cos2    (condition of minima) 
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Here,  = 1-5; t = 
5104  cm and r = 0° (since light falls normally) so that 1cos r

. 

 

 
2

)12(1045.12 5 
  n  

or   = 
12

1045.122 5



 

n
 

   = 
12

24000

12

1024 5






 

nn

cm
Å 

 

Taking n = 0, 1, 2, 3, …, we get 

 

 = 24000 Å, 8000 Å, 4800 Å, 343l Å, ... 

 

These are the wavelengths reflected most strongly. Of these, the wavelength lying in 

the visible region is 4806A (blue). 

 

 

So far, we nave considered viewing of thin film in reflected light. Suppose the eye is 

now situated on the lower side of the film, shown in Fig. 2.3 and Fig. 2.5. The rays 

emerging from the lower side of the film can also be brought together with a lens and 

made to interfere. 

 

Let us find out what colours will arise, when the film is viewed in this position. For 

this, we have to first calculate the path difference between the rays in transmitted light. 

The path difference between the transmitted rays BT1 and DT2 is given by Eq. (2.6), 

i.e.,  

 

rtBLCDBC cos2)(   

 

In this case, there is no phase change due to reflection at B or C, because in either case 

the light is travelling from denser to rarer medium (See SAQ 1). Hence, the effective 

path difference between BT1 and DT2 is also  

 

 nrt cos2  (condition for maxima)    

 (2.12a) 

 

where n = 1, 2, 3, … 

 

In this case, the film will appear bright in the transmitted light. 

  

The two rays BT1 and DT2 reinforce each other, if 

 

 
2

)12(cos2


  nrt  (condition of minima)    

 (2.12b) 

 

where n = 0, 1, 2, ... and the film appears dark in transmitted light. 

 

A comparison of Eqs. (6.11a), (6.11b), (6.12a) and (6.12b) shows that the conditions 

for the maxima and minima, in the reflected light are just the reverse of those in 
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transmitted light. Therefore, only those colours will be visible in the transmitted light, 

which were missed in reflected light. Hence, the film which appears bright in reflected 

light will appear dark in transmitted light and vice versa. In other words, the 

appearances of colours in the two cases are complimentary to each other. 

 

Interference fringes produced by thin films can be classified into two: Fringes of equal 

inclination and fringes of equal thickness. 

 

Fringes of Equal Inclination 

If the lens used in Fig. 2.3 to focus the rays has a small aperture, interference fringes 

will appear on a small portion of the film. Only the rays leaving the point source that 

are reflected directly into the lens will be seen (see Fig. 2.6a). For an extended source, 

light will reach the lens from various directions, and the fringe pattern will spread out 

over a large area of the film, as shown in Fig. 2.6b. 

 

 
 

Flg. 2.6 (a) Fringes seen in a small portion of the film,  

(b) Fringes seen on a large region of the film 

 

The angle i  or equivalently r, determined by the position P, will, in turn, control the 

path difference. The fringes appearing at points P1 and P2 in Fig. 2.7 are, accordingly, 

known as fringes of equal inclination. 

 

Notice that as the film becomes thicker, the separation AC in Fig. 2.4 between ray (1) 

and (2) also increases, since AC = 2t tan r. When only one of the two rays is able to 

enter the pupil of the eye, the interference pattern will disappear. The larger lens of a 

telescope could then, be used to gather in both rays, making the pattern visible. The 

separation can also be reduced by reducing r, and, therefore, i, i.e., by viewing the film 

at nearly normal incidence. 
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Fig. 2.7 All rays inclined at the same angle arrive at the same point 

 

The equal inclination fringes that are seen in this manner for thick plates are known as 

Haidinger fringes. With an extended source, the symmetry of the set up requires that 

the interference pattern consists of a series of concentric circular bands centred on the 

perpendicular drawn from the eye to the film, as shown in Fig. 2.8. 

 
Fig. 2.8 Circular Haidinger fringes centred on the lens axis 

 

Such fringes are formed at infinity, and are observed by a telescope focussed at infinity. 

These fringes are observed in Michelson interferometer, about which we will study in 

next unit. 
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Fringes of Equal Thickness 
Interference fringes, for which thickness t is the dominant parameter rather than r, are 

referred to as fringes of equal thickness. Each fringe is the locus of all points in the film 

for which thickness is a constant. Such fringes are localised on the film itself, and are 

observed by a microscope focussed on the film. Fringes due to the wedge-shaped film 

belong to this class of fringes, which you will study in the next section. 

 

Fringes of equal thickness can be distinguished from the circular pattern of Haidinger's 

fringes by the manner in which the diameters of the rings vary with order n. The central 

region in the Haidinger pattern corresponds to the maximum value of n, whereas just 

the opposite applies to fringes of equal inclination. 

 

2.4   INTERFERENCE BY A WEDGE-SHAPED FILM 
So far, we have assumed the film to be of uniform thickness. We will now discuss the 

interference pattern produced by a film of varying thickness, i.e., a film which is not 

plane-parallel. Such a film may be produced by a wedge, which consists of two non-

parallel plane surfaces, as shown in Fig. 2.9a and 2.9b. Observe that the interfering rays 

do not enter the eye parallel to each other but appear to diverge from a point near the 

film. 

 

 
 

Fig. 2.9 Fringes of equal thickness: (a) method of visual observations,  

     (b) a parallel beam of light incident on a wedge 

 

Let us consider a thin wedge-shaped film of refractive index  , bounded by two plane 

surfaces AB and CD, inclined at an angle   as shown in Fig. 2.9b. Let the film be 

illuminated by a monochromatic source of light from a slit held parallel to the edge of 

the wedge (the edge is the line passing through the point O and perpendicular to the 

plane of the paper). Interference occurs between the rays reflected at the upper and 

lower surfaces of the film. In this case the path difference for a given pair of rays is 

practically that given by Eq. (2.6). But, if it is assumed that light is incident almost 

normally at a point P on the film, the factor cos r may be considered equal to 1. Thus, 

the path difference between the rays reflected at the upper and lower surfaces is t2 , 

where t is the thickness of the film at P, An additional path difference of 2/  is 

introduced in the ray reflected from the upper surface. The effective path difference 

between the two rays is 

 

 
2

2


 t         

 (2.13) 
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Hence the condition for bright fringes becomes 

 

 
2

2


 t = n   

or 

 
2

)12(2


  nt        

 (2.14) 

 

The condition for dark fringe is  

 

  nt 2         

 (2.15) 

 

It is clear that for a bright or dark fringe of a particular order, t must remain constant. 

Since in the case of a wedge-shaped film, t remains constant along lines parallel to the 

thin edge of the wedge, the bright and dark fringes are straight lines parallel to the thin 

edge of the wedge. Such fringes are commonly referred to as "fringes of equal 

thickness". At the thin edge, where t = 0, path difference = 2/ , which is a condition 

for minimum intensity. Hence, the edge of the film is dark. The resulting fringes 

resemble the localized fringes in the Michelson interferometer (this you will study in 

next unit) and appear to be formed in the film itself. 

 

Spacing between Two Consecutive Bright (or Dark) Fringes 
For the nth dark fringe, we have  

 

 nt 2  

 

Let this fringe be obtained at a distance nx  from the thin edge. Then 

 nn xxt  tan  (when   is small and measured in radians). 

 

  )1(tan2  nxn        

 (2.16) 

 

Similarly, if the )1( n th dark fringe is obtained at a distance 1nx  from the thin edge, 

then 

 

 nxn 2         

 (2.17) 

 

Subtracting Eq. (2.16) from Eq. (2.17), we get 

 

   )(2 1 nn xx  

 

Hence the fringe width   is 

 






2
1   nn xx        

 (6.18) 
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where   is measured in radians. 

 

Similarly, it can be shown that the spacing between two consecutive bright fringes 

(fringe width) is 




2
. 

 

SAQ 3 

Using sodium light ( = 5893 Å), interference fringes are formed by reflection from a 

thin air wedge. When viewed perpendicularly, 10 fringes are observed in a distance of 

1 cm. Calculate the angle of the wedge. 

 

 

If the fringes of equal thickness are produced in the air film between a convex surface 

of a long-focus lens and a plane glass surface, the fringes will be circular in shape 

because the thickness of the air film remains constant on the circumference of a circle. 

The ring-shaped fringes, thus produced, were studied by Newton. In the next section, 

we will study Newton's ring. 

 

6.5   NEWTON'S RINGS  

When a plano-convex lens of large radius of curvature is placed with its convex surface 

in contact with a plane glass plate, air-film is formed between the lower surface of the 

lens )'(LOL  and the upper surface of the plate )(POQ , as shown in Fig. 2.10. The 

thickness of the air film is zero at the point of contact O, and it increases as one moves 

away from the point of contact. If monochromatic light is allowed to fall normally on 

this film, reflection lakes place at both the top and the bottom of the film. As a result 

of interference between the light waves reflected from the upper and lower surfaces of 

the air film, constructive or destructive interference takes place, depending upon the 

thickness of the film. The thickness of the air film increases with distance from the 

point of contact; therefore, the pattern of bright and dark fringes consists of concentric 

circles. In Fig. 2.10, 1 and 2 are the interfering rays corresponding to an incident ray 

AB. As the rings are observed in reflected light, the effective path difference between 

the interfering rays 1 and 2 is practically that given by Eq. (2.13). 

 

 
 

Fig. 2.10: An arrangement for observing Newton's rings 

 

As we have considered an air-film,   = 1. The condition for the bright ring which is 

given by Eq. (2.14), is 
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2

)12(2


 nt        

 (2.19) 

 

and the condition for the dark ring which is given by Eq. (2.15) is 

 

 nt 2         

 (2.20) 

 

Let us find out the relationship between the radii of the rings and the wavelength of the 

light. Consider Fig. 6.11, where the lens LOL' is placed on the glass plate POQ. Let R 

be the radius of curvature of the curved surface of the lens. Let rn be the radius of the 

nth Newton's ring corresponding to point P, where the film thickness is t. Draw perpen-

dicular PN. Then, from the property of a circle, we have 

 

 NEONPN 2
 

or 

 )2(2 tRtrn   

 

 
 

 

Fig. 2.11 nr  represents the radius of the nth dark ring, the thickness of air film (where 

the nth  

  dark ring is formed) is L 

 

Since t is small compared to R, we can neglect t2.  

 

Hence,  Rtrn 22   

or 
R

r
t n

2

2          

 (2.21) 

 

The condition for a bright ring is 
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2

)12(2


 nt  

 

But from Eq. (2.21),  
R

r
t n

2

2   

 

 
2

)12(
2


 n

R

rn
 

or 

 
2

)12(2 R
nrn


  (Bright ring) 

 

If Dn be the diameter of the nth bright ring, then nn rD 2  or 
2

n
n

D
r  . Substituting 

this in the last expression, we get 

 

 RnDn )12(22   

or 

 122  nRDn   

or 

 12  nDn   (  and R  being constant) 

 

This shows that the radii of the rings vary as the square-root of odd natural numbers. 

Thus, the rings will be close to each other as the radius increases, as shown in Fig. 2.12. 

 

 
 

Fig. 2.12 Newton's rings as observed in reflected light 

 

Between the two bright rings there will be a dark ring whose radius will be proportional 

to the square-root of the natural numbers. Attempt the following SAQ and prove the 

above statement yourself. 

 

SAQ4 

Using Eqs. (2.20) and (2.21), prove that the radius of the dark ring is proportional to 

the square-root of the natural numbers. 
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The ring diameters depend on wavelength; therefore, the monochromatic light will 

produce an extensive fringe system such as that shown in Fig. 2.12. 

 

When the contact between lens and glass is perfect, the central spot is black. This is 

direct evidence of the relative phase change of   between the two types of 

reflection, air-to-glass and glass-to-air, mentioned in Sec. 2.2. If there were no such 

phase change, the rays reflected from the two surfaces in contact should be in the 

same phase, and produce a bright spot at the centre. However, the central spot can 

be made bright due to slight modification. In an interesting modification of the 

experiment, due to Thomas Young, if the lower plate is made to have a higher index of 

refraction than the lens, and the film in between is filled with an oil of intermediate 

index, then both reflections are at "rare-to-dense" surfaces. In this situation, no relative 

phase change occurs, and the central fringe of the reflected system is bright. 

 

If nD is the diameter of the nth bright ring, then 

 

RnDn )12(22         

 (2.23) 

 

If pnD   is the diameter of the )( pn  th bright ring, then 

 

RpnD pn ]1)(2[22        

 (2.24) 

 

Subtracting Eq. (2.23) from Eq. (2.24), we get 

 

 RnRpnDD npn  )12(2]1)(2[222     

   

  

        =  Rp4  

 

 
pR

DD npn

4

22 



        

 (2.25)  

 

It may be mentioned here, that the point of contact may not be perfect. As such the nth 

ring may not be the nth fringe but Eq. (2.25) is almost always valid. On measuring the 

diameters of the rings and the radius of curvature R, the wavelength   can be 

calculated with the help of the Eq. (2.25). In laboratory, the radius of curvature can be 

accurately measured with the help of a spherometer. 

 

If a liquid of refractive index   is introduced between the lens and the glass plate, then 

the expression for path difference between two interfering rays will also include  . 

Then the radii of the dark rings would be given by 

 
2/1













 Rn
rn        

 (2.26) 
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Thus, when a little water is introduced between the lens and the plate, the rings contract 

according to the relation 

 

 


1

film-airin  ring same  theofdiameter 

film-in water ring a ofdiameter 
     

 (2.27) 

      

where   is the refractive index of water. 

 

A ring system is also observed in the light transmitted by Newton's ring plates. There 

are two differences in the reflected and transmitted systems of rings, (i) The rings 

observed in transmitted light are exactly complementary to those seen in the reflected 

light, so that the central spot is now bright, (ii) The rings in transmitted light are much 

poorer in contrast than those in reflected light. 

 

Before moving to the next section, solve the following SAQ. 

 

SAQ5 
If in a Newton's ring experiment, the air in the interspace is replaced by a liquid of 

refractive index 1.33, in what proportion would the diameters of the ring change? 

 

 

6.6   APPLICATIONS OF THE PRINCIPLE OF INTERFERENCE IN THIN 

FILM 
1.     An important and simple application of the principle of interference within film 

is in the production of coated surfaces. To accomplish this, the glass lens is 

coated with the film of a transparent substance that has an index of refraction 

between the refraction indices for air and glass (See Fig. 2.13). The thickness 

of the film is one quarter of the wavelength of light in the film so that 

 

  

14


t  

 

If we assume normal incidence, then the path difference between the light wave 

reflected from the upper surface of the film and the light wave reflected from 

the lower 

surface of the film is 
24

22
1

11






 t . Both waves undergo a phase 

change of 180° as reflections at both surfaces are from "rare-to-dense". Thus, 

the two reflected waves are out of phase because of path difference and, 

therefore, these interfere destructively. Such a film is known as non-reflecting 

film, because it gives zero reflection. However, this does not mean that a non-

reflecting film destroys light, but it merely redistributes light so that a decrease 

of reflection is accompanied by a corresponding increase of transmission. 
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Fig. 2.13 A film coating on a glass lens makes the lens "non-reflecting" when 

the film thickness is 4/  for normal incidence. The total path difference of 

the reflected rays is then 2/ , and the waves interfere destructively, i.e., the 

incident light is totally transmitted. 

 

The practical importance of these films is that by their use one can greatly 

reduce loss of light by reflection at the various surfaces of lenses or prisms 

used in binoculars, cameras, etc. Usually, glass is coated with a very thin layer 

of magnesium fluoride, the refractive index of which (   = 1.38) is 

intermediate between those of glass and air. 

 

2.    Another important application of thin film interference phenomenon is the 

converse of the procedure just discussed, viz., the glass surface is coated by a 

thin film of suitable material to increase the reflectivity. The film thickness is 

again f 4/ , where f  represents the refractive index of the film. The film 

is such that its refractive index is greater than that of the glass. This is because 

an abrupt phase change of   occurs only at the air-film interface and the beams 

reflected from the air-film interface and the film-glass interface constructively 

interfere. 

 

3.     The fringes obtained by a wedge-shaped film has important practical 

applications in the testing of optical surfaces for flatness. An air-film is formed 

between a perfectly plane surface and the surface under test. If the latter surface 

is plane, the fringes will be straight and parallel, and, if -not, these will be 

irregular in shape. 

 

4.    The accuracy of the grinding of a lens surface can be tested by observing the 

shape of Newton's rings formed between it and an accurately flat glass surface, 

using monochromatic light. If the rings are not perfectly circular, the grinding 

is imperfect. 

 

2.7   SUMMARY 

 When the light wave is reflected from a boundary, there is an abrupt change of 

phase. When the light ray is reflected while going from a rarer to a denser 

medium, it suffers a phase change of  . But there is no phase change when 

the light ray is reflected while going from a denser to a rarer medium. 

 

 Length l  in a medium of refractive index   is optically equivalent to length 

l in a vacuum. l  is called the optical path-length of distance l  in the 

medium. 
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 For a thin film in reflected light, the conditions for constructive and destructive 

interference are: 

2
)12(cos2


  nrt   (maxima) 

 nrt cos2    (minima) 

where  , is the refractive index of the film, t is its thickness and r is the angle 

of refraction in the film. 

 

 For a thin film in transmitted light, the conditions for constructive and 

destructive interference are: 

 

 nrt cos2  (maxima)    

  

2
)12(cos2


  nrt  (minima) 

 

 The basic formula for the path difference between the interfering rays, obtained 

due to division of amplitude by a film of thickness t and refractive index  , is 

rt cos2 , where r is the inclination of the ray inside the film. If the thickness 

of the film is uniform, the path difference rt cos2  varies only with 

inclination r, and gives rise to the "fringes of equal inclination". On the other 

hand, if the thickness of the film is rapidly varying, the path difference 

rt cos2  changes mainly due to changes in  . This gives rise to the "fringes 

of equal thickness." 

 

 The spacing p between two consecutive bright (or dark) fringes produced by 

wedge-shaped film is given by 

 






2
  

 

where   is the wavelength of light being used for illuminating the film,   the 

refractive index of the film, and   (measured in radians) the angle between the 

two plane surfaces, which form the wedge-shaped film. 

 

 The diameters of the bright rings are proportional to the square-roots of the odd 

natural numbers, whereas the diameters of dark rings are proportional to the 

square-roots of natural numbers, provided the contact is perfect. 

 

 On measuring the diameters of Newton's rings and the radius of curvature R, 

the wavelength can be calculated with the help of the following relation: 

 

 
Rp

DD npn

4

22 



  

 

 The phenomenon of interference is used in the testing of optical surfaces and 

producing non-reflecting glasses of reflective coatings. 
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2.8   TERMINAL QUESTIONS 

(1)        White light is reflected normally from a uniform oil film (  = 1.33). An 

interference maximum for 6000 Å and a minimum for 4500 Å, with no 

minimum in between, are observed. Calculate the thickness of the film. 

 

(2)         Light ( = 6000 Å) falls normally on a thin wedge-shaped film (   = 1.5). 

There are ten bright and nine dark fringes over the length of the film. By how 

much does the film thickness change over this length? 

 

(3)         Two glass plates 12 cm long touch at one end, and are separated by a wire 

0.048 mm in diameter at the other. How many bright fringes will be observed 

over the 12 cm distance in the light ( = 6800 Å) reflected normally from the 

plates? 

 

(4)         Newton's rings are formed in reflected light of wavelength 
8105895   cm 

with a liquid between the plane and curved surfaces. The diameter of the fifth 

ring is 0.3 cm and the radius of curvature of the curved surface is 100 cm. 

Calculate the refractive index of the liquid, when the ring is (i) bright, (ii) dark. 

 

(5)        A Newton's rings arrangement is used with a source emitting two wave-lengths  

 
5

1 100.6   cm and 
5

2 105.4   cm 

 

and it is found that the nth dark ring due to 
1  coincides with the )1( n th 

dark ring due to 
2 . If the radius of curvature of the curved surface is 90 cm, 

find the diameter of the nth dark ring for 
1 . 

 

2.9   SOLUTIONS/ANSWERS 

SAQs 

 

(1)         See Fig. 2.14. 

 

 
 

Fig. 2.14 

(2)         According to Eq. (2.7) the path difference between the interfering rays in 

reflected light is 
2

cos2


 rt . When the film is excessively thin, t is very 

small, and rt cos2  is almost zero. Hence the path difference, in such a case 

becomes 2/ . 
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(3) Let   radian be the angle of the air-wedge. For normal incidence, the fringe-

width is  

given by 

 





2
  ( 1  for air) 

 

Here 
8105893  cm and  = 1/10 cm. 

 

 





2
 = 

4
8

1095.2
10/12

105893 






radian 

 

(4) According to Eq. (2.20), the condition for the dark ring is 

 

 nt 2  

 

But from Eq. (2.19), 
R

r
t n

2

2   

  n
R

rn 
2

 

If Dn be the diameter of the nth dark ring, 
2

n
n

D
r   

  n
R

Dn 
4

2

 

or nRDn 4  

 

or nRDn 4   

 

or nDn   

 

Thus, the diameters of the dark rings are proportional to the square root of the 

natural number. 

 

(5) 
33.1

11

)(

)(
2

2


liquidn

airn

D

D
= 0.867 

 

The rings are contracted to 0.867 their previous diameters. 

 

(6)    In this case of interference in thin films, the situation is somewhat different. 

The reflections at both the upper and lower surfaces of the material (  =1.25) 

film take place under similar conditions, i.e., when light is going from a rarer 

to a denser medium. Thus, there is a phase change of  at both reflections, 

which means no phase difference due to reflection between the two interfering 

beams. 

 

The path difference between the two interfering beams is t2  for normal 

incidence, where t is the thickness and   the refractive index of the film. 
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The two beams will destroy each other, if the path difference is an odd multiple 

of 2/ , i.e., when  

 
2

)12(2


  nt , where n = 1, 2, 3, ... 

 

This is the condition of minima.  

Here   = 1.25 and  = 6000 Å. 

 

 
2

6000
)12(25.12  nt Å 

Hence the required thickness is given by 

 t   = 
25.122

6000
)12(


n  Å 

 

   = 1200)12( n  Å, where n = 1, 2, 3, … 

 

TQs 

 

(1)        The condition for an interference maximum in the light reflected normally from 

an oil film of thickness t is 

   









2

1
2 nt , where n = 0, 1, 2, … 

and that for an interference minimum is 

   nt 2 , where n = 1, 2, 3, … 

 

Here   = 1.33. Now there is a maximum for  = 6000 Å 

 

We can write 











2

1
33.12 nt 6000 Å     

 (i) 

 133.12  nt 4500 Å     

 (ii) 

 

In view of eq. (i) we have taken the integer )1( n  rather than n in eq. (ii). 

Comparing eq. (i) and (ii), we get 

 

  4500)1(6000
2

1









 nn  

 

  1n  

 

Substituting n = 1 in eq. (i), we get 

 

  
2

3
33.12 t 6000 Å      

  
33.122

60003




t = 3383 Å 
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(2)         The condition of destructive interference in light reflected from a film is 

 nrt cos2  

 

Suppose the film thickness changes over this length by t . Let n be the order 

of the dark fringe appearing at one end of the film. The order of the dark fringe 

at the other end will be (n + 9). We, therefore, have 

 nrt cos2  

and  )9(cos)(2  nrtt  

 

Subtracting, we get 

 

   9cos)(2  rt  

  
r

t
cos2

9




  

 

If the fringes are seen normally, then 1cos r . 

 

  
5.12

63009

2

9







t = 18900 Å 

    = 
41089.1   cm 

 

(3) Let t be the thickness of the wire and l  the length of the wedge, as shown in 

Fig. 2.15.  

The wedge angle is 

 

 
 

Fig. 2.15 

 
l

t
  radian 

 

Now, fringe-width 





2
 . 

 

Putting value of   from above, we get 

 

t

l

2


   

 

Since N fringes are seen; Nl  . Thus 

  
t

N

2
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t
N

2
  

  

But  = 6800 Å = 
8106800  cm and t = 0.048 mm = 0.0048 cm. 

 
8106800

0048.02



N = 141 

 

4.(i)  The diameter Dn of the nth bright ring is given by  

 



Rn
Dn

)12(22 
  

  

 
2

)12(2

nD

Rn 



  

 

Here n = 5,   = 
8105895  cm, R  = 100 cm and Dn = 0.3 cm  

 

  
2

8

)3.0(

100105895)110(2 




 = 1.18 

 

  (ii) The diameter of the nth dark ring is given by 

 

  


 Rn
Dn

42     

  

  
2

8

2 )3.0(

100105895544 




nD

Rn
 = 1.31 

 

(5)         nRDn 42   

where nD = diameter of nth ring, R = the radius of curved surface and  = the 

wavelength of light. 

 

If nD  and 1nD  be two diameters. 

 

  

1

2 4 nRDn         

 (i) 
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2
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or 
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Putting n = 3 in (i) 
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UNIT 3   INTERFEROMETRY 

Structure 

3.1 Introduction  

Objectives 

3.2 Michelson Interferometer  

Circular Fringes 

Localized Fringes (Straight Fringes)  

White Light Fringes 

Adjustment of the Michelson Interferometer  

Applications 

3.3 Fabry-Perot Interferometer  

Intensity distribution  

Superiority over Michelson Interferometer 

3.4  Summary 

3.5  Terminal Questions 

3.6  Answers and Solutions 

3.7 Appendix 

 

3.1    INTRODUCTION 

An instrument designed to exploit the interference of light and the fringe patterns that 

result from optical path differences, in any of a variety of ways, is called an optical 

interferometer. In this unit, we explain the functioning of the Michelson and the Fabry-

Perot interferometers, and suggest only a few of their many applications. 

In order to achieve interference between two coherent beams of light, an interferometer 

divides an initial beam into two or more parts that travel diverse optical paths and then 

superpose to produce an interference pattern. One criterion for broadly classifying 

interferometers distinguishes the manner in which the initial beam is separated. 

Wavefront division interferometers sample portions of the same wavefront of a 

coherent beam of light, as in the case of Young's double slit, Lloyd's mirror or Fresnel's 

biprism arrangement. Amplitude-division interferometers, instead, use some type of 

beam splitter that divides the initial beam into two parts. The Michelson interferometer 

is of this type. Usually, the beam splitting is managed by a semi-reflecting metallic 

film. In this interferometer, the two interfering beams are widely separated, and the 

path difference between them can be varied at will by moving the mirror or by 

introducing a refracting material in one of the beams. Corresponding to these two ways 

of changing the optical path, there are two important applications of this interferometer, 

which we will study in this unit. 

 

There is yet another means of classification that distinguishes between those 

interferometers that function by the interference of two beams, as in the case of the 

Michelson interferometer, and those that operate with multiple beams, as in the Fabry-

Perot interferometer. In this unit, we will show that the fringes so formed are sharper 

than those formed by two beam interference. Therefore, the interferometers involving 

multiple beam interference have a very high resolving power, and, hence, find 

applications in high-resolution spectroscopy. 

 

Objectives 
After studying this unit, you should be able to 

 understand how Michelson interferometer produces different types of fringes, 

viz., circular, localised (or straight) and white light fringes, 

 describe few applications of Michelson interferometer, 

 relate the intensity of the transmitted light to the reflectance of the plate surface 

in Fabry-Perot interferometer, and 
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 understand the difference between Michelson interferometer and Fabry-Perot 

interferometer. 

 

3.2   MICHELSON INTERFEROMETER 
It is an excellent device to obtain interference fringes of various shapes, which have a 

number of applications in optics. It utilizes the arrangements of mirrors and a beam 

splitter. 

 

Construction: Its configuration is illustrated in Fig. 3.1. 

 

 
 

Fig. 3.1: Michelson interferometer 

 

Its main optical parts are two plane mirrors 
1M  and 

2M  and two similar optically-

plane parallel glass plates 
1P  and 

2P . The plane mirrors 
1M  and 

2M  are silvered on 

their front surfaces and are mounted vertically on two arms at right angles to each other. 

To obtain fringes, the mirrors 
1M  and 

2M  are made exactly perpendicular to each 

other by means of screws shown on mirror 
1M . The mirror 

2M  is mounted on a 

carriage which can be moved in the direction of the arrows. The plates 
1P  and 

2P  are 

mounted exactly parallel to each other, and inclined at 45° to 
1M  and 

2M . The surface 

of 
1P  and 

2P  is partially silvered. The plate 
1P  is called beam splitter. 

 

Working: An extended source (e.g., a diffusing ground glass plate illuminated by a 

discharge lamp) emits light waves in different directions, part of which travel to the 

right and fall on 
1P . The light wave incident on 

1P  is partly reflected and partly 

transmitted. Thus, the incident wave gets divided into two waves, viz., the transmitted 

wave 1 and the reflected wave 2. These two waves travel to 
1M  and 

2M  respectively. 

After reflection at 
1M  and 

2M  the two waves return to 
1P . Part of the wave coming 

from 
2M  passes through 

1P   going downward towards the telescope, and part of the 

wave coming from 
1M  gets reflected by 

1P  toward the telescope. Since the waves 

entering the telescope are derived from the same incident wave, they are coherent, and, 

hence, in a position to interfere. The interference fringes can be seen in the telescope. 

 

You must be eager to know the purpose of the plate 
2P , because till now we have not 

mentioned anything about it. 

Function of the plate 
2P : Note that if reflection at 

1P  occurs at the rear surface at 

point O, as shown in Fig. 3.1, the light reflected at 2M  will pass through 
1P  three 
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times while the light reflected at 
1M  will pass through only once. Thus, the paths of 

waves 1 and 2 in glass are not equal. Consequently, each wave will pass through the 

same thickness of glass only when a compensator plate 
2P , of the same thickness and 

inclination at 
1P , is inserted in the path of wave 1. The compensator plate is an exact 

duplicate of 
1P  with the exception that it is not partially silvered. With the compensator 

in place, any optical path difference arises from the actual path difference. 

 

Form of fringes: The form of the fringes depends on the inclination of 
1M  and 

2M . 

To understand how fringes are formed, refer to the Fig. 3.2, where the physical 

components are represented somewhat differently. An observer at the position of the 

telescope will, simultaneously, see both mirrors 
1M  and 

2M  along with the source L

formed by reflection m the partially silvered surface of the glass plate 
1P . Accordingly, 

we can redraw the interferometer as if all the elements were in a straight line. Here 
'

1M  

corresponds to the image of mirror 
1M , formed by reflection at the silvered surface of 

the glass plate 
1P , so that 

'

1OMOM  . Depending on the positions of the mirrors, 

image 
'

1M  may be in front of, behind or exactly coincident with mirror 
2M . The 

surfaces 
1L  and 

2L  are images of the source L  in mirrors 
1M and 

2M  respectively. 

If we consider a single point S on the source L , emitting light in all directions, then on 

reaching O, it gets split, and thereafter its segments get reflected by 
1M  and 

2M . In 

Fig. 3.2 we represent this by reflecting the ray off both 
1M  and 

2M . Thus, the 

interference fringes may be regarded to be formed by light reflected from the surface 

of 
'

1M  and 
2M . Here 

1S  and 
2S  act as coherent point sources, because to an observer 

at D  the two reflected rays will appear to have come from the image points 
1S  and 

2S . The mirror 
2M  and the virtual image of 

1M  play the same roles as the two 

surfaces of the thin film, discussed in Unit 2, and the same sort of interference fringes 

result from the light reflected by these surfaces. 

 

Now, let us discuss the various types of fringes, viz., circular fringes, localised fringes 

and white light fringes. 

 

 
 

Fig. 3.2 A conceptual rearrangement of the Michelson Interferometer 

In contrast to the Young double slit experiment, which uses light from two very 

narrow sources, the Michelson interferometer uses light from a broad spread out 

source. 
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3.2.1 Circular Fringes 

These fringes are observed when 
1M  is exactly perpendicular to 

2M . In this situation 

the distance of the minors 
1M  and 

2M  from the plate 
1P  can be varied. 

 

Let us consider the various possible positions of the mirrors 
1M  and 

2M , and 

eventually see how it gives rise to circular fringes. 

 

(i)  If the two mirrors have the same axial distance from the rear face of 
1P , and if 

they are perpendicular to each other, the image 
'

1M  is coincident with 
2M . At 

the coincidence position, the two paths are of equal length. Thus, we expect 

the waves to reinforce each other and to form a maximum. But this is not so, 

because of the  phase change, which occurs on external (air-to-glass) 

reflection only. No phase change occurs on internal (glass-to-air) reflection, 

and none occurs on transmission or refraction. Look again at Fig. 3.1 and note 

that it is the light that comes from 
1M  and goes to the observer that is reflected, 

air-to-glass, at O, and undergoes the   change. This means that at the 

coincidence position, there will be a minimum: the centre of the field will be 

dark. 

 

(ii) Now, we move one of the mirrors. If the mirror is moved through a quarter of 

wavelength, 4/d , the path length (because if d  is separation between 

1M  and 
2M , then d2  is the separation between 

1S  and 
2S ) changes by 2/

, the two waves getting out of phase by 180°, the phase change compensates, 

and we have a maximum. Moving the mirror by another 4/ , gives minimum, 

another 4/  another maximum and so on. Thus, 

 

  md 2 , where m = 0, 1, 2, …    

 (3.1) 

 

 
 

Fig. 3.3 Looking off-axis into the Michelson interferometer 

 

(iii) Next, we assume that we look obliquely into the interferometer and that our 

line of sight makes an angle   with the axis. Ordinarily, the two planes 
1M  

and 
2M  are at a distance d apart, and the two virtual images, I  and 'I  
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separated by 2d. But for oblique incidence, as we see from Fig. 3.3, the path 

difference between the two lines of sight becomes less and instead of Eq. (3.1), 

we get 

 

   md cos2 , where m = 0, 1, …    

 (7.2) 

 

For a given mirror separation d, and a given order m, wavelength   and angle 

  is constant. The maxima will lie in the form of circles about the foot of the 

perpendicular from the eye to the mirrors. These circular fringes will look like 

the ones shown in Fig. 3.4. Fringes of this kind, where parallel beams are 

brought to interfere with a phase difference determined by the angle of 

inclination  , are referred to as fringes of equal inclination. These fringes are 

also known as Haidinger fringes. They differ from the fringes of equal 

inclination considered in Unit 2, only in that, here there are no multiple 

reflections so that the intensity distribution is in accordance with Eq. (1.17) 

 

 
 

Fig. 3.4  Fringes observed using (a) Michelson Interferometer,  (b) Fabry-Perot 

Interferometer 

 

 
 

Fig. 3.5 Appearance of the various types of fringes observed in the Michelson 

Interferometer. Upper row shows circular fringes whereas lower row shows, localized 

fringes. Path difference increases outward, hi both directions, from the centre 

 

The upper part of the Fig. 3.5 shows how the circular fringes look under different 

conditions. When M2 is few centimetres beyond 
1M , the fringe system will have the 

general appearance shown in (a) with the rings very closely spaced. If 
2M  is now 

moved slowly toward 1M , so that d is decreased, Eq. (3.2) shows that a given ring, 

characterized by a given value of the order m, must decrease its radius, because the 
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product cos2d  must remain constant. The rings, therefore, shrink and vanish at the 

centre; a ring disappearing each time d2  decreases by  , or d by 2/ . This follows 

from the fact at the centre cos = 1, so that Eq. (3.2) becomes 

 

 md 2  

 

which is Eq. (3.1). 

 

To change m by unity, d must change by 2/ . Now as 
2M  approaches 

1M  the rings 

become more widely spaced as indicated in Fig. (3.5b), until we reach a critical 

position, where the central fringe has spread out to cover the whole field of view, as 

shown in Fig. 3.5 (c). This happens when 
2M  and 

1M  are exactly coincident, for it is 

clear that under these conditions the path difference is zero for all angles of incidence. 

If the mirror is moved still farther, it effectively passes through 
1M , and new widely 

spaced fringes appear, growing out from the centre. These will gradually become more 

closely spaced, when the path difference increases, as indicated in (d) and (e) of the 

Fig. 3.5. 

 

3.2.2   Localized Fringes (Straight Fringes) 

If the mirrors 
1M  and 

2M  are not exactly parallel, the air film between the mirrors is 

wedge-shaped, as indicated in Fig. 3.6. 

 

 
 

Fig. 3.6 The formation of fringes with inclined mirrors in the Michelson 

interferometer 

 

The two rays reaching the eye from point P on the source are now no longer parallel, 

but appear to diverge from point P' near the mirrors. For various positions of P on the 

extended source, the path difference between the two rays remains constant, but the 

distance of P' from mirrors changes. If the angle between the mirrors is not too small, 

the latter distance is never great, and hence, in order to see these fringes clearly, the 

eye must be focused on or near the rear mirror 
2M . The localized fringes are, 

practically, straight, because the variation of the path difference across the field of view 

is now due primarily to the variation of the thickness of the "air film" between the 

mirrors. With a wedge-shaped film, the locus of point of equal thickness is a straight 

line, parallel to the edge of the wedge. The fringes are not exactly straight, if d has an 

appreciable value, because there is also some variation of the path difference with 

angle. They are, in general, curved and are always convex toward the thin edge of the 

wedge. Thus, with a certain value of d, we might observe fringes shaped like those of 

Fig. 3.5(g). 2M  could then be in position such as g of Fig. 3.6. If the separation of the 

mirrors is decreased, the fringes will move to the left across the field, a new fringe 
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crossing the centre each time d changes by 2/ . As we approach the zero path 

difference, the fringes become straighter until the point is reached where 
2M  actually 

intersects 
1M , when they are perfectly straight, as in Fig. 3.5(h). Beyond this point, 

they begin to curve in the opposite direction, as shown in Fig. 3.5 (i). The blank fields 

shown in Fig. 3.5 (f) and (j) indicate that this type of fringe cannot be observed for 

large path differences. As the principle variation of path difference results from a 

change of the thickness d, these fringes have been termed fringes of equal thickness. 

 

3.2.3   White Light Fringes 
If a source of white light is used, no fringes will be seen at all except for a path 

difference so small that it does not exceed a few wavelengths. In observing these 

fringes, the mirrors are tilted slightly as for localized fringes, and the position of 
2M  

is found where it intersects 
1M . With white light there will then be observed a central 

dark fringe, bordered on either side by 8 or 10 coloured fringes. This position is often 

rather troublesome to find, using white light only. It is best located approximately 

before hand by finding the place where the localized fringes in monochromatic light 

become straight. Then, a very slow motion of 
1M  through this region, using white 

light, will bring these fringes into view. 

 

 
 

Fig. 3.7: The formation of white light fringes with a dark fringe at the centre 

 

The fact that only a few fringes are observed with white light, is easily accounted for 

when we remember that such light contains all wavelengths between 400 and 750 mm. 

The fringes for a given colour are more widely spaced, the greater the wavelength. 

Thus, the fringes in different colours will only coincide for d = 0, as indicated in Fig. 

3.7. The solid curve represents the intensity distribution in the fringes for the green 

light, and the broken curve for the red light. Clearly, only the central fringe will be 

uncoloured, and the fringes of different colours will begin to separate at once on either 

side. After 8 or 10 fringes, so many colours are present at a given point that the resultant 

colour is essentially white. While light fringes are, particularly, important in the 

Michelson interferometer, where they may be used to locate the position of zero path 

difference, as we shall see later. 

 

3.2.4    Adjustment of the Michelson Interferometer 

(i) For Localised fringes: The distance of the mirrors 
1M  and 

2M  from the silvered 

surface of 
1P  are first made as nearly equal as possible by moving the movable mirror 

2M . A pinhole is placed between the lens and the plate 
1P  (Fig. 3.8). If 

1M  is not 

perpendicular to 2M , four images of the pinhole are obtained, two by reflection at the 

semi-silvered surface of 
1P  and the other two by reflection at the other surface of 

1P . 
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Fig. 3.8: Adjustment of Michelson interferometer 

 

The former pair is, naturally, brighter than the latter. The small screws at the back of 

the mirror, 
1M  are then adjusted until the two bright images appear to coincide. The 

pinhole is now removed. If the coincidence of the images was apparent, the air-film 

between 
1M  and 

2M  would be wedge-shaped, and the localised fringes would appear. 

 

(ii) For White light Localised Fringes: First, the localised fringes with 

monochromatic light are obtained. The mirror 
2M  is then moved until the fringes 

become straight. Monochromatic light is replaced by white light. 
2M  is further moved 

in the same direction until the central achromatic fringe is obtained in the field of view. 

 

(iii) For Circular Fringes: After localised fringes are obtained, the screws of 
1M  are 

adjusted so that the spacing between these fringes increases. This happens when the 

angle of the wedge decreases. If this adjustment be continued, at one stage, the angle 

of the wedge will become zero, and the film will be of constant thickness. At this stage, 

circular fringes will appear. Finer adjustment is made until on moving the eye sideways 

or up and down, the fringes do not expand or contract. 

 

3.2.5    Applications 
There are three principal types of measurement that can be made with Michelson 

interferometer: (i) wavelengths of light (ii) width, and fine structure of spectrum lines 

(iii) refractive indices. As explained in the sub-section 3.2.3, when a certain spread of 

wavelengths is present in the light source, the fringes become indistinct and, eventually, 

disappear as the path difference is increased. With white light they become invisible 

when d is only a few wavelengths, whereas the circular fringes obtained with the light 

of single spectrum line can still be seen after the mirror has been moved several 

centimetres. Therefore, for making these measurements with this interferometer, it is 

adjusted for circular fringes. 
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(a) Determination of Wavelength of Monochromatic Light 

After having adjusted interferometer for circular fringes, adjust the position of 
2M  to 

obtain a bright spot at the centre of the field of view. If d be the thickness of the film 

and n the order of the spot obtained, we have 

 

  nd cos2         

 (3.3) 

 

But at the centre   = 0, so that 1cos  . Therefore 

 

 nd 2         

 (3.4) 

 

If now 
2M  be moved away form 

1M  by 2/ , 2d increases by  . Therefore n + 1 

replaces n in Eq. (3.4). Hence, (n + l)th bright spot now appears at the centre (see sec. 

3.2.1). Thus, each time 
2M  moves through a distance 2/ , the next bright spot 

appears at the centre. Suppose, during the movement of 
2M  through a distance x, N 

new fringes appear at the centre of the field. Then we have 

 

 
2


Nx   

 

 
N

x2
         

 (3.5) 

 

Thus, by measuring the distance x with the micrometer and counting the number N, the 

value of   can be obtained. 

 

The determination of   by this method is very accurate, because x can be measured to 

an accuracy of 
410

mm, and the value of N can be sufficiently increased, as the circular 

fringes can be obtained up to large path differences. 

 

SAQ 1 

When the movable mirror of Michelson's interferometer is shifted through 0.0589 mm, 

a shift of 200 fringes is observed. What is the wavelength of light used? Give the answer 

in Angstrom units. 

 

 

(b)   Determination of difference in Wavelength: When the source of light has 

two wavelengths 
1  and 

2  very close together (like 
1D  and 

2D  lines of sodium), 

each wavelength produces its own system of rings. Let 
21   . When the thickness 

of the film is small, the rings due to 
1  and 

2  almost coincide, since 
1  and 

2  are 

nearly equal. The mirror 
2M  is moved away. Then, due to different spacing between 

the rings of 
1  and 

2 , the rings of 
1  are gradually separated from those of 

2 . When 

the thickness of the air-film becomes such that dark rings of 
1  coincide with bright 

rings of 
2  (due to the closeness of 

1  and 
2 , the dark rings due to 

1  will practically 

coincide with bright rings due to 
2  in the entire field of view), the rings have 

maximum indistinctness. 
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The mirror 
2M  is moved further away through a distance, say, x until the rings, after 

becoming most distinct, once again become most indistinct. Clearly, during this 

movement, n fringes of 
1  and (n + 1) fringes of 

2  have appeared at the centre 

(because then the dark rings of 
1  will again coincide with the bright rings of 

2 ). 

Now, since the movement of the mirror 
2M  by 

2  results in the appearance of one 

new fringe at the centre, we have 

 

 
2
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1 21 
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or 

 

1
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x
n   and 
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Since 
1  and 

2  are close together, 
21  can be replaced by 

2 , where   is the mean 

of 

1  and 
2   

 
x2

2

21


          

 (7.6) 

 

Thus if we measure the distance moved by 
2M  between two consecutive positions of 

disappearance of the fringe pattern and the mean wavelength is known, we can 

determine the difference )( 21   . 

 

SAQ 2 

In Michelson's interferometer, the reading for a pair of maximum indistinctness were 

found to be 0.6939 mm and 0.9884 mm. If the mean wavelength of the two components 

of light be 5893Å, deduce the difference between the wavelengths of the components. 

 

(c)       Determination of Refractive Index of a Thin Plate 

If a thickness t  of a substance having an index of refraction   is introduced into the 

path of one of the interfering beams in the interferometer, the optical path in this beam 

is increased because of the fact that light travels more slowly in the substance, and 

consequently, has a shorter wavelength. The optical path is now t  through the 

medium, whereas it was practically t through the corresponding thickness of air (  = 

1). Thus, the increase in the optical path due to insertion of the substance is t)1(  . 
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In practice, the insertion of a plate of glass in one of the beams produces a discontinuous 

shift of the fringes so that the number of fringes cannot be counted. With 

monochromatic fringes, it is impossible to tell which fringe in the displaced set 

corresponds to one in the original set. With white light, the displacement in the fringes 

of different colours is very different. This illustrates the necessity of adjusting the 

interferometer to produce straight white light fringes. After having adjusted so, the 

cross-wire is set on the achromatic fringe, which is perfectly straight. The given plate 

is now inserted in the path of one of the interfering waves. This increases the optical 

path of the beam by t)1(  . Since the beam traverses the plate twice, an extra path 

difference of t)1(2   is introduced between the two interfering beams. The fringes 

get shifted. The movable mirror 
2M  is moved till the fringes are brought back to their 

initial positions so that the achromatic fringe again coincides with the cross wire. If the 

displacement of 
2M  is x. then 

 

 tx )1(22    

or tx )1(           

 (3.7) 

 

Alternatively, if N be the number of fringes shifted then 

 

  Nt  )1(2        

 (3.8) 

 

Thus, after measuring x, t, we may calculate   may be calculated if   is known, or 

  may be calculated if t is known. 

 

This method can be used to find the refractive index of a gas. The gas is introduced into 

an evacuated tube placed along the axis of one of the interfering beams, and the 

experiment is carried out as described above. 

 

SAQ3 
A transparent film of glass of refractive index 1.50 is introduced normally in the path 

of one of the interfering beams of a Michelson's interferometer, which is illuminated 

with light of wavelength 4800Å. This causes 500 dark fringes to sweep across this field. 

Determine the thickness of the film. 

 

There is yet another type of interferometer, called the Fabry-Perot interferometer, 

which produces fringes much sharper than those produced by Michelson 

interferometer. In the next section, let us study this interferometer and see how it is 

used as a powerful spectrometer. 

 

3.3    FABRY-PEROT INTERFEROMETER 
It is based on the principle of multiple beam interference. It is a high resolving power 

instrument, which makes use of the 'fringes of constant inclination' produced by the 

transmitted light after multiple reflections between two parallel and highly-reflecting 

glass plates. 

 

It consists of two optically-plane glass plates A and B (Fig. 3.9) with plane surfaces. 

The inner surfaces are coated with partially transparent films of high reflectivity and 

placed accurately parallel to each other. Screws are provided to secure parallelism if 

disturbed. The two uncoated surfaces of each plate are made to have a slight angle 
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between them in order to avoid unwanted fringes formed due to multiple reflections in 

the plate itself. 

 

One of the two plates is kept fixed, while the other can be moved to vary the separation 

of the two plates. In this configuration, the instrument is called a Fabry-Perot 

interferometer. Sometimes both the plates are at a fixed separation with the help of 

spacers. The system with fixed spacing is known as Fabry-Perot etalon. The Fabry-

Perot interferometer (or etalon) is used to determine wavelengths precisely, to compare 

two wavelengths, to calibrate the standard metre in terms of wavelength, etc. 

 

 
 

Fig. 3.9 Fabry-Perot interferometer. S is part of an external light source 

 

1S  is a broad source of monochromatic light and 
1L  a convex lens which makes the 

beam more collimated. An incident ray suffers a large number of internal reflections 

successively at the two silvered surfaces, as shown. At each reflection a small fractional 

part of the light is also transmitted. Thus, each incident ray produces a group of 

coherent and parallel transmitted rays with a constant path difference between any two 

successive rays. A second convex lens, 
2L , brings these rays together at a point P in 

its focal plane, where they interfere. Hence, the rays from all points of the source 

produce an interference pattern on a screen 
2S  placed in the focal plane of L2. 

 

Formation of the Fringes: Let d be the separation between the two silvered surfaces, 

and   the inclination of a particular ray with the normal to the plates. Then the path 

difference between any two successive transmitted rays corresponding to the incident 

ray is cos2d . The medium between the two silvered surfaces is usually air. As you 

saw, while solving SAQ 1 in Unit 2, that   phase changes occur on both of these (air-

to-glass) surfaces, hence, the condition 

 

  nd cos2  

 

holds for maximum intensity. 

 

Here, n is an integer, called the order of interference, and   the wavelength of light. 

The locus of points in the source which give rays of a constant inclination   is a circle. 

Hence, with an extended source, the interference pattern consists of a system of bright 

concentric rings on a dark background, each ring corresponding to a particular value of 

 . Fig. 3.4(b) shows the fringes obtained using a Fabry-Perot interferometer. Also 

shown, in the figure for comparison, are fringes obtained by using Michelson 

interferometer (see Fig. 3.4a). It can readily be seen that the Fabry-Perot interferometer, 

which employs the principle of multiple beam interference, produces much sharper 

fringes, and could, hence, be used to study hyperfine structure of spectral lines. The 

intensity distribution of the circular fringes of Fig. 3.4b is not in accordance with Eq. 
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(1.17). To determine how much light is reflected and transmitted at the two surfaces, 

let us read the following section. 

 

3.3.1 Intensity Distribution 

Comment: You are advised to go through the Appendix given at the end of this unit 

carefully. 

 

We return now to the problem of reflections from a parallel plate, already considered 

in a two-beam approximation in Unit 2. Fig. 3.10 shows the multiple reflections and 

transmissions through a plane parallel plate of "air" enclosed between two glass plates 

of Fabry-Perot interferometer. Here, n' is the refractive index of the glass plate and n 

the refractive index of the air enclosed. Suppose a wave is incident at an angle  , as 

shown in Fig. 3.10. This incident wave will suffer multiple reflections. Let the 

reflection and transmission amplitude co-efficient be r and t at an external reflection 

and r' and t' at an internal reflection. 

 

If the amplitude of the incident ray is expressed as 
tiae 
, the successive transmitted 

rays can be expressed by appropriately modifying both the amplitude and phase of the 

initial wave. Referring to Fig. 3.10, these are 

 

 
tieattA )'(1   

 
)(2

2 )''(   tiearttA  

 
)2(4

3 )''(   tiearttA  

 

A little inspection of these equations shows that 

 
 )1()1(2''  NitiN

N eaerttA  

 

The quantities r , 'r , t , 't , are given in terms of n, n',  , '  by the Fresnel formulae. 

For our present purpose we do not need these explicit expressions but only relations 

between them. We have 

 

 Ttt '          

 (3.9a) 

 

and  Rrr  22 '         

 (3.9b) 

 

 where R and T, respectively are the reflectivity and transmissivity of the plate surfaces. 

Then, using Eq. 3.9, we have 

 

 
tiaTeA 1  

 
)(

2 Re   tiaTA  

 
)2(2

3

  tieaTRA , and so on. 

 

By the principle of superposition, the resultant amplitude is given by  

 

...3322   iii eaTReaTReaTRaTA  
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Here, we have ignored 
tie 
, as it is of no importance in combining waves of the same 

frequency.  

Hence, 

 

 ...)1( 3322    iii eReReRaTA  

 

The infinite geometric series in the parentheses has the common ratio 
iRe and has a 

finite sum because 
2r < 1. Summing up the series, we obtain 
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The complex conjugate of A is therefore 
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Hence the resultant intensity I  is given by 
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Fig. 3.10 Multiple reflection  in a parallel "air" plate enclosed between the two plates 

of  

  Fabry-Perot interferometer 
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The intensity will be a maximum when 0
2

sin2 


, i.e.,  n2 , where n = 0, 1, 2, 

… Thus 
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Similarly, the intensity will be a minimum when 1
2

sin2 


, i.e.,  )12(  n , 

where n = 0, 1, 2, … Thus 
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Eq. (3.10) can now be written as 

 

 

2
sin

)1(

4
1 2

2

max



R

R

I
I




       

 (3.13) 

or 
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sin1 2
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 (3.14) 

 

Here, 
2)1(

4

R

R
F


  is called the coefficient of finesse. Eq. (3.14) is the intensity 

expression for the Fabry-Perot fringes. 

 

If we plot I  against   for different values of R (the reflectivity of the plates), a set of 

curves is obtained (Fig. 3.11). They show that the larger the value of R, the more rapid 

is the fall of intensity on either side of a maximum. (That is, the higher the reflectivity 

of the plates, the sharper the interference bright fringes.) Further, as Eq. (3.11) and 

(3.12) show, the larger the value of R, the greater is the difference between maxI  and 

minI . In fact, we obtain a system of sharp and bright rings against a wide dark 

background. 
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As mentioned in the beginning of the sec. 3.3, Fabry-Perot interferometer is a high 

resolving power instrument. Its resolving power 





 is given by 

 

 

 








147.4

cos4 Frh



 

 

where h  is the thickness of the film enclosed between the two silvered surfaces, r  is 

the angle of refraction inside the film,   the wavelength of the incident light and F is 

the coefficient of finesse.  

 

 
 

Fig. 3.11: The transmitted intensity as a function of   showing how the sharpness 

depends on  

   reflectance. Percentages refer to reflectance of surfaces 

 

To have an idea of the numerical value of resolving power, let us consider a Fabry-

Perot etalon with h = 1 cm and F = 80. The resolving power for normal incidence in 

the wavelength region around  = 5000 Å would be 

 

 5

5
1042.5

147.4105

804





 






 

 

That is, two wavelengths separated by 0.0092 Å can be resolved at  = 5000 Å 

 

3.3.2   Superiority over Michelson's Interferometer 

When the light consists of two or more close wavelengths (such as the 
1D  and 

2D  

lines of sodium), then in a Fabry-Perot interferometer each wavelength produces its 

own pattern, and the rings of one pattern are clearly separated from the corresponding 

rings of the other pattern. Hence the instrument is very suitable for the study of the fine 

structure of spectral lines. In Michelson's instrument separate patterns are not produced. 

The presence of two close wavelengths is judged by the alternate distinctness and 

indistinctness of the rings when the optical path difference is increased. 

 

3.4   SUMMARY 

 The Michelson interferometer uses an extended monochromatic source. 
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 When 
1M  and 

2M  are perpendicular to each other, i.e., when 
1M  and 

2M  

are parallel, the fringes given by a monochromatic source are circular and 

localized at infinity. 

 

 

 When the mirrors of the interferometer are inclined with respect to each other, 

i.e., when 
1M  and 

2M  are not perpendicular to each other, a pattern of straight 

parallel fringes is obtained. 

 

 Whether 
1M  and 

2M  are parallel or inclined, any fringe shift seen in an 

interferometer may be due to either a change in thickness or a change in 

refractive index. 

 

 As the movable mirror is displaced by 
2


, each fringe will move to the position 

previously occupied by an adjacent fringe. If N is the number of fringes that 

have moved past a reference point, when the mirror is moved a distance x, then  

 

 
2


Nx   

 

 Michelson interferometer can be used in the measurement of two closely 

spaced wavelengths. 

 

 Fabry-Perot interferometer, which employs the principle of multiple beam 

interference, produces much sharper fringes than those produced by Michelson 

interferometer. 

 

 In the Fabry-Perol interferometer it is the fringe pattern formed by transmitted 

light that is observed and as such that intensity distribution would be given by 
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 The resolving power of Fabry-Perot interferometer is given by 

 

  








147.4

cos4 Frh



 

 

3.5   TERMINAL QUESTIONS 
(1)         When one leg of a Michelson interferometer is lengthened slightly, 150 dark 

fringes sweep through the field of view. If the light used has  = 480 mm, how 

far was the mirror in that leg moved? 

 

(2)   Circular fringes are observed in a Michelson interferometer illuminated with 

light of wavelength 5896 Å. When the path difference between the mirrors 1M  

and 2M  is 0.3 cm, the central fringe is bright. Calculate the angular diameter 

of the 7th bright fringe. 
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3.6   SOLUTIONS AND ANSWERS 

 

SAQs 

 

(1)        The distance, x, moved by the mirror when N fringes cross the field of view is 

given by 

  
2


Nx   

 
N

x2
  

 

Here, x = 0.00589 cm, and N =200. 

 

 
200

00589.02
 = 0.0000589 = 5890 Å 

 

(2) If x be the distance moved by the movable mirror between two consecutive 

positions of maximum indistinctness (or distinctness), we have 

   

 
xx 22

2

21 
 


  

 

 where   is the average of 
1  and 

2 . 

  

 Here  = 5893 Å = 
8105893  cm and x = 0.9884 – 0.6939  = 0.2945 mm = 

0.02945  

cm. 

 

 
8

28

10896.5
02945.02

)105893( 






 cm = 5.896 Å 

 

(3) Let t be the thickness of the film. When it is put in the path of one of the 

interfering beams of the Michelson's interferometer, an additional path 

difference of t)1(2   is introduced. If N be the number of fringes shifted, 

we have 

 

   Nt  )1(2  

 

  
)1(2 




N
t  

 

 Here, N = 500,  = 
8104800   cm,  = 1.50. 

 

  
)150.1(2

104800500 8








t  

 

     = 
50.02

104800500 8
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     = 0.024 cm 

TQs 

(1) Darkness is observed when the light beams from the two legs are 180° out of 

phase. As the length of one leg is increased by
2


,  the path length increases 

by  , and the field of view changes from dark to bright to dark. When 150 

fringes pass, the leg is lengthened by an amount 

 

  








2
)150(


= (150) (240) = 36,000 nm = 0.036 mm 

 

(2) The expression for the bright circular fringe is 

 

nrd cos2  

 

At the centre r = 0, so that 

  

  nd 2        

 (i) 

  

n now stands for the order of the central bright fringe. The order of fringes 

decreases as we move outwards from the centre. Thus, the second bright fringe 

is of )1( n th order, ..., the seventh bright fringe is of )6( n th order. Hence 

if   be the angular radius of the 7th bright fringe, we have 

 

  )6(cos2  nd       

 (ii) 

 

Eq. (i) and (ii) give 

 

   6)cos1(2 d  

 or 

  
d2

6
1cos


   

 

Putting the given values: 

  

 cos   =
cm

cm

3.02

)105896(6
1

8








 

 

            = 1 – 0.0005896 = 0.9994 

   = )9994.0(cos 1
= 20 

 angular diameter = 40 

 

 

3.7    APPENDIX 

Method of Complex Amplitudes 
In place of using the sine or the cosine to represent a simple harmonic wave, one may 

write the equation in the exponential form as 



PHY 306             OPTICS II 

81 

 

 
 itikxti eaeaey   )(

 

 

where   = kx is constant at a particular point in space and represents the phase of the 

wave. The presence of 1i  in this equation makes the quantities complex. We can 

nevertheless use this representation, and at the end of the problem take either the real 

(cosine) or the imaginary (sine) part of the resulting expression. The time-varying 

factor )exp( ti  is of no importance in combining waves of the same frequency, since 

the amplitudes and relative phases are independent of time. The other factor, 

)exp( ia   is called the complex amplitude. It is a complex number whose modulus 

a is the real amplitude, and whose argument   gives the phase relative to some 

standard phase. Negative sign merely indicates that the phase is behind the standard 

phase. In general, the vector a is given by 

 

 )sin(cos  iaiyxaea i   

 

Then it will be seen that 

 

 
22 yxa  , 

x

y
tan  

 

Thus, if a is represented as in Fig. (3.12), plotting horizontally its real part and vertically 

its imaginary part, it will have the magnitude a and will make the angle   with the x 

axis, as we require for vector addition. 

 

The advantage of using complex amplitudes lies in the fact that the vector addition of 

real amplitudes can be written more easily in the form of an algebraic addition of 

complex amplitudes. For example, consider the real parts of two waves that follow the 

equations 
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Adding these two equations gives 
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We can now take out the common exponent ti : 

 

 )( 21

21

 iiti eAeAe A       

 (3.17) 

 

The square of the resultant, 
2A , is found by multiplying the complex terms by their 

complex conjugates: 
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Then, from Euler's formula, 
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and therefore, Eq. (3.18) becomes 

 

 
2A = )cos(2 2121

2

2

2

1   AAAA      

 (3.20) 

 

the same as Eq. (1.15).  

 

 
 

Fig. 3.12 Representation of a vector in the complex plane 

 

Thus, in obtaining the resultant intensity as proportional to the square of the real 

amplitude, we multiply the resultant complex amplitude by its complex conjugate, 

which is the same expression with i  replaced by i  throughout. 
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UNIT 4   FRESNEL DIFFRACTION 

Structure  
4.1       Introduction Objectives 

4.2       Observing Diffraction: Some Simple Experiments 

4.3       Producing a Diffraction Pattern 

Spatial Evolution of a Diffraction Pattern: Transition from Fresnel lo 

Fraunhofer Class 

4.4       Fresnel Construction 

Half-period Elements  

Rectilinear Propagation  

The Zone Plate 

4.5       Diffraction Patterns of Simple Obstacles 

A Circular Aperture  

A Straight Edge 

4.6  Summary 

4.7  Terminal Questions 

4.8  Solutions and Answers 

 

4.1 INTRODUCTION 
We know from our day-to-day experience that we can hear persons talking in an 

adjoining room the door of which is open. This is due to the ability of sound waves to 

bend around the corners of obstacles in their way. You are also familiar with the ability 

of water waves to propagate around obstacles. You may now ask: Does light, which is 

an electromagnetic wave, also bend around corners of obstacles in its path? Earlier in 

this course you have learnt the manifestation of wave nature of light in the form of 

interference: Light from two coherent sources interferes to form fringed pattern. But 

what may puzzle you is the fact that light casts shadows of objects, i.e. appears to travel 

in straight lines rather than bending around corners. This apparent contradiction was 

explained by Fresnel who showed that the ease with which a wave bends around 

corners is strongly influenced by the size of the obstacle (aperture) relative to its 

wavelength. Music and speech wavelengths lie in the range 1.7 cm to 17m. A door is 

about 1 m aperture so that long wavelength waves bend more readily around the door 

way. On the other hand, wavelength of light is about  
710

m and the obstacles used in 

ordinary experiments are about 
510 times bigger. For this reason, light appears to travel 

along straight lines and casts shadows of objects instead of bending around their 

corners. However, it does not mean that light shows no bending, it does so under 

suitable conditions where size of obstacles is comparable with the wavelength of light. 

You can get a feel for this by closely examining shadows cast by objects. You will 

observe that the edges of shadows are not sharp. The deviation of waves from their 

original direction due to an obstruction in their path is called diffraction. 

 

The phenomenon of diffraction finds great use in our daily life. You will learn that 

diffraction places a fundamental restriction on optical instruments, including the human 

eye, in respect of resolution of objects.  

 

The phenomenon of diffraction was first observed by Grimaldi, an Italian 

mathematician. And a systematic explanation of diffraction was given by Fresnel on 

the basis of Huygens' principle. According to him, diffraction is attributed to mutual 

interference of secondary wavelets from a single wave. (The interference phenomenon 

involves two coherent wave trains.) This means that in diffraction phenomenon, 

interference takes place between secondary wavelets from different parts of the same 

wavefront. 
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For mathematical convenience and ease of understanding, diffraction is classified in 

two categories: Fraunhofer diffraction and Fresnel diffraction. In Fraunhofer class of 

diffraction, the source of light and the observation screen (or human eye) are effectively 

at infinite distance from the obstacle. This can be done most conveniently using suitable 

lenses. It is of particular practical importance in respect of the general theory of optical 

instruments. You will learn about it in the next unit. 

 

In Fresnel class of diffraction, the source or the observation screen or both are at finite 

distance from the obstacle. You will recognise that for Fresnel diffraction, the 

experimental arrangement is fairly simple. But its theoretical analysis is more difficult 

than that of Fraunhofer diffraction. Also, Fresnel diffraction is more general; it includes 

Fraunhofer diffraction as a special case. Moreover, it has importance in historical 

perspective in that it led to the development of the wave model of light. You will learn 

some of these details in this unit. 

 

Objectives 
After studying this unit, you will be able to: 

 

 state simple experiments which illustrate diffraction phenomenon 

 describe an experimental set-up for diffraction at a circular aperture 

 explain that Fraunhofer diffraction is a special case of Fresnel diffraction 

 discuss the concept of Fresnel half-period zones and apply it to zone plate 

 discuss diffraction pattern due to a circular aperture and a straight edge, and 

 solve numerical problems. 

 

4.2   OBSERVING DIFFRACTION: SOME SIMPLE EXPERIMENTS 

As you know, the wavelength of visible light is very small (about 
710

m). And to see 

diffraction, careful observations have to be made. We will now familiarise you with 

some simple situations and experiments to observe diffraction of light. The 

prerequisites for these are: (i) a source of light, preferably narrow and monochromatic, 

(ii) a sharp-edged obstacle and (iii) an observation screen, which could be the human 

retina as well. 

 

1.      Look at a distant street light at night and squint. The light appears to streak out 

from the bulb. This is because light has bent around the corners of your eyelids. 

 

2.     Stand in a dark room and look at a distant light bulb in another room. Now 

move slowly until the doorway blocks half of the light bulb. The light appears 

to streak out into the umbra region of the dark room due to diffraction around 

the doorway. 

 

3. Take a piece of fine cloth, say fine handkerchief or muslin cloth. Stretch it flat 

and keep it close to the eye. Now focus your eye on a distant lamp (at least 

100 m away) through it. Do you observe an enlarged disc surrounded by a 

regular pattern of spots arranged along a rectangle? On careful examination 

you will note that the spots on the outer part of the pattern appear coloured. 

Now rotate the handkerchief in its own plane. Does the pattern rotate? You 

will he excited to see that the pattern rotates about the central disc. Moreover, 

the speed of rotation of the pattern is same as that of the handkerchief. 

Fraunhofer diffraction and Fresnel diffraction are also called far field diffraction 

and near field diffraction, respectively. 
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We are now tempted to ask: Do you know why this pattern of spots is obtained? 

You will agree that the handkerchief is a mesh (criss-cross) of fine threads in 

mutually perpendicular directions. Obviously, the observed pattern is formed 

by the diffraction of light from the lamp. 

 

4.     Take a pair of razor blades and one clear glass electric bulb. Hold the blades 

so that the edges are parallel and have a narrow slit in between, as shown in 

Fig. 4.1. Keep the slit close to your eye and parallel to the filament. (Use 

spectacles if you normally do.) By slightly adjusting the width of the slit, you 

should observe a pattern of bright and dark bands, which show some colours. 

Now use a blue or red filter. What do you observe? Does the pattern become 

clearer? 

 

 
 

Fig. 4.1 Observing diffraction using a pair of razor blades 

 

5.      Mount a small ball bearing carefully on a plate of glass with a small amount of 

beeswax so that no wax spreads beyond the rim of the ball. Place this opaque 

obstacle in a strong beam of light (preferably monochromatic) diverging from 

a pinhole. Under suitable conditions, you will observe a bright spot, called 

Poisson spot at the centre of the shadow cast by the ball bearing. This exciting 

observation proved unchallengeable evidence for diffraction of light. 

 

4.3  PRODUCING A DIFFRACTION PATTERN 
In the Fresnel class of diffraction, the source of light or the screen or both are, in 

general, at a finite distance from the diffracting obstacle. On the other hand, in 

Fraunhofer diffraction, this distance is effectively infinite. This condition is achieved 

by putting a suitable lens between the source and the screen. A large number of workers 

have observed and studied Fresnel and Fraunhofer diffraction patterns. Recently a 

systematic study of Fresnel diffraction pattern from obstacles of different shapes e.g., 

small spheres, discs and apertures of circular, elliptical, square, triangular or 

parallelograms etc of different sixes was done by Indian physicist Y.V. Kathvate under 

the guidance of Prof. C. V, Raman. Their experimental set up for photographing these 

patterns is shown in Fig. 4.2. It consists of a light tight box (nearly 5 m long) with a 

fine pinhole at one end. The light on the pinhole from a 100 W lamp was focussed using 

a convex lens, A red filter was used to obtain almost monochromatic light of 

wavelength 6320 Å. 

 

The obstacle was placed at a suitable distance (about 2 m) from the pinhole. The 

photographic plate was mounted on a movable stand so that its distance from the 

obstacle could be varied. They used steel ball bearings of radii 1.58 mm, 1.98 mm, 

2.37mm and 3.17 mm as spherical obstacles. 

 

(As such, you should not attach much significance to the exactness of these sizes.) 

These four spheres were mounted on a glass plate, which was kept at a distance of about 

2 m from the pinhole. 
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Fig. 4.2 Schematics of experimental arrangement used by Kathvate to observe Fresnel 

diffraction 

 

 

 

The photographic plate was kept at distances of 5cm, 10cm, 20cm, 40cm and 180 cm 

from the mounted glass plate (obstacle). For the last case, the diffraction patterns 

obtained from these spheres are shown in Fig. 4.3 (a). These patterns essentially 

characterize the distribution of light intensity in the region of geometrical shadow of 

the obstacles. 

 

 

Poisson was a member of the committee, which was appointed to judge Fresnel's 

dissertation. To disprove Fresnel, and hence the wave theory, Poisson argued that a 

central bright spot should appear in the shadow of a circular obstacle. His logic, called 

reductio ad absurdum goes as follows: Consider the shadow of a perfectly round object 

being cast by a point source (O) shown below. According to wave theory, all the waves 

at the periphery will be in phase. This is because they have covered the same distance 

from the source. So the waves starting from the rim 'PP  and reaching C should all be 

in phase at the centre of the shadow. This implies that there should be a bright spot at 

the centre of the shadow. This was considered absurd by Poisson; he was definitely not 

aware that the bright spot in question had already been discovered by Maraldi almost a 

century before. Soon after Poisson's objection, Arago carried out the experiment using 

a disk of 2mm diameter. To his surprise, he rediscovered the central bright spot. 
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Fig. 4.3 Fresnel diffraction patterns: Kathvate experiments with (a) spheres and (b) 

circular discs  

of four sizes 

 

The diffraction patterns for circular discs of the same size are illustrated in Fig. 4.3(b). 

You will find that these patterns are almost similar to those for spheres. Moreover, the 

diffraction patterns on the left half of this figure, which correspond to bigger spheres 

and discs (radii 3.17 mm and 2.37 mm), show the geometrical shadow and a central 

bright spot within it. On the other hand, in the diffraction pattern corresponding to the 

smaller sphere (or disc) of radius 1.98mm, the geometrical image is recognizable but 

has fringes appearing on its edges. The fringe pattern around the central spot becomes 

markedly clearer for the sphere of radius 1.58mm. An enlarged view of this pattern is 

shown in Fig. 4.4. The formation of the bright central spot in the shadow and the rings 

around the central spot are the most definite indicators of non-rectilinear propagation 

of light. Instead, light bends in some special way around opaque obstacles. These 

departures from rectilinear propagation come under the heading of diffraction 

phenomenon. 

 

Let us pause for a minute and ask: Are these diffraction patterns unique for a given 

source and obstacle? The answer to this question is: Fresnel patterns vary with the 

distance of the source and screen from the obstacle. Let us now learn how this transition 

evolves. 
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Fig. 4.4 Enlarged view of fringe pattern for the sphere of radius 1.58mm 

 

4.3.1    Spatial Evolution of a Diffraction Pattern: Transition from Fresnel to 

Fraunhofer  

Class 

To observe transition in the Fresnel diffraction pattern with distance, we have to 

introduce a small modification in Kathvate's experimental arrangement, as shown in 

Fig. 8.5 (a). The point source is now located at the focal point of a converging lens L. 

The spherical waves originating from the source O are changed into plane waves by 

this lens and the wavefront is now parallel to the diffracting screen with a narrow 

opening in the form of a long narrow slit (Fig.8.5 (b)). These waves pass through the 

slit. The diffracted waves are also plane and may have an angular spread. You may now 

like to know the shape, size and intensity distribution in the diffraction pattern on a 

distant screen. 

 

1.     When the incident wavefront is strictly parallel to the diffracting screen, we get 

a vertical  

patch of light when the screen is immediately behind the aperture. That is, a 

region A'B' of uniform illumination on the screen. The size of this region is 

equal to the size of the slit both in width and height. The remaining portion of 

the screen is absolutely dark. A plot of this intensity distribution is shown in 

Fig. 4.6 (a). From P  to A', the intensity is zero. At A', it abruptly rises to 0I , 

and remains constant from A' to B'. At B', it again drops to zero. We can say 

that A'B' represents the edges of the geometrical shadow (and the law of 

rectilinear propagation holds). 
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Fig. 4.5(a) Arrangement to observe transition In Kernel diffraction pattern (b) Cross-

sectional view of the geometry shown in (a) above 

 

2.     As the screen is moved away from the aperture, a careful observation shows 

that the patch of light seen in (1) above begins to lose sharpness. If the distance 

between the obstacle and the observation screen is large compared to the width 

of the slit, some fringes start appearing at the edges of the patch of light. But 

this patch resembles the shape of the slit. The intensity distribution shows 

diffraction rippling effect somewhat like that shown in Fig. 8.6(b). From this 

we can say that the intensity distribution in the pattern depends on the distance 

at which the observation screen is placed. 

 

 

 

 

 

 
 

Fig. 4.6 Spatial evolution of a diffraction pattern 

3.      When d (~ 1m) is much greater than the width of the slit (~ 0.1 mm), the fringes 

seen in (2) above – close to edge of the patch – now spread out and the 

A slit is a rectangular opening whose width (0.l mm or so) is much 

smaller than its length 1 cm or more. 
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geometrical image of the slit can no longer be recognized. As distance is 

increased further, diffraction effects become progressively more pronounced. 

 

4.     When d is very large, i.e., once we have moved into the Fraunhofer region, 

ripples no longer change character. You can observe this pattern by putting a 

convex lens after the slit. The observation screen should be arranged so that it 

is at the second focal plane of the lens. These variations in Fraunhofer 

diffraction are shown in Fig. 4.6(c). 

 

From this we may conclude that Fresnel diffraction can change significantly as the 

distance from the aperture is varied. 

 

You must now be interested in understanding the physical basis of these observations. 

The first systematic effort in this direction was made by Fresnel. Let us learn about it 

now. 

 

4.4  FRESNEL CONSTRUCTION 
Let us consider a plane wave front represented by WW propagating towards the right, 

as shown in Fig. 4.7(a). We want to calculate the effect of this plane wavefront at an 

external point 0P  on the screen at a distance d. Then we will introduce an obstacle like 

a straight edge and see how intensity at 0P  changes. 

 

We know that every point on the plane wavefront may be thought of as a source of 

secondary wavelets. We wish to compute the resultant effect at 0P  by applying 

Huygens-Fresnel principle. One way would be to write down the equations of 

vibrations at 0P  due to each wavelet and then add them together. This is a cumbersome 

proposition. The difficulty in mathematical calculation arises on two counts; (i) There 

are an infinite number of points which act as sources of secondary wavelets and (ii) 

Since the distance travelled by the secondary wavelets arriving at 0P  is different, they 

reach the point P0 with different phases. To get over these difficulties, Fresnel devised 

a simple geometrical method which provided useful insight and beautiful explanation 

of diffraction phenomenon from small obstacles. He argued that it is possible to locate 

a series of points situated at the same distance from 0P  so that all the secondary 

wavelets originating from them travel the same distance. We can, in particular, find the 

locus of those points from were the 

wavelets travel a distance 
2


b , 

2

2
b , 

2

3
b , and so on. 

 

The Fresnel construction consists of dividing the wavefront into annular spaces 

enclosed by concentric circles (Fig. 4.7(b)). The net effect at 0P  will be obtained by 

summing contributions of wavelets from these annular spaces, called half period 

elements. When an obstacle is inserted in between the wavefront WW' and the point 0P

, some of these half period elements will be obstructed depending upon the size and 

shape of the obstacle. The wavelets from the unobstructed parts only will reach 0P  and 

their resultant can be calculated easily by Fresnel's method. Let us now learn about 

Fresnel's construction, half period elements and the method of summation of the 

contributions of secondary wavelets. 
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Fig. 4.7 Fresnel construction (a) Propagation of a plane wavefront and (b) division of 

wavefront  

into annular spaces enclosed by concentric circles 

 

4.4.1   Half Period Elements 
To discuss the concept of Fresnel's half-period elements we assume, for simplicity, that 

light comes from infinity so that the wavefront passing through the aperture is plane. 

Refer to Fig. 4.8. It shows a plane wavefront WWF'F of monochromatic light 

propagating along the z -direction. We wish to calculate the resultant amplitude of the 

field at an arbitrary point 0P  due to superposition of all the secondary Huygen’s 

wavelets originating from the wavefront at the aperture. To do so, we divide the 

wavefront into half-period zones using the following construction: From the point 0P  

we drop a perpendicular 0P O on the wavefront, which cuts it at O. The point O is called 

the pole of the wavefront with respect to the point 0P . Suppose that b is the distance 

between the foot of the perpendicular to 0P , i.e., O 0P  = b. 

 

Now with 0P  as centre, we draw spheres of radii 
2


b , 

2

2
b , 

2

3
b , and so on. 

You can easily visualise that these spheres will intersect the plane wavefront in a series 

of concentric circles with centre O and radii 
1OQ , 

2OQ , 3OQ , … as shown in Fig. 

4.8. This geometrical construction divides the wavefront into circular strips called 

zones. The first zone is the space enclosed by the circle of radius 
1OQ t the second zone 

is the annular space between the circles of radii 
2OQ  and 

1OQ . The third zone is 

annular space between the circles of radii 3OQ  and 
2OQ , and so on. These concentric 

circles or annular rings are called Fresnel zones or half period elements. This 

nomenclature has genesis in the fact that the path difference between the wavelets 

reaching 0P  from corresponding points in successive zones is 2/ . 
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Fig. 4.8 Half-period zones on a plane wavefront: A schematic construction 

 

To compute the resultant amplitude at 0P  due to all the secondary wavelets emanating 

from the entire wavefront, we first consider an infinitesimal area dS of the wavefront. 

We assure that the amplitude at 0P  due to dS is (i) directly proportional to the area dS 

since it determines the number of secondary wavelets, (ii) inversely proportional to the 

distance of dS from 0P  and (iii) directly 

proportional to the obliquity factor )cos1(  , where   is the angle between the 

normal drawn to the wavefront at dS and the line joining dS to 0P .   is zero for the 

central point O. As we go away from O, the value of   increases until it becomes 90° 

for a point at infinite distance on the wavefront (Fig. 4.9). Physically, it ensures that 

wavefront moves forward. That is, there is no reverse (or backward) wave. 

 

 
 

Fig. 4.9 The obliquity factor for Huygens' secondary wavelets 

 

If we denote the resultant amplitudes at 0P  due to the first, second, third, fourth, ..., nth 

zone by 
1a , 

2a , 3a , 
4a , …, then we can write 
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na const )cos1( 
n

n

b

A
      

 (4.1) 

 

where nA  is the area of the nth zone and nb  is the average distance of the nth zone 

from 0P . Eq. (4.1) shows that to know the amplitude of secondary wavelets arriving at 

0P  from any zone, we must know nA . This in turn requires knowledge of the radii of 

the circles defining the boundaries of the Fresnel zones. To calculate the radii of various 

half period zones in terms of known distances, let us denote 
11 rOQ  , 

22 rOQ  , 

33 rOQ  , …, nn rOQ  . From Pythagoras' theorem we find that the radius of the first 

circle (zone) is given by 

 

 
2

2/1

2

2

1
4

1

2





















 bbbr  

         = b  

 

The approximation b  holds for practical systems using visible light. Similarly, 

the radius of the nth circle (zone) is given by 

 

 nr  = 
















 2

2

2
b

n
b   

  = 

2/122

4













n
nb  

  = nb        

 (4.2) 

 

where we have neglected the term 
4

22n
 in comparison to nb . This approximation 

holds for all diffraction problems of interest to us here. 

 

It readily follows from Eqs. (4.1) and (4.2) that the radii of the circles are proportional 

to the square root of natural numbers, i.e., 1 , 2 , 3 , 4 , … Therefore, if the 

first zone has radius 
1r , the successive zones have radii 1.41

1r , 1.73
1r , 2

1r , etc. For 

He-Ne laser light ( = 6328 Å). If we take 0P  to be 30 cm away (b = 30 cm), the radius 

of the first zone will 0.436 mm. 

 

Let us now calculate the area of each of the half-period zones. For the first zone 

 

 
1A  = 2

1r  = 
















 2

2

2
bb
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Refer to figure above and consider the contributions from the (n - 1)th and nth 

zones. Firstly, the areas of the two annular regions are approximately equal, i.e., 

the secondary wavelets starting from both the zones are equal. Secondly, the 

points on the innermost circle of the (n - 1)th zone, e.g., points like R are situated 

at a distance of 2/)2(  nd  from 0P , whereas the points on the innermost 

circle of the nth zone e.g. points like S are situated at a distance of 

2/)1(  nd  from 0P . The difference in path between the secondary 

wavelets to reach 0P  from R and S is 2/ . This means that the waves reaching 

0P  are out of phase by   and cancel each other. Similarly for every point 

between R and S in the (n - 1)th zone we have a corresponding point between S 

and T in the nth zone with a path difference of 2/  or phase difference of   

and hence cancel each other. Since the areas of the two zones are approximately 

equal, we arrive at the result that for every point in the (n -1)th zone we have a 

point in the nth zone which is out of phase by  or half of a period. 
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= 
2

4



 b  

   =  b        

 (4.3a) 

 

The area of the second zone, i.e. the annular region between the first and the second 

circles is 

 

 )( 2

1

2

2 rr   =  bbb  ])[( 22
 

 

   =  bbb 2     

 (4.3b) 

 

Similarly, you can readily verify that the area of the nth zone 

 

  brrA nnn   )( 2

1

2
      

 (4.3c) 

 

That is, all individual zones have the same area. The physical implication of the 

equality of zone areas is that the secondary wavelets starting from every zone will be 

very nearly equal. You must however remember that the result contained in Eq.(4.3) is 

approximate and is valid for cases where nb  . A more rigorous calculation shows 

that the area of a zone gradually increases with n: 

 









2
)1(


 nbAn
      

  (4.3d) 

 

 

However, the effect of this increase is almost balanced by the increase in the average 

distance of the nth zone from 0P . That is, the ratio nn bA /  in Eq. (4.1) remains  , 

which is a constant, independent of n. This means that the amplitude due to any zone 

will be influenced by the obliquity factor, which is actually responsible for monotonic 

decrease in the amplitudes of higher zones )...( 321 naaaa  . Also, it is 

important for our computation to note that consecutive zones differ by one-half of a 

wavelength. Therefore, the secondary waves from any two corresponding points in 

successive zones [nth and (n - l)th or (n + l)th] reach 0P  out of phase by   or half of a 

period. 

 

Suppose that the contribution of all the secondary wavelets in the nth zone at 0P  is 

denoted by an. Then, the contribution of (n - l)th zone 1na  will tend to annihilate the 

effect of the nth zone. Mathematically we write the resultant amplitude at 0P  due to the 

whole wavefront as a sum of an infinite series whose terms are alternately positive and 

negative but the magnitude of successive terms gradually diminishes: 

 

  = ...3

4

2

321   iii eaeaeaa  
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 = 
2

...)1(... 11

4321

a
aaaaa n

n       

 (4.4) 
 

There are several methods of arriving at this result. Here we will describe a simple 

graphical construction. (The mathematical method is given as TQ).  

 

Let us denote the amplitudes of resultant vectors AB, CD, EF, GH, ... respectively by 

1a , 
2a , 3a , 

4a , ... due to the first, second, third, fourth, ... zone. (We know that, 
1a , 

2a , 3a , 
4a , ..., an are alternately positive and negative). These vectors are shown 

separately in Fig. 4.10(a) to show their magnitudes and positions. But their true 

positions are along the same line, as shown in Fig. 4.10 (b). The resultant of the first 

two zones as will be the small vector AD. But the resultant of the first three zones is 

the large vector AF; of the four zones the smaller vector AH and so on. Refer to Fig. 

4.10(a) again. You will note that the resultant of infinitely large number of zones is 

equal to 2/1a . 

If we consider a finite number of zones, say n, the resultant is given by 

 

22
)( 1 naa

n         

 (4.5) 

 

where n  is any number (odd or even). 
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Fig. 4.10: Phasor diagram for Fresnel (half-period) zones. Individual amplitudes are 

shown in (a).  

Actually, all vectors are along a line. This is shown in (b). The resultant 

amplitude due to n (= 2, 3, ...) zones is shown in (c) 

 

So far, we have considered the effect of a whole number of half period elements 

at a given point. The sum of the amplitudes due to all the secondary wavelets 

starting from the nth zone was represented by an. But so far, we have not 

computed the magnitude and phase of the amplitude vector an. An obvious related 

problem is to calculate the effect at 0P  due to a fraction of a given half period 

element. We can do this easily by the following vector summation method. We 

divide a Fresnel zone into a series of n sub-zones of equal areas. Refer to figure 

below. It shows such a division for the annular space between the (n - 1)th and the 

nth circles. O is taken as centre and circles of slightly differing radii have been 

drawn such that the annular space between two consecutive circles encloses equal 

area. Now within the area covered by a sub-zone, we can neglect variation in 

inclination factor. Since all these sub-zones have been drawn so that they have 

equal areas, the amplitude at 0P  due to these small equal areas will be the same. 

But the phases will change continuously from one sub-zone to the next sub-zone 

by n2/  since the phase difference between the secondary wavelets starting 

from the innermost sub-zone of any one Fresnel half period zone is 2/  or  . 

If we make n very large, we will have infinitesimally small but equal areas and 

phases of wavelets from these may be taken to vary continuously and uniformly. 

 

 
 

Thus, we have a set of disturbances of equal amplitude but uniformly changing 

phase such that the phase difference between the two extreme disturbances is 
. These extreme vectors are represented by AA' and BB' in the figure shown. We 

know that in such a case the vector diagram is a semicircle and the resultant of 

the summation of amplitudes is the diameter AB.  
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To see this, you closely re-examine Fig. 4.10(b). You will note that all vectors 

representing 
1a , 

2a , 3a , 
4a , ... are line segments whose midpoints coincides with the 

midpoint of 
1a  (marked as —). (You must convince yourself about this.) In other 

words, the vector representing an is a line, half of which is above the horizontal line 

passing through the midpoint of 
1a  and the other half is below this line. The resultant 

of n zones is a vector joining A to the end of the vector representing an. When n is odd, 

the end point of the vector representing an will be above the horizontal line by 2/na , 

which proves the required result. 

 

If n is even, the end point will be below this horizontal line by 2/na . Added 

vectorially, we have the same result. We thus see that the resultant amplitude at 0P  due 

to n zones is half the sum of amplitudes contributed by the first and the last zone.   

will be numerically greater than 2/1a  when n is odd and smaller than 2/1a  when n 

is even. For example, the resultant contribution due to 7 zones is AO, which is equal to 

22

1 NOa
 . On the other hand, for 8 zones, the resultant is 

22

1 PQa
AQ  . 

 

It may be emphasized that in this graphical method of summation of the series, we have 

used three properties: (i) vectors representing 
1a , 

2a , ... are all along the same straight 

line               (ii) alternate vectors are oppositely directed and (iii) the magnitudes of 

1a , 
2a , ... decrease gradually. 

 

We now consider a simple example to illustrate these concepts. 

 

Example 1 
Consider a series with n = 100 in which each term is equal to the arithmetic mean of 

the preceding and the following terms. Calculate the resultant. 

 

Solution 
As a special case, we can take the terms of the series as 100, 99, 98, ..., 3, 2, 1.  

 

   =  (100 – 99) + (98 – 97) + (96 – 95) + ... + (4 – 3) + (2 – 1) 

 

=  1 + 1 + 1 + ...  (50 terms) 

 

= 50  

 

which is half of the first term. Now consider the relation 

 

 
22

1 naa
  

 

and take different number of terms in this arithmetic series. If we have only one term, 

1a = 100 we take the first term as 100 and also the last term as 100. Then we get 

 

 
22

1 naa
 = 100 

 

Next we take two terms. Then 
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  (100 – 99) = 1 

 

Also 

 

 
22

1 naa
  = 

2

99

2

100
  

 

      = 50 – 49.5 = 0.5 

 

For three terms,  = (100 – 99) + 98 = 99 

and   
22

31 aa
 = 50 + 49 = 99 

 

For four terms,  = (100 – 99) + (98 – 97) = 2 

and  
22

41 aa
 = 50 – 48.5 = 1.5 

 

For five terms  = (100 – 99) + (98 – 97) + 96 = 98 

and  
22

51 aa
 = 50 + 48 = 98 

 

For six terms  = (100 – 99) + (98 – 97) + (96 – 95) = 3 

and  
22

61 aa
 = 50 – 47.5 = 2.5 

 

and so on. Thus we see that   is given by 
22

1 naa
  to a fairly good degree of accuracy. 

 

4.4.2  Rectilinear Propagation 
Refer to Fig. 4.11. It shows several collinear apertures A, B, C, ... Light originates from 

a point source and propagates towards the right. Suppose that the source is 1m away. 

We may take the spherical wave falling on the obstacle as nearly a plane wave. (The 

radius of curvature of the incident spherical wave will not qualitatively change the 

argument.) Let us work out the sizes of Fresnel half period elements for the typical case 

where the screen is 30 cm away from the aperture. 
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Fig. 4.11 Fresnel construction and rectilinear propagation of light 

 

Taking 
5105  cm, we get )105()30( 5

1 cmcmr  = 
21087.3   cm. This 

means that the diameter of the first zone is less than 1 mm. Let us consider the 100th 

Now we will compute magnitude and phase of the resultant at AB. If all the 

equal disturbances from the sub-zones were in the same phase, the resultant 

would have been a line along AA' and equal lo the length of the arc of the 

semicircle AB ( r ) of radius r. But we find that the actual resultant 

amplitude is AB = 2r. Thus, the resultant amplitude is 


22


r

r
times the 

value which would be obtained if all the wavelets within a Fresnel half period 

element had the same phase. Since the line AB is parallel to the line MN, we 

see that the resultant phase of vector AB is the same as that of the vector MN 

representing the disturbance starting from the middle point (M) of the zone. 

In other words, AB is perpendicular to AA'. That is, it is a quarter-period 

behind the wavelet starting from the innermost sub-zone. We can find, in a 

similar manner, the resultant contribution due to the next half-period zone. 

It is given by CD and differs from AB by  . The resultant of the sum of 

these two zones is the small vector AD. The magnitudes of vectors and their 

phases for succeeding zones are shown in the figure below. The resultant 

curve is the vibration spiral with gradually smaller and smaller semicircles 

until eventually it coincides with Z. The resultant when all the half-period 

elements are considered is AZ which is half of that which would be produced 

by the first zone alone. It is equal to 


12

2

1
 times that which would be 

produced by all the wavelets from the first zone acting together in the same 

phase. 
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zone. Its radius cmcmr 5

100 10510030  = 
11087.3   cm, so that the 

diameter will be a little less than 1 cm. Therefore, if the aperture is about 1 cm in 

diameter, the amplitude at 0P  due to the whole wavefront is 
22

1001 aa
 . 100a  will be 

fairly small, so that the intensity is essentially half of that due to the first half period 

zone, which is the intensity expected at 0P  when the aperture is completely removed. 

We may say that light travels to 0P  from a region nearly 0.4 mm in radius around O. 

That is, light travels in a straight line. 

 

Let us now understand the formation of shadows and illuminated regions due to an 

obstacle (Fig. 4.12). Consider the point P2 whose pole is O2. If the distance between O2 

and the edge A of the obstacle is nearly 1 cm, over 100 half period elements will be 

accommodated in it. And as seen above, the intensity at P2 will be nearly equal to 
2

1a

. In other words, the obstacle T will have no effect at the point P2- Similarly, at P1, 

which is taken 1 cm inside the geometrical edge of the shadow, over 100 half period 

elements around O1 are obstructed and the intensity at P1 will be less than 
2

100a
, which 

is almost negligible. This implies almost complete darkness at P1. In other words, the 

obstacle has completely obstructed the light from the source and the region around 

point P1 is in the shadow. Only around P0, which signifies the geometrical edge of the 

shadow, we find fluctuations in intensity depending upon how many half period 

elements have been allowed to pass or have been obstructed. This explains the observed 

rectilinear propagation of light since Fresnel zones are obstructed or allowed through 

by obstacles of the size of a few mm for these typical distances. 

 

 
 

Fig. 4.12: Fresnel construction and formation of shadows/Illuminated regions 

 

A special optical device, designed to obstruct light from alternate half-period elements 

is known as Zone plate. It provides experimental evidence in favour of Fresnel’s 

theory. Let us learn about it now. 

 

4.4.3  The Zone Plate 

The zone plate is a special optical device designed to block light from every other half-

period zone. You can easily make a zone plate by drawing concentric circles on a white 

paper, with their radii proportional to the square roots of natural numbers and shading 

alternate zones. Fig. 4.13 shows two zone plates of several Fresnel zones, where all 
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even numbered or odd numbered zones are blackened out. Now photograph these 

pictures. The photographic transparency (negative) in reduced size acts as a Fresnel 

zone plate. (Recently, Gabor has proposed a zone plate in which zones change 

transmission according to a sinusoidal wave.) Lord Rayleigh made the first zone plate 

in 1871. Today zone plates are used to form images using X-rays and microwaves for 

which conventional lenses do not work. 

 

 
 

Fig. 4.13 Zone plates: (a) positive (b) negative 

 

If you now pause for a while and logically reflect upon the possible properties of a 

Fresnel zone plate, you will arrive at the following conclusions: 

 

1.      A zone plate acts like a converging lens (see Example 2) and produces a very 

bright spot. To understand the formation of the spot let us suppose that the first 

ten odd zones are exposed to light. Then, Eq. (8.4) tells us that the resultant 

amplitude at P0 is given by 

 

1953120 ... aaaa        

 (8.5) 

 

If the obliquity factor is not important, we may write 120 10a , which means 

that the amplitude for an aperture containing 20 zones is twenty times and 

intensity is 400 times that due to a completely unobstructed wavefront. 

 

Example 2 
Show that a zone plate acts like a converging lens.  

 

Solution 
Refer to Fig. 4.14. It shows the section of the zone plate perpendicular to the plane of 

the paper. S is a point source of light at a distance u from the zone plate. A bright image 

is formed at P0 at a distance v from the plane of the zone plate. 
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Fig. 4.14: Action of a Zone Plate as a converging lens 

 

 
You can easily write 

 

 011 PQSQ   = 
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By Pythagoras' theorem we can write 
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where nr  is the radius of the nth zone.  

 

Similarly, you can convince yourself that 
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If we identify 
n

r
f n

n

2

  as the focal length of the zone plate, we find that 
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n
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2



 

 

which is identical to the lens equation. 
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2.      The zone plate has several foci. To understand this, we assume that the 

observation screen is at a distance of one focal length from the diffracting 

aperture. Then it readily follows from the above example that the most intense 

(first order) focal point is situated at /2

11 rf  . To give you a feel for 

numerical values, let us calculate 
1f  for a zone plate with radii nrn 1.0  

cm and illuminated by a monochromatic light of wavelength  = 5500 Å. You 

can easily see that 

 

  
cm

cmr
f

8

22

1
1

105500

)1.0(





= 182 cm 

 

To locate higher order focal points, we note from Eq. (4.2) that for rn fixed, n increases 

as b decreases. Thus for 2/1fb  , n = 2. That is, as P0 moves towards the zone plate 

along the axis, the same zonal area of radius r encompasses more half-period zones. At 

this point, each of the original zones covers two half-period zones and all zones cancel. 

When 3/1fb  , n = 3. That is, three zones contribute from the original zone of radius 

1r . Of these, two cancel out but one is left to contribute. Thus other maximum intensity 

points along the axis are situated at  

 

 
n

r
f n

2

1  for n  odd       

 (4.9) 

 

For the numerical example above, 
3

182
3 f cm, 5f = 

5

182
cm , 

7

182
7 f cm and so 

on. Between any two consecutive foci, there will be dark points. 

 

4.5    DIFFRACTION PATTERNS OF SIMPLE OBSTACLES 
From Sec. 4.3 you will recall that by utilizing Kathvate's experimental arrangement, 

the Fresnel diffraction pattern of various apertures and obstacles could be photographed 

by varying distances between the source, the object and the photographic plate. We will 

now use results derived in Sec. 4.4 to explain the observed diffraction pattern of simple 

obstacles like circular aperture and straight edge. 

 

We begin by studying the Fresnel diffraction pattern of a circular aperture. 

 

4.5.1  A Circular Aperture 
Refer to Fig. 4.15. It shows a sectional view of the experimental arrangement in which 

a plane wave is incident on a thin metallic sheet with a circular aperture. You will note 

that the plane of the wavefront is parallel to the plane of the metal plate; both being 

perpendicular to the plane of the paper. 

 

Let us calculate the intensity at a point P0 lying along the line passing through the centre 

of the circular aperture and perpendicular to the wavefront. Assume that the distance 

between the point P0 and the circular aperture is b. As discussed earlier, the intensity at 

the observation point due to the entire uninterrupted plane wavefront is given by Eq. 

(4.4) where 
1a , 

2a , etc. give the contributions due to successive Fresnel zones. 
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Fig. 4.15 Diffraction by a circular aperture: A cross-sectional view of the experimental  

  arrangement 

 

Our problem here can be solved by constructing appropriate Fresnel zones and finding 

out how many of these half period elements are transmitted by the aperture. However, 

it is important to note that for an aperture of a given size, the number of half period 

elements transmitted may not always be the same. This is because the radii of the 

Fresnel zones depend upon the distance of point P0 from O )( bnrn  . You can easily 

convince yourself that if the point P0 is far away from the aperture (b is very large), the 

radii of the first zone, equal to b , may be larger than the radius of the aperture. In 

such a situation, all the secondary wavelets starting even from the entire first zone alone 

may not be transmitted. That is, the wavelets from a small portion of the first Fresnel 

zone only are transmitted. 

 

The next question we have to address to is: How to calculate the amplitude at P0 when 

the aperture has transmitted only a fraction of the first Fresnel zone? As a first 

approximation, we assume that the wavelets arrive at P0 in phase. (This is quite justified 

because the path difference between the extreme wavelets within anyone half period 

elements is 2/ . If only a fraction of the first zone transmits here, the net phase 

difference will be correspondingly less.) Further, the inverse square law for intensity 

tells us that the amplitude at P0 will be inversely proportional to b. Hence, the effect at 

P0, which is at a large distance, will be small. 

 

As the point P0 moves towards the aperture (b becomes smaller), the zone size shrinks 

and a greater part of the central zone is transmitted. As a result, the intensity increases 

gradually. As the observation point comes closer and closer, with the shrinking of the 

sizes of zones, a stage may  be reached when the first zone exactly fills the aperture. 

Then b , the radius of the first zone is also the radius of the aperture. We know that 

the first zone contributes 
1a  to the amplitude at P0. Compare it with the situation where 

the obstacle with circular aperture is not present. The entire wave front contributes but 

the amplitude at P0 is 
2

1a
. Since intensity is proportional to the square of amplitude, 

the intensities at P0 with and without the aperture are respectively 
2

1a  and 
4

2

1a
. That 

is, the intensity at a given point is four times as large when the aperture is inserted in 

the path than when it is completely removed. This surprising result is not apparent in 

the realm of everyday experience dominated by rectilinear propagation of light. 
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As the observation point P0 comes still closer, the circular aperture may transmit the 

first two zones. The amplitude will then be )( 21 aa   which is expected to be very 

small. The additional light produces practically zero amplitude, hence darkness, at P0. 

Bringing the point P0 gradually closer will cause the intensity to pass through maxima 

and minima along the axis of the aperture depending on whether the number of zones 

transmitted is odd or even. If we continue to bring the point P0  closer to O, the number 

of Fresnel zones transmitted by the aperture goes on  increasing. The value 
2

1a
 is 

finally reached when the point P0 is so close that an infinitely large number of zones 

contribute to the amplitude. 

 

The same variation in intensity should be experienced if the point P0 is kept fixed 

and the radius of the aperture is varied continuously. This can be done experimentally 

but is somewhat more difficult. 

 

We have calculated the intensity at points on the axis but the above considerations do 

not give any information about the intensity at points off the axis. A detailed and 

complex mathematical analysis which we shall not discuss here, shows that P0 is 

surrounded by a system of circular diffraction fringes. Photographs of these fringe 

patterns have been taken by several workers and we referred to Kathvate's experiments 

earlier in this unit. 

 

We now illustrate the concepts developed here by solving an example. 

 

Example 3 
In an experiment a big plane metal sheet has a circular aperture of diameter 1 mm. A 

beam of parallel light of wavelength  = 5000 Å is incident upon it normally. The 

shadow is cast on a screen whose distance can be varied continuously. Calculate the 

distance at which the aperture will transmit 1, 2, 3, ... Fresnel zones. 

 

Solution 

Let 
1b , 

2b , 3b , …, nb  be the distances at which 1, 2, 3, …  zones are transmitted by 

an aperture of fixed radius r. From Eq. (4.2) we can write 

 

 
2

nn rnb   

 

so that  
n

r
b n

n

2

  

 

 
cm

cmr
b

5

22

1
1

105

)05.0(





= 50 cm 

 

Similarly, we find that 

 

 

 

 

 

 
2

50

2

2

2
2 



r
b cm = 25 cm, 

3

50
3 b cm = 16.7 cm, 

4

50
4 b cm = 12.5 cm,  
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 5b = 10 cm, 6b = 8.3 cm, 7b = 7.1 cm, 8b = 6.2 cm. 

 

The amplitudes corresponding to these distances are plotted in Fig. 4.16. 

 

 
 

Fig. 4.16 Variation of amplitudes when a circular aperture transmits integral multiple 

Fresnel  

  zones 

 

 

Another conclusion of some historic interest follows if we substitute the aperture by a 

circular disc or a round obstacle just covering the first Fresnel zone. The light reaching 

the point of observation P0 will be due to all zones except the first. The second zone is 

therefore the first contributing zone and the intensity of light spot at the centre of the 

shadow of the obstacle will be almost equally bright as when the first zone was 

unobstructed. 

 

You may now ask: Why is the bright spot at the centre only? This is because there is 

no path difference and hence phase difference between waves reaching an axial point. 

At any other off-axis point, waves will reach with different phases and may tend to 

cancel mutually. The existence of this spot was demonstrated by Arago, though Poisson 

gave his theoretical arguments to disprove wave theory of light. 

 

You may now like to answer an SAQ. 

 

SAQ1 
A 25 pence coin has a diameter of 2 cm. How many Fresnel zones does it cut off if the 

screen is 2 m away? Do you expect to see a bright spot at the centre? If we move the 

screen to a distance of 4 m, how many zones will it cut off? Will the bright spot now 

look brighter? Why? Take 
7105  m. 

 

 

So far we have discussed diffraction patterns which had axial symmetry: the object or 

aperture was circular and the plane wavefront originated from a point source. We now 

wish to consider the case wherein source is a slit source. This source will emit 

cylindrical waves with the slit as axis. Let us now study the diffraction pattern of a 

straightedge. 

 

 

The slit has a very small width compared to its length. Or we may say that in 

comparison to its width, it has an infinite length. 
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4.5.2  A Straight Edge 
Let S be a slit source perpendicular to the plane of the paper. This sends a cylindrical 

wavefront towards the obstacle, which is a straight edge perpendicular to the paper. 

You can take a thin metal sheet or a razor blade with the sharp edge parallel to the slit. 

Fig. 4.17(a) shows a section perpendicular to the length of the slit. 

 

 
 

Fig. 4.17 (a) Cross sectional view of the geometry to observe diffraction due to a 

straight edge  

  and (b) Fresnel construction divides the cylindrical wavefront in half period 

strips 

 

The line joining S and E, the point on the wavefront, when produced meets the screen 

at P0, which is the geometrical boundary of the shadow. Consider any point P on the 

screen. A line joining it to S cuts the wavefront at R. We wish to know how intensity 

varies on the screen. This calculation is somewhat complicated because we now have 

a cylindrical wavefront. Moreover, the obstacle does not have an axial symmetry. 

 

For a plane wave and obstacles with axial symmetry you know how to construct Fresnel 

zones. To construct half period elements for a straight edge, we divide the cylindrical 

wavefront into strips. As before, we make sure in the construction that the amplitudes 

of the wavelets from these strips arrive at P0 out of phase by   so that alternate terms 

are positive and negative. This is achieved by drawing a set of circles with P0 as centre 

and radii b , 
2


b , 

2

2
b , etc., cutting the circular section of the cylindrical wave 

at points O, AA', BB', CC', ... Fig. (4.17b). If lines are drawn through A, A', B, B', etc.  

normal to the plane of the paper, the upper as well as the lower half of the wavefront 

gets divided into a set of half-period strips. These half period strips stretch along the 

wavefront perpendicular to the plane of the paper and have widths OA, AB, BC ...in the 

upper half and OA', A' B', B' C', ... in the lower half. You may recall that Fresnel zones 

are of equal area. For half period strips, this does not hold. The areas of half-period 

strips are proportional to their widths and this decrease rapidly as we go out along the 

wavefront from O. 

From the geometry of the arrangement, it is obvious that on the screen there will be no 

intensity variation along the direction parallel to the length of the slit. Therefore, the 

bright and dark fringes will be straight lines parallel to the edge. 

 

A plot of theoretically calculated intensity distribution on the screen is shown in Fig. 

4.18. You will note the following salient features: 
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Fig. 4.18 Intensity distribution in the diffraction pattern due to a straight edge 

 

(i)     As we go from the point P' deep inside the shadow towards the point O defining 

the edge of the shadow, the intensity rises gradually. At P’ the intensity is 

almost zero. 

 

(ii)    At O, the intensity is one-fourth of what would have been the intensity on the 

screen with the unobstructed wavefront. 

 

(iii)  On moving further towards P, the intensity rises sharply and goes through an 

alternating series of maxima and minima of gradually decreasing magnitude 

and approaches the value for the unobstructed wave. This is expected since the 

effect of the edge at far off distances will be almost negligible. 

 

(iv)  The intensity of first maxima is greater than the intensity of unobstructed wave, 

i.e. it is greater than 4 times the intensity at O. Beyond these alternate maxima 

and minima, there is uniform illumination. 

 

(v)    The diffraction fringes are not of equal spacing (as in interference 

experiments); the fringes gradually come closer together as we move away 

from the point O. 

 

You may now like to know at least qualitative explanation of these results. To do so, 

we first consider the illumination at a point P outside the geometrical shadow. The line 

joining P and S cuts the wavefront at R so that the wavefront is divided in two parts. 

The amplitude of light at P is due to the part WE of the wavefront, which is completely 

unaffected by the straight edge. The amplitude at P will be maximum if RE contains 

odd number of half strips. This will happen if 2/)12(  nRPEP . (When 

nRPEP  , the portion RE will contain even number of strips.) As pointed out 

earlier, the amplitudes due to strips are alternately positive and negative. Therefore, as 

point P moves away from O, the illumination on the screen will pass alternately through 

maxima and minima when the number of half period strips in RE is 1, 2, 3, 4, ... 

It is worthwhile to ponder as to what pattern the geometry of the experimental 

configurations’ throws? We expect dark and bright bands parallel to the edge. 

However, the dark bands will not be completely dark, since the upper half of the 

wavefront RW always contributes light to this part of the screen. 

 

Let us now consider the situation for the point P' inside the geometrical shadow. Refer 

to Fig. 4.19. You will note that the corresponding point R is shifted below the edge so 

that the illumination at P' is due entirely to the wavelets from the upper half of the 

wavefront; the lower portion having been blocked by the edge. Even the upper half is 



PHY 306             OPTICS II 

110 

exposed only in part. If the edge cuts off r strips of the upper half of the wavefront, the 

effect at P' will be due to (r + 1), (r + 2), (r + 3) etc. strips which may be taken to be 

equal to one-half of that due to the (r + l)th strip. This will rapidly diminish to zero as 

shown in Fig. 4.18, because the effectiveness of higher order strips goes on decreasing. 

 

 
 

Fig. 4.19 The observation point is in the geometrical shadow of the straight edge 

 

Let us now deduce the width of the diffraction bands. Again, Refer to Fig. 4.17(a). 

Suppose that we have the nth dark band at P. Then 

 

 nRPEP         

  (4.6) 

 

From the EPO, we have 
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where we have retained only the first two terms in the binomial series. From the 
SPO, we can similarly write 
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   = 
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 (4.9) 

 

For the nth dark band, we get 

 

 n
bab

ax


 )(2

2

 

or 

 
a

bab
nx

)(2 
        

 (4.10) 

 

We therefore find that the distances of the dark bands from the edge of the geometrical 

shadow are proportional to the square root of natural numbers. Consequently, the bands 

will get closer together as we go out from the shadow. This fact distinguishes the 

diffraction bands from the interference bands, which are equidistant. 

 

To enable you to grasp these ideas, we now give a solved example. 

 

 

Example 4 

In the above experiment if a = 30 cm, b = 30 cm and 
5105  cm, calculate the 

position of the 1st, 2nd, 3rd and 4th minima from the edge of the shadow. 

 

Solution 

From Eq. (4.10) we know that the distance of nth minima from the edge of the shadow 

is given by 

 
a

bab
nx

)(2 
  

 

If we substitute given values of a, b and  and take n = 1, 2, 3, 4, we find that 

 

 
1x  = 

2/1

5 )105(
30

)60()30(2










  cm
cm

cmcm
 

  

  = 
21075.7   cm 

  

 
2x  = 12x  = 

11009.1  cm 

 

 3x  = 13x   = 
11034.1   cm 

 

 
4x  = 

12x      = 
11055.1  cm 

 

From these values we find that the distance between consecutive minima decreases 

continuously as we move away from the edge of the shadow. 

 

You may now like to answer an SAQ. 
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SAQ 2 
Instead of the straight edge, we keep a narrow obstacle, say a wire of diameter 1 mm. 

What will be the intensity on the screen? 

 

Let us now summarise what you have learnt in this unit. 

 

4.6 SUMMARY 

 When the distance between the source of light and the observation screen or 

both from the diffracting aperture/obstacle is finite, the diffraction pattern 

belongs to Fresnel class. 

 

 When the screen is very close to the slit, the illumination on the screen is 

governed by rectilinear propagation of light. 

 

 The Fresnel diffraction pattern represents fringed images of the obstacle. 

Depending on the distance, there can be an infinite number of Fresnel 

diffraction patterns of a given obstacle/ aperture. 

 

 When plane wavefronts are incident on a diffracting slit and the pattern is 

observed on a screen effectively at an infinite distance, the diffraction pattern 

belongs to Fraunhofer type. Unlike the Fresnel diffraction, there is only one 

Fraunhofer diffraction pattern. 

 

 Fresnel construction for the diffraction pattern from any obstacle on which a 

plane wavefront is incident consists of dividing the wavefront into half period 

zones. 

 

 The area of each Fresnel half-period zone is equal to  b . 

 

 The resultant amplitude due to nth zone at any axial point is given by 

 

)cos1( 
n

n

n
P

A
a  

 

 The magnitude of resultant amplitude AB due to the first half period element is 



2
 times the value which would be obtained if all the wavelets within the half- 

period element had the same phase. 

 

 The phase of the resultant vector of the first half period zone is 
2


 behind the 

phase of light from the centre of the zone. 

 

 A zone plate is an optical device in which alternate half-period zones are 

blackened. 

 

 The diffraction pattern due to a circular aperture consists of a central bright 

spot. 
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 The diffraction pattern of a straight edge consists of alternate bright and dark 

bands. The spacing between minima (or maxima) decreases as we move away 

from the edge of the shadow: 


a

bab
nx

)(2 
  

 

4.7  TERMINAL QUESTIONS 
1.      Starting from Eq. (4.4) establish Eqs. (4.6) and (4.7). Assume that the obliquity 

factor is such that each term in Eq. (4.4) is less than the arithmetic mean of its 

preceding and succeeding terms.) 

 

2.      The eighth boundary of a zone plate has a diameter of 6mm. Where is its 

principal focal point located for light of wavelength 5000 Å? 

 

3.      How many Fresnel zones will be obstructed by a sphere of radius 1 mm if the 

screen is 20cm away? Take = 5000 Å. If the distance of the screen is increased 

to 200 cm, what will be the size of the sphere which will cut off 10 zones. 

 

4.8 SOLUTIONS AND ANSWERS 

 

SAQs 

 
1.     The radius of the coin is equal to 1 cm. To know the number of zones being 

obstructed, we use the relation 

   

  
b

r
n n

2

  

 

 where nr = 1 cm, b = 200 cm and  = 
5105   cm. 

 

You should definitely expect to see a dim spot at the centre because the 

eleventh zone is the first contributing zone. 

 

When the screen is 4 m away, the number of zones being obstructed is given 

by 

 

 n  = 
)105()400(

)1(
5

2

cmcm

cm


 

 

  = 5 

That is, only five zones are obstructed now and the first contributing term in 

Eq. (4.4) is 6a , which will contribute more than 
11a . Therefore, the central 

spot is expected to be brighter. Does it not contradict the inverse square law? 

 

2.      Refer to Fig. 4.20. A point 
1P  outside the geometrical shadow is similar to 

such a point in the straight edge. So we will have unequally spaced bright and 

dark fringes parallel to the wire on each side of the shadow. What is the 

intensity at Q inside the shadow? It is simply half the effect of the first half 

period strip on either side of the thin wire. It will show equally spaced fringes 

inside the shadow. 
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Fig. 8.20: A cross-sectional view of the arrangement for producing diffraction due to a 

narrow obstacle 

 

TQs 

1.     We rewrite Eq. (4.4) as 

 

...
22222

)( 5
4

33
2

11
0 

a
a

aa
a

aa
Pa   

 (i) 

 

When n is odd, the last term would be 
2

na
. We are told that the obliquity is 

such that each term is less than the arithmetic mean of its preceding and 

succeeding terms i.e., )(
2

1
11   nnn aaa . Then, the quantities in the 

parentheses in (i) will be positive. So when n is odd, the minimum value of the 

amplitude of the fields produced by consecutive zones is given by 

 

  )(
2

1
)( 10 naaPa        

 (ii) 

 

To obtain the upper limit, we rewrite Eq. (4.4) as 
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n a
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a
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Following the argument used in obtaining the lower limit on the amplitude, we 

find that the upper limit is 

 

n
n a

aa
aPa  

22
)( 12

10      

 (iii) 

 

Since the amplitudes for any two adjacent zones are nearly equal, we can take 

nn aa 1 . Within this approximation 
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2
)( 1

0
naa

Pa


        

 (iv) 

 

The results contained in (ii) and (iv) suggest that when n is odd, the resultant 

amplitude at 0P  is given by 

2
)( 21

0

aa
Pa


       

 (v) 

 

Following the same method, you can readily show that if n were even, 

 

2
)( 21

0
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 (vi) 

 

2.     8D = 0.6 cm so that 8r  = 0.3 cm. We know that 

n

r
f n

n

2

  

  
)105(8

)3.0(
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       = 
21025.2   cm 

       = 225 cm 

 

3a. The radius of a Fresnel zone is given by 

  bnrn   

 

Here we are told that rn = 0.1 cm, b = 20 cm and 
5105  cm. 

 

  
)105()20(

10
5

222








cm

cm

b

r
n n


= 10 

 

  b.    In this part we have to calculate nr  for given values of n = 10, b = 200 cm and 

5105  cm: 

 

  nr  = )105)200(10 5 cmcm   

   = 0.32 cm 
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Video Link 1 Video Link 2 

https://www.youtube.com/watch?v=Q-oQKSLhLKw
https://www.youtube.com/watch?v=az9x-wrObYg
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UNIT 5   FRAUNHOFER DIFFRACTION 

Structure 
5.1      Introduction 

Objectives 

5.2       Diffraction from a Single slit: Point Source 

Observed Pattern 

Calculation of Intensity Distribution 

5.3  Diffraction by Circular Aperture 

5.4  Summary 

5.5  Terminal Questions 

5.6  Solutions and Answers 

 

5.1   INTRODUCTION 
In the previous unit you studied Fresnel diffraction and learnt that the diffraction pattern 

depends on the distance between aperture and screen as well as the source. As the 

observation screen is moved away from the aperture, the diffraction pattern passes from 

the forms predicted in turn by geometrical optics, Fresnel diffraction and Fraunhofer 

diffraction. When plane wavefront is incident at the diffracting aperture, the transition 

from Fresnel to Fraunhofer pattern is determined by the ratio of the size of the 

diffracting obstacle to its distance from the source and/or the observation screen. You 

will now learn about Fraunhofer diffraction in detail. 

 

In Sec. 5.2 we have described the experimental arrangement and salient features of the 

observed Fraunhofer diffraction pattern from a single slit illuminated by a point source. 

This is followed by a simple discussion on theoretical analysis of the observed results. 

Since we deal with plane wavefronts, you will find that theoretical analysis is fairly 

simple. In Sec. 5.3 we have described Fraunhofer diffraction by a circular aperture 

because of its importance for optical devices. You will learn that the diffraction pattern 

consists of a central bright disc (called Airy disc) surrounded by concentric dark and 

bright rings. As a corollary, you will see that a random array of small and closely 

circular obstacles gives overlapping diffraction patterns called halos. You may have 

observed brilliant halos while driving a car whose fogged window is illuminated by 

motorcycle at the back. We shall discuss the physical basis for diffraction halos at the 

end of this unit. 

 

Objectives 
After going through this unit, you will be able to: 

 

 describe experimental arrangement for observing Fraunhofer diffraction 

pattern from a narrow vertical slit and a circular aperture 

 explain observed irradiance on the basis of simple theoretical analysis 

 solve numerical problems, and 

 explain formation of diffraction halos. 

 

5.2 DIFFRACTION FROM A SINGLE SLIT: POINT SOURCE 

From the previous unit, you may recall that to observe Fraunhofer diffraction pattern, 

we require a point source, which is far away (almost at infinity) from the diffracting 

aperture (a single slit in the present discussion). The wavefronts of light approaching 

the diffracting aperture can be assumed to be essentially plane. The observation screen 

should also be at infinite distance from the aperture. You may now like to ask: Is it 

practical to put the source of light and the observation screen at infinite distance from 

the diffracting aperture? This definitely is not practical because (i) the intensity of 

diffracted light reaching the observation screen would be reduced infinitesimally 

(inverse square law) and (ii) we will require infinitely big laboratory rooms. Do these 
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limitations suggest that we cannot observe Fraunhofer diffraction? These difficulties 

are readily overcome by using converging lenses in an actual experiment. 

 

 
 

Fig. 5.1: Producing Fraunhofer diffraction pattern 

 

The experimental arrangement for producing Fraunhofer diffraction pattern is shown 

in Fig. 5.1. The source of light is placed in the focal plane of a converging lens 
1L , so 

that a plane wave is incident on a long narrow slit. Another convergent lens 
2L  is 

placed on the other side of the slit. The observation screen is placed at the second focal 

point of this lens. Then light reaching any point on the observation screen is due to 

parallel diffracted wavelets from different portions of the wavefront at the slit. You 

must note that the observation screen and diffraction screen are kept parallel. Moreover, 

both the screens are perpendicular to the common axis of 
1L  and 

2L . The slit is so 

adjusted that the common axis of these lenses is perpendicular to the length of the slit 

and passes through the middle of the slit both in height and width. 

 

In a physics laboratory this arrangement is easily achieved by using an ordinary 

spectrometer. We hope that you got an opportunity to work with a spectrometer in your 

second level laboratory course. To observe the diffraction from a point source, the slit 

of the collimator should be replaced by a fine pinhole, which should be carefully 

positioned at the focal point of the collimator lens. The observation screen can be 

placed at the second focal plane in the back focal plane of the telescope. Alternatively, 

we may observe the back focal plane of lens L2 with an eyepiece. The diffracting screen 

with slit aperture is placed between the two lenses suitably on the turn table. 

 

5.2.1   Observed Pattern 
Let us pause for a minute and think how would diffraction pattern of the vertical slit 

appear? Or what would be the distribution of intensity in this pattern? You may think 

that the diffraction pattern would be a single vertical line or a series of vertical lines on 

the observation screen. This line of thought is wildly off-target. The actual diffraction 

pattern is astonishingly different; it consists of a horizontal streak of light composed of 

bright elongated spots connected by faint streaks. In other words, after passing through 

the vertical slit, light spreads along a horizontal line. This means that the diffraction 

pattern is along a line perpendicular to the length of the diffracting slit. You may 

interpret this horizontal diffraction as a spread-out image of the point source. The extent 

of horizontal spreading is controlled by the width of the slit; as the width increases, the 

spreading decreases. And in the extreme case of a very wide slit, the (horizontal) 

diffraction streak reduces to a bright point. Physically, very wide slit means that the slit 

has effectively been removed. 
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Fig.  5.2: Observed Fraunhofer diffraction pattern 

of a diffracting silt 
 
The salient features of the observed Fraunhofer diffraction pattern of a single vertical 

slit from a point source are shown in Fig. 5.2. These are summarised below: 

 

(i)      The diffraction pattern consists of a horizontal streak of light along a line 

perpendicular to the length of the slit. 

 

(ii)     The horizontal pattern is a series of bright spots. The spot at the central point 

0P , which lies at the intersection of the axis of 
1L  and 

2L  with the observation 

screen, is the brightest. On either side of the brightest spot, we observe many 

more bright spots symmetrically situated with respect to 0P . 

 

(iii)    The intensity of the central spot is maximum. The peak intensities of other 

spots, on either side of the central spot, decrease rapidly as we move away from 

0P . The central maximum is called principal maximum and the others as 

secondary maxima. 

 

(iv)    The width of the central spot is double of the width of other spots. 

 

(v)     A careful examination of the diffraction pattern shows that the central peak is 

symmetrical. But on either side of the central maximum, secondary maxima 

are asymmetrical. In fact, the positions of the maxima are slightly shifted 

towards the observation point 0P . 

 

Let us now learn the theoretical basis of these results.  

 

5.2.2  Calculation of Intensity Distribution 

The first step in the calculation of intensity distribution is to realise that the observed 

diffraction pattern is focussed on the observation screen placed at the back focal plane 

of lens L2. We know that only parallel rays are brought to focus in the back focal plane 

of the lens. The beam of rays parallel to the axis of the lens are focussed at the focal 

point. However, the beam inclined to the axis of the lens is brought to focus on the back 

focal plane but away from the focal point. We can as well describe this observation in 

terms of the wavefront, the two being perpendicular to each other. Since diffraction 
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pattern lies on a horizontal line (which is at right angles to the common axis of 
1L  and 

2L , diffracted wavefronts will be vertical planes perpendicular to the plane of the 

paper. That is, after passing through the vertical slit, the incident plane waves are 

replaced by a system of vertical plane waves, which proceed in different directions. 

Therefore, for our theoretical analysis it is sufficient to assume that when a plane 

wavefront falls on the diffracting slit, each point of the aperture such as AA1A2A3... B 

(Fig. 5.3) becomes a source of secondary wavelets, which propagate in the direction of 

the point 0P  under consideration. These are diffracted plane waves. (You should 

realize that diffracted waves have no existence in the domain of geometrical optics. 

The diffracted waves arise due to interaction between light and matter. In the present 

case, the interaction is between light and the jaws of the slit.) 

 

 

 

 

 
 

Fig. 5.3 Geometry of single silt diffraction 

 

Refer to Fig. 5.3 which shows the geometry for the irradiance at the point P (on the 

distant screen) which makes an angle   with the axis. In order to sum up the 

contributions of different wavelets at P, we must know their amplitudes and phases. 

The amplitudes of the disturbances from A, Al, A2, … will be very nearly equal. Do you 

know why? This is because the distance of point P from the diffracting screen is very 

large compared to the width (b) of the aperture. 

 

Now let us consider the phases of the disturbances reaching the point P0. You will agree 

that the points A, Al, A2, A3, … B within the aperture form a series of coherent sources 

since they have originated from the same point source. Also, points A, Al, A2, … B are 

in the same phase since they lie on the same plane wavefront The phase difference 

The width of an image is specified by the distance between two consecutive 

minima. 

 

We take the plane of the paper as horizontal. The plane of the paper is defined by 

the diffraction streak and the axis of the lens L2. 

 

Two sources are^ said to be coherent if they emit in-phase waves of the same 

frequency. 
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between different diffracted rays reaching 0P  arises due to the difference in path 

lengths travelled by them to reach this point. To know the phase difference, we draw a 

plane normal to the parallel diffracted rays. The trace of this plane in the plane of the 

paper is AD (Fig. 5.3). Though the disturbances are in phase at points A, Al, A2, … B 

when they start, they reach the trace AD in different phases because of the unequal path 

lengths travelled by them. The optical paths of diffracted waves from the plane AD to 

the focal point P0  are equal. The optical paths of all rays between perpendicularly 

intersecting planes containing the parallel beam of light and the point where rays 

converge after traversing the lens are equal. Therefore, the wavelets arrive at P0  with 

the same relative phase difference as the ones existing at the trace AD. 

 

Let us consider the aperture AB to be divided into n equal parts so that AA1 = A1A2 = 

A2A3 = nb /  =  . It means that the number of point sources is (n +1). Actually, the 

aperture contains a continuous distribution of points from A to B, and therefore in the 

limiting case, n  and  0, such that bn  . Consider two rays starting from 

two neighbouring points A and A1. The path difference between them is AA1 sin  

where   is the angle between the diffracted rays and the normal to the slit. Hence the 

corresponding phase difference is given by 
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 (5.1) 

 

Let the field at P  due to the disturbance originating from A be ta cos0 . Then, the 

field due to the disturbance from A1 is )cos(0  ta . Here we have assumed that the 

amplitudes of disturbances from different points are equal. The fields due to 

disturbances from successive points A2, A3, ... B are )2cos(0  ta , 

)3cos(0  ta , …, )cos(0  nta  , respectively. The magnitude of resultant 

field E at P  is equal to the sum of these disturbances. Hence 

 

 )cos(...)2cos()cos(cos 0000  ntatatataE   

 

In Unit 2 of the course Oscillations and Waves, we summed up this series (Eq. (2.38)). 

We will just quote the result here: 
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where E  is the amplitude of the resultant field at P : 
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In the limit n  and  0, bn  . Then from Eq. (5.1) we have 
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  will be very small for n . We may therefore write 
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Substitute this result in Eq. (5.3). On simplification you will find that 
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where we have written 

 

 0naA   

and 






sinb
         

 5.5 

 

You will note that for a given wavelength,   signifies half of the phase difference 

between disturbances originating from the extreme points A and B. The expression for 

resultant field at P  takes the form 

 

)cos(
sin





  tAE       

 (5.6) 

 

The corresponding intensity distribution at P  is given by 

2

2 sin













 AI        

 (5.7) 
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Let us pause for a while and ponder as to what have we achieved. This result suggests 

that the intensity is maximum at 0 . This readily follows by noting that when we 

substitute   = 0 we have both   and sin sin p equal to zero, but 

 

 

 1
sin

lim
0


 




 

 

Therefore, 

 

 
2

0 AI   

 

This result is expected on geometrical considerations. In the limits of a distant screen, 

the central point becomes equidistant from each point on the slit. All diffracted waves 

arrive in phase at P0 and interfere constructively. A   is then the value of the maximum 

intensity at the centre of the pattern. This maximum is also termed principal 

maximum. 

 

For brevity we write 0

2

0 IAI  . Then the intensity at any point at an angle   

with the horizontal axis, is given by 

 

 

2

0

sin













II  

 

Positions of maxima and minima 
A plot of Eq. (5.7) for intensity distribution is shown in Fig. 5.4. You will note that the 

intensity is maximum for   = 0: 
2

00 AII  . The intensity gradually falls on 

either side of the principal maximum and becomes zero when    or   , 

since sin  is zero. This is the first minimum. So we can say that the angular half 

width of principal maximum is from 0 to  . The second minimum on either side occurs 

at  2 . Thus, we get the minima when 

 

   =  , 2 , 3 , … 

 

       = m , m =  1,  2,  3, …     

 (5.8) 

 

Note that the value m = 0 is excluded because it corresponds to the principal maximum 

(for   = 0). Substituting the value of   from Eq. (5.8) in Eq. (5.5) we find that the 

condition for minima is given by 

 

sinb  =  , 2 , 3 , … 

 

  = m , m =  1,  2,  3, …     

 (5.9) 

 

You may now conclude that the angular width of the principal maximum (m = 1) is 

defined by sinb =   or 
b


  . That is,   depends upon the wavelength of light 
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and the slit width. For a given slit width, the spread in diffraction pattern depends 

directly on the wavelength. Accordingly, you should expect that red light would be 

diffracted through a larger angle than the blue or violet light. 

 

You may now like to know: What will happen when white light illuminates a single 

slit? We expect that each wavelength will be diffracted independently. This gives rise 

to a white central spot surrounded by coloured fringes. The outer part of this pattern 

would tend to be reddish. You can easily observe this diffraction pattern by looking 

through the tines of a dinner fork at a candle in a dimly illuminated room. On twisting 

the fork about its handle, you will observe the diffraction pattern as soon as the cross-

sectional area becomes small enough. 

 

The expression 

2

0

sin













 II gives the diffraction intensity in different directions. 

In order to determine the directions (and positions) of secondary maxima, we 

differentiate this equation with respect to   and equate the result to zero. This gives 
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From this we get the conditions 0sin   and 0tan   . The condition 

0sin   implies that  m , where m  is any integer. This is a trivial condition 

as it signifies minima and is of no interest. 

 

The condition  tan  therefore gives the positions of secondary maxima. This is 

a transcendental equation. The roots of this equation can be found by a graphical 

method. All you have to do is to recall that an angle equals its tangent at intersections 

of the straight line  

 

 y  

 

and the curve 

  

 tany         

 (5.10) 

  

Plots of these curves are also shown in Fig. 5.4. The points of intersection excluding 

0  (which corresponds to principal maximum) occur at   = 1.43 , 2.46 , 3.47

 , etc. and give the position of the first, second, third maxima on either side of the 

central maximum. You should note that these maxima do not fall midway between the 

two minima. For instance, the first maximum occurs at 1.43  rather than 1.50 . 

Similarly, the second maxima occur at 2.46  rather 2.50 and so on. This means that 

the intensity curves are asymmetrical. The plot clearly shows that the positions of 

maxima are slightly shifted towards the centre of the pattern. You may recall that this 

is observed experimentally as well. 
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Let us now calculate the intensities at these positions of maxima. The intensity of the 

first maximum is given by 

 

 0496.0
43.1

43.1sin
2













 

 

 
 

Fig. 5.4 Amplitude and intensity contours for Fraunhofer diffraction of a single slit 

showing  

positions of maxima and minima 

 

This means that the intensity of the first secondary peak (nearest to the central peak) is 

about 4.96% of the central peak. Similarly, you can calculate and convince yourself 

that the intensities of the second and third maxima are about 1.68% and 0.83% of the 

central maximum. We call these maxima the secondary maxima. 

 

The intensities of the secondary maxima can be calculated to a fairly close 

approximation by finding the values of   at halfway positions, i.e., at 
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, etc.  

 

The intensities at these positions are  
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, 

225
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249
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, …, or 

1.22

1
, 

7.61

1
, 

121

1
, … of the central maximum 

which are  

 

very close to the above calculated values. From this you may conclude that most of the 

light is concentrated in the central maximum. 

 

Another important characteristic of the principal maximum is that its width is double 

of the width of secondary maximum. We have left its mathematical proof as an exercise 

for you. Before you proceed, you should solve SAQ 1. 

 

SAQ 1 

Show that the principal maximum is twice as wide as the secondary maxima. 

 

To give you a feel for numerical values and fix up the ideas developed in this section, 

we now give a few solved examples. You should go through these carefully. 
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Example 1 
In the experimental set up used to observe Fraunhofers diffraction of a vertical slit 

(width 0.3mm), the focal length of lens L2 is 30 cm. Calculate (a) the diffraction angles 

and positions of the first, second and third minima, and (b) the positions of the first, 

second and third maxima on either side of the central spot. The slit is illuminated with 

yellow sodium light which is a doublet. You may take  = 6000 Å. 

 

Solution 

You have seen that the conditions for minima are given by  mb sin ; m •= ± 1, ± 

2, ± 3, ... For small values of  , we may write  sin . Then 

 

 
b

m


   

 

and the distance PP0  is f , where f  is the focal length. Therefore, the diffraction 

angles 
1 , 

2 , 3  for the first, second and third minima are 
b


, 

b


2  and 

b


3 , 

respectively. 

 

On substituting the numerical values of   and b we find that 

 

3

1

8

1 102
103.0

106000 











cm

cm
 rad 

 
3

12 1042   rad 

 
3

13 1063    rad 

 

The distances 
1d , 

2d , 3d of these minima from the central spot are 

 

 cmcmfd 23

11 1060102)30(     = 0.06 cm 

  

 
12 2 fd  = 20.06 cm = 0.12 cm 

 

 13 3 fd  = 30.06 cm = 0.18 cm 

 

You will note that these minima are separated by a distance of 0.06 cm on the focal 

plane of the lens. We know that the first three secondary maxima occur at  = 1.43

, 2.46  and 3.47 , respectively. The corresponding diffraction angles for these three 

maxima are 

 

 
b


 43.1)( max1  , 

b


 46.2)( max2   and  

 )102)(43.1()( 3

max1

 ,  

 

 )102)(46.2()( 3

max2

  

and 
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 )102)(47.3()( 3

max3

  

 

and the corresponding distances from the central point (P0) are 

 

 
3

max11 10243.1)30()(  cmfd  = 0.09 cm 

 

 
3

max22 10246.2)30()(  cmfd  = 0.15 cm 

 

 
3

max33 10247.3)30()(  cmfd  = 0.21 cm 

 

 

Example 2 
In the above experiment, we change slit widths to 0.2mm, 0.lmm, and 0.6mm. Calculate 

the positions of the first and second minima. 

 

Solution 
For slit width b = 0.2 mm, we have 

 

 
cm

cm
cmfd

1

8

11
102.0

106000
)30(








  = 0.09 cm 

Similarly 

 
22 fd  = 20.09 cm = 0.18 cm 

 

These minima are separated by 0.09 cm. Recall that the corresponding value for a slit 

of width 0.03 cm was 0.06 cm. This means that for a given wavelength, the spread of 

secondary maximum increases as slit width decreases. This conclusion is brought out 

in the following calculations as well. 

 

For a slit of width b = 0.1 mm, we have 

 

cm

cm
cmd

1

8

1
101.0
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)30(








 = 0.18 cm 

and 

 2d 20.18 cm = 0.36 cm 

 

For slit width b = 0.06 mm, we have 

 

cm

cm
cmd

1

8

1
106.0

106000
)30(








 = 0.3 cm 

and 

 2d 20.3 cm = 0.6 cm 

 

We thus find that for slits of widths 0.3mm, 0.2mm 0.1mm, and 0.06mm, the first 

minimum on either side of the principal maximum occurs at distances of 0.06 cm, 0.09 

cm, 0.18 cm, and 0.3 cm. In these four cases, the corresponding principal maximum 

extends over 0.12 cm, 0.18 cm, 0.36 cm, and 0.6 cm. 

 

This shows that as the slit becomes narrower, the spread of central maximum increases. 

Conversely, the wider the slit width, the narrower is the central diffraction maximum. 
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We now consider an interesting case where the width of the slit is varied in comparison 

to the wavelength of light. 

 

Example 3 

Consider a slit of width b = 10 , 5 , and  . Calculate the spread of the central 

maximum. 

 

Solution 

From Eq. (5.9), we note that for a slit of width b = 10 , the first minimum is located 

at 

 

sin10  =   

or sin   = 0.10 

 

and    = 5.7° 

 

For a slit of width 5 , we have 

 

 sin5  =   

or    = 90°  

 

That is, as the aperture of the slit changes from 10  to 5 , the diffraction pattern 

spreads out about twice as far. For b = , 

 

 sin   = 1 

or    = 90° 

 

The first minimum falls at 90°. That is, the central maximum spreads out and the 

diffraction pattern shows no ripple. These features are shown in Fig. 5.5. 

 

You may now like to answer an SAQ. 

 

 
 

Fig. 5.5 Single- slit diffraction irradiances as the silt width varies 

 

SAQ 2 

We illuminate the slit of Example 1 with violet light of wavelength 4358 Å from a 

mercury lamp. Show that the diffraction pattern shrinks correspondingly. 
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Diffraction Pattern of a Rectangular Aperture 

So far we have described Fraunhofer diffraction pattern of a slit aperture. Let us now 

consider what will happen if both dimensions of the slit are made comparable. We now 

have a rectangular aperture of width b and height a as shown in Fig 5.6 (a). We expect 

that the emergent wave will spread along the length as well as the width of the slit. Can 

you depict the diffraction pattern? It is shown in Fig. 5.6 (b). Mathematically, the 

intensity is given by 
22

22

0 sinsin



I
I   

where,  /sinb  and  /sina . 

 
 

Fig. 5.6 Single-slit diffraction. Both dimensions of the rectangular aperture are 

small and a two-  

dimensional diffraction pattern is discernible on the screen (b) Diffraction 

Image of a single square aperture. 

 

Slit Source 

The experimental arrangement shown in Fig. 5.1 is modified as shown in Fig. 5.7. Here 

instead of the point source we use a slit source (Fig. 5.7(a)). 

 
Fig. 5.7 (a) Experimental arrangement for diffraction from a vertical narrow single silt  

      Illuminated by a silt source (b) Experimental arrangement in a physics 

laboratory. 

 

As a matter of fact, the experimental arrangement, which is commonly employed in 

most experiments, uses a spectrometer (Fig. 5.7(b)). The slit of the collimator arm is 

illuminated so that each point of the slit source acts as an independent source. You 

know that a point source gives a horizontal streak of light as the diffraction pattern of 

(a) 

(b) 
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a vertical slit. Now when we substitute a slit as a source, we can imagine a series of 

point sources O1, O2 , O3, etc, one above the other to form the slit source (Fig. 5.7(a)). 

Each point source will give its own diffraction pattern since each point is to be regarded 

as an independent point source. With the same diffracting slit and the same lenses L1 

and L2, the central diffraction maximum due to all point sources will lie above one 

another and give a central bright vertical fringe. Similarly, from secondary maxima and 

minima points, we will obtain a series of vertical fringes, which will be situated at equal 

intervals on either side of the central fringe. The resulting pattern arises by 

superposition of a series of horizontal diffraction streaks stacked on each other in a 

vertical direction. The intensity along any horizontal line will be the same as in Fig. 

5.2. We should note that each point of the slit source acts as an independent and 

effectively as a non-coherent source. 

 

You will observe that clear fringes are obtained only when the width of the source slit 

is small. Suppose that the width of the source slit is gradually increased. This will lead 

to an increase in the width of its image on the observation screen. A stage will come 

when the width of the image, i.e., the fringe width, becomes comparable with the 

distances between successive vertical fringes. This will gradually make the vertical 

fringes less clear and indistinct. For a similar reason, we obtain clear fringes only when 

the source slit is parallel to the diffraction slit. 

 

9.3  DIFFRACTION BY A CIRCULAR APERTURE 
Fraunhofer diffraction by a circular aperture is of particular interest because a lens in 

an optical device (microscope, telescope, the eye) can be regarded as a circular 

aperture. For this case, the experimental arrangement is shown in Fig. 5.8(a). A plane 

wave is incident normally on the aperture and a lens whose diameter is much larger 

than that of the aperture is placed close to it. The Fraunhofer diffraction pattern is 

observed on the back focal plane of the lens. Because of the rotational symmetry of the 

system, we expect that the diffraction pattern will consist of concentric dark and bright 

rings. Fig. 5.8(b) shows the diffraction pattern, which is known as the Airy pattern. 

 

 
 

Fig. 5.8 (a) Experimental arrangement for observing the Fraunhofer diffraction pattern 

by a  

circular aperture, (b) The Airy pattern: The circle of light at the centre 

corresponds to the zeroth order, (c) The corresponding Intensity distribution 

 

The detailed derivation of the diffraction pattern for a circular aperture involves 

complicated mathematics. So, we just quote the final result for the intensity 

distribution: 
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Here D is the diameter of the aperture,  is the wavelength of light and   is the angle 

of diffraction, 0I  is the intensity at   = 0 (which represents the central maximum) and 

)(1 J  is the Bessel function of the first order. (We know that you are not very familiar 

with Bessel functions.) We may just mention that the variation of )(1 J  is somewhat 

like a damped sine curve. Moreover, the intensity is maximum at the centre of the 

pattern since 
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similar to the relation 

 

 1
sin

lim
0


 




 

 

Other zeros of )(1 J  occur at   = 3.832, 5.136, 7.016, ... which correspond to the 

successive dark circles in the Airy pattern. Thus, the first dark ring appears when 

 

DD








22.1832.3
sin         

 (5.13) 

 

Let us compare this result with the analogous equation for the narrow slit. We find that 

the angular half-width of the central disc, i.e., the angle between the central maximum 

and the first minimum of the circular aperture, differs from that for the slit pattern 

through the weird number 1.22. The intensity distribution of Eq. (5.11) is plotted in 

Fig. 5.8(c). The pattern is similar to that for a slit, except that the pattern for circular 

apertures now has rotational symmetry about the optical axis. The central maximum is 

consequently a circular disc of light, which may be regarded as the diffracted "image" 

of the circular aperture. It is called the Airy disc. It is surrounded by a series of alternate 

dark and bright fringes of decreasing intensity. However, the pattern is not sharply 

defined. If you consider any section through the circular aperture, intensity distribution 

is very much the same as obtained from a point source with a single slit. Indeed, the 

circular aperture pattern will be obtained if you rotate the single slit pattern about an 

axis in the direction of the light and passing through the central point of the principal 

maximum. 

 

We now give an example to enable you to have a feel for the numerical values. 
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Example 4 
Plane waves from a helium-neon laser with wavelength 6300 Å are incident on a 

circular aperture of diameter 0.5 mm. What is the angular location of the first minimum 

in the diffraction pattern? Also calculate the diameter of Airy disc on a screen 10m 

behind the aperture. 

 

Solution 
We know from Eq. (5.13) that 

 

  22.1sin D  

 

On substituting the given values, we get 

 

 
93 1063022.1sin)105.0(   m m 

or 

 sin  = 
3

9

105.0

1063022.1







 

  = 
31054.1   

 

In the small angle approximation,  sin , so that 

 

 
31054.1  rad = 0.087° 

 

On the screen placed 10m away, the linear location of the first minimum is 

 

 x =  DDD  sintan  

 

Hence 

 x  = )1054.1()10( 3 radm   

     = 
3104.15  m = 1.54 m 

 

This value of x signifies the radius of the Airy disc so that the diameter is about 3 cm. 

 

 

You can observe a white light circular diffraction pattern by making a small pinhole in 

a sheet of aluminium foil. Then look through it at a distant light bulb or a candle 

standing in a poorly illuminated (dark) room. 

 

Another important result of the above analysis is that the angular width of a beam is 

diffraction-limited. When a perfectly plane wave from a distant point source is incident 

on a diffracting aperture (of width or diameter b), the angular width of the diffracted 

beam is b/ . This is illustrated in Fig. 5.9. The angular width can be zero if b is infinite 

(1mm or so). At large distances from the diffracting aperture, beam width W = 

)/( bL  . It has important implications for laser beams, which are known to be highly 

directional. To have an idea about it, let us consider a diffraction-limited laser beam (

  = 6000 Å) of 2 mm diameter. The angular spread of the beam is 
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Fig. 5.9 Schematics of a diffraction limited system 

 

It means that in an auditorium (of length 15 m), the spatial spread W = 

)103()1500( 4cm = 5 mm, which is very small. For a typical penlight type 

flashlight, the transverse dimensions of the filament should be of the order of a 

micrometre, which is really hard to make. 

 

Imagine that a random array of small circular apertures is illuminated by plane waves 

from a white point source. We know that each aperture will generate an Airy type 

diffraction pattern. If the apertures are small and close together, the diffraction patterns 

are large and overlap. The overlapping diffraction patterns produce a readily visible 

halo, namely, a central white disc surrounded by circular-coloured rings. Which colour 

do you expect to be at the outermost rim? Should it not be red? Similar halos are also 

observed when the diffraction is due to a random array of circular obstacles. 

 

Suspended water (n = 1.33) droplets in air ( n  = 1.00) give rise to diffraction halos. 

When observed through a light cloud cover around the sun or moon, these diffraction 

halos are referred to as coronas. We can distinguish between diffraction halos and ice 

crystal halos. Ice crystal halos are due to refraction and dispersion by the ice crystals; 

they have red on the inside of the rings. 

While driving a car at night, you may have seen brilliant halos through fogged up car 

windows on which light of a motorcycle following you is incident. These are diffraction 

halos. You can easily produce such halos by breathing on the side of a clear glass and 

then looking through the fogged area at a small source (e.g., match, penlight, or distant 

bulb). 

 

When the cornea swells (becomes oedematous), small droplets of fluid form randomly 

between the stromal fibres. These random droplets produce a diffraction halo that the 

person sees when looking at light. Such halos are one of the warning signs of high 

ocular pressures. These halos can also be produced by epithelial damage due to poorly 

fitting contact lenses. 

 

5.4  SUMMARY 

 To observe Fraunhofer diffraction pattern, the distance of the diffracting screen 

from the source and/or observation screen should be almost infinite. 

Experimentally this condition is achieved by using convergent lenses. 

 

 The diffraction pattern of a vertical slit consists of a horizontal streak of light. 

This horizontal diffraction pattern may be regarded as a spread-out image of 

the point source and consists of a series of diffraction spots symmetrically 

situated with respect to the central point. 
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 The central spot has a maximum intensity and its width is twice compared to 

other spots which are of equal width. Their intensities decrease rapidly. In fact, 

most of the light is concentrated in the central maximum. 

 

 The plane wavefront incident on the slit gives rise to a system of vertical plane 

wavefronts which originate from each point of the diffracting aperture. 

 

 The intensity at any point P  on the screen is computed by taking the phase 

difference between the successive diffracted waves into account. The intensity 

at a point P  is given by 

 

 

2

0

sin













II  

 

where 





sinb
  and b  is the width of the slit. 

 

 If the path difference b sin6 between waves diffracted by extreme ends of the 

slit is an integral multiple of  , we obtain zero intensity. 

 

 The diffraction pattern of a thin slit source consists of a series of vertical 

fringes. In this pattern, the central vertical fringe is the brightest and the 

intensity of other fringes decreases rapidly. The width of central fringe is 

double of that for other fringes. 

 

 The diffraction pattern of a circular aperture consists of concentric rings with 

a central bright disc. The first dark ring appears when D/22.1sin   . 

 

 

5.5 TERMINAL QUESTIONS 
1.     A single slit has a width of 0.03 mm. A parallel beam of light of wavelength 

5500 Å, is incident normally on it. A lens is mounted behind the slit and 

focussed on a screen located in its focal plane, 100 cm away. Calculate the 

distance of the third minimum from the centre of the diffraction pattern of the 

slit. 

 

2.     A helium-neon laser emits a diffraction-limited beam ( = 6300 Å) of diameter 

2 mm. What diameter of light patch would the beam produce on the surface of 

the moon at a distance of 
310376 km from the earth? You may neglect 

scattering in the earth's atmosphere. 

 

5.6  SOLUTIONS AND ANSWERS 

 

SAQs 

 

1.      We know that angular spread of the central maximum is from  

 

 







 

b


 1sin  to 








 

b


 1sin . 

 

For small  , we have  sin  and we find that principal maximum is spread 
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from 
b


   to 

b


  . 

 

Similarly, you can show that the first secondary maximum on the positive side 

extends from 
b


 1  to 

b


 21  and on the negative side from 

b


   to 

b


 2  

 

Thus we see that the central maximum is twice as wide as a secondary 

maximum 

 

2.     We know that 

 

   1sind  

  
8

1

1 104358sin)103.0(   cm cm 

 

In the small angle approximation, we can lake 
3

1 1045.1   rad  

and 

  
3

2 1090.2   rad 

   

On comparing these values with those given in Example 1 for the first and 

second minima you will note that violet light is diffracted about 27% less. 

 

TQs 
1.     From Eq. (5.9) we know that the conditions for minima are given by 

 

 nb sin ; n =  1,  2, ... 

 

Here 03.0b  mm = 
3103   cm, n = 3 and  = 5500 Å 

 

  
4

3

8

105.5
103

)105500(3
sin 











cm

cm

b

n
  

 

In the small angle approximation,  tansin  . 

 

 x  = )100(105.5 4 cm 
 

  = 
2105.5   cm 

 

2.      Suppose that the light patch on the Moon is taken to be an Airy disc of diameter 

x of a diffraction limited beam of initial diameter 2 mm. Then using Eq. (5.13) 

we can write 

 

  sin  = 
)2.0(

)106300(22.122.1 8

cm

cm

D





 

 

   = 
6103.384   
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In the small angle approximation, 
610384sin   rad. Since rx 2

, we find on substituting the numerical values that 

 

  x  = )103.384()10376(2 63  km  

 

   = 289 km 
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https://www.youtube.com/watch?v=ypFkphJ8gNQ
https://www.youtube.com/watch?v=hpLADfPpXwg
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UNIT 6   DIFFRACTION GRATING 

Structure 
6.1     Introduction Objectives 

6.2    Observing Diffraction from Two Vertical Slits 

6.3     Intensity Distribution in Double Slit Pattern 

Positions of Minima and Maxima  

Missing Orders  

Graphical Representation 

6.4     Fraunhofer Pattern from N Identical Slits 

Intensity Distribution  

Positions of Principal Maxima  

Minima and Secondary Maxima  

Angular Half-width of Principal Maxima 

6.5     Diffraction Grating 

Formation of Spectra  

Observing Grating Spectra 

6.6  Summary 

6.7  Terminal Questions 

6.8  Solutions and Answers 

 

6.1 INTRODUCTION 

You have learnt about Fraunhofer diffraction produced by a single slit aperture. When 

a narrow vertical slit is illuminated by a distant point source, the Fraunhofer diffraction 

pattern consists of a series of spots situated symmetrically about a central spot, along a 

horizontal line. The intensity of the central spot is maximum and it decreases rapidly 

as we move away from the central spot. For a circular aperture, the diffraction pattern 

consists of concentric rings with a bright central disc. You also learnt that diffraction 

phenomenon limits the ability of optical devices to form sharp and distinct images of 

distinct objects. This restriction at one time hampered the spectroscopic work, 

particularly for substances whose spectrum consisted of doublets. (Sodium doublet 

wavelengths correspond to 5890Å and 5896Å. Because of their proximity, these 

wavelengths seem to overlap.) But you will recall that diffraction pattern is sensitive to 

wavelength of light as well as the slit width. To take advantage of these, it was thought 

that the problem could be overcome by increasing the number of diffracting slits. And 

the idea really worked. For simplicity, we have first discussed diffraction pattern by a 

double slit. 

 

In Sec. 6.2 we have listed qualitative features of the observed double slit diffraction 

pattern and compared these with those of a single slit pattern. A distinct feature of 

double slit pattern is that it consists of bright and dark fringes similar to those observed 

in interference experiments. In Sec. 6.3 we have derived the equation for the resultant 

intensity distribution. This mathematical analysis is an extension of what you have 

already learnt for the single slit. You will learn that the intensity of the central 

maximum is four times the intensity due to either slit at that point. However, the 

interference maxima are diffused (broader). These results are generalised for the case 

of N equally spaced, identical slits in Sec. 6.4. 

 

You will observe that as the number of slits increases, interference maxima get 

narrower (sharper). For sufficiently large value of N, interference maxima become 

narrow lines, For this reason, diffraction gratings are an excellent tool in spectral 

analysis. The occurrence of diffraction grating effects in nature is surprisingly common. 

Do you know that the green on the neck of a male mallard duck, blue appearance of 

wings of Morpho butterflies and the beautiful colours of the ‘eye’ of the peacock's 

feathers are also due to diffraction grating effects? The layered structure in cat's retina 

acts as reflection grating and is responsible for metallic green reflection at night. 
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Objectives 
After studying this unit, you should be able to 

 state salient features of the double slit diffraction pattern 

 qualitatively compare single-slit diffraction 

 pattern with double and N-slit patterns 

 derive equation for the intensity distribution for the double slit pattern 

 extend the double-slit calculation for N equally spaced slits 

 describe the use of a diffraction grating in spectral analysis, and 

 solve numerical examples. 

 

6.2    OBSERVING DIFFRACTION FROM TWO VERTICAL SLITS 
Refer to Fig. 6.1. It shows the experimental arrangement for observing diffraction from 

two vertical parallel slit-apertures in an opaque screen. Both the slits have same width 

( b ) and height ( h ). The width of the intervening opaque space between the two slits 

is a. Therefore, the distance between two similar points in these apertures d = b + a. 

 

 
 

Fig. 6.1 Experimental arrangement for observing diffraction from two identical 

vertical slits 

 

Have you noticed that diffracting apertures are illuminated by a slit source rather than 

a point source of light? We have used this arrangement because this corresponds more 

nearly to the actual conditions under which an experiment is performed. That is, the 

diffraction pattern from a slit source is of greater practical importance than that from a 

point source. The ray geometry of Fig. 6.1 for observing Fraunhofer diffraction from a 

double slit illuminated by a slit source is shown in Fig. 6.2. The length of the source 

slit in the arrangement should be adjusted to be parallel to the lengths of the diffracting 

slits. 

 

Suppose we block one of the diffracting slits, say slit 1, shown in Fig. 6.1 and observe 

the diffraction pattern on the screen. Obviously, you should expect the single slit 

diffraction pattern (due to slit number 2 which has not been blocked). Next, uncover 

slit 1 and block the other. You should again expect single slit diffraction pattern with 

exactly the same intensity distribution. But what may surprise you at the first glance is 

that both diffraction patterns are not only identical, they are located at the same 

position. 

 

 

 

In a well-corrected lens consider parallel beams of light travelling in a direction 

inclined to the axis from different parts of the lens. They are all brought to focus 

on the back focal plane at a point which is located by the beam passing though 

the optical centre of the lens. 
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Fig. 6.2 Ray geometry or experimental 

arrangement shown in Fig. 6.1 
 

Were you not expecting these diffraction patterns to be laterally displaced? These 

patterns are not laterally shifted with respect to one another because of the (well 

corrected) lens L2. This is true even for N identical vertical slits. The diffracted 

wavefronts originating from any slit, and travelling along the axis of lens L2 are 

focussed at P0, which forms the peak of the central spot. The diffracted wavelets 

moving at an angle   are focussed at P . 

 

 
 

 

Fig. 6.3 Observed double slit diffraction pattern 

 

Now uncover both the slits so that each slit gives its own diffraction pattern. The salient 

features of the resultant diffraction pattern, shown in Fig. 6.3, are summarised below: 

 

(i)    The double slit diffraction pattern consists of a number of equally spaced 

fringes similar to what is observed in interference experiments. 

 

(ii)    The intensities of all fringes are not equal. The fringes are the brightest in the 

central part of the pattern. 

 

(iii)  As we move away on either side of the central fringe, the intensity gradually 

falls off to zero. 
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(iv)  The fringes reappear with reduced intensity three or four times and become too 

faint to observe thereafter. 

 

(v)    The intensity at the maximum of double slit pattern is greater than the intensity 

of principal maximum in single slit pattern. 

 

What is responsible for this pattern? How bright are double slit fringes compared to 

those in the single slit pattern? You will discover answers to these and other related 

questions in the following section. 

 

6.3  INTENSITY DISTRIBUTION IN DOUBLE SLIT PATTERN 
For calculating the intensity distribution for the arrangement shown in Fig. 6.1 it is 

sufficient for us to consider a point source. This is because a point source gives the 

intensity distribution along a section perpendicular to the vertical fringes formed from 

a slit source. For deriving the equation for intensity of double slit pattern, we extend 

the procedure used for the single slit (Unit 5). Slit 1 acts as a source of diffracted plane 

wavefronts originating from points A1, A2, A3, ... in it. We represent these by 

ta cos0 , )cos(0  ta , )2cos(0  ta , …, where   is the constant phase 

difference. The magnitude of electric field 
1E  produced by this slit at the point P  is 

given by (Eq. 5.6): 

 

 )cos(
sin

1 












 tAE  

where 





sinb
 . 

 

For every point like A1 in slit 1, we have a corresponding point B1 in slit 2 at a distance 

d. The phase difference between diffracted wavefronts reaching P  from A1 and B1 is 

given by 

 










 sin

2
sin)(

2
dba       

  (6.2) 

 

Therefore, the diffracted plane wavefronts starting from points B1, B2, B3, ... may be 

represented as )cos(0  ta , )cos(0  ta , )2cos(0  ta , … And 

the field E2 produced by slit 2 at P  is given by 

 

])cos[(
sin

2 












 tAE      

  (6.3) 

 

Since the sources A1, A2, A3, ... and B1, B2, B3, ... are coherent, the magnitude of 

resultant field at P  due to the double-slit is obtained by the superposition of 

magnitudes of individual fields: 

 

 

 E  =
21 EE   
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Using the trigonometric identity 
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BA , we can 

rewrite the above expression as 
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 (6.4) 

 

where 



 sin

2
d . 

 

The intensity is proportional to the square of the amplitude. So 

 







2

2

2 cos
sin
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 AI       

 (6.5) 

 

For 0 , both   and   vanish so that 

 

 0

2

0 44 IAI   

 

and the expression for intensity of double slit diffraction pattern can be written as 

 

 


 2

2

00 cos
sin

4 







 II       

 (6.6) 

 

Since the maximum value of I  is 04I , we see that the double slit provides four times 

as much intensity in the central maximum as the single slit. This is exactly what you 

should have expected since the incident beams are in phase and amplitudes superpose. 

 

If you closely examine Eq. (10.6) you will recognise that the term )/(sin 22   

represents the diffraction pattern produced by a single slit of width b. The 2cos  term 

represents the interference pattern produced by two diffracted beams (of equal 

intensity) having phase difference  . That is, the intensity of double slit diffraction 

pattern is product of the irradiances observed for the double-slit interference and single 

slit diffraction. For ba  , the 2cos factor will vary more rapidly than the 

)/(sin 22  factor. Then we obtain Young's interference pattern for slits of very 

small widths. In general, the product of sine and cosine factors may be considered as 

a modulation of the interference pattern by a single slit diffraction envelope. We shall 

discuss it in detail a little later. 
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Before we investigate the positions of maxima and minima, let us understand the 

physical phenomenon that takes place. Diffracted light emerging from these two slits 

constitutes two coherent beams. These interfere leading to the formation of fringes on 

the screen. But the intensity of a fringe depends upon the intensities of interfering 

beams and the phase difference between them when they reach the point under 

observation. We know that the intensities of diffracted beams are controlled by the 

diffraction conditions and the direction of observation. Consequently, the intensities of 

interference fringes are not the same at different points of the screen. In particular, in 

those directions in which the intensities of diffracted beams are large, the constructive 

interference will lead to brighter fringes whereas in directions where the two diffracted 

beams themselves have lower intensities, even their constructive interference will lead 

to faint fringes. 

 

You should note that we have described the phenomenon as interference between two 

diffracted beams. How do we distinguish between the two words interference and 

diffraction, which we have used? When secondary wavelets originating from different 

parts of the same wavefront are made to superimpose, we call it diffraction. Such a case 

arises when we consider all the wavelets arising from the various points situated in the 

aperture between the two jaws of a slit. But when two separate beams coming from two 

different slits are superimposed, we call it interference. It should be clear that in all 

cases where we apply the principle of superposition, the wavelets have to be coherent 

in nature to produce an observable pattern. 

 

Before you proceed, you may like to answer an SAQ. 

 

SAQ1 

If instead of a monochromatic source we use a source emitting two wavelengths, 
1  

and 
2 )( 1 , how will the double slit diffraction pattern get influenced? 

 

 

6.3.1  Positions of Minima and Maxima 
To study the position of minima and maxima in the double slit pattern, we use the 

equation 

 

 





2

2

0 cos
sin

4 







 II  

 

We note that the intensity I  will be zero when either 
2)/(sin   or 2cos  is zero. 

From Unit 5 you will recall that the factor 
2)/(sin   will be zero for 

 

 





sinb
 =  , 2 , 3 , …, m  , ( m 0) 

or 

 sinb =  , 2 , 3 , …, m       

  (6.7) 

 

This equation specifies the directions along which the available intensity of either beam 

is zero by virtue of diffraction taking place at each slit. 

 

The second factor ( 2cos ) will be zero when 
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2
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or 
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2

3
, 

2
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2

1
n      

 (6.8) 

 

This gives the angles for the intensity to be zero by virtue of destructive interference 

between two beams. You may recall that this is the same as the condition for the 

minimum of the interference pattern between two-point sources. Eqs. (6.7) and (6.8) 

specify the direction where the intensity is zero. 

 

We cannot obtain the exact positions of the maxima by any simple relation. This is 

because we have to find the maximum of a function which is product of two terms. But 

we can find their approximate positions if we assume that )/(sin   does not vary 

appreciably over a given region. We are quite justified in making this approximation if 

the slits are very narrow. Note that we observe the maxima near the centre of the 

pattern. Under these conditions, the positions of maxima are solely determined by the 

2cos  factor. You know that this factor defines maxima for 

 

  = 0,  , 2 , …, n   

or 

 sind = 0,  , 2 , …, n        

 (6.9) 

 

We know that sind  represents the path difference between the corresponding points 

in the two slits. When this path difference is a whole number of wavelengths, 

constructive interference occurs between the two beams. Then we get a maximum, 

which leads to the formation of a series of bright fringes. The central fringe corresponds 

to 00sin d . The nth fringe (on either side) occurs when  nd sin . We therefore 

say that n represents the order of interference. 

 

6.3.2 Missing Orders 

In the intensity expression 





2

2

0 cos
sin

4 







 II , we have 






sinb
  and 






sind
  Thus we see that   and   are not independent. These are connected 

to each other through the relation 

 

  
b

ba

b

d

b
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sin

sin
    

 (6.10) 

 

Cases of special interest arise when d is an integral multiple of b, say it is an integer p

so that pbd  . This will happen when the opaque portion a  is an integral multiple 

of the transparent part b. The possibilities are: a = b, a = 2b, or a = 3b etc, so that d/b 

= p = 2, 3, 4, ... etc in these cases. Under these conditions, the directions of diffraction 
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minimum and interference maximum will necessarily coincide. To show this, let us 

assume that a direction of diffraction minimum is given by 

 

  mb sin  

 

We will automatically have the interference maximum in this direction since 

 

  sinsin)(sin pbpbd   

  =  npm   

 

where n = pm. The possible values of p are 2, 3, 4, ... and those of m are 1, 2, 3, ... 

Thus, the nth order interference fringes for which n = pm will have zero intensity since 

the intensity of both beams is zero by virtue of the diffraction condition. As a result, 

their constructive interference also leads to net zero intensity. These are usually known 

as missing orders. For example, when    p = 2, we will have 2, 4, 6, 8, ... orders missing 

for m values of 1, 2, 3, ... etc. Similarly, when      p = 3, we will have 3, 6, 9, ... orders 

missing and so on. 

 

The special case when d/b = 1, means that the opaque part a = 0 and the two slits 

exactly join one another. Then we find that all the interference orders are missing. 

Actually, this means that we now have a single slit of double width and what we get is 

a single slit diffraction pattern and (with no interference fringes). 

 

These ideas are illustrated in the following example.  

 

Example 1 

Consider a double slit arrangement with 
3100.7 b  cm, 

2105.3 d  cm and 
= 6300 Å. How many interference minima will occur between the diffraction minima 

on either side of the central maximum? If a screen is placed at a distance of 5m from 

the diffracting aperture, what is the fringe width? 

 

Solution 

The first diffraction minima on either side will occur when  sinb . That is, for 
3109/sin  b . The interference b minima will occur when Eq. (6.8) is 

satisfied, i.e., when 

 

  









2

1
sinsin1 ndd  

 

On substituting the given values, we find that 

 

 3108.1
2

1

2

1
sin 

















 n

d
n


 , n = 0, 1, 2, … 

i.e. 

 

 
3109.0sin  , 7.2

310 , 4.5
310 , 6.3

310  and 8.1
310  

 

Thus, there will be ten minima between the two first order diffraction minima. If   is 

small we may write 
1 = 0.9

310 rad, 
2 = 2.7

310 rad, 3 = 4.5
310  rad, 

4 = 
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6.3
310 rad, 5 = 8.1

310 and the angle between successive minima is 1.8
310

rad. The angular separation between two interference maxima is given by 

 

 
cm

cm

d 2

5

105.3

103.6










 = 1.8

310  rad. 

 

Note that this is the same as the angle between successive minima. Thus the fringe 

width df   A8d is 

 

 (500 cm )1.8 
310  = 0.9 cm 

 

 

6.3.3  Graphical Representation 

We will now plot 2cos , )/(sin 22  , and their product separately to study the 

double slit pattern. Before doing that, we must decide on the relative scale of the 

abscissas   and   since the shape of the pattern will depend upon this choice. You 

already know that  /  is equal d/b. Let us say that in a particular case  / = d/b = 

4. We must then plot the proposed curves for  4 . In Fig. 6.4, the curves (a) and 

(b) are plotted to the same scale of  . Fig. 6.4(a) depicts the curve for 2cos  which 

given a set of equidistant maxima of equal intensity located at  = 0,   ,  2 ,

3 , ... 

 

In Fig. 6.4(b) we have plotted )/(sin 22   which gives a maximum at  = 0 and 

minima at  =   ,  2 , ... In Fig. 6.4(c) we have plotted their product. What do 

you observe? The intensity of the fringes in the resultant pattern is not the same as it 

was in Fig.6.4(a). It is modulated (reduced) by the factor )/(sin 22  . This means 

that the central fringe or the zeroth fringe is the brightest, and the successive three 

fringes are of decreasing intensity until we reach the point   , where the intensity 

is zero. Thus, the fourth fringe corresponding to  4cos2  falls at    or 

and their product is zero. Therefore, the fourth fringe on either side of the central 

maxima has zero intensity and its location at the angle satisfies simultaneously 

 

 B  and  4  

or 

  sinb  and  4sin d  

 

This fourth fringe will therefore be missing. We will observe the 5th, 6th and 7th 

fringes. We can argue in a similar manner that for 8th fringe 

 

  2  and  8  

 

which will therefore have zero intensity and thus be missing. You may now like to 

answer the following SAQ. 
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Fig. 6.4 Intensity curves for double slit. We have  4  

 

SAQ2 
Write down the general condition for missing orders in terms of the ratio d/b. 

 

6.4 FRAUNHOFER PATTERN FROM N IDENTICAL SLITS 
You now know that interference of waves diffracted by individual slits determines the 

intensity distribution in the double slit pattern. Let us now consider the diffraction 

pattern produced by N vertical slits. We use the same experimental arrangement as 

shown in Fig. 6.1 for two slits. For simplicity we assume that (i) each slit is of width b 

and has the same length (ii) all slits are parallel to each other and (iii) the intervening 

opaque space between any two successive slits is the same, equal to a. Therefore, the 

distance between any two equivalent points in two consecutive slits is a + b. Let us 

denote it by d which we call the grating element. As before, we take the source of light 

to be in the form of a slit and adjust the length of this source slit to be vertical and 

parallel to the length of N slits. As arrangement consisting of a large number of parallel, 

equidistant narrow rectangular slits of the same width is called a diffraction grating. 

As discussed in the double slit pattern, the diffraction pattern will consist of vertical 

fringes parallel to the slit source. Let us now study the intensity distribution in this 

pattern. 

 

6.4.1 Intensity Distribution 
To derive an expression for the intensity distribution we will follow the procedure and 

arguments similar to those used for the double slit. Consider a point source of light 

which sends out plane waves. That is, a plane wavefront is incident on the arrangement 

shown in Fig. 6.5. (Speaking in terms of ray-optics, we may say that light rays fall 

normally on the grating). You may recall that the intensity distribution along any 

section perpendicular to the vertical fringes formed from a slit source will be the same 

as obtained from a point source. Physically, light emerging from N slits after diffraction 

at each slit results in N diffracted beams. Since these are coherent, interference takes 
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place between them resulting in the formation of fringes. It is important to note that 

diffraction controls the intensity from each slit in a given direction.  

 

 
 

Fig. 6.5 Fraunhofer diffraction of a plane wave Incident normally on a multiple slit 

aperture 

 

As before, we consider the diffracted rays proceeding towards P , where   is the angle 

between the diffracted rays and the normal to the grating. Let 
1E , 

2E , 3E , …, nE  

denote the fields produced by the first, the second, the third, ... and the Nth slit at the 

point P . Then we have 
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Where various symbols have the same meaning as in Sec. 6.3. Also, we have assumed 

that the phase changes by equal amount 6 from one slit to the next. 

 

The field E  at P  is obtained by summing these N terms: 
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You can write it as 

 

 ])1(cos[...)cos()cos(
sin





 NtttAE

 (6.11) 

 

You have learnt to sum the series given here [Unit 2 of the course Oscillations 

and Waves Eq. (2.38)]: 

In complex notation,  

 sincos)exp( ii       (i) 

so that 

  cos)]Re[exp( i       (ii) 

It means that  

 ]Re[)cos( )(   tjet  

 ]Re[)cos( )(   tjet  

 . 

 . 

 . 

 ]Re[))1(cos( ))1((   NtjeNt  
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The RHS can be rewritten as  

RHS = ]...1[ )1(2)(    Niiiti eeee     (iv) 

This is a geometric series with common factor 
ie

 and can be summed easily 
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Hence, LHS of (iii) is recovered by the Real part, which is Eq. (6.12) 
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where 



 sin

2
d . sin  is referred to as the grating term. 

 

The intensity of the resultant pattern is obtained by squaring the amplitude of the 

resultant field in this expression. Therefore, 
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22
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sinsin N
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 (6.13) 

 

Let us pause for a while and ask: What have we achieved so far? We have obtained an 

expression for the resultant intensity of diffraction pattern from N-slits. We expect it to 

be true for any number of slits. 

 

For a single slit, Eq. (6.13) reduces to 

 

 
2

2
2 sin




 AI   

 

which is the same as Eq. (5.7). 

 

SAQ 3 
Show that for N = 2, Eq. (6.13) reduces to Eq. (6.6) for the double slit. 

 

6.4.2  Positions of Principal Maxima 
For obtaining the positions of maxima (as well as minima), let us re-examine Eq. (6.13). 

We note that the intensity distribution is a product of two terms; the first term 

)/(sin 22   represents the diffraction pattern produced by a single slit, whereas the 

second the term )sin/(sin 22 N  represents the interference pattern of N slits. The 

interference term controls the width of interference fringes, while the diffraction term 

governs their intensities. 

As in case of the double slit, we cannot locate the exact positions of maxima; their 

approximate positions can however be obtained by neglecting the variation of 

)/(sin 22  . This is quite justified for very narrow slits. Therefore, for obtaining the 

positions of maxima we consider only the interference term. 

 

The maximum value of )(
sin

sin 2

2

2

N
N





 occurs for  = 0,  , 2 , …, n  . At first 

glance, you will note that the quotient becomes indeterminate at these values. In such 

a situation, we compute the first derivative of the numerator as well as the denominator 

separately before inserting the value of argument. Following this procedure, you will 

readily obtain 

 

 N
NNN

nn


 







 cos

cos
lim

sin

sin
lim  

 

So that  
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The expression for intensity now takes the form 

2

2
222

2

2
2 sinsin








 ANNAI       

 (6.14) 

 

where 





sinb
  

 

We therefore conclude that the positions of maxima are obtained when 

 

  = 0,  , 2 , …, n   or N = 0, N , 2 N , …, nN   

 (6.15) 

 

Physically, at these maxima the fields produced by each of the slits are in phase and 

the resultant field is N times the field due to each of the slits. 

 

When N is large, the intensity, being proportional to 
2N , is very large and we will 

obtain intense maxima, if only 
22 /sin   is not too small. Such maxima are known 

as principal maxima. 

 

We can rewrite the condition of principal maxima as 

 

  nd maxsin        

 (6.16) 

 

which is identical to Eq. (6.9). It implies that 

 

1.      The principal maxima in N-slit pattern correspond in position to those of the 

double slit. 

2.      The relative intensities of different orders are modulated by the single slit 

diffraction envelope. 

3.      n cannot be greater than /d since 1|sin|  . Can you imagine the 

implications of this condition? If you ponder for a while, you will realise that 

this condition suggests existence of only a finite number of principal maxima, 

which are designated as the first, second, third, . . . order of diffraction. 

Moreover, there will be as many first order principal maxima as the number of 

wavelengths in the incident wave. 

 

4.     The relation between   and   obtained for double slit in terms of slit width 

and slit separation does not change. That is, Eq. (6.10) hold for N-slits as well. 

 

6.4.3 Minima and Secondary Maxima 

To be able to find the minima in the diffraction pattern, we locate the minima of the 

interference term. We note that the numerator in  22 sin/sin N  will become zero 

more often than the denominator. The numerator becomes zero for N = 0,  , 2 , 

…, p , or 
N

p
  . Therefore, 










N

p
 sinsin  will not become zero for all 

integral values of p . It will become zero only for special cases when p 0, N, 2N, . . 
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. and   assumes values which are integral multiple of  . But you will recall that for 

these special values of  , both Nsin  and sin  vanish and the interference term 

defines the positions of principal maxima already discussed. However, for all other 

values of p, the numerator vanishes but not the denominator. That is, intensity vanishes 

when p, though an integer, is not an integral multiple of N. Hence, the condition for 

minimum is Np /   except when p = nN; n being the order. These values 

correspond to 

 

 





 


N

N
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n
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These values of   correspond to path difference 

 

 





 





 
 ...,

)1(
...

)1(
...,,

3
,

2
,sin min

N

N

N

N

NNN
d


  

 

You should note that the values 0, 
N

N
, 

N

N2
, …, which correspond to 

 nd maxsin and represent principal maxima, are omitted. 

 

Let us now summarise what you have learnt in this unit so far. 

 

The condition for principal maxima: 
 

  = 0,  , 2 , …, n   

and therefore 

  N = 0, N , 2 N , …, nN  

 

We may write 

 



 n

d
 maxsin   where n = 0, 1, 2, … 

 

In terms of path difference, 

  nd maxsin  

 

The conditions for minima: 
 

N =  nN ,  2nN , …,  qnN   

 

where q  is not an integral multiple of N . We can rewrite it as 

 

N = 
N

n


  , 
N

n



2

 , … 

 

In terms of path difference 

  



PHY 306             OPTICS II 

152 

 
N

nd


 minsin , 
N

n



2

 , …, 
N

q
n


    

where q 0, N , N2 , … 

 

If you write all possible values of N , you will find that we have (N - 1) positions of 

minima between any two successive principal maxima. Further, we know that between 

any two consecutive minima, there has to be a maxima. Such maxima are said to be 

secondary maxima. There will be (N - 2) positions of secondary maxima between two 

consecutive principal maxima. The secondary maxima are not symmetrical, as in the 

two-slit pattern. Moreover, the intensity of secondary maxima is very small and are 

therefore of little practical importance. Typical diffraction patterns and the 

corresponding intensity distributions predicted by Eq, (6.13) for N = 4 are shown in 

Fig. 6.6. 

 

You may now like to answer the following SAQ. 

 
Fig. 6.6: Fraunhofer diffraction pattern for four slits. For comparison, patterns for one 

and double slits are also shown. The intensity distribution predicted by Eq. (6.13) is 

also shown. 

 

SAQ 5 
Show schematically the positions of principal maxima, secondary maxima and 

secondary minima for a diffraction grating with 6 slits. 

 

Hint: We expect 5 minima between two consecutive principal maxima. Also we have 

4 secondary maxima between the two principal maxima. 

 

 

Example 2 
Calculate the maximum number of principal maxima that can be formed with a grating 

5000 lines per cm for light of wavelength 5000 Å. 

 

Grating element d = 
8105000

1


= 
4102   cm 

 

The condition for the formation of principal maxima is  nd maxsin since 

1|sin|  we cannot have n greater than 


d
. In this specific case 
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cm

cm
n

8

4

105000

102







 = 4 

 

Therefore, it will be able to show 1st, 2nd, 3rd and 4th orders of principal maxima. 

 

If, on the other hand, we have a grating with 15000 lines 
1cm  

 

 

 
5

5

5 105

106.6

105

)15000/1(




 





n  

 

which is less than 2. Such a grating will show only 1st order of spectrum with  = 

5000Å. You can verify this result while observing grating spectrum in your second 

level physics laboratory course. 

 

6.4.4 Angular Half- Width of Principal Maxima 

You now know that for N slits 

 

1.     The principal maxima occur when  n  and therefore  NnN  . 

 

2.     On either side of the principal maxima, we have a minimum when 

 

   nNN  or when 
N

n


  . In terms of path difference and angle 

of 

diffraction, these conditions for principal maxima and the adjacent minimum 

can be rewritten as 

 

  nd maxsin       

 (6.16) 

 

and  

N
nd


 minsin       

 (6.17) 

 

The angle between max and 
minQ is called the annular half width of principal maxima, 

let us denote it by  . We now proceed to calculate this angle. We can calculate 

|)|( minmax    by computing max and 
min  from Eqs. (6.16) and (6.17). 

Alternatively, by choosing maxmin   , we substitute   maxmin  in Eq. (6.17) 

to obtain 
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N

nd


  )sin( max  

or 

 
N

ndd


  sincoscossin maxmax  

 

For 0 , 1cos   and  sin . Hence,  

 

 
N

ndd


  maxmax cossin  

 

You may now question as to why is   called angular half width. It is 

quite simple. You know that the principal maximum extends from 

minimum on one side to minimum on the other side and  is half of it. 

While solving SAQ 4 you have seen that for 6 slits the principal maximum 

extends from  

 5N  to  7N   

or  

 
6

5
sin max


 d  to 

6

7
 

 

You must note that the term half width of a spectrum line (or a diffraction 

curve) has a slightly different meaning. The diagram below represents the 

intensity vs   curve. The half width gives 

the width of the curve at 
2

maxI
. It is equal to AB in the diagram. The angular 

half width, on the other hand, is equal to CD. Obviously you can convince 

yourself that AB is not equal to CD. Only in the extreme case when the 

curve is a triangle, AB = CD. 
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Using Eq. (6.16), we find that it takes a compact form: 

 

 
N

d


 maxcos  

so that 

 

maxcos




Nd
        

 (6.18) 

 

which shows that the principal maximum becomes sharper as N increases. It is for this 

reason that grating spectrum is so sharp. You will now learn about it in detail. 

 

6.5  DIFFRACTION GRATING 
You have learnt about the diffraction pattern produced by a system of parallel 

equidistant slits. An arrangement of a large number of equidistant narrow vertical slits 

is known as diffraction grating. The first gratings were made by Fraunhofer. He 

stretched fine silver wire on a frame. His grating had nearly 200 wires to a centimetre. 

Afterwards, gratings were made by ruling fine lines with a diamond pen on a glass 

plate. The transparent part between the lines acted as a slit while the ruling itself acted 

effectively as the opaque part. Rowland was among the first to rule gratings on a 

metallic surface. He produced plane as well as concave gratings with nearly 5000 lines 

per centimetre. These gratings are difficult to make and are expensive but celluloid 

replicas can be made fairly cheaply and are commonly used in the physics laboratory 

for spectral analysis. You can make a simple coarse grating for demonstration purposes 

on a plate by drawing equidistant and parallel scratches on the photographic emulsion. 

Nowadays, it is possible to produce gratings holographically. Holographic gratings 

have greater rulings per cm and are definitely better than ruled gratings. You will get 

an opportunity to learn holographic details in Optics III. 

 

6.5.1   Formation of Spectra 

We have seen that for a monochromatic light of wavelength 
1 , the principal maxima 

are given by the grating equation 

 

 
11sin  nd  , n = 0, 1, 2, 3, … 

 

With the experimental arrangement described above we will get these principal maxima 

as one line in each order. Now if another source of light emits a longer wavelength 
2

, we will get a corresponding line in each order at a larger angle 
2 : 

 

 
22sin  nd  , n = 0, 1, 2, 3, … 

 

However, if the same source of light emits both the colours corresponding to 

wavelengths 
1 and 

2 , we will get two lines simultaneously in each order. These two 

lines will be seen as two spectrum lines separated from each other. This is because 

except the central maximum (zeroth order), the angles of diffraction for 
1 and 

2  are 

different in various other orders. In the central maxima   = 0 for all wavelengths and 

this is why different colours are not separated from each other. What do you expect to 

observe when we have a white light source? The central image will be white while all 

other orders will show colours. 
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We note that in the grating equation, if we know d,   and n, we can calculate the 

wavelength of light. Since the grating element (d) is known for a grating and   can be 

measured, this arrangement provides a simple and accurate method of measuring  . 

This is discussed in the following section. 

 

6.5.2  Observing Grating Spectra 
In your second level physics laboratory course, you must have observed grating spectra 

using a simple spectrometer. This arrangement is depicted in Fig. 6.7. The light from 

the given source is focussed (with the help of a lens) on the slit of the collimator, which 

sends out a parallel beam of light. 

 

 
 

Fig. 6.7 A schematic diagram of experimental arrangement for observing grating 

spectra 

 

The telescope arm is rotated and brought in line with the collimator. This ensures that 

the parallel beam of light falling on the objective of telescope is focussed at the 

crosswires, which is in the focal plane of the eyepiece. The position of the source of 

light should be adjusted to get the brightest image. We mount the diffraction grating on 

the turntable and adjust it so that the light is incident normally on the grating. Now we 

rotate the telescope arm to the left or right to get the first order spectrum in the field of 

view. If the source of light is a discharge tube containing sodium, mercury or argon the 

spectrum will consist of a series of spectrum lines. Each spectrum line is a diffracted 

image of the slit, formed by different wavelengths present in the source. To get sharp 

line images, we adjust the grating so that the diffracting slits are parallel to the 

collimator slit. This can be done by rotating the grating in its own plane. 

 

To measure the wavelength of each line, we set the vertical crosswires at the centre of 

each spectrum line and note the position of the telescope in each case. The difference 

between the position of the telescope and the direct position gives the angle of 

diffraction for each of the lines. To reduce error, the position of the telescope is noted 

on both sides of the direct position and half of this angle gives the angle of diffraction. 

You must have observed that 

 

1.     The spectrum exists on both sides of the direct beam. 

 

2.    Apart from the first order, the second or even third order spectrum (depending 

upon the grating element) are also present. 

Light from a molecule gives a band like appearance and is often called band 

spectrum, while an incandescent lamp of similar sources will give a continuous 

spectrum, where various colours merge into one another. 
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3.      Different spectrum lines are not equally bright or sharp. This depends upon the 

energy levels and the transitions of the atom giving the spectrum. These 

concepts are further illustrated in the following example. 

 

 

Example 3 
Rowland ruled 14438 lines per inch in his grating, (i) Calculate the angles of diffraction 

for violet ( = 4000 Å) and red ( = 8000 Å) colours in the first order of spectrum. 

What is the largest wavelength which can be seen with this grating in the third order? 

 

Solution 

(i)    The grating element d = 
14438

54.2
 = 0.0001759 cm 

      = 
410759.1  cm 

 

Suppose that the violet colour ( = 4000 Å) is diffracted through angle v . 

Recall the condition for maximum: 

 

   nd v sin  

 

For first order on substituting the given values, you will get  

 

  
4

5

10759.1

104
sin








v = 0.2274 

 

Therefore    v = 130 

 

Similarly, for red colour ( = 8000 Å), we have 

 

  
4

5

10759.1

108
sin








r = 0.4548 

 

so that  

  
r = 270 

 

This means that the entire visible spectrum in the first order extends from 

nearly   = 13° to   = 27°, i.e. covers an angle of about 14°. 

 

(ii)  max3sin  d  

According to the given condition,  = 90° so that sin = 1 and max3d  

or 

 
3

10759.1

3

4

max




d
 cm = 5860 Å 

 

This calculation suggests that in the third order spectrum, the sodium doublet consisting 

of 5890 Å and 5896 Å will not be visible. Do you recall this from your observations on 

spectral analysis using a diffraction grating? If you have so far not opted for the second 

level physics, it will be worthwhile to verify this result. 
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If you calculate vsin  and 
rsin , for 1st, 2nd and 3rd orders, you will find that for 

 

       








0

0

27~4548.0sin

13~2274.0sinorder1st 

rr

vv




    140 spread  

 

       








0

0

65~9096.0sin

27~4548.0sinorder 2nd

rr

vv




    380 spread  

 

       















 0

max

10

max

0

90and105860

for1sin

43~6822.0sinorder 3rd







r

vv

    470 for 4000 Å - 6000 Å

  

 

 1sin r  and cannot be observed    entire visible spectrum is not 

available 

 

Schematically it is shown below: 

 

 
 

Fig. 6.8 Schematics of angles for overall spread of various orders of spectrum 

 

Thus we find that in 1st order, red just touches second order violet. (This is because we 

have selected  = 4000 Å and   = 8000 Å). It means that there is essentially no 

overlapping of first and second order spectra. The third order v , begins at 
043 . 

If you calculate wavelength x  of 2nd order present there you will find that 

 

 vvd  2343sin 0     
2

1040003 10
x = 6000 Å 

 

Therefore  = 6000 Å of the 2nd order occurs at the same place as  = 4000 Å of third 

order. Therefore, from 6000 Å to 8000 Å will have overlapping colours. This difficulty 

is usually avoided by using suitable colour filters. 

 

We now summarise what you have learnt in this unit. 
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6.6 SUMMARY 

 The double slit diffraction pattern consists of a number of equally spaced 

fringes similar to what is observed in interference experiments. These fringes 

are the brightest in the central part of the pattern. 

 

 In double slit pattern fringes reappear three or four times before they become 

too faint to observe. 

 

 The central maximum in double slit pattern is four times brighter than that in 

single slit pattern. 

 

 The intensity of double slit diffraction pattern at an angle 6 is given by 

 

 





2

2

2

0 cos
sin

4II   

 

 Here, 
2

0 AI  , 





sinb
  and 




 sind , where b is slit width and d 

is the distance between two similar points in these apertures. It is equal to a + 

b, where a is the width of the intervening opaque space between two slits. 

 

 The intensity of double slit diffraction pattern is product of the irradiances 

observed for the double slit interference and single slit diffraction. Physically, 

it arises due to interference between two diffracted beams. 

 

 For slits of very small widths, the double slit diffraction pattern reduces to 

Young's interference pattern. 

 

 The conditions of maxima and minima in double slit pattern are: 

 

  nd sin  (maxima) 

and 

  mb sin  (minima) 

 

 The intensity distribution in N-slit diffraction pattern is given by 

 

 







 2

2

2

2
2

sin

sinsin N
AI   

 

 The term sin  is referred to as the grating term. 

 As the number of slits increases, the maxima get narrower and for sufficiently 

large values of N, they become sharp lines. The angular half width of principal 

maximum   is given by 

 

 

maxcos




Nd
  

 

 The principal maximum is sharp for large values of N. 

 

6.7  TERMINAL QUESTIONS 
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1.      If we use a white light source in the arrangement shown in Fig. 6.6, how will 

if affect the fringes? 

 

2.      Can there be principal maxima of zero intensity because of diffraction at each 

slit? If yes, discuss. 

 

6.8  SOLUTIONS AND ANSWERS 

 

SAQs 

 

1.      
1  will give its diffraction pattern within which we will get the interference 

fringes. The pattern for 
2  will be smaller if 

12   . They will both be 

superimposed on one another, coinciding at   = 0. 

 

2.      The general conditions for missing orders in terms of   and   are  m  

or  md sin  and  p  or  pb sin . Therefore 

 

  
p

m

b

d
  

 

both m and p are integers, the missing orders occur when d/b is a ratio of two 

integers. When d/b = 1, i.e. the two slits exactly join, all the interference orders 

are missing. Physically it means that we have a single slit of double width and 

consequently no interference. 

 

For 
b

d
= 2, second, fourth, sixth,... orders will be missing. What do you say 

about 
b

d
= 3?  

 

3.      For N = 2, Eq. (6.13) takes the form 

 

  I   = 







2

2

2

2
2

sin

2sinsin
A  

   = 







2

2

2

2
2

sin

)cossin2(sin
A  

   = 


 2

2

2
2 cos

sin
4A  

which is the required result for the double slit. 

 

 

4.     See figure given below: 
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TQs 

1.     As before, each wavelength will give its interference fringes. The central fringe 

for all wavelengths will coincide and hence the central fringe will be white. 

Fringes of order n = 1, 2, 3, ... located on either side of the central fringe, at 

different   values given by  nd sin  for different wavelengths will be 

coloured. 

 

2.     There can be a principal maximum whose intensity is zero because of the 

diffraction at each slit. There are called missing orders or absent spectra. We 

know that the relationship between   and   in terms of slit width and slit 

separation for N slits is the same as for the double slit. Therefore, the conditions 

for missing orders remain unaltered. And a particular maximum will be absent 

if it is formed at the same angle as the minimum of single slit diffraction 

pattern. This occurs at an angle which satisfies Eqs. (6.16) and (6.17). 
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UNIT 7    DIFFRACTION AND RESOLUTION 

Structure 
7.1 Introduction  

Objectives 

7.2     Diffraction and Image Formation 

7.3     Resolving Power of Optical Instruments 

Astronomical Telescope  

Microscope  

Diffraction Grating 

7.4     Improving Resolution 

Michelson Stellar Interferometer 

7.5  Summary 

7.6  Terminal Questions 

7.7  Solutions and Answers 

 

7.1  INTRODUCTION 
In units 5 and 6 of this course you have learnt that due to diffraction, the image of an 

object is fringed even if an aberration-free converging lens is used. That is, the image 

of a point object is spread over a small area on the observation screen. Does this mean 

that no optical device can form a perfect image? The answer to this question is: The 

image of a point source is not a geometrical point. And diffraction does place a limit 

on the ability of optical devices to transmit perfect information (quality image) about 

any object. Such optical systems are said to be diffraction limited. 

 

Broadly speaking, diffraction limited systems can be classified into two categories: (i) 

human eye, microscope and telescope which enable us to see two objects (near or 

distant) distinct and (ii) Grating and prism which form a spectrum and enable us to see 

two distinct wavelengths (colours). In principle, in both types of instruments two close 

fringed (diffraction) images are formed on the screen. The question that should 

logically come to your mind is: How to characterise the ability of an optical instrument 

to distinguish two close but distinct diffraction images of two objects or two 

wavelengths? This ability is measured in terms of resolving power. You may now like 

to know: What criterion enables us to compute resolving power? The most widely used 

criterion is due to Rayleigh. According to this, two diffraction images are said to be 

just resolved when the first minimum of diffraction pattern of one object falls at the 

same position where the central maximum of the diffraction pattern of the other lies. 

When the patterns come closer than this, the objects are not resolvable. When the 

patterns overlap less than this, the images are distinct and hence objects are resolvable. 

It is also important to know whether the same criterion applies to both types of optical 

devices? How can we improve resolution and see deeper in space even during the day? 

We have addressed all these aspects in this unit. 

 

Objectives 
After studying this unit, you should be able to: 

 

 explain how diffraction limits image forming ability of optical devices 

 use Rayleigh criterion to compute expressions for resolving power of a 

telescope, a microscope and a diffraction grating 

 solve numerical problems based on resolution, and 

 describe how Michelson stellar interferometer helps in improving resolution. 
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7.2   DIFFRACTION AND IMAGE FORMATION 
You may recall from Unit 5 that when the size of pupil is greater than 2.4 mm, the 

human eye does not form a perfect point image (due to aberrations). However, for pupil 

sizes smaller than 2.4 mm, the human eye appears to be a diffraction-limited system. 

To gain some quantitative measure of visible acuity, let us estimate the size of image 

formed on our retina. If we approximate the pupil in human eye by a circular aperture, 

we have to consider how it influences the image formed by eye-lens on the retina (Fig. 

7.1). From Unit 5 you may recall that the diffraction image of a point source due to a 

circular aperture is a bright central disc surrounded by a series of alternate dark and 

bright rings of decreasing intensity. 

 

 
 

Fig. 11.1 Visible acuity and image formation on 

retina 
 

The angular half-width of the central disc is given by D/22.1   , where D is the 

diameter of the aperture. And the lateral width of this image will be f , where f  is 

the focal length of eye-lens. This means that the size of an image formed on the retina 

depends on the wavelength of light and diameter of the aperture. If we take the pupil 

diameter to be 2 mm, then for middle of visible spectrum (  = 5500 Å) 

 

 
4

1

5

1035.3
102

)105.5(22.122.1 











cm

cm


  rad 1 minute of arc 

 

Thus, if the object is at a distance of 2 m, the size of image formed in a normal unaided 

human eye should be 
41035.32(  rad)2 m = 1.34

310  m. 

 

Now refer to Fig. 7.2. It shows the image of a point source, luminous star say, formed 

by an astronomical telescope whose objective acts as a circular aperture and produces 

Airy pattern. The image essentially is a bright circular disc of angular diameter 











D




44.2
2 , which depends on   and D. The larger the aperture, the truer the 

image, i.e., the smaller the Airy disc. On the other hand, if the aperture size is small, 

the size of the Airy disc increases. That is, no matter how free from aberrations an 

astronomical telescope objective is, what is observed at best is not a point image of a 

star. For similar reasons we find that the image of a point object formed by a 

microscope is of finite size. We may therefore conclude that diffraction constrains an 

optical device in the formation of a sharp point-like image of a point source due 

to the finite sizes of its components. 
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Fig. 7.2: Image of a luminous star formed by an astronomical telescope 

 

An actual manifestation of this restriction arises in imaging when we observe two point 

sources or two spectrum lines. Since the objective of every optical instrument acts as a 

circular aperture and the point sources are mutually incoherent, the image consists of 

two independent Airy patterns. When the Airy discs are small and distinct, the two 

sources are said to be well resolved. The question now is how close can we bring these 

two discs so that they are just resolved. You will learn the answer to this question now. 

 

7.3    RESOLVING POWER OF OPTICAL INSTRUMENTS 
There are several criteria for the resolution limit. But we will confine ourselves to the 

conventional specification, the Rayleigh criterion, which however arbitrary, has the 

virtue of being particularly simple. According to this, the two patterns are resolved 

when the first minimum of the diffraction pattern of one coincides with the central 

maximum of the diffraction pattern of the other. In Rayleigh's own words: 

 

This rule is convenient on account of its simplicity and it is sufficiently 

accurate in view of the necessary uncertainty as to what exactly is 

meant by resolution. 

 

We will now consider the specific cases of an astronomical telescope, a microscope 

and a diffraction grating. 

 

7.3.1. Astronomical Telescope 
Imagine that a telescope points towards two close luminous stars, which subtend an 

angle   on the objective. The plane waves from these stars reach the objective and 

give rise to Airy diffraction patterns (Fig.7.3). Since the stars are effectively at an 

infinite distance from us, the diffraction patterns (images) are formed in the back focal 

plane of the telescope objective, where it is examined with the aid of the eyepiece. The 

angle between mid-points of central discs is equal to the angle subtended by the stars 

at the objective. For these stars to be just resolved, Rayleigh's criterion demands that 

maximum (centre) of the Airy disc due to one star should fall on the minimum 

(periphery) of the disc due to the other star, as shown in Fig. 7.4. 
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Fig. 7.3 Formation of Airy patterns In imaging of two stars by a telescope 

  

 
 

Fig. 7.4 Rayleigh criterion for Imaging of two stars of small angular separation 

 

(The corresponding intensity curves are also shown.) Mathematically, we demand that 

for the two stars to be just resolved, the angle subtended by the two stars at the objective 

should be equal to the angular half width of the Airy disc. Recall Eq. (5.13). It suggests 

that the minimum resolvable angular separation or angular limit of resolution for 

two close stars which can be resolved by a telescope is 

 

 
D




22.1
min          

 (7.1) 

 

Two stars subtending an angle  at the objective will be resolved for 
min  and 

unresolved for 
min  . The intensity plot for more than resolved, just resolved 

(Rayleigh limit), and unresolved stars are shown in Fig. 7.5. 
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Fig. 7.5: Plot of Intensities of two resolved, just resolved and unresolved stars 

 

The centre-to-centre linear separation of two just resolved stars, the limit of resolution, 

is given by 

 

D

f
fs




22.1
min         

 (7.2) 

 

where f  is the focal length. 

 

The resolving power of an optical device is generally defined as the reciprocal of the 

resolving limit, i.e., as 
1

min

Q  or 
1s . This means that resolution ability of diffraction-

limited systems depends on the size of the aperture and the wavelength. For a given 

wavelength, the resolving power of a telescope can be increased by using objectives of 

larger diameter. To give you some appreciation of numerical values, we now give a 

solved example. You should go through it carefully. 

 

 

Example 1 
An astronomical observatory has a 40-inch telescope. Calculate the minimum angle of 

resolution for this telescope. Take  = 6000 Å. 

 

Solution 
From Eq. (7.1) we recall that 

 

 D/22.1min    

 

On substituting the given data, you will find that 

 

 
min  = 

cm

cm

54.240

)106(22.1 5



 

 

 

  = 
7102.7   rad 

 

  = 0.15 seconds of arc 

Before the S.I. system of units was adopted, the objective sizes were expressed in 

inches. 
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The diameter of the largest telescope is about 80 inch (~2m) and the corresponding 

angular separation of the objects it can resolve is 0.07 seconds of arc. This very low 

limit is not achieved in ground-based telescopes due to turbulence in the lower 

atmosphere. 

 

For the human eye, 
4

min 1035.3   rad. Therefore, the actual lateral width of the 

image of a distant point formed on your retina is 

 

 
minfs   

 

If we take f = 3 cm, we find that 

 

  s = (3 cm)
41035.3   

 

     = 10.05
410  cm 

 

   = 10 microns 

 

This is roughly three times the mean spacing between photoreceptors (cones) at the 

centre of the retina. Therefore, for a normal unaided human eye, the linear separation 

between two-point objects at a distance of 3m subtending this angle will be equal to 
34 10131035.3(   m m) = 1 mm. This means that the unaided eye will resolve 

two-point objects 1mm apart at a distance of about 3 m. 

 

You can easily verify this result at least qualitatively. You should just draw two lines 

one millimetre apart and view these from a distance. (Alternatively, you can see marks 

on a millimetre scale or some newsprint). Move forward or backward till these become 

blurred and just merge into one another. Experience tells us that 1 mm is barely 

resolved at 2 m. The difference is due to optical defects in the eye or the structure of 

retina. 

 

You may now like to answer an SAQ.  

 

SAQ 1 

An astronaut orbiting at a height of 400 km claims that he could see the individual 

houses of his city as they passed beneath him. Do you believe him? If not, why? 

 

 

You now know that a 40-inch telescope has a minimum angle of resolution equal to 
7102.7  rad. The minimum angle of resolution of the eye is about 

41035.3   rad. 

An important question that should come to our mind is: What should be the magnifying 

power of the telescope to take full advantage of the large diameter of the objective? 

The telescope must magnify about 
7

4

102.7

1035.3







= 465 times. Note that any further 

magnification will only make the image bigger but it would not be accompanied by 

increase in details which are not available in the primary image. (The resolution is 

determined by diffraction at the objective, i.e., the magnitude of minQ ) To get some 

idea about these details, you should carefully go through the following example.  

 

Example 2 
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Compare the performances of two telescopes with objectives of apertures 100 cm and 

200 cm. Take their focal lengths to be equal. 

 

Solution 
We know that for a telescope, the minimum angle of resolution 

 

 
D




22.1
min   

 

For the first telescope 
cm100

22.1
min


  , where   is in cm. Therefore, the radius of the 

central diffraction disc r = 
cm

ff
100

22.1
min


  the area of Airy disc 

 

2

2

1
100

22.1










cm
frA


  

 

The area of the telescope objective which collects light is 

2

2

100







 cm
 . This light is 

largely concentrated in the central maximum and gradually decreases as  

2

sin

sin











N
. 

If we assume that light is uniformly distributed over the disc, its brightness, i.e., light 

per unit area  

 

 

22

1
100

22.1

2

100



















cm
f

cm
I


  

 

  = 
222

2
2

)22.1(

)100(
)50(

f
 cm4 

 

  = 
222

22

)22.1(4

100100

f


cm4 

 

For the second telescope 
cm200

22.1
min


  . That is, the minimum angle of resolution for 

the second telescope is half of that for the first telescope. In other words, the R.P of 200 

cm telescope is twice as large. To compare their relative performances, let us compare 

the brightness. As before, the area of central diffraction disc 

 

 

2

2
200

22.1










cm
fA


  

and brightness 

 
222

22

2
)22.1(4

)200()200(

f
I  cm4 

  = 
116I  
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In words, the area of the central diffraction disc of second telescope is four times more. 

And the of the image of the star will be proportional to fourth power of its area. 

 

So we may conclude that 

 

(i)    The ability of a telescope to resolve two close stars depends on the diameter of 

its objective. 

 

(ii)    The intensity of the image is sixteen times since the objective collects four 

times more light and concentrates it over an area which is only one fourth. This 

means that a distant star, which is too faint to be observed by a smaller 

objective (of the first telescope), becomes visible by a larger telescope. That is, 

a bigger telescope can see farther in the sky. Therefore, the deeper we want 

to penetrate the space, the greater should be the aperture of the objective 

of the telescope. 

 

You may now like to pause and ponder for a while. Then you should answer SAQ 2. 

 

SAQ 2 
We can see the stars at night but as the sun rises, they gradually fade away and are not 

visible during the day. What measure would you suggest to enable researchers to make 

astronomical observations in the daytime itself? 

 

Example 3 

Calculate the dip in the resultant intensity of two 

2

sin












curves according to 

Rayleigh's criterion, i.e., when the maximum of one curve falls on the minimum of the 

other curve. 

 

Solution 
We assume that the two curves have equal intensity. These curves are symmetrical and 

will cross at 2/  , as shown in Fig. 7.6. 

 

At the point of intersection, both curves have equal intensity: 

 

 
2

2

4

2/

2
sin

























I = 0.4053 
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Fig. 7.6: Resolution of two single slit patterns: 

Rayleigh's criterion 
 

At this point the resultant intensity will be equal to the sum of the two intensities and 

therefore equal to 0.8106. This means that according to Rayleigh's criterion, the 

resultant intensity will show a dip of about 20%. And this dip is easily visible to even 

unaided human eye. If these two curves are brought closer, the dip will gradually 

decrease and it becomes difficult to resolve the images. Moreover, if these intensities 

were unequal, the dip will not be 20%. 

 

In the above example we have taken the intensity of both the curves to be equal. This 

essentially means that in Rayleigh criterion we take both the stars to be equally 

luminous. Another important point to note is that the curves are of finite angular (or 

lateral) width. In the case of grating (or prism), two spectrum lines, though assumed to 

be of equal intensity, are very sharp. Now the question arises: Can we use the same 

criterion even for a grating? From your second level physics laboratory you may recall 

the answer to this question: we do use the same criterion. Is the dip 20% or so even in 

this case? To discover, answer to this question, you should answer the following SAQ. 

 

SAQ 3 

What is the dip in the resultant intensity of two 

2

sin

sin











N
 curves according to the 

Rayleigh criterion? 

A more realistic criterion for resolving power has been proposed by Sparrow. We know 

that at the Rayleigh limit there is a central dip or saddle point between adjacent peaks. 

As the distance between two-point sources is less than the Rayleigh limit, the central 

dip will grow shallower and may ultimately disappear (Fig. 7.7) The angular separation 

corresponding to that configuration is said to be Sparrow's limit. Note that the resultant 

maximum has a broad flat top; there is no change in slope. However, we will not discuss 

it any further. 

 

Another useful image forming device is the microscope. Let us now learn to calculate 

its resolving power. 
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Fig. 7.7 Sparrow's resolution criterion 

7.3.2 Microscope 

We know that an astronomical telescope is used to view far off objects the exact 

distances of which are usually unknown. However, we were chiefly interested in their 

smallest permissible angular separation at the objective. In the case of an optical 

microscope, the objects being examined are very close to the objective and subtend a 

large angle. For this reason by resolving power of a microscope we mean the smallest 

distance, rather than the minimum angular separation, between two point objects (O 

and O') when their fringed images ( I and 'I ) are just resolved. 

 

 
 

Fig. 7.8: The optical microscope, (a) Airy pattern images of two objects O and O' 

separated  

 through a distance s  (b) Ray diagram for computation of path difference O'B 

-O'A 

 

Each image consists of a central Airy disc (surrounded by a system of rings which are 

very faint and not considered.) According to the Rayleigh criterion, the first maximum 

of I  should be at the same position where the first minimum of 'I  lies. The angular 

separation between the two discs on the limit of resolution 
D




22.1
min  . When two 

images are just resolved, the wave from O' diffracted to 'I  has zero intensity (first dark 

ring) and the path difference O'B - O'A = 1.22   (Fig. 7.8 (a)). We show an enlarged 

part in Fig. 7.8 (b) from which we see that O'B is longer than OB by issin , and O'A 

is shorter by the same amount. Here the point O subtends an angle 2 i at the objective 

of the microscope. Thus, the path difference of the extreme rays from O' to the objective 

is issin2 . Upon equating this to 1.22   we find that the minimum separation between 

two points in an object that can be resolved by a microscope is given by 

issin2  = 1.22 

or 

ii
s

sin

61.0

sin2

22.1 
 s = 
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In high power microscopes, the space between the object and objective is filled with 

oil of refractive index  . For an oil-immersed objective, the above expression 

becomes 

 

 
i

s
sin

61.0




         

 (7.3) 

 

You may now like to answer an SAQ. 

 

 

SAQ4 
In the above discussion we assumed that the two-point objects were self-luminous. 

Suppose two objects are illuminated by the same source. Will Eq. (7.3) still hold? 

 

Abbe investigated this problem of image formation in detail and found that the 

resolving power depends on the mode of illumination of the object. In the above 

treatment both O and O' were treated as self-luminous objects and thus the light given 

out by these had no constant phase relationship. For all practical modes of illumination, 

the resolving power may be taken simply as 

 

 R. P. = 
isin

61.0




 

 

The term isin  is termed the numerical aperture (NA) of the microscope objective. 

The maximum value of i  is 90°. This gives the microscopic limit on R.P approximately 

as 




2
. This shows that smaller the NA, greater will be the R.P. In practice, good 

objectives have N. A   1 so that the smallest distance that can be resolved by a 

microscope is of the order of the wavelength of light used. Obviously, with light of 

shorter wavelength, say ultraviolet rather than visible light, microscopy allows for 

perception of finer details. (We may have to take the photographs and then examine 

the images.) 

 

In your school physics curriculum, you have learnt that electrons exhibit diffraction 

effects. The de Broglie wavelength of an electron is given by 

 

  (Å) = 
V

3.12
        

 (7.4) 

 

For electrons accelerated to 100 kV, the wavelength is 

 

 (Å) = 10

5
10039.0

10

3.12  m     

 (11.5) 

 

This wavelength is 
510 times smaller than that for visible light. The resolving power 

of an electron microscope will therefore be very high. This makes it possible to 

examine objects that would otherwise be completely obscured by diffraction effects in 
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the visible spectrum. In this connection we may mention tremendous utility of electron 

microscope in the study of minute objects like viruses, microbes and finer details of 

crystal structures. It is better than even ultraviolet microscope for high-resolution 

applications. 

 

7.3.3  Diffraction Grating 
You are familiar with a sodium lamp. It gives out two close spectral lines, the so-called 

D1 and D2 lines with wavelengths 
1  = 5890 Å and 

2 = 5896 Å. For such lines, the 

resultant peak may become somewhat ambiguous. The problem we now wish to 

consider is: What is the smallest difference  , that a diffraction grating can resolve? 

The resolving power of a grating is defined as 

 

 

min)(
..






PR        

 (7.6) 

 

where 
min)(   is the least resolvable wavelength difference or limit of resolution and 

  is the mean wavelength. It is sometimes also called chromatic resolving power. 

 

 

 

 

where 
min)(  is the least resolvable wavelength difference or the limit of resolution 

and   is the mean wavelength. It is sometimes also called the chromatic resolving 

power. 

 

We know that the grating forms a principal maximum corresponding to wavelength   

at the diffraction angle  . Similarly, the principal maxima at corresponding to    

will be at   . At first thought you may argue that the two colours will be separated 

and always appear to be resolved since the two angles are different. This could be so if 

the principal maxima, i.e. the spectrum lines in the experimental arrangement, were 

truly sharp like an ideal geometric line. But we know that the principal maximum has 

The de Broglie wavelength of an electron is given by 

 
vm

h

e

  

where h  is Planck's constant, me is electronic mass and v is electron speed. When 

an electron beam is accelerated through a potential difference V, we can write 

 
e

e

m

v
v

2
  

On combining these relations, we find that 

 
Vem

h

e

1

2
  

Substituting the values 

 Jsh 34106.6  , em = 
311011.9  kg and Ce 19106.1  , you will find 

that 

  (Å) = 
V

3.12
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a finite angular width. Therefore, the question is: How close can these be brought so 

that they are seen distinct? Obviously, sharper the lines, the closer these can be brought 

and still be seen as two. 

 

 

 

Fig. 7.9 Resolution of two spectral lines 
 
This question was also carefully examined by Rayleigh. In Fig. 7.9 (a) we show plots 

of two widely separated principal maxima. In Fig. 7.9 (b) we have brought these closer 

so that the principal maximum of   , is situated at the position where the 

minimum of   falls. The dotted line defines resultant intensity, which shows a dip. 

You will recall that according to the Rayleigh criterion, this is the closest that we can 

bring these curves and still regard them as separate. If we bring them still closer as in 

Fig. 7.9 (c), the resultant intensity (shown by the dotted line) signifies a single enhanced 

principal maxima. 

 

According to the Rayleigh criterion, the condition for resolution of two spectral lines 

by a diffraction grating is obtained by noting that for the common diffraction angle  , 

the following two equations should be satisfied simultaneously: 

 

 )(sin   nd  

 

for principal maxima of   and 

 

 
N

nd


 sin  

 

for first minimum adjacent to the principal maximum for wavelength  . On 

simplifying these we get 
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 nN



        

 (7.7) 

 

We note that in a given order n, the R.P is proportional to the total number of slits. 

Does this mean that R.P increases indefinitely with N? It is not so. Think why? Does it 

have some connection with the width of the grating? You will also note that the 

resolving power is independent of grating constant. It means that the resolving powers 

of two gratings having equal number of lines but different grating constants will be 

equal. 

 

To enable you to grasp these concepts and appreciate the numerical values, we now 

give some more solved examples. 

 

Example 4 

For 
1D  and 

2D  sodium lines, 
1D = 5890 Å and 

2D  = 5896 Å. Calculate the minimum 

number of lines in a grating which will resolve the doublet in the first order.  

 

Solution 
Let us take the average wavelength as 5893 Å. From Eq. (7.6) we find that the resolving 

power is 

 

 
8

8

106

105893












= 982.2 

 

Therefore, we must have a grating with more than 983 lines to resolve sodium doublet 

in first order. A grating of 1000 lines will serve the purpose. 

 

Example 5 

Suppose that to observe sodium doublet we use a grating having 
310d cm and a 

lens of focal length 2 m. Let us calculate the linear separation of the two lines in the 1st 

and 2nd order. 

 

Solution 
We know that 

 

  nd sin  

 

For the 
1D  line 

 

 
5

3

8

1 105890
10

105890
sin 









cm

cm
  

or 

 
5

1 105890   rad 

 

Similarly, for the D2 line 

 

 
5

3

8

2 105896
10

105896
sin 









cm

cm
  

or 
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5

2 105896   rad 

 

With a lens of focal length 200 cm, we find that linear separation between D1 and D2 

lines is 

 

 

  fl  

 

    = (200 cm) (
5106  rad) 

 

    =
31012   cm = 0.12 mm 

 

This shows that 6 Å are separated by 0.12 mm in 1st order. Alternatively, we 

may say that linear separation is nearly 50 Å per millimetre in the first order. 

You can readily check that in the second order this linear separation will be 25 

Å per millimetre. 

 
7.4  IMPROVING RESOLUTION 
You now know that with the help of a telescope, we can view a faint star, resolve two 

close stars and measure the angle subtended by the double star at the objective of the 

telescope. However, it is worth noting that based on Fraunhofer diffraction image of a 

star, we cannot measure its angular diameter. To overcome this limitation, Fizeau 

suggested a slight modification in that we should use a two slit adjustable aperture (with 

provision for lateral adjustment), in front of the objective of the telescope. As a result, 

the plane wavefront falling on the double slit is diffracted and collected by the 

objective. The Fraunhofer diffraction pattern of the double slit is formed in the back 

focal plane of the objective. The measurements to determine angular diameter are made 

from the observations on these interference fringes. 

 

Refer to Fig. 7.10. Two slit apertures S1 and S2 are at a distance d apart. The telescope 

is first pointed towards the double stars, which act as two-point sources O and O'. The 

two-point sources are separated by an angle   in a direction at right angles to the 

lengths of the slits. Such objects emit white light and because of intensity 

considerations, the observations have to be made with white light fringes. It is therefore 

customary to assume an effective value of the wavelength emitted by the source. This 

depends upon the distribution of intensity of the light and the colour response of the 

eye. The interference patterns due to O and O' have the same fringe spacing since this 

spacing depends upon separation between slit apertures and the focal length of the 

objective. Moreover, these fringe patterns are shifted with respect to each other by an 

angle  . Therefore, as shown in the figure the central maximum of the pattern due to 

O is at P and that due to O' is at P'. If O and O' are two incoherent sources, the combined 

pattern is formed by summing the intensities of these two patterns at each point. 

Assuming that both O and O' have equal brightness, we can plot two 2cos  curves on 

the same scale and shift them suitably to obtain the resultant curve. 

 

We can show graphically that if this shift is a small fraction of the angular separation 

 , the resultant intensity distribution resembles a 2cos  curve. However, the intensity 

does not fall to zero at the minimum. The net result is a fringe pattern (shown in Fig. 

7.10(b)). By successive adjustments a stage can come when the maximum of one 

pattern, say due to O, coincides with the minimum of O'. Then we 
d22

1 
 . And the 
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paths from the two sources differ by 
2


. We can show graphically that the resultant 

curve 2 shows a uniform intensity and the fringes have disappeared. If we displace the 

two curves further, the fringes reappear and become sharp when the fringes are 

displaced by a whole fringe width, i.e., 
1  . They disappear again when                                                                                                                                                                                 

2

3 1   or 
2

5 1 . Therefore, with two-point sources subtending an angle   at the 

double slit, the condition for the disappearance of fringes is 

 

 
d2


  , 

d2

3
, 

d2

5
 

 

 

 

 
 

Fig. 7.10 Principle of measurement of angular diameter of stellar objects by 

interferometry 

 

To measure the angular separation of a double star, the double slit is mounted in front 

of the objective of the telescope which points towards the double star. (We should 

remember that the line joining the stars should be perpendicular to the length of the 

slits.) We expect interference pattern due to the double slit. If on adjusting the 

separation between the slits, the interference fringes can be made to disappear, we can 

The intensity of the double slit pattern is given by 

 


 2

2

2
2 cos

sin
4RI   

where 





sina
  and 






sind
  

in which a is the slit width and d is the slit separation. The positions of the maxima 

are given by 

  nd sin  

where n = 0, 1,2,3, ... When   is small, the successive maxima occur at 

  0, 
d


, 

d

2
, 

d

3
, … 

so that the angular separation between successive maxima is given by 
d


 1 . 

Further, if a is 

small, the interference pattern will be essentially a 2cos curve near the centre. 
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infer that the star is a double star. The first disappearance should take place when the 

angular separation is 
d2


. Let us compare this with the expression for the resolving 

power of a telescope )/22.1( a  , where a is the diameter of the objective). If the 

double slits are a apart and the first disappearance occurs for ad  ,  the angle   

between the double stars is 
ad 22


  . This angle is effectively half of the R.P of 

the telescope. It explains the genesis of the statement: The R.P of a telescope may be 

doubled by placing a double slit in front of it. You must however note that with a 

double slit, we can only infer the presence of a double star (from the disappearance of 

the fringes); we neither get the images of the stars nor resolve them. Indeed, even before 

the disappearance of the fringes, a blurring of fringes starts. This angle is only a small 

fraction of 
1 . You may have realised that this method enables us to measure the 

angular diameter of the disc of the star and Michelson successfully used it in 1920. 

 

Angular Diameter of a Star 

For measuring the angular diameter of the disc of a star we should first know the 

condition for the disappearance of fringes for a double slit placed in front of a telescope. 

In contrast to two-point sources, the disc of a star consists of a series of points extending 

from one end O1 to another end O2 In Fig. 7.10, we see that when Ol and the central 

point O satisfy the condition for disappearance of fringes, the point just next to Ol will 

have a similar point next to O and so on. Thus, all the points between O1 and O will 

have corresponding points lying between O and O2 satisfying the condition for 

disappearance of fringes. Since the angle between Ol and O for the first disappearance 

of fringes is 
d2


, the angle between (O1, and O2 (which is for the total disc) equals 

d



. Thus, the angular disc   of the star, computed from the first disappearance of fringes, 

is given by 
d


  . For successive disappearance   is given by 

d




2
 , 

d

3
, … If 

the source is a circular disc, the condition for the first disappearance is 
d


 22.1 . 

This method was successfully used to measure angular diameters of planetary satellites. 

But attempts to apply it for single stars failed because of their small angular diameters. 

Even with the largest slit separation possible with the available telescopes, the fringes 

remained distinct; no disappearance was achieved. To overcome this difficulty, 

Michelson devised the stellar interferometer in 1890. We will discuss it now. 

 

7.4.1   Michelson Stellar Interferometer 

The principle of Michelson's Stellar Interferometer is illustrated in the Fig. 7.11. The 

slit apertures S1 and S2 in front of the telescope are fixed. Light reaches them after 

reflection from a symmetrical system of mirrors 
1M , 

2M , 3M  and 
4M  mounted on 

a rigid girder in front of the telescope. The inner mirrors 3M  and 
4M  are fixed but 

the outer mirrors 
1M and 

2M  can be separated out symmetrically in a direction 

perpendicular to the lengths of the slit apertures. Therefore, light from one edge of the 

star (shown as solid line) reaches the point P in the focal plane via the paths OM1 M3 

S1 P and OM2 M4 S2 P. This will form interference fringes with the angular separation 

equal to 
d


.  
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Fig. 7.11: Schematics of Michelson Stellar Interferometer 

 

The other edge of the star sends light along the dotted lines and produces a similar 

system displaced slightly with the central fringe at P'. You now know that when two 

extreme fringe systems are displaced by a whole fringe width, the resultant intensity 

pattern will show uniform intensity and the fringes will disappear. The angular diameter 

of the star   = 1.22
D


, where D is the separation of outer mirrors 

1M  and 
2M . You 

can easily convince yourself by noting that the optical paths 131 SMM  and
242 SMM  

have been maintained equal so that the optical path difference for light from the two 

edges of the star is the same at 
1S  and 

2S  as at 
1M  and 

2M . If the path difference at 

1M  and 
2M  is one whole wavelength, the path difference at 

1S  and 
2S  is also one 

whole   and fringe shift is equal to one fringe width. This leads to disappearance of 

fringes. As shown in the diagram, the dotted lines inclined at an angle   will have a 

path difference of   when 
D


  . In this arrangement the smallest angular diameter 

that can be measured is determined by the separation of the outer mirrors 
1M  and 

2M  

rather than the diameter of the objective of the telescope. Therefore, the stellar 

interferometer magnifies the effective resolving power of the telescope in the ratio 
d

D

. We may emphasize that for a circular star disc, the fringes will disappear when 

D


 22.1 . This implies that the outer mirrors have to be moved out somewhat. 

 

The interferometer was mounted on the large reflecting telescope (diameter 100 inch) 

of the Mount Wilson observatory, which was used because of its mechanical strength. 

The first star whose diameter was measured by this method was Betelgeuse ( -Orion) 

whose fringes disappeared when the separation between 
1M and 

2M  was equal to 121 

inches. Assuming  = 5700 Å, we find that 

 

 
cm

cm

D 54.2121

10570022.122.1 8







  

 

        = 
8107.22   rad 
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        = 0.047 seconds of arc 

 

The distance of Betelgeuse was measured by parallax method. Its linear diameter was 

then found to be 
8101.4  km, which is about 300 times the diameter of the sun. The 

maximum separation of the outer mirrors was 6.1 m, so that the smallest measurable 

angular diameter with  = 5500 Å was about 0.02 seconds of arc. This is insufficient 

for most of the stars. The smallest star for which measurements were made was 

Arcturus. Its actual diameter is 27 times that of the sun. 

 

At the surface of the earth, the sun disc has an angular diameter of about 32' ~ 0.018 

rad. If we imagine the sun to be at a distance of the nearest star, its disc would subtend 

an angle only 0.007 seconds of arc. This will require a mirror separation of 20 m for 

disappearance of fringes. It is difficult to achieve this since we require a rigid 

mechanical connection between mirrors and the eyepiece. 

 

Let us now summarise what you have learnt in this unit. 

 

7.5  SUMMARY 

 Diffraction constrains an optical device in the formation of a sharp point-like 

image of a point source. 

 

 Rayleigh criterion for the resolution of two images demands that the first 

minimum of diffraction pattern of one object and the central maximum of the 

diffraction pattern of the other should fall at the same position. 

 

 The minimum resolvable angular separation or angular limit of resolution of 

two close objects by a telescope is given by 

 

D




22.1
min   

 

where   is the wavelength and D is diameter of the objective of the telescope. 

 

 The resolving power of a telescope is the inverse of the angular limit of 

resolution. The deeper we want to penetrate the space, the greater should be 

the aperture of the objective of telescope. 

 

 The resolving power of a microscope is defined as the smallest distance 

between two-point objects when their fringed images are just resolved: 

 

..

61.0

sin

61.0
.

ANi
PR






  

 

where i is the angle of incidence, sin I is known as numerical aperture and is 

approximately equal to 1 for good objective. 

 

 The resolving power of a diffraction grating is defined as 

 

  nNPR 



min)(

.



 

 



PHY 306             OPTICS II 

181 

where   is the least resolvable wavelength difference, n is the order of 

spectrum and N is the total number of slits. 

 

7.6  TERMINAL QUESTIONS 

1.      A diffraction limited laser beam ( = 6300 Å) of diameter 5 mm is directed at 

the earth from a space laboratory orbiting at an altitude of 500 km. How large 

an area would the central beam illuminate? 

 

2.      The resolving power of a prism is given by 

 

   








d

d
t

d
  

 

where t is the length of the base of the prism,   is the refractive index of the 

material of prism for wavelength  . A prism is made of dense flint glass for 

which refractive indices for  = 6560 Å and 4860 Å are 1.743 and 1.773 

respectively. Calculate the length of the base of the prism. 

 

7.7 SOLUTIONS AND ANSWERS 

 

SAQs 

 

1.     The minimum angle of resolution of eye 

 

  
4

5

1036.3
2.0

)105.5(22.122.1 






cm

cm

D


 rad 

 

The lateral width for resolution 

 
65 1036.3()104(  mrl  rad) = 1.34 m 

 

Since it is must less than the width of individual houses, it is not wise to believe 

the astronaut. 

 

2. As we increase the aperture of the telescope, the light collected by it from a 

star gradually increases and gets concentrated in the image (the diffraction 

disc). Ultimately a stage will come when the image of the star becomes brighter 

than the background and is visible (This is because the intensity of the image 

of a star is proportional to the fourth power while the background sky light 

increases as the square of the area of the aperture.) This means that you can see 

stars during the day by using a telescope of sufficient aperture! 

 

3.      The maximum is at Nn  and minimum at (Nn + 1) . The two curves are 

symmetrical and if they are of equal intensity, they will cross at 

2


  NnN . Therefore, if you evaluate the function 

2

sin

sin











N
at 

 NnN   and 
2


  NnN , i.e.,  n  and 

N
n

2


  , you will 

find that  
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         =
2

24



N
 

 

Hence the required ratio is 
2

4


= 0.4053 

 

Therefore, the resultant intensity will show a dip of about 20% as in the case 

of a telescope. 

 

4.      The waves given out by each self-luminous object bear no constant phase 

relationship so that the intensities can be added up. The objects viewed with 

microscopes are illuminated by the same source and there will be some phase 

relationship between the waves emanating from these. Strictly speaking the 

intensities will not be additive. But Abbe found that Eq. (7.3) gives the correct 

order for the limit of resolution. 

TQs 

 

1.      We know that angular spread of light beam is given by 

 

  
cm

cm

D 5.0

10630022.122.1 8



  

 

         = 
41054.1   rad 

 

Since the diameter of light patch 

 

 rx 2  

 

the area of the earth illuminated by the beam focussed from the space 

laboratory at an altitude of 500 km is 

 

  A   = 
22

2

4



r

x
  

   = 
24210 )1054.1()1025(

7

22  m  

   = 10934 m2 = 0.01 km2 

 

2.  d = 1.773 – 1.743 = 0.03 

  

  d  = 6560 – 4860 = 1700 Å = 1700
810 cm 
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Note that spectral spread is very wide whereas d  should be a small change. 

Assuming that   changes linearly between these two colours, we have 

 

 
cmd

d
8101700

03.0






= 

410
17

3
 cm – 1  

 

The negative sign signifies inverse value of relationship between   and  . 

The prism is made of dense flint glass and to just resolve 
1D  and D2 lines find 

that 

 

 
6

5893
. PR = 982 

so that  

 




d
= 982 = 1765 t 

and 

 
11765

982



cm

t = 0.556 cm 0.6 cm 
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Video Link 1 Video Link 2 Video Link 3 

https://www.youtube.com/watch?v=gKbP9OxMJEQ
https://www.youtube.com/watch?v=YAMmhTexnS0
https://www.youtube.com/watch?v=FY6iXM9X5Fo
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