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COURSE INTRODUCTION 

Welcome to the Course: Symbolic Logic, PHL301, dear students. This course is designed 

to facilitate an understanding of the meaning and nature of logic in order to have deeper 

understanding of the correct rules of inference that makes distinction of right reasoning 

from wrong reasoning. Some of the primary questions to be considered in this course are: 

What is the meaning of propositional calculus? What is the significance of mathematical 

logic to valid inferences? How can we identify logic in the natural sense as against in the 

artificial sense? 

 

This course builds on your previous studies in PHL105 Introduction to Logic I; PHL152 

Introduction to Logic II; as well as some studies in GST203, Introduction to Logic and 

Critical Thinking In PHL 301, the learners are encouraged to be prepared for a more 

rigorous and engaged period of scholarly discipline with artificial logic which will not 

only sharpen their criticality and capacity for sound judgment but also be able to establish 

the non-negotiable place of logic in human endeavours. 

 

In symbolic logic, as here conceived, we are concerned with investigating the validity or 

invalidity of deductive arguments. The concern is two-fold. First, we attempt to discover 

basic valid deductive argument-forms. Second, we attempt to determine the validity or 

invalidity of particular deductive arguments. The two concerns are obviously intimately 

connected, as we shall see in due course. In pursuing these concerns, we shall employ 

special symbols for the words, connectives or propositions that constitute argument. 

 

We are all familiar with attempts to achieve precision, brevity and clarity by using special 

symbols. In mathematics, for example, ‘I’ stands for ‘one’, ‘10’ for ten, ‘100’ for ‘one 

hundred’, and so on. Similarly, the symbol ‘+’ represents ‘plus’ or ‘sign of addition’, ‘-’ 

‘minus’ or ‘sign of subtraction’, ‘=’ represents ‘equals’ or ‘sign of equality’, and so on. 

These signs are compounded to get complexes like ’20 + 5 = 25’, representing ‘twenty 

plus five equals twenty-five’ and ’30 – 6’ = 24’ meaning ‘thirty minus six equals twenty-

four’. Similarly, ‘2x2x2x2x2x2x2x2x2x2’ can be rewritten as ‘210’. 

 

The use of symbols to represent propositions, terms and connectives is one of the 

hallmarks of modern logic. Symbols used in logic help us to exhibit, with greater 

precision, clarity and brevity, the logical structures or forms of propositions sentences or 

statements and arguments whose forms may tend to be obscured in natural language. It 

also frees us from psychological attachment to, or influence of, what a sentence, 

statement or proposition says in natural language. The words ‘proposition’ ‘sentence’ and 

‘statement’ shall be taken as synonyms and interchangeably. 

 

COURSE OBJECTIVES 



6  

The objectives of this course include the capacity to be able to:  

• Identify and comprehend the idea of propositional calculus; 

• Explain the idea of predicate calculus; 

• Discuss the rules of inference and rules of replacement function; 

• Enumerate and be able to apply the laws and principles of logic to the right 

proposition; and 

• Transfer natural logic into artificial language through artificial/symbolic notations. 

 

WORKING THROUGH THIS COURSE 

For an adequate understanding of the contents of this course, students are encouraged to 

possess a copy of the course guide which outlines what is expected of them. It will guide 

students to read through the study text in a coherent and logical manner and thereby 

enhance their understanding of the fundamental ideas expressed in each of the thematic 

considerations included in the modules of this course.  

 

In addition to the above, students are required to be actively involved in forum discussion 

and facilitation. Hence, attendance plus class participation are very important. There are 

also interesting readings that are necessary to enhance understanding of the course. 

Lecture notes are mere guidelines.  

 

Furthermore, students are encouraged to develop very important periods of solitude 

studies in order to be able to grasp the salient rules of logic and how they can be applied. 

The exercises placed at the end of each module are starters that can assist learners with 

these endeavors.  

 

STUDY UNITS 

This course, Symbolic Logic, is divided into two main parts, namely: 

(1) Propositional Calculus, also called Logic of Propositions, Propositional Logic, 

Sentential Logic or Truth-Functional Logic, and   

(2) Predicate Calculus, also called Predicate Logic, Logic of Predicates, 

Quantification Theory or Quantificational Logic.  

 

The foregoing two chief divisions concerning the important aspects of PHL301, 

culminates into a total of 13 units spread across 4 modules. They are outlined below: 

 

Module 1: Propositional Calculus I 

Unit 1: Meaning of propositional variables, Propositional constants and Logical 

Connectives 

Unit 2: Symbolising Propositions 

Unit 3: Truth-Conditions and Truth-Tables  
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Unit 4: Tautology, Contradiction and Contingent Truths 

 

Module 2: Propositional Calculus II 

Unit 1: Validity/Invalidity of Arguments 

Unit 2: Basic Valid Argument Forms 

Unit 3: Logically Equivalent Formulas 

Unit 4: Method of Natural Deduction 

 

Module 3: Predicate Calculus I 

Unit 1: Introducing Predicate logic 

Unit 2: Symbolising Propositions in Predicate Logic 

Unit 3: Truth and Falsity in Predicate Logic 

 

Module 4: Predicate Calculus II 

Unit 1: Validity in Predicate Logic 

Unit 2: Invalidity in Predicate Logic 

 

 

PRESENTATION SCHEDULE 

This course will involve intensive interaction between learners and facilitators. Learners 

are encouraged to practice the module exercises provided for them and then confront 

their facilitator with difficulties. The participation of learners go on to contribute to class 

participation which may attract some points in the final evaluation of learners registered 

for the course. 

 

ASSESSMENT 

Students will be assessed with the regular TMAs which are 30% of total marks and the 

pen-on-paper assessment which comprises of a total of 70%. This brings the total marks 

to 100% 

 

FOR OPTIMAL PERFORMANCE IN THIS COURSE 

For students to perform optimally in this course, s/he must: 

● Have 75% of attendance through active participation in both forum discussions and 

facilitation; 

● Read each topic and solve exercises in the course materials before it is treated in 

class; 

● Submit every assignment as and when due; failure to do so will attract penalties; 

● Know that regular discussion and sharing of ideas among peers will enhance 

understanding the contents of the course; 

● Download videos, podcasts and summary of group discussions for personal use; 
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● Attempt each self-assessment exercise in the main course material; 

● Take the final exam; and 

● Approach the course facilitator when there is a challenge with any aspect of the 

course. 

 

FACILITATION 

This course operates a learner-centred online facilitation. To support the student’s 

learning process, the course facilitator will introduce each topic for discussion before, 

opening the floor for discussion. Each student is expected to read the course materials, as 

well as other related texts, and raise critical issues which s/he shall bring forth in the 

forum discussion for clarification. The facilitator will summarize forum discussion, assist 

students with exercises that they find difficult, provide relevant materials, videos and 

podcasts to the class; and disseminate all relevant information via email and SMS as 

might be required. 

  

 

 

 

REFERENCES/FURTHER READINGS/WEB SOURCES 

 

Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: Pearson 

Education Limited 

 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 

 

In addition to the afore-stated works, the following online sites can also assist students to 

acquire additional publications: 

● www.pdfdrive.net    

● www.bookboon.com     

● www.sparknotes.com    

● http://ebookee.org   

● https://scholar.google.com     

● https://books.google.com    

 

http://www.pdfdrive.net/
http://www.bookboon.com/
http://www.sparknotes.com/
http://ebookee.org/
https://scholar.google.com/
https://books.google.com/
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Module 1: Propositional Calculus I 

Unit 1: Meaning of propositional variables, Propositional constants and Logical 

Connectives 

Unit 2: Symbolising more Complex Propositions 

Unit 3: Truth-Conditions and Truth-Tables  

Unit 4: Tautology, Contradiction and Contingent Truths 
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Unit 1: Meaning of Propositional Variables, Propositional Constants and 

Logical Connectives 

1.1 Introduction 

1.2 Learning Outcomes 

1.3 Proposition Variables and Propositional Constants  

1.4 Summary 

1.5 References/Further Readings 

1.6 Possible Answers to SAEs 

 

1.1 Introduction 

Dear students, welcome to the first part of the course PHL301. We shall begin our 

journey into symbolic logic with the ideas of propositional variable and 

propositional constants. These are important to aid our understanding of what is to 

be encountered ahead. In this part of Symbolic Logic, we shall investigate the 

validity and invalidity of arguments or argument-forms which depend on 

combining atomic or simple propositions into compound propositions to form 

arguments. Such compounds are called truth-functional compounds because their 

truth or falsity depends on (or is a function of) the truth or falsity of their 

constituent propositions. There are broadly three types of symbols needed to 

explore the principles and techniques of testing the validity or invalidity of 

arguments in propositional calculus. 

 

 

1.2 Learning Outcomes 

 By the end of this unit, learners should be able to: 

1. Understand and explain the meaning of propositional variables 

2. Discuss the idea of propositional constants 

3. Identify and be able to apply the logical connectives 

 

1.3 Propositional Variables, Propositional Constants and Logical Connectives 

Propositional Variables: In Symbolic Logic, we want to be able to talk, not only 

about specific arguments, but also about argument-forms. We use propositional 

variables to talk about any proposition whatsoever, and about the arguments of 

which they are constituent parts. We shall employ lower-case letters ‘p’ to ‘z’ as 

variables. Each variable may be used to stand for any proposition whatsoever, 

provided that no letter shall be taken to stand for more than one proposition in the 

same context. Thus, we may talk about any two propositions, ‘p’ and ‘q’, or about 

any three propositions, ‘p’, ‘q’, and ‘r’, and so on. 
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Propositional Constants: Our concern with the validity or invalidity of specific 

arguments makes it necessary for us to have a way of representing specific 

propositions which make up arguments. We shall represent every distinct simple 

or atomic proposition with any upper-case letter from ‘A’ to ‘Z’. We are free to 

represent any proposition with any letter, provided that, in the same context, 

(i) the same proposition is not represented by two letters, and  

(ii) two distinct propositions are not represented by the same letter. 

 

Thus, the distinct simple propositions in the compound proposition, 

 It is raining and the sun is shining  

may be represented as follows: 

 R: It is raining 

 S: The sun is shining 

The compound thus becomes, in part, 

   R and S 

Propositional variables and propositional constants are together called 

propositional letters. 

 

Logical Connectives (also called logical constants): There are five more or less 

basic logical connectives or constants, namely: 

(i) ‘’ (called ‘curl’ or ‘tilde’ or ‘wave’), for the negation word, ‘not’ or its 

equivalents; 

(ii) ‘.’ (called ‘dot’), for the conjunction word ‘and’ or its equivalents 

(iii) ‘v’ (lower-case letter, ‘v’, called ‘vee’ ‘wedge’ or ‘vel’), for the disjunction 

word ‘or’ or its equivalents; 

(iv) ‘’ (called ‘horse shoe’), for the conditional phrase, ‘if… then’ or its 

equivalents, and  

(v) ‘≡’ (called ‘three bars’ or ‘triple bar’), for the biconditional phrase, “…if 

and only if...’, or its equivalents. 

These connectives or constants, as the names indicate, are used in connecting 

propositional letters, whether variables or constants. 

Self-Assessment Exercise 

 

 

 

1.4 Summary 

In this unit, we have been able to learn what logical propositions entail as well as 

the relevant connectives that are central to them. We have considered the idea of 

propositional constant and variables as well. 

 

1. The sign for disjunction is which of these? (a) – (b) v (c) € (d) N 

 

2. “The Ground is Wet and Rain did not fall” is best captured as: (a) G v F (b) 

F v G (c) G. F (d) G. -F 
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1.5 References and Further Readings 

 Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 

 

1.6 Possible Answers to SAE 

 1. (b); 2. (d) 
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Unit 2: Symbolising Propositions 

 

2.1 Introduction 

2.2 Learning Outcomes 

2.3 Symbolising Propositions 

2.3.1 Negation 

2.3.2 Conjuction 

2.3.3 Disjunction 

2.3.4 Conditional 

2.3.5 Biconditional 

2.3.6 Symbolising more complex propositions 

2.3.7 Well formed formular 

2.4 Summary 

2.5 References and Further Readings 

2.6 Unit Exercises 

 

2.1 Introduction 

In this unit, we are going to learn how to symbolize propositions following what 

we have learned from the previous unit. What then do we mean by symbolize? 

How can this be attained? 

 

2.2  Learning Outcomes 

After our study in this unit, learners will be able to: 

2.2.1 Symbolise propositions 

2.2.2 Understand rules involved in the connectives during symbolising  

 

2.3 Symbolising Propositions 

 

2.3.1 Negation  

 To obtain the negation of a proposition, we place the negation sign, (that is ‘’) to 

the left side of the symbol of the propositional constant or variable. Thus, if we represent 

the sentence ‘The sun is shining’ with the upper-case letter ‘S’ each of the following 

sentences, which are all different ways of negating the sentence ‘The sun is shining’, will 

be represented as ‘S’: 

1. The sun is not shining 

2. It is not the case that the sun is shining 

3. It is false that the sun is shining 

4. It is not true that the sun is shining 

5. The sentence, ‘The sun is shining’, is false. 

6. The sentence, ‘The sun is shining’, is not true 
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2.3.2 Conjunction  

 To obtain the conjunction of two propositions, we place the conjunction sign, ‘.’, 

in between the signs for the two propositions, called conjuncts. Thus, if we use the upper-

case letter ‘W’ for the proposition ‘Today is Wednesday’ and the letter ‘U’ for the 

proposition ‘We are at the National Open University, Abuja, the compound sentence 

(called a conjunction) “Today is Wednesday and we are at the National Open University, 

Abuja’ will be symbolised as follows: 

  W. U 

Similarly, the proposition:  

 Alhaji Shehu Shagari and General Ibrahim Babangida are former Heads of State of 

Nigeria 

can be rewritten explicitly into a conjunction as follows: 

Alhaji Shehu Shagari is a former Head of State of Nigeria and 

General Ibrahim Babangida is a former Head of State of 

Nigeria 

 

If we use the letter ‘S’ to represent ‘Alhaji Shehu Shagari is a former Head of State of 

Nigeria’, and ‘B’ to represent ‘General Ibrahim Babangida is a former Head of State of 

Nigeria’. The conjunction will be symbolised as follows: 

  S. B 

 However, though all conjunctions must contain the conjunction-word ‘and’ or any 

of its equivalents some propositions containing such conjunction-words are not 

conjunctions. For example, the proposition:  

 Obafemi Awolowo and Nnamdi Azikiwe were contemporaries  

is not a conjunction, for the reason that the proposition cannot be rewritten as an explicit 

conjunction. This is because the sentence expresses a relation of being contemporaries 

between Awolowo and Azikiwe; it is thus a relational proposition. 

 Similarly, the sentence: 

 The Green Eagles lost and the spectators went on the rampage  

is not a genuine logical conjunction, in spite of the fact that it contains the conjunction-

word ‘and’. The reason is that the sentence contains a time-order which is essential to the 

meaning of the whole sentence, thus making it impossible to commute the conjuncts and 

retain the original meaning of the sentence. For, to say 

 The spectators went on the rampages and the Green Eagles lost  

suggests a different time-order from the original sentence. Finally, the following sentence 

may not be straightforwardly interpreted as a conjunction. 

 The population of Lagos is larger than those of Oyo and Ogun States. 

This is because the sentence may mean, 
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The population of Lagos is larger than that of Oyo State, 

and the population of Lagos is larger than that of Ogun 

State. 

 

in which case it is a conjunction. However, it may also be interpreted as  

 The population of Lagos is larger than those of Oyo and Ogun States put together 

which is not a conjunction. This means that the original sentence is ambiguous. 

 To sum up, for a sentence to be a genuine conjunction, 

1. it must be capable of being rewritten as an explicit conjunction; 

2. its conjuncts must be commutable without change in meaning, and  

3. if the sentence is ambiguous, then one of its interpretations may be a genuine 

conjunction. 

‘But’, ‘although’, ‘both’ ‘and’, however’, ‘not only…but also…, ‘despite’, ‘yet’ ‘while’, 

‘albeit’, are all possible synonyms for ‘and’. 

 

2.3.3 Disjunction 

 To symbolise a disjunction of two propositions, we place the disjunction sign, ‘v’, 

in between the signs for the two propositions, called disjuncts. Thus, if we use the upper-

case letter ‘I’ to represent the sentence, ‘Ibadan is the capital of Oyo State’ and use the 

letter ‘O’ for ‘Ogbomoso will be the capital of new Oyo State’, the disjunction: 

Ibadan is the capital of Oyo State or Ogbomoso will be the capital of new Oyo State 

will be represented as follows: 

   I v O  

Similarly, the proposition: ‘Oyo State University of Technology will be located in Ibadan 

or Ogbomoso’ can be written out explicitly into a disjunction as  

Oyo State University of Technology will be located in Ibadan 

or Oyo State University of Technology will be located in 

Ogbomoso 

 

If we use ‘I’ represent: Oyo State University of Technology will be located in Ibadan and  

‘O’ to represent: Oyo State University of Technology will be located in Ogbomoso the 

disjunction will be symbolised as follows: 

   I v O 

Again, the proposition, 

 You will not be issued a passport unless you submit your application on time. 

can be taken to express the following explicit disjunction: 

 Either you submit your application on time or you will not be issued a passport. 

If we use ‘S’ to represent ‘You submit your application on time’ and use ‘I’ to represent 

‘You will be issued a passport’, the disjunction will be symbolised as follows: 

  S v  I  
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(if we add the negation sign ‘’, to ‘I’).  

You must note that ‘either or’, ‘except’, ‘unless’ and ‘or else’ are synonyms for ‘or’. 

 

2.3.4 Conditional 

 A conditional is a compound proposition consisting of two simple or atomic 

propositions joined together by the phrase ‘if…then…’ or its equivalent. The part of the 

conditional before ‘then’ (or immediately after ‘if’) is called the antecedent, while the 

part after ‘then’ is called the consequent. To symbolise a conditional, we place the 

conditional sign ‘’ in between the letters for the antecedent and the consequent of the 

conditional. Thus, if we use the upper-case letter ‘A’ for ‘If there is a United States of 

Africa,’ and use the letter ‘M’ for ‘It will become a permanent member of the Security 

Council of the United Nations’, the conditional: 

If there is a United States of Africa, then it will become a 

permanent member of the Security Council of the United 

Nations. 

 

This will be represented as:   A     M 

The same expression will be used for each of the following propositions, which mean 

roughly the same as the original: 

1. A only if M 

2. M if A 

3. A implies M 

4. A is a sufficient condition for M 

5. M is a necessary condition for A 

6. Only if M, A 

7. M provided that A 

8. M in case A 

9. M when A  

 

2.3.5 Biconditional 

 A biconditional is a compound proposition consisting of two simple or atomic 

propositions joined together by the biconditional phrase ‘…if and only if…’ or its 

equivalent. The parts of the biconditional are called components. To symbolise a 

biconditional, we place the biconditional sign ‘≡’ in between the letters for the 

components of the biconditional. Thus, if we use the letter ‘S’ for ‘Southern Sudan will 

know peace’ and the letter ‘E’ for the proposition, ‘UN peace-keeping operation is 

effective’, the biconditional proposition, 

Southern Sudan will know peace if and only if UN peace keeping is effective, will be 

represented as follows: 

   S ≡ E 
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The same expression will be used in representing each of the following propositions. 

1. UN peace-keeping operation being effective is both a necessary and sufficient 

condition for Southern Sudan to know peace. 

2. If UN peace-keeping is effective, then Southern Sudan will know peace, and if 

Southern Sudan is to know peace, then UN peace-keeping operation must be 

effective. 

3. Southern Sudan knowing peace implies and is implied by UN peace-keeping 

operation being effective. 

4. Southern Sudan knowing peace entails and is entailed by UN peace-keeping 

operation being effective. 

 

2.3.6 Symbolising more complex propositions 

 It is obvious that the above examples of symbolised expressions represent ‘basic’ 

forms of negation, conjunction, disjunction, conditional and biconditional. Propositions 

can be more complex than these, and our symbolic apparatus is able to cope with 

expressions with varying degrees of complexity. It must be stressed that converting 

propositions in natural language into symbols is not a mechanical process, and it takes 

some ingenuity to capture the sense of the original in symbols. For example, let us 

symbolise the following proposition. 

 

(1) If either the government relents or News 

watch wins her case, then the people will be happy. 

Let us begin by determining how many component propositions are in the compound 

proposition. For each component proposition, let us have a separate letter of the alphabet. 

Note that no letter may be used for more than one atomic or simple proposition in the 

same context, and the same proposition may not be assigned two different letters. It is 

useful to first build up a ‘dictionary’ indicating which letter represents which atomic 

proposition. Thus, we will have: 

  G: Government relents 

  N: Newswatch wins her case  

  P: The people will be happy 

(Note that the choice of letters is quite arbitrary, provided only that once a letter is chosen 

to represent a simple proposition, the letter is used throughout the context for that 

proposition. However, as in the above example, the choice of letters may be based on a 

key word in the proposition or on some other criterion). 

 Next, let us proceed step-by-step, as it were, putting the propositional letters in 

place, and then the connectives, in the order of their scope; thus 

1. If either G or N, then P 

2. If G v N, then P 

3. G v N  P 
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However, the resulting formula in (3), as it stands, is ambiguous. For one thing, it is not 

clear if the whole expression is a disjunction or a conditional. So, we need to introduce 

‘punctuation marks’ to eliminate the ambiguity. The punctuation marks consist of 

parentheses ‘()’, brackets ‘[]’ and braces ‘{}’. Once such punctuation marks are 

introduced, the above formula (or schema) becomes  

   (G v N)  P 

which shows clearly that the original proposition is a conditional. Talking of the scope of 

connectives, we can see that in the above schema, the conditional sign ‘’ has a larger 

scope than the disjunction sign ‘v’, The scope of a connective depends on the part(s) of 

the expression it governs. In the above expression, ‘v’ governs only the antecedent, 

whereas ‘’ governs the whole expression. 

 Let us attempt to symbolise the following more complex proposition: 

On the one hand, either old age is valued or we fail to respect 

our elders and should suffer the same fate; or, on the other 

hand, it is not the case that old age is valued and experience 

respected. 

 

We begin by formulating a dictionary as follows: 

 O:  Old age is valued  

 F:  We fail to respect our elders 

 S: We should suffer the same fate 

 E: Experience is respected  

To proceed, let us introduce the letters, then the connectives in the order of their scope, 

thus: 

1. On the one hand, either O or F and S; or, on the other hand, it is not the case that O 

and E. 

2. On the one hand, O v F. S; or, on the other hand, it is not the case that O. E. 

3. On the one hand, O v F. S; or, on the other hand  O. E 

4. O v F. S v O. E 

Quite clearly, the formula, as it stands, is ambiguous. But from the way we have 

proceeded, it is obvious that the whole expression is a disjunction and the connective 

with the largest scope is the second ‘v’ from the left. Once we introduce the necessary 

punctuation, the expression becomes: 

  [O v (F. S)] v (O. E) 

 

2.3.7 Well-formed formulas 

 All the above symbolised expressions represent well-formed formulas or 

schemata. It is important to stress that:  

1. A negation is well-formed if and only if the negation sign ‘’, is placed to the left 

of the negated expression. Otherwise, it is not well formed. Using propositional 
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variables to illustrate, the negation of ‘p’ is ‘p’, the negation of ‘p. q’ is ‘(p. q)’, 

the negation of ‘p v q’ is ‘(p v q)’, the negation of ‘p  q’ is ‘(p  q)’ and the 

negation ‘p ≡ q’ is ‘(p ≡ q)’. 

2. A conjunction, disjunction, conditional or biconditional is well-formed if and only 

if the connective is placed between the components of the conjunction, 

disjunction, conditional or biconditional. Otherwise, it is not well-formed. Using 

propositional variables, the conjunction of ‘p’ and ‘q’ is ‘p. q’. Similarly, the 

disjunction of ‘p’ and ‘q’ is ‘p v q’, the conditional of ‘p’ and ‘q’ is ‘p  q’, and 

the biconditional of ‘p’ and ‘q’ is ‘p ≡ q’. Similarly the conjunction of ‘p . q’ and 

‘r . s’ is ‘(p . q). (r . s)’ and the conditional of ‘(p . q)’ and ‘(r . s)’ is ‘(p . q)  (r . 

s)’, and so on.  

3. An expression involving punctuation is well-formed if and only if both parts of the 

punctuation are introduced. Otherwise, it is not well-formed. Thus, for example, 

all the following expressions are well-formed: 

(p  q) . [(r  s)   (p v r)] 

[(p . q) . (r v s)]  p 

{[(p  q) . (r  s)]. (p v r)}  (q v s) 

 

However, all the following schemata are not well-formed: 

  (p  q  r) 

  p  (q  r)]  (p v q) 

  [p  (q . r)]  {[q  (s . t)]  (p  s) 

for the simple reason that the parentheses, brackets and braces are incomplete. 

 

2.4 Summary 

In this unit, we have been able to engage in using connectives to symbolise. We 

can already see that connectives play a crucial role in the ways that propositions 

are symbolised and understood. 

 

2.5 References and Further Readings 

 Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 

 

2.6 Unit Exercises 
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I. Symbolise the following statements, using the dictionary provided: 

 N – NITEL’s equipment problem worsens. 

 P – NEPA raises charges. 

 C – ACB raises charges. 

 S – NIPOST requests more Federal Government aid. 

 W – Nigeria Airways buys five more planes. 

1. NEPA raises charges but ACB does not raise charges. 

2. Either NEPA or ACB both raise charges. 

3. NEPA and ACB both raise charges. 

4. NEPA and ACB do not both raise charges. 

5. NEPA and ACB both do not raise charges. 

6. NEPA or ACB raises charges, but they do not both do so. 

7. Nigeria Airways buys five more planes and either NEPA raises charges or 

NIPOST requests more Federal Government aid. 

8. It is not the case that either NITEL’s equipment problem worsens or NIPOST 

requests more Federal Government aid. 

II. Symbolise the following statements, using the dictionary provided below: 

 L – Leventis team manager is angry. 

 F – The fans are bewildered. 

 R – Rangers team is declared the winner. 

1. Rangers team is not declared the winner, and either Leventis team manager is 

angry and the fans are bewildered. 

2. Rangers team is declared the winner if and only if Leventis team manager is not 

angry and the fans are not bewildered. 

3. Either Leventis team manager is angry and the fans are not bewildered, or he is not 

angry and Rangers team is not declared the winner. 

4. If Leventis team manager is angry, then either the fans are bewildered or Rangers 

team is not declared the winner. 

5. If Leventis team manager is angry, then the fans are bewildered and if he is not 

angry, Rangers team is declared the winner. 

 

III. Symbolise the following compound statements using letters as abbreviations for 

simple proposition: 

1. If all blacks have everything in common, then one of you can be no richer than the 

other, if you say truly that you are all blacks. 

2. If your wife and children love you and wish that you should be happy, no one can 

doubt that they are very ready to promote your happiness. 

3. It is not the case that the President will introduce a decree concerning S. A. P. 

protests; moreover, it is also not the case that the A. F. R. C. will pass the decree. 
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4. If Nduka Odizor enters the tennis match, he is sure to win; although he will enter 

if and only if the prize money exceeds 5 million naira. 

5. Either Segun Odegbami is the captain or if Kadiri Ikana is the captain then 

Ohenhen Ogboe is not the captain. 

6. If either Shagari or Awolowo is the President and Awolowo is not, then if Shagari 

is the President, then Awolowo is not and Shagari is not. 
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Unit 3: Truth-Conditions and Truth-Tables  

3.1 Introduction 

3.2 Learning Outcomes 

3.3.1 Truth-Conditions  

3.3.2 Uses of the Truth Table 

3.4 Summary 

3.5 References and Further Readings 

3.6Unit Exercises 

 

3.1 Introduction 

Compound (or molecular) propositions are also called truth-functional molecules or 

compounds. An expression is truth-functional if its truth-value (that is, its truth or falsity) 

depends on, or is determined by, the truth-values of its constituent elements. In other 

words, the truth-value of a truth-functional compound is a function of the truth-values of 

its constituent elements. For example, the truth-value of the propositional function ‘p . q’, 

which is a conjunction, is a function of the truth-values of the variables ‘p’ and ‘q’. In 

this sense, negation, conjunction, disjunction conditional and biconditional are truth-

functional. Let us now describe their truth-conditions, that is, the conditions under which 

they are true or false. 

 

 Be it noted that in this course, it is assumed that every simple proposition is either 

true or false, so the course can also be called two-valued logic. In real life, however, we 

do know that some sentences are true and some are false, while some sentences are 

neither. However, the principles and techniques developed in the course are designed to 

deal with only sentences which are assumed to be either true or false. 

 

3.2 Learning Outcomes 

 By the end of this unit, learners should be able to: 

1. Use the truth-table 

2. Apply the rules of getting valid arguments from the truth-tables 

 

3.3.1 Truth-Conditions and Truth-Tables 

 The truth-conditions will be exhibited in an array of T’s (‘T’ for ‘true’) and F’s 

(‘F’ for ‘false’) called the truth-table. Where there is only one component or atom, say, 

‘p’, the array will have only two (vertical) rows, since ‘p’ has either the truth-value ‘T’ or 

the truth-value ‘F’, thus: 

   p 

   T 

   F 
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Where there are two components, say, ‘p’ and ‘q’, the truth-table will have four (vertical) 

rows. This is because there are four possible combinations of truth-values, namely, one 

where both components are true, another where both components are false, and two 

where one component is true and the other false, as follows: 

   p q 

   T T 

   T F 

   F T 

   F F 

(1) Negation  

 Consider the proposition: 

Chief Olusegun Obasanjo is the President of the Federal 

Republic of Nigeria 

 

The statement can be negated in a number of ways, but let us do it in the simplest way, 

thus: 

Chief Olusegun Obasanjo is not the President of the Federal 

Republic of Nigeria. 

 

If our original proposition is true, then obviously its negation is false, and if the original 

sentence is false then its negation is true. This observation can be generalised by saying 

that if a proposition is true, then its negation is false, and if a proposition is false, then its 

negation is true. This position can be represented schematically as follows: 

    p         p 

    T F 

    F T 

 

(2) Conjunction  

 Consider the conjunction  

Olusegun Obasanjo is a retired army general and 

Theophilus Danjuma is a retired army general  

 

Now, if we were to ask you to accept that the above compound proposition is true, you 

would do so only if both were indeed retired army generals, that is, if it is true both that 

Obasanjo is a retired army general and that Danjuma is a retired army general. From this, 

we can generalise that a conjunction is true if and only if both conjuncts are true; it is 

false if any or both conjuncts are false. Thus, the conjunction is false if at least one of the 

conjuncts is false. This result can be schematically represented as follows, taking any two 

propositions, say, ‘p’ and ‘q’: 

   p    q  p . q 
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   T    T     T 

   T    F     F 

   F    T     F 

   F    F     F 

 

(3) Disjunction  

 Consider the compound propositions: 

1. Either the President is in Lagos or he is in Abuja 

2. Either the First Lady will watch the movie or go to sleep. 

 

Though both propositions are disjunctions, there seems to be a subtle difference between 

the two. Thus in (1), since the president cannot be in Lagos and Abuja at the same time, it 

is obvious that both propositions cannot be true at any point in time. Ordinarily, 

proposition (1) will be considered true if the President is in Lagos or if the President is in 

Abuja; it will be false only if the president is neither in Lagos nor in Abuja. Similarly 

proposition (2) will be considered true if the First Lady watches the movie or if she goes 

to sleep. It will be considered false only if she does neither. In (2), however, it is indeed 

possible for the First Lady to watch the movie and go to sleep, or not to watch movie but 

go to sleep. This means that it is possible for both disjuncts to be true. This latter use of 

‘or’ is said to exhibit the weak, inclusive or non-exclusive sense of it. The former is said 

to be the strong, exclusive or non-inclusive sense of it. For our present purposes, the 

truth-functional ‘or’ will be understood in the non-exclusive sense, since it sufficiently 

captures the other sense. Moreover, an exclusive disjunction can be expressed by such 

phrases as ‘but not both’. In the non-exclusive sense, a disjunction is true if at least one of 

the disjuncts is true; it is false only if both disjuncts are false. This situation can be 

schematically represented as follows: 

   p q p v q 

   T T  T 

   T F  T 

   F T  T  

   F F  F 

 

(4) Conditional 

 Consider the following propositions which contain the expression ‘if …then…’ 

1. If all human beings are mortal beings, and all Nigerians are human beings, 

then all Nigerians are mortal beings. 

2. If Garubada is a bachelor, then he is unmarried. 

3. If blue litmus paper is placed in acid, then the paper will turn red. 

4. If the Green Eagles win the World Cup, the government will give each of 

the players a house in Abuja. 
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5. If it is raining then there is a rainbow. 

Though all the above sentences are conditional in form there are subtle differences 

between them: (1) describes a logical implication, where the antecedent contains the 

premises, and the consequent represents the conclusion; and (4) describes a decision or 

resolution; (5) is more difficult to characterise. However, a close perusal of the various 

uses of the connective ‘if…then…’ in the above examples will show that the minimum 

claim being made in each is that if the antecedent is true then the consequent is also true. 

In other words, it is not the case that the antecedent is true and the consequent false. 

Thus, for example, the government will be liable to being called dishonourable only if the 

Green Eagles win the World Cup and it did not give the players the promised house, that 

is, if the antecedent of its promise is true and the consequent is false. That is why the 

conditional is sometimes said to be the conditional affirmation of the consequent. It is 

this minimum meaning that is given to ‘if…then…’ This has the advantage of enabling us 

to deal uniformly and unambiguously will all expressions containing ‘if…then…’; this 

meaning is called material implication. Thus, to say that ‘p materially implies q’ simply 

means that it is not the case that ‘p’ is true and ‘q’ is false, which means that ‘p  q’ is 

false only if ‘p’ is true and ‘q’ is false. This position can be schematically represented as 

follows: 

   p q p  q 

   T T  T 

   T F  F 

   F T  T 

   F F  T 

 

(5)  Biconditional 

 The biconditional, as the name indicates, consists of two conditional 

propositions. Thus, for example, the biconditional. 

There will be peace in South Sudan if and only if the rebels 

are defeated militarily  

 

can be broken up into two conditional propositions, as follows: 

1. There will be peace in South Sudan if the rebels are defeated militarily.  

2. There will be peace in South Sudan only if the rebels are defeated militarily. 

Rewritten in ‘standard form’, they become, 

1. If the rebels are defeated militarily then there will be peace in South Sudan. 

2. If there will be peace in South Sudan then the rebels are defeated militarily. 

‘There will be peace in South Sudan if and only if the rebels are defeated militarily’ is 

therefore a shorthand way of writing the conditional propositions in (1) and (2) above. If 

we use ‘S’ to represent: ‘There will be peace in South Sudan’ and we use ‘R’ to represent 



26  

‘The rebels are defeated militarily’, we have the result that ‘S ≡ R’ which is a shorthand 

way of expressing ‘(S  R) . (R  S)’. 

 We can now generalise this situation by saying that the biconditional of any two 

propositions, ‘p’ and ‘q’, namely, ‘p ≡ q’, is a shorthand way of expressing two 

conditional propositions involving ‘p’ and ‘q’, namely, ‘p  q’ and ‘q  p’. Similarly, the 

truth-conditions of ‘p ≡ q’ are derived from the truth-conditions of ‘(p  q) . (q  p)’, 

thus: 

   p q (p  q) .    (q  p)  

   T T     T T T 

   T F     F F T 

   F T     T F F 

   F F     T T T 

from which we know that ‘p ≡ q’ is true either if both ‘p’ and ‘q’ are true or if both ‘p’ 

and ‘q’ are false; it is otherwise false. That is to say, the biconditional is true if ‘p’ and ‘q’ 

have the same truth value and false if ‘p’ and ‘q’ have different truth-values. This result 

can be schematically represented as follows: 

   p q p    ≡ q 

   T T       T 

   T F       F 

   F T       F 

   F F       T 

 

In other words, if one truthfully asserts a biconditional proposition, then one is claiming 

that the propositions biconditionally asserted are either both true or both false. 

 

3.3.2 Uses of the Truth-Table 

 The truth-table, an array of T’s and F’s, has many uses in truth-functional logic. 

We have already seen one of its uses, namely, to exhibit the truth-conditions of our truth-

functional connectives. Let us note the patterns that emerge from that exercise. We saw 

that when there is only one component in the formula or expression, as in a negation, the 

truth-table has only two vertical rows. That is because the single component has only two 

possible truth-values, ‘true’ and ‘false’, thus:  

  P 

  T 

  F 

However, where we have two distinct components, as in a conjunction, disjunction, etc., 

the vertical rows become four, indicating all the possible combinations of truth-values 

that the two components can have. Thus, if the components are ‘p’ and ‘q’, it is possible 

for both components to be true, for both to be false, or for one to be false and the other 

true, thus: 
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  p q 

  T T 

  T F 

  F T 

  F F 

This gives the formula that to determine the correct number of vertical rows, we raise the 

number 2 to the power of the number of distinct components. Thus, if we have one 

distinct component, we get 21, i.e., 2 x 1 = 2 rows. If we have two distinct components, 

we get 22 = 2 x 2 = 4 rows. Similarly, if we have three distinct components, say, ‘p’, ‘q’ 

and ‘r’, we get 23 = 2 x 2 x 2 = 8 rows, thus: 

  p q r 

  T T T 

  T T F 

  T F T 

  T F F 

  F T T 

  F T F 

  F F T 

  F F F 

In the eight rows, we have one (horizontal) where all the components are true and another 

where all the components are false; the other rows have various combinations of T’s and 

F’s. But here, too, a pattern emerges: the first (vertical) row from the right takes one ‘T’ 

and one ‘F’ alternately until we have the eight rows; the second row takes double that, 

that is, four T’s and four F’s alternately. The same principles apply if we have four or 

more components. for four distinct components, say ‘p’, ‘q’, ‘r’ and ‘s’, we have 24 = 2 x 

2 x 2 x 2 = 16rows; the first (vertical) row from the right takes one ‘T’ and one ‘F’ 

alternately, the second two T’s two F’s alternately, the third, four T’s and four F’s 

alternately and the last eight T’s and F’s alternately. Lastly, if we have 25 = 2 x 2 x 2 x 2 

x 2 = 32rows arranged in a similar fashion, it is obvious that beyond five components the 

truth-table becomes very tedious. This fact points to the limit of the usefulness of the 

truth-table. Now, once values have been thus assigned to every component, it would be 

time to assign values to the connectives in accordance with the truth-conditions discussed 

earlier. Further, in assigning values to connectives, we begin with the connective with the 

smallest scope, and end with the connective with the largest scope. We shall see what this 

amounts to in practice, in the next unit. 

 

1.5 Summary 

In this unit, we have increased our knowledge on logic. We have looked at the 

rules of each of the connectives and how they can be used to determine truth value 
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of propositions. The next unit will provide more information over how this can be 

done. 

1.6 References and Further Readings 

 Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 

 

1.7 Unit Exercises 

 I. Which of the following statements are true and which are false? 

1.  Chinua Achebe is the author of Things Fall Apart v Chinua Achebe is the 

author of The Man Died. 

2.  Chinua Achebe is the author of The Man Died v Abuja is the new federal 

capital of Nigeria. 

*3. Accra is the capital of Benin Republic v (Shakespeare is the author of 

Julius Caesar. Accra is the capital of Benin Republic. 

4. [(Ibadan is the largest city in Nigeria v Lagos is an industrial area) v 

(Enugu is a coal city. Accra is the capital of Benin Republic)] 

5. (Ibadan is the largest city in Nigeria v  Kano State is an oil-producing 

state) v (Ibadan is the largest city in Nigeria. Kano State is an oil-

producing state) 

 

II. If P . Q and R are true statements, and S and T are false statements which of the 

following are true?  

 1. P v Q 

 2. (P . S) v (Q . T ) 

 3. (S v T) . (S v T) 

 4. (S . T) v (Q . R) 

 5. [(P . Q) v (Q . P)] 

 6. [(P v Q) . (R v S)] . (P v S) 

 7. [(P . Q) v (Q . P)] 

 8. [(P . Q) v R]   T. 

 9. [(R . T) v T]   (Q . T) 

 10. [(P . R)   S]  T 

 11. P ≡ [(P . R) v S] 

 12. R  [(S ≡ T) . (R v Q)] 
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Unit 4: Tautology, Contradiction and Contingent Truths 

4.1 Introduction 

4.2 Learning Outcomes 

4.3.1 Tautology, Contradiction and Contingent Truths 

4.3.2 Logical Equivalence 

4.4 Summary 

4.5 References and Further Readings 

4.6 Unit Exercises 

 

4.1 Introduction 

The focus of this unit is to examine the three possible ways of determining truth 

values of propositions. What are these three ways? These three ways are the title 

of this unit. We shall then consider the conditions that will make truth-values to be 

situated into any of these three. 

 

4.2 Learning Outcomes 

 After our study in this unit learners will be able to: 

1. Explain truth-table technique 

2. Identify and situate truth-values into any of tautology, contradiction and 

contingent truths 

 

4.3 Tautology, Contradiction and Contingent Truths 

The truth-table technique may be used to determine whether a statement or statement-

form is a tautology, a contradiction or a contingent truth. For example, take the statement. 

Either Ibadan is the capital of Oyo State or Ibadan is not the 

capital of Oyo State. 

 

If ‘I’ is used for ‘Ibadan is the capital of Oyo State’, this comes to: 

  I v  I 

Its truth-table is: 

  I I v      I 

This shows that the statement is always true. A statement or statement-form which comes 

out true under all interpretations is said to be a tautology (or to be tautologous). Let us 

take a slightly more complex example. The sentence: 

If Ibadan is the capital of Oyo State and Abuja is the capital of 

Nigeria, then Ibadan is the capital of Oyo State. 

 

when symbolised, becomes: 

  (I . A)  I 

Its truth-table is: 
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  I A (I . A)  I 

  T T    T T 

  T F    F T 

  F T    F T 

  F F    F T 

 

which shows that the statement is tautologous. Lastly, let us use the tautologous 

statement-form: 

   (p v q) ≡ (p . q) 

Whose truth-table is  

  p q (p v q) ≡ (p . q) 

  T T F      T    T F 

  T F F      T     T F 

  F T F      T     T      F 

  F F T      F     T     T 

 

The truth-table shows that the statement-form is a tautology. 

  

Contradiction: Let us take the following statement:  

 John is tall and John is not tall 

Which, symbolised, becomes: 

   J  . J 

Its truth-table, which follows: 

  J J . J 

  T   F 

  F   F 

Shows that the statement is always false. A statement (or statement-form) which comes 

out false under all interpretations is called a contradiction (or is said to be contradictory). 

Let us take another examples; 

It is false to say that if Ibadan is the capital of Oyo 

State and Abuja is the capital of Nigeria, then Abuja is 

the capital of Nigeria. 

 

Symbolised, it becomes: 

   [(I . A)  A] 

and the truth-table is as follows: 

  I A  [(I . A)  A] 

  T T F      T     T 

  T F F      F      T 
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  F T F      F      T 

  F F F      F      T 

 

This shows that the statement is a contradiction. Lastly, let us show that the statement-

form ‘[ (p v q) ≡ (p . q)]’ is contradictory, thus: 

 

 p . q  [ (p v q) ≡ (p . q)] 

 T   T F    F T     T      F 

 T   F F    F T     T      F 

 F   T F    F  T     T      F 

 F   F F    T    F     T       T 

 

Contingent Truth: Let us take the statement  

 If Ibadan is the capital of Oyo State, then Abuja is the capital of Nigeria 

Which, symoblised, becomes: 

   I  A 

Its truth-table which follows: 

 

  I A I       A 

  T T        T 

  T F        F 

  F T        T 

  F F        T  

 

shows that the statement is neither a tautology nor a contradiction, since it is neither 

always true, nor always false. A statement or statement-form which comes out true under 

some interpretations and false under some interpretations is said to be contingent. Let us 

take a slightly more complex example 

If Ibadan is the capital of Oyo State and Abuja is the capital 

of Nigeria then Buhari is the President of the Federal 

Republic of Nigeria 

 

which, symbolised, becomes  

  (I . A)  B 

Its truth-table which follows, 

  I A B (I . A)   B 

  T T T T T 

  T T F T F 

  T F T F T 
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  T F F F T 

  F T T F T 

  F T F F T 

  F F T F T 

  F F F F T 

 

shows that the statement is contingent. Lastly, let us show the contingent nature of the 

statement-form, ‘ (p v q) ≡ (p v q)’ with the following truth-table: 

  p q  (p v q)  ≡  (p  v q) 

  T T F      T    T  F 

  T F F      T        F        T 

  F T F      T        F   T 

 

4.3 2 Logical Equivalence 

  

 The truth-table technique can also be used to determine whether or not two 

expressions are logically equivalent. The sign for the biconditional is also used to indicate 

logical equivalence. If two statements or statement-forms are claimed to be logically 

equivalent, the claim can be tested by joining the expressions together using the 

biconditional sign and working out the truth-table. For example, let us test the claim that 

the statement. 

 If you do not pay on time then you will not get a discount  

(symbolised: P   D) 

is equivalent to the statement: 

 Either you pay on time or you will not get a discount 

(symbolised: P v D) 

To test this claim, we write out the two statements as a biconditional, thus: 

  (P  D) ≡ (P  v D) 

The truth-table is: 

  P D (P     D)    ≡    (P v D) 

  T T         T  T T 

  T F         T  T T 

  F T         F  T F 

  F F          T  T T 

 

As the statement of the equivalence using the biconditional sign comes out true under all 

interpretations, the two statements are shown to be logically equivalent. Thus, we can 

generalise by saying that if two statements are logically equivalent then the statement of 

their equivalence will be a tautology. 
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Let us see if p v (q v r)’ is logically equivalent to ‘(p v q) v r’: 

 

 p q r [p  v  (q v r)] ≡    [(p v q) v r] 

 T T T      T   T T T     T 

 T T F      T   T T T     T 

 T F T      T    T T T     T 

 T F F      T    F T T     T 

 F T T      T    T T T     T 

 F T F      T    T T T     T 

 F F T      T    T T F     T 

 F F F      F    F T F     F  

 

Lastly, let us determine the following equivalence 

 p q  (p . q) ≡ (p  . q) 

 T T F     T   T F 

 T F T     F   F F 

 F T T     F   F F 

 F F T     F   T T 

This last truth-table shows that ‘(p . q)’ and ‘p . q’ are not logically equivalent, since 

the statement of their equivalence is not tautologous.  

 

4.4 Summary 

 In this unit, we have learned about the truth-table and how to use it to ascertain 

truth-values. We have also looked at what condition propositions may be said to be 

logically equivalent. 

4.5 References and Further Readings 

 Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 

 

4.6 Unit Exercises 

 Use truth-table to determine whether the following truth-functional propositions 

are tautologies, contradictions or contingents 

 1. A   v (B    C) 

 2. A    [B    C)] 

 3. [(A  . B]   . C]   v [(A   . C)   v (A   . B)] 

 4. [A   (A    B)]  B 

 *5. A    [A    (B   . B)] 

 6. (A   B)   ≡ (B   A) 
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 7. A   ≡ [A   . (A   v B)] 

 8. {[(A  B)   . (C   D)]  . (B   v D)}  (A   v C) 

 9. [(A   B)   C]  ≡ [(B   A)   C] 

 10. [A    (B   C)]  [(A   B)   (A   C)] 

 

Determine by truth-tables whether the following pairs of propositions are equivalent: 

 1. ‘A   . B’ and ‘(A  v   B)’ 

 2. ‘A   . B’ and ‘(A   B)’ 

 3. ‘A   v   (B   .   C)’ and ‘A  . (B   ≡  C)’ 

 4. ‘A      B’  and ‘(B     A') 

 *5. ‘(A    B)  .  (B    C)’ and ‘(C    A)’ 

 6. ‘A    B’  and ‘A   (A  .  B)’ 

 7. ‘A    B’ and ‘(A  v  B)  ≡ B’ 

 8. ‘A   .  (B  v  C)’ and ‘(A  . B)  v  (A   .  C)’  

 9. ‘(A    B)  v A’ and ‘A  v  B’  

 *10. ‘A’ and ‘A  .  (A   v  B)’ 
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End of Module Tips 

In summary, the following are points to note about logical truth, logical falsehood and, 

contingent truth: 

1. A truth functional formula that comes out true under all interpretations of its 

propositional letters is logically true or a tautology.    

2. A formula that comes out false under all interpretations is logically false or 

contradictory. 

3. A formula that is neither logically true nor logically false is contingent. 

4. A formula is logically true if and only if its negation is contradictory, and a 

formula is contradictory if and only if its negation is tautological. 

5. A conjunction is tautological if and only if all its conjuncts are tautological. 

6. If a conjunction is contingent then all its conjuncts are contingent. 

7. There are contradictory conjunctions all of whose conjuncts are contingent. 

8. A disjunction is logically true if at least one of its disjuncts is logically true. 

9. There are logically true disjunctions none of whose disjuncts is logically true. 

10. A disjunction is contingent if and only if at least one of its disjuncts is contingent. 

11. If a conditional has a logically true consequent, then it is logically true. 

12. If a conditional has a contradictory antecedent, then it is logically true. 

13. If a logically true conditional has a logically true antecedent, then it has a logically 

true consequent. 

14. If a logically true conditional has a contradictory consequent, then it has a 

contradictory antecedent. 

15. Substitution of formulas for propositional letters preserves logical truth. 

16. Substitution of formulas for propositional letters preserves logical falsehood. 

17. A statement is logically true if it can be symbolised by a logically true formula. 

All the above points can be proved to be true. Students are encouraged to attempt to 

prove them as exercises. 
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Module 2: Propositional Calculus II 

Unit 1: Validity/Invalidity of Arguments 

Unit 2: Basic Valid Argument Forms 

Unit 3: Rules of Inference 

Unit 4: The Rule of Replacement 

Unit 5: The Rule of Indirect Proof 

Unit 6: Proof of Tautologies 

Unit 7: Redundancy of Rules 
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Unit 1: Validity/Invalidity of Arguments 

1.1 Introduction 

1.2 Learning Outcomes 

1.3.1  Testing of Validity 

1.3.2 Reduction ad absurdum 

1.4 Summary 

1.5 References and Further Readings 

1.6 Unit Exercises 

 

1.1 Introduction 

 In this unit, we are going to focus on how to test the validity of propositions via 

the truth-table. This is in continuance of how the logical connectives and the rules they 

carry inform how truth-values are assigned. This unit also considers the method of 

reductio ad absurdum. 

 

1.2 Learning Outcomes 

 By the end of this unit, it is assumed that learners should be able to: 

1 Formulate means of testing validity via the truth-table 

2 Understand the rules involved in testing of validity 

3 Identify and apply the method of reduction ad absurdum 

 

1.3.1 Testing of Validity 

 The truth-table technique can also be used in testing the validity or invalidity of 

truth-functional arguments or argument-forms. The procedure is based on the definition 

that an argument is valid if it is not possible for its premises to be true and its conclusion 

false. To test a truth-functional argument for validity, using this method, we write out the 

argument in a horizontal line, starting with the premise or premises and ending with the 

conclusion. After assigning values to every component and connective, we inspect the 

array to see if there is any horizontal row where the premise come out true, and the 

conclusion comes out false. If there is no such row, then the argument is valid, if there is, 

then the argument is invalid.  

Let us look at the following argument: 

If either English Language is required or Mathematics 

is required, then all students will study Mathematics. 

Mathematics is required and English Language is 

required. Therefore, all students will study 

Mathematics. 

 

Symbolised, we have  

  (E v M)  S 
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  M  .  E 

  S 

To test the argument for validity, we have: 

 E M S (E v M)     S         M . E  S 

 T T T T    T  T T 

 T T F T    F  T F 

 T F T T    T  F T 

 T F F T    F  F F 

 F T T T    T  F T 

 F T F T    F  F F 

 F F T F    T  F T 

 F F F F    T  F F 

 

On inspection, we find that there is no (horizontal) row where the premises are true and 

the conclusion is false. Therefore, the argument is valid. Again, let us look at the 

argument: 

If Ayo is elected Head Boy, then either Tosin is elected Head 

Girl or Bunmi is elected Prefect. Tosin is elected Head Girl. 

Therefore, if Ayo is elected Head Boy then Bunmi is not 

elected Prefect. 

 

Symbolised, we have  

  A  (T v B) 

  T 

  A  B 

To test for validity, we have: 

 A T B A  (T  v  B) T A   B 

 T T T     T   T T      F 

 T T F     T   T T      T 

 T F T     T        T F      F 

 T F F     F        F F      T 

 F T T     T   T T      T 

 F T F     T   T T      T 

 F F T     T        T F      T 

 F F F     T    F F      T 

 

On inspection, we find that in the first row the premises are true and the conclusion is 

false, thus showing that the argument is invalid. 

 



39  

Corresponding Conditional: Another variety of this method consists in converting the 

argument into its corresponding conditional. To every argument there is a corresponding 

conditional whose antecedent is the conjunction of the premises and whose consequent is 

the conclusion of the argument. An argument is valid if its corresponding conditional is a 

tautology. Let us take the following argument: 

If he uses good bait, then if the fish are biting, then he 

catches the legal limit. He uses good bait, but he does 

not catch the legal limit. Therefore, the fish are not 

biting. 

Symbolised, we have   

  G  (F  L) 

  G .  L 

    F 

Converted to its corresponding conditional the argument becomes: 

 {[G  (F  L)]  .  (G .  L)}  F 

The truth-table is: 

 G F L {[G  (F  L)] . (G .  L)}    F 

 T T T        T     T F      F         T      F 

 T T F        F     F F      T         T      F 

 T F T        T     T F      F         T      T 

 T F F        T     T T      T         T      T 

 F T T        T     T F      F         T      F 

 F T F        T     F F      F         T      F 

 F F T        T     T F      F         T      T 

 F F F        T     T F      F         T      T 

 

Since the conditional comes out true under all interpretations, it means that it is a 

tautology, and that, therefore, the argument is valid. Let us take another argument: 

IF Abe wins first prize, then either Betty wins second prize or Cedy is disappointed. 

Betty does not win second prize. Therefore, if Cedy is disappointed, then Abe does not 

win first prize. 

Symbolised, we have: 

   

  A  (B v C) 

   B 

   C   A 

Converted into a conditional, the argument becomes  

  {[A  (B v C)] .  B}  (C   A) 
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The truth-table is: 

  A B C {[A  (B v C )]  .  B}   (C   A) 

  T T T        T      T      F     F   T        F 

  T T F        T      T      F     F   T        T 

  T F T        T      T      T     T   F        F 

  T F F        F      F      F     T   T        T 

  F T T        T     T      F     F   T        T 

  F T F        T     T      F     F   T        T 

  F F T        T     T      T     T   T        T 

  F F F        T     F      T     T   T        T  

 

Since the corresponding conditional is not tautologous, it means that the argument is not 

valid. 

 

Self-Assessment Exercise 

1. To every argument there is a corresponding conditional whose antecedent is the 

conjunction of the premises and whose consequent is the conclusion of the 

argument. True or False 

2. Is it true that an argument is invalid if its corresponding conditional is a 

tautology? 

 

1.3.2 Reductio ad Absurdum 

 The truth-table technique as presented above is a decision-procedure. This means 

that it can be used to decide, conclusively, whether or not an argument is valid. It can also 

be used to determine if a proposition is tautologous, contradictory, or contingent, it is also 

to determine whether or not two propositions are logically equivalent. However, the 

truth-table has the limitation that if the components in an expression or argument are 

more than five, the truth-table becomes unwieldy and time-consuming. However, another 

method has been devised to overcome this problem, and involves using a row or, at most, 

three rows of the truth table to determine the validity or invalidity of arguments, the 

logical equivalence of propositions. The method is called the short truth-table technique 

or reduction ad absurdum. 

 To determine validity or invalidity the method employs two principles that we 

have already established, namely: 

(1) If an argument is valid, then there will be no (horizontal) row of the truth-table 

where the premises are true and the conclusion is false, and  

(2) If an argument is valid, then its corresponding conditional will be a tautology. 

To invoke the first principle 

(i) we write out the premises and conclusion in a row; 
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(ii) assuming that the argument is invalid and that, therefore, the premises are true 

and the conclusion is false, we assign ‘T’ to each of the premises and ‘F’ to the 

conclusion; 

(iii) we then try to make good our assumption that the argument is invalid by 

assigning a value to each of the remaining components or connectives, as 

appropriate; 

(iv) finally, we inspect the resulting array to see if there is any inconsistency in our 

truth-assignments; if there is an inconsistency, then the argument is valid; if 

there is no inconsistency, then the argument is, indeed, invalid, as assumed. 

For example, the argument: 

  (A v B) . (A v C)] 

  D   C 

  B v D 

will be written out as follows: 

(1) (A v B) . (A v C) |  D   C   ||   B v D 

Assuming that the argument is invalid and that, therefore, the premises are true and the 

conclusion is false, we have 

 

(2) (A v B) . (A v C) |  D   C   ||   B v D 

     T      T  T 

We then try to make good our assumption by assigning values to the remaining 

components or connectives, thus: 

(3) (A v B) . (A v C)   D   C      B v D 

    T  T F T  T  T F      T  T    T       F F F 

 

Having assigned a value to every component and connective, we discover on inspection 

that the first premise, which is a conjunction has been made true only because of the 

inconsistency of assigning the same truth value, ‘T’ to both ‘A’ and ‘A’. (This is 

inconsistent with our truth-conditions for negation where if a formula is true then its 

negation must be false). The argument is therefore valid since our assumption that it is 

invalid has been proven wrong by the inconsistency. 

 On the other hand, the following argument: 

  P  (Q v R) 

  R  (S . T) 

     S 

   P  T 

will, on our assumption, be assigned the values 

  P  (Q v R) R  (S . T)  S P  T  

    T     T  T    F 
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Making good our assumption, we have  

 P  (Q v R) R  (S . T)  S P  T  

 T T  T  T F F T   F F T    T T F  F 

 

On inspection, we find that there is no inconsistency in our truth-assignments; therefore, 

the argument is, indeed, invalid, as assumed. 

 To invoke the second principle, 

(i) we convert the argument into its corresponding conditional; 

(ii) assuming that the argument is invalid and that, therefore, its corresponding 

conditional is not a tautology, we place an ‘F’ under the major connective for 

the conditional; 

(iii) we then try to make good our assumption that the conditional is not a 

tautology, by assigning a value to every other connective or component, as 

appropriate; 

(iv) we finally inspect the resulting array to see if there is any inconsistency in our 

truth-assignments; if there is an inconsistency then the argument is valid; if 

there is no inconsistency, then the argument is indeed invalid, as assumed. 

Using the following argument: 

  P  (Q  R) 

  R  (S . T) 

  P  (Q  S)   

we have, as its corresponding conditional, 

(1) {[P  (Q  R)] . [R  (S . T)]}  [P  (Q  S)]  

Assuming that the argument is invalid and that, therefore, the corresponding conditional 

is not a tautology, we have  

(2) {[P  (Q  R)] . [R  (S . T)]}  [P  (Q  S)]  

        F 

We then try to make good our assumption that the expression is not a tautology and 

therefore has an F under the major connective, thus:  

(3)  {[P  (Q  R)] . [R  (S . T)]}  [P  (Q  S)]  

  T T   T T T   T T T  F T T     F  T F   T  F  F 

  

Having assigned a value to every connective and component, we discover on inspection 

that the second premise ‘R  (S . T)’ cannot be true, as indicated because the consequent 

‘S.T’ cannot be true since one of the conjuncts ‘S’ is false. Since we have thus 

encountered an inconsistency, it means that we have failed to show that the 

corresponding conditional is not a tautology. The argument is, therefore, valid.    

 On the other hand, the following argument; 

   P  Q 

   R  S 
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   Q v R 

   P v S 

  

can be shown to be invalid, thus: 

 {[(P  Q) . (R  S)] . (Q v R)}  (P v S) 

     F T  T  T  F T  F   T T T F     F  F  F  F 

 

On inspection, we find no inconsistency in our truth-assignments, meaning that the 

argument is, indeed, invalid, as assumed. 

 Note that an inconsistency may arise in one of three ways: first, by assigning two 

truth-values to the same component in the same context; second, by assigning the same 

truth-value to a formula and its negation in the same context; and third, by assigning a 

truth-value to the connectives inconsistent with the truth-conditions discussed earlier, for 

example, to make a disjunction true though both disjuncts are false, or to make a 

conjunction true though one of its conjuncts is false, or to make a conditional true though 

the antecedent is true and the consequent false. 

 

 Note, further, that in all this, truth-values are not assigned arbitrarily. Thus, if a 

conditional is false, it is because its antecedent is true and the consequent false. Similarly, 

a conjunction is true only if both conjuncts are true, and for a disjunction to be true, at 

least one of its disjuncts must be true. In other words, in assigning truth-values we have 

to respect the truth-conditions of the connectives already discussed. 

 However, there is a problem with the short truth-table technique which we need to 

point out. The problem may arise if we have a conjunction or a biconditional as the 

conclusion of an invalid argument. The problem arises because in applying this method, 

the conclusion of the argument has to be assumed to be false, while the premises are true. 

Though, there is only one possible world where a disjunction or conditional is false, there 

are two possible worlds where a biconditional is false, and three possible worlds where a 

conjunction is false. In the following example, the argument though invalid, may be 

adjudged valid by the occurrence of an inconsistency because of an unlucky assignment 

of truth-values. 

 

 T ≡ U U ≡ (V . W) V ≡ (T v X)   T  v X T . X  

 

There will be an inconsistency if all the components are assigned the value ‘false’. 

However, there will be no inconsistency either if we make T, U, V and W true and X 

false or if we make T, U and W false and V and X true. Let us look at each possibility: 

(1) T ≡ U U ≡ (V . W) V ≡ (T v X)   T  v X T . X  

 F T F F T   F F F  F T   F F F  F T F   F F F  
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The last premises ‘T v X’ cannot be true, since it is a disjunction both of whose disjuncts 

are false. This is an inconsistency, giving the false impression that the argument is valid. 

 

(2) T ≡ U U ≡ (V . W) V ≡ (T v X)   T  v X T . X  

 T T T T T   T T T  T T   T T F    T T F     T F F 

  

However, in (2) there is no inconsistency, thus showing that the argument which appears 

valid in (1) is really invalid. For completeness let us look at the third possibility: 

(3) T ≡ U U ≡ (V . W) V ≡ (T v X)   T v X T . X  

 F T F F T   T F F  T T   F T T    F T T     F F T  

 

This, again, contains no inconsistency and is therefore invalid. Incidentally, the argument 

is invalid, and the appearance of validity in (1) is deceptive. What this example shows is 

that where the conclusion which has to be false is a conjunction or a biconditional, great 

care must be taken in using the short truth-table. Trying other possibilities is clearly 

indicated here, thus requiring more than one row to prove invalidity of such arguments. 

 

Self-Assessment Exercise 

1. What method has been devised to overcome the limitations of the short truth 

value table? 

2. Identify the ways by which inconsistencies may arise in truth-assignment. 

 

1.5 Summary 

 In this unit, we have deepened our understanding of logic by focusing over how 

tests of validity on propositions that have been assigned truth-values may be done. The 

method of reduction ad absurdum has also been considered. 

 

1.6 References and Further Readings 

Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: Pearson 

Education Limited 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 

 

Possible Answers to SAE 

SAE (1)- 1. Yes 

      2. No 

SAE (2) -1. Reductio ad Absurdum 

      2. i. by assigning two truth-values to the same component in the same context;  

          ii. by assigning the same truth-value to a formula and its negation in the    

                         same context 
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                    iii. by assigning a truth-value to the connectives inconsistent with the truth-  

                          conditions 

 

1.7 Unit Exercises 

 Use the truth-table technique to determine the validity or invalidity of each of the 

following arguments: 

 1. A    B   2. A   v B 

  A    C    A 

         B    v C    B 

 

 3. A   B   *4. (P   v Q)   (P    . Q)  

  B   C    P    . Q 

         C    T           P    v Q 

 

 5. (A   B)  . (C   D) 6. (A   v B)   C 

  A   v C    C     (A   . B) 

          B   v D    (A v B)   (A  .  B) 

 

 7. A   v (B    . B)  8. (A   v B)   (A   . B) 

  A     (A    B)    (B    A) 

  (B  .  B) 

 

 *9. A    (B  v  C)   10. (A  v  B)    C 

  (B  .  C)     A   C    (A  .  B) 

  A      (A  .  B)     (A   v   B)   

 

 

II. Use the truth-table technique to determine the validity or invalidity of each of the 

following arguments: 

1. If disparity is to be removed then those educationally disadvantaged states 

should be given special quotas. If those states that are educationally 

disadvantaged states should be given special quotas, then some people receive 

preferential treatment. If some people receive preferential treatment, then 

disparity is not to be removed. Therefore, disparity is not to be removed. 

2. If the hijackers’ demands are met then criminals will be rewarded. If the 

hijackers’ demands are not met then the innocent hostages will be killed. So, 

either criminals will be rewarded or innocent hostages will be killed. 

3. *If people are entirely rational then either all of a person’s actions can be 

predicted in advance or the universe is deterministic. Not all of a person’s 



46  

actions can be predicted in advance. Thus, if the universe is deterministic then 

people are not entirely rational. 

4. If oil production continues to grow then either oil imports will decrease or 

domestic reserves will be depleted. If oil imports decrease and domestic oil 

reserves are depleted then the country will soon be bankrupt. Therefore, if oil 

production continues to grow then the nation will soon be bankrupt.  

5. If the South African government stops township violence, then both the 

African National Congress and the Nkatha Freedom Party will support the 

government’s constitutional proposals. But the Nkatha Freedom Party will not 

support the government’s constitutional proposals. Therefore, the South 

African government does not stop township violence. 

 

Use short truth-table technique (reduction ad absurdum) to determine the 

validity/invalidity of each of the following arguments: 

1. A        B    2. A        (B  v   C) 

 B        A     A       B 

        A    v     B            A    v       C 

3. A        B    4. A           C 

 A    v     B     B           C 

         B             A            C 

*5. A       (B  .  C)   6. (A      B)  . (C      D) 

      (B  .  C)    A     A    v   C 

                B    v   C 

7.   A       B    8. A        B 

 B      C        D 

         A               B     v  D 

             A    v   C 

 

9. B      A    *10. (A  .  B)  v  (A  .  B  

         C    v     B              A   ≡   B 

        A     C 
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Unit 2: Basic Valid Argument Forms 

2.1 Introduction 

2.2 Learning Outcomes 

2.3 Basic Valid Argument Forms 

2.4 Summary 

2.5 References and Further Readings 

2.6 Unit Exercises 

 

2.1 Introduction 

The aim of this unit is to introduce you to the basic valid arguments in artificial 

logic. We will be looking at truth-functional argument and the extent to which 

they may be justified valid. 

 

2.2 Learning Outcomes 

At the end of this unit, Learners will be able to: 

1. Identify and relate with the basic valid arguments 

2. Explain the signs related to each basic argument 

3. Apply the signs related to each basic argument 

 

2.3 Basic Valid Arguments 

 As we have seen, we can use the truth-table to determine the validity or invalidity 

of a truth-functional argument. A truth-functional argument is valid if it is not possible 

for its premises to be true and its conclusion false. Alternatively, a truth-functional 

argument is valid if its corresponding conditional is a tautology. If an argument is valid, it 

means that its premises imply its conclusion. The concept of validity and implication are 

therefore synonymous. Thus, all claims about implication, like validity, can be tested 

using the truth-table technique. Thus, we know that “p” implies “ (p . q)” and “(p v q) 

 r” implies “p  r”. Similarly, “p”, “q” “p . q” and “p  q” each implies “p v q”, and 

each of “p v (q v r)” and “p  q” is implied by it. Also, “p’, “q”, “q . r”, “p v q”, “q 

 p”,  “p  (q . r)”, “(p v r)  q” each implies “p  q”, and each of “ p v q” “q p”, 

“p  (q v r)” and “(p  q) v r” is implied by it. Each of these implications can be tested 

using the truth-table. Students are encouraged to test them as exercises. 

 In addition, let us consider the following, which may be called laws of 

implication: 

1. Every formula implies itself.  

2. If one formula implies a second and the second implies a third, then the first 

implies the third. 

3. A logically true formula is implied by every formula. 

4. A logically true formula implies only logically true formulas. 

5. A logically false formula implies every formula. 
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6. A logically false formula is implied only by logically false formulas. 

7. Substitution of formulas for propositional letters preserves implication. 

 

8. A formula implies a conjunction if and only if it implies each conjunct of the 

conjunction. 

9. A formula is implied by a disjunction if and only if it is implied by each 

disjunction.  

 

Each of the above laws can be proved using what we know about disjunction, 

conjunction, logical truth and so on. Thus, for example we can prove that a logically false 

formula implies every formula, by arguing that since an implication is false only if the 

antecedent is true and the consequent false, then an implication in which the antecedent is 

always false (because it is logically false) can have any formula (whether true or false) as 

its consequent. Such an implication will come out true under all interpretations because 

there can be no interpretation where the antecedent is true and the consequent is false. 

 Finally, there are some basic valid argument-forms that can be constructed using 

negation, conjunction, disjunction and conditional in various combinations. We shall list 

the argument-forms under the major propositional types, leaving it to the student to use 

the truth-table technique to confirm the validity of each argument-form. This will not 

only reassure the student of the validity of those argument-forms, but will also make her 

conversant with the valid argument-forms which will be required in the next stage of our 

study. 

(i) Conjunction 

 There are two valid argument-forms that employ conjunction, namely 

Simplification and Conjunction. 

(1) Simplification: The two forms of Simplification are as follows: 

p . q   p . q  

 p and   q 

This means that from the truth of a conjunction we can infer or derive any of its 

conjuncts. This is because the conjunction of two propositions is true only if both of the 

two Propositions are true. 

(2) Conjunction: The form of conjunction is    

p  

q 

 p . q 

This means that if each of two propositions is true, we can infer or derive their 

conjunction. 

(ii) Disjunction 
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 There are two valid argument-forms that employ disjunction, namely Addition and 

Disjunctive Syllogism. Recall that the disjunction of two propositions is true if at least 

one of these propositions is true. 

(3) Addition: The form of Addition is: 

p  

                        p v q 

 

This means that from the truth of a proposition we can infer a disjunction of which it is a 

disjunct. 

(4) Disjunctive Syllogism: The two forms of Disjunctive Syllogism are: 

p v q    p v q 

 p       and   q 

 q    p 

This means that if a disjunction is true and we know that one of the disjuncts is false, then 

we can infer the other disjunct. In other words, the falsity of one of the disjuncts of a true 

disjunction implies the truth of the other disjunct. 

 

 

 

(iii) Conditional 

 There are five valid argument-forms that utilise the conditional along with others 

like negation and disjunction, namely, Modus Ponens, Modus Tollens , 

Hypothetical Syllogism, Constructive Dilemma and Destructive Dilemma. 

 

(5) Modus Ponens: The form of modus ponens is: 

p  q 

p 

 q 

 

which means that the conjunction of a conditional with its antecedent implies the 

consequent. In other words, if a conditional and its antecedent are true we can infer the 

consequent. 

(6) Modus Tollens: The form of Modus Tollens is: 

p  q 

 q 

  p 

 

which means that the conjunction of a conditional with the negation of its consequent 

implies the negation of its antecedent. In other words, if we have a conditional and the 

negation of its consequent, we can infer the negation of its antecedent. 
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(7) Hypothetical Syllogism: The form of the Hypothetical syllogism is: 

p  q 

p   r 

 p  r 

 

This means that if the consequent of a conditional implies a third proposition, then the 

antecedent of that conditional implies the third proposition. In other words, if we have a 

conditional whose consequent implies a third proposition then we can infer that the 

antecedent of the (first) conditional implies the consequent of the (second) conditional. 

(8) Constructive dilemma has the following form: 

(p  q) . (r  s) 

p v r 

 q v s  

 

This means that the conjunction of two conditionals with the disjunction of the 

antecedents of the two conditionals implies the disjunction of the consequents of the 

conditionals. In other words, if we have a conjunction of two conditionals and the 

disjunction of the antecedents of the two conditionals, then we can infer the disjunction 

of the consequents of the conditionals. 

(9) Destructive Dilemma has the following form: 

(p  q) . (r  s) 

 q v s 

  p v  r 

 

This means that the conjunction of two conditionals with the disjunction of the negations 

of the consequents of the two conditionals implies the disjunction of the negations of the 

antecedents of the conditionals. In other words, if we have a conjunction of two 

conditionals and the disjunction of the negations of the consequents of the two 

conditionals, then we can infer the disjunction of the negations of the antecedents of the 

conditionals. 

 

1.4 Summary 

 In this unit, we have been able to identify and discourse the conditions under 

which all the basic arguments can be deemed as valid. 

1.5 References and Further Readings 

 Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 
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1.6 Unit Exercises 

 Test the validity or invalidity of each of the above valid argument-form, using the 

truth-table technique. 
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Unit 3: Logically Equivalent Formulas 

1.1 Introduction 

1.2 Learning Outcomes 

1.3 Logically Equivalent Formulas 

1.4 Summary 

1.5 References and Further Readings 

1.6 Unit Exercises 

 

1.1 Introduction 

 In this unit, we shift attention to discuss some logical formulas that are at par. You 

will notice some logical connectives and equations that are logically equivalent. 

 

1.2 Learning Outcomes 

 At the end of this unit, learners must: 

1. Identify some logical connectives that are equivalent 

2. Identify some equivalent logical equations 

 

1.1 Logically Equivalent Formulas 

We have seen that two truth-functional formulas are said to be equivalent if they 

agree in truth-value under every interpretation of their propositional letters. Thus, 

“p” is equivalent to “p”, to “p . p” and to “p v p”; “p . q” is equivalent to “q . p” 

and to (p v q); “p v q” is equivalent to “p v q” and to (p . q); similarly, “p  

q” is equivalent to “(p .  q)”, to “p v q” and to “q  p”; and “p ≡ q” is 

equivalent to “(p  q) . (q  p)”, to “ (p . q) . (q . p)”, and to “(p . q), and so 

on. 

 We have also seen that two expressions are logically equivalent if the 

statement of their equivalence (using the biconditional sign) is tautologous. 

Logicians have discovered some basic forms of logically equivalent formulas. The 

proving of their equivalence shall be left as exercises for the student. Two 

logically equivalent expressions have the same logical force or import; logical 

equivalence does not mean synonymy or equivalence of meaning. Logical 

equivalence also indicates various inter-relationships between our logical 

connectives. 

 In what follows, we shall list some standard logically equivalent formulas 

under our major types of compound propositions, namely, negation, conjunction, 

disjunction, conditional and biconditional: 

(i) Negation: 

 (1) Double Negation: A proposition is logically equivalent to its double 

negation, thus; 
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  p ≡ p 

 (2) DeMorgan’s Theorems: The negation of a conjunction is logically 

equivalent to the disjunction of the negations of the conjuncts, thus: 

   (p . q) ≡ (p v q) 

Thus, the negation of conjunction is not a conjunction but a disjunction. Similarly, 

the negation of a disjunction is logically equivalent to the conjunction of the 

negations of the disjuncts, thus: 

   (p v q) ≡ (p . q) 

Thus, the negation of a disjunction is not a disjunction but a conjunction. 

(ii) Disjunction and Conjunction 

 (3) Commutativity: Both disjunction and conjunction are commutative. 

Therefore, a disjunction is logically equivalent to its inverse, thus: 

  (p v q) ≡ (q v p) 

Similarly, a conjunction is logically equivalent to its inverse, thus: 

  (p . q) ≡ (q . p) 

 (4) Associativity: Both disjunction and conjunction are associative. 

Therefore, regrouping, using our punctuation marks, does not affect the truth-

value of a disjunction, thus: 

  [p v (q v r)] ≡ [(p v q) v r] 

Similarly, regrouping does not affect the truth-value of a conjunction, thus: 

  [p . (q . r)] ≡ [(p . q) . r] 

Thus, a regrouped disjunction or conjunction is logically equivalent to the original 

disjunction or conjunction. 

 (5) Tautology or Idempotency: Both conjunction and disjunction are 

idempotent. Therefore, repeating a proposition as a disjunction with itself is 

logically equivalent to the original proposition, thus: 

  p ≡ (p v p) 

Similarly, repeating a proposition as a conjunction with itself is logically 

equivalent to the original proposition, thus: 

  p ≡ (p . p) 

 (6) Distributivity: The conjunction of a proposition with a disjunction is 

logically equivalent to a disjunction of the conjunctions of the proposition and 

each of the disjuncts, thus: 

  [p . (q v r)] ≡ [(p . q) v (p . r)] 

Similarly, the disjunction of a proposition with a conjunction is logically 

equivalent to a conjunction of the disjunctions of the proposition and each of the 

conjuncts, thus: 

  [p v (q . r)] ≡ [(p v q) . (p v r)] 

(iii) Conditional 

 (7) Transposition: If it is true that: 
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If the United Nations is to be effective then it must be financially 

solvent 

 

Then it is true that: 

If the United Nations is not financially solvent then it cannot be 

effective. 

 

This is clear from our characterisation of the conditional as material implication 

which is false only if the antecedent is true and the consequent is false. So, the 

falsity of the consequent implies the falsity of the antecedent. This means that a 

conditional is logically equivalent to the ‘contraposition’ of the conditional, thus: 

  (p  q) ≡ (q  p) 

 (8) Material Implication: A conditional is logically equivalent to a 

disjunction; the first disjunct is the negation of the antecedent of the conditional 

and the other disjunct is the affirmation of its consequent, thus: 

  (p  q) ≡ (p v q) 

 (9) Exportation: If a conjunction implies a proposition, then the first 

conjunct implies a conditional whose antecedent is the second conjunct and vice 

versa, thus: 

  [(p . q)  r] ≡ [p  (q  r)] 

(iii) Biconditional 

 (10) Material Equivalence: As we have seen, the name ‘biconditional’ 

connotes logically two conditional propositions with the antecedent and 

consequent interchanged, thus: 

  (p ≡ q) ≡ [(p  q) . (q  p)] 

Similarly, as we know, a biconditional is true either if both components are true or 

both components are false. Therefore, a biconditional is logically equivalent to a 

disjunction of, on the one hand, the conjunction of the components and, on the 

other, the conjunction of the negations of the components, thus: 

  (p ≡ q) ≡ [(p . q) v (p . q)] 

 

1.2 Summary 

In this unit, we have been able to identify some of the equations and connectives 

that are logically equal to one another. 

 

1.5 References and Further Readings 

 Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 
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1.6 Unit Exercises 

 Prove the equivalence of each of the pairs of statement-forms, using the truth-table 

technique. 
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Unit 4: Method of Natural Deduction 

1.1 Introduction 

1.2 Learning Outcomes 

1.3 Rules of Inference 

1.4 Rules of Replacement 

1.5 The Rule of Conditional Proof 

1.6 Rule of Indirect Proof 

1.7 Proof of Tautologies 

1.8 Redundancy of Some of our Rules 

1.9  Summary 

1.10 References and Further Readings 

1.11 Unit Exercises 

 

1.1 Introduction 

 The essence of this unit is to comprehend the idea of inferences and how to deduce 

them correctly. This is generally seen as the method of natural deduction. We must recall 

that the truth-table technique is a decision-procedure. Though, as we have seen, it has its 

limitations. The method of reductio ad absurdum may also become tedious. Moreover, it 

is not foolproof. If an argument is valid, there will be an inconsistency or contradiction in 

our truth-assignments. However, as we have seen, if the truth-assignments are not done 

cautiously, an inconsistency may occur when the argument is in fact, invalid. Therefore, 

the truth-table, long or short, needs to be supplemented by an alternative method of 

proving the validity of arguments composed of truth-functional statements. The method is 

that of natural deduction. 

 The method of natural deduction hinges on two principles, namely: 

(i) If an argument is valid, then any argument having that form is valid; in this 

connection, we have seen some basic argument-forms and logically equivalent 

formulas. 

(ii) If an argument is valid, then its conclusion must be derivable from its premises, 

either directly or through intermediate stages; in doing this derivation, the basic 

argument-forms referred to in (i) serve as rules of inference, while the logically 

equivalent formulas serve as the rule of replacement. 

It is obvious that if an argument is valid, then its conclusion must be derivable from its 

premises. However, the fact that a conclusion is not derived from the premises of an 

argument does not mean that the argument in question is invalid. The fault may be 

elsewhere for example, with the student. The method of natural deduction is therefore not 

a decision-procedure. 

 Let us look at the following argument and see if we can derive the conclusion 

from the premises: 

(1) If the rains continue, then the floods will increase 
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(2) If the floods increase, then many homes will be swept away. 

(3) If many homes are swept away, then a single drainage channel is not 

sufficient for the street. 

(4) If a single drainage channel is not sufficient for the street, then the town 

planning engineers have made a mistake.  

Therefore, if the rains continue, then the town planning engineers have made a mistake. 

 

Quite clearly, the conclusion can be derived through a number of intermediate steps, as 

follows: 

Step 1:  (1) If the rains continue, then the floods will increase  

  (2) If the floods increase, then many homes will be swept away. 

  Therefore, if the rain continues, then many homes will be swept away. 

 This argument has the form of a valid hypothetical syllogism, discussed earlier.  

 

The argument in step 2 also has the form of a valid hypothetical syllogism. Note 

that the conclusion of the argument in step 1 is the first premise of the argument in 

step 2. 

 

Step 2:  (1) If the rains continue, then many homes will be swept away. 

(2) If many homes are swept away, then a single drainage channel is not 

sufficient for the street. 

 

  Therefore, if the rains continue, then a single drainage is not sufficient for 

the street. 

Step 3:  (1) If the rains continue, then a single drainage channel is not sufficient for 

the street. 

(2) If a single drainage channel is not sufficient for the street, then the town 

planning engineers have made a mistake. 

 

 Therefore, if the rains continue, then the town planning engineers have made a 

mistake. 

This last argument also has the form of a valid hypothetical syllogism. Note that its 

conclusion is the same as the conclusion of the original argument. Note also that the 

conclusion of the argument in step 2 is the first premise of the argument in step 3, the 

second premise being the same as the fourth premise of the original argument. This 

means that the original argument is valid, since its conclusion is derivable from its 

premises, albeit in three steps, not directly. 

 The procedure followed in this proof can be seen more clearly if we symbolise the 

argument as follows: 

Dictionary:  R: The rains continue 
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  F: The floods will increase  

  H: Many homes will be swept away 

  G: A single drainage channel is not sufficient for the street 

  M: The town planning engineers have made a mistake 

The argument, symbolised, is: 

  R  F 

  F  H 

  H  M 

  M  G 

          R  G 

 

The proof involves: 

Step 1:  R  F 

  F  H 

        R  H (Hypothetical Syllogism) 

 

Step 2:  R  H 

  H  M 

        R  M (Hypothetical Syllogism) 

 

Step 3:  R  M 

  M  G 

        R  G (Hypothetical Syllogism) 

 

The process of deriving the conclusion of an argument from its premises is called a 

“proof”. Every step of a proof is either a given premise or a derivation in accordance with 

a rule of inference, which is a valid argument-form or (as we shall see later) a rule of 

replacement which is a logically equivalent formula. 

 

 

1.2 Learning Outcomes 

 Learners will be able to: 

1. Engage in the capacity to make logically sound deductions in a natural manner 

2. Identify and understand how the rules of replacement and inference function in 

the process of natural deduction. 

3. Identify and apply rules of indirect proof and tautologies 

 

1.3 Rules of Inference  
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 Following is a list of the rules of inference consisting of the basic valid argument-

forms re-stated as rules: 

1. Simplification (Simp.) 

 (i)  p . q  or   p . q 

   p   q 

The Rule of Simplification (abbreviated ‘Simp’) enables us to infer ‘p’ if ‘p . q’ is given. 

In other words, if we have ‘p . q’ (or if ‘p . q’ is true). We can infer ‘p’. The alternative 

formulation of the rule indicates that the inferred conjunct may be the second one. Each 

of the following arguments is a substitution instance of, or derives its conclusion in 

accordance with, the Rule of Simplification: 

 (1)  (A v B) . (C v D) 

   A v B 

 

 (2)  (X . Y) . (P  Q) 

   X . Y 

 

 (3)  [A  (B v C)] . [D  (E v F)] 

   D  (E v F) 

 

2. Conjunction (Conj.)  

  p 

  q 

        p . q  

 

The Rule of Conjunction (or ‘conj.’ for short) enables us to infer the conjunction ‘p . q’ if 

‘p’ and ‘q’ are given as premises. In other words, if ‘p’ and ‘q’ are given or true, we can 

infer ‘p . q’. Each of the following arguments is licensed by the Rule of Conjunction: 

 (1)   (P . Q) 

  R   S 

    (P . Q) . (R   S) 

  

(2) A  (B v C) 

  D  (B v E) 

   [(A  (B v C)] . [D  (B v E)] 

  

(3) C v D 

  A  B 

   (C v D) . (A  B) 
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3. Addition (Add.) 

 (i)  p 

   p v q 

 or 

 (ii) p 

   q v p 

 

The Rule of Addition enables us to infer ‘p v q’ or ‘q v p’, if ‘p’ is given. In other words, 

if we have ‘p’ we can infer either ‘p v q’ or ‘q v p’. In each of the following arguments, 

the conclusion is derived from the premise in accordance with the Rule of Addition: 

 1.  A  B 

   (A  B) v (C  D) 

 

 2. P . Q 

   (P . Q) v (P . Q) 

 

 3. (C ≡ D)  (Q ≡ R) 

   [(C ≡ D)  (Q ≡ R)] v [(M ≡ Q) v (Q ≡ R) 

 

4. Disjunctive Syllogism (DS) 

 (i)  p v q  or     (ii) p v q 

    p      q 

   q     p 

 

The Rule of Disjunctive Syllogism (or DS for short) enables us to infer ‘q’ if ‘p v q’ and 

‘p’ are given. In other words, if ‘p v q’ and ‘p’ are true, then we can infer ‘q’. The 

alternative formulation of the rule of DS indicates that the disjunct negated in the second 

premise may be the second one, in which case the first disjunct will be inferred. Each of 

the following arguments is licensed by the Rule of Disjunctive Syllogism. 

 1. (H v I) v  (J .  P) 

       (J .  P) 

   H v I 

  

2.  (P ≡ Q) v [(R . S) v (T . U)] 

     (P ≡ Q) 

   (R. S) v (T . U) 

 

 3. (U. V) v  (W  X) 

   (U . V) 
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    (W  X) 

 

4. Modus Ponens (MP) 

  p  q 

  p 

   q 

 

The rule of Modus Ponens enables us to infer ‘q’ if ‘p  q’ and ‘p’ are given. In other 

words, if ‘p  q’ and ‘p’ are true, we can derive ‘q’. Each of the following arguments is 

an instance of the application of modus ponens: 

 1.  (P . Q)  (R . S) 

  P . Q 

   R. S  

 

 2.  (P  (Q  R)   (S  T) 

   [P  (Q  R)] 

    (S  T) 

 

 3. {[P   (Q v R)] . [A   (B v C)]}  [(S v T) v U] 

  [P   (Q v R)] . [A   (B v C)] 

   (S v T) v U 

6. Modus Tollens (MT) 

  p  q 

  q 

  p 

 

The rule enables us to derive ‘p’ if ‘p  q’ and ‘q’ are given. In other words, if ‘p  q’ 

and ‘q’ are true, we can derive ‘p’. Each of the following arguments is an instance of 

the use of Modus Tollens: 

 1.  (P . Q)    (S . T) 

  (S . T) 

   (P . Q) 

 

 2. [P  (Q  R)]  (S  T) 

  (S  T) 

   [P  (Q  R)] 

 

 3. {(P   (Q v R)}. [P  (Q v R)]}  [(S v T) v U] 

  [(S v T) v U] 
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   {[P  (Q v R)] . [P  (Q v R)]} 

7. Hypothetical Syllogism (HS): 

  p  q 

  q  r 

          p  r 

 

The rule enables us to infer ‘p  r’ if ‘p  q’ and ‘q  r’ are given. In other words, if ‘p  

r’ and ‘q  r’ are true, we can derive ‘p  r’. Each of the following arguments is an 

instance of Hypothetical Syllogism: 

 1. (A  B)  (C v D) 

  (C v D)  (A . D) 

   (A  B)  (A . D) 

 2. (P ≡ Q)  (R . S) 

  (R. S)  (T  U) 

   (P ≡ Q)  (T  U) 

 3. [(P  Q)  R]  (S v T) 

  (S v T)  [(P  Q)  R] 

   (S v T)  (S v T) 

8. Rule of Constructive Dilemma (CD): 

  (p  q) . (r  s) 

  p v r  

  q v s  

The rule enables us to infer ‘q v s’ if ‘(p  q) (r  s)’ and ‘p v r’ are given. In other 

words, if  

‘(p  q) . (r  s)’ and ‘p v r’ are true, we can infer ‘q v s’. Each of the following 

arguments is an instance of the use of the Rule of Constructive Dilemma: 

 (1) [(P . Q)  R] . [(Q . P)  S] 

  (P . Q) v (Q . P) 

   R v S 

 (2) (T  U) . (F  H) 

  T v F 

   U v H 

 (3) [(A  B)  (R ≡ S)] . [(A v B)  (C  D)] 

  (A  B) v (A v B) 

   (R ≡ S) v (C  D) 

9. Destructive Dilemma (DD) 

  (p  q)  . (r  s) 

  q v s 
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   p v r 

The rule enables us to infer ‘p v r’ if ‘(p  q) . (r  s)’ and ‘q v s’ are given. In other 

words, if ‘(p  q) . (r  s)’ and ‘q v s’ are true, we can infer ‘p v r’. Each of the 

following arguments is an example of Destructive Dilemma: 

 (1)  [(P . Q)  (S v T)] . [(W v X)  Y] 

        (S v T) v Y 

   (P . Q) v (W v X) 

 (2) (E  F) . (T  V) 

  F v V 

   E v T 

 (3) [P  (Q v R)] . (B  (A v C)] 

  (Q v R) v (A v C) 

   P v B 

Now, to revert to the argument we started with, the proof will be written out as follows: 

1. R  F  Pr. (for ‘premise’) 

2. F  H  Pr. 

3. H  M Pr.  

4. M  G  Pr. /   R  G 

5. R  H  1, 2,  HS 

6. R  M  5, 3, HS 

7. R  G 6, 4, HS 

As indicated, lines 1 – 4 are premises; this is shown by writing the letters ‘Pr’, after each 

formula. The slash (that is, ‘/’) is used in indicating the conclusion. Line 5 is derived 

from lines 1 and 2, in accordance with the Rule of Hypothetical Syllogism. Line 6 is 

derived from lines 5 and 3, again in accordance with the Rule of Hypothetical Syllogism. 

Lastly, line 7 is derived from lines 6 and 4, also in accordance with the Rule of 

Hypothetical Syllogism.  

 

 Note that each line of the proof which is not a premise requires a ‘justification’, 

which is provided by naming the line or lines from which the formula is derived and the 

rule in accordance which it is derived. A rule is said to ‘license’ a move. Note also that 

the conclusion is written in such a way as to stand out from the rest of the argument. The 

proof ends when the conclusion is derived, as in line 7 above. Note further that all the 

rules of inference given above apply to whole lines not to parts of line, though some have 

two premises while some have only one premise. 

 Let us now apply the rules in constructing proofs for one or two more arguments. 

Let us take the following argument: 

 

 E  (F . G) 
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 (F v G)  H 

     E 

  H 

To construct a proof of the argument, we arrange it as follows: 

1. E  (F . G) Pr 

2. (F v G)  H Pr 

3. E Pr /   H 

In constructing a proof it is useful to have a ‘strategy’. One strategy is to proceed to 

derive whatever is derivable, bearing in mind one’s need at every step. Thus, in the above 

examples, knowing that we can derive ‘F . G’ from ‘E  (F . G)’ in line 1 and ‘E’ (line 

3), using the Rule of Modus Ponens (MP), we make that our first move. Next, we observe 

that from ‘F . G’ we can derive ‘F’ as line 5, by Simplification. Having got ‘F’, we 

know that we can derive ‘F v G’ as line 6 by the Rule of Addition (Add.). Lastly, having 

derived ‘F v G’ in  line 6, and taken along with ‘(F v G)  H’ (in line 2), we know that 

we can derive the conclusion, that is, ‘H’, using the Rule of Modus Ponens (MP). This 

brings the proof to an end. 

 Another strategy is to work backwards from the conclusion, keeping in mind one’s 

need at every step. Thus, in the above example, we observe that ‘H’ occurs in line 2, and 

that given ‘F v G’ we can derive it, using the rule of MP. Now, to get ‘F v G’, we need 

‘F’ and we observe that there is ‘E  (F . G)’ in line 1, from which we can derive ‘F . 

G’ if we have ‘E’ using the rule of MP and there is ‘E’ in line 3, which is where we start 

the proof. Thus, the proof will proceed as follows: 

1. E  (F . G)  Pr. 

2. (F v G)  H  Pr. 

3. E   Pr. /  H 

4. F . G  1, 3, MP 

5. F  4, Simp. 

6. F v G  5, Add. 

7. H  2, 6, MP 

 

It must be admitted that using any of the strategies requires a good knowledge of the 

rules, since it is only through such knowledge that we can know what is derivable from 

what. 

 Let us take a more complex argument: 

  H  (I . J) 

  H  [(K  L) . (M  N)] 

  (I . J) v [(N  K) . (N  M)] 

   (I . J) . (N . K) 

   L v N 
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Its proof will proceed as follows: 

1. H  (I . J)    Pr. 

2. H  [(K  L) . (M  N)]  Pr. 

3. (I . J) v [(H  K) . (H  L)] Pr. 

4. (I . J) . (N . K)  Pr/  L v N 

5. (I . J)    4, Simp. 

6. H    1, 5, MT 

7. (K  L) . (M  N)  2, 6, MP 

8. (H  K) . (H  M)  3, 5, DS 

9. H v H   6, Add. 

10. K v M    8, 9, CD 

11. L v N    7, 10, CD 

 

Note that in constructing a proof a rule of inference may be applied as often as required, 

provided the rule is correctly applied. In other words, there is no limit to how many times 

a rule of inference may be applied, provided each application is legitimate. 

 

1.4 Rules of Replacement 

 Another set of the rules needed to prove some additional truth-functional 

arguments derive from the logically equivalent formulas discussed earlier. The rules 

license some kinds of inferences, and are all grouped together under the rubric of Rule of 

Replacement. A rule of replacement may apply to a line or part of a line. In this respect, 

these rules are different from our rules of inference which apply only to whole lines, 

never part of a line in a proof. The underlying idea of the rule of replacement is that if 

two propositions are logically equivalent then they may replace each other in a proof. 

This is because, as we have seen, when two propositions are logically equivalent, they are 

either both true or both false, thus having the same logical force. The following are the 

logically equivalent formulas: 

 

10. Double Negation (DN): 

  p ≡ p 

Each of the following inferences is licensed by the rule of Double Negation: 

(i) [D v (E v F)] 

 D v (E v F) 

 

(ii) D  (E  F) 

 D  (E  F) 

In (i) the rule applies to the whole line, while in (ii) it applies to only part of the line. 

11. De Morgan’s Theorems (DMT) 
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 (a)  (p . q) ≡ (p v q) 

 (b) (p v q) ≡ (p . q) 

Each of the following inferences appeals to DeMorgan’s Theorem (a): 

(i) [(E . F) . (G V H)] 

 (E . F) v (G v H) 

 

(ii) D   (E . F) 

 D  (E v F) 

Whereas in (i) the rule is applied to the whole line, in (ii) it is applied to only part of the 

line. Similarly, each of the following inferences appeals to DeMorgan’s Theorem (b): 

(i) [(E v F) v (G . H)] 

 (E v F) . (G . H) 

 

(ii) D   (E v F) 

 D  (E . F) 

In (i), the rule is applied to the whole line, while in (ii) the rule is applied to only part of 

the line. 

12. Commutation (Com.) 

 (a)  (p v q) ≡ (q v p) 

 (b) (p . q) ≡ (q . p) 

Each of the following inferences in a conformity with the rule of Commutation (a): 

(1) (D . E) v (E v F) 

 (E v F) v (D . E) 

 

(2) (J . K)  [(M . O) v (J . M)] 

 (J . K)  [(J . M) v (M . O)] 

In (1) the rule is applied to the whole line, while in (2) it is applied to only part of the 

line. Similarly, both 

 (1) (R  S) . (S  T) 

   (S  T) . (R  S) 

 (2) P  [(Q . R)  S] 

   P  [(R . Q)  S] 

employ the rule of commutation (b). In (1), the rule is applied to the whole line while in 

(2) the rule is applied to part of the line. 

13. Association (Ass.) 

 (a) [p v (q v r)] ≡ [(p v q) v r] 

 (b) [p . (q . r)] ≡ [(p . q) . r] 

 

Inferences exemplifying the application of Association (a) are: 
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 (1)  (E v F) v G 

   E v (F v G) 

where the rule applies to the whole line, and  

 (2)  [F v (G v H)] v [(J v J) v K] 

  [F  v (G  v  H)]  v  [J  v  (J  v  K)] 

where the rule applies to only part of the line. Similarly, in  

 (1) (E . F) . G 

   E . (F . G) 

the rule applies to the whole line, whereas in  

 (2) [F . (G . H)] v [(J . J ) . K] 

   [F . (G . H)] v [J . (J . K)] 

the rule applies to only part of the line. 

14. Tautology (Taut.) 

 (a)  p ≡ (p v p) 

 (b) p ≡ (p . p) 

Inferences in which the rule of Tautology (a) is applied are: 

 (1) [D  (E v F)] v (D  (E v F)] 

   D  (E v F) 

where the rule applies to the whole line, and  

 (2) (T . U)  [(V v V)  (V  W)] 

   (T . U)  [V  (V  W)] 

where the rule applies to only part of the line. Similarly, in 

  [D . (E v F)]. [(D . (E v F)] 

   D . (E v F) 

the rules applies to the whole line, while in  

  [T  U)  [(V . V)  (V ≡ W)] 

   (T  U)  [V  (V ≡ W)] 

it applies to only part of the line. 

15. Distribution (Dist.) 

 (a) [p . (q v r)]  [(p . q) v (p . r)] 

 (b) [p v (q . r)]  [(p v q) . (p v r)] 

The following inferences are both licensed by the rule of Distribution. 

 (1) (E v F) . (G v H) 

   [(E v F) . G] v [(E v F) . H] 

 (2) (E . F) v (G . H) 

  (E . F) v G] . [(E . F) v H] 

16. Transposition (Trans.) 

  (p  q) ≡ (q  p) 

The following inference exemplifies the application of the rule: 
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  (G . H)  {J . [K . (L . M)]} 

   {J . [K . (L . M)]}  (G . H) 

17. Material Implication (MI): 

  (p  q)  ≡  (p v q) 

The following inference: 

  [(A . B) . C]  (D ≡ E) 

   [(A . B) . C] v (D ≡ E) 

is licensed by the rule of Material Implication (MI) 

18. Exportation (Exp.) 

  [(p . q)  r) ≡ [p  (q  r)] 

The following inference illustrates the application of the rule: 

  F  {G  [(H . I)  J]} 

   F  {[G . (H . I)]  J} 

 

19. Material Equivalence 

 (a) (p ≡ q) ≡ [(p  q)  . (q  p)] 

 (b) (p ≡ q) ≡ [(p . q) v (p . q)] 

Each of the following inferences illustrates one of the two varieties of the rule of Material 

Equivalence: 

 (a) {(E  F) . [(G  H) . (H  G)]}  (H  I) 

   [(E  F) . (G ≡ H)]  (H  I) 

 (b) (G . ~H)  (I  ≡ ~J) 

   (G . ~H)  [(I . ~J) v (~I . ~~J)]  

 Let us now construct some proofs of validity requiring the RULE of replacement. 

Let us take the argument: 

  F  E 

  F v E 

   E 

Seeing that if we have ‘~E  E’, we can derive ‘~~E v E’ (using MI) from which we can 

derive ‘E v E’ (using DN), and thence ‘E’ (using Taut.), the proof will proceed as 

follows: 

1. F  E  Pr  

2. F v E  Pr /   E 

3. ~E  ~F  1, Trans. 

4. ~~F v E 2, DN 

5. ~F  E  4, MI 

6. ~E  E  3, 5, HS 

7. ~~E v E 6, MI 

8. E v E  7, DN 
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9. E  8, Taut. 

 

Let us take the following slightly more complex example: 

 (E  (F . G) 

 (F v G)  H 

  E  H 

 

The proof will proceed as follows: 

1. E  (F . G)  Pr 

2. (F v G)  H Pr/   E  H 

3. ~E v (F . G)  1, MI 

4. (~E v F) . (~E v G) 3, Dist. 

5. ~(F v G)  H 2, MI 

6. (~F . ~G) v H 5, DMT 

7. H v (~F . ~G) 6, Comm. 

8. (H v ~F) . (H v ~G) 7, Dist. 

9. ~E v F  4, Simp. 

10. E  f   9, MI 

11. H v ~F  8, Simp. 

12. ~F v H  11, Comm. 

13. F  H  12, MI 

14. E  H  10, 13, HS 

 

 The student will have noticed that unlike the truth-table, constructing a proof of 

validity s not a mechanical process. It requires knowledge of the rules and a lot of 

ingenuity. It is therefore hazardous to conclude, from the fact that one cannot construct a 

proof for an argument, that the argument is invalid. One way to obviate this hazard is to 

cross-check the validity of the argument concerned with the method of reductio ad 

absurdum studied earlier, wherever feasible. 

 

1.5 Rule of Conditional Proof 

 Our proof apparatus can be strengthened by the addition of the rule of Conditional 

Proof (CP) to the nineteen we already have. The basic assumptions of the rule of 

conditional proof are that: 

(1) If an assumed formula, along with given premises and derived formulas, implies a 

desired formula, then that assumed formula can be made part of the premises, and  

(2) If an assumed formula implies another formula, then the result can be written as a 

conditional whose antecedent is the assumed formula, and whose consequent is the 
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implied formula. Thus, if we assume ‘p’ and derive ‘q’, then ‘p’ implies ‘q’ 

(written ‘p  q’). 

A proof involving the rule of Conditional Proof is called a conditional proof. 

 The rule of Conditional Proof (CP) allows us to assume any formula, provided 

every assumption is ‘discharged’. An assumption is discharged when the assumed 

formula and the last implied formula are written out as an explicit conditional, stating that 

the assumed formula implies the derived formula. Thus, if in a proof we assume ‘p’ and 

derive ‘q’, the assumption will be discharged. The conditional proof of the following 

argument-form: 

 p  r 

 r  s 

 s  q 

 p  q 

will run as follows: 

1. p  r  Pr  

2. r  s  Pr 

3. s  q   Pr /  p  q 
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4. p 

5. r  1, 4, MP 

6. s  2, 5, MP 

7. q  3, 6, MP 

8. p  q  4-7, CP 

 

The arrow is used in indicating the assumed formula. The vertical line from the arrow to 

the last derived formula indicates the ‘scope’ of the assumption. The scope here extends 

from ‘p’ (the assumed formula) to ‘q’ (the last derived formula), which has a line drawn 

below it. The assertion that ‘p’ implies ‘q’ (written ‘p  q’) follows immediately below 

the line. The ‘discharging conditional’ requires a justification, which is the rule of 

Conditional Proof (CP), citing all the lines within the scope of the assumption, starting 

with the assumed formula and ending with the last derived formula. Note that once an 

assumption is discharged, no line within its scope can again be invoked. Thus, in the 

above example, lines 4 to 7 cannot be invoked after line 8 even if the proof continues 

beyond that line. For practice, let us take the following argument. 

 E  (F  G) 

 F  (G  H) 

  E  (F  H) 

Its proof will go as follows: 

1. E  (F  G)  Pr 

2. F  (G  H) Pr/   E  (F  H)   

3. E . F 

4. E   3, Simp. 

5. F  G  1, 4, MP 

6. F   3, Simp 

7. G   5, 6, MP 

8. G  H  2, 6 MP 

9. H   8, 7 MP 

10. (E . F)  H 3-9, CP 

11. E  (F  H) 10, Exp. 

Since the rule of Conditional Proof allows us to assume any formula, provided that the 

assumption is discharged, the only wise thing to do is to assume what we need. In the 

above example, the assumption of ‘E . F’ is to enable us to derive the conclusion, as 

shown above. However, note that we could have assumed ‘E’ first and then ‘F’. Thus, 

requiring us to discharge two times, thus: 

1. E  (F  G) Pr 

2. F  (G  H) Pr/   E  (F  H) 

3. E 
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4. F  G  1, 3, MP 

5. F 

6. G   4, 5, MP 

7. G  H  2, 5, MP 

8. H   7, 6, MP 

9. F  H  5-8, CP 

10. E  (F  H) 3-9, CP 

The question arises as to how to know which formula to assume. A rule of thumb is that, 

in general, if the conclusion is a conditional proposition, then it is advisable to assume the 

antecedent of the conditional. If the conclusion is not a conditional proposition, then it is 

wise to assume whatever formula will yield the conclusion. Thus, the conditional proof of 

the following argument: 

  F  (G . H) 

  (G v I)  J 

  I v F 

   J 
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whose conclusion is not a conditional, will proceed as follows: 

1. F  (G . H)  Pr 

2. (G v I)  J  Pr  

3. I v F  Pr /  J 

4.  J 

5.  (G v I)  2, 4, MT 

6.  G . I  5, DMT 

7.  I   6, Simp 

8. F   3, 7, DS 

9. G . H   1, 8, MP 

10. G    7, Simp 

11. G v I  8, Add 

12. J    2, 3 MP 

13. J  J  4-12, CP 

14. J v J  13, MI 

15. J v J  14, DN 

16. J   15, Taut. 

 

Note that it would have been wrong to stop the proof in line 12, having derived the 

conclusion ‘J’, because the assumption would not have been discharged. 

 The rule of Conditional Proof, as we have seen above, and like any other rule of 

inference, may be applied more than once in a proof, provided that each assumption is 

discharged. The scope of each assumption, as usual, will be indicated by the arrow and 

the lines. Thus, in proving the following argument:  

  (G  H) . (I  J) 

  (H v J)  {[K  (K v L)]  (G . I) 

   G ≡ I 

there will be need for more than one application of the rule of CP, thus requiring that 

assumptions be made and discharged more than once, as follows: 

1. (G  H) . (I  J)  Pr 

2. (H v J)  {[K  (K . L)]  (G . I)} Pr /  G ≡ I  

3. G v I 

4. H v J   1, 3, CD 

5. [K  (K v L)]  (G . I) 2, 4, MP 

6. K  

7. K v L   6, Add 

8. K  (K v L)  6-7, CP 

9. G . I    5, 8, MP 

10. (G v I)  (G . I)  3-9 CP 
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11.  (G v I) v (G . I)  10, MI’ 

12. (G . I) v (G . I)  11, DMT 

13. (G . I) v (G . I)  12, Com. 

14. G ≡ I   13 ME 

 

1.6 Rule of Indirect Proof 

 The last rule to strengthen our proof apparatus is the rule of Indirect Proof (IP), 

also called the rule of Reduction ad Absurdum. Like its counterpart in the truth-table 

method, the rule starts with the assumption that the argument is invalid and that, 

therefore, the conclusion is false. The first step in the application of the rule is thus the 

negation of the conclusion, whether it is an atomic (simple) or a molecular (compound) 

proposition, which then serves as an additional premise. The justification for the 

conclusion thus negated is the rule of Indirect Proof (IP). The proof is then continued 

until an explicit contradiction is derived. The contradiction may consist in the conclusion 

and its negation, or any other formula and its negation. The proof ends once such an 

explicit contradiction has been derived. Any proof which employs the rule of IP is called 

an indirect proof. 

 As an example, let us take the following argument: 

 (J v K)  (L . M) 

 (L v O)  (P . Q) 

 (P v R)  (J . S) 

  P 

The indirect proof of the argument will go thus: 

1. (J v K)  (L . M) 

2. (L v O)  (P . Q) 

3. (P v R)  (J . S) /   P 

4. P IP 

5. P  4, DN 

6. P v R 5, Add  

7. J . S  3, 6, MP 

8. J   7, Simp 

9. J v K 8, Add 

10. L . M 1, 9, MP 

11. L  10, Simp 

12. L v O 11, Add 

13. P . Q 2, 12, MP 

14. P  13, Simp 

15. P . P 5, 14, Conj. 
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Next, let us take the following example whose conclusion is a molecular or compound 

proposition: 

1. (A  B) . (C  D) 

2. (B  E) . (D  P) 

3. (E  Q) . (P  R) 

4. A . C /  Q . R 

5. (Q . R)  IP 

6. A  B  1, Simp 

7. B  E  2, Simp 

8. A  E   6, 7, HS 

9. E  Q  3, Simp 

10. A  Q  8, 9, HS 

11. A   4, Simp 

12. C  D  1, Simp 

13. D  P  2, Simp 

14. C  P  12, 13, HS 

15. P  R  3, Simp 

16. C  R   14, 15, HS 

17. C   4, Simp 

18. R   16, 17, MP 

19. Q   10, 11, MP 

20. Q . R  19, 18, Conj. 

21. (Q . R) . (Q . R)   20, 5, Conj. 

 

1.7 Proof of Tautologies 

 A tautology, as we have seen, can be determined using the truth-table method. 

Using that method, a tautology is defined as a formula which is true under all 

interpretations of its constituent letters, or true in all possible worlds. Similarly, a 

tautology can be verified by constructing a zero-premise conditional or indirect proof for 

it. Such proofs may be said to be ‘categorical’ or zero-premise proofs since they do not 

have any premise. So, there are two basic ways in which proofs of tautologies can be 

constructed. The first way, as suggested above, is to construct a conditional proof by 

invoking the rule of conditional proof, along with other rules. Thus, the tautology: 

 [D  (E  F)]  [(D  E)  (D  F)] 
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can be proved as follows:  

1. D  (E  F) 

2. D  E 

3. D 

4. E      2, 3, MP 

5. E  F     1, 3, MP 

6. F      5, 4, MP 

7. D  F     3-6, CP 

8. (D  E)  (D  F)   2-7, CP 

9. [D  (E  F)]  [(D  E)  (D  F)] 1-8, CP 

 

As can be seen, the proof ends once we derive the tautology. Lines 1, 2 and 3 re all 

assumptions licensed by the rule of Conditional Proof. Line 1 is the antecedent of the 

whole formula. Line 2 is the antecedent of the consequent of the original expression. Line 

3 is the antecedent of the consequent of the original formula. These applications of the 

rule of CP are correct since they have each been discharged. Let us look at another 

example: 

 (A  B)  [(B . C)  (C . A)] 

1. A  B 

2. (B . C) 

3. C 

4. B v C   2, DMT 

5. C   3, DN 

6. B    4, 5, DS 

7. A    1, 6, MT 

8. C  A   3-7, CP 

9. C v A    8, MI 

10. (C . A)   9, DMT 

11. (B . C)  (C . A) 2-10, CP 

12. (A  B)  [(B . C)  (C . A)]   1-11, CP 

 

As can be clearly seen, our proof is greatly facilitated if we assume the antecedents of the 

conditional propositions in the formula, beginning with the conditional sign with the 

widest scope. Line 3 needs some explanation. Though ‘(C . A)’ is not a conditional 

proposition it can be turned into one using the rule of DMT which makes it C v A and 

the rule of MI which turns it into 

C  A, thus making C the antecedent to be assumed.  

We may also construct an indirect proof of tautologies, invoking the rule of Indirect 

Proof, along with others. Since the tautology is to be assumed to be a non-tautology, the 
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whole expression is assumed to be false and thus negated. The first line of the proof will 

therefore be the negation of the expression to be proved. As in the application of the rule 

of IP for ordinary arguments, the proof ends whenever an explicit contradiction is 

derived. Thus, the following tautology: 

 (S  T) v (T  U) 

can be proved as follows: 

1. [(S  T) v (T  U)] IP 

2. (S  T) . (T  U) 1, DMT 

3. (S  T)   2, Simp 

4. (S v T)   3, MI 

5. S . T   4, DMT 

6. (T  U)   2, Simp 

7. (T v U)   6, MI 

8. T . U   7, DMT 

9. T    5, Simp 

10. T   8, Simp 

11. T . T   9, 10, Conj. 

Since the proof has no premise, the negation of the tautology to be proved becomes the 

first line of the proof. We then apply other rules until we encounter an explicit 

contradiction, consisting in the conjunction of any formula and its negation. Let us take 

another example, as follows: 

1. {P ≡ [P v (P . Q)     IP 

2. {P . [P v (P . Q)]} v {P .  [P  v  (P . Q)]} 1, ME 

3. {P . [P v (P . Q)]} .  {P .  [P v (P . Q)]} 2, DMT  

4. {P . [P v (P . Q)]}    3, Simp. 

5. P v [P v (P . Q)]    4, DMT 

6. P v [P . (P . Q)]    5, DMT 

7. P v [P . (P v Q)]    6, DMT 

8. P v [(P . P) v (P . Q)]   7, Dist. 

9. P v [P v (P . Q)]    8, Taut. 

10. (P v P) v (P . Q)    10, Assoc 

11. P v (P . Q)     11, Taut 

12. (P v P) . (P v Q)    12, Dist 

13. P . (P v Q)     13, Taut 

14. P       14, Simp  

15. {P . [P v (P . Q)]}    3, Simp. 

16. P v [P v (P . Q)]    16, DMT 

17. P v [P v (P . Q)]    17, DN 
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18. P v [P v (P . Q)]     18, DN 

19. (P v P) v (P . Q)     19, Assoc  

20. P v (P . Q)      20, Taut 

21. (P v P) . (P v Q)     21, Dist  

22. P . (P v Q)      22, Taut  

23. P       23, Simp. 

24. P . P      24, 15, Conj. 

As can be seen, the same principles are at play, whether the proof is a short or a long one. 

We start with the negation of the tautology to be proved. We then attempt to complete the 

proof, using other rules, as necessary. The proof ends when an explicit contradiction is 

generated. The contradiction consists in the conjunction of any formula and its negation. 
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1.8 Redundancy of Some of our Rules 

 The twenty-one rules discussed above provide us with a powerful proof apparatus 

for truth-functional logic. The rules taken together are sufficient to prove the validity of 

most valid truth-functional arguments. However, it appears that we have an excess of 

rules over what is absolutely necessary. The reason is that some of the rules can be 

proved using some of the other rules, thus making such ‘provable’ rules redundant. For 

example, the rule of destructive Dilemma (DD) can be proved by applying the rule of 

Conditional Proof (CP) or the rule of Indirect Proof (IP), along with others, thus: 

1. (p  q) . (r  s)  Pr 

2. q v s Pr./  p v r 

3. p 

4. p  q  1, Simp  

5. q  4, 3, MP 

6. q 5, DN 

7. s  2, 6, DS 

8. r  s 1, Simp 

9. r  8, 7, MT 

10. p  r 3-9, CP 

11. p  v r 10, MI  

 

 

 

 

 

 

 

 

 

Similarly, the rule of Transposition (Trans) can be proved using other rules, as follows: 

1. p  q 

2. q 

3. p    1, 2, MT 

4. q  p   2-3, CP 
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5. (p  q)  (q  p) 1-4, CP 

6. q  p 

7. p 

8. p   7, DN 

9. q   6, 8, MT 

10. q    9, DN 

11. p  q   7-10, CP 

12. (q  p)  (p  q) 6-12, CP 

13. [(p  q)  (q  p)] . [(q  p)  (p  q)] 5, 13, Conj. 

14. (p  q) ≡ (q  p) 14, ME 

This means that the rules of Destructive Dilemma and Transposition are not absolutely 

necessary for our proof apparatus, and are therefore redundant. Their retention in our 

apparatus is merely to have shorter proofs. 

 

1.9 Summary 

 In this unit, we have been able to look at some of the means of natural deduction 

in rules of inference and replacement. We also looked at indirect proof, conditional proof 

and the rule of tautologies. 

 

1.10 References and Further Readings 

Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 

 

1.11 Unit Exercises 

 I. Each of the following is a proof of validity for the indicated argument. State 

the ‘justification’ for each line that is not a premise. 

1. 1. P  .  Q 

 2. (P  v  R)  S /  P . S 

 3. P 

 4. P  v  R 

 5. S 

 6. P  .  S 

 

2. 1. (P  v  Q)  .  (R  v  T) 

 2. (P    S)  .  (Q   T) 

 3. S /  T  

 4. P  v  Q 
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 5. S  v  T 

 6. T 

 

3. 1. A   B 

 2. B   C 

 3. E   D 

 4. A  v  E /  C  v  D) 

 5. A    C 

 6. (A    C)  . (E    D) 

 

4. 1. (A  v  M)   R 

 2. (L  v  R) . R 

 3. (C  .  D)  v  (A  v  M) /  (C  .  D) 

 4. R 

 5. (A v M) 

 6. (C . D) 

 

5. 1. C 

 2. A   B 

 3. C   D 

 4. D   E /  E v B 

 5. C   E 

 6. C  v A 

 7. (C   E)  . (A  B) 

 8. E v B 

 

II. Construct a proof of validity fort each of the following arguments: 

1. P    Q 

 P  v  (S  .  T) 

 Q . R 

  

 

2. (P    Q)  .  (S    T) 

 N    O 

 (P  v  N)  .  (S  v  M) 

 Q  v  O 

 

3. (A  .  D)     C 

 (R  v  S)    (A  .  D) 



82  

 C    (A  .  D) 

 (R  v  S)    (A  .  D) 

 

4. (A  v  C)    B 

 A 

 (A  v  D)    (R  .  S) 

 (R  .  S)  .  B 

 

5. [A  .  (D  .  E)]    (B    E) 

 (D  .  E)  .  R 

 E    F 

 A  v  (D  .  E) 

 (D  .  E)    (B  v  E) 

  E  v  F 

 

III. Construct a proof of validity for each of the following arguments using your own 

abbreviation: 

1. If either the Super Eagles or the Black Stars win, then both Leventis United and 

Rangers International lose, the super Eagles win. Therefore, Leventis United loses. 

2. If Solarin joins, then the party’s social prestige will rise; and if Abiola joins then 

the party’s financial position will be more secure. Either Solarin or Abiola will 

join. If the party’s social prestige rises then Abiola will join; and if the party’s 

financial position becomes more secure then Mbakwe will join. Therefore, either 

Abiola or Mbakwe will join. 

3. If Dikko received the package then he took the train; and if he took the train, then 

he will not be late for the meeting. If the package was incorrectly addressed, then 

Dikko will be late for the meeting. Either Dikko received the package or the 

package was incorrectly addressed. Therefore, either Dikko took the train or he 

will be late for the meeting. 

4. If Lagos state Government takes the loan, then a housing estate will be 

constructed, whereas if Kano State takes the loan, then it will grow more wheat. If 

Rivers State takes the loan, it will construct more fish ponds; and if more fish 

ponds are constructed, then the Ministry of Agriculture will offer to lease them. 

Either Lagos or Rivers will take the loan. Therefore, either a housing estate or 

more fish ponds will be constructed. 

5. If the rains continue, then the floods increase. If the floods increase, then many 

homes will be swept away. If many homes will be swept away then a single gutter 

is not sufficient for the street. The rains continue, and either a single gutter is 
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sufficient for the street or the two planning engineers have made a mistake. 

Therefore, the town planning engineers have made a mistake. 

 

I. Each of the following is a proof of validity for the indicated argument. State the 

‘justification’ for each line that I not a premise: 

 1. 1. P     Q 

  2. R     Q/     P        R 

  3. Q     R 

  4. Q     R 

  5. P      R 

 

 2. 1. (P  . Q)      R 

  2. (P     R)     S /   Q     S 

  3. (Q  .  P)     R 

  4. Q      (P     R) 

  5. Q      S 

 3. 1. (P  .  Q)     R 

  2. Q /  P     R 

  3. (Q  .  P)   R 

  4. Q    (P    R) 

  5. P     R 

 

 4. 1. P  v  Q /  (P  .  Q)    Q 

  2. (P . Q)  

  3. (P . Q) v P 

  4. (P  .  Q) v P 

  5. P     Q 

  6. (P . Q)     Q 

 

 5. 1. (P . Q) v R /  P     R 

  2. R  v (P  .  Q) 

  3. (R  v  P)  .  (R  v Q) 

  4. R  v  P 

  5. R  v P 

  6. R    P 

  7. P     R 

  8. P     R 

 

II. Using the rules, prove that the following arguments are valid: 
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 1. (P  .  Q)    R 

  P 

  Q     R 

 

 

 2. (P  . Q)  v  (R  .  S) 

  P 

  R 

 

 3. (P  .  Q)     R 

  P  .  P 

  Q 

 

 

 4. P     Q 

  (R  .  P) 

   R     Q 

 

 5.  [(P  .  Q)  .  R]     S 

  L     [(R  .  P)  .  Q] 

   L  v  S 

 

III. Construct a proof of validity for each of the following arguments: 

1.  Either the President did not consider the possible effects of the raids or else 

he approved of them. He did consider the effects of the raids all right. So, 

he must approve of them. 

2. It is not the case that either the commander forgot or was not able to see the 

enemy troops. Therefore, the commander was able to see the enemy troops. 

3. If the chemical was poisonous, then the laboratory test would give positive 

results. Hence, if the chemical was poisonous, then either the laboratory test 

would give positive results or something was wrong somewhere. 

4. If the United Nations’ resolutions are fair and their enforcement is strict 

then Iraq will withdraw. If strict enforcement of the United Nations’ 

resolutions will make Iraq to withdraw, then our problem is a practical one. 

The United Nations’ resolutions are fair. Therefore, our problem is a 

practical one. 

5. Samuel Doe is to be condemned if he usurped power that was not rightfully 

his own. Either Samuel Doe was a legitimate ruler or else he usurped power 
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that was not rightfully his own. Samuel Doe was not a legitimate ruler.  So 

Samuel Doe is to be condemned.     

 

Construct a proof, using the rule of conditional proof, among others, for each of the 

following arguments: 

1. (P    Q)  .  (R    S) 

 (P  . R)    (Q  .  S) 

 

2. P    Q 

 (P . R)    S 

 (Q  .  S)   T 

 P    (R    T) 

 

3. (P . Q)  ≡ R 

 P    Q 

 P ≡ R 

 

4. [(A  v  B)  .  C]   D 

 (C    D)    (E    F) 

 E 

  A   F 

5. M   (N . O) 

 (N  v  O)    P 

 M    P 

 

For each of the following arguments, construct a proof which employs, among others, the 

rule of indirect proof: 

 1. (A  v  B)    (C    D) 

  (D v E)   (A . C) 

          D 

 2. D  v  (E  . F) 

  D    F 

          F 

 

 *3. P    (Q  .  R) 

  (Q  v  S)    T 

  S  v  P 

         T 
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 4. (P  .  Q)  v  R 

  R  v  Q 

           P    Q 

 

 5. (P  .  Q)    (R  .  S) 

  Q    S 

           P  v  Q 

 

I. Use the rule of conditional proof of verify that the following are tautologies: 

 1. (P    Q)    [(P    (P  .  Q)] 

 2. (Q    R)   [(P  v  Q)    (R  v  P)] 

 3. (P    Q)    [(Q    R)    (P    R)] 

 4. (P    Q)    [(P  .  R)    (Q  .  R)] 

 5. [(P  v  Q)    R]  {[(R  v  S)    T]    (P    R)} 

 

II. Use the rule of indirect proof to verify that the following are tautologies:  

 1. (P    Q)  v  (P    Q) 

 2. (P    Q)  v  (Q    P) 

 3. P  v  (P    Q) 

 4. [(P    P)  .  (P    P)] 

 5.  A  ≡  A 

 

Prove the following rules using any of the others: 

1. Modus Tollens  

2. Disjunctive Syllogism 

3. Constructive Dilemma  

4. Hypothetical Syllogism 

5. Exportation  

  



87  

Module 3: Predicate Calculus I 

Unit 1: Introducing Predicate logic 

Unit 2: Symbolising Propositions in Predicate Logic 

Unit 3: Truth and Falsity in Predicate Logic 
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Unit 1: Introducing Predicate logic 

1.1 Introduction 

1.2 Learning Outcomes 

1.3 Essentials of Predicate Logic 

1.4 Summary 

1.5 References and Further Readings 

 

1.1 Introduction 

 In this unit, we are going to begin our discussions on predicate logic. 

Although not entirely new or strange to you at this point, you will enjoy the unique 

feature of predicate logic as well as the rules involved. 

 

1.2 Learning Outcomes 

 At the end of this unit, the learners will be able to: 

1. Identify the essential features of predicate logic 

2. Apply the rules and understand the symbols peculiar to symbolic logic 

 

1.3 Essentials of Predicate Logic 

 In the last few units, we discussed the analysis and evaluation of arguments 

involving truth-functional compounds. The principles and techniques developed in those 

units are not appropriate for evaluating arguments involving categorical or singular 

propositions. Thus, the categorical syllogism, 

All Nigerians are Africans 

All indigenes of Oyo State are Nigerians 

Therefore, all indigenes of Oyo State are Africans. 

 

though valid, cannot be proven valid using techniques appropriate for arguments 

involving truth-functional propositions, similarly, the argument: 

All human beings are mortal beings  

Socrates is a human being 

Therefore, Socrates is a mortal being  

 

though valid, cannot be proven valid using techniques used for proving the validity of 

truth-functional arguments. At best, each of the above arguments will be symbolised as 

follows 

  A 

  B 

          C 

 



89  

which does not represent a valid argument. The reason for this may be either that there is 

a fault with the proof apparatus developed in the previous unit or that these propositions 

are of a logically different kind and thus require a different analysis. It is the latter 

suggestion that is favoured and will be pursued here. The tools for analysing and 

evaluating the above types of arguments involving non-compound propositions are 

provided by quantification theory or predicate logic. 

 Let us start by giving elements of the symbolic apparatus needed for the analysis 

of propositions like: 

 All human beings are animals  

 Some human beings are animal  

 No human beings are animals  

 Some human beings are not animals 

 Everything is animate  

 Something is animate  

 Nothing is animate  

 Something is not animate  

 Plato is a philosopher  

 Wolfhounds and terries are hunting dogs  

 If any bananas are yellow then they are ripe, and  

 Every daughter has a father but not every father has a daughter. 

The elements of our symbolic apparatus are: 

(1) Our five truth-functional connectives, namely: 

‘’ (wave or tilde) for negation  

‘.’ (dot) for conjunction  

‘v’ (vee or wedge) for disjunction  

‘’ (horseshoe) for conditional, and  

‘≡’ (triple bar) for biconditional 

(2) Upper-case letters ‘A’ to ‘Z’ shall be used to represent predicates, and are called 

predicate letters or predicate constants. 

(3) Greek letters ‘ϕ’ (phi) and ‘ψ’ (psi) shall erve as predicate variables. 

(4) Lower-case letters ‘a’ to ‘t’ shall serve as individual or subject letters or constants. 

(5) Lower-case letters ‘u’ to ‘z’ and the Greek letters µ (mu) and v (nu) shall serve as 

individual or subject variables.  

(6) Quantifiers: 

(i) Existential Quantifier: 

(Ǝx) or (Ǝy), that is, an inverted ‘E’ accompanied by a subject variable, 

enclosed within parentheses. 

(ii) Universal Quantifier: 

(x) or (y), that is, an individual variable within parentheses 



90  

We shall soon see how these symbols are used. For now, let us look at the logical types 

and structures of propositions involved in predicate logic. 

 All the propositions to be considered are either:  

(i) Singular propositions, or  

(ii) General propositions 

A singular proposition says of an individual person, place or thing, that it or she or he has 

a property, characteristic or attribute. For example, each of the following is a singular 

proposition: 

1. Plato is a philosopher  

2. Plato is not a statesman. 

3. If Plato is Greek, then he is a philosopher. 

4. Plato is the teacher of Aristotle. 

5. The University of Ibadan hosts the 2023 NUGA games. 

6. If the President visits Abeokuta, he will receive a tumultuous welcome. 

7. Ilorin is to the north-west of Ibadan. 

Each of the above sentences speaks about an individual and says of that individual that it 

or he or she has one attribute or other. For example, 1-4 speak of Plato, (1) that he is a 

philosopher, (2) that he is not a statesman (3) that if he is Greek, then he is a philosopher, 

and (4) that he is the teacher of Plato. Similarly, (5) says that the University of Ibadan 

(which is a corporate individual) hosts the 2022 NUGA games, (6) says that if the 

President visits Abeokuta, he will receive a tumultuous welcome. Last, (7) says of Ilorin 

that it is to the north-west of Ibadan. An attribute, characteristic or property is also called 

a predicate. 

 

1.4 Summary 

 What we have done in this unit is to expose some of the main features of predicate 

logic and the connectives and what they mean. These are essential in making us to now 

proceed to other important crucial features such as how to symbolise and make 

propositions valid or otherwise. 

 

1.5 References and Further Readings 

 Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 
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Unit 2: Symbolising Propositions in Predicate Logic 

1.1 Introduction 

1.2 Learning Outcomes 

1.3 How to Symbolise in Predicate Logic 

1.4 Summary 

1.5 References and Further Readings 

1.6 Unit Exercises 

 

1.1 Introduction 

In this unit, we are going to consider the various ways of using symbols and 

connectives in predicate logic to examine the validity of propositions. We shall 

consider how to symbolize simple propositions and complex propositions 

 

1.2 Learning Outcomes 

By the end of this unit, the learners must be able to: 

1. Identify and apply the relevant connectives for predicate logic 

2. Develop the ability to symbolize simple and compound propositions 

 

1.3 How to Symbolise in Predicate Logic 

 Since a singular proposition involves an individual and its or her or his attribute or 

predicate, it means that to symbolise a singular proposition we need a predicate letter, to 

represent the predicate and an individual letter, to represent the individual. Thus, the 

singular proposition. 

 Plato is a philosopher 

            will be symbolised as  

  Pp 

‘P’ representing the predicate expression ‘…..is a philosopher’ and ‘p’ representing the 

individual ‘Plato’; the convention is to write the predicate letter to the left of the 

individual letter. Similarly, the singular proposition: 

 Plato is not a statesman  

will be symoblised as:  

  Sp 

‘S’ standing for the predicate expression ‘…is a statesman’, and the negation sign 

modifying the predicate letter. Similarly, the singular proposition, 

 Plato is the teacher of Aristotle  

will be represented as:  

  Tp 

if ‘T’ is used to stand for the predicate expression ‘….is the teacher of Aristotle’. Again, 

the singular proposition: 

 The University of Ibadan hosts the 2023 NUGA games  
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will be symbolised as: 

   Hu  

If we use ‘u’ to represent ‘the University of Ibadan’ and ‘H’ to represent ‘…hosts the 

2002 NUGA games’. 

 More complex propositions will be symbolised using the same principles. Thus, 

the compound proposition: 

 If Plato is Greek, then he is a philosopher 

will be represented as:  

 Gp  Pp 

If we use ‘p’ for ‘Plato’ ‘G’ for ‘…is Greek’ and ‘P’ for ‘…is a philosopher’. ‘He’ in the 

consequent of the above conditional proposition obviously refers to ‘Plato’ in the 

antecedent. Similarly, the compound proposition: 

 The President visits Abeokuta and receives a tumultuous welcome  

will be represented as: 

  Vp . Rp 

If ‘p’ stands for ‘President’, ‘V’ stands for ‘…visits Abeokuta’ and ‘R’ for ‘…receives a 

tumultuous welcome’. Quite clearly, the ‘President’ that occurs in the first conjunct is 

implied in the second conjunct. 

General Propositions 

The following propositions are examples of general propositions: 

1. Everything is eternal. 

2. Nothing is eternal.  

3. Something is eternal. 

4. Something is not eternal. 

5. A few of them are teachers. 

6. Many of them are lecturers or consultants. 

7. All lecturers are professors. 

8. No lecturers are professors. 

9. Some lecturers are professors. 

10. Some lecturers are not professors. 

11. If anyone is a member, then he will be admitted. 

12. People are eligible for the Shell Essay Competition if and only if they are 

on the academic staff of a University. 

13. If Plato is philosopher, then all philosophers are statesmen. 

14. If some philosophers are statesmen, then all statesmen are thinkers. 

15. If all philosophers are statesmen, then some statesmen are thinkers. 

16. If all philosophers are statesmen, then all statesman are thinkers. 

17. If some philosophers are statesmen, then some statesmen are thinkers. 

As is evident from the examples above, a proposition is general if it says something (or 

affirms a predicate) of some or all individuals of a certain kind. For example, each of 
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propositions (1) to (4) says of all or some individuals either that they are eternal or that 

they are not eternal. A general proposition is also called a quantified proposition. When a 

general proposition is about every individual (in a universe of discourse) it is universally 

quantified; if a general proposition is about one or more, but not all, individuals (in a 

universe of discourse) then it is existentially quantified. 

 The notion of a universe of discourse is important here, since even in real life we 

seldom talk or write about absolutely everything (plants, animals, minerals, artefacts, 

human beings, etc., all together). The notion of universe of discourse is introduced to 

enable us to limit the class of individuals to which a quantifier refers. Thus, in saying ‘All 

lecturers are professors’, we must be understood to be talking about groups of human 

beings, or more specifically, academics, one designated by the term ‘lecturers’ and 

another by the term ‘professors’. Similarly, in ‘If anyone is a member, then he will be 

admitted’ we must be understood to be talking about people, not tables or chairs. 

Therefore, when we talk about ‘everything’ or ‘something’, it is useful to be able to 

specify what individuals or types of individuals are intended. In the above examples, 1, 2, 

7, 8, 11 and 12 are universally quantified propositions, while 3, 4, 5, 6, 9, and 10 are 

existentially quantified propositions. 

 There is also a distinction, among quantified propositions, between singly general 

propositions and multiply general propositions. Singly general propositions contain only 

one quantifier, while multiply general propositions contain more than one quantifier. 

Among the above examples, 14 to 17 are multiply general propositions. Example 13 is a 

combination of a singular with a general proposition. 

 

Symbolising universally quantified propositions containing one quantifier. 

Universally quantified propositions can only be symbolised using the sign for the 

universal quantifier ‘(x)’, that is, the variable ‘x’ enclosed in parentheses, and read ‘for 

all x’ or ‘for any x’. (Note that the variable could have been ‘u’ ‘v’ ‘w’ ‘y’ or ‘z’, in 

which case the universal quantifier would be written (y) or (z), read ‘for all y’’ or ‘for any 

y’, or ‘for all z’ or ‘for any z’. This reading of the symbol, ‘(x)’ suggests, correctly, that 

all universally quantified propositions must be ‘translated’ or rewritten in such a way that 

the quantifier, the predicate and the individual variable will be evident. Thus, to say: 

(1) Everything is eternal 

is to say, 

 for all x, x is eternal 

symbolised  

 (x) Ex 

That is, using ‘Ex’ for ‘x is eternal’. Similarly: 

(2) Nothing is eternal  

Translates for all x, x is not eternal  

Symbolised;  
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 (x)Ex 

Again, to say: 

 (7) All lecturers are professors 

is to say:  

 For all x, if x is lecturer, then x is a professor  

If we use ‘Lx’ for ‘x’ is a lecturer’ and ‘Px’ for ‘x is a professor’, this will be symbolised  

 (x) (Lx  P x) 

Similarly, to say: 

  

 

(8) No lecturers are professors 

is to say: 

 For all x, if x is a lecturer, then x is not a professor  

Symbolised:  

 (x) Lx  Px) 

Similarly, the compound proposition  

 (11) If anyone is a member, then he will be admitted  

translates into  

 For all x, if x is a member, then x will be admitted. 

Using ‘Mx’ for ‘x is a member’, and ‘Ax’, for ‘x will be admitted’, then the proposition 

can be symbolised: 

 (x) (Mx  Ax) 

Similarly, the compound proposition:  

(12) People are eligible for the Shell Essay Competition if and only if they are 

on the academic staff of a University  

translates into: 

For all x, x is eligible for the Shell Essay Competition if and only if x is on the 

academic staff of a University 

If ‘Ex’ represents ‘x is eligible for the Shell Essay Competition’ and ‘Ax’ represent ‘x is 

on the academic staff of a University’, the proposition is symbolised:  

  (x)(Ex ≡ Ax) 

Scope of a quantifier: Every quantifier is said to have a scope. A quantifier is placed 

immediately to the left of the formula or schema that falls within its scope. In the above 

examples (7), (8), (11) and (12), we introduced parentheses to indicate the scope of the 

quantifier. In each case, to leave out the parentheses will render the expression an 

incorrect representation of the original proposition, since it will exclude from the scope of 

the quantifier what properly falls within its scope. Thus, the expression: 

(a) (x)Lx  Px 

is logically different from the expression   

(b)  (x) Lx  Px) 
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If “Lx” represents x is a lecturer and Px represents ‘x is a professor’, what (a) says is that 

if everything is a lecturer then x is a professor; (b) on the other hand, says that all 

lecturers are professors. 

Symbolising Existentially Quantified Propositions: Existentially quantified 

propositions can only be symoblised using the symbol for the existential quantifier ‘(Ǝx)’, 

that is, an inverted ‘E’ and the variable ‘x’ enclosed in parentheses, and read: ‘there exists 

an x’, or ‘there is an x’ (Note that the variable could have been ‘u’, ‘v’, ‘w’, ‘y’ or ‘z’. 

This reading of the symbol ‘(Ǝx)’ suggests that an existentially quantified proposition 

presupposes: 

(1) the existence of the entity being described, and  

(2) at least one such entity.   

In other words, existentially quantified propositions have existential import. All 

existentially quantified propositions must be ‘translated’ in such a way that the quantifier, 

the predicate and the individual variable will be evident. However, though a true 

existentially quantified proposition presupposes the existence of at least one entity, it is 

different from a singular proposition in that it does not name a specific individual.  

 

Thus, to say: 

 (3) Something is eternal  

translates into: 

 There is an x (such that) x is eternal 

If ‘Ex’ represents ‘x is eternal’, this is symbolised: 

  (Ǝx)Ex 

Similarly, the proposition: 

 (4) Something is not eternal  

translates into: 

 There is an x (such that) x is not eternal 

which is symoblised: 

  (Ǝx)Ex 

Again, the proposition: 

 (5) A few of them are teachers 

translates into 

 There is an x (such that) x is a teacher  

If ‘Tx’ represents ‘x is a teacher’ this is symbolised: 

  (Ǝx)Tx 

Similarly, the proposition; 

 (6) Many of them are lecturers or consultants 

translates into: 

 There is an x (such that) x is either a lecturer or a consultant. 
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If ‘Lx’ represents ‘x is a lecturer’ and Cx’ represents ‘x is a consultant the proposition is 

symbolised: 

  (Ǝx) (Lx v Cx) 

 

Further, the proposition:  

 (9) Some lecturers are professors 

translates into 

 There is an x (such that) x is a lecturer and x is a professor. 

If ‘Lx’ represents ‘x is a lecturer’ and ‘Px’ represents ‘x is a professor’, then the 

proposition is symbolised: 

  (Ǝx) (Lx . Px) 

Similarly, the proposition: 

 (10) Some lecturers are not professors  

translates into: 

 There is an x (such that) x is a lecturer and x is not a professor  

which is symbolised: 

  (Ǝx)(Lx . Px) 

 Care must be taken in symbolising propositions containing the particles ‘a’, ‘an’ 

and ‘the’. For example, the proposition: 

 (18) A tiger escaped from the University of Ibadan Zoo  

translates into: 

 There is an x (such that) x is a tiger and x escaped from the University of Ibadan 

Zoo 

If ‘Tx’ represent ‘x is a tiger’ and ‘Ex’ represents ‘x escaped from the University of 

Ibadan Zoo’, then the proposition is symbolised: 

  (Ǝx) (Tx . Ex) 

However, the proposition: 

 (19) A tiger is a carnivore 

translates into: 

 For all x, if x is a tiger, then x is a carnivore  

If ‘Tx’ represents ‘x is a tiger’ and ‘Cx’ represents ‘x is a carnivore’, then the proposition 

is symbolised: 

  (x) (Tx  Cx) 

The reason for the difference is that (18) is talking about a specific tiger, that is, the one 

that escaped from the University of Ibadan Zoo, whereas (19), in spite of its form, is 

talking about all tigers. 

Similarly, the proposition: 

 (20) A hijacked passenger plane crashed into the Pentagon building. 

translates into: 
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There is an x (such that) x is a hijacked passenger plane and x crashed into the 

Pentagon building. 

If ‘Hx’ translates ‘x is a hijacked passenger plane’ and ‘Cx’ represents ‘x crashed into 

Pentagon building’, then the proposition is symbolised; 

  (Ǝx)(Hx . Cx). 

However, the proposition: 

 (21) A supersonic aeroplane travels faster than the speed of sound  

translates into 

 For all x, if x is supersonic aeroplane, then ‘x travels faster the speed of sound 

If ‘Sx’ represent ‘x is a supersonic aeroplane, and ‘Tx’ represents ‘travels faster than the 

speed of sound’, then the proposition is symbolised 

  (x)(Sx  Tx) 

Furthermore, the proposition  

 (22) The glass door is broken  

translates into 

 There is an x (such that) x is a glass door and x is broken 

If we use ‘Fx’ for ‘x is a glass door’ and ‘Bx’ for ‘x is broken’, then the proposition will 

be symbolised: 

  (Ǝx)(Gx . Bx)  

However, the proposition: 

 (23)  The giraffe is herbivorous 

translates into 

 For all x, if x is a giraffe, then x is herbivorous 

Using ‘Gx’ for ‘x is a giraffe’ and ‘Hx’ for ‘x is herbivorous’, we symbolise the 

proposition as follows: 

 (x) (Gx  Hx) 

 Some propositions containing the particle ‘and’ are correctly translated using the 

sign of disjunction rather than the sign of conjunction. For example, the proposition: 

 (24)  Architects and engineers are members of professional organisations. 

may be translated either as: 

(i) for all x, if x is an architect, then x is a member of a professional 

organisation, and for all x, if x is an engineer, then x is a member of a 

professional organisation  

or else: 

(ii) for all x, if either x is an architect or x is an engineer, then x is a member of 

a professional organisation. 

If ‘Ax’ is used for ‘x is an architect’, ‘Ex’ is used for ‘x is an engineer’, and ‘Mx’ is used 

for ‘x is a member of a professional organisation’, then (i) will be symbolised: 

  [(x) (Ax  Mx)] . [(x) (Ex  Mx)] 

and (ii) will be symbolised: 
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  (x)[(Ax v Ex)  Mx] 

Note that it will be incorrect to translate the proposition as: 

For all x, if x is an architect and an engineer, then x is a member of a professional 

organisation, 

which will be symbolised:  

  (x)[(Ax . Ex)  Mx] 

This is because the two propositions have different meanings and truth-conditions. Thus, 

  (x)[(Ax v Ex)  Mx] 

will be true just in case x is either an architect or an engineer, whereas for  

  (x)[(Ax . Ex)  Mx] 

to be true, x must be both an architect and an engineer. At the least, the latter 

symbolisation says more than the original proposition. In other words, it does not convey 

the correct sense of the original proposition: 

 Propositions which do not have explicit quantifiers must also be treated with 

caution. For example, the proposition: 

 Academic staff are present 

should correctly be translated: 

 There is an x such that x is an academic staff and x is present which is symbolised, 

as follows, if we use ‘Ax’ for ‘x is an academic staff’ and ‘Px’ for ‘x is present’: 

  (Ǝx)(Ax . Px)  

Note that the proposition cannot be translated 

 For all x, if x is an academic staff then x is present 

which is symbolised 

  (x)(Ax  Px) 

which says more than is intended by the original proposition. However, the proposition: 

 oranges are fruits 

must be translated: 

 For all x, if x is an orange, then x is a fruit  

If we use ‘Ox’ for ‘x is an orange’ and Fx’ for ‘x is a fruit’ then the proposition will be 

symbolised: 

  (x) (Ox  Fx) 

since the original proposition is intended to refer to all oranges. 

 Finally, propositions such as: 

 Some policemen have excellent credentials  

cannot be translated: 

 There is an x (such that) if x is a policeman, then x has excellent credentials 

Symbolised (using ‘Px’ for ‘x is a policeman’ and ‘Ex’ for ‘x has excellent credentials’): 

  (Ǝx) (Px  Ex)  

but must be translated: 
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 There is an x (such that) x is a policeman and x has excellent credentials 

and symbolised: 

  (Ǝx) (Px . Ex) 

The two formulas have completely different truth-conditions. The former will be true if 

anything whatever exists, provided that it is not a policeman. The latter, however, will be 

true only if there is at least one policeman who has excellent credentials. 

 

1.4 Summary 

 What we have done in this unit is to identify the various ways or means through 

which propositions can be symbolised in predicate logic. 

 

1.5 References and Further Readings 

 Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 

 

1.6 Unit Exercises 

 Symbolise each of the following statements, each case using the suggested 

nations; 

 1. Reporters are present. (Rx, Px) 

 2. Nurses are always considerate. (Nx, Cx) 

 3. Snake bites are sometimes fatal. (Sx, Fx) 

 4. Only pacifists are Rotarians. (Px, Rx) 

 *5. To be a swindler is to be a thief. (Sx, Tx) 

 6. Doctors and lawyers are professional people. (Dx, Lx, Px,) 

 7. Any authors are successful if and only if they are well read. (Ax, Sx, Wx) 

 8. A horse is gentle only if it has been well trained (Hx, Gx, Tx) 

 9. Bees and wasps sting if they are either angry or frightened. (Bx, Wx, Ax, 

Fx) 

*10. A professor is a good lecturer if and only if he is both well informed and 

entertaining. (Px, Gx, Wx, Ex) 
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Unit 3: Truth and Falsity in Predicate Logic 

1.1 Introduction 

1.2 Learning Outcomes 

1.3 How to Identify Truth and Falsity in Predicate Logic 

1.4 Summary 

1.5 References and Further Readings 

 

1.1 Introduction 

 In this unit, we focus on an important issue in any aspect of logic – the ways 

of determining truth-values. So, in the present context, the agenda is to consider 

the various ways of deducing truth and false propositions in predicate logic. 

 

1.2 Learning Outcomes 

 In this unit, we should have learned to: 

1. Identify the various ways or means of attaining truth-values in predicate logic 

2. Identify the various connectives and what truth-values they imply 

 

1.3 How to Identify Truth and Falsity in Predicate Logic 

1. Singular Propositions: A singular proposition, like an atomic or simple 

proposition in truth-functional logic, is either true or false. Thus, for example, the 

singular proposition represented as  

  Hs 

(Read: ‘Socrates is human’) is either true or false, since it ascribes an attribute ‘…is 

human’ to a specific individual, Socrates. The proposition is true if Socrates is indeed 

human. Similarly, the singular proposition; 

  Ha 

is either true or false since, like the one above, it ascribes a definite attribute say, ‘x is 

human’ to a specific individual, say, Aristotle. The same can be said for ‘Hb’, ‘Hc’, ‘Hd’ 

etc. 

 If the singular proposition is compound the truth-value will be determined in 

accordance with the truth-conditions of the connective involved. Thus, the proposition: 

  Hs  Ms 

(Read: if Socrates is human then he is mortal) is false just in case Socrates is human but 

is not mortal. In other words, it is false only if the antecedent is true and the consequent 

false; it is otherwise true. Similarly, the singular proposition represented by: 

  Hs . Ms 

interpreted as: Socrates is human and Socrates is mortal is true just in case Socrates is 

both human and mortal; that is, ‘Hs . Ms’ is true only if both conjuncts are true; it is false 

if any or both of the conjuncts are false. 
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2. Quantified Propositions:  Universally quantified propositions as well as 

existentially quantified propositions can be either true or false. Thus, for example, the 

universally quantified proposition: 

   (x)Hx 

(Interpreted as: ‘Everything is human’) is either true or false. It is true if everything is 

indeed human, Thus, if ‘(x)Hx’ is true it means that ‘Ha’, ‘Hb’, ‘Hc’, ‘Hd’ … ‘Hn’ are all 

true. In other words, the truth of ‘(x)Hx’ implies the truth of a compound conjunction of 

‘Ha’, ‘Hb’ ‘Hc’ ‘Hd’ … ‘Hn’, which are all instantiations of the matrix of the universally 

quantified proposition, ‘(x)Hx’. 

 Similarly, the existentially quantified proposition  

   ‘(Ǝx)Hx’ 

(Interpreted as: ‘Something is human’) is either true or false, ‘(Ǝx)Hx’ is true if at least 

one thing is human. Thus ‘(Ǝx)Hx’ is true if ‘Ha’ or ‘Hb’ or ‘Hc’ or ‘Hd’ etc is true. In 

other words, the truth of ‘(Ǝx)Hx’ implies the truth of a disjunction of ‘Ha’, ‘Hb’, ‘Hc’, 

‘Hd’ … ‘Hn’ which are all instantiations of the matrix of the existentially quantified 

proposition, ‘(Ǝx)Hx’. 

 If the matrix of the quantified proposition is compound, the truth-value of each 

instantiation of the matric will be determined in accordance with the truth-conditions of 

the connective involved. Thus, the universally quantified proposition: 

  (x)(Hx  Mx) 

(Interpreted as; ‘All human beings are mortal’) is true just in case the conjunction of ‘Ha 

 Ma’, ‘Hb  Mb’, ‘Hc  Mc’, ‘Hd  Md’ etc, is true. Any of the instantiations is false 

just in case the antecedent is true and the consequent is false. 

 Similarly, the existentially quantified proposition: 

  (Ǝx)(Nx . Ax) 

(Interpreted as: ‘Some Nigerians are Africans’) is true just in case the disjunction of ‘Na . 

Aa’, ‘Nb . Ab’, ‘Nc . Ac’ etc, is true. Now, any of the disjuncts is true if both its 

constituent conjuncts are true, that is, just in case there is one person who is both a 

Nigerian and an African. 

3. Propositional Functions: A propositional function is any formula which contains 

a free occurrence of a variable. A variable occurs free in a formula if it is not bound by a 

quantifier. A variable is bound by a quantifier if the variable falls within the scope of the 

quantifier. The scope of a quantifier is indicated by punctuation marks, namely, 

parentheses, brackets and/or braces. The following formulas are all examples of 

propositional functions: 

  Hx 

  Hx  Mx 

  Hx . Ma 

  (x)Hx  Mx 

  (x)(Hx  Mx) ≡ Hx 
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  (Ǝx)Hx . Mx 

  (Ǝx)(Hx . Mx) . Ax  

 A propositional function is neither true nor false. The reason is obvious. For 

example, ‘Hx’ read ‘x is human’ does not say anything about any specifiable individual; 

so its truth-value is indeterminable. A propositional function can be turned into a 

proposition either by replacing the variable with an individual constant, or by quantifying 

over the free variable. Thus, the propositional function, ‘Hx’, can be turned into a 

proposition by replacing ‘x’ with ‘a’, making it ‘Ha’, or by quantifying over it, having 

‘(x)Hx’ or ‘(Ǝx)Hx’. Conversely, a proposition can be turned into a propositional 

function either by replacing an individual constant with an individual variable, or by 

dropping a quantifier, or by removing a part of a formula from the scope of a quantifier. 

Squares of Oppositions Involving Quantified Propositions: A relation of opposition 

holds between different sets of the following propositions: ‘(x)Hx’, ‘(x)Hx’, ‘(Ǝx)Hx’ 

and ‘(Ǝx)Hx’. In a universe containing at least one individual, ‘(x)Hx’ and ‘(x)Hx’ are 

contraries, that is, they cannot both be true, though they may both be false. In such a 

universe ‘(Ǝx)Hx’ and ‘(Ǝx)Hx’ are sub-contraries, that is, they cannot both be false 

and may both be true. Similarly, ‘(x)Hx’ and ‘(Ǝx)Hx’ are contradictories, as are 

‘(x)Hx’ and ‘(Ǝx)Hx’, that is, members of each set cannot both be true, nor can they 

both be false. In other words, the truth of one member of the set implies the falsity of the 

other, and the falsity of one member of the set implies the truth of the other. Lastly, in a 

universe containing at least one individual, the truth of (x)Hx implies the truth of 

‘(Ǝx)Hx’, just as the truth of ‘(x)Hx’ implies the truth of ‘(Ǝx)Hx’. If we use our 

predicate variable ‘ϕ’, we can generalise the above results in the following square array: 

 

 

 

 

 

 

 A relation of opposition also holds between our traditional standard-form 

categorical propositions. Thus, take our traditional A, E, I, O propositions symbolised as 

follows: 

  (x) (Hx  Mx) read: All human beings are mortal beings 

  (x) (Hx  Mx) read: No human beings are mortal beings 

  (Ǝx) (Hx . Mx) read: Some human beings are mortal beings  

  (Ǝx) (Hx . Mx) read: Some human beings are mortal beings 

In a universe containing one individual, say, ‘a’, if ‘Ha’ is false and ‘Ma’ is true, then, (x) 

(Hx  Mx) is true, while ‘(Ǝx) (Hx . Mx)’ is false. Similarly, in such a universe ‘(x) (Hx 

 Mx)’ is true while ‘(Ǝx) (Hx . Mx)’ is false. However, none of the other relations of 

 

 

 

 

 

 

 

(Ǝx)ϕx sub-contraries (Ǝx)ϕx 

(x)ϕx contraries (x)ϕx 
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the traditional square of opposition holds. Thus, if ‘Ha’ is false and ‘Ma’ is true, then in a 

universe containing at least one individual, both ‘(x) (Hx  Mx) and (x) (Hx  Mx)’ are 

true, thus not being contraries. Similarly, both ‘(Ǝx) (Hx . Mx)’ and ‘(Ǝx) (Hx . Mx)’ 

will be false, thus not being sub-contraries. To generalise from all this, using our 

predicate variables ‘ϕ’ and ‘ψ’, what remains of the ‘traditional’ square of opposition is 

the following: 

 

 

 

 

 

 

 

 

That is to say, ‘(x) (ϕx  ψx)’ and ‘(Ǝx) (ϕx . ψx)’ are contradictories, just as are 

‘(x)(ϕx  ψx)’ and ‘(Ǝx) ϕx . ψx)’. 

Quite clearly, these squares of opposition afford us some inferences. Thus, from the truth 

of ‘(x)ϕx’ we may infer the falsity of ‘(x)ϕx’, since they are contraries. Similarly, from 

the falsity of ‘(Ǝx)ϕx’ we may infer the truth of ‘(Ǝx)ϕx since they are sub-contraries, 

just as we may infer the falsity of ‘(Ǝx)(ϕx . ψx)’ from the truth of ‘(x) (ϕx  ψx)’, since 

they are contradictories. 

 

Quantifier Equivalence: Every universally quantified statement can be expressed in 

terms of an existentially quantified statement. Similarly, every existentially quantified 

statement can be expressed in terms of a universally quantified statement. Thus, to say 

 (x) Hx (read: Everything is human) 

is to say: 

~(ⱻx)~Hx (read: It is not the case that anything exists that is not human).  

Similarly, to say 

(ⱻx)Hx (read: Something is human) 

is to say: 

~(x)~Hx (read: It is not true that nothing is human). 

Again, to say that: 

(x)~Hx (read: Nothing is human) 

is to say: 

 ~(ⱻx)Hx (read: It is false that anything exists which is human). 

Similarly, to say: 

 (ⱻx)~Hx (read: Something is not human) 

is to say: 

 ~(x)Hx (read: It is not true that everything is human). 

 

 

 

 

 

 

 

(Ǝx)(ϕx . ψx) (Ǝx)(ϕx . ψx 

(x)(ϕx  ψx (x)(ϕx  ψx 
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These results can be generalised into the following logically equivalent formulas:  

 (x) Փx   ≡  ~(ⱻx)~Փx 

 (x)~Փx   ≡  ~(ⱻx) Փx 

 (ⱻx) Փx  ≡ ~(x)~Փx 

 (ⱻx)~Փx ≡ ~(x)Փx 

  

More complex formulas can be handled in the same way. Thus, to say:  

 (x)(Hx  Mx) (read: All humans are mortal) 

is to say: 

 ~(ⱻx)(Hx . ~M) (read: There is no human that is not mortal). 

 

 

Similarly, to say: 

 (ⱻx) (Hx . Mx) (read: Some humans are mortal) 

is to say: 

 ~(x) (Hx  ~Mx) (read: It is not true that nothing human is mortal), 

and so on. We can generalise these logically equivalent formulas as follows: 

 (x)(Փx  ѱx)  ≡ ~(ⱻx) (Փx . ~ѱx) 

(x)(Փx  ~ ѱx) ≡ ~(ⱻx) (Փx . ѱx) 

 (ⱻx) (Փx . ѱx)  ≡ ~(x) (Փx  ~ ѱx) 

(ⱻx) (Փx . ~ѱx) ≡ ~(x) (Փx  ѱx) 

 

The correctness of these equivalences can be seen from the square of opposition. Thus, 

for example, since ‘(x)Փx’ is the contradictory of ‘(ⱻx)~Փx’, the addition of the negation 

sign to any of them will guarantee their equivalence. Thus, the addition of the negation 

sign to ‘(x)Փx’, that is ‘~(x)Փx’ will make it equivalent to ‘(ⱻx)~Փx’ and vice versa. 

Similarly, since ‘(x)(Փx  ѱx)’ is the contradictory of ‘(ⱻx)(Փx . ~ѱx)’, the addition of 

the negation sign to any of them will guarantee their equivalence. These equivalences can 

be adopted as rules, called Quantifier Negation (QN). 

 

1.4 Summary 

 This unit has been able to examine the various means through which truth and 

falsity can be deduced in predicate logic. 

 

1.5 References and Further Readings 

 Bello, A.G.A. (2000). Introduction to Logic Ibadan: Ibadan University Press 

Copi, I., Cohen, C., & McMahon, K. (2014). Introduction to Logic. Harlow: 

Pearson Education Limited 

Offor, F. (2010). Essentials of Logic. Ibadan: Book Wright Nigeria Publishers 
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Module 4: Predicate Calculus II 

Unit 1: Validity in Predicate Logic 

Unit 2: Invalidity in Predicate Logic 
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Unit 1: Validity in Predicate Logic 

1.1 Introduction 

1.2 Learning Outcomes 

1.3 Determining Validity in Predicate Logic 

1.4 Summary 

1.5 References and Further Readings 

1.6 Unit Exercises 

 

1.1 Introduction 

 Units in previous modules have been dedicated to the various ways of becoming 

familiar with the nitty-gritty of predicate logic. In this module, we take this bold step 

even further as we now turn to see how validity can be determined in predicate logic. 

 

1.2 Learning Outcomes 

 In this unit, the learners are expected to: 

 Identify the means of attaining validity in predicate logic 

 Solve relevant exercises that will deepen understanding 

 

1.3 Determining Validity in Predicate Logic 

 The validity of arguments in predicate logic can be demonstrated by using the 

method of natural deduction. As we remarked in our discussion of this method in truth-

functional logic, if an argument is valid, then it will be possible to produce a proof of its 

validity. However, our inability to produce a proof in a particular instance does not 

necessarily imply that the argument is not valid; it may have something to do with the 

student ability. 

 Before we discuss some of the rules needed to prove arguments in predicate logic, 

it is necessary to clarify a point about the distinction we made in between a proposition 

and a propositional function. A proposition, whether singular or general, may be either 

true or false. A propositional function, on the other hand, is neither true nor false. 

However, in constructing proofs of validity in predicate logic, both propositions and 

propositional functions will have to be treated as if they are either true or false. This 

assumption will be found to be innocuous, but necessary, if we are to be able to make 

inferences from propositions to propositional functions, and from propositional function. 

It is only to be hoped that only propositions and no propositional functions, will occur as 

premises and conclusion, propositional functions occurring only as intermediate 

derivations between those premises and conclusion. 

 

Rules of Inference in Predicate Logic 

1.  All the rules discussed in truth-functional logic also apply in predicate logic. 

These include the rules of inference, the rule of replacement, the rule of 
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conditional proof and the rule of indirect proof. These rules apply to the matrices 

(or matric functions) of quantified statements; the matrix of a quantified statement 

consists in the formula without the quantifier. For example, the matrix of the 

proposition. 

(x) (Hx  Mx) 

Is the propositional function  

  Hx  Mx 

whose substitution instances include ‘Ha  Ma’, ‘Hb  Mb’, ‘Hc  Mc’… ‘Hn  Mn’. 

Both the matrix and its substitution instances are amenable to the rules mentioned above. 

Thus, the conjunction of ‘Ha  Ma’ and ‘Ha’ implies ‘Ma’ in accordance with the rule of 

modus ponens. Similarly, ‘Ha . Ma’ implies ‘Ha’ in accordance with the rule of 

simplification. Again, from ‘Ha’ we can infer’~~Ha’ in accordance with rule of double 

negation. 

 However, it is possible to have a quantified proposition as part of a formula which 

undergoes transformation according to those rules. Thus, for example, the conjunction of 

‘(x)Hx  Hs’ and ‘(x)Hx’ implies ‘Hs’ in accordance with the rule of modus ponens. 

Similarly, ‘(x) Hx’ implies ‘(x)Hx v (x)Mx’ according to the rule of addition. Note that 

only the antecedent of ‘(x)Hx  Hs’ is a quantified statement, since the quantifier does 

not ‘scope’ over the consequent. Similarly, the disjunction ‘(x)Hx v (x)Mx’ is a 

disjunction of two quantified propositions. 

 

2.  Another set of the rules that apply to propositions in predicate logic are the 

Quantifier Negation (QN) rules. They are as follows: 

(i) (x)Փx ≡ ~(ⱻx)~Փx 

(ii) (ⱻx)~ Փx ≡ ~(x)~Փx  

(iii) (x)~Փx ≡ ~(ⱻx) Փx 

(iv) (ⱻx)~Փx≡ ~(x) Փx  

If we take these rules along with other rules, we can show that, ‘~(x)(Փx . ~Ψx)’, can be 

rewritten as ‘(x)(Փx  Ψx)’ thus: 

  

1. (x)~(Փx . ~Ψx) by QN(iii) 

2. (x)(~Փx v ~~Ψx) by DMT from (1) 

3. (x)(Փx  ~~Ψx) by MI from (2) 

4. (x)(Փx  Ψx) by DN from (3) 

This set of rules, as we have noted earlier, enables us to rewrite a universal quantifier in 

terms of (the negation of) an existential quantifier and vice versa, and to rewrite and 

existential quantifier in terms of (the negation of) a universal quantifier and vice versa. 

3.  The last set of rules to be discussed enables us to dd a quantifier to a formula or to 

drop a quantifier from a formula. Thus, there will be four such rules, two to add 
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quantifiers, either universal or existential, and two to drop quantifiers, either 

universal or existential. Like our rules of inference for truth-functional logic, these 

rules apply to whole lines only, never to parts of a line. The rules are: 

(i) Universal Instantiation (UI) 

(ii) Existential Generalisation (EG) 

(iii) Existential Instantiation (EI), and  

(iv) Universal Generalisation (UG) 

Let us discuss each rule in turn: 

(i) Rule of Universal Instantiation (UI): The import of the rule of universal 

instantiation is that if everything (in a universe of discourse) has a certain property then 

anything in that universe has the property. The rule enables us to make transition from a 

universally quantified proposition to any substitution instance of its matrix or matric 

function. In other words, the rule allows us to drop a universal quantifier, leaving its 

matrix or a substitution instance thereof. It is useful in this connection to make a 

distinction between the variable of quantification and the variable (or constant) of 

instantiation. The rule allows us to retain the variable of quantification as the instantiating 

variable, for example: 

1.  (x)Fx 

    Fx 

 

2.  (x)(Fx  Gx) 

    Fx  Gx 

 

3.  (x) [Fx .(Gx v Hx)] 

    Fx . (Gx v Hx) 

 

or to replace the variable of quantification with another variable, for example, 

 

1.  (x)Fx 

    Fy 

 

2.  (x)(Fx v Gx) 

    Fz v Gz 

 

3.    (x) [Fx  (Gx v Hx)] 

      Fy  (Gy v Hy) 

 

or to replace the variable of quantification with an individual constant, for example, 

 

1.    (x)Fx 
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Fa 

 

2.    (x)(Fx   Gx) 

Fa    Ga 

 

3.    (x)(Fx   Gx) 

Fb    Gb 

 

4.    (x)(Fx  Gx) 

Fc  Gc 

 

or to replace the occurrence of the variable of quantification with another variable which 

occurs free in the quantified proposition, for example, 

1.    (x)(Fx  Gy)  

Fy  Gy 

 

2.    (y)(Fx  Gy) 

Fx  Gx 

 

3.    (x) [(Fx  . Gy)  Hx] 

(Fy  . Gy)  Hy 

 

4.    (z)[Fx  (Gy  . Hz)] 

Fx  (Gy  . Hy) 

 

or to replace the variable of quantification with a new variable, for example, 

1.    (y)(Fy   Gb) 

Fx   Gb 

 

2.    (x)(Fx   Gy) 

Fz   Gy 

 

or to replace the variable of quantification with a constant that occurs in the premises, for 

example, 

1.    (z)(Fz   Gb) 

Fb  v Gb 

 

2.    (z)(Fz  Gb) 

Fb  Gb 



111  

 

or to replace the variable of quantification with a fresh constant, for example,  

1. (y)(Fy   Gb) 

       Fa    Fb 

 

2. (x)(Fx  Gy) 

    Fc    Gy 

However, the Rule of Universal Instantiation does not permit any of the following 

inferences: 

1.    (x)(Fx  Gx) 

Fx  Gy 

 

2.    (x)(Fx  Gx)  

Fa  Gx 

 

3.    (x)(Fx  Gx) 

Fb  Gx 

 

4.    (x) (Fx  Gx) 

Fz  Gx 

 

5.    (x) [Fx   (Gx  v Hx)] 

Fz  (Gy v Hy) 

 

because none is a ‘consistent’ or ‘uniform’ substitution of the variable of quantification 

with either another variable or with a constant. A substitution is consistent or uniform if it 

replaces every occurrence of the variable of quantification with the same variable of 

instantiation or constant throughout. However, in our example (1) the first occurrence of 

‘x’ is replaced with ‘x’ while the second is replaced with ‘y’. Similarly, in (3) the first 

occurrence of ‘x’ is replaced with ‘b’ while the second is replaced with ‘x’. Again, in (5) 

the first occurrence of the variable ‘x’ is replaced with ‘z’ whereas the last two are 

replaced with ‘y’.  

 Similarly, the rule does not permit the following inferences:  

 

1.    (x)(Fx  Gy) 

Fx  Gx 

 

2.    (x)(Fx  Gb) 

Fx  Gx 



112  

 

because the rule does not allow us to change any variable or constant other than the 

variable of quantification. In other words, constants and variables that occur free in a 

matric function cannot be changed; we are free to change only the variable of 

quantification.  

 Again, the rule does not allow any of the following inferences: 

 

1.    (x)Mx   Mc 

 Mc    Mc 

 

2.    (x)Fx    Ga 

 Fa   Ga 

 

because the rule is not applied to the whole line but to only the part of the line that is 

quantified. 

 Lastly, the rule does not permit any of the following types of inferences: 

 

1. ~(x)Fa 

    ~Fa 

 

2. ~(x)(Hx   Mx) 

    ~(Hx     Mx) 

 

because the rule cannot be applied to the negation of a general proposition. 

It is now possible to state the Rule of Universal Instantiation, along with its restrictions:  

From ‘(x)Փx’ it is permissible to infer either ‘Փa’ or ‘Փy’ provided that: 

(1) every ‘x’ in Φx is replaced by the constant ‘a’ in ‘Փa’ or by the variable 

‘y’ in ‘Փy’. 

(2) no other variable or constant in ‘Փx’ is changed or its status (for 

example, freedom) is tampered with. 

(3) ‘(x)Փx’ is the whole expression and not just part of a more complex 

expression. 

 

(4) ‘(x)’ in ‘(x)Փx’ is not preceded by the sign of negation. 

For the purpose of this rule all the following expressions are ‘(x)Փx’: 

  (x)Fx 

  (x)(Fx     Hx) 

  (x)(Fx     Gy) 

  (x)(Fy     Gx) 

  (x) [Fx   (Gx   v  Hx)] 
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‘Փa’ and ‘Փy’ are any substitution instances involving either a constant or a variable, no 

matter how complex.  

 The following proof illustrates the use of the Rule of Universal Instantiation. 

1. (x)(Ax     Rx)  Pr. 

2. ~Rs   Pr./    ~As 

3. As    Rs   I, UI 

4. ~As   3,2, MT. 

 

(ii) Rule of Existential Generalization (EG): The Rule of Existential Generalisation 

enables us to make a transition from a singular proposition such as ‘Fa’, ‘Fy’, ‘Fy. ‘Gy’, 

‘Fa . Gb’ to its existential quantification. What this amount to is that if an individual has a 

property, then it is right to conclude that there exists an individual who has that property. 

The rule allows us to existentially quantify over an individual constant, for example,  

 

1.   Fa 

 (ⱻy)Fx 

 

2.   Fa 

 (ⱻy)Fy 

 

3.   Ga   .  Fa 

 (ⱻy)(Gx   .   Fx) 

4.   Fa  v  Gb 

 (ⱻx)(Fx   v   Gb) 

 

5.   Fa   Gb 

 (ⱻy)(Fa    Gy) 

 

6.   Ba    Le 

 (ⱻy)(Bx     Le) 

 

7.   Ga   .  Fb 

 (ⱻx)(Gx   .  Fb) 

 

8.   Kd    (Md   v Nd) 

 (ⱻx)[Kx    (Mx  v  Nx)] 

 

9.   Fa   .  Ga 



114  

 (ⱻx)(Fx   .  Ga) 

 

10.     Fx 

 (Ǝy)Fy 

11.     Fx  Gy 

 (Ǝy)(Fx  Gy) 

12.     Fx . Gx 

 (Ǝy)(Fy . Gx)  

13.    ~Gx 

 (Ǝx)~Gx 

14.     Fy . (Gy . Hy) 

 (Ǝx) [Fx . (Gx . Hx) 

 However, the Rule of Existential Generalisation does not allow inferences of the 

following types: 

1.    Fx  . Gy 

 (Ǝz)(Fz . Gz) 

2.    Fx . Gy 

 (Ǝz)(Fz . Gw) 

3.    Fx ≡ ~Fy 

 (Ǝx)(Fx ≡ ~Fx) 

4.    Px . Ba 

 (Ǝx) (Px . Bx) 

because two different individual symbols (constant or variable) have been changed at 

once, using the same variable of quantification; in (1), (2), and (3), ‘x’ and ‘y’, in (4) ‘x’ 

and ‘a’. Similarly, the rule does not allow inferences of the following forms: 

1.    Ba  Le  

(Ǝx)Bx Le 

2.   ~Ad 

~(Ǝx) Ax 

because the quantification is applied to only part of the line, not the whole time. 

 It is now possible to state the rule of existential generalisation with its restrictions, 

as follows: 

From an expression of the form ‘Φa’ or one of the form ‘Φy’, it is permissible to infer an 

expression of the form ‘(Ǝx)Φx’, provided that: 

(1) every ‘a’ and only ‘a’ in ‘Φa’, or every ‘y’ and only ‘y’ in ‘Φy’ is replaced by a 

corresponding ‘x’ in ‘Φx’,  

(2) no other variable or constant in ‘Φa’ or ‘Φy’ is changed or its status (for example, 

its freedom) otherwise tampered with; 

(3) the existential quantifier governors the whole line, not merely part of the line. 
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(iii) Rule of Existential Instantiation (EI): The rule of existential instantiation is more 

difficult to describe than any of the previous two. What the rule says is that from an 

existentially quantified proposition we can derive any of its instances. In other words, if 

‘(Ǝx)Φx’ is true, then ‘Φa’ or ‘Φb’ or ‘Φc’ or ‘Φn’ is true. The problem, however, is that 

we do not know which substitution instance is true. This must remain essentially so 

because all we are justified in claiming from the truth of ‘(Ǝx)Φx’ is that something or 

other has Φ, but whatever it is must remain unknown. 

 However, we are free to assume that the instantiating individual, which is known, 

is either ‘x’ or ‘y’ or ‘z’ or ‘a’ or ‘a’, provided that whichever individual we assume is 

not confused with any known individual. In the context of a proof, what this means is that 

the individual symbol must not occur free prior to the assumption, or if it is a constant, it 

must not have a prior occurrence. Moreover, since the substitution instance is an 

assumption, it must be discharged, as it is the case with all legitimate assumptions to 

which the rule of conditional proof has made us accustomed. 

 Let us take the following argument: 

 Beninois and Ugandans are Africans  

 There are Beninois. 

 Therefore, some Beninois are Africans. 

Symbolised, we have: 

 (x) [(Bx v Ux)  Ax] 

 (Ǝx) Bx 

 (Ǝx) (Bx . Ax) 
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Its proof will proceed as follows: 

1. (x) [(Bx v Ux)  Ax] 

2. (Ǝx)Bx  /   (x) (Bx . Ax) 

3. By 

4. (By v Uy)  Ay   1, UI 

5. By v Uy    3, Add 

6. Ay      4, 5, MP 

7. By . Ay    3, 6, Conj. 

8. (Ǝx)(Bx . Ax)    7, EG 

9. (Ǝx) (Bx . Ax)    2, 3-8, EI 

The proof proceeds as follows: As part of the rule of existential instantiation, we assume 

that ‘y’ is ‘B’, the assumption being indicated by the usual arrow. The proof thence 

proceeds to Line 8 where we have the conclusion. The assumption is discharged by ruling 

a line under the expression in Line 8 and repeating the formula in Line 9. The 

justification consists in citing the line from which assumption derives, that is Line 2, and 

the lines within the scope of the assumption, that is, Lines 3 to 8. It will be noted that the 

‘variable’ in the assumption, the ‘unknown’ does not occur in the conclusion, thus 

showing that the assumed unknown can be dispensed with. It should also be noted that 

our unknown does not have a prior occurrence in the context. 

 However, each of the following examples contains a wrong application of the 

Existential Instantiation, thus: 

1. (Ǝx)Fx 

2. Ga  /   (Ǝx)(Fx . Gx) 

3. Fa 

4. Fa . Ga    3, 2, Conj. 

5. (Ǝx) (Fx . Gx)   4, EG 

6. (Ǝx) (Fx . Gx)   1, 3-5, EI 

The assumption here (Line 3) is illegitimate because the instantiating symbol ‘a’ already 

occurs in premise 2. Similarly, the application of EI in the following ‘proof’ is erroneous: 

 

 

1. (Ǝx)Sx 

2. (Ǝx)Sx  /    (Ǝx)(Sx . Sx) 

3. Sy 

4. Sy  

5. Sy . Sy   3, 4, Conj. 

6. (Ǝx)(Sx . Sx)   5, EG 

7. (Ǝx)(Sx . Sx)   2, 4-6, EI 

8. (Ǝx)(Sx . Sx)   1, 3-7, EI 



117  

The error here is that the instantiating symbol in 4, ‘y’, has already been introduced by EI 

in Line 3. Again, the application of the rule in the following example is erroneous:  

1. (Ǝy)(Fx ≡ Fy) /   (Ǝx)(Fx ≡ Fx) 

2. Fx ≡ Fx 

3. (Ǝx)(Fx ≡ Fx)   2, EG 

4. (Ǝx)(Fx ≡ Fx)    1, 2-3, EI 

The error here is that ‘x’ the instantiating symbol in Line 2, occurs free in the premise. 

 Let us now attempt to state the rule of Existential Instantiation, along with its 

restrictions: 

From an existentially quantified proposition ‘(Ǝx)Φx’, it is permissible to 

introduce any of its instances, ‘Φy’ or ‘Φa’ as an assumption. After any 

subsequent line in which the individual letter in the assumption does not occur 

free, it is permissible to discharge the assumption and infer that same line below 

the bar, provided that: 

 

(1) the individual symbol does not occur free in any line preceding the assumption 

or, if it is a constant, does not have a prior occurrence in the argument; 

(2) every ‘x’ in ‘Φx’ is replaced by a corresponding ‘y’ in ‘Φy’, or by a 

corresponding ‘a’ in ‘Φa’;   

(3) a new individual symbol is used for each application of EI; 

(4) when both EI and UI are needed, EI must be applied first; 

(5) the rule is applied to the whole line of the proof not to part of the line. 

(iv) Rule of Universal Generalisation (UG): The Rule of Universal Generalisation 

enables us to introduce a universal quantifier over a propositional function or a singular 

proposition. What the rule amounts to is that if a universalisable predicate is true of an 

individual (in the universe of discourse) then every individual in that universe has that 

predicate. However, since the introduction of a universal quantifier has the effect of 

universalising the predicate(s), the predicates must be truly universalisable. The predicate 

must be such as is true of every individual whatsoever (within the universe of discourse). 

The rule enables us to make the following types of inferences: 

 

  1. Fy 

   (x)Fx 

  2. Fa 

   (x)Fx 

  3. Fx   Ga 

   (x)(Fx  Ga) 

  4. Fx  Gy 

   (x)(Fx  Gy) 
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  5. Hy  Py 

   (x)(Hx  Px)  

The rule also allows the following type of inference: 

  Ba  Da 

  (x)(Bx  Dx) 

if ‘Ba  Da’ is not a premise and if it was not introduced by the rule of EI. 

 However, the rule of universal generalisation does not permit any of the following 

types of inferences: 

1.    Fx  Gz 

(x)(Fx . Gx) 

2.    Fx  Fy 

(x)(Fx  Fx)  

because the conclusion in each case generalises over two different variables, using the 

same variable of quantification. Again, the rule does not allow the following type of 

inference: 

 

  Fx ≡ Fx 

  (y)(Fx ≡ Fy) 

Because ‘x’ occurs free in ‘(y)(Fx ≡ Fy)’. Some of the errors in the use of the rule of 

Universal Generalisation are best illustrated in the context of complete ‘proofs’. Thus, for 

example, in the following proofs: 

1. (Ǝx)Sx 

2. Sa 

3. (x)Sx    2, UG (wrong) 

4. (x)Fx    1, 2-3, EI 

2. 1. (x)(Fx /    (x)Fx 

 2. Fy 

 3. (x)Fx    2, UG (wrong) 

 4. (x)Fx    1, 2-3, EI 

3. 1. (x)(Fx  Gx) 

 2. (Ǝx)Fx  /   (x)Gx 

 3. Fy 

 4. Fy  Gy   1, UI 

 5. Gy    4, 3, MP 

 6. (x)Gx    5, UG (wrong) 

 7. (x)Gx    2, 3-6, EI 

the uses of UG are erroneous because the variable or constant quantified over in each 

case was introduced by the rule of EI. Similarly, in the following ‘proofs’: 

A. 1. Lc /   (x)Lx 
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2. (x)Lx   I, UG (wrong) 

B. 1. Fa /   (x)Fx  

2. (x)Fx   I, UG (wrong) 

the uses of UG are erroneous, because the constant quantified over in each case occurs in 

the premise. Lastly, in the following ‘proof’: 

1. (x)Gx  /    (x)  Gx 

2. Gy 

3. (x)Gx    2, UG (wrong) 

4. Gy  (x)Gx   2-3, CP 

5. Gy    4, 1, MT 

6. (x) Gx   5, UG 

the first use of UG (in Line 3) is erroneous because the variable quantified over (‘y’) falls 

within the scope of an assumption. 

 Let us now state the rule of Universal Generalisation, along with its restrictions: 

 From ‘Φy’ or ‘Φa’ one may infer ‘(x)Φx’, provided that: 

(1) every ‘y’, and ‘y’ in ‘Φy’ or every ‘a’ and only ‘a’ in ‘Φa’ is replaced by a 

corresponding ‘x’ in ‘Φx’. 

(2) the ‘y’ in ‘Φy’ or ‘a’ in ‘Φa’ did not occur in the premise and was not 

introduced into the proof by EI and was not introduced into the proof as an 

assumption; 

(3) the ‘y’ in ‘Φy’ does not occur free in any premise; 

(4) the variable generalised over does not occur free in ‘(x)Φx’. 

Let us see how the rules can be applied in proving the validity of arguments. The 

following argument: 

 (x) (Ax  Bx) 

 (x) (Bx  Cx) 

 (x) (Ax  Cx)  

can be proved using the rules of UI and UG, along with others. The proof will proceed as 

follows: 

 1. (x) (Ax  Bx)  Pr. 

 2. (x) (Bx  Cx)  Pr. /   (x) (Ax  Cx) 

 3. Ay   By  1, UI 

 4. By  Cy  2, UI 

 5. Ay  Cy  3, 4, HS 

 6. (x) (Ax  Cx)  5, UG 

Similarly, the following argument: 

  (Ǝx) (Ax . Bx)    

  (x)(Ax  Cx) 

        (Ǝx (Cx . Bx) 
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can be proved using, among others, the rules of EI, UI, and EG. Note that where the rules 

of EI and UI are to be applied, the rule of EI must be applied first. The proof will proceed 

as follows: 

 1. (Ǝx)(Ax . Bx)  Pr.  

 2. (x)(Ax  Cx)   Pr.  /    (Ǝx)(Cx . Bx) 

 3. Aw . Bw 

 4. Aw  Cw   2, UI 

 5. Aw    3, Simp 

 6. Cw    4, 5, MP 

 7. Bw    3, Simp. 

 8. Cw . Bw   6, 7, Conj. 

 9. (Ǝx)(Cx . Bx)  8, EG 

 10. (Ǝx)(Cx . Bx)  1, 3-9, EI 

 Again, the rules of UI and UG can be combined with the rule of CP, among others, 

to produce a proof. For example, the proof of the following argument: 

 (x)[(Ax v Bx)  Cx] 

 (x)(Dx  Ax) 

 (x)(Dx  Cx) 

will proceed as follows: 

 1. (x)[(Ax v Bx)   Cx]  Pr. 

 2. (x)(Dx  Ax)   Pr. /   (x)(Dx  Cx) 

 3. (Ay v By)  Cy  1, UI 

 4. Dy  Ay   2, UI 

 5. Dy 

 6. Ay    4, 5, MP 

 7. Ay v By   6, Add 

 8. Cy    3, 7, MP 

 9. Dy  Cy   5-8, CP 

 10. (x)(Dx  Cx)   9, UG 

Let us construct a proof for the following more complex argument; using the rules of EI, 

UI and EG, among others: 

 (x)[(Ax . Bx)  Cx] 

 (x)(Dx  Ax) 

 (Ǝx)(Dx . Cx) 

          (Ǝx)Bx 

The proof will proceed as follows: 

 1. (x)[Ax . Bx)  Cx]  Pr. 

 2. (x)(Dx  Ax)   Pr. 

 3. (Ǝx)(Dx . Cx)   Pr. /   (Ǝx) Bx 
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 4. Dw . Cw  

 5. Dw  Aw   2, UI 

 6. (Aw . Bw)  Cw  2, UI 

 7. Dw    4, Simp 

 8. Aw    5, 7, MP 

 9.  Cw    4, Simp 

 10. (Aw . Bw)   6, 9, MT 

 11. Aw v B   10, DMT 

 12. Aw    8, DN 

 13. Bw    11, 12, DS 

 14. Bw    13, DN 

 15. (Ǝx)Bx    14, EG  

 16. (Ǝx)Bx    3, 4-15, EI 

Lastly, let us look at the proof for the following argument involving the rules of UI and 

UG; among others: 

 (x)[Ax  (Bx  Cx)] 

 (x)(Cx  (Dx . Ex)] 

         (x)(Ax  (Bx  Dx)] 

The proof will proceed as follows: 

 

1. (x)[Ax  (Bx  Cx)] Pr. 

2. (x)[Cx  (Dx . Ex)] Pr. /  (x)[Ax  (Bx  Dx)] 

3. Ay  (By  Cy)  1, UI 

4. Cy  (Dy . Ey)  2, UI 

5. Ay . By 

6. (Ay . By)  Cy  3, Exp. 

7. Cy    6, 5, MP 

8. Dy . Ey   4, 7, MP 

9. Dy    8, Simp. 

10. (Ay . By)  Dy  5-9, CP 

11. Ay  (By  Dy)  10, Exp. 

12. (x)[Ax  (Bx  Dx)] 11, UG. 

 

1.4 Summary 

 What has been done thus in this unit is to examine the ways through which 

inferences or propositions can be determined as valid. The various rules of validity and 

the conditions for their validity have also been disclosed in this unit. 

 

1.5 References and Further Readings 
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1.6 Unit Exercises 

I. Construct a proof of validity for each of the following arguments:  

 1. (x)(Sx  Tx) 

  (x)(Tx  Ux) 

          (x)(Sx  Ux) 

 2. (x)(Gx  Hx) 

  (x)(Ix  Hx) 

          (x)(Ix  Gx) 

            3. (x)(Bx  Cx) 

  (Ǝx)(Cx . Dx) 

          (Ǝx)(Dx . Bx) 

 4. (x)(Mx  Nx) 

  (Ǝx)(Mx . Ox) 

          (Ǝx)(Ox . Nx) 

 5. (x)(Ax  Bx) 

  (x)(Cx  Bx) 

          (x)(Cx  Ax) 

II. Construct a proof of validity for each of the following arguments, using the 

suggested notations to symbolise the arguments: 

1. No contractors are dependable. Some contractors are engineers. Therefore, 

some engineers are not dependable. (Cx, Dx, Ex) 

2. No gamblers are happy. Some idealists are happy. Therefore, some idealists 

are not gamblers. (Gx, Hx, Ix) 

*3. There are no uniforms that are not washable. There are no washable 

velvets. Therefore, there are no velvet uniforms. (Ux, Wx, Vx) 

4. Tigers are fierce and dangerous. Some tigers are beautiful. Therefore, some 

dangerous things are beautiful. (Tx, Fx, Dx, Bx) 

5. Bananas and oranges are fruits. Fruits and vegetables are nourishing. 

Therefore, bananas are nourishing. (Bx, Ox, Fx, Vx, Nx) 
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Unit 2: Invalidity in Predicate Logic 

1.1 Introduction 

1.2 Learning Outcomes 

1.3 Method of Natural Interpretation 

1.4 Method of Interpretation for a Model Universe 

1.5 Summary 

1.6 References and Further Readings 

1.7 Unit Exercises 

 

1.1 Introduction 

Dear students, this is the last unit of this interaction in predicate logic. It is also the 

second and final unit of this fourth module. What we are going to do is to provide some 

attention to ways that we can identity invalidity in predicate logic. This will balance our 

understanding with what was discussed in the preceding section. There are two ways to 

show the invalidity of an argument in predicate logic, namely, (1) by giving a natural 

interpretation of the argument, and (2) by giving an interpretation for a model universe. 

Both methods are based on the oft-repeated principles that if an argument is invalid then 

any argument with that form is invalid, and that an argument with true premises and a 

false conclusion is invalid. Both methods can be applied in predicate logic because the 

validity or invalidity of arguments here, like arguments in truth-functional logic, depends 

on their forms. Let us discuss each method in some detail. 

 

 

1.2 Learning Outcomes 

 In this unit, the learners will learn how to: 

1. Identify the rules of invalidity in predicate logic 

2. Identify how to solve and apply the rules through some practice exercises 

3. Identify and apply the determining conditions in the methods of natural 

interpretation and interpretation for a model universe 

 

1.3 Method of Natural Interpretation 

It is also known as the method of refutation by logical analogy): This method is based on 

the principle that if an argument in predicate logic is invalid it will be possible to come 

up with an interpretation of its predicate and individual letters which will show that the 

premises are true and the conclusion false. The interpretation involves assigning some 

value to every predicate and individual letter in the argument, provided that every letter is 

assigned the same value wherever it occurs in the argument and no two letters are 

assigned the same value. Thus, for example, the argument: 

 All Nigerians are Africans 

 All indigenes of Jigawa State are Africans 
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 Therefore, all indigenes of Jigawa States are Nigerians 

 

can be shown to be invalid. First, we symbolise it as follows: 

 (x)(Nx       Ax) 

 (x) (Bx      Ax) 

          (x)(Bx    (Nx) 

Then we assign some (other) values to the letters as follows: 

 Nx: x is a dog 

 Ax: x is an animal 

 Bx: is a cat  

The ‘invalidating interpretation’ becomes: 

 All dogs are animals  

 All cats are animals  

 Therefore, all cats are dogs 

which is patently invalid, because the premises are true while the conclusion is false. But 

this argument is of the same form as the original argument. Therefore, the original 

argument is invalid, since it has the same form as an invalid argument. This proof of 

invalidity will be written out as follows: 

 (x)(Nx   Ax)  

 (x)(Bx   Ax)    

         (x)(Bx  Nx)     

 shown invalid by  Nx: x is a dog 

 Ax: x is an animal 

 Bx: x is a cat  

Similarly, the following argument: 

 All soldiers are politicians  

 Babangida is a politician 

 Therefore, Babangida is a soldier 

can be shown to be invalid. First, let us symbolise the argument, as follows: 

 (x) (Sx Px) 

 Pb 

        Sb 

An invalidating interpretation is: 

 Sx: x is a Nigerian  

 Px: x is an African  

 b: Idi Amin 

which turns into the argument; 

 All Nigerians are Africans 

 Idi Amin is an African 

 Therefore, Idi Amin is a Nigerian 
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which is clearly invalid, since the premises are true and the conclusion false. This proof 

of invalidity will be written out as follows: 

 (x) (Sx  Px) 

 Pb       

        Sb      

 Shown invalid by  Sx: x is a Nigeria 

 Px: x is an African  

 b: Idi Amin 

 

 However, though if an argument is invalid we may be able to come up with an 

invalidating interpretation, that we are not able to come up with one does not mean that 

the argument is valid. Moreover, there are no rules for constructing an invalidating 

interpretation apart from the requirements that the interpretation be consistent, that the 

interpretation have the same form as the original argument, and that the premises should 

be seen to be true and the conclusion seen to be false. (This last requirement is such that 

unless it is fulfilled the whole exercise may be futile.) Though only some ingenuity is 

needed to produce an invalidating interpretation, that is not always there. At any rate, 

once an invalidating interpretation that meets the above requirements is found, it tends to 

show, conclusively, that the argument in question is invalid. 

 

1.4 Method of Interpretation for a Model Universe 

 Recall that the truth of a universally quantified proposition implies the truth of the 

conjunction of the substitution instances of the matric function of the universally 

quantified proposition. Thus, the truth of:  

 (x)Mx 

implies the truth of the following conjunction: 

 Ma  .  Mb  .  Mc  .  Md  .  Mn. 

Similarly, the truth of the universally quantified proposition: 

 (x)(Hx  Mx) 

implies the truth of the following conjunction; 

 (Ha  Ma) . (Hb  Mb) . (Mc  Mc) . (Hn  Mn) 

Since the truth of a conjunction implies the truth of all its conjuncts, another way of 

putting this is that the universally quantified statement ‘(x)Mx’ is true only if everything 

in the universe satisfies the propositional function ‘Mx’, and the universally quantified 

proposition ‘(x) (Hx  Mx)’ is true only if everything in the universe satisfies the 

propositional function ‘Hx  Mx’. 

 Recall, similarly, that the truth of an existentially quantified proposition implies 

the truth of the disjunction of the substitution instances of the matric function of the 

existentially quantified proposition. Thus, the truth of: 

 (Ǝx)Mx   
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implies the truth of the following disjunction: 

 Ma v Mb v Mc v Md v Mn 

Similarly, the truth of the existentially quantified proposition: 

 (Ǝx) (Hx . Mx) 

implies the truth of the following disjunction: 

 (Ha. Ma) v (Hb . Mb) v (Hc . Mc) v (Hn . Mn) 

Since the truth of a disjunction implies the truth of at least one of its disjuncts, another 

way of putting this is that the existentially quantified proposition ‘(Ǝx)Mx’ is true if at 

least one thing in the universe satisfies the propositional function ‘Mx’. Similarly, the 

existentially quantified proposition ‘(x)(Hx . Mx)’ is true if at least one thing in the 

universe satisfies the propositional function ‘Hx . Mx’. 

 However, the real universe contains an infinite number of things (though it need 

not), and our conjunction and disjunction can in principle be extended infinitely. This is 

why we need a more manageable universe of discourse or a model universe. Thus, we 

can talk of a universe containing only one, or two, or three, individuals. A one-member 

model universe may be indicated by writing the name of the member, say, ‘a’ in braces, 

thus: {a} . A two-member universe containing, say, ‘a’ and ‘b’, will be indicated as 

follows: {a,b}, that is, ‘a’ and ‘b’ separated by a comma, in braces. Similarly, a three-

member universe consisting of say, ‘a’, ‘b’ and ‘c’ will be written thus: {a,b,c}, that is, 

‘a’, ‘b’, ‘c’, separated by commas, in braces. 

 Using this method in testing the invalidity of arguments in predicate logic follows 

a pattern similar to the reductio ad absurdum method in truth-functional logic. It involves 

the principle that an argument is invalid if it is possible for its premises to be true and its 

conclusion false. The only addition here is that an argument may be invalid for a universe 

containing one, two or three individuals. In practice, no more than three individuals are 

needed to prove the invalidity of any argument in the section, though in theory the 

number can be much higher. The procedure for testing invalidity involves the following 

steps: 

(1) construct an interpretation for a model universe; it is advisable to start by 

constructing an interpretation for a universe containing one individual, 

increasing the number of individuals, if necessary, one at a time, up to three; 

(2) on the assumption that the argument is invalid, assign a truth-value to every 

premise and conclusion, making the premises true and the conclusion false: 

(3) try to make true the assumption that the argument is invalid by assigning a 

value to every remaining connective and component, as usual: 

(4) if we succeed in showing that every premise is true and the conclusion is false, 

then the argument is, as assumed, invalid: we succeed if there is no 

inconsistency in our truth-assignments: 

(5) to summarise the answer, list the truth-value assignments for all the distinct 

components in the argument. 
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For examples, let us prove the invalidity of the following argument: 

 (x) (Ex  Fx) 

 (x) (Gx  Fx) 

        (x) (Ex  Gx)  

 

Assuming a universe containing one individual, ‘a’ the argument translate into: 

 Ea  Fa 

 Ga  Fa 

          Ea  Ga 

Assuming that the argument is invalid, we make the premises true and the conclusion 

false, thus: 

 Ea  Fa 

  T 

 Ga  Fa 

  T  

         Ea  Ga 

  F 

We then try to make good our assumption by assigning a truth-value to every component 

as follows: 

 Ea   Fa 

 T T T 

 Ga  Fa 

 F T T 

        Ea  Ga 

 T F F 

Let us inspect our truth-value assignments to see if there is any inconsistency. Since there 

is no inconsistency in our truth-value assignments, we can conclude that the argument is 

indeed invalid. The summary will be: 

 Shown invalid for {a} by  Ea Fa Ga 

          T   T   F 

(read: shown invalid for a universe containing one individual, ‘a’, and where ‘Ea’ is true 

‘Fa’ is true and ‘Ga’ is false.) 

Let us look at another argument: 

 (x) (Hx  Ix) 

 (Ǝx) (Jx . Ix) 

 (x) (Hx  Jx) 

 

If we assume one individual, ‘a’, in our universe, this argument is equivalent to:  

 Ha  Ia 
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 Ja . Ia 

        Ha  Ja 

 

Assigning truth-values, we have: 

 Ha  Ia 

 T T   T 

 Ja . Ia 

 F T   T 

        Ha   Ja 

 T F  F 

 

There is an inconsistency in the second premise: the conjunction cannot be true since one 

of the conjuncts, ‘Ja’, is false. So, this argument is not invalid for a universe containing 

one individual, ‘a’. Therefore, let us try a universe containing two individuals, ‘a’ and 

‘b’. For such a universe, the argument is equivalent to: 

 (Ha  Ia) . (Hb  Ib) 

 (Ja   . Ia) v (Jb   .  Ib) 

        (Ha   Ja) . (Hb   Jb) 

 

Assigning truth-values, we have  

 (Ha    Ia) . (Hb    Ib) 

 T T T T T T T 

 (Ja    .  Ia) v (Jb    .   Ib) 

 F F T T T T T 

        (Ha     Ja) . (Hb    Jb) 

 T F F F T T T 

 

On inspection, we find no inconsistency. Thus, the argument is invalid for a universe 

containing two individuals, ‘a’ and ‘b’, summarised as follows: 

 Shown invalid for {a, b} by  Ha Hb Ia  Ib  Ja  Jb 

     T   T F   F   F   T 

 

Going through the truth-value assignments, it will be seen that ‘Hb’ may be assigned the 

truth-value ‘F’, rather than ‘T’, without changing the result. 

 Lastly, let us take the argument: 

 (x) (Ax       Bx) 

 (Ǝx) (Cx     . Bx) 

 (Ǝx) (Cx     . Bx) 

         (x) (Ax        Cx) 
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Assuming a universe containing an individual, ‘a’, the argument and our truth-value 

assignments will come to: 

 Aa  Ba 

 T T T 

 Ca  . Ba 

 F T T 

 Ca . Ba 

 F T F 

       Aa  Ca 

 T F F 

 

which contains a number of inconsistencies. For a two-number universe, we have the 

following: 

 (Aa  Ba) . (Ab  Bb) 

 T T T T F T T 

 (Ca  . Ba) v (Cb . Bb) 

 F F T T T T T 

 (Ca  . Ba) v (Cb . Bb) 

 F F F T T F F 

       (Aa  Ca) . (Ab  Cb) 

 T F F F F T T 

 

There is still an inconsistency in the third premise; so let us try out a universe containing 

three individuals, ‘a’ ‘b’, and ‘c’, thus: 

 [(Aa  Ba) . (Ab  Bb)] . (Ac  Bc) 

 T T T T F T T T F T F 

 [(Ca  . Ba) v (Cb . Bb)] v (Cc . Bc) 

 F F T T T T T T T F F 

 [(Ca  . Ba) v (Cb . Bb)] v (Cc . Bc) 

 F F F T T F F T T T T 

       [(Aa  Ca) . (Ab  Cb)] . (Ac  Cc) 

 T F F F F T T F F T T 

 

On inspection we find no inconsistency. Thus, the argument has been shown to be invalid 

for a universe containing three individuals, summarised thus: 

 Shown invalid for {a, b, c} by  Aa Ab Ac 

      T F F 

      Ca Cb Cc 

      F T T 
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      Ba  Bb Bc 

      T T F 

 

Note that ‘Ab’ may be assigned the value ‘T’ without any harm.  

 One final point that needs to be made is that if any of the original formulas in an 

argument contains a constant or a free variable, such a constant or free variable must be 

used in naming one of the members of the model universe constructed for the argument. 

Thus, for example, in constructing an interpretation for the following argument: 

 (x) (Cx  Dx)  

 Cj 

 Dj 

 

‘j’ must be one of the letters used in constructing an interpretation, as follows: 

 Cj  Dj 

 F T   T 

 Cj 

  T 

        Dj 

 F 

Shown invalid for {j} by Cj Dj 

        F F 

Similarly, for the argument; 

 (x) (Fx      Gx) 

        Gy 

    Fy 

‘y’ must be one of the letters used in constructing an interpretation, as follows: 

 Fy  Gy 

 F T T 

 Gy 

 T 

        Fy 

 F 

 

1.5 Summary 

 The aim of this unit is to identify the means of noting the ways through which we 

can determine invalidity in predicate logic. In this unit, two of these have been discussed. 

It is based on these two that we can notice the grounds upon which invalidity can be 

noted. It is also on this note that we bring the entire course on Symbolic Logic, PHL301 

to a close. Thank you dear students for your time and attention! 
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1.7 Unit Exercises 

 Each of the arguments below is invalid. Symbolise each of them using the 

suggested notation, and prove its invalidity, using the method of refutation by logical 

analogy: 

1. All crows are birds. All crows are warm-blooded. Therefore, all birds are 

warm-blooded. (Cx, Bx, Wx)  

2. No senators are social democrats. No social democrats are governors. 

Therefore, no senators are governors. (Sx, Dx, Gx) 

3. All politicians are liars. All politicians are wealthy. Therefore, all liars are 

wealthy. (Px, Lx, Wx) 

4. Some paediatricians are not specialists in surgery, so some general 

practitioners are not paediatricians, since some general practitioners are not 

specialists in surgery. (Px, Sx, Gx). 

5. No intellectuals are successful politicians, because no outspoken people are 

successful politicians, and some intellectuals are outspoken people. (Ix, Sx, 

Px, Ox) 

 

I. Prove the invalidity of the following: 

 1. (x)(Ax     Bx) 

  (x) (Bx    Cx) 

         (x) (Cx     Ax) 

 2. (x)(Ax     Bx) 

  (x) (Ax    Cx) 

         (x) (Cx     Bx) 

           3. (x)(Ax     Bx) 

  (x) (Bx    Cx) 

         (Ǝx) (Cx  .  Ax) 

 4. (Ǝx)(Ax   .    Bx) 

  (Ǝx) (Cx  .  Bx) 

         (Ǝx) (Cx   .  Ax) 

 5. (Ǝx)(Ax  .    Bx) 

  (x) (Cx .    Bx) 
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         (x) (Dx         Bx) 

 

II. Prove the invalidity of the following arguments in each case using the suggested 

notations in symbolising the arguments: 

1. All generals like pepper-soup. Some intellectuals like pepper-soup. 

Therefore, some generals are intellectuals. (Gx, Px, Ix) 

2. Some journalists are not responsible. Some responsible people are not 

interesting. Therefore, some journalists are not interesting. (Jx Rx, Ix) 

   3. Some politicians are orators. Some orators are not leaders. Therefore, some 

leaders are not politicians (Px, Ox, Lx) 

4. All extremists are bearded. All opponents of the government are bearded. 

Therefore, all extremists are opponents of the government. (Ex, Bx, Ox) 

5. If anything is metallic, then it is breakable. There are breakable ornaments. 

Therefore, there are metallic ornaments. (Mx, Bx, Ox) 


