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1 Introduction

In your course of topology, you know that a topadad) space is a set with a topology defined on
it andthis topologyis a set of open sets of the set which is clogeteuarbitrary union and finite
intersection of its elements. Also in Linear algepou learnt that a linear space is a space eqliippe
with the operations addition of elements and mlidtgion of elements by numbers. If you combine
this ideas, you will arrive to the notion of a téggical linear space, equipped with a topology as
well as with the algebraic operations charactegiarinear space. In this unit, you shall understan
the concept of a particularly important type, nanmarmed linear spaces. You will study in general
topological linear spaces in subsequent unit.



2 Objectves

2 OBJECTIVES.

At the end of this unit, you should be able to;

(i) correctly define a norm and a normed linearcgpa
(i) show that a given function is a norm.
(iif) show that every norm defines a metric.
(iv) identify a metric induced by a norm.
(v) define a convex set and give examples.

(vi) state, prove and apply the Holder’s and Minkki& inequality.

3 NormedLinear Spaces

3.1 Definition andExamples

Definition 3.1 Let X be alinear space over aaceld K= (R or C), afunctiok-k: X - R is
said to be amorm (in X) if it satisfies the following properties:

N1. kxk = Oforall xe X, wherekxk = 0 if and only if x= 0;
N2. kixk = |Alkxk for all x e X and all scalak;

N3. kx + yk = kxk + kyk for all x, ye X. (Triangle inequalilty)
Definition 3.2 A linear spack , equipped with a norrkxk, is called a normed lineapace.

Definition 3.2 tells you that ik - k is a normdefinedon a linear space X, then the pair g,k) is

a normed linear space. In what follows, provideccanfusion will arise, you shall call X a normed
linear space.

Example 3.1 The real line R becomes a normed lispace if you sétxk = |x| for every number
xe R.

Proof. It is enough for you to show thatk is a norm on the set of real numbers R. That is,have
to verify thatk - k satisfies the three axioms N1-N3 of a norm defimea linear space. So verify as
follows;

N1. Let xe R be arbitrary. Since the absolute value functiohdefined on R is nonnegative,

kxk = |x] = 0. Thuskxk = O forall xe R.
Now, kxk = 0, if and only if|x| = 0 if and only if x= 0.

N2. Let x,A ¢ R.

Thereforekixk = |Alkxk for allA, x ¢ R.






3.1 Definition andExamples

N3. Let X, ye R be arbitrary elements &.
kx +yk=Ix+y|= [x] +|y| = kxk + kyk

Thereforekx + yk = kxk + kyk for all X, ye R.

|
Thus kxk = |x|, x ¢ R defines a norm oR.
Example 3.2 Let X= R?. For each vector & (X1, X2) € X, definek -k, : X - R by
x '
kxk, = X2
k=1
Thenk - k, is a norm orX.
Proof. You should verify the conditions N1 to N3[éfinition 1 as follows;
_ 228
N1. Let X = (x4, X,) € X be arbitrary. For each & 1,2,x?, = 0,sothat |, = 0, which
2
. X
1 k=1
X T2
implies thatkxk, = x2 = 0.Thuskxk, = O, for all Xe X.
k=1

Nl

X X
Now, kxk, = 0, if and only if x; =0ifandonlyif x% =0ifandonlyif¥ =0
k=1 k=1 _
and» =0, ifand onlyif x =0andx =0, or, X= (X1, X2) = (0, 0)= 0. Thuskxk, =0, if
and only if x= (0, 0)=

N2. Let x=(X1,X2) € X, A ¢ K be arbitraryAx = (Ax1,AX2). So

1. 1. 1
X , 2 , X X 2 X 2
kixk, = X = M X =) X, = [A|kXks.
k=1 k=1 k=1
N3. Let Xx=(X1,X2), Y= (Y1, Y2) € X be arbitrary.
oy 2 X 2 X 2 2 2x 2 2
kx +yks = R +Yk)™ = X F2%Yk tY = X7+ 20Xk Yk Y
k=1 k=1 k=1
2 X 2
= Xy +2 Xk Yic| + Y
k=1 k=1 M, k=1 '
> 2 X T2 '
< kxk, + Xk |2 lv|>  +kyks (By CauchySchwartl necuality)
2 k=1 k=1

2

KxK2 + 2kxkokTko + Kk,
(kxky + Kkykz)?

i.e.,kx +yk, = kxk, +kyk, forall x,ye X.

Thusk - k, isa norm on X since it satisfies the conditiona @form as shown above. ]

So far, you have seen that to verify the axiomsaNd N2 of a norm are not very difficult, but the
major task is in proving N3, i.e., the triangle goelity. Before you proceed to see other example, s



some important inequality that will be useful tauyia verifying the triangle inequality. The prodf o
them will not be given now.



3.2 Holder's and Mikwoski'snequalities

3.2 Holder's and Mikwoski'dnequalities

The following notions are of paramount importance.

Definition 3.3 (- spaces) LetE p<«» .LetK= (R or C). The set
C ¢ ).
L(K) = X = (X1, X2, .00, %, ...), % € K, k= 1: Xk [P < (1)

. k=1
is called ang— space

For example, if p= 1 and K= R then (1) becomes

C > )
[1(R) = X =(X1, X2, o0y %, .o.), X% € R, k= 1: Xk | <
k=1

X
Which is the set of all sequenc€s,, k=, Of real numbers such that |xk| is finite (i.e., suchhat

k=1
series converges.)
You can see that x iz e |; because
n n=1
X1 X1
KT ke <
k=1 k=1
Byp- series (p=2). Butthe sequence=x {1 6e 1, since
}0O n n=1
X1 X 1 1
k=1 k=1
is the harmonic series which diverges.
For p=2 and K=R, (1) becomes
C a )
LK) = X = (X, X2, o0, %, o)y X% € R, k= 10 |x¢|? <o
k=1

Observe that x= {ln}wnzle l,. Also is the first example. You can see that Eheents of{ is also
an element ofz| but not every element of Is an element ofi| In fact this is a general fact abdgit
spaces as stated in the following proposition.

Proposition 3.1 LetE p,q= +« .Ifp = q,then} c .

Proof. There are two cases you can consider.

, P
() =« andp<wo . If {Xp}n= 1€ lp then P <«  this implies thajx,| - 0 as n- « ,

| [
IAn]

so that supxp| <« . This in turn, implies{xn}¢€ lq(=1..).






3.2 Holder's and Mikwoski'snequalities

P
(i) p<q<o.Let{Xn}e lp. Then _,[Xn|° <= .Asinpart (i), M := sufxn| <« . Hence,

n=

X XX
Mall = M JxP <o

n=1g- p

and this implieg{xn} € lq. Hence{ c Iq.

Definition 3.4 (L. — space). The space of all bounded sequence obreaiinplex) i.e.,
L, ={X=(Xg,X%X, ..., %, ...) - X IS bounded}
is called the - space.

Definition 3.5 Let 1= p =+ . If for arbitrary x = {xc}, y = {y}inl, andx € K, you
define vector addition and scalar multiplicatiospectively as

X+Y = (X1, X0y eey %y o) F (Y1, Y20 coes Yoy -o2) = (X1 F Y1, X0 +Yo, 00y % + Vi, -.0)

and
AX = MX1 3 X2y weey Xy oen) = (AX1, AXoy ooy MK -20),s

(i.e. componentwise,) thep is a linear space.
The proof of the following inequalites are givertla end of this unit.

Pr?position 3.2 (Holder's Inequality). Letf p,q=< « ,withl =1.1fx = {x3}¢ I, and
+ P g
!

y = {yk}e lg, then, :

Ql

X
X
X

Xk Y| X [P Iyi |4 (2)

Proposition 3.3 (Cauchy-Schwartz inequality)=2 gives the Cauchy-Schwartz inequality. i.e.,
for x = {xx}and y= Ly }inl,,

1

Tz

Nl

X

X X 5
X Ykl Xk |2 Vil 3)

You used this inequality in the proof of trianghequality of example (3.2), forfmite sum (n=2),
and you need the same inequality while provinggérgeral case given in example (3.3).

Proposition 3.4 (Minkwoski Inequalitx). LetE p<« . Forarbitrary x= {x}, Y = {y¥x¥e€ Ip

y 1



(4)




3.2 Holder's and Mikwoski'snequalities

Example 3.3 LeX=R" (the real n-space). You can make it a normed linpace, by setting
|

kxk, = X |2 (5)
k=1

for every element x= (X1, X, ...,Xn) iIn R".

Theverificationof the fact thak - k, is a norm orR" is a generality of the proof of example (3.2),
where theproofis given for n= 2.

Example 3.4 You can also equRj, the real n-space, with the norm

X
kxky = [X| (6)
k=1
or the norm
kxk, = gag |Xk | (7)

You can see that the functi@n k., in (7) is welldefinedsince maximum is taken over a finite set
of points. You can verify that - k; andk - k. as defined in equations (6) and (7) is a norm%n R

Example 3.5 The function '

N

In\
kzk = |2 |?
k=1
introduces a norm in the complex n-sp&k Other possible norms @" are given by (6) and (7).

Example 3.6 The spa€&a,b] of all functions continuous on the interval canelo@ipped with the
norm

kfk., = max [T (t)].
b

IR

Other norms that can be defined©fa,b] for arbitraryf ¢ C[a,b] are as follows;

Z b
kfk, = [ ()] dt (8)
a
and z, ,
kfk, = If (H)]* dt 9
a

To verify the triangle inequality for (9), you willse the integral version of the Schwartz inequalit
stated in the following proposition.

Proposition 3.5 If, ge C[a,b] are arbitrary, then

Zy Zy 3 2y
If (H)a(t)] dt If ()% dt lg(®)|* dt (10)
< a a

a

[=Y

NI







3.2 Holder's and Mikwoski'snequalities

Example 3.7 Letl be the space of all bounded real sequences

X = (Xy Xy eeey Xy oen),
and let
kxk = sup|x | (11)
k= 1
Then (1.3) obviously has all the properties of amo

Example 3.8 Let¥ p< +o .Forarbitrary x= {Xy=1 € |,, the function
}oo

1,
> p
ka|p = |Xi|p (12)

k=1

definesa norm onJ. So that ({,k - k; ) is a normed linear space.

Proof. You can easily verify that the functidefinedabovesatisfiesaxioms N1 and N2 of a norm.
Now, to verify N3, you shall be needing the Holddriequality as stated in proposition (3.2). Study
the following carefully and learn the trick appligdthe proof.

Let X = (X1, X2, oo % --), Y= (Y1, Y2, o0 Yk -..) € |p. Consider two cases for p.
Case 1: For p= 1, (12) and the triangle inequality for absolutkieagives you that

X X X
Xk + Ykl X |+ [yl

k=1 k=1 k=1
<

i.e.kx +yk, = kxk,+kyk, asrequired
Case 2. Forkp<w ,

© 0

kx +ykP = i +YelP = X Fyidxe F P
k=1 k=1
X ) > . h. < .
= (X T+ Iy DIxe =+ yil? Xk [IXk + Yic|P Iy lIXk + i [P
Kk=1— k=1 4 k=1 )
LS 1. 1 1 1.
X P X a X X q
- -1
= X |P X +yi|® D+ Vi |P IXe + V| DT (%)
k=1 k=1 k=1 k=1

(By Holder’s Inequality)

1
OO\ P Iw\ p P
MelP vkl Rk yK?

k=1 k=1

Tl

(*) is true because if ¥ p,q,< « , satisfiest +lq: 1,thenp=(p- 1)g. So, the sequence defined
foreach k= 1byz =[x +y|* ! isinlg. Thus,
U 1, 1,0
X P X P
p p p X ykq

Tl



-+



3.3 EquivalentNorms

or 1, 1,
o- P X P X P
kx + yK, X P+ v |P = kxk, + kyk,
k=1 k=1
=
|
e, kx + yk, & = kxk + kyk, forarbitrary x, ye 1.
Example 3.9 Let X=1. , the space of all bounded sequence. The funcetneatl by
kxk, =sup|x| (13)

k=
1

for arbitrary sequencex {Xk %=z, inl. isanormon.. Thus (L, k - k) is a normed linear space

3.3 EQUIVALENT NORMS

Definition 3.6 (Equivalent norms) L&t- k; andk - k, be two norms defined on a linear space
You will call k - k; andk - k, equivalent if there exist constantda; 0 such that
akxk; = kxk, = bkxk; or
akxk, = kxk; = bkxk, (14)

forall xe X

Example 3.10 With this definition, you can see tihatnorms defined oR" by (6), (7) and (8) are
equivalent.

Theorem 3.1All normsdefinedon afinite dimensional space are equivalent.

Proof. LetdimE=n <« and let{e ;.. be a basis for E. For arbitrary vectoe xE, there
X

exist unique scalaro; 3 such that x= B a;g. Definekxky = 1rgaixslorgil. Clearly,k - ko isa norm
1=

on E. It suffice now to prove that any norm on Edggiivalent tdk - ko; i.e., that ifk - k is an arbitrary

norm on E, there exists constants ®,b > 0 such that

akxko = kxk = bkxkg forall x €
E.

X -
From x= a;€ we obtain,

i=1

X X
kxk = ajei = maxjo kek.
1= i

n

X
Since{g }", is a basis, it follows that  kekis a number. Call it b. The last inequality theelgs.



kxk =
kako.

It now only remains to provekak, = kxk. Let S= {x e E :kxky = 1}. Define the map

8



3.3 EquivalentNorms

& : (E,k-ko) > Rbyd(x) = kxk forall x ¢ E.

Observethat ﬁo . = 1. Moreoverg is continuous. To see this, let be given. Yoweha find a

& > 0 such that for arbitrary'’x € E, if kx = X" ko <& then|d(X) = (X" )| < . Recall that in
part
(a) we proved thdtxk = bkxkg for all x e E. Using this we now obtain that

(X)) — P(X" )| =|kxk— kx" k| = kx— X" k= bkx-—

X kos bé <

where we have choseén= 1, So,¢ is continuous. Since S is compaptattains its infimum on

S. Let thisinfimum bedenotedoy a. Then0 < a< ¢p(x) = x ,forallx S. BLLIXK—’(‘) e S. So,

O<as * wift?lr all x e E and this implieskxko, = kxk for all x e E. Combining this
kxko
kxk = bkxkp, we obtain thatkxko = kxk = bkxkp forall x e E as required. [ ]

Proposition 3.6 Lek - k be a norm defined on a linear space Xp IfX x X —» R is defined for
arbitrary x, ye X by
p(x, y) =kx - yk (15)

then,p is a metric on X, and so (%) is a metricspace

Proof. You have to verify that satisfies all the axioms of a metric.

1. Let x,ye X be arbitrary. x- y e X since it is linear space. So by axiom N1 of anmowe
havep(x, y) = kx - yk = 0. Which implies thap(x, y) = 0 for all x, ye X.

2. p(x,y)=0ifand only ifkx = yk =0, ifand only if x- y =0 if and only if x=y.
3. Let x, ye X be arbitrary. Using axiom N2,

p(X,y) =kx = yk=k(-= 1)y = x)k =|- 1]ky = xk =ky -
XK.

Thus,p(X, y) = p(y, x) for all x, ye X.

4. Let x,y,z ¢ X be arbitrary. Using axiom N3 of a norm, i.e. thangle inequality property,
]

p(X,z)=kx - zk=kx - y+y- zk= kx- yk+ky- zk=p(x,y)+
p(y. 2)

e,pX,z)= p(x,y)+p(y,z), forallxy,ze X

Sincep satisfies 1, 2, 3 and 4, as shown demonstratdeeiproof above, it is a metric on X Hence,
(X, p) is a metric space.

You saw that the above proposition is given foradnitrary normk - k defined on an arbitrary
linear spaceX. Hence, every norm induces a metric but not alriceare induced by a norm.



Example 3.11 The formula

p2(X, y) = kx = yks




4 Convex Sets and Conv&unctions

definesa metric for arbitrary x= (X1, ...,Xn) and y= (y4, ...,yn) in R". Alsok - k; andk-k., induces
the metrics

24
p1(X, y) =kx = yki = X = Yl
k=1

and

P (X, Y) =kx = yk. = max Xk |
= n

[y

respectively orR".

Example 3.12 The formula

L |
Tl

X
pp(X, y) = kx = yki, X = yilP
— k=1

definesa metriconJ, 1= p<w

Example 3.13 The formula

Po (X, y) = kx = yk, =kSUpka - Ykl
1

induces a metric on the spacedf bounded sequences.

Example 3.14 The formula

[y

Z b
p2(f,g) = kf - gk, If (t) = g(t)* dt
—_ a

2

induces a metric on the spaGa,b], of continuous real-valued functions on the closedilzounded
interval[a,b].

4 Convex Sets and Conv&unctions

The study of convexity is a richly rewarding matlaical experience. Theorems dealing with the
convexity are invariably clean and easihderstoosgtatement. Theotionof convexity is of paramount
importance in functional analysis. In this sectwa shall be dealing with convex sets and convex
functions and afterwards, use it to provedhdierstatedHolder’s and Minkwoski’s Inequality.




10



4.1 ConvexSets

4.1 ConvexSets

Here is the basic definition.

Definition 4.1 Let X be a linear space, and x, Y. The line segmerix, y] joining x and y is
defined by
X,y ={Ax+(1- N)y:0= A= 1} (16)

Definition 4.2 Let X be a linear space. A subSebf X is convex if for every x, ¥ C, and
A e [0,1],
X+ (1- A)ye C. a7

Definition4.2 can be restated asaCX is convex if for every elements xcyC, the line segment
joining x and y is in C, i.gx,y] ¢ C, wherdx,y] is as defined in (16).

Example 4.1 Let x and v be vectorsRA the line L through x in the direction of v given by
L={x+av:ae R}

iS a convex set.

Proof. Let p,ge L. This implies that there existg,a, € [0,1] such that p= x + o,v and
g= X + ap V. Now, for arbitraryr € [0, 1],

Ap+(1- Mg = AMx+av) +(1- DX+ o)
= X+ ()\,(Xl'" (1 - X)az)v

Letoz =2do; +(1—- MNa, € R, themip+(1- A)g=Xx+oazve L Sincep,¢ Landi e [0,1]

are arbitrary then L is convex. -

Example 4.2 Any linear subspace MR}t is a convex set since linear subspaces are closgzt u
addition and scalar multiplication. This also elstéiat every linear space is a convex space since
linear space is also a linear subspace of itself.

Example 4.3 If X ¢ R" andifa € R, then the closeldalf-spaces

F*¥={ye R":hx" ,yi=




G"={ye R":hx" ,yi

> o} G ={ye R":hx" ,yi<a}

11



4.1 ConvexSets

determined by X ando are all convex sets. For example, if u, w arethdnd if 0= A =< 1, then
hx* ,[Au+ (21— A)w]i =Ahx" ,ui+(1- V)" ,wi= Aa+(1- Na =a
SO
A+ (1- MYwe F*
Example 4.4 If X ¢ R" and ifr > 0, then the ball

B(x,r)={ye R":ky- x k<
r}

centered atx of radiusr is a convex set. In fact, yf, z are in B(X , r), then

ky- x"k<r, kz- x k<
r.

ForO= X\ = 1, you can apply the Triangle inequality as follows

Khy +(1- M)z- X'k =kMy - X" )+(@Q- AN)(z -
X" )k

= Aky- Xk+(@Q- Mkz- X"k

< Aar+(1- Nr

to conclude thaty + (1 - A)z € B(x" ,r).

Example 4.5 Let X be a linear space and R. Letf : X — R be a real linear functional. The
following sets

1. The Closed half-spaces;
Hi , ={xe X:f(x) = a}
Hf , ={xe X :f(x) = o}
2. The open half-spaces
Hi, ={xe X 1 f(x) <a}

H ={xe X:f(Xx)>a}

f,a



3. The hyperplane
H={xe X:f(X) =a}

are convex subsets of X, whens not the zero linear functional.

12



4.1 ConvexSets

Example 4.6 I{C,} A is a collection of convex subsets of a linear spacthen the intersection

\
c= C,

ac A

isalso convex. Forif,ze CandifO= LA = 1,theny,ze C,foreachu ¢ A, soOLy+(1— A)z ¢

C
o A N
for eacha sinceC, is convex. Buky + (1— A)z € C. =: C, sothat C is convex.
as A

In the definition of convexity above, you used aboverely two points. You can also deal with
the case of more than 2 points. This leads torttieduction of the concept of convex combination.

Definition 4.3 ConvexCombination.Let x4, ...,X, be n points of the vector space X. Any elements
of the form

X = Ai X (18)

>
witha; = 0and A; =1, is callecconvexcombination of the elements,Xx..,Xn.
i=1

The above definition gives you the following otlebaracterization of convex sets.

Proposition 4.1 Aonemptysubset C of the vector space X is convex if ang dr€ contains all
convex combinations of all its elements.

Proof. (< ) : This implication is obvious.

(=) : Assume that the nonempty set C is convex, yame to show that C contains all its convex
combinations. You can proceed by induction as ¥adloDefine the property,, as follows;

X ™
P, : AiX; e Cforall xq,....xne C, A = 0, Ai=1
i=1 i=1

1. The property obviously hold fors 1, i.e., (R) is fulfilled.

2. Assume that properties,(R...,(P,) holds. Let X, ....Xp, Xn+1 € C, Ay = A = 0,...,Aq

=

0,An+1= Owith

Of course, ifAn+1 =1, then



becaus@; =--- = A, =0in this case. And so

13




4.1 ConvexSets

it
7\'ixi e C.

i=1

Assume thak.,.; = 1. This allows you to write

1 >
}\Jixi = 7LiXi +7bn+1xn+1
i=1 i=1
!
X—Li
= (1- X+ 1- A Xi  +An+1Xn+1.
i=1 n+1
You have
Xy, 1 X ) D'(l7L
= Ai = ———(1- M=+ Since i
iz1 17 Anen 17 A o1 }‘”+1( ! i=1 |
and
M 0and X, ...X, ¢ C
1= = s s Xn ,
hence by induction assumption,
X .
X = ine C
iz1 17 Anna

Sincey’ := xn+1 € C by assumption you get that
(1= )X +Ansy’e C
becausé.,.; € [0,1]. Combining (2) and (3) you can conclued that
DG
Aixj e C

i=1

This completes the proof.

(19)

=1

(20)

Definition 4.4 Convex hull. Let A be a subset afegtor space X. Thiatersectiorof the (nonempty)
family of all convex sets of X containing A is amv@x set containing A and is obviously the smallest

convex set of X containing. This is called the convex hull of A, and it is déd by

co A or co (A) or cov A or co(A)

Proposition 4.2 LeA be anonemptysubset of the vector space X. Then co A conicidéstive set

of all convex combinations of elementsfof
The following result follows from the above propamn.

Corollary 4.1A subset C of a vector space Xcmvexif and only if

C =covC

14



4.2 Convexrunctions

4.2 Convexrunctions
Linearfunctionsare veryappealing becaudbey are easy tmanipulateand theigraphsare especially
simple (line in the plane for one independent \@eaplanes in space for two independent variables,

and so on). Anyone who has ever used linear pragraghknows that linear functions are important
in applied mathematics.

In this section, we will begin study of a clasdwictions, called convex function, which includes
the class of linear functions but which has muctewirange of applications than the class of linear
functions.

Definition 4.5 Let D be a convex subset of a resadter space X anfli: D - R. Then,

(i) T is said to be convex (respectively strictly conviégxtpr each x, ye D andi € [0, 1], you
have

fOx+(1- Ny = AfX)+(1- V)f(y)
respectively
fOX +@1- Ny <AfX)+(@1- V()
(i) f is concave (resp. strictly concave) if for eacl x,D, and\ € [0, 1], youhave
fOx +(1- Ny = Af(x)+(1- V)f(y)
respectively

fOX +(@Q- A)y) >Af(x)+(1- AVN)f(y)

Proposition 4.3f is convex if and only if— f) is concave, andl is concave if and only if— f)
if convex.

Example 4.7 Iff : X - R be a linear functional defined on a linear spécéhenf is a convex
function. Forif 0= A = 1 and x, ye X, thenix + (1 - A1)y € X, since X is convex, and
linearity of f gives you that,

fOX +(1- Ny) =Af(x) + Q- VF(y) (21)

Which implies thaf (Ax +(1- A)y) = Af(x) +(1- A)f(y). Also, all linear functional are
concave but neither strictly convex nor strictlyicave.

Example 4.8 Every norta- k defined on a linear space X is a convex function.

Forlfx,ye X and 0= X\ = 1, then by triangle inequality

kKix +(1- yk = |kxk +[(L- W)]kyk = akxk + (1 A)kyk
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5 Conclusion

5 CONCLUSION

In this unit, you have defined a norm on a lingqaace to make it a normed linear space. You have
seen and verified different kinds of nordefinedon given linear spaces. You now know how to apply
properly the Holder’s, Minkwoski’'s and Cauchy Scintwa inequalities to verify the third property
of a norm (i.e the triangle inequality) for somems. And you have also seen how to make a linear
space a metric space.

6 SUMMARY

Having gone through this unit, you now know that

(i) anormk - k defined on a linear space X is a real valued foncsatisying

(@) kxk = O forall xe X, andkxk = 0 if and only if x=0;
(b) kixk = |Alkxk for all x e X and all scalak,;
(c) kx +yk = kxk + kyk for all x, ye X.

(i) the pair (X,k-k) comprising of the linear space X and a nértk definedon it is call a normed
linear space

(i) ifl = p<o,and K= (R or C), then the
set

C »¢ D

L(K) = X = (X1, X2, o0, %, ), % € K, k= 1 Xk [P < oo
k=1

is called and space

(iv) thel, space is the space of all bounded sequences ajrreamplex numbers, given by

L, ={X=(Xg, X, ..., %,...) : X iSbounded

(v) if1=< p,g= = with iq+l:1, and x= {xFe |, y={y}e lq, then,

1
X > X q

Xk Vi lyi |4

k=1 k=1 k=1
<

Tl

This is the Holder’s Inequality. If g g = 2, then the Holder’s Inequality becomes the Cauchy-
Schwartz inequality.

(vi) if1 =< p<w andx={x},y = {yx}are elements of ) then

1
P

T =

Xe +yl? = IXc [P+ Iy |P
k=1 k=1 k=1



(vii) two normsk - k; andk - k, defined on a linear space X are called equivafethtere exist
constants & > 0 such that

16
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akxk; = kxko = bkxk;oraxks = kxk; = bkxks

forall x e X.
(viii) all norms defined on a finite dimensionglase are equivalent.

(ix) every norm defined on a linear space X defiaenetricgd : X xX - R on X by
p(X,y) =kx — ykforall x,ye X

there by making X a metric space.
(x) asubset C of a linear space Xasvexif for every x, ye C andh € [0, 1],Ax +(1— A)y € C.
(xi) ifxq,...,X, are n points of a linear space, then the element
XX
X = Xk Xk
k=1

P, . L
with, = 0 for each k and k21 M = 1, is called convex combination of the elements
Xl, ...,Xn.

(xii) a nonempty subset C of a linear space Xoisvex if and only if it contains the convex combi-
nation of all its elements.

(xiii) if A'is nonempty subset of a linear space, therthikbantersection of all convex sets containing
A gives you theonvexhull of A denoted by cé

(xiv) a real-valued functioh : D - R defined on a convex subset D of a linear spate X
(a) convex(resp. strictlyconvex)if forall x,ye D, and 0= A= 1
fOx +(1- Ny) = Af(xX)+(1- Vf(y)

respectively
fOx +(1- Ny <Af(x)+@Q- Vf(y)

(b) concave (resp. strictly concave) ifforalyx D, and 0= A= 1
fOx +(1- Ny) = Af(x)+(1- Vf(y)

respectively
fOx +(1- Ny >Af(x)+@Q - VF(y)

7 TUTOR MARKED ASSIGNMENTS (TMAS)

1. LetR" = {X = (Xg, X2, ..., Xn), X € RZ}. For arbitrary element x= (Xq, X, ...,Xn) € R",
show that the following real valued functions;

n
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N

n

kxk, = X |2
k=1

and
kxk. = max |X|
1= k

=n
are norms oR". Therefore(R",k -k, ), (R",k-k;) and(R", k - k ) are normed linear spaces.
(R",k - k,) is called the Euclideaspace

2. Show that the norms in Question 1 are equivalent

3. For arbitrary = (X1, X2, ...,Xn) € R", definek -k, : R" - R, p= 1 as follows,
12

kxk, = X [P
k=1

Verify thatk - k;, is a norm orR". The spacéR", k - k,) is usually denoted biy.

4. LetC" = {z = (21,2, ..., %), Z € C} be the complex n-space, with vector addition and
scalar multiplication are defined componentwise.K ek, : C" - R be defined as follows
|

kzk, = |z |2
k=1

Verify that(C", k - k,) is a normed linear space. This space is ususligyned to as the unitary
space

5. Let X = CY[a,b] be the space of all continuous real valued funstmmia,b] which also have
continous derivatives di,b]. For arbitraryf ¢ C*[a,b], define

o (1)
= + At
kfk = max |f(t)| + max ——

Verify that (X, k - k) is a normed linear space.

6. Let X = C[a,b] be the space of all continuous real-valued funstimma,b]
Zy,
kfk, =  |f(t)| dt

a

Verify that (X, k - k1) is a normed linear space.

7. Let X = C[a,b] be the space of all continuous real-valued funestimma,b]

Z b
kfk, = If (> dt
a

(NI

Verify that (X, k - k2) is a normed linear space.

8. Let X be a normed linear space. Prove thatdoitrary x, ye X,

(@) |kxk = kyk| = kx - yk;
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(b) The mapping x> kxk is continuous ( in the sense thakjf - x thenkxk - kxKk);

(c) Addition and scalar multiplication are jointtpntinous, i.e., ik, - x andy,, - y then
Xn + Yh —» X+Yy;andifx, - x anda, - a thena,x, - ax as n» « , wherea, and
a are real scalars.

9. Consider vectors % (1,- 3,4,1- 2) andy=(3,1,- 2,- 3, 1) in R. Find

(a) kxk,, andkyk., ,

(b) kxk; andkyk,

(c) kxk, andkyks,

(d) p.. (x, ¥), p1(x, y), andp,(u, v)

10. Repeat Problem 9 for=z (1 +1i,2- 4i) ando = (1 - i, 2+ 3i) in C2.
11. Consider the functiol(t) = 5t— t? andg(t) = 3t- t2 in C[0,4].

Find: (a) d., (f,0),

(b) a(f,9),
(€) &(f,9).
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1 Introduction

In your course of metric spaces, you learnt thae#ric space is a space with a metric (i.e., atfanc
that measures the distance between any two pomtspaice) defined on it. And you also know that
a complete metric space is one in which every Caselguence of its element converges in it. You
also learnt from the last unit that every normeadir space is a metric space. In this unit, yolu wil
be introduced to normed linear spaces in whichyegauchy sequence of its element converges in it.
It is this kind of normed linear spaces that yoallsball complete normed linear space or Banach
Spaces.



2 Objectives

2 OBJECTIVES.

At the end of this unit, you should be able to;

() identify normed linear spaces that are compéete prove them.
(ii) identify incomplete normed linear spaces.

(i) use the fact that every subspace of a com@psee is complete to prove that some normed
linear spaces are complete.

3 MAIN CONTENT

The following serves as a reminder of the things know already, which will be of paramount
importance to you in this unit.

Definition 3.1 Let (X,p) be a metric spacd sequencd X, } of elements oX is said to converge to
a point xe X, if givenany > 0, there exists N :®N( ) ¢ N such that = N impliesthat

p(Xn, X) <

Definition 3.2 Let (X,p) be a metric space. A sequerce, } of elements of X is called Cauchy if
given any > 0, there exists N :=3N( ) € N such that n, m» N impliesthat

p(xn;xm) <.

Definition 3.3 Let (X,p) be a metric space. Let E X. E said to be closed if and only if every
sequencd X, } of elements of E convergesknh

That is E is closed if and only if given an arbiyrasequencdx,, } of elements of E sucthat
Xn = X in X, then xe E.

Definition 3.4 Let E be a subset of a metric sp@gp). E is called complete if every Cauchy
sequence of elements of E converges in E.

Theorem 3.1 Let (Xp) be a complete metric space, and let X. (E, pg) is complete if and only
ifit is closed. Whergg is the subspace metric inducedmy

Proof. &) Assume that E is complete, L€k, } be a sequence of elements of E such that
Xn > X € X ash-> » .{X,}Iis a Cauchy sequence in X as well as in E sinceyaanvergent
sequence of a metric space is Cauchy. E is comgilete you that x E.

(<) For this direction, assume that E is closed, yavehto show that E is complete. Now
take any Cauchy sequendec,} of elements of E. You have thdix,} is also Cauchy in X,
thus,x, - X € X as n- « . But by your assumption that E is closed, you tthaexd E.




4 Complete normed lineapaces

4 COMPLETENORMED LINEAR SPACE.

You have taken time to go through the preamble,gaunow deduce that as a metric spacefX,
wherep is the metric induced by the nokm k, defined on X, a complete normed linear spac@és o
which contains the limit of any Cauchy sequencisogélements.

Now, when you are confronted with the problem ofifyeng that the metric space (%) is
complete, you have to take an arbitrary Cauchy execg X, » of elements of X and show that it
converges to a point of X. The general patterhésfollowing:

(a) Construct an element xwhich you will use as the limit of the Cauchy seuges
(b) prove that X isin the space under consideration,

(c) prove thak, —» x" (inthe sense of the metric under consideration).

For you to construct’x as mentioned in (a), you will use the fact thategisequencgx, }
is Cauchy to generate a Cauchy sequence in a ctargpace that is associated with the normed
linear space under consideration. (This compsgiece is usually the real, R or the complex
numbers, C). Once you have successfully constiucte steps (b) and (c) are generally not too
difficult to complete.

Take a little step further and you will see somanegles, they are rigorously simple and interest-
ing.

4.1 COMPLETENESSOF R' AND C"

Theorem 4.1 The real n-spaB®8 equipped with the Euclidean norm,

Nijp=

s N

kxk, = X |2
k=1

for arbitrary x= (X1, Xs, ...,Xn) € R", is complete.

The metric induced bl - k, is
1 1
D ¢ T2
p(X® X)) = kx® - xO k, X - x®p2 1)

- k k
k=1

Proof.  You know thaR" = {X = (X1,X, ....Xn), Xx € R"}. To proceed with this proof,
you have to first of all take an arbitrary Caud®guence of elements Bf'. So let x(™M =







4.1 Completeness &" andC"

x® x@ - x(M - pe an arbitrary Cauchy sequenc&hwhere

0
X = 6@ x® O D)
— 2 2 2 2
X2 = (@, x@ @ @) %
X(m) = (X(m)! (g]) ’ Xgm)) Ty m) ) g

{x(™?} being a Cauchy sequence implies that given0, there exists an integer N such that for all
r,s= N, we have
1

() y(8)y = )~ y(s) X ) _ ()2
p(x'"’, x*) = kx X¥Ko | X <

NI

- k k
k=1
This implies that
L 2
() (s)
Xe = X <
k=1
i.e. foreach ke {1,2,....n}
»n o7
X, — X <, forall r,s= N

Thismeans that for each&k {1, 2, ...,n}, {{} is a Cauchy sequence in R. and since R is complete,
it follows thatx™ —» x;, ¢ Rasm- = , i.e.,

0
XM = M )y 7
| [ [

(X7, X5 X3 e X))

Now definex =(x ,X ,X ,.., X )and you have completed step (a).

Observe that you have used the completeness ofBt tQ; k = 1, 2, ..., n and this helped you to
definex” . Proceechow to step (b).

Step(b)

You have to show that x is in R". This is simply obvious because each'sxare in R, making,
ﬁ;e =X ,Xx,..,X )e R" and that's it you have completed step (b). You iwaw proceed to
1 2

n

final step, i.e., step (c).







4.2 Completeness of

Step (c)

Here, you have to show thef™ - x* asm- « . Already, you have that for eachek{1, 2, ...,.n}

fixed,xﬁm) - X, asm- « which means that given any> 0, there exists Ne N such that for all

m= Nl

xﬁm) - % <7 (wherenistheoneappearingRi and is fixed).

n

NI

Now, you can choose & max N, then for all m> N,
= k= n

=1
n 2
7 N

* — m * 2
p(X(M, x* ) = XM - x|
k=1
1,
X 2 2 2 3
<< — P ]
= n-
kzln n

p(x™ x* )< forall m= N.

Hence you have tha™ - x* asm- « .

Since X ¢ R" (you got this in step (b)) and the Cauchy sequend&} of elements oR"
is arbitrary,you have thaR" is complele.
Following this same approach, you can prove thettmplex n-spac€" with the norm
kzk = |z 7
k=1

is complete

4.2 Completenessfl,, .
Theorem 4.2 The space Is complete.

Proof. Let{xM}" | be a Cauchy sequenceljn, where

U
x® = @ B O xP )
X(2) = (X(Z:I)_ H X(? 1 )&)?) 1 LS ] )é%]) ’ e ') %

H






4.3 Completeness @f[a,b]

{xM __, is Cauchy implies that given any> 0, there exists N such that for gls =
N,

k= 1
i.e., for each k fixed,

XD - &) 1< supQx, @ x, |< forallr,s
= N

This implies that for each & 1 fixed, {x®}* is a Cauchy sequence of elements of R and by

the completenessf R, xX™ - x* ¢ Rasm- «» (i.e.,{x™3} converges to the point xin R.).
" K Thisis K
illustrated by the array below

| } } '
(X*l ) X*Z’ X*3’ e )<'1 ’ )

Definex” =(X ,X X ,.nX ,..).

Step(b)

For this step, you have to show that x I... Now M3} e |, implies thatkx ™Mk, < t.,
{x (m for
each m, which implies thit™| < t,,, for each k. Also x - x} asm- « , so that

N e e R R e
;Dis inequality holds for every k and the right-dasde is independent of k. Hen§&" Is a

k k=1
bounded sequence of numbers. This impliesxl., . So you have completed step (b).

Step (c)
From the convergence ({fxém)} you have that given any> 0, there exist N N suchthat

(m) _
k

X % | <

forallm= N. This implies that

p(X(m), X" ) = supl)&(m) - %* | = forallm= N.
k= 1

This shows thax™ - x* inl, . Since{Xx™ ¥, is arbitrary,.. is completd

4.3 Completenessf C[a,b]



Theorem 4.3 The spacg{a,b] of continous real valued function defined on [ai®]complete if
endowed with the sup norm
kfko = max |f (t)]
=




5 Incomplete normed lineapaces

Proof. Let{fn}Z, be a Cauchy sequence@fa,b]. For eacht ¢ [a,b], there exists a positive
integer N such that given> 0,

Kfn = fmko = sup |fn(t) = fm(t)| < , foralln,m= N.

as t= b

Hence, for any fixeth € [a,b], [fn(to) = fm(to)] < foralln,m= N. This shows tha{fn(tg,—1
)}

is a Cauchy sequence of real numbers. Since Rmplete {f(to) }=, converges to a real number,
sayf (tgp) as h—» = , i.e.,

fa(to) > f(tg) asn— « .

This is the same as saying that the funcfigrconverges pointwise to the functibnYou have to
prove nexthatthis pointwise convergence is actually uniformt én[a,b], i.e., given any > 0, there
isan integeN" suchthatsup |f,(t)—- f(t)|]< foralln= N . So given any > 0, choose N
as t= b
such
thatkf, - f,k <, forn, m= N. Then forn> N,

Ifn(@® - FOI = [fa(®) - fu®O+ [fm® - T(OI

= sup|fa(t) - fm(®|+ [fm(t) - F (V)]

as t= b

= Kkfn— fk+|fm(t) = f(t)

By choosing m sufficiently large (m may dependjpeach term on the right-hand side can be make
lessthan 5 so thatsup [fn(t) - f(t)] < foralln= N. Hence, the convergence is uniform,
ast

= 1€,
f, - f uniformly on[a,b]. HenceC[a,b] is completel

5 INCOMPLETENORMED LINEAR SPACES.

In the last section, you saw that a normed linpacs (X,k - k) is complete if every Cauchy sequence
of its elements converges in the space. This mbsangou will call (X,k - k) if you can get a Cauchy
sequence of elements of X the a does not converjge Below are examples of some normed linear
space that are incomplete.

Example 5.1 The spac&ga,b] of continuous real valued functions defined/arb] endowed with
any of the integral norms 7
b
kfk, = [f(t)|dt
a

and z,

kfk, =  |F(t)|°dt

a

Nl

is incomplete.

You can illustrate this examples by taken particoéeses fofa,b], as in the examples below.







5 Incomplete normed lineapaces

Example 5.2 Let X= C[— 1, 1] be the space of all continuous real-valued tions defined on the
closed and bounded interyal 1, 1] with normk - k; given by

Zl
kfk, =  [F@O|dt te [- 1,1],f e C[- 1,1]

Then the space (X - k1) is not complete.

Solution. Following the comment at the beginingtlié section, you see that it is enough for
you to produce a Cauchy sequence of elemen®-ofl, 1] that does not converge to an element of
C[— 1, 1]. Consider the functiofy, given by

O )
0, if -1=t

-
=

IA

~+

1, if o
=1

for each ne N. The function is sketched in figure 1. First dfyeu have to check,, ¢ C[— 1,1]

for each ne N. That is you must show thdif,} is a sequence of continuous real valued function

defined orf— 1, 1] The proof thaf,, is continuous for each & N is done by a very important lemma
you studied in metric spaces called pasting lemma.

fo

P(1/n,)
0,2)

REF=-=====-

-1 (e] 1/n

Figurel:

To see this, you can set A= [~ 1,0], A; =[0,}]and A, =[!,1]ne N. Then for allt ¢ A;,
fn(t) =0, implies thafy, is continuous on Aas a constant function; also forll A,, f(t) = nt,
is continuous; and for alle [l 1],f.(t) = 1 is also continuous. AA, and A; are closed sets R,
A[lﬂ A, = {0} andf,(0) = O Aon Az —{ Yandf,(}) =1, and- 1,1]=[- 1,0Ju [0, l]U [L,

Therefore by pasting lemm#, is contlnuous off— 1, 1] for each ne N. Hencefy, € C[— 1 1]
for

eachne N.

Next is to show tha{f,} is a Cauchy sequence @{— 1, 1]. So let m> n so that, < ,l] You
1

have to show thd&f, - f,k; - 0asn, n>
o0 Z 1
|fn(t) - fm(t)ldt
0 kf,- fky, 1



But this integral represents the area betwgeandf,,. So from figure 2, you have that

1
kfn = fmka [fn(t) = fm(t)|dt=Area of40CD :_Z&n ——m) - Q0asn,m> «

8




5 Incomplete normed lineapaces

'
XD I ¢ °
-1 o] 1/m In 17t
Figure2:
YA 1
You can also compute |f(t) = fn(t)|dtdirectly as follows
-1
Z 1
kfn(t) - fm(t)kl = |fn(t) - fm
(t)|dt
Z, e

0- Odt+  |mt- nfdt+ |1- ntdt |1- 1|dt
1 0 + 1

n

Sl

Z

= “(m- ndt+ " (1-ntdt
0 1

i

—

m

EIN

1
(m- n)t2 m
2 0

n.,
+t =t
- 2

3=

m- n) 1l 1 n1l 1 ni
:(—) + —=-—+——s0asnnm o

2 m m 2m? n 2r?
Thus{f,}is a Cauchy sequence of element€pf 1, 1].

Next is for you to show thaff,} converges to an element that is noCir- 1, 1]. If {f31
IS
convergent, in order to find the candidate fodiitst, you should examiné&,(t) defined above. If

n- o ,lthe interval = t< 1! reducestd =0 and the < t< lbecomesxt=s 1.
interval = . You

can there conclude thht: [— n1, 1]- [0, 1] defined by

[]
1o, if -1 t= 0
f(t):D
1, if O<t=s 1

is a candidate for the limit.
R 21 1 1
[fn(t) = f(t)|dt=area ol40OAB - —
o 2 n
Thus the sequendcgfn},—; defined above is a Cauchy sequenc€[r 1, 1] which converges tb.
However,f is not inC[— 1, 1] sincef is not continuous at 0, you can check this. T@Qfs 1, 1]is
complete. not

Clearly,kf, - fk, = - 0asn-> « .



YA 3
Example 5.3 Let X= C[— 3, 3] with kfk, If (t)]> . Then X is not complete.

NI

ko]
=4

9



6 Conclusion

f®

(©0,1)A

=

i
! 1
! |
| |
| |
! |
| |
| |
| I
-1 o 1/n 1t

Figure 3:A

Solution. You can easily verify, using Cauchy Schwaequality for integrals, that
[f()|dt= 6 | ()]?dt
-3

-3

N

It follows then from this inequality and the seqoedf,} in last example that X= C[— 3, 3] is
not complete. This is because the above inequatlitys that i, } does not converge in X with
- kq, then it will not converge witk-k,. And you have seen in the last example €&t} does not
converge withk - kj.

6 CONCLUSION

In this unit, you have seen some examples of a &aspaces and some examples of incomplete
normed linear spaces. You have also seen thatsadtkubspace of a complete normed linear space
is also complete.

/7 SUMMARY

Having gone through this unit, you now know that;
() anormed linear space (X, k) is complete if every Cauchy sequence convergés in

(i) the real r spaceR" equipped with the euclidean norm,

12
In\ ) 2
2
kxk, = X |
k=1
is complete.

iii) the complex r spaceC" equipped with the norm
(i) th I C" ipped with th
1

NIl=

n

kzky = |z 7
k=1
is complete.

10
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(iv) The space.| endowed with the sup norm is complete.

(v) The spac€|a,b] of continuougeal valued functiodefinedon[a,b] is completevhen endowed
with the sup- norm
kfk, = sup|f(D)]

as t= b

(vi) The normed linear space X C[a,b] of all continuous real valued function is not coetpl
whenendowedwith any of the integral norms
yA b
kfk, = |f ()] dt

a

and/or

i

Z, 2
kfk, = If(D)]? dt
a

N

8 EXERCISES TMAs

1. Let X = C[— 2,2] be the space of real-valued continuous funstmmthe closed and bounded
interval[— 2, 2], andlet X be endowed with the norms
YA 2
(@) kfky = [f (t)|dt, and
-2

Z 2
(b) kfk, = If (0)|?dt

Nl

2

for arbitraryf in X. Justify the following statements:

(@) (X,k - k) is not complete;
(b) (X, k - ky) is not complete.
2. Let X = CJ0, 4], be the space of real-valued functioleéinedon a closed and bounded interval
[0,4] and suppose X is endowed with the norm,
yA 4
kfk, = If ()|*dt
0

Nl

Consider the sequende), -, definedby the following graph

(a) Write down the explicit expression i(t), 0= t= 4.
(b) Verify that
i. gn € C[0, 4] for eachn;
ii. {on¥z, isa Cauchy sequence;
lii. g, - gasn- « ,where

O OO
o
o
IA
-+
IA
N

at) =

)]

A\
-+
IA
N

-
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G(t)

(O30

=11}

2+

Figure4:

Conclude tha€C|0, 4] with the norm is not azcomplete space. Give lagoproof (similar
4 1

2
to Example 1.19) thaZ[0, 4] with kfk, := [f (t)|°dt  is not complete.
0

3. Let X = CJ[0, 5] be the space of real-valued continuous functanshe closed and bounded
interval[0, 5]. Let X be endowed with norms,
Z 5
kfk, = |f (t)|dt,

0
Z 5

kfk, = If (t)|°dt
0

Nl

for arbitraryf in X. Show that

(@) (X, k-ky) is not complete.
(b) (X, k - ky) is not complete.

(Hint: You may use Fig. 5).

@

0

N o1

o
+

[N}

S 1o
5}
~

Figure5:

4. Let S be the set of real sequences having ofiyta number of nonzero terms.
(@) ShowthaGc |, .

(b) Take a sequenggx"}in S, wherex" = (1,7,4, ..., 1,0,0, ...). Prove that:

12
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i. {x"}is a Cauchy sequence®)
ii. X" - x where x := (13,%,...).
Conclude that S is not complete.

5. Prove the following statements;

(a) C" the complex n-space endowed with the norm
1

In\
kzk, = |2 |?
k=1

for arbitrary z= (z,, 2, ...,z,) € C" is complete.

(b) (L= p<=)iscomplete.

Nl

(c) cis complete, where c is the space of all eagent sequences endowed with the norm

kxk = sup|x |
k=

1

for arbitrary sequence % (X1, X, ...,Xn, ...) € Co [Hint, you can show that c is a closed
supspace df, and then apply theorel]

(d) @ is complete; whereycis the space of all sequences that converges ta@ed with
the norm

kxk = sup|x« |
T
for arbitrary sequence x (X1, X2, ...,Xn, ...) € Co [Hint, you can show thatds a closed
supspace of ¢ and then apply theorem 3.1.]

6. Let X = R®. X is not complete when endowed with the norm

X
(@) kxky = |x«|
k=1
1

5
(b) kxk, = Xk |2
k=1

1
2

(c) kxk, = 1r2a§(4xé<|

(d) None

7. Let X = CJ0, 1], the space of contiuous functions[0ril] Consider the sequence of functions
{un}c X, given by

[
o, 0< t:—L——1
2 n
5
E
un(t) = Nnt_ D+_1 —1—1<t<}+}
2 4 2" 2 n~ 2 n



This sequence is converges in X when endowed Wwémbrm

13




8 Tutor Marked Assignmen{§ MAS)

Rb
(@) kfk, = P [F(D)] dt.

Z 1
(b) kfk, =  [F(H)I? dt
0

Nl



() kfk. = max]f (1)

(d) none of the above.
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1 INTRODUCTION

Linear maps play a crucial role in Functional Arsagdy In this unit, you shall be introduced
with the concept of linear maps, Bounded linear snéipear functionals and a special class of
Banach spaces called linear functional space. st@ll also be presented with some of their
basic properties.



2 Objectves

2 OBJECTIVES.

At the end of this unit, you should be able to;

. Identify maps that are linear.

. Show that a given linear is bounded or not.

1

2

3. Identify bounded linear functionals on finitersinsional space
4. ldentify bounded linear functionals on infinitienensional space.
5

. Compute the norms of bounded linear maps.

3 LINEAR MAPS

3.1 Definition and somexamples.

Definition 3.1 Let X and’ be linear spaces over the scalar field K. A mapping - Y is

said to bealinearmap if
T(ox +By) = oT (x) +BT(y). 1)
for arbitrary x, ye X and arbitrary scalaks p € K.

Linear maps can also be called Linear transformatar linearopeators.

Condition (1) is equivalent to the following tworaitions
1L.TXx+y)=T(X) +T(y) forall x, ye X;

2. T(ax) = aT (x) forall xe X anda ¢ K.

Definition 3.2 ( Linear functionals). The lineaap T : X— K from the vector space X to
the scalar fielK is called a linear functional.

In the definition (3.2), if T is called real or cpiex linear functional according as K is
either R orC.

Example 3.1 Let X=1,. For each x= (X1, X, ..., %, ...) in b define

).

X2 X3

TX= (0%, 2%
x=0x, 53

Then T is a linear map dg.

Verification. Let Xx= (X1, X2, ..., %, ..) and y= (y1,Y>, ..., %, ...) be arbitrary elements of
[, and leta, B be scalars. Then

aX + By = (0Xy, 0X2, ..., 0K, ...) + (BY1, BY2, coes PYics -o2)

= (aXy +Pyi,ax; +Pys,...,aXx +Pyk,...)






3.1 Definitions and somexamples

and

T (oX + BY) = 0, GXl"iBYl’ ocX2-;By2’ s Ole"I;Byk’

= 00X, %2,..., %%, .. + 0By, 22, .. B

= o O,Xl,ng,...,xkk,... +B O’yl’%"”,ﬂ"”

oT (X)+ BT (Y).
and so T is a linear map.

Example 3.2 Differentiation, Integration and limgiiee examples of linear maps.

Example 3.3 Let C denote the linear space of ¢exnpumbers over C, and define the map
T:C- CbyTz =2z, where z denotes the conjugate of z. Themdt g linear map.

Remark3.1 Note that since linear functionals are spdoahs of linear maps, any result
proved for linear maps also holds for linear fuoicls.

Proposition 3.1 Let X an¥ be two linear spaces over scalieid, K, and let T : X— Y be
a linear mapThen

(i) T(0)=0;
(i) Therange off, R(T)=4{ye Y : Tx =y forsome x X} is a linear subspace f,
(i) T is one-to-one if and only it (x) = 0 implies x= 0;

(iv) If T is one-to-one, thefi~ * existson R(T) and~ ! : R(T) -~ X is also a linear map.

Proof

(i) Since T is linear, you havé(ox) = aT (x) for each xe X and each scalar. Take
a = 0 and (i) follows immediately.

(i) You need to show that for;,y, € R(T) anda, B scalarspy; + By, € R(T). Now let
y1, Y2 € R(T). This implies that there exist,x, € X suchthafl (x;) =y, T (Xo) = V».
Moreover,ax; +Bx, € X (since X is a linear space). Furthermore, by ithesglrity of T,

T(oxg +Bxz) = oT (x) + BT (x2) = ayy +By..
Henceny, + Py, € R(T), and so R(T) is a linear subspac# of
(i) (=) Assume T is one-to-one. Clearlyx = 0 impliesT (x) = T(0) since T idinear

(and soT (0) = 0). But T is one-to-one. So,=x 0.

(<= ) Assume that whenev@ru = 0, then u must be 0. You have to prove that T is
one- to-one. So, Let Tx Ty. Then,Tx = Ty = 0 and by the linearity of , T (x -
y) = 0. By hypothesis, x y = 0 which implies that x= y. Hence T is one-to-one.







4 Bounded LineaMaps

(iv) Without loss of Generality, assume that X he tlomain ofl, otherwise we can take the
restriction ofT on D(T ), the domain off . Suppose T : X- Y is one-to-one, then
T : X - R(T) is both one-to-one and onto. Thus, for ewery R(T ), there exists a
unique X € X suchthaff (x* ) =y. ThusifTx =y thenx=x" SoletS : R(T )}
X be defined by S(y¥ x* . Now,

@ (T = S)y)=T(S(y)=T(X )=yforeveryye R(T), hence T S =
1R(T ).
(b) (S = T)X) =S(T(X) =S(y)=x" =xforeveryxe X, hence S T =1k

Accordingly T has an inverse afid ! =S.

Now to show thaf -1 : R(T) » X is a linear map, le;,y, € R(T) anda, p € K,

ay; + By, € R(T) (by (ii)). Since T : X—» R(T) is one-to-one and onto, there exists
unique vectors % X, € X such thaty = Tx; andy = TXx,. Linearity of T gives you
that

T(oxXy +BX2) =aT Xy +BTx2 =ay; +By2.
By the definition of inverse mapping,

T 1y, =%, T7 1y, =Xp, sothafl ™ Y(ayy + By2) = axg +Pxy =aT "y, +BT 1
Y2

Thus
T~ H(ayy +PBy2) =oT "ty +BT
-1
Y2

HenceT ~ ! is linear.

Example 3.4 LetT : R» R be definedbyx =ax +b;a,be R,b=20. Then T is not a
linear map. It suffices to observe tigD) =b = 0.

4 BOUNDED LINEAR MAPS

Definition 4.1 Let X and be normed linear spaces over a scalar field K,leind : X - Y
be a linear map. Then T is said to be boundecetfetlexist some constant, 8 0 such that
for each xe X,

KT (X)k = Kkxk, (2)

the constant K is called a bound for T and in tlaise, T is called a bounded linear map.

The next thing to discuss is linear maps that argicuous. The following theorem is very
useful in identifying continuous linear maps.



Theorem 4.1 Let X and be normed linear spaces and let T XY be a linear map. Then
thefollowing are equivalent:




4 Bounded LineaMaps

(i) T is continous;

(i) T is continous at the origin 0 ( in the serbat if {X,} is a sequence in X su¢hat
Xp > 0as n- « ,thenTx, - 0inY as n> « );

(i) T is Lipschitz,i.e., there exists a constant¥ 0 such that, for eache X,

kTxk = K
kxk;

(iv) If D := {xe X : kxk = 1} is the closed unit disc in X, th&n(D) is bounded (in
the sense thdhere exists a constant M= 0 such thakTxk = M for all x e D).

Proof. (i)= (ii). LetT : X - Y be a linear and continuous. You have to prove That
is continuoust 0. So, let{x,} be a sequence in X such that - 0. By continuity ofT, we
have,Tx, - T(0). But T is a linear map so tha{0) = 0. Hence, the result follows.

(i) = (iii) You have that if{x,} is any sequence in X such thgt— 0 as n— « , then
T(xn) = 0. You have to prove that there exists a constar®K 0 such thakT xk = Kkxk
for each xe X. Suppose for contradiction that there is no ficfihen for any positive integer
n, there exists some x x(n) ¢ X, x(n) different from 0, call itx, (since it depends on n)
such that

KT Xnk > nkxnk.

This implies that

KT X,k -1
nkXx,k

Now define the sequence u hﬁ‘m Clearly, &, > 0. For,

Xn 1 kxnk
k - 0Ok = = =
U = 0 nkxnk n kxnk

1
— - 0.
n

However,Tu, 9 0. For,

T(Xn) _ KT (Xn)k

KTu.— Ok = -
Un nkxak kXK

>1,

and soTu, 9 0 (evenu, - 0). This contradicts the hypothesis that T is cmnts at the
origin. Thus our supposition is false and so, £i)(iii ).

(i) = (iv) Given that a linear map T is Lipschitz we wamiprove thaf (D) is bounded,
(e, KT(x)k = M for all x e D, and some constant M= 0). Take ye D arbitrary.
Then,kyk = 1. By (iii), KT (yY)k = KKkyk for some constant k= 0. Butkyk = 1. So,

kTyk = Kkyk =
K.

Since y was arbitrary chosen in D, it follows tf@tall ye D, kTyk = K. Now take K=

M
and the proof is complete.

(iv) > (i) Let xq, X, be arbitrary elements of X. Assume first that-x x, = 0. Consider
€



the vectoru := f(‘)l(l‘_ szk' Clearly, u D, and so, by condition (iv), (i.€.(D) is bounded),

there exists a constant 8 such thakT (uk = K i.e,,
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X1 — X2

ST ke = ok K, orkTx; = Txok = Kkx; = Xk.

If, on the other hand,;x- X, = 0, this inequality clearly holds, Thus, the inedfydiolds for

all 3, X, € X. Now, given any > 0, choose = 3. So, ifkx; = Xk <3, then
K
kTXl - TX2k = Kle - sz = m <,
Ko = [

and hence T is (uniformly) continuous &n

Property (iii) of the last theorem is a very imort one. In fact, you have the following
definition:

Definition 4.2 Alinearmap T : %> Y is continuous if and only if it is bounded.

Thus,for linearmaps, continuity and boundedness are equivalent.

Definition 4.3 If T : X > Y is a bounded linear map from a normed linear spao#o a
normed linear spacg the norm of T can be defined by

kTk:= inf{K : kTxk = Kkxk} for each xe X.

The above definition gives you immediately thd@txk = KkTkkxk for each xe X and
that for every > 0, there exists xe X, x =0, suchthakTx k> (kTk- )kx k

Definition 4.4 Let X and Y be normed linear spaead let B(X, Y) denote the family of all
bounded linear maps from X to Y. Define

(T+Dx) = TX +LX);
(aT)x) = oT(x),

forall T, Le B(X, Y) and scalaa. Then, clearly B(X)Y ) is a vector space.

Theorem 4.2 Let B(XY ) be the family of all bounded linear maps from XYt Then we
have the following: For arbitrary @ B(X, Y),

KT xk
KTk = sup kTxk = supkTxk = sup X
= xks 1 kxk=1 =0 KXk

3
Proof. Since T is bounded and linear, there eXst& 0 such that for all xe X,
kTxk = Kkxk. If kxk = 1, thenkTxk = Kkxk = K and so{kTxk : kxk = 1}is

a bounded

setin R so its “sup” exists ansup kTxk = K for any K such thakTxk = Kkxk for
kxk= 1
all

x e X. Taking the infimum over all sudk’s gives




sup =< inf{K = 0:kTxk = Kkxk forall xe K} := kTk.
kxk= 1
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Hence,

SUPKTxk < KTk. (4)
kxk=
1

Conversely, from Definition (4.3), we get that farery > 0, there exists xe X, x =0,

such that
KTx k> (kTk—-)kx
k.

(OtherwisekTx k = (kTk— )kx k andkTk would nolongerbetheinfimum). Letu & ¥
thenku k =1 andkTu k > KTk -
Consequently, we obtain from inequality (4) that

kTk=  kTxk=  kTxk= supT —— >kTk-
sup sup
kxks 1 kxk=1 w k=0 KX K

Since > 0 is arbitrary, we get that

KT xk
>
k kxk

kTk= supkTxk = KT xk =

kxk= 1sup sup

kxk=1 kxk6=
X Ox -

so that all this quantities are equal. The proabisiplete.

It important to remark here that sincgk is the smallest M such that

kTxk = Mkxk for each xe
X,

it follows that whatever value M has, we must alsvagve

KTk < M. (5)

Example 4.1 LetT 3l- |, be defined by

X X
T (X0, X2y oeey %y -o) = (0, X, T2k

ThenkT xk = kxk so thakTk = 1. In this example, we actually hak&k = 1 since
T(1,0,0,..0,..¥(0,1,00,..,0Q,).

Proposition 4.1 Let X and be normed linear spaces. Thkenk definedby

kTk = sup KT xk
kxk= 1

foreach Te B(X, Y ) is a norm on B(XY ). Hence B(X,Y) is a normed linear space with
this norm.



Proposition 4.2 Let XY, Z be normed linear spaces and leePB(Y,Z), Q¢ B(X, Y).
Define(P Q)(xX) = P (Qx). Then

(@) P Qe B(X, Z), and

(b) kP Gk = kP KkQk.




5 Linear functionals

5 Linear functionals

Definition 5.1 A linear functional on a normeddar space X over K, is a linear transforma-
tion
f: X - K.

In the sequel, the linear functionals of interestuld be bounded linear functionals i.e.,
those functionals that are elements of the duatesga , but you shall see some examples of
unbounded linear functionals now.

Example 5.1 Let X=1, and for any x= (Xy, X, ..., %, ...) € |, consider the linear func-

tional
X

f(x) = Xk -
k=1

Forx = (1,1,1,..), Xe X becausexk, , butf(X) does not have finite norm, ahds
unbounded on.l. If instead we take the above linear functiomaXo= |, we have

© X

If ) = Xk | =
ka1
k=1

Hencef bounded onlandkfk = 1 infactkfk = 1.

Example 5.2 Let X= C[a,b] be the space of continuous real valued functiontherclosed
and bounded intervh,b]. Suppose X is endowed with the norm

Kuky = max [u(t)|
=y

for arbitrary ue Cla,b], and consider the linear functiorfal X - R defined by
Z b
f(u= u(t)dt.

a
Then|f (U)) = max|u(®)|(b- a) = (b— a)kukyx and sof is continuous andfk = (b
- a.
as=t=b
Now for w(t) = 1,t e [a,b], you have
[fu) =@b- a

Hencekfk = (b- a).

Remarks.1 Computatiorof norm of a bounded linedunctional:

The general idea in the computation of norms ofnoedl linear functiondl : X - R is
that you have to first of all show thatis bounded. i.e., there exists M 0

[f(X) = K
kax
forall x e X. So by (5) you have Now, if you can find ¥ € X such that



Thenkfk = M.

-----

[f) =M



5.1 Dual or conjugatspace

5.1 DUAL ORCONJUGATESPACE

Definition 5.2 Dual (Conjugate¥pace.

The topological dual or the conjugate space ofraed linear space is the normed linear
space of all bounded linear functionfls X - K, with norm

kfk = sup |[f(X)] = sup |[f(X)|
kxkx =1 kxkx
=1

The dual of a normed linear space is denoteXby(= B(X, K)) Thusf ¢ X" means
thatf is mapping of X into K, which is linear and boundeRecall that any map from a
linear space into a scalar fieldislleda functional. The members &f* are therefore bounded
linear functionals.

Proposition 5.1 LeX (= R" or C") (finite dimensional normed linear spaces) ahbe a
normedlinearspace. LetT : X> Y be a linear map. Then T is continuous. In particular
Y =R or C, the topologicandalgebraic duals dR" andC" are the same.

Example 5.3 Consider X IE over C, i.e.,
I:;(C) = {(Xll X2) ---,Xn), Xk € C}

and define
fa(x) =qX; +- -+ anX,

for a fixed ac I witha=0 and%) +lq: 1,p= 1.

Clearlyf, : X - C and is linear. It is also bounded since

200l = layxa + - + &l
< (al® +- @l (al + o Xl

= kakqkxk, .
Here you have used Holders inequality, series @erdtor aemainder

X X a X P

|a X | lac | la 7

k=1 k=1 k=1
<

wherelp+lq: 1,1< p<ow.

Hencef ;5 is bounded an#lf jky - kakq . If we set

&
0 if a =0.

<

]

S TR
Xk =

g

then 1

n
-

kap — |a< |qp— p

Pl







5.1 Dual or conjugatspace

But
qp— p=p@- 1)=q

and therefore .

kxk, = lac |
k=1
But
P P _1
[fa)l = R=aac]d = kxkp (g lac|d) e
= kxkj kaky .
Hence
kfakx - = kakg.

In fact all continuous linear functionals b;hhave this form, so that

ay ="

p q

Similarly, it can be shown that

(Ip) =lgforl=s p<

The detail is in the following proposition.

Proposition 5.2 For £ p < , 1", =14 where%) +1 =1, (i.e, the dual oflisl,, where

q
%+%|:1,1<p<oo),

Proof. The proof is divided into 2 parts.

Part 1. Is to prove that every element i, definesan element, in I, with kyk = kf, k.

Part 2. Is to prove that every element i, definesan element;zin |, with khk = kz, k.
» and |, are isometric.

Part 1. Let e {yxkZ1 € lq- For every x= {x, ¥ in|,, definef, : 1, > R by

X
fy(x) = XYk
k=1
Clearly,f, is well defined. For,
I 1.
» XX © - q
Ify ()| = Xk il X [P IVil®  =kxkkyk <= .
= k=1 k=1
k=1

This inequality also implief, is bounded and



kfyk =
kyk.

Linearity off, is obvious. Hencd,, is a bounded linear functional gndnd sdfy, € I}, .

10
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:I;gr Part 2. Leth |I" . Let{ex  be the canonical basis i I.e.,
p k=1

e =(0,0,..,0,1,0,)
with 1 at the kth position. Then for every element {x 2, inl, we have that

X X
X = Xk& = lim Xi € .

N— «©

k=1 k=1

By the linearity and continuity (boundedness) of h,
1
X ) X X
h(x) = h Iim Xk& = lim xkh(e) = Xk h(e).
T =1 T =1 k=1
Define

zn = {h(e) k21 = {ox k=1

It suffices now to prove that,z 1. Letx, € |, be defined as follows:

Xn - {]ou|% T signag, Joo|? T signay, ..., |an|%  signo,0, 0,...}.

Then k=1
— n

. P
[h(xn)] = oy |97 (signog ) = 25 Jox [T = khk - kxoK

P 1 P 1
= khk - E=1 |ow |(q— 1pP =khk -4 Il2=:|_|0q< [9%P

P, -2 X :
Hence{ ,_;lo|9 " P = khkforalln=1,2,3,... log P <, i.e.,

} Hence k=1

Zn = {okp=q € lqg andkznk = Kkhk.

Observe that sinced I}, is arbitrary, if you now take k fy (the functional induced by y) then
z, =y and we get that

1.
o q

kyk = kz, k = low [T = khk = kfyk.
k=1

Hencekyk = kfyk. But you already have thkf k < kyk, so thatkf,k = kyk. This

provgs that’l is isometrically isomorphic tly. This proof is complete. [ ]

Example 5.4 Considé? over R, i.e.,

17 (R) = {(X1, X2, ....Xn) : X € R}
Recall that
kxk, = max Xk |

=n

for arbitrary x= (X1, X2, ...,Xn) € 1", iIs@anormon”, .
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X
Letfy(x) = a Xx, thenf is a linear functional off! and
k=1
X
[fa(x)| = |a kx k = .. kak; .
kxk

For %, = sign(a), where

(|

Eﬂ for a >0
sign(g)= 0 for g =0
-1 for g <O

you have thakf k = kak; . You can show that afl ¢ (I" )* have this form, so that
any =
T

~

[tis also true tha(lrl‘)* = qnd Ii ~ J*however it is not true that = I,. In fact we

have § =1;, where g is the normed linear space of infinite sequencesxgx ..., X%, ...) with
Limlxk = 0 andkxKky, = sup-,|Xk|. Similar results hold whe} | I, I;, 1. are defined over
C.

The above results have a special interpretatiomvatye g = 2. In such case, you find that

amy EL”, andl =
2

2 2
Such spaces are called self dual

5.2 DualBasis

Suppose X is a vector space of dimension n ovefle theorem that follows shows that
the dual spacX" is also n (since K is of dimension 1 over itselif). fact, each basis of X
determines a basis f* as follows.

Theorem 5.1 Supposgxi, ...,Xn} IS a basis of X over K. Lef,...,f, ¢ X* be the
linear functionalsiefinedby g
01 0f i=j
fi(x;) =
o if =
then{f,,...,f }is a basis oK

*

Proof. You can first show th&tf4, ..., fk } spansX” . So letf be an arbitrary element
of
X" and suppose




f(X1) = Ky, f(x2) =k, -, L F(Xn) = k.
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5.2 DualBasis

Setoc = k;f; +... + kyf. Then

o(X1) = (Kify+---KaFr)(X1) = ki fa(Xq) + Kofa(Xy) + - - - knfn(Xa)

kl 1+k2 -0+ knO:kl
Similarly, fori=1, ...,n,
o(X) = (kefy + -+ - + knfr) (i) = kaf1(xi) + - - - + kifi(X;) - - - + Kafn(Xi) = ki

Thusf (xj) = o(x;) fori = 1,...,n. Sincd andc agree on the basis vectofs= ¢ =
kif, +--- +k,fnh. Accordingly,{f4,...,fn}spansx” .

It remains to be shown th#ix,, ..., X, } is linearly independent. Suppose
afs +afo+---+af, =0
Applying both sides to;x you obtain
0 = 0(x) = (@afs+---+afrn)(x)aufi(Xs) +&fa(xy) + - +anfn(x1)
= a1+ -0+---+a,-0=a
Similarly, fori= 2, ...,n

0=0(x)) = (afy+ -~ +anfr)(xi) = afi(xi) +---+afi(x) + - +anfalxi) =
g

Thatis,a =0, ...,a, = 0. Hence{f,, ...,f, } is linearly independent, and so it is a basiX of
| .

Example 5.5 Consider the bagig, = (2, 1), v = (3,1)} of R?. Find the dual basi§f,, f,

by
of (R?)" .

Solution.  Your interest is to look for linear furmmalsf,(x, y) = ax + by andf, =
(X, y) = cx + dy such that

fi(va) =1, f1(v2) =0, fo(vy) =0, fu(vp) =1

These four conditions lead to the following twotsyss of linear equations:

[l (]
fi(vi) =f1(2,1)=2a+b=11 fa(vi)) =12(2,1)=2c+d=00 "
and
f1(v,) = f1(3,1) = 3a+b=0 - fo(vy) = F1(3,1)=3c+d=0 "
The solutions yeild &= - 1, b = 3and c= 1, d = - 2. Hencef,(Xx,y) = - x +y and

fo(x,y) = x - 2y form the dual basis.

Example 5.6 LetP={a+Dbt: abe R}, be the vector space of real polynomials of



degree=
1. Find the basi§v,, v, } of P, thatis dual to the basfd,, p,} of (P,)” definedby

Zl ZZ
¢o(F() = f(dt and (f()) = F(Ddt

0 0
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5.2 DualBasis

Solution. Lety =a+ btandy = c+ dt. By definition of the dual basis,

bi(vy) =1, d1(v2) =0 and o (vi) =0,¢a(v2) =1

Thus
Rl 1 il Rl 1 ]
¢i(v1) = j(@+btydt=a+3b=1 ¢1(v2) = H(c+d)dt=c+5,d=0
R, : and R, .
P2(v1) = S(@+bt)dt=2a+2b=0 P2(v1) = ,(c+dt)dt =2c+2d=0
Solvingeach systemyieldsa 2,b=- 2 andc=— !, d=1. Thus{v; =2—- 2t,v, =— 1+
t} 2 2 |

is the basis of Pthatis dual te{ 1, P2} .
The next theorem give a relationship between baisesheir duals.

Theorem 5.2 Le{uy, ...,un} be a basis of a finite dimensional space X and{pt, ..., $n,

s
be the dual basis X" . Then:

el

(a) For any vectorx X, x = b (XU .
i=1
- . X
(b) For any linear functionale X* ,c = o(uy )bk
i=1
Proof. Suppose
X =aUp +aU; + -+ azuy (6)

Then

P1(X) = adpa(tn) +aeds (Uz) + -+ +andr(Un) =a -1+3 -0+ -+ a0
=a

Similarly, fori= 2, ...,n,
¢i(X) = adi(u) + - +adi(vi) + - - +andi(vn) =
a

Thatis,d1(X) = &, do(X) = &, ...,dn(X) = a,. Substituting these results into (6), gives you
(a).

It is now left for you to prove (b). Applying thméar functional to both sides of (a),

o(x) = d(X)o(u) + Pa(X)o(u2) + - - - + dn(X)o(uy
)

= o(U)d1(X) + o(U)p(X) + - - - + 5(Un)Pn(X)

() b1+ o (U)ot - - - 5(Un)Pn)(X)



Since the above holds for everg XX, 6 = o(uy )b, + o(Us)Po+ - - - o(Un)Ppn
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5.3 Hahn BanaciAheoem

5.3 Hahn-BanacAH heoem

Theorem 5.3 Thélahn-Banaciiheoem

Every continuous linear functiondél : M - K defined on a linear subspace M of a

normedlinear space X can be extended to a continuous lineastiimal F on all of X with
preservation of norm.

To see that this guarantees the existence of moattcontinuous linear functionals, con-
siderthesubspacé = {axy}where % € X, Xo = 0 anda is any scalar. A linear functional
f definedon M s

f(y) = akxgkfory = axg.
Then
If (y)| = kyk; hencekfk = 1,

and so the Hahn-Banach theorem says there is afiffed on X with norm 1.

A useful corollary of the Hahn-Banach Theorem is

Corollary 5.1 Let E be an arbitrary subset of awed linear space X. ThapanE2 X if
and only ifthezerofunctional is the only bounded linear functiondieh vanishes on all of E.
5.4 Convergencand ContinuityB(X, Y).

Definition 5.3 Uniform or normcorvergence.

Let{T,}Iis a sequence of bounded linear operators in B(X,T,, convergesiniformly to
Te B(X,Y)asn- o« if

kT - TkB(ny y = 0as n> « .
Frequently in applications this kind of convergersaseful.

Definition 5.4 Strong comergence.

Let{T,} be a sequence of bounded linear operators in B(XT, converges strongly to
Te B(X, Y)if

kTox—= Txky - Oasn- « forall xe X.

If a bounded linear operator depends on a pararhétem some interval of R, you can
define strong continuity, and uniform continuitytkvrespect td in an analogous manner.

Definition 5.5 Uniformcontinuity

LetT (t) € B(X, Y) for everyt € [a,b], thenT (t) is uniformly continuous at,, if
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5.5 The Uniform Boundedneg3rinciple

kT (t) - T(tO)kB(X,Y) - Qast - to.

Definition 5.6 Strong continuity

LetT (t) € B(X, Y) for everyt € [a,b], thenT (t) is strongly continuous &} if
KT ()x = T(tg)xky — Oforallxe X ast - t,.

Thefollowing are verymportant theoremsn linearoperatorsvhich are used in application.

5.5 The UniformBoundednesPBrinciple

Theorem 5.4 The Uniform BoundedneBeeoem
LetX, Y be Banach spaces, BT, }.1 € B(X, Y). Suppose¢hat

SUp,. | KTo(X)k <« for each xe X.
Then

SUPkT K < = .

oe |

Animmediate consequenoéthe UniformBoundedness Principis the following theorem;

Theorem 5.5Banach-SteinhauBheoem

LetX, Y be a Banach space afd} be afamily of bounded linear operators in B(X,).
If thefamily {T,x} converges to a limdefinedby T x. Then

(@) sUPKTRK <

n= 1

(b) Te B(X, Y).

(©) kTk =< liminf KTk

N— «

5.6 The OperMappingTheoem

Theorem 5.6 Open Mappingheoem
LetX andY be Banach spaces and T :(-X Y. Suppose

(i) Te B(X,Y),
(i) T is surjective (i.e., onto)

then T is an open map (i.e., T maps every opeafsetonto an open set df.)

The following is a corollary of this theorem.
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5.7 ClosedGraphTheoem

Corollary 5.2 Let X and be Banach spaces and T :(-X Y. Suppose
(i) Te B(X,Y),
(i) T is bijective (i.e., one-to-one and onto)

Then T 1! is also a bounded lineapeatar.

5.7 The ClosedsraphTheoem

Definition 5.7 Graphof a linearoperata.

Let X andY be normed linear spaces and T -XY be any map. Then, the graph of T
denoted by G(T), is defined by

G(T) =4L{(X,Tx) : xe X}
Observe that G(T) is a subset okX and that
(x,y)e G(T)ifand only ifTx =y.

Example 5.7 Let X=[0,1],Y =R, and T 0,1] - R be defined by
Tx =x?, xe [0,1].
Then, the graph of, G(T), is given by

G(T)={(x,Tx) : xe [0,1]F = {(x,x?) : xe [0,
11y

Example 5.8 LetX=[— 1,1],Y =[0,1]and S : X- Y be defined by

0
0, -1=< x
0;

0 <

1 0= «x
= 1

Then,

G(S) = £(x.Sx) : xe [0.1]} = €(x.0) : x¢ [= 1O} ~{(x.1) : x& (0,1}

Definition 5.8 Closedperata.

Let X andY be normed linear spaces and T (=X Y be linear operator. T is said to be
closed ifits graphG(T) is a closed subset of XY .

Alternatively, T is closed if whenever



Xne D(T),n=1,2,.. andn limxn, = X, r!im TXn =Y,

it follows that xe D(T) andTx =Y.
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5.7 ClosedGraphTheoem

Thatis if{xn}is a sequence of elements of D(T ) (the domaih)aduch thak, - x ¢ X
andT X, - ye Y thenxe D(T) andTx =Y.

The essential difference between bounded linearatqrs and closed linear operators is
their domain of definition.

To apperciate the importance of our next theoreya,will be presented with an example of
a map which is

(i) linear;
(ii) closed; and

(i) not bounded.
Example 5.9 Let X= C[0,1] =Y, whereC|0, 1] is endowed with the sup norm. Let
D={feCY0,1]:f'c C[0,1]}

where the prime denotes differentiation. Let T[0,1] - CJ[0,1] be a map with domaib®

definedby
Tf =1,
(i.e., T is the differentiation operator). Then,

() Tislinear
(i) Tis closed;
(i) T is not bounded.
The proof of (i) is obvious. To verify (ii), Leff,} be a sequence in D such that
Observe thal f, - y, implies thakTfn = yKc o1 = sup|(Tfn)(t) = y(t)| = sup |0
te [0,1] te [0,1] —
y()] - 0 as n> « . This convergence is uniform agdt) = um f2(t). Since the conver-
gence is uniform, we can interchange limit andgraé so we have:

z t z t z t
y(s)ds = lim f&(s)ds = lim fl(s)ds=f(t)- f(0),
0 0 e e o

so that Z.
f(t)=f0)+ y(s)ds.
0

Iltis now easy to see thill(t) exists and'(t) = y(t)forallt ¢ [0,1]. Thus,f € D andTf =y

so T is closed. It now remains to show (iii) thaisThot bounded. Takg,(t) = t". Then

kf,k = sup|t"| = 1 andTf, = fA(t) = nt" 1 sothat
te [0,1]

kTf.k= sup|nt™ =n,n=1,2...
te [0,1]
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6 Conclusion

Thus T is not bounded
The next theorem now tells us when a closed linparator is bounded.

Theorem 5.7 The Close@raphTheoem

LetX andY be real Banach spaces. Let
() T:X - Y be a lineamap;
(i) The graph oflf, G(T ) be closed.

ThenT is continuous.

6 Conclusion

In this unit, you were introduced to a special slaklinear maps called Bounded linear maps.
You were also introduced to the concept of Duaktepat a given normed linear space, which
is the space of all bounded linear functionalsrasfion a normed linear space. You also learnt
how to compute the norms of a bounded linear mdpradtional. You also saw some theorems
that you can use to determine when a given linegr an a sequence of linear maps is bounded.
You also learnt how to extend a linear functiorefirted on a subspace of a given vector space
to the whole space, preserving norm.

7/ Summary

Having gone through this unit, you know that;

(i) If X andY are linear spaces then the mapping T »>XY is called a linear map if

T(ax +By) = oT (x) + BT (y)
for arbitrary x, ye X and arbitrary scalarsg p € K.

(i) Alinearmap T : X— Y is bounded if there exists some constari=K 0 such that
for each xe X,4
KT(xX)k = K
kxk.

(i) A linear map is continuous if and only ifig bounded.

(iv) the family B(X,Y ) of bounded linear maps from normed linear spadetXthe normed
linear spac# is a linear space if vector addition and scalartiplidation is defined by

(T+DX) =TX +LK)

and
(aT)(X) = aT (X)

respectively for arbitrary, L € B(X, Y ) and scalad.
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7Summary

(v) The space B(XY ) of bounded linear maps between X &ntlecomes a normed linear

(vi)
(vii)

space with the norm

kTk = sup
kxk= 1

for arbitrary Te B(X, Y)

a linear map from a vector space to a sdaét is called a linear functional

the space of all bounded linear functionalsalled the duatpace

(viii) the dual space of thenreal spac&k" and the R complex space is the same.

(ix)
(x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

if 1<p<w with 2+ =1then the dual oflisl,.

if f : M > K is a linear functional defined on a linear sulzsp® of a normed linear
space X, then there exists a linear functionatiéfined on X such thdtF k = kfk
(Hahn-Banach theorem).

(The Uniform Boundedness TheoreiX, Y be Banach spaces, T, }..1 € B(X, Y).
Suppose that

supkT,(X)k <« for each xe X,

ae |

then
sup<< o .

oe |

(Banach-Steinhaus) if XY, be a Banach space a§d,} be a family of bounded linear
operators irB(X, Y ) and suppose that the fami{yT,x} converges to a limit defined
by Tx. Then

(@) supkTpk <=

n= 1

(b) Te B(X, Y)
(c) kTk < liminf kKTnk

N— o«

alinearmap T : X~ Y is called an open map if T maps open set of X antopen set
of Y.

Open Mapping theorem if X antdare Banach spaces and T :-XY, and suppose that
(@) Te B(X,Y),
(b) T is surjective (i.e., onto)

Then T is an open map (i.e., T maps open set ohd an open set of.)

Closed graph theorem If X aNdare real Banach spaces, and suppose

(@ T:X- Y isalinear map and

(b) the graph o', G(T) is close,



Then T iscontinuous.
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8 TMAs

8 TMAs

1. Which of the following mappings is not linear?
(@) f : R? » R® definedby f (x, y) = (x + 3,2y,x +Y)
(b) f : R® > R? definedby f(x,y,z) = (X +y +z,2x— 3y+ 4z2)
(c) f : R? » R? definedby f (X, y) = (X +Y,X)
(d) None

2. The functiorf : R® - R? definedby f (x,y,z) = (|x|, y + z) is linear. (TrueFalse)
3. The mapping : R> - R? definedby f (x, y) = (Xy, X) is linear. (True/ false)

P .
4. Let X be afinite dimensional space angxs, ...,X, be a basis. If x= ?:1 a;X;, define

Nijp

n

kxk = o

i=1

|2

If f is a bounded linear functional on X, fikflk. What will kf k be if kxk = max|a;|
5. If X is a finite-dimensional space, then alar functionals are bounddgdrue/Falsg
6. If X is an infinite-dimensional space, are aiklar functionals bounded¥es/Ng.

7. Letf be a bounded linear functional defined@ma,b] (with the sup norm) by
Z b
) = x(b)dt

a

forall x e C[a,b]. Findkf k.

8. On the spacg,Ifor x = (ag, ay, ...), define

poe
fX)=  an

n=1
and introduce a new norkxk, = sup|ay,|. Then with respect to this norm,
(a) T is linear and continuous.
(b) f is bounded and continuous.

(c) T is linear and not continuous.
(d) f is linear and bounded.

9. LetR" bethe real n-space, and let a be fixgd nonzerovector inR". Definef : R" - R
by

f(x) =hx,aiforallxe R"

(whereh, i denotes the inner product, or scalar product). Gaekf k.
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8 TMAs

(a) kar?
(b) kak
(c) kxk
(d) kxkkak
10. Letgp(t) be a fixed function ifC[a,b], and let
Z b
Tf = f(t)go(t)dt.

a

Then T a linear functional o@[a,b]. (True/ False)

11. If your answer is Yes in problem 7 above, wh&f k?

@ kTk=1
(b) KTk = |go(D)]
Z b
(€) KTk =" |go(t)| dt

a

(d) kTk = K, Where K is an arbitrary constant.

12. Consider the functions defined on the spaiéel],

Z 1/2 Z 1
(1) f(x) = ax(0) +bx(1) (1) g(x) = x(t)dt x(t)dt

0 172

which one(s) is/are bounded linear functional(sjranspac€|0, 1]?

(a) I only
(b) 1l only
(c) Both I andl
(d) None

13. Find

(@ ¢ +o,
(b) 3
(c) 2 - 5o,

whered : R® - R ands : R® - R and define by
d(X, y,z) =2x- 3y+zando(x,y,z) =4x- 2y+ 3z

14. Find the dual basis of each of the followingésaof R :

(@) {(1,0,0),(0,1,0), (0, Q)}

() £(1,- 2,3),(1-1,1),(2-47)}
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15. LetV be the space of polynomials over R of degeee 2. Let ¢4, ¢, p3 be the
linear functional®onV defined by
yA 1
bi(fM) = FOAt  a(F (1)) =F(1), ba(f(D) =F(0)

0



Heref (t) = a + bt + ct? andf'(t) denotes the derivatives 6{t). Find the basis
{f1(t), f2(t), f3(t)} of V that is dual te{ b1, b2, b2}
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1 INTRODUCTION

In this unit, you shall be introduced with innepg@uct spaces i.e., spaces with a real valued fuctio
called an inner product or scalar proddefinedon it and some special properties of such spaaas. Y
shall discorver that an inner product space isrened linear space, where the norm is induced by the
inner product defined on the space. Therefore,goainormed linear space, it is also a metric space
as you have studied in the previous units. Hencesge that there is need to talk albmrpleteness.
This will now lead you to some some special kintisioer product space called Hilbegiaces which
turn out to be complete inner product spaces.

2 OBJECTIVES

At the end of this unit, you should be able to;

1. define an inner product space,






3 Inner ProductSpaces

2. identify and show that a function is an inneydurct.
3. prove that an inner product is complete.

4. identify Hilbert spaces.

3 INNER PRODUCTSPACES

Definition 3.1 LetE be a linear space over the scédield K(= R or C).A complex-valuedunction
hi:ExE > K

definedfor arbitrary pair of elements x,ey E is said to be a scalar product or inner produitt i
satisfies thdollowing properties:

I1. hx,xi = 0 andhx,xi= 0 ifand only if x=0;
I,. hx,yi= hy, xi; where“bar” is thecomplexconjugation.

I3. hAX + Wy, zi = Ahx, zi + phy, zi

(valid for all x,y,z ¢ E and allcomplexi and g

Definition 3.2 Alinear space E with an inner puoth, i defined on it is called an inner product
space.

3.1 BASICPROPERIES

Here are some basic properties of inner produacespa

Remark3.1 The inner produdtefinedon the linear space E is a linear function in thst ¥ariable
except for theeasethat E is a linear space over R, fiedd of real numbersYou can observe thias
an immediate consequencd pfandl, that for arbitrary elementsy ,z ¢ E, andj, pe C,

hz,AX + Hyi = Ahz, Xi + uhz, yi.

Lemma 3.1 (Cauchy Schwartz Inequality) Let {B) be an inner product space. If xc yE are

arbitrary then
Ihx, yi|? £ hx, xihy, yi (1)

hx, yil*> = hx, xihy, yi if and only if x and y are linearly independent.

Proof. Letx, ¢ E be arbitrary. Let 2 C such thalz| = 1 and 2x, yi = |hx, yi|. Then for all

te R,
0< () = htzx+y,tzx +vyi

= t%z7zhx, Xi + tzhx, yi+ tzhy, xi + hy, yi

= hx, Xitz + 2thX, yi[ + hy, yi.






3.1 BasicProperties

Therefore,
hx, yi]* = hx, xihy,yi< 0 (2)

Otherwise there exisy € R such thatp(ty) < 0 and would contradict the fact thg(t) = O for all
te R. Thus from (2),

hx, yi|> < hx, xihy, yi
as requiredl

Theorem 3.1 Aninner product space E becomes amatblinear space when equipped with the
norm

P
kxk = 'k, xi. 3)
forall xe E.

Proof. The proof th&t-k satisfies N and N from the definition ok - k and condition$; and
I,. It is now left for you to verify that - k satisfy N;. So take an arbitrary elements x, ¥.

kx +yk? = hx+y,x+ yi=hx,x+ yi+ hy,x + yi = hx, Xi + hx, yi+ hy, xi + hy, yi

= kxk?+ hx,yi+ hy,xi + kyk 2

kxk’ + 2Rehx, yi+ kyk?

kxk? + 2)hx, yi| + kyk?

<
< kxk? + 2kxk - kyk + kyk 2 = (kxk + kyk) ?

Whichimplies thakx+yk < kxk+kyk for all X, ye E. The proof in now complete, hence, k)
is a normed linear spadk.

Remark3.2 As a consequence of Lemma 3.1, the Cauchy-Sthimaquality is generally written
as follows:

Ihx, yi| = kxkkyk, for arbitrary x, ye E.
Lemma 3.2 The inner produgti is a continuous function on EE.
Proof. Theprooffollows from the Cauchy-Schwartz inequalily.
Proposition 3.1 (Th&arallelograniaw) Let E be an inner product space. the for eabyjtx, ye
E,

kx + yk2+ kx - yk?= 2(kxk % kyk)? (4)

Proof. Take arbitrary elements x¢ JE. Since E is an inner product space,

kx +yk? = hx+y,x+ yi=hx,x+ vyi+hy,x +yi
= hx,Xi+ hx,yi+ hy,xi+ hy,vyi

= kxw?+hx,yi+ hy, xi+ Ky &







3.2 Examples of Inner Produspaces

and
kx- yk2 = hx- y,x- yi=hx,x- yi— hy,x- vyi

= hx,Xi— hx,yi— hy,xi+ hy,vyi
= kxk?- hx,yi- hy,xi+ ky R
From the expansion above, you have
kx + yk2+ kx = yk?= 2(kxk % kyk)?
forall x,ye E. |

Proposition 3.2 (The Polarization Identity) LetbE an inner product space. Then d&obitrary
xX,Ye E,

hx,yi= 2{kx+yk?- kx- yk? +ikx +iyk? - ikx - iyk?}, wheret =- 1

Proof. You can easily prove this by expandingriblt hand side to get the left hand sille.

3.2 Examplesof inner product spaces

Example 3.1Thelinear spac&", with thefunctionh, i defined,for arbitrary vectors x= (X1, X2, ..., Xn), ¥

= (Y1, Y2s .-, ¥n) INR", by
>

hX,yi=  XcYk (5)
k=1

is an inner product space. The norm induced bis(§iven by
!

NI

| @ N X
kxk =" nx, Xi = X
k=1

for arbitrary x= (X, X, ...,Xn) i.€., the Euclideamorm.

Verification.

To verify that(R", h,i) is an inner product space, you have to first sh@tht i is an inner product
onR". That is to say that i must satisfy axiomk,, I, andl of an inner product. So you can verify
as follows.

>
.. Letxe R" hx,xi= x?.2 0 as a finite sum of nonnegative real numbers. Wiiplies

k=1
thathx,xi = O for all xe R".

Pad
Now, hx,xi = 0 if and only if ~ x% = 0 if and only ifx% = O for each ke {1,2,..., K
k=1
(since they are nonnegative) if and only if>dls = 0, if and only if x= (X1, X2, ...,Xn) =
,0,...,0=0inR".







3.2 Examples of Inner Produspaces

I,. Let x = (X1, X2, ..., Xn), Y = (Y1, Y2, ..., Yn) in R" be arbitrary.

XX X
hX,yi= XYk =YXk =hy,xi
k=1 k=1

since the complex conjugatation does not have tiegten the set of real numbers.

l3. LetX,y,ze R", X = (Xy, X2, «eem ), Y = (Y1, Y2, ...,¥n) @and z= (24, 25, ..., Z5)
and\, ue R be arbitrary.

X X X
hAX + ny,zi = (AXk + UW)zk = AXg Z¢ + M Yk Zk
k=1 k=1 k=1
X X
= A XkZx +H Yk Zk
k=1 k=1
= Ahx,yi+ phy, zi

ThereforehAx + py, zi = Ahx, zi + phy, zifor all X,y,ze€ R" andj, pe R.

Thus, since, i satisfiesl,, I, andl; as demonstrated above, then it is an inner praguit".
Hence(R", h,i) is an inner product space.

Other examples of inner product spaces are as Hsienv.

Example 3.2 The linear spa€®, i.e. the n-complex space, with the functiphdefined for arbi-
trary z= (21, 2, ..., Z), ® = (01, 0, ...,0,) IN C", by

P
hZ, oi = Z Oy (6)
k=1

is an inner product space

Thenorm induced by (6) is given by
I

N

In\
kzk, = 2,2
k=1

for arbitrary z= (zy, 2, ..., %) € C", i.e., the unitarynorm.

Example 3.3Thelinear space,(C) with thefunctionh, i defined,for arbitrary vectors x= (X1, X, ..., %, ..

= (Y1, Y2, eo0s Yy -..) IN b, DY
>

hX, yi= Xk Vi (7)
k=1

is an inner product space

Thenorm induced by (7) is given by

(L]
Nl

X
kalz = |Xk‘2
k=1

for arbitrary sequencex (X1, Xo, ...y %, ---)

)Y






3.3 Jordanvon NeumannTheoem

Observe that the series in (7) converges followmfthe Cauchy-Schwartz inequality applied to
partial sums (Lemma 4.1).

Example 3.4 The linear spacegy g of continuous real valued function define on thesedl and
boundednterval[0, 1], with the functiorh, i definedfor arbitrary f, ge Cjo 1) by

z 1
hf,gi=  f(Hg(t)dt (8)
0
is an inner product space
Theinduced by (8) is given by
Z, 3
kfk, = If (t)]? 9)

0

for arbitrary f € Cig ;.

Example 3.5Thelinear spacé.,[0, T]of all Lebesguéntegrablefunctionson[0, T], with h, i defined

for arbitraryf, ge L,[0,T] by 7
T

hf,gi=  F(O)g)dt (10)

0
is an inner product space

Thenorm induced by (10) is similar to that given in.(9

You can easily verify that the above examples aner product space by properly applying the
properties of complex conjugation.

3.3 JORDAN VON NEUMANNTHEOREM

You have seen that in an inner product space Entiex product induces a norm which is given by
(3) in theorem 4.1. Thus showing us that everyripmeduct space is also a normed linear space.

Question.

The question now is, given a norm on a linear spaae can we know that it is induced by an inner
product?

The answer to the above question is given in therm.

Theorem 3.2(JordanVon Neumann) The norm on a normed linear space gtven by an inner
product if and only if the norm satisfies the plalalgram law. i.e., if and only if for arbitrary y,e
E,

kx + yk2+ kx - yk?= 2(kxk % kyk)?

Thus, a normed linear space is an inner produatesgaand only if the norm on E satisfies the
panllelogramlaw.




4 Conclusion

For example, the norm dR" given by

kxko = max [Xy|
1 ks n

is not given by an inner product. HenE&, with this norm is not an inner product space.

You can apply theorem 4.2 to check this. Thattiss enough for you to check thiat k, does

not satisfy the parallelogram law. But observe thatparallelogram law states for all elementsa an
y in an inner productpace.Hence,if you can find two elements &" for which parallelogram law
fails for the norrnk - ko, then you are done.

4 CONCLUSION

In this unit you have studied inner product spatie#, is, linear spaces with an inner product aefin
on it. You have seen some examples inner prochaites and how to verify that a given fuction
defined on a linear space as inner product. You saw that every inner product induaenorm
thereby making the inner product a normed lineacsp You have also seen that you can actually
check, by use of parallelogram law that some n@rasiot induced by an inner product.

5 SUMMARY

Having gone through this unit, you now know that;

(i) If E is alinear space over a scalar figl¢= R or C), then an inner product or scalar product
on E is a complex valued functiani : E x E - K defined for arbitrary pairs of elements

X,y e E and satisfies

I1. hx,xi = 0 andhx,xi= 0if and only if x=0;
I2. hx,yi= hy, xi; where “bar” is the complex conjugation.
I3. hAX + Wy, zi = Ahx, zi + phy, zi.

(valid for all x,y,z ¢ E and all complek and )
(i) A linear space E with an inner prodiict defined on it is called an inner product space

(i) (Cauchy-Schwartmmequality) if (E,h, i) is an inner product space, and if % ¥ are arbitrary,

then
Ihx, yi| < hx, xihy, yi.

Where equality holds if x and y are linearly indegent.
(iv) Aninner product defined on an inner prodsigce E induces a norm on E defined by
ok = DXt
(v) (Parallelogram Law) If E is an inner produpase then for arbitrary x,&/ E

kx +yk2 +kx - yK? = 2(kx ¥ + kyk?)

(vi) (The Polarization Identity) If E is an innproduct space, then for arbitrary xs yE,

hx,yi= 2{kx+yk?2- kx- yk2+ikx+iyk2— ikx = iyk?}, wheret =1
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6 EXERCISE TMAs

1. Verify that the spaces defined in Examples 8.2.6 are inner product spaces.

2. Compute thelinner product of x and y where

Wl
Bl
gl -~

and y=

x= 1,553 .
2'34

3. Let E=I,. Check ifkx + yk = kxk + kyk where

(@) x= (1,12,11118 ), y=(1,0,0,..);
(b)X_(1,3, 927 )y 3X

4. Consider the sequencesX}~, _, and y={ -1-}7_

(a) Verify that x and y are iB.
(b) Computed inner product of x and y.

5. Consider the fucntions,
f(t) =sin2t; g(t) =cos3;
h(t) =sin*t; m(t) = sect.

(a) Verify thatf, g,h and m are elements 05[0, 2x]

(b) Compute the 4]0, 2] inner products:
i. hf, giand
ii. hh,mi.

6. LetP, = {p = p(t), polynomial of degree less than or equal to n okerinterval[a,b]}.
Definethe functiorh,ion P, x P, by
Zy,
hp, qi = amomom

(a) Prove that,iis inner product oi®,.
(b) Computerf, gi wheref (t) = 1- 3%, g(t) = 3t

7. Let
(i) x() =t y(t)= -t
i} 2, 0< ts 2 0, 0 t< t
= ' 4 = 4

(a) Verify that x and y are ib,[0, 1].
(b) Computex, yiin each of (i) and (ii).
(c) Check whether or néix + yk? = kxk? + kyk?.
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8. Verify that Go 1 with the norm defined for arbitrafye Cyo 4 by

kfko = sup|f(t)|

te [0,1]

is not an inner product space.



9. Verify that}, 1< p <« , p= 2, is not an inner produspace.

10. IsR" with norm defined for arbitrary x (X1, X, ...,Xn) € R" by

kxk, = max [xy
1= ks n

an inner product space? Justify your answer.
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1 INTRODUCTION

In the preceeding units you have studied Banacbespand Inner product spaces. You were able to
prove that an inner product induces a norm on plages making an inner product space a normed
linear space. As a result, there is need to disouspleteness in an inner product space which would
give you some special class Banach spaces ddiledrt spaces. In what follows, you shall be intro
duced with this Hilbert spaces and its properflégese spaces are extremely useful in applications.

2 OBJECTIVES

After studying this unit, you should be able to



3 Hilbert Spaces

() identify and show that an inner product spaca Hilbert space.

(ii)

3 HILBERT SPACES

Recall that you defined a notkn k on an inner product space E, by

kxk = pnx,—xi
for arbitrary xe E. With respect to this norm you can also defi@aachy sequence in E.
Definition 3.1 Let E be an inner product spagesequencdx, }=, in E is Cauchy if and only if

i,
hXn = Xm,Xn = Xmi2z = kX, - Xpk—-> 0asn, m-

®©

Consequently, an inner product space E is callegptete if every Cauchy sequence in E converges
to a point of E.

Definition 3.2 A complete inner product space is called a Hillspdce

In what follows you shall calH a Hilbert space. Note that a Hilbert sp&t¢eould be a complex

Hilbert space or a real Hilbert space accordinghasunderlying linear space is complex or real
respectively.

3.1 EXAMPLESOF HILBERT SPACES.

Example 3.1 k[a,b], where the functions amplexvalued is a Hilbert spaces with inraoduct
Z b
hu,vi=  u(t)v(t)dt (1)

a

and norm
Z b

kuk = lu(t)|*dt

a

NI

Example 3.2Thelinear spac&", with inner produch, i defined,for arbitrary vectors x= (X1, X2, ...,Xn),

Yy = (Y1, Y2, .., ¥n) iINR", by
X

hX,yI = XYk (2)

is a Hilbert space

Thenorm is given by



for arbitrary x= (X1, Xo, ...,Xn) i.€., the Euclideamorm.

2



3.2 Orthogonality, Orthonormadets andOrthogonal complements

Example 3.3 The linear spa®, i.e. the n-complex space, with the inner produatdefined for
arbitrary z= (21, 2, ..., Z), ® = (®1, 0, ...,0,) in C", by

X
hz,oi = Z Dk (3)
k=1
is a Hilbert space
Thenorm is given by '
_n - 3
kzk, = |2 |?
k=1

for arbitrary z= (z4, 25, ..., 3,) € C", i.e., the unitarynorm.

Example 3.4Thelinear space,(C) with thefunctionh, i defined for arbitrary vectors x= (X1, X, ..., %, ...),
y = (yllyZ! ey M(! ) in |2! by

X
hx,yi = Xk Vi (4)
k=1
is a Hilbert space
Thenorm is given by .
> " 3

kxk,, = X |7

k=1

for arbitrary sequencex (X, Xo, ...y %, ---)

Example 3.5 The spacg[a,b] of continuous complex or real valued function dedion[a,b] with
inner product 7
b

hf,gi=  F(tg(tdt
a
is not a Hilbert space, because the norm induceabisynner product is
Z, 1
kfk, = If ()]t

a

andyou proved in previous units that the sp&&i@,b] with this norm is not complete. @oucan use
the fact thatC[a,b] is not a closed subspacelgfa,b] the space of Lebegue integrable functions on

[a,b]
3.2 Orthogonality, Orthonormadets andOrthogonal complements

Definition 3.3 Orthogonality
Two vectors x and y in an inner product space E afeogdnal if

hx,yi =0

in which case we writeL y. If M is a subset of E, then we wrike M if x. y for every ye M.







3.2 Orthogonality, Orthonormadets andOrthogonal complements

If x_ y, then the parallelogram law, reduces to a genecdhbtatement of Pythagoras’ theorem,

namely
kx + yk? = kxk? + kyk?.

Definition 3.4 Orthogonaland Orthonormakets. A set S in an inner product space E iscalle
anorthogonalset ifhx,yi = 0 for all X, ye S, x =1y. The set S is calledrthonormalif it is an
orthogonal set ankixk = 1 for each x S.

Definition 3.5 Orthogonaland Orthonormakystemgbasis)

A set of nonzero vector§x, » in E is said to be a®@rthogonabasis if
hXq, Xg | =0 fora = .
and amorthonormabasis if
.0 for a=58,
Yo, X 1= 1 for o =p.

If {Xq}Iis an orthogonal basis, then clearly,

Xa
kx,k

is an orthonormal basis. This is called normalizamgorthogonal set.
Example 3.6 Inj {en}z, given by
ee = (1,0,0,.)

e = (0,1,0,.)
e, = (0,0,..0,1,0,)

with 1 at thent" position is an orthonormal system.

©

Example 3.7 In,[0, 2x], the set S= %; gnt Is an orthonormal set.
7 n=1

Theorem 3.1 The vectors in an orthonorsyaten{x, } are linearly independent.

Proof. Suppose




3.2 Orthogonality, Orthonormadets andOrthogonal complements

C1Xa, + CoXq, + -+ CnXe, =
0

Then, taking the scalar product wip, , we get

WXoys C1Xay T+ CoXgp + 77 F CnXo, | = CNX gy Xop | =
0

by the orthogonality o{x, }. Buthx,,, X, i =0, hence

6 =0 (k=1,2,..n).

Proposition 3.1 Let S be an orthonormal set innaer product space E. L€, V,,...,vh,} be a
finite subset of S. Then for anyxE,

X
lhx, vii]? = kxk>2. (5)
k=1
Proof. Letax = hx, vki. Then,
= 2
X o Vk =
- k=1 0
so that, * +
X ™
X = Ok Vk, X — Q = 0,
Vj
k=1 k=1
X X X X
hx, Xi X, oV - Vi, X + Ok Vi, ovj = 0
j=1 k=1 k=1 j=1
or
X x X XX
kxk® — OLth,Vji Ol th,Xi+ Ol OLthk,Vji = 0,
=1 k=1 k=1 j=1

By definition,a, = hx, v i, o = hx,vji. Therefore,

X _ > _ "X
kxk? - ojoy — ok ok + |ow |2 = 0,
j=1 k=1 k=1
usinghvy,v;ji =0, k= j, so that
n
kxk® - log >+ ok [* - o> = 0







3.2 Orthogonality, Orthonormadets andOrthogonal complements

The above theorem can be generalize to yeild th@xfimg theorem.

Theorem 3.2 (Bessel’s Inequality) i, k=, is an orthonormal set in an inner product space E,
then for arbitraryx € E,

X
lhx, vii]? = kxk>.
k=1
!
X
Furthermoe, x - hx, vkivk Is orthogonal to y for eachk.
k=1

Theorem 3.3(Pythagoraspuppose&{u,, W, ...,U, }is an orthogonal set of vectors. Then

ku; +u, +---+urI3 :kullf +ku2k2+---+kurl€.

Proof. Expanding the inner product, gives you
Kup +Up +- -+ Uk? = hup+Up +- -+ U, U +Up + - + U
. . . P .
= hug, Ugi + huy, Usi + - - -hup, Ui + i:jhui,ujl

The theorem follows from the fact that;, u;i = ku;k? andhu;, uji=0fori=j ]

3.2.1 OrthogonaBasis and LinealcCombination, Fourier Coefficients

Definition 3.6 (Fourier Coefficients) Ldiu,} be an orthogonal system in an inner product space

which is not orthonormal. Let U

Yk T Kuk

Then the systenfv, } is orthonormal. Giverfi € E, let

1 .
= '=—hf,u 1,
Ck hf,VkI kukk k

and consider the series

X X X
Ck Vi K kUk = a U,
k=1 k=1 Uk k=1
where b wi
Ck , Ul
= = ) 6
TR0k Ku K (6)

Then the coefficients (6) are called the Fouriegftaents of the elementse E with respect to the
orthogonal (but nor orthonormal) systdm, }.

Example 3.8 Let S consist of the following threetoes in R :

u =(@{1,2,1), 4=(2,1,-4), kb =(3-21)







3.2 Orthogonality, Orthonormadets andOrthogonal complements

You can verify that the vectors are orthogonal;deethey are linearly independent. Thus S is an
orthogonal basis of R

Suppose you want to writeww (7, 1, 9) as a linear combination qf,u,, Us. First you have to set
v as a linear combination of uk, Uz using unknowns % X, , X3 as follows:

V=XUp XU + XUz or  (7,1,9)=xy(1, 2,1)+ x,(2,1,— 4) +x3(3,—- 2,1) (%)

You can proceed in two ways.
Method 1: Expand (*) to obtain tlsgstem
Xp +2% +3%3 =7, 2% +X,— 2%3 =1, X — 4% +X3 =9

Solving the above system of linear equations gmey =3, % = -1 and ¥ = 2. Thus
V=3 — U +2Us.

Method 2: (This method uses the fact that thesbesctors are orthogonal, and the arithmetic ishmuc
simpler.) If we take the inner product of each ©:6€) with respect tay;, we get

hv, uji
hui,uii

hv, uji =hxiu; +XoUy +X3Us, Uil Or  hv,uii =x;hu;, i1 or  X; =

Here two therms drop out, sincg W, U are orthogonal. Accordingly,

_ hv,ugi _7+2+9_E§_3 _hvyuid _14+1- 36_ — 21 _
ThuLui 1+4+1 6 O ® T hwi  4+1+16 21
_hvugi 21— 2+9 28

Xa = = = =
® Thus,uzi 9+ 4+1 14

-1

X1

2

Thus, again, you get¥ 3u; — U, + 2uUs.

The procedure in method 2 is true in general. Ngyme# have the following theorem.

Theorem 3.4 Le{uy, U, ...,uU, ¥ be an orthogonal basis of an inner product E. Toeany ve E,

hv, uqi hv, Ui hv, uni
= ~-Uq + -Uy, + - - - - Un
hug, Ui huo, Usi hun, Uni

Proof. Suppos ¥ kiu; +Kkau, + - - - + kpun. Taking the inner product of both sides with
yields
hv, Uli = hklul + k2U2 +---+ knun, U,

= klhul, Uli + kthZ, Uli +--- knhun, Uli

= kihup,upi+ky, -0+ ---+ Kk, - 0=Khug, ug i







3.2 Orthogonality, Orthonormadets andOrthogonal complements

Thusk = :Jluljlll Similarly, fori= 2, ...,n,
hv,uii = hkyu; +kou, + - - - + KnUp, U
= Kkqhug, yji + Kohuo, Uil + - - - Kphup, Uj i
= Ky -0+ ---+Kkihuy;, yji + - - - + K, - 0 = k;huy;, ugi
Thusk; = :L\J/i’,lf,:iii' Substituting fok; in the equation v= kyu; + - - - + khun, Wwe obtain the desired
result. |

Theorem 3.5 (Riesz-Fischer theorem). Given amookmal syster{ uy } in complete inner prod-
uct space E, let the number the numlogrs,, ..., &, ... be such that

x

|k ? (7)
k=1

converges. Then there exists an elenfientE withcy, C,, ..., &, ... as its Fourier coefficients, i.e.m

such that
x

|cﬁ| = kfk?
k=1
where
e =hf,wi (k=1,2,.).

Proof. Writing

X
fn - Ci Uk,
k=1
we have
2
kfn+p - fnk2 = kCn+1Un+1+ i Cn+pUn+p?( |Ck| .

k=n+1
Hencef converges to some elemdnt E, by the convergence of (7) and the completeneks o

Moreover,
hf, uci =hfn, uei +hf = f, Ui (8)

where the first on the right equalsitn = k and the second term approaches zero-as#,
since

Ihf - o, ui]l < kf- f.kku,
k.

Taking the limitas > « in (8), we get

hf,uki = Ck

since the left-hand side is independent of n. Mezeo



kf - f,k— 0



3.3 The ProjectionfTheoem

as n- « , and hence

* +
X ™ X
f - ckuk,f— Ck =hf,fi- |Ck|2—>0
Uk
k=1 k=1 k=1
asn- « ,i.e.,
> >
lim > =  |e]? =kFK2
" = k=1

3.3 TheProjectionTheoem

Theorem 3.6 Let E be an inner product space, let @ subspace of E, and x an arbitrary vector in
E. If there exists a vectof ube a vector in U sudat

kx = u" k =inf kx -
uk
ue U
thend isunique. Infact,u € U is a uniqueminimizing vector if and only if (x= u" )1 U.
Proof. &) Let U be the uniqueminimizing vector in U. Then you have to show that
(Xx— u" )L U. Suppose for contradiction that this is not theeca$hen there exists & uy ¢ U
which is not orthogonal to (x> u’ ). Without loss of generality you may assukigk = 1

(otherwise, normalizeguby dividing bykugk). Since g is not orthogornal to (x u* ), lethx —
U, Wi =06 = 0. Define avectorjue U by 5 =u* +35uUy. Then

kx - mskK = kx- 0 — Supk
= kx—- u k- hx— u ,dupi— hdug,x— u" i+ |[5]?
= kx—- U k- |3 <kx-w 2

contradicting the hypothesis thét us the unique minimizing vector. Hence<x u” )1 U.

(<) Let (x - u’ )L U. You have to show that uis the unique minimizing vector. For

arbitrary
ue U,u=u" , we compute:
kx— U =k(x- u)+@U - uk =kx=-"u+ - uk.
K ku*

(by pythagoras theorem). Thus

kx = uk > kx - u kforu=

*

u .



which shows that'u is the minimizing vector. Uniqueness follows trilslacompleting the proof of

this theorem. n

Observe that the above theorem does not guaraxitgeree of the minimizing vector. It only
asserts that if it exists, then it is unique and-(xu” )L U. But if instead of an arbitrary inner

product space we consider a HilbgpaceH, and a closed subspace UHf the following theorem
guarantees the existence of minimizing vector.

9



3.3 The ProjectionfTheoem

Theorem 3.7 (The Projection Theorem) Ekbe a Hilbert space, let U be a closed subspate. of
For arbitrary vectorin H, there exists a uniqué ue U such thakx -— u" k = kx - uk for all u
e U. Furthermore, 'u € U is the unique vector if and only if &x u* )L U.

Proof.  You need only to establish the existenca ofinimizing vector U. The uniqueness
follows from the preceeding theorem. Now le¢ ¥H. If x € U, then choose’u = x and you have
nothing left to prove. So yoassumehat x6e U and define

d:={kx- uk:ue U
T

Itis enough now for you to produce’au U withkx— u” k = 3. So let{y-, be a sequence of in U
}oo
suchthakx = ujk - & asj — « (This follows from the definition ofinf ”). By the parallelogram
law,

k(U = X) +(x— U Z+k(u - )= (x— w) =2ku — 2+ 2kx - uck?.

2

)k

Rearrangementields,

U — 4
2

ku, - uj2:2kuk - XK +2kx - ujlg -4 x
« -
For k and, the vector““T+uj isin U since U is a linear subspace. Hence, byl#imition ofg,
- %Y
=
2

so that,
kuk = ujk? = 2kue = xk? +2kx - ujk? - 452

Sinceky; = xk - § asj - « , you have thaku, — ujk - 0 as kj —» « . Hence{ujj=1 is a
}oo
Cauchy sequence in U and since U is complete ¢issad subset of Hilbert space), it follows that
{uj}2; hasalimit 0 in U. This implies, x- uj - x - U asj - « and so (by the continuity

of
the normkx — ujk - kx = u" kasj - « . Butkx = ujk - S asj - « , so that by the
uniqueness

of limit, you obtain,
kx = uU k=38 =inf{kx— uk:ue U}.

This completes the proof.

As an immediate application of the Projection Tleaorthe next theorem gives you that a Hilbert
spaceH can be represented as a “direct sum” of two afldsed subspaces.

3.3.1 DIRECT SUMDECOMPOSITION

Definition 3.7 Directsums



Let E be a vector space. E is said to be the daects of two subspaces U andf E, written
E =U & V if each xe E can be represented uniquely as> + v with ue U and ve V. In
this case, U is called tregéoraic complement o¥/ in E (and vice versa). The subspaces U\and
are called complementary pair of subspacds.in

Definition 3.8 Orthogonal complement.
If U is a subspace of a Hilbert spdde then the orthogonal complemant is defined by

10



3.3 The ProjectionfTheoem

*=4{xe H:hx,yi=0forallye U}.
In particular, for any given vectore H, we have
x* ={ye H:hx,yi=

0}

thatis,x* consists of all vectors ikl that are orthogonal to the given vector y.

Proposition 3.2 Let U and be arbitrary subspaces of a Hilbert spkteThen,

1. U* is a closed subspace kdf;
2. Uc U+,

3. IfUcV thenv*: c U*;
4.Vt =Ur.

Proof

1. Let{x,} be a sequence of elementsWf such thatx, - x ¢ H. You have to show that
xe Ut.Letye U be fixedx, € U* implies thathx,,yi = 0 for all ne N. Now,

0= |hx,yi] = |hx—= X+ Xp,
yil
= |hx— Xn,yi+hx,, Vil
= |hx= XnVYi| = kx- Xpkkyk - 0as n- «
This implies thabhx,yi = 0, so that x U*.HenceU" is a closed subset &1.

2. If xe U,thenxL y for allye U*.Therefore, x (U*)" =U*".
3. ye V' impliesthatyL x for each xe U. Therefore, y U*.
4. Using (2)U* ¢ Ut*+andUc U++ . From(3),(U**+)" ¢ Ut ¢ U-++andsoU**+ =U"*.

Theorem 3.8 (Direct Sum Decomposition) Let U beased subspace of a Hilbert spadeThen
H=Ue& U*

Proof. The proof is an application of the Proj@etTheorem. Let x H be arbitrary. By the
projection Theorem, there exists a unique vectoruU such that



kx— U k= kx- ukforallue Uandv =x- U
e Ut.

Consequently, we can write

X=u +X- u)=u +Vv' ,wherev =X

- u*’

11
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withu e UandvVv € U*.It remains now to show that this representatiobnsque. Suppose
that
x=u; +vy withu; € Uandy € U* is another representation of x. Then,

u +v' =u +vysothaty—- u +(vy— Vv')
= 0.

But (W - u ) and (M — vVv.) are orthogonal. Therefore by Pythagoras
Theorem,

O=k(u — u )+ (u - u)k?® =ku; - u k® +kv;

Vo2,

This implies,ku; - u" k = 0 andku; - u" k*> =0,ie,y =u andy = V', establishing
the uniqueness of the representation. THus U ¢ U* [ ]

Proposition 3.3 LeH be a Hilbert space. Thdd® = H, whereH" denotes the dual of
H.

Proof. The proof of this proposition is dividedadr? parts.

Part 1. You have to prove that every element {1 defines an elemerft, ¢ H" with the
same norm (i.ekf, k = kyk)

Part 2. Prove that evefye H* definesa unique vector y H with the same norrfkf k = kyk).

Hence H and H~ are
isometric.

Begining with Part 1. Let = H be given. For arbitrary x H, definef, : H - K by
fy (xX) = hx, yi. Clearly,f, is linear. Moreover]f, (x)| = hx,yi] = kxk - kyk so thatf, is
bounded. Hencg, € H* . Furthermorethelast inequality also yields that

kfyk = kyk 9)
If y = 0, then from (9) we havef k = kyk = 0. In this casefy, = 0 and you are done. So you

may
suppose that = 0. Take x= ﬁ(Lykthen we havéxk = 1, andfy (x) = kyk. This shows that

Ify(X)] = kyk = kf k- kxk = kfyk, i.e.,kyk = kf k. (10)
From (9) and (10), we have thelt, k = kyk.
Part 2. Leff ¢ H* . Consider the kernel df kerf defined by
kerf = {ue H:f(u) =0}.

Set K : kerf. K is closed subspace 1. By theorem 3.6, every elementex H can be written
uniquely as x= w + z where we K andz. K. Let xe K, then x=w" +z where z= 0 and
f(z) =06 = 0. Let x = (5). Then,f(x;) = 1. Hence for arbitrary & H, u 6e K, therefore
f (u) = o implies thaff (u) = of (x;) i.e.,f(u— ax;) =0. Letu- ax; =w’. Hence, /= W'+ ax;,

w! +ox; ,W'e K andox; L K so that

hu, X1 = hw? + axq, X10 = hw?, X1 + ahxy, X1 = akx; k2.



— — X & — 1
Hencef (u) = a = hu, lek|2 so thatf (u) = hu,y |0for allue H\K where y 0= éllkz _But this

also holds if ue K. Hence it holds for all ¢ H. Moreover by part 1, you have thdtk = kyok.
Finally, it only remains to show thag ys unique. But, iff (x) = hx,y* ifor all xe H then

hx,yol = hx,y" iforall xe Hsohx,yo— y" i =0forall xe

H.
Take x=y,— y* . Thenhy, - y* ,yvo— Yy i =kyox =0 impliesthaty = . The proof is
y ? y’
complete.

12
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4 The RiesRepresentatiomheoem

Here is an important theorem in Hilbert spacesstdtes that any bounded linear functional on a
Hilbert space can be represented as an inner graghinca unique vector in H.

Theorem 4.1 (The RiesRepresentatiofheorem.) LeH be a Hilbert space and létbe a
boundedinearfunctional onH. Then

1. There exists a unique vectgrey H suchthat
f(X) = hx,ypi for each xe H;

2. Moreoverkfk = kypk.

5 CONCLUSION

In this unit, you have learned Hilbert space aneklseen some examples. You were also introduced
to some important notions such as orthogonalityjammormal systems and orthorgonal complement
of a set. You learnt the projection theorem whiclarantees you the existence of a unique vector
of minimum norm in a closed subspace of a Hilbpece. You also learnt that a Hilbert space can
be decomposed into the direct sums of its closédmace and the orthogonal complement of the
subspace. Finally, the Rieze representation thegress you that every bounded linear functional in
a Hilbert space can be represented as an inneagiraith a unique vector in the Hilbert space.

6 SUMMARY

Having studied this unit, you now know that;

(i) A complete inner product space is called aétitspace

(i) Two vectors x and y in an inner product sp&care orthogonal (denoted y) if

hx,yi =0
(i) x1 M if and only ifx. y for everyye M c E.

(iv) A set S in an inner product space E is cadlacdrthogonal set ifx,yi = 0 for all x, ye X,
x =y. Andis calledan orthonormal set if it is an orthogonal set laxki = 1 for each x X.

(v) A set of nonzero vectogx, }in E is said to be an orthogorsistemif
hXq, X i =0 foro = B.

(vi) {X,}is called an orthonormalystemif

0 for a=p

L .
X, Xg 1=

o for o=.
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X :
(vii) If {x4}is an orthogonal system, then clear%:—k is an orthonormal system.
o

(vii) (The Projection Theorem) IH is a Hilbert space, and U is a closed subspadd,dhen for
arbitrary vector ¥ H, there exists a unique vectdr = U such that

kx — U k= kx- ukforallue
u.

Furthermore,U € U is the unique vector if and only if & u” )1 U.

(ix) If E is a vector space, then E is said taH®edirect sum of two subspace U &ndf E, written
E=U & V if each xe E can be represented uniquely as xi + v withue U and ve V.

(x) If U is a subspace of a Hilbert spddethen the orthogonalomplementJ* is defined by

t={xe H:hx,yi=0forallye U
¥

(xi) If U is a closed subspace of a Hilbert speteThenH = U ¢ U*.

(xi) H* =H (i.e., the dual of a Hilbert space is itself).

7 TMAs

1.Ti:l, > Rby
Ti(X1, ..o, Xn) = X ¥ (Xq, X2, ...) € |o.

(a) Prove that; is a bounded linear functional for each
(b) Compute the unique vectaf guaranteed by the Riesz representation theorem.

2. Define T iL,[0, 2r] - R by
Z 2n
(THH(®) = f()dt ¥ fe Ly[0,2n]
0

(a) Prove that T is a bounded linear map.

(b) Compute the unique vector of minimum norm gotead by the Riesz representation
theorem.

3. Letu= (1, 1, 1) be a vector in®RWhich of the following vectors in Ris not orthogonal to
u?
@ v=(1,2,-3)
(b) w=(1, -4,
3) (c) x=1(2,31)
d)y=(-5,293)



4. Find k so that &= (1, 2, k, 3) and = (3, k, 7,- 5) in R* are orthogonal.

(8) k=4

14
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(b) k=2
(c) k:35
(d) k=2

5. Let W be the substance of Bpanned by &= (1, 2,3~ 1, 2) and v= (2, 3,7, 27 1). Find
a basis S of the orthogonal complemétit of W.

(@ S=4{w; =(2,- 1,0,0,0),w =(13,0,~- 4,1,0),w = (- 17, 0,5,0,
1)} (b) S={w; =(2,- 1,0,0,0),w = (13,0~ 4,1,0),w =(- 17, 0,
0,05} (c) S=4{w;=(2,- 1,0,8,0),w =(13,0,0,1,0), w= (- 17,
0,0,05)% (d) S={w;=(2,-1,0,0,9),w=(13,0,- 4,7,0), ¢ =
(- 17,0,0,09)%

6. Letw= (1, 2, 3, 1) be a vector in*RFind an orthogonal basis S fut .
@ S=4v.=(0,0,1-3),w», =(- 21,- 5,3,1), =(0,- 5,3,1)}
(b) S={v,=(0,0,1- 3),v», =(0,- 5, 3,1),% =(0,14,3,2)}
(c) S={v;=(0,0,1-3),», =(- 14,2,3,1),y=(0,- 5, 3,
D} d) S=4{v;=(1,41,-3),w, =(- 21,- 5,3,1),¥ =(O,

-5,31)}
7. LetV be the vector space of polynomials over R of deggee2 with inner product defined
by
YA 1
hf,gi=  f(t)g(t)dt.

0

Find the basis of the subspace W orthogonh(tp = 2t +1.
(a) {7t>- 5t,12¢ -

5t} (b) {7t?2- 5t,12¢

- 5} (c) {7?- 5,

12¢ - 5t} (d) {7t? -

5,12¢ - 5%

8. Find a basis of the subspace W bfdkthogonalto y =(1,- 2, 3,4) andu=(3,- 5, 7,8)

(@) {(1,2,1,0), (4,4, 10)}
(b) {12 1,0), 4 4,0,
D} (© {(1,0,2,1), (4 4,
0,1)} (d) {(1,0,2,1), (4,
4,1,0)}



9. Find a basis for the subspace W oftRthe vector y = (1, 1, 3,4, 1) andu=(1, 2, 1, 21)

(@ {(- 5,2,3,5,6),{ 6,2,0,1,0),¢5, 21,0,
0} () {(- 1,0,0,0,1),€ 6,2,0,1,0),€ 5, 2,
1,0,003 (¢) {(- 1,0,0,01), (- 6, 2,0, 1,0),
(- 5,2,3,56)} (d) {(- 1,0,0,0,1),¢{ 5, 2,3,
5,6), € 5, 2,1,00)}

Use thefollowing to solve 10 and 11
Letw=(1,- 2,- 1, 3) be a vector in‘RFind
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10. an orthogonal basis far ,

@ {(0,0,3,1), (0, 3+ 3,1),(210,- 9,
3)} (b) £(0,0,3,1),(0,3r 3, 1), (1,5,

- 6,7} (c) {(0,0,3,1)(1,5,- 6,7), (2,
10,- 9,3)}

(d) {(1,5,- 6, 7), (0, 3~ 3, 1), (2,10,- 9,3)}

11. an orthonormal basis for .

(@ {,+0,031),7+0,3-31), (1,5-67)3}

10 19 194
(b) {Ji—(o, 0,3, 1)Jf(o, 3,-3,1),Y (2,10,- 9,3)}

10 19 1
(©) {Jl—(o, 0,3, 1)v,¢(1, 5-6,7),Y (2,10,- 9,3)}
10 10 “T104
@ {,*15-67),"(03-31, (210-93)3}

19 10 194

N
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1 INTRODUCTION

In this unit, you shall be introduced with some ortant linear operators defined on Hilb8paces.

2 OBJECTIVES.

At the end of this unit, you should be able to

1. Define an adjoint operator on a Hilbert space.

2. Define unitary, self adjoint, normal and herraittoperators and give their properties.

N OO 0o o



3 Adjoint Operators

3 Adjoint Operators

Definition 3.1 Let A :H - H be a bounded linear operator defined on a HilogatcsH. The
Adjoint A* of A is definedby

hAX, yi= hx,A" yi forall x,ye H.

That A always exists can be seen by consideihg yi = f, (x) as a linear functional a.

Clearly
Fy(X)| = kAxkkyk

IA

kAkkxkkyk

< Kkxk

for fixed ye H. Hencef, is a bounded linear functional, and so by the Riepresentation theorem,
there exists a'y € H such that

hAX, yi= hx,y" iforall x e H.
Thus A induces a linear map A H - H, and we write this

y* = A" ywhere A is abounded linear operator on
H.

The following example shows that the adjoint opmragas a simple description within the context
of matrix mappings.

Example 3.1
(a) Let A be a real+ square matrix viewed as a linear operatoR8nThen, for every u, ¥ R",
hAu,vi= (Au)' v=u"ATv=hu,ATvi
Thus the transpose’2of A is the adjoint ofA.
(b) Let B be a complex n-spare matrix viewed asearoperatoionC". Then, for every u, ¥ C",
hBu,vi= (Bu) v=u"B'v=0"B* vV =hu,
B" vi

Remark3.1 B° may mean either the adjoint of B as a linear opemat the conjugate transposie
B as a matrix.

Example 3.2
1. Find the adjoint of F : R—~ R® definedby

F(X,y,2) = (3x +4y~- 52,2x- 6y+ 7z,5x- 9y+ 2)



Solution. First find the matrix A that represeRtsn the usual basis offRthat is, thematrix
A whose rows are theoefficientsof x, y, z, and then form the transposé Af A. Thisyields

2



3 Adjoint Operators

[l [l [l [l
3 4 -5 3 2 5
A=U2 -6 -9UandthenA = 4 -6 -9U
0 -5 7 1
5-9 1

The adjoint F is represented by the transpose of A; hence

F* (X,y,z) = (3x+2y+5z,4x- 6y- 9z,- 5Xx+7y+2)

2. Find the adjoint of G : T~ C3 definedby
G(X,y,z) =[2x+ (1 - i)y, (3+ 2i)x - 4iz,2ix+ (4- 3i)y - 3Z]

Solution.  Find the matrix B that represent G ia tisual basis of ¢ and then form the
conjugate transpose€ Bof B. This yields

U ) J O . .U
2 1-i O 2 3-2 -2
B=U3+2i 0 -4iJandthenB = 1+i 0 4+3i U
2 4- 31 -3 0 4i -3
Then G (x,y,z) =[2x+ (3- 2i)y - 2iz, (1+1i)x + (4+ 3i)z, 4iy—- 3z] ]

Theorem 3.1 LetA,BH — H be bounded linear operators on the Hilbert sphac€hen
@l =l
(b) (A+B) =A" +B".
() @A) =oA .
(d) (AB) =
B* A" . (e) kA" k=

kAK.
(f) kA* Ak = kAk2.
@A) =A
Proot
(@) Forevery x, ¥ H, hl(x), yi= hx,yi=hx,1(y)i; hencel® =1
(b) For any x, & H,
h(A + B)(x), yi = hA(X)+ B(x), yi=hA(x),yi+ hB(X),yi

= hx,A" yi+hx,B" yi=hx,A" (y) + B" (y)i



= hx,(A" +B" )(Y)i

The uniqueness of the adjoint impliesAB)" =A" +
B




3 Adjoint Operators

(c) Forany x, ¥ H,
h(aA)(X),Yi= haA(X),yi= ahA(X),yi= ahx, A" (¥)i= hx,aA" (y)i =hx, (aA)(y)i

The uniqueness of the adjoint implie®\]* = aA”

(d) For any x, y& H,
h(AB)(X),yi = hA(B(X)),yi=hB(x), A" (y)i
= hx,B" (A" (y))i=hx,(B” A" )()i

The uniqueness of the adjoint implies (ABx B* A*

(e) From the relatiomx, A" yi = hAX, yi, by setting x= A" y, you have
kA" (y) =hAA"y,yi< kAA"ykkyk
and using the boundedness of A, this yields foy allD(A" ),
kA" yk?< KAk kA" k-kyk

so that
kA" yk < kAkkyk (2)

Observe thatif Ay =0 forally, then A =0 and (e)
follows. Inequality(1) yields that A is bounded and so

KA" k< kAk (2)
Applying (2) to A gives youk(A™ )" k< kA™ k. Using (d), we now have

kAk < kA" k 3)
Inequalities (2) and (3) yield (e).

(H Using (e), gives you that
kA*Ak< kA*kkAk = kAk 2 (4)

Moreover, for each x D(A),
KAXk? =hAx, Axi= hA "Ax, xi < kA 'Ak-kxk 2
so thatkAxk < (kA* Ak)z kxk whichyields
kAk2 < kAA" k. (5)

(4) and (5) yield the desired result
(g) Foranyx, ¥ H,

hA" (X),yi=hy, A* (X)i= hA(y), Xi = hx, T (y)i

The uniqueness of the adjoint implies(A = A L]
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3.1 Self-adjoint, Normahnd Unitary Operators
3.1.1 Self-adjointoperators

Definition 3.2 (Self adjointoperators)A bounded linear operator AH - H is said to be self
adjoint if
A" =A
Let B(H) denote the space of all bounded linear operatotd. The following theorem for
self-adjoint operators.

Theorem 3.2 The collection of self-adjoint operstonH forms a closed, real linear subspace of
B(H)

Proof. The set ifelf-adjoint operatons B(H ) is closed undexdditionand scalar multiplication
by real numbers, this is easy to show. Thus they f@ subspace. So it is left for you to prove that
this subspace is closed. l{&t,} be a sequence of self-adjoint operator$iosuch thafl,, -» T. It
suffices to prove that ET" . But

KT- T "k = KT- Tok+kTh- T k+Kk}," - T" kK
= KT - Tak+KkT}, = T" k, (since],” =Tn)
= kT_ Tnk+k(Tn_ T)* k:kT_ Tnk+ kT_ Tnk:2an_ Tk—> O
asn- o andsoT=T". [

For the next theorem, you shall need the followamgma.

Lemma 3.1 If T is a bounded linear operatorHrthenhT x, Xi = O for all x e H if and only if
T=0.

Proof. If T= 0, the result is trivial. Conversely, suppt$e, xi = 0 for all xe H. Then, for
arbitrary scalars., 3; and arbitary vectors x,s/ H,
0="hT (ax + BYy), ax + Byi— |ahTx,xi— [BPhTY,yi= af Tx,yi+ BahTy,Xi. (6)
Seta = = 1in (6) to obtain, G= hTx,yi— hTy,xi. Thus2hTx,yi= 0i.e.,hTx,yi= 0 for all y.
Now set y= T x to getkT xk = 0O for all x which impliesI x = 0 for all x, i.e., T= 0 as required.m
For self-adjoint operators, you also have the foilhg theorem.

Theorem 3.3 Let TH — H be a bounded linear operator oncenplexHilbert spaceH. Then T
is self-adjoint if and only ifiT x, xi is real.

Proof. Let T be self-adjoint. It suffices to peothathT x, Xi = hT x, Xi where the bar indicates
complex conjugation. Now, since T is self-adjoydyu have

hTx, xi=hx, T" Xi= hT X, Xi

and the result follows. Conversely, let

hT x, xi = hT X, xi = hT" X, Xi

so that
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hTx—- T"x,xi=0orh(T - T" )x,xi=0

forallxe H. Bythelastlemma, ¥ T* =0,ie.,, T=T". n

Remark3.2 If T : H - His an arbitary bounded linear operatorthnyou can always obtaia
self-adjoint operator from T in tHellowing way

1 Ll e
_§(T+T )+'[§(T T )=A+IiB
where A= 2(T +T" )and B=,! (T - T" ) are self-adjoinopeators.

Remark3.3 LetT :H - H be a bounded linear mayou have already proved thit k = kT" k.
This, however, does nonply, in general, thakT xk = kT" xk for every xe H. To see thisgonsder
thefollowing example:

Example 3.3 Let T - I, be defined by

T(Xl, X2, X3, ) = (O, X1, X2, X3, )

ThenkT" k = kTk, (already proved for all bounded linear operatorsl). Take x= (1, 0,0, ...)e
[>. Observe thakT xk = O whereagT" xk = 0.

Definition 3.3 (Positiveoperators.)A positive operator is a self adjoint bounded Imaaerator on
H such that

hAX, xi = O for all xe H.

It is called strictly positive iiAx, xi = 0 if and only if x= 0.

Example 3.4 If A= N" N, then clearly A is self adjoirgnd

hAX, Xi = hN* N X, xi = hN X, Nxi = kN xk?.

Hence A is a positive operator. If furthd = NN" , then
AN*N X, Xi = KNxk 2 =kNxk? =hNN"* x, xi = kN* x 2.

so thatkN xk = kN* xk.

3.1.2 NormalOperators

Definition 3.4 NormaloperatorsA bounded linear operator N on a Hilbert spaceoisnal if

Proposition 3.1 LetTH - H be a bounded linear map. If T is normal, then
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kT xk = kT~ xk, for each x H

Proof. Let T be normal. Then
KTxk? =hTXx, Txi=hx,T" Txi=hx, TT" i=hT" x,T" xi=KkT" »k
and the result follows. [ ]
For normal operators, you also have the followungdamental result.

Theorem 3.4 The set of all normal operator¢ios a closed subset of B(H ) which contains the set
of all self-adjoint operators, and is closed unstalar multiplication.

Proof. It is obvious that every self-adjoint ogeras normal and that i& is a scalar, then
aT is normal whenever T is. You can now show thatltmit of any convergent sequengg,} of

normal operators is normal. IndeedJjf » T, then, T~ - T" . Since{Tn}is a sequence of normal
operators, you have for eaohT,T, - T,T, = 0. Hence,

KTT* = T* Tk € KTT* = TpT* k+kT,T* = T* TkkT* To— T* Tk

= KTT" - To[, k+Kk[* Ton- T" Tk- 0

andsolT® =T" T, completing the proof. [ ]

3.1.3 UnitaryOperators
Definition 3.5 Unitary operatorsA bounded linear operator U on a Hilbert spaaengaryif
Uu® =U" U= 1 wherel is the identity operator.

In this case you have that

kU* xk = kUxk = kxk for all x e H

and so U is an isometry map frdtto H. Furthermore, unitary operators have inversesthei
adjoints are their inverses.

Theorem 3.5 LetT be an operator on a Hilbert spacThen, thdollowing are equivalent
)T " T=1
(i) hTx, Tyi= hx,yi;
(i) kTxk = kxkfor all xe H.

Proof. (i)= (ii) Forall x,ye H,
hx,yi=hx,l,yi=hx,T" Tyi= hTx, Tyi.
(i) = (iii)
KT xk? = hT x, T i = hx, xi = kxk?

as required (i) = (i) For all x € H, kxk? = kTxk 2= hx,xi = hTx,TXi = hx,xi =
hT* TX,Xi= h(l = T* T)x,Xi= 0 This implies by lemma 3.1 th@t- T T) =0ie..T" T =1
as



required.




4 Conclusion

4 Conclusion

In this unit, you studied different kinds of Boundiénear operators on a Hilbert space. You also
studied adjoint operators, self adjoint maps, upitperators, and normal operators and Hermittian
operators.

5 Summary

Having studied this unit, you know that
1. TheadjointA" of aboundedinearoperatoA : H - HisdefinedbyhAx, yi= hx, A" yif orallx, yinH

2. A bounded linear operator is self adjoint if A= A
3. A self adjoint bounded linear operator is pesitinH if hAx, xi = 0 for all xe H
4. A bounded linear operator N on a Hilbert spaagormal if
NN =N
"N

5. A bounded linear operator U on a Hilbert spacenitary ifUU" =U" U = | wherel is
the identity operator

6 TMAs

1. Find the adjoint of
was 518 %1
LIS

2. Let T : R - R® bedefined byl (x,y,z) = (x +2y,3x - 4z,y). FindT"
@ T (X,y,z) = (x +3y,2x +z,— 4y)
(b) T (x,y,2) = (x - 4z,2y+z,y)
©) T (x,y,z) = (X +z,3y+2x,— 4y)
(d) T° (x,y,2) = (x +3y,~ 4y +2,2x)
3. Let T : C - C3 be defined byl (x,y,z) = [ix + (2 + 3i)y, 3x+ (3- i)z, (2- 5i)y +iz].
FindT" (x,y,2).
@T" (xX,y,z) =[- ix+3y,(2+3i)x +(2- 5i)z, B+i)y - iz]



b)) T" (x,y,z) =[- ix+3y,(2- 3i)x +(2+ 5Dz, (3+1I)y - iz]

8
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© T Xvy,2)=[-ix+3y,(2- 3i)x +(2+5i)z, (3- 1)y - iz]
AT (x,y,2) =[- ix+3y,(2+3i)x + (2+5i)z, (3+1i)y — iz]

4. If T is an arbitrary bounded linear operatottband ifa. andp are scalars such that= ||,
thenaT + BT" isnormal (True oFalse)

5. The set of unitary operators Hris an abelian group. (True Balse)

6. If T is a normal operator on a Hilbert spaddethen §1 — T) is also a normal operator, where
A is a scalar antlis the identity operator dd (True orFalse)







