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1 INTRODUCTION

In your study of metric spaces, you defined a nunolbdey ideas like, limit point, closure of
a set, etc. In each case, the definition resthemotion of a neighbourhood, or, what amounts
to the same thing, the notion of an open set. ¥aurn defined the notions (neighborhood and
open set) by using the metric (or distance) ingiven space. However, instead of introducing
a metric in a given set X, you can go about thidifferently, by specifying a system of open
sets in X with suitable properties. This approbads to the introduction of the notion of
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a topological space. Metric spaces are topologipates of a rather special (although very
important) kind.

2 Objectves.

At the end of this unit, you shall be:

() able to define a topological space.

(i) conversant with some important topologicalinns.

3 BasicConcepts.

3.1 Definitions andExamples

Definition 3.1 Let X be a set. Atopology on X izallectiont of subsets of X, satisfying the
following properties:

1. The set X itself and thamptysetd are int;

L
2. Arbitrary unions U; of elements of are int.

A\
3. Finite intersections Uy of elements of are int.

k=1

Definition 3.2 By a topological space is meant & X, t), consisting of a set X and a
topologyr definedon X.

Just as a metric space is a pair consisting of X snd a metric defined on X, so a topo-
logical spaceas a pair consisting of a set X and a topology definedX. Thus to specify a
topological space, you must specify both a setnd a topology on X. You can equip one
and the same set with various different topolodiesteby defining various different topolog-
ical spaces. In the sequel, you shall oménd call only X a topological space provided no
confusion arise.

Definition 3.3 The elements of the topologyn X are called open sets.

Example 3.1 (Sierpinski topology) Let X {a,b.c} you can define many topologies 2n
For example, you can define

s ={D, X, {b},{a,b},{b,
cr}.

Thents is a topology on X called the sierpinski topology.
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Example 3.2 (The Discrete topology). If X is a sakety to be theP (X)), the power set of
X. 14 Is clearly a topology on X, it is called the digeréopology. In the discrete topology, all
subsets of X are open. It is the largest topolagXo

Example 3.3 (The Indiscrete topology). Let X bee and lett; = {&, X }. Thent,; is

clearly a topology otX called the indiscrete or trivial topology. It isetesmallest topology on
X and (X, ;) is called the topological space of coalescedtpoifihis is mainly of academic
interest.

Example 3.4 (Finite complement topology). Let X dset, and let; be the collection of all
subsets U oK such that Xr U is either finite or X, i.e1s is the collection of the form

¢ ;= {U c X :either Xr U isfiniteor X r U =X73}.
Thents is a topology of X called thinite complementopology.

Example 3.5 Let X be a set, andigtbe the collection of subsets U of X such that>U is
either countable or is X, I.eq is a collection of the form

1. := {U ¢ X :either X r U is at most countable or X U = X}
Thent, is a topology orX.

Definition 3.4 Letr; andt, be two topologies on X. Than is said to be finer thar (i.e.,t»
is coarser tham) if 1, 2 1.

According to definition (3.4) you can observe tthat is any topology on X, then
Tt € 1€ 14

wherety andt; are as defined in examples (3.2) and (3.3).

N\
Theorem 3.1 Theintersection= 1, oftopologies{t, . On X is itself a topology itX

Yo

(whereA is some indexing set.)

o

Proof.  You are required to verify the three(3)aams of a topology of X for
AN

T — Ty -
ae A

given that{t, }.c A is family of topologies on X.

So proceed as follows:

1. Sincer, is a topology on X for eadhe A, thed and X are in each,, so that
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2. Let{U;i}i., be a collection of elements of wherel is some indexing set. Let

L
U= Ui.

iel
You have to show that b 1.

But you already have that for eack ilgU; € © implies thatU; € t, for fixed a «
A. Sincet, is a topology on X, U= U ¢ 1, for a € A. Therefore, by taking

iel

intersections over € A, you have

U= Ui € Ty =0 T

i.e.,Ue 1.

3. To verify axiom (3) it is enough to do it foravsets Y and U in t. The results follows
by induction om.

Therefore, take two sets;dnd U, int and let
U= U]_ n U2.

You have to show that & t. ButU,, U, € t implies thatJ,, U, ¢ t, for eacha € A.
ThusU=U;n U, € 1, Since each,, o € A is atopology on X. Hence,
N\

U=Uin Use Ta =1 T
ac A

i.e., Ue 1. and the proof is complete.

3.2 Basis forTopology

For each examples in the preceeding section, yoe alde to specify the topology by describ-
ing the entire collectiom of open sets. This is usually difficult in geners most cases, you
will need to specify instead a smaller collectidrswbsets of X and then define the topology in
terms of this collection.

Definition 3.5 (Basis) Let X be a set. A basis &topology on X is a collectioB of subsets
of X (called basis elements) such that

1. For each x X, there exists B B such that x B, or equivalently X=U g.gB.

2. Ifx ¢ X and B, B, ¢ B such that xe B; n B,, there exists B € B such that
X e Bz € By n B,.

Definition 3.6 (Topology generated by a Basis)BIgatisfies the above two conditions, then
we define the topology generated b as follows:
A subset U of X isin (i.e., U is open) if for each x U, there exists a basis element BB
such that

xe BcU.

That s to say that is a collection of the form
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1:={Ue X:U=g orifxe U,thereexists B Bsuchthatx B c U}

You can easily verify that is a topology on X. Note that each basis elenmseapen.

Example 3.6 LeB = {(a,b): a,b e R, a<b}. ThenB is a basis for a topology on R called
the standard or euclidean topologyR®n

Example 3.7 LeB' = {[a,b): a,be R, a<b}. ThenB'is a basis for a topology on R called
the lower limit topology orR.

Example 3.8 LeB = {{x} : xe X }. ThenB is a basis for the discrete topologyXn

Proposition 3.1 Let X be a set, andBebe a basis for a topologyon X. Thent equals the
collection ofall unions of elements &.

Proof.  Let(Bi)ic| be a collection oflfelements Bf Then for each & I, B; € t (because
eachB; is open). Since is a topology, B; ¢ .

iel

Conversely, let U 1, and let xe U. B is a basis fot implies there exist Be B such that
X € By ¢ U, this implies that

L L
U= {x}c B, cU.

xe U xe U

L
Thus U= By, so that U is a union of elementskf [ ]

xe U

Example 3.9 Let X= {a,b, c,d, e,f }
and

= {X,a,{a}, {c,d}, {a,c,d}, {b,c,d e,
£3}.

ThenB = {{a}, {c,d},{b,c,d, e,f }} is a basis fot’ asB c 1’ and every element af can
be expressed as a union of element8.of

Note thet! itself is also a basis faf

So far, you have seen that when you are given B&,basu can define a topology. But
the following example tells you that you have toveey careful when you have an arbitrary
collectiion of subsets of a s¥t

Example 3.10 Let X= {a,b,c} andB = {{a}, {c}, {a,b}, {b,c}}. ThenB is not a
basis for any topology on X. To see this, suppbaéB is a basis for some topology Thent
consists of all unions of setsi that is,

1 ={X,9,{a}, {c} {ac} {a,b},
{b,c}}.



However,t is not a topology sinc€a,b} n {b,c} = {b} 6e 1. Sot does not have property
(3) of Definition 3.1. This is a contradiction, asd your supposition is false. ThBss not a
basis for any topology oX.
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In view of the above example, the question of edemow is; Under what conditions is
of a collectionC of subsets of X a basis for a topology Xr? The answer to this question is
provided by the next proposition.

Proposition 3.2 Let X be a topological space. SgpphatC is a collection of open subsets
of X such that for each open set U of X and eaehlX, there exists @ C suchthat

Xxe Cc U.

Then Cis a basis for a topology of.

When topologies are given by basis, it is useflidee a criterion in terms of the bases for
determining whether one topology is finer thandh®er. One such criterion is the following:

Proposition 3.3 LaB andB’ be basis for the topologiesandt’, respectively, on X. Then the
following are equivalent:

1. t'is finer thatr.

2. For each x X and each basis elementBB containing X, there exists a basis element
B'ec B'suchthat x B'c B.

Proof. (1)= (2). Letxe X and Be B such that x B. You know that Be t by definition
and that ¢ ' by condition (1); therefore, B . Sincet’ is generated bB', then there exists
an elemenB' ¢ B’suchthak ¢ B'c B.

(2) = (1). Given an element ¥ 1. Your goal is to show that & t'. So let xe U. Since
B generater, there is an element B B such that xce B ¢ U. By condition (2) there exists
B'e B'suchthat x B'c B. Then xe B'c U, so Ue ', by definition. n

3.2.1 The MetricTopology
One of the most important and frequently used vedysposing a topology on a set is to define
the toplogy in terms of a metric on a set. Topasgiiven in this way lie at the heart of modern

analysis, for example. In this section, you shallriiroduce with the metric topology and some
of its examples.

Definition 3.7 A metric on a set X is a functiodn: X x X - R having the following
properties:

1. d(x, y)= O0forall x, ye X; equality holds if and only if x=y.
2. d(x, y)=d(y, x) for all x, ye X.

3. d(x,z2)< d(x, y)+d(y,z) forall x,y,z e X (Triangle inequality).

Given a metric d on X, (X, d) is a metric space #dmnumber d(x, y) is called the distance
between x and y in the metic
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Definition 3.8 Let (X, d) be a metric space. Let X and > 0. The set

Ba(x, ) ={ye X:dlx,y)< }

of all point ye X whose distance from x is less than is calleddpen ball centred at x with
radius , otherwise called- ball centered at.

Lemma 3.1 Letd be a metric on the set X. Therctiection of all — balls By(x, ), for
xe X and > 0is a basis for a topology on X, called the metrjmology induced byl.

Proof.  The first condition of a basis is triviahge x¢ B(x, ) for any > 0. Before you
checkthe secondcondition for a basis, first of all prove the fdbat if ye B(x, ) for some
x € X and > 0, there exist® > 0 such that B(y9) ¢ B(x, ). Defines = - d(x,y),
then by triangle inequality, if 2 B(y, 6) then d(x, z)= d(x, y) + d(y, z) < . Now to
check the second condition for basis, let 8&d B be two basis elements and letey B,
n B,. Choosed; andd, such that B(y$,) ¢ B, and B(y,5,) ¢ B,. Letd = min(54, 3,), you
have B(y,0) € By n B;. [ ]

Using what you have just proved, you can rephiaseléfinition of the metric topology as
follows:

Definition 3.9 A set U is open in the metric topgydnduced by d if and only if for eachexU
there exist > 0 such that

Ba(x, )c U.
Example 3.11 Given a set X, define
]
01 if x=y
d(x,y)=
S0 if x=y

It is easy to check that d is a metric on X. Thaotogy induced by this metric is the discrete
topology;the basiselement for example consists of the points x alone

Example 3.12 The standard metric on the real nusrResdefinedby d(x, y)=|x = vy|. Itis
easy to chectkhatd is a metric.

3.2.2 ProductTopology

Here, you shall be introduced to the product toggldut a detailed study of this kind of
topology will be done in subsequent units.

Let X andY be topological spaces. There is a standard wagfuifidg a topology on the
cartesian product X Y. We consider this topology now and study some gbrieperties.

Lemma 3.2 Let X and be two topological spaces. LBtbe the collection of all sets of the
form U xV, where U is an open subset of X ahds an open subset ¥f i.e.,

B := {ll x\ U ie.nlnpn inX_and iqnlnpn inY}
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ThenB is basis for a topology on XY .

Proof. Thdirst condition is trivial, since XY is itself a basis element. The second condition
is almost easy, since the intersection of any tasidelement UxV; and U, xV, is another
basis element. For

(U]_ XV]_) n (Uz XV2) = (U]_ n Uz) X (Vl sz),

andthe later set is a basis element becaysedld and Vin V, are open in X and, respectively.
|

Definition 3.10 Let X and’ be topological spaces. The Product topology onY¥Xis the
topology having the collectidd as basis.

It is easy to check th& is not a topology itself on X% Y. You may now ask, what if the
topologies orX andY are given by basis? The answer to this questionvgat follows.

Theorem 3.2 IB is a basis for the topology on X af@ds the basis for the topology &nh
then the collection

D={BxC:Be BandCe C}

is a basis for the topology on XY .

Proof.  You can usgroposition3.2. Given an open set W ofXX and a point (x, yf X xY of
W, by definition of the product topology, thereistg a basis element WV such that (X,
y) e UxV c W. SinceB andC are bases for X and, respectively, you can choose an
element Be B such that xx B ¢ U andanelement Ce C such thaty C c V. So (x,
y)e BxCc UxV c W. Thus the collectio meets the criterion of proposition 3.2.130
is a basis of X Y. m

Example 3.13 You have the standard topology of Re Pproduct topology of this topology
with itself is called the Product topology onxRR = R2. It has as basis the collection of all
products of open sets &, but the theorem you just proved tells you that the msimaller
collection of all products (d) x (c, d) of open intervals in R will also serve alsasis for the
topology of R. Each such set can be pictured as the interiarettangle in R It is sometimes
useful to express the product topology in termsuddasis. To do this, we just define certain
functions called projections.

Definition 3.11 Lett; : X xY - Y andletr, : X xY — Y defined by

(X, y) = x andny (X, y) =.

The mapst;, andn, are called projection of XY onto itsfirst and second factors, respectively.

The word onto is used because they are surjectilegs one of the spaces XYohappens
to be empty, in which case XY is empty and your whole discussion is empty as)well
If U is an open subset of X, than L(U) is precisely the set &), which is open in XY.

Similarly, if V is open inY, thenn; *(V ) = X xV, which is also open in XY. The intersection
of these two sets in the setxl¥. This fact leads to the following theorem.
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Theorem 3.3 The collection
S={m '(U):UisopeniX}u Lz~ *(V):V is openiny }

is a subbasis for the product topology or X.

Proof. Lett denote the product topology on XY, let t° be the topology generated by
S. SinceS ¢ 1 then arbitrary unions of finite intersectionsedéments ofS stay int. Thus
7! ¢ 1. On the other hand, every basis elementWfor the topologyt is a finite intersection
of elements 08, since

UxV =z U)n n, (V).

Therefore UxV belongs ta!, sot ¢ 1’ as well. m

3.2.3 The Subspac&opology

Definition 3.12 Let X be a topological space witipologyz. If Y is a subset of X, the
collection
ww ={YnU:Ue 1}

is a topology orY, called the subspace topology. With this topologys called a subspace of
X; its open sets consists of all intersection afropets of X witlhY.

Lemma 3.3 IB is a basis for the topology on X, the collection

By :{BnY ' B e
B}

is a basis for the subspace topologyin

Proof. Let U be an open set of X and YJ n Y, By definition of basis, there exists 8 B
suchthaty B c U.Thenye BnY ¢ Un Y. It follows from proposition 3.2 thdy is a
basis for the subspace topology¥an [ ]

When dealing with a space X and a subspacé X, you need to be careful when you use
the termopenset. The question is do you mean an element of thelagywfY or an element
of the topology orX ? The following definition is useful. i is a subspace of X, the set U is
open inY (or open relative t ) if it belongs to the topology of : this implies in particular it
is a subspace of.

There is a special situation in which every opérirs® is also open irX.

Lemma 3.4 LeY be a subspace of X. If U is openYinandY is open in X then U is open in
X.

Proof.  Since Uisopen, U =V n Y for someV open in X. Sinc& andV are both
openin X, soig nY. [ ]

Proposition 3.4 Let A be a subspace of X and Bil@sgace of. Then the product topology
on Ax B is the same as the topology® inherits as a subspace of¥¥ .
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3.3 Closed Sets and LimRoints
Now that you have a few examples at hand, you carepd to see some of the basic concepts

associated with topological space. In this sectyon,shall be introduced to the notion of closed
set, interior, closure and limit point of a set.

3.3.1 Closedsets

Definition 3.13 A subset A ofpologicalset X is said to be Closed if XA, the complement
of Aiin X is open.

Example 3.14 The subdet,b] of R is closed because its complement
Rr[ab]=(-x»,a)u (bx),

is open. Similarlya,+« ) is closed.

Example 3.15 Consider the following subset of #ad line:Y = [01]u (2, 3), in the subspace

topology. In thisspacetheset[0, 1] is open,sinceit is theintersectiorof theopenset — }, 3

of R withY. Similarly, (2, 3) is open as subsetYofSince[0, 1] and (2, 3) are complement in
Y of each other, you can conclude that both are dlasesubset of.

The collection of closed subsets of a space X hgseapties similar to those satisfied by the
collectionof opensubsets oK.

Theorem 3.4 Let X be a topological space. Theiiditeving conditionshold:

1. g and X are closed.

2. Arbitrary intersection of closed sets is closed.

3. Finite unions of closed sets are closed.

Proof. Apply DeMorgan’s laws:

N\ L
Xr A,= (X rAy.
ae | ae |
L AN
Xr A= XrAy.
oe | oe | ]

When dealing with subspaces, you need to be vegfutan using the term open set. The
following theorem is very important.

Theorem 3.5 Let be a subspace of X. Then a set A is closetl iland only if it equals the
intersection oh closed set of X with.
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Proof. Assume that A= Cn Y, where C is closed in X, then X C is open in X, so that
(X r C)n Y is open inY, by definition of the subspace topology. But ¢XC)n Y =Y r A.
HenceY r A is open inY, so that A is closed ii. Conversely, assume that A is closedin
The set Xr U is closed in X, and A=Y n (X r U), so that A equals the intersection of a
closed set of X and, as desired. ]

Note that a set that is closed in the subsgao®y not be closed in X. So the question now
is, when is a closed set in a subspéaceosed in the spacé ? The next theorem provides an
answer to this question.

Theorem 3.6 LeY be a subspace of X. If A is closed¥nandY is closed in X, then A is
closed inX.

3.3.2 Closure andinterior of a Set

Definition 3.14 Let A be a subset of a topologisphce X. The interior of A denoted by
int (A) or A is defined as the union of all open sets containesl The closure of A denoted
by cl (A) or A is defined as the intersection adsid sets containiny

Clearly, the interior of A is an open set and tlosgre of A is a closed sdtithermore,

o —_—

ACACA
If A is open, then A= A; on the other hand, if A is closed, ther=AA.

Proposition 3.5 Let be a subspace f; Let A be a subset of Let A denote the clusure of
Ain X. Then the closure of A i is An Y.

Another useful way of describing the closure oétis given in the followingheorem.
Theorem 3.7 Let A be a subset of the topologipateX.

1. The xe A ifand only if every open set U containing x ineatsA.

2. Supposing the topology of X is given by a bathien xe A if and only if every basis
elemenB containing x intersectA.

Proof. Consider the statement (a). It is a statémokthe form P< Q. Transforming each
statement to is contrapositive, gives you the lalgicjuivalence (not Pg (not Q). Explicitly,

x e A if and only if there exists an open set U contajnirthat does not intersekt

In terms of this assertion, the theorem is eagydve. If x is not in Athe set Xr A is open
and containx and does not intersect A as desired. Conversely,dfelexists an open set U
containing x which does not intersect A, themA is a closed set containing A. By definition

of the closure Athe set Xr U must contain Atherefore x6c A. -

Part (b) follows from the definiton of basis.
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Definition 3.15 Let X be a topological space. Let XX andV be a subset of X containing
X.V is said to be a neighbourhood of x if there eaisl open set U of X such that

Xe UcV,

The collection of all neighbourhoods of x is demidbg N (x).

Proposition 3.6 Let X be a topological space ardX. Then

1. N(x) is nonempty;
2. IfV € N andV c Athen Ae N(x);

3. Afinite intersection of neighbourhoods of x is a neighboathofx.

Proposition 3.7 Let X be a topological space. Wdie a subset of X. Then U is open if and
onlyin Ue N (X) for every xe U.

Lemma 3.5 If A'is a subset of a topological spacetn xe A if and only if every neigh-
bourhood ok intersects A. i.e.,

x e Aifand onlyifforallV e N(x),Vn A=@.

Proof. &) Letxe A, andletv e N(x). SinceV e N(x), there exist U open such that
x e U c V. Itis enough for you to show that JA = &. Suppose U A = &, it implies
that Ac U® AndU ¢ is closed since U is open, thus,cAU . Which implies that x U ¢,
which is a contradiction. Hence,lJA = & .

(<= ) Assume that for every neighbourhoc\(bdof X,V.n A = . You have to show

that
X € A. Suppose x A, this implies that x A which is open (because A is closed) a®d so
Ae N (x), and by hypothesisfcm A = . This is a contradiction, hencexA.

Example 3.16 Let X be the real line R. If-A (0, 1], then A= [0,1],B = {_1/n h=

1y _ _
thenB=B u {0}.1fC = {0} v (1, 2) then C= {0} v [1,2], =R.

Q

Example 3.17 Consider the subspace= (0, 1] of the real line R. The set A (O,ig Is a
subsedf Y. Its closure in R is the set [f],and its closure iif is the set A=[0,]n Y = (0,].

3.3.3 Limit Points

Definition 3.16 Let A be subset of a topologicat ¥ and let x e X. x is said to be a

limitpoint (or cluster point or point aiccumulationpf A if everyneighbourhooaf x intersects
A in some point other than thattself.



xe X isalimitpointof Aifforallv € N(x), Vn(Ar<{x})=J.

Or x is a limit point of A if x belongs to the cla® of Ar {x}. The point x may lie in A
or not.

12
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Theorem 3.8 Let A be a subset of the topologipate X. LeA’ be the set of all limit points
of A. Then _
A=Au A"

Proof.  Clearly, A A’ ¢ A. To prove the reverse inclusion, letxA. If x happens to be
in A, it is trivial that xe AU A’. Suppose that & A. Since xe A, this implies that every
neighbourhood U of x intersects A. Becausi xA, the set U intersects A in a point different
from x. Then xe A’, sothat xc Au A’as desired. m

Corollary 3.1 A subset of a topological spacel@sed if and only if it contains all its limit
points.

Proof. The set A is closed if and only ifAA, and the later holds if and onlyifAA m

4 Conclusion

In this unit, you have been introduced to the mmguaind examples of topological spaces and
some basic concepts of topological spaces suclasis for a topology, closed set, open sets,
interior of a set, closure of a set, neighbourhaoioa set and limit point of a set. You have seen
some examples and proved some results.

S5 Summary

Having gone through this unit, you now know that;

() a topology defined on a set X is a collectioaf subsets of X satisfying

(a) X andg are int,

(b) arbitrary unions of elementsofare int,
(c) finite intersections of elementsofre int.

(i) atopological space is a pair (X) consisting of a set X and a topolagyefined on it.
(i) the elements of a topology on X are callgzkn sets.

(iv) if T, andt, are topologies defined on X, thenis said to be finer that if 1, € 14. In
otherwords you say thaj is coarser tham;.

(v) an arbitrary intersection of topologies isoagstopology.

(vi) a basis for a topology on X is a collectio8 of subsets of X (i.e., basis elements) such
that

(a) for each X, there exist B B such that x B, or equivalently, X=U g. .

(b) if x e X and B, B, € B such that xx B; n B,, there exists B ¢ B such that
Xe By c Byn By
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(vii)

(viii)

(ix)

(x)

(xi)

(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

the topology generated by a baBigs given by

t:={Ue X:U=¢g orifxe U, there exists B B suchthatx B c U
b

The collection
B:= {UxV :Uisopenin X andl is openiny }

is a basis for the product topology orxX.

The collection

S={n"YU):UisopeniX}u {=n (V) :V is open iny
1 b 2

is a subbasis for the product topology orxX. Wheren; : X xY - X andn, :
X xY - Y are the projection mapefinedon X xY bymr(X, y) = X andn,(X, y) =Y.

if Y is a subset of a topological space ¢, the collection
v ={YnU:Ue 1}

is a topology orY, called the subspace topology.is called a subspace of X, its open
sets consists of all intersection of open sets @i Y.

A subset A of a topological space X is sadbe closed in X if Xr A, (the complement
of A'in X) is open.

if X is a topological space, then

(a) ¥ and X are closed.

(b) an arbitrary intersection of closed sets iseth
(c) a finite union of closed sets is closed.

if Y is a subspace of X, then a set A is closeY ihand only if it equals the intersection
of a closed set ilX withY.

if A is a subset of a topological space Kem the interior of A, denoted @is the union
of all open sets contained in A, while the closofréd denoted by A is the intersection of
all closed sets containedAn

if V is a subset of a topological space X and X such that xe V, thenV is called a
neighbourhood of x if there exists an open set M @luch that

Xxe UcyV,

N (x) denotes the collection of all neighbourhoodz.of

if A is a subset of a topological space a element x of X is called a limit point of A if



forallV ¢ NX),Vn (Ar{x}) =d.

(xviii) a subset of a topological space is closethd only if it contains all its limit point.
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6 TutorMarked AssignmentgTMAS)

Exercise 6.1

1. In the following, answer true or false.
(&) The collection
17, ={U : X r Uis infinite or empty or alX }
is a topology inX ?

(b) The union <, of a family{t,} of topology on X is a topology oX.
(c) The countable collection

B={(a,b):a<b,abe Q}

is a basis for a topology dR
(d) If A is a subset of a topological space X, an@pose that for eachex A, there
exists aropensetU such that x U c A, then A is an open set K.

2. Let R be with the standard topology and let &R. Then A is open in R if there exist an
intervall suchthatl ¢ A. For a,b € R, which of the following forms is is the interval

@1 =(ah
(b) I = (a,b]
() I =[a,b)
(d) I =[a,b]

3. If T is a topology on a set X, which of the followirggriot true about?

(a) Finite union of elements ofis int.
(b) Finite intersection of elementswofre int. (c)

The empty se and the whole set X arein (d)

Arbitrary intersection of elements ofare int.

4. Answer true or false. The collection
B={UxV :Uisopenin X and is openinY }
is
(a) a topology on the product space: X.

(b) a basis for a topology on the product spaceYX

5. Letn; : X xY - X andm, : X xY - Y be the projection maps defined by

1 (X, y) = X andn,(X, y) =Y.

The collection
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S ={m *(U)|U openinX}u {m~ *(V)|V openiny }

is for the product topology on XY.

(a) a collection of open sets
(b) a basis

(c) a subbasis

(d) a topology

6. Let R be endowed with the standard topology.Sittar the sef = [— 1, 1] as a subspace
of R. Whichof thefollowing sets are open hh?
A= x: % <|x <1
B= x: % <|xl= 1
C= x: %s x| <1
D= x: % = X=1

(@) A, B and C only
(b) A only

(c) B and C only.
(d) D only.

7. With the standard topology of R. which of th&sse question 6 above are operRfd

(@) A,B and C only
(b) A only
(c) B, C and D only.
(d) D only.

8. Let R be endowed with the standard topology.Sittar the sef = [— 1, 1] as a subspace
of R. Whichof thefollowing sets are closed h?

1
A= X:=< <1
5 <X

1

B= x:=<lx= 1
5 <IX
1

C= x: == <1
5= Ix
1

D= x:=-<= = 1
5= Ix
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(@) A, B, C andD.

(b) B and C only

(c) B, C and D only.
(d) D only.

9. With the standard topology of R. which of thesse question 8 above are closedrRiR

(@) A, B and C only
(b) B, C and D only
(c) B and C only.

(d) D only.

10. If Ac X, atopological space, then the boundary of A odied byoA of Bd A by:

oA =An X rA

The folowing are true;

1. A anddA are disjoint, and A= AU 0A.

2. 0A = set if and only if A is both open and closed.
3. Uis openifand only #U = Uru.
Justify.

11. Hence or otherwise compute the boundary amdiantof each of the following subsets
of R?

@ A={(xy) :y=0}
(b) B={(x,y) : x>0andy=0}
(c) C=Au B.
(d) D = {(x,Xx) : x isrational}
12. If R, the real line is endowed with the indetertopology. Let A= [0, 1). What is /2
(&) [0,1]
(b) R
(c) [0,1)
(d) @
[Hint: Use theorem 3.7]

13. If R, the real line is endowed with the usuaitme topology, and let A= (0, 1). What is
0A?

@R

(LY IO 11
M) 1V 4




(c) 10,1}
(d) (0, 1]
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1 INTRODUCTION

Your understanding of the notions of closed setnagets and limit points in the real line or
arbitrary metric space can be misleading when yamaycsuch understanding to topological
space. For example in tilspaceR and R, each one-point set is closed. But this factds n
true for an arbitrary topological space. For if ymansider the three-point set X {a,b,c},

1



2 Objectives SEPARATIONAXIOMS

endowed with the thgerpinski topologyts = {<& , X, {b}, {a,b}, {b,c}}. In this space, the
point set{b} is not closed, because its complemdmt, c} is not open. Similary, the
understanding you have about convergence of a seguga the real line can be misleading
when you consider an arbitrary topological spaae. g&xample on the real line, the limit of a
sequence if it exists is unique, but this is noétin an arbitrary topological space. In this unit,
you shall be introduced to the separation axionmstral restrictions on the topological
structure making the structure closer to that ofedric space(i.e., closer to being metrizable).
A lot of separation axioms are known. Here you Is$taldy five most important of them. They
are numerated, and denotedIyT4, T,, T3, and T,, respectively.

2 Objectves

At the end of this unit, you should be able to;

(i) define a Hausdorff space and state some @irdperties.

(i) prove that in a Hausdorff space, every pogttis closed.
(i) define a convergent sequence and show thathausdorff space, the limit is unique.
(iv) prove that every metric topology is Hausdorff.

(v) know five separation axioms and their propettie

3 Axioms ofSeparation

3.1 HausdorffSpaceqT,— spaces)

The most celebrated of all the axioms of separasitihe second axiom of separatibn It was
suggested by the mathematician Felix Hausdorff, smchathematicians have come to call it
by hi name. And so Topological spaces that satisfysecond separation axiom will be called
Hausdorffspaces.

Definition 3.1 A topological space is called a Hamdgf space, if for each x, y of distint
points of X, there exist neighbourhoods, @nd U, of x and y respectively, that are disjoint.
More formally

X is Hausdorff iff x,ye X withx =y, there exist Y e N(x), Uy e N(y) : Uy n U, =
.

X

Figure 1. Hausdorff axiorr,)







3.1 Hausdorff Spacgd,— spaces) SEPARATIONAXIOMS

As earlier remarked, Hausdorff space Bye

For example, consider the real line R, with thend#éad topology, that is the topological
spaces whose open sets are of the forrh)(a,b € R with a < b (the open intervals). Take
for instance the points ! ¢ R, the open intervaly, %) and (3, ), are neighbourhoods &f
and?, respectively and%, ) n (2, ) = @. In fact, you know that the standard topologyRof
is induced by the metric d defined by

dix,y)=Ix -yl

forall x, ye R. And for each x R, the — ball centered at x with radius> 0 is given by

Bx, )={ye R:dx, y)=Ix- yl< }=Kx- ,x+

)
Thus for each x, ¥ R, with x =y, just choose = id(x,y) > Othenxe (x - ,x+ )=
B(x, Jandye (y- ,y+ )=B(y, )andB(x, n B(y, )=

.

The above exercise can be done in an arbitraryespéb the metric topology. and this
gives youthefirst example of Hausdorff spaces.

Example 3.1 Every metric topology is Hausdorff.

Example 3.2 Every discrete space is Hausdorff.

To see this, Let X be a discrete topological spand,let x, y¢ X with x =y. Take | =
{x}, and U = {y}, then U and U, are open sets in the discrete topology, apd W, =
D .

Exercise 3.1 Let Q be the set of rational numbetis the standard topology of R, and let

Q' denote the set of all irrational numbers also i standard topology of R. Is Q a@¥
Hausdorff?

The following are some space that are not Hausdorff

Example 3.3 The real line R with the finite compéarhtopology is nhot Hausdorff.
To see this recall first that the finite complemiamology is defined by

1+ ={U c X : X r U is either finite or the whole s&t}

Now suppose R with tHaite complement topology is Hausdorff, then for every x, R there
exists open neighbourhoods,U, of x and y such that

Uen U, =
@.

Taking complements of both sides gives you that



Rruy)v (Rru))=R.

Whichmeans that R iBnite as a union of twdinite sets, otherwise, the setg ahd U, would be
empty sets and thus are no longeighbourhoodsf x and y respectively, this is a contradiction.
Hence R with the finite complement topology is Hatusdorff.
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3.1 Hausdorff Spacgd,— spaces) SEPARATIONAXIOMS

Example 3.4 Let X= {a,b,c} endowed with the topology

s ={D, X, {b},{b,c}, {b,
ay}

This is easy to see, because a and c are distimtspn X and there are no neighbourhoods
of a and c with empty intersection.

The following important results makes Hausdorffcgsainteresting.

Theorem 3.1 Let X be ldausdorffspace, then for all x X, the singleton sefx} is closed.

Proof. Let xe X be arbitrary and set A= {x}. It is enough to show that & A. You
know that Ac A, so it is left for you to show that A A. You can do this by contraposition
(i.e., you know that if Ac B, then for every ye A, y € B; the contraposition is that if
y 6 B then y6e A). Now, suppose that §¢ A, i.e., y = X, since X is Hausdorff, there
exist U, € N(x), U, € N(y) such that Yn U, = . This implies that Yyn A =, i.e,,

y 6e A. . _ .

Hence, Ac A. Therefore, both inclusions & A and A c A gives you that A=A i.e,,

A = {x3} is closed. |

3.1.1 Sequences

In your course of elementary analysis, you canlrétat a sequenc€x, } of elements of R is
said to converge to'x € R if given any > 0, there exist N :=N( ) € N such that for all
n= N,

IXn = X" [ <. (1)

The inequality (1) is equivalent to say that fdrmra= N, x, ¢ (xX* - ,X
+ )

Also you know that if X is a metric space, with &tnc d, then a sequendex,,} in X

converges tox € X if given any > 0, there exists N :3N( ) such that for all r=
N,

d(xn, X" ) < 2)
That is to say that for every®a N, X, € Bq(X" , ).

Suppose, now that you set&l(x* - ,X + ), orU= By(Xx", ) according as you

refer
to the real line R or the metric space X, you Wdlve that U is a neighbourhood df x
and
depends on > 0. And since > O is arbitrary, then U is also arbitrary. Thisnisw of
great help to you to define convergent sequenea iarbitrary topological space since absolute
value or distance does not make sense in an ampitopological space, but the concept of
neighbourhood is meaningful in any topological gpathus in an arbitrary topological space
you have the following definiton.



Definition 3.2 Convergent sequence. Let X be a limgioal space, le{x,} be a sequence of
elements oX. Then{x,}is said to converge tox X if for all neighbourhoods U of x, there
exists Ne N suchthatforallr= N, x, e U. Thatis

Xn > Xe X asn- « ifforallUe N(x), there exists N N:foralln= N x,¢ U




3.2 The FirstSeparatiorAxiom (T;— spaces) SEPARATIONAXIOMS

You also remember that in the real line R, andmmedric space X, you proved that the limit
of a convergent sequendex,, } is unique. This is not true in an arbitrary topabad space as
shown in the following example.

Example 3.5 Let R the reals be endowed with thefcomplement topology, and Kk, } be
a sequence of elements of R definedqy= %] forn = 1. If this sequence converges,
every

element of R is a limit of this sequence.

To see this, Let x R, and suppose, - X, then by definition, let U be a neighbourhood
(l)f X, there exists Ne N such that foralll= N, € U otherwise,ln e UCforalln =
= N
(i.e.,{nl} does not converge to x). This would mean that itgip many points of the sequence
is contained in a finite set, (since U belongdfinite complement topology means tbiatis
a finite set while it is assumed tHat is not the whole R itself which would mean thatJ
@ and thus would not be a neighbourhood of x). Téisripossible, thus x must be the limit
of the sequeng@l} and since x is arbitrglr{l} converges to every elementiRf

But you know vividly well that in the real line, e limit of the sequencézl} is 0. So you see
that convergence of a sequence actually depentteedgpe of topology imposed on the space.
The next result tells us more about a sequenceHausdorff space. It says that in a Hausdorff
space, the limit of a convergent sequence is unitdnat is why you have terms like uniqgueness
of limits on the real line with the standard togptaand in an arbitrary metric space, because
they are Hausdorff.

Theorem 3.2 Let X be Hausdorffspace, then a sequence of points of X convergas st
one point of X. (i.e., if a sequendgx,, } in X, a Hausdorffspace, converges, thienit is
unique.)

Proof. Let X be a Hausdorff space, and{l&t, } be a convergent sequence of elements of X.
Assume thak,, converges to x and y, you have to prove that x. Suppose for x= vy, since

X is Hausdorff, there exist,Ue N (x) and U € N (y) such that Yn U, = . U, € N(x)
andx, - x implies that there exists;Ne N such thatx, ¢ U, foralln = N;. Also U, ¢

N (y) andx, - y implies that there exists,;Nc N such thak, ¢ U, foralln = N,. Now
choose N :=max{ N1, N, }then % ¢ U, n U, =@ (a contradiction). Hence =y. [ ]

Having prove some of the basic result of Hausdxpé#ces (i.e., ;F spaces), you will now
be introduced to all the other axioms of separation

3.2 The FirstSeparatioAxiom (T1— spaces)

Definition 3.3 (T,— spaces) A topological space X satisfies the B8egparation axiom (T
if each oneof any two points of X has a neighborhood that does potain the other point.
Thus X is called a i space. That is

X is Ty iffor all x, y e X with x =y, there exist Y e N (x) such that e U,.

Another name for a Ispace is a Fréchspace.







3.3 The zerottSeparatiorAxiom. (To— spaces) SEPARATIONAXIOMS

Uy
r )

Figure 2: (k- axiom)

Theorem 3.3A topological space X satisfies the first separag@om

(i) ifand only if all one point setin X is closed

(i) if and onlyif everyfinite set in X is closed.

Proof.

() (=) Suppose X is {, and let xe X. By the T; axiom For all ye X, y = X, i.e.
y e X r {xF}, there exist an open sef, Ut N (y) such that x6e U, . This implies
that U c X r {x}. X r {x} contains an open s&k, gives us that it is open, and
so its complement (& {x3})¢ = {x} must be closed.

(<= ) Suppose X is a topological space in which all @itagis are closed and let xg yX
such that x= vy, then X r {x3} is an open and contains y and (X r {x3}). This
implies that X is T.

(i) (=) Suppose X is T, then every singletofix} is closed. So also is a finite set, because
it is a finite union of singletons which are closads.

(< ) Suppose that X is such that finite sets are cloaed,let x, ye X, x =y then
{x} is a finite set(X r {x3}) is an open neighbourhood of y and does not comtain
Hence, Xis T

Example 3.6 Every Hausdorff space is But the converse is not true.

Clearly, If you consider a set X R the real line with the finite complement topolpthen
X is aT,;— space.Since if x, ye X, Uy =X r {y} is an open set containing x that does
not contain y, also, J = X r {X3} is an open set containing y that does not contaivox
have also seen in example 3.3 thawih this topology is not hausdorf. Hence you have
given an example of & lspace that is not Hausdorff.

3.3 The zerotlseparatioxiom. (To— spaces)

The zeroth separation axiom appears as a weakegseskpatation axiom. It states as follows:

Definition 3.4 (To,— spaces). A topological space X satisfies tharitglorov axiom or the
zerothsepaation axiom T, if at least one of any two distinct points of X haseighborhood
that does not contain the other point.




3.4 Third Separatiomxiom (T;— spaces) SEPARATIONAXIOMS

Spaces that satisfy the zeroth separation axiotheoKolmogorov axiom J are regarded
asTo— spacesThatis;

X is Ty iffor all x, y ¢ X with x =y, there exist an open set O such that eithei and
y6e O orye O andx6e O

Example 3.7 Every {space is § so also is everyIspace. But the converse is not true in
each case.

Example 3.8 Let X= {a,b} be endowed with the topology= {X,J,{a}}. Then X is
To
but not T,.

Proposition 3.1 Let X be a topological space. fOflewing properties of X are equivalent:

(a) X isTo;

(b) any two different points of X has differastbsues;

3.4 Third SeparatioAxiom. T3— spaces

Definition 3.5 ;- spaces. A topological space X satisfies the theqplaration axiom if every
closed set irX and every point of its complement have disjoinghborhoods.

T3— spaces are topological spaces that satisfy the skparation axiom.

Thatis, X is § if for every closed set E X and every xe X such that x6e F there exists
open sets Y, U, ¢ X withF ¢ Ug,xe Uy, suchthat@dn U, =& .

Figure 3: & axiom

3.4.1 Regularspaces

Definition 3.6 Regular space. A topological spXcés said to be a regular space if for any
closed set F of X and any pointex X r F, there exists open setg W, ¢ X such that
xe U,Fc UgandUn U =3.

If a topological space X is regular and is a Tspace, then X is asF space. On the
other hand, if X is a F space and &,— space, then X isgular.







3.5 Fourth SeparatioAxiom. (T,— spaces) SEPARATIONAXIOMS

Example 3.9 Examples of regular spaces are R, 2f @QndR?.

Example 3.10 Any metric space is regular.

Example 3.11 Every regular¥ space X is 7 (Hausdorff).

3.5 Fourth SeparatioAxiom. (T4,— spaces)

Definition 3.7 (T,— spaces) A topological space X satisfies the fosetharation axiom if any
two disjoint closed sets in X have disjoint neigtitmods.
Topological spaces that satisfy the fourth sepamasixiom are called,— spaces.

Thus X is a T if for any two closed sets E, E X with En F = & there exists open sets
Ug, U € X such that Ec Ueg,FC Ue andUE nUg =9.

Figure 4:T,— axiom.

Example 3.12 * Any indiscrete topological spacess$iats the fourth separation axiom. This is
also an example of a, Bpace that is ndt,.

Definition 3.8 Normal Spaces. A topological spacesXormal if it satisfies the first and the
fourth separation axioms.

Example 3.13 Every metric space is normal.

3.6 Continuous Functions
3.6.1 Definition, Examples and MalRroperties

Definition 3.9 ContinuousFunction. Let X and be topological spaces. A functidn:
X - Y is said to be continuous if for each open subsebby, the setf ~ 1(Uy ) is an open
subset of X, where

f iUy )={xe X :f(x) e Uy}

Continuity of a function depends not only on thediion alone, but also on the topologies
specified for its domain and range.







3.6 Continuous Functions SEPARATIONAXIOMS

Theorem 3.4 If the topology on the ranges given by a basiB, thenf is continuous if and
only if anybasis element B B, the sef~ 1(B) is open inX.

Proof. &) Letthe topology Y be given by bafds and suppose thétis continous, the for
allB e B, f~ }(B)is openin X since each B B is open.

(< ) Suppose that each®8B, f~ 1(B) is open in X, you have to show tffais
continuous. So take an open et Y, then you can writ§ as a union of basis elements, i.e.,

Therefore, L
fiv) =" '8
).

iel

So thatf ~ 1(V ) is open as a union of the séts!(B;), i € |, which are open by assumpti®n.
Example 3.14 Any constant function is continuous.

Exercise 3.2 Let : R > R be given by

0 )
X, if x=

f(x) =
x+2, if x>1

Isf continuous?

Exercise 3.3 Consider the map [0, 2] - [0, 2]

0

X if xe [0,1),

f(x) =
J3- x if xe [L,2].

Is it continuous (with respect to the topology inéd from the real line)?

Exercise 3.4 Let X be the subspace of R given by K, 1]u [2,4] Definef : X - R by
N :
01, if xe[0,1]

o i xe 2,4

f(x) =

prove thaff is continuous.

Example 3.15 Consider a real valued function of veaablef : R - R. In analysis one
defines continuity via— & definition. As you would, the- 6 definitionand your are
equivalent.



Theorem 3.5 Let X andl be topological space, Iét: X — Y. Then thefollowing are
equivalent:

(1) f is continuous.




3.7 Homeomorphism SEPARATIONAXIOMS

(2) For every subset A of X, one hBiA) c f(A).
(3) For every closed set B %f the seff ~ 1(B) is closed inX.

(4) For each x X and each neighbourhodd of f (x), there exists a neighbourhood U of
x such thaff (U) c V.

If the condition in (4) holds for the point x, we ghgtf is continuous ax.

Proof. We show that (13 (2) = (3) > (1) and that (1 (4) = (1)

(1) = (2). Assume that is continuous. Let A be a subset of X. We show thate A,
thenf (x) ¢ f(A). Letxe A and letV be an open neighbourhoodfofx). Thenf~ (V) is an
open subset X containing 3pf~ (V) n A = & because x A. Letye f~1(V)n A,
thenf (y) € V n f(A), thusf(x) € f(A), as desired.

(2) > (3). Let B be a closed subset¥ofand A= f~ 1(B). We wish to show that A is
closed in X. We show that & A. By elementary set theory, we ha@) = f(f~ 1(B)) ¢ B.
Therefore, if xe A, then _ _

f(x) e f(A) c f(A) c B =B.

so thatf (x) € B, thus xe f~1(B) = A, as desired.

(3) > (1). LetV be an open subset¥fSetB=Y r V. Thenf~ }(B)= X r f~ }(V).
Now B is closed set of, thenf ~ 1(B) is closed in X by hypothesis, so tifat 1(V ) is open
in X, as desired.

(1) = (4). Let xe X and letV be an open neighbourhood ofx). Then the set U=
f~ 1(V) is an open neighbourhood of x such thét) c V.

(4) = (1). LetV be anopenset&f Letxe f~ 1(V). Thenf (x) € V, so that by hypothesis
there is an open neighbourhood &f x such thaf (Uy) c V. Then U ¢ f~ 1(V). It follows
thatf~ 1(V ) can be written as the union of the open sgtstthat it is open. [ ]

3.7 Homeomophism

You are familiar with the following definitions abbfunctions

Definition 3.10 Let X and/ be sets, the map : X — Y is a surjective map or just a
surjection if every element f is the image of at least one element of X. That is,

f is a surjection if for all ¥ Y, there exists x X such thaff (x) =y.

Amapf : X - Y is an injective map, injection or one-to-one magviéry element of is
the image of at most one element of X. That is

f is an injection if for all y= Y, there exists a uniquese X such thaff (x) =y.

A map is a bijective map, bijection or invertiblamif it is both surjective andjective.

Definition 3.11 Let X and’ be topological spaces; Lét: X - Y be a bijection. If botlf



anditsinversé ! :Y — X are continuous, then f is called a homeomorphism.
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Definition 3.12 (Equvalence Relation) Let X bset andR be a relation on X. TheR is
called an equivalence relationR is

(@) SymmetricxRx for all x e X
(b) Reflective:If xRy thenyRx for all x, ye X.

(c) Transitive: IixRy andyRz thenxRz for all x,y,z ¢ X.

Definition 3.13 Two topological spaces X andare homeomorphic if there exists a homeo-
morphismf : X - Y between the spaces.

Theorem 3.6 Beingomeomorphigs an equivalenceelation.

Suppose that : X - Y is an injective continuous map, where X ahdare topological
spaces, LeZ be the image sef (X), considered as a subspaceYofthen the functiorf® :
X — Z obtained by restricting the rangefois bijective.

Definition 3.14 Iff’ : X - Z is an homeomorphism, we say that the rhapX - Y is a
topological imbedding or simply an imbedding of iXYi.

Example 3.16 The functioh: R - R given byf (x) = 3x + 1 is a homeomorphism.

Example 3.17 The function F + (1, 1) R given by

X
1- x2

F(x) =
is a homeomorphism.

Example 3.18 The identity map g ; R R is bijective and continuous, but it is not a home
morphism.

Example 3.19 Let Sdenote the unit circle,
St ={(xy) X +y* =
1}y

considered as a subspace of the plaheaRd let F {0,1] -— S* be a map defined bi(t) =
(cos &, sin2rt). The map F is bijective and continuous, bat'As not continuous.

Theorem 3.7 Let XY and Z be topological spaces. flf: X - Y and g :Y - Z are
continuous, then the mapg f : X - Z is continuous.

Proof. Let W be an open set4n

= fytw)=f1t- gtw)=f
~ g t(w))



Sincef and g are continuous; g(W ) is open inY implies thatf ~ (g~ 1(W)) are open in
X.
Thus, g T is continuous orX.

11
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Theorem 3.8 (Restricting the domain)f If X - Y is continuous, and if A is a subspace of
X, then the restricted functidij, : A - Y is continuous.

Proof.  You have to show thfa&l(w ) is open in the subspace topolagyon A induced
by the topology on X for any open set W M. So let W be an open setYnBy the continuity
off on X, f~ (W) is openin X and

fLiW) = xe Atf (g e W3
= {Xxe A:f(x) e W}
= An{xe X :f(X) e W}
= An f {(w)
which implies thaf |'A1 (W) open in the subspace topolagy ]

Theorem 3.9 (Restricting or expanding the range)f : X - Y be continuous.

1. If Z is a subspace ®f containing the image s&{X ), then the map g : X% Z obtained
by restricting the range éfis continuous.

2. If Z is a space having as a subspace, then the function h :-X Z obtained by
expanding the range 6fis continuous.

Proof.

1. You know that since Z is a subspac# gthe subspace topology on induced on Z by
the topologyt onY is given by

1z ={VnZ:Vert}

Now, letV be open inY (meaning that 2 V is open inZ), you have to show that
g~ }Z n V) is openin X. You can compute as follows

gZnV)={xe X:gX)=Ff(X)e ZnVI={xe X:f(x) e VI=F" }v
)

2. Using similar argument on the subspace topoésgin (1) above, let W be open4n
thenY n W is open inY (becaus® is a subspace &) and

h™1(W) = {xe X:hX) eW
by

= {xe X:f(x) e W}

= {xe X:f(X)eYnW}



= fL(Y n W)

is open in X becaudeis continuous anfi” (Y n W) is open in X. Hence h is continu-
ous.

12
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Theorem 3.10 (The pasting lemma) Let=XA u B, where A and B are closed in X. Let
f:A- Y andg: B - Y be continuous. If (x) = g(x) for every xe A n B, then the
function h : X~ Y defined by

O :
O f(x) if xe A

Y900 if xeB

h(x) =

is continous.
Proof. LetF be a closed set¥in
h"1(F) = {xe X:h(x)e F}
= {xe A:f(x)e Fu{xe B:gxX)e F}
= f7YF)v g '(F).
f~Y(F) is closed in X because it is closed in A anisAlosed in X, alsog!(F ) is closed in
X since it is closed in B and B is closed in X. lderii }(F ) is closed in X as a finite union

of closed sets in X. Hence, h is continuous. ]

Example 3.20 Let h : R R be definedy

|:)|><
=
x
v
o

]
h(x) =
Ux if x= o0
then h is continuous.

To see this, Set A [0, +« ) andf : A -~ R, defined byf (x) = %, also let B= (- » , 0]

andg : B » R, definedby g(x) = x. Observe that A and B are closed sets in R ard/AR B.
f and g continuous functions,”AB = {0} andf (0) = g(0) = 0. Hence by pasting lemmia,
is continuous.

Theorem 3.11 (Maps in products) lfetZ - X xY be given by

f(z) = (F.(x), F2(y)).

Thenf is continuous if and only if the functions
fi,:Z-> Xandf,:Z->Y
are continuous.

The mapd, andf, are called coordinate functionstaf

Proof. Letn; : X xY - X andm, : X XY - Y be projections maps. These maps are
continuous. Note that for eaclezZ,
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f1(2) = m.(f (2)) andfx(z) = m,(f (2)).

If f is continuous thef, andf, are continuous as composites of continuous fungtion

Conversely, suppose thiat andf, are continuous. Let WV be a basis element of for the
product topology in Xx Y. A point z is inf ~ 1 (U x V) if and only iff (z) € U xV, that is, if
and only iff1(z) € U andf,(z) € V. Therefore

f-HU xV) =Ff31U)n - 1(V).

Since both of the sef§ (U ) andf,” *(V ) are open, so is their intersection. n

3.8 More onSeparation Axioms

Theorem 3.12 Let X be a topological space énal Hausdorffspace. Lef : X - Y be a
map. Iff is continuous, then the Graphfof

Graph(f) = {(x, F (X)) : x¢ X}

is a closed subset of XY.

Proof.  Supposeé is continuous, you have to show that the graph isfclosed. It is enough
for you to show that theomplemenbf the graph of is open in XxY. So let U= (Graph(t)y,
and let (%, yo) € U. This implies that y = f (Xo). SinceY is Hausdorff, there exist open sets
Wy, andWs ) inY containing y andf (x,) respectively such that

WYO n Wf(Xo) =
%)

Sincef is continuous at (becausd is continuous) andgxandWys ) € N (f (Xo)), there
existsUy, € N (Xo) such thaf (Uy,) € Ws(x,). Take

B = U, xW,,.

B is a basis element for the product topology om X and for (x, y)e B, you have that x
e Uy, andye W, . Also x ¢ U, impliesthatf(x) € Ws,) and so y= f(x), thus

(x, y) 6e Graphf), which implies that (x, ye U. Thus B ¢ U, and so U is open.
Hence
GrapH(f) is closed.

Theorem 3.13 (Urysohn’s Lemma). Let A and B be tlsjoint closed subsets of a normal
space X. Then therxistsa continuousunctionf : X - | such thaf (A) =0 andf (B) = 1.

4 Conclusion

spaces You also studled the concept of contlramtyhomeomorphlsm You also proved some



important results which you have often used in gourses in analysis.
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5 Summary

In this unit you now know that

(i) If X is a topological space, then X is

To @ Ifforall x, ye X with x =y, there exist an open set O such that eitherC and
ybe O orye O and x6e O

T, : Ifforall x,ye X with x =y, there exist |y ¢ N(x) such that e U,. Or there
exists U € N(y) such that e U,

Ty If forall x,y e X with x =y, there exist {J ¢ N(x), U, ¢ N(y) such that
Uy n Uy =. T,— spaces are called Hausdodpaces.

T3 : If for every closed set E X and every xe X such that x6e F there exists open
sets Y,U, ¢ X withF ¢ Ug,xe U, suchthatgn U, =J.

T, : if for any two closed sets E, & X with En F = & there exists open sdtl, Ug €
X suchthat EC Ug,F ¢ Ug andUg n U =3

(i) X is aregular space if it is both, Bnd T;.

(i) X is a normal space if it is both;Tand T,. Also X is normal if and only if it is both
Hausdorff T,) andT,.

(iv) A functionf : X - Y between topological spaces X ands continuous if for every
open seV of Y, the preimage

frlV)={xe X:f(X) eV
¥
is open inX.
(v) f: X - Y isahomeomorphism ffis bijective and andf~* : Y - X are continuous.

(vi) Topological spaces X and are homeomorphic if there exist a homeomorphism
f: X - Y between them.

(vii) A sequence{Xx,} in a topological space is convergent te X if given any neighbour-
hoodV of x, we can find an integer N N such that forallr= N, x, € V.

(viii) In a Hausdorff space, every singleton issgd.
(ixX) In a Hausdorff space, the limit of a convergsequence is unique

(x) Urysohn’s lemma. If A and B be two disjoinbskd subsets of a normal space X. Then
there exists a continuous functibn X - | such thaf (A) = 0 andf (B) = 1.

(xi) A topological space X is metrizable if itspmogical structure is generated by a certain
metric.

(xii) Every metrizable space is Hausdorff.
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6 TMAs

Exercise 6.1

1. Which of the following spaces is Hausdorff?

(a) The discrete space.
(b) The indiscret space.
(c) R with the finite complement topology.

(d) X = {a,b} endowed with the topology= {<Z , X, {a}}

2. Which of the following spaces is not Hausdorff?

(&) R with the standard topology.

(b) R with the lower limit topology.

(c) R with the metric topology.

(d) R with the finite complement topology.

3. If {x,} be a sequence in R endowed with the finite comptenopology. If{x,}
con- verges in R then

(a) the limit is unique.

(b) {xn} converges to only two points.

(c) {xn} converges to one point in R and one point outRde
(d) {xn} converges to every elementiRf

4. In the finite complement topology of R, let segquencd X, } be defined by, = n, for
n e N. If the limit of the sequence is x, then x must b

(a)
(b) O
(c) a unique constant
(d) arbitrary inR
5. Which of the following spaces is not metrizable.
(a) Any discrete space
(b) X with the countable complement topology.

(c) R with the standard topology.
(d) R? with the standard topology.

6. Which of the following is not true about-T spaces

(a) Every singleton is closed
(b) Every finite set is closed

(c) Every Hausdorff space i5.T
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(d) Every T, space is Hausdorff.

7. Let X be a topological space that satisfieskbenogorov axiom (§). Which of the
following is not true abouX ?
(&) Any two different points of X has different slares.
(b) X contains no indiscrete subspace consistirtgrofpoints.
(c) X contains no indiscrete subspace consistingarte than one point.
(d) X has an indiscrete subspace consisting of@iots only.

8. Let X be a topological space. The X is reguiar i

(@) X isboth T and T.
(b) X is Tz only
(c) X isboth T and T
(d) X is T, only.

9. Which of the following spaces is not regular.

(@ R
(b) Q
(©Z
(d) Every Hausdorff space.

(Where R, Z and Q are with the standard topologRR9n

10. In what follows, answer true of false. (Justifu claims).
(@) Letf : R~ R be defined by

0
Ox—- 2 for x= 0

f(x) =
Dx+2 for x= 0

thenf is continuous.
(b) The identity map
Id (X) Ql) - (x1 QZ)
if and only ifQ, ¢ Q,. WhereQ, andQ, are topological structures of.
(c) The functiorf : R, - R defined by
f(x) = x
is continuous. Where Rlenotes the lower limit topology on R and R is emeld

with the standard topology.

(d) Letf : R > R, be as defined in (c) above, with Bnd R are as in (c). Thdnis
continuous.

(e) If X is Ty, then it must be T
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() Every normal space is both regular and Hau$dorf
(g) Every open and bounded intervallfpof R, a< bis homeomorphic t&.
(h) The closed and bounded interjalb] of R, is homeomorphic t®, 1]

(i) X is Hausdorff if and only if the diagonah = {(x,x) : x ¢ X} is closed in
X x X.



18




UNIT 3: CATEGORY ANDSEPARABILITY

Contents
1 Introduction 1
2 Objectives 2
3 Main Content 2
3.1 Dense Sets. . . . . .. e e e e e 2
3.1.1 BaireSPaces . . oot i i e 3
3.2 The Axioms of Countability . ... .. .. .. .. ... .......... 3
3.2.1 SecondCountablityaxiom... . ... ... .............. 4
3.2.2 Separability and Separable Spaces . . .. ... ... ... L. 5
3.2.3 SequencelLemma . . . . . .. ... e 5
3.2.4 NeighbourhoodBasis. . . .. . ... ... ... ... . ........ 6
3.2.5 FirstCountability Axiom . . . ... ... ... ... ......... 7
3.2.6 SequencelLemmaRevisited. . . ... ... ... ... ... ... 8
4 Conclusion 10
5 Summary 10
6 Tutor Marked Assignment§TMAS) 11

1 INTRODUCTION

In this unit, you shall be introduced to the notadrcategory, separability and axioms of count-
ability. You shall be introduced with dense setsd see some sets of the first and second
categories.



2 Objecives CATEGCRY AND

2 OBJECTIVES

At the end of this unit, you should be able to:

(i) identify dense sets and nowhere dense sets.
(i) identify sets of first and second categories.
(i) identify separable spaces spaces.

(iv) state the first and second countability axioms

(v) identify first and second countable space.

(vi) state and prove the sequence lemma and itgecen

3 Main Content

3.1 Denséesets

Definition 3.1 (Dense Sets) Let X be a topologsadce and let A and B be two subsets of
X. Alis dense in B if Bc A. Ais dense in X or everywhere dense in X ifAX.

Example 3.1 Q the set of rational numbers is a@lenbset of R because=6R.

Proof. Suppose & R. Then there exists anex R r Q. As Rr Q is open in R, there exist
a,b with a < b such that x (a,b) € R rQ. But in every interval (&) there is a rational
number g; thatis g (a,b). So ge R rQ which implies ¢ R r Q. This is a contradiction,
as ge Q. Hence = R. -

Example 3.2 Let X={a, b,cd,e} and
1 ={X,0,{a,{c,d {a c, g {bc,de}

It is easy to see th@i} = {b,€}, {a, § = X, and{b, & ={b, c,d, €}. Thus the sefa, ¢ is dense in
X.

Example 3.3 Let (X1) be a discrete space. Then every subset of Xosed (since its com-
plement is open). Therefore the only dense sulisétis X itself, since each subset of X is its
own closure.

Theorem 3.1 Let (X7) be a topological space and let A be a subsk¥t & is dense in X if
and only if everynonemptyopen subset U of X, A U = 7.

Proof. Assume that for all open set U of XnlA = 7. If A = X, then clearly A is dense in
X. IfA=X,letxe X rA. IfU e t and xe U thenUn A =¢. So x is a limit point of
A.
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As x is an arbitrary point in X A, every point of Xr A is a limit point of A. So Xr A c¢ A°,
and then by theorem 3.8 of unit 1-AA'U A = X; thatis, A is dense iX.

Conversely, assume A is dense in X. Let U be aemmty open subset of X. Suppose
Un A =0.Thenif xe U, x 6e A and x is not a limit point of A, since U is anaypset
containing X which does not contains any elemenm.ofhat is a contradiction since, as A
is dense in X, every element of K A is a limit point of A. So the supposition is faland
Un A =0, as required. [ ]

Definition 3.2 ( Sets) A set is nowhere dense éfset A has empty interior.

Definition 3.3 Let A be a subset of a topologigaase (X,t). Let pe X. The point p is an
isolated point a the set A if@ A and there exist JJe N(p) such that (Ar {p})n U, =2.

3.1.1 BaireSpaces
Definition 3.4 LetY be a subset of a topological space X, If Y is a union of a countable

number of nowhere dense subsets of X, thessaid to be a set of the first category or meager
If Y is not first category, it is said to be a set & $econd categary

Definition 3.5 A topological space (Xﬁ is said to be a Baire Space if for every segeenc
{X,,} of open dense subsets of X, the s&t_, is also dense iX.

Example 3.4 Every complete metric space is a Bgeze.

3.2 The Axioms ofCountabilit.

In this section, you shall be introduce to threstrietion on the topological structure. These
are first and second countability axioms and thgassbility. Before proceeding to state these
axioms, you have the following important definitiand results.

Definition 3.6 (Cardinality) Two sets A and B have equal cardinality if theristsxa bijection
between them.

Definition 3.7 (Countable Sets) A set A is saitbtoa countable set if it has the same cardi-
nality asa subsetof the set N of positive integers. While A is stodbe atmmostcountable if
it has the same cardinality as the set N of pasititegers.

Results:

The following results will be stated without protigcause that is not the major interest here.
You can find the proofs in any good textbook orology or analysis.

1. A set X is countable if and only if there egistn injectionp : X - N (or, more
generally, an injection of X into another countadgds).
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. Any subset of a countable set is countable,
. The image of a countable set under any mapustable.

2
3
4. Z is countable.

5. The set R ={(k,n) : k, ne N}is countable.

6. The union of a countable family of countablessgicountable.
7. Q is countable.

8

. R is not countable.

3.2.1 SecondCountability axiom

First of all, you shall be introduced to the secoadntability axiom and separability.

Definition 3.8 (Secon@ountabilityaxiom) A topological space Xatisfieshe second axiom
of countability or is second countable if X hasoamtable basis.

Example 3.5 R endowed with the standard topologg@®nd countable. The basis
B={(a,b),a<b,a,be Q} =QxQ.

Hence is countable. Also

is a countable basis &.
Example 3.6 R endowed with the lower limit topolagyot second countable.
Example 3.7 The discrete topology of any uncoumetabt is not second countable.

Example 3.8 Not all metric spaces are second ctmtkbr instance R with the discrete metric
ie., g

01 if x=y

pO(X! y) = [

is not second countable.
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3.2.2 Separabilityand Separable Spaces.

Definition and Examples

Definition 3.9 (Separability)A topological space X is separable if it contagnsountable
dense subset.

Example 3.9 R endowed with the standard topologearable because Q is a countable
dense subsef R.

Example 3.10 Any infinite set X endowed with theite complement topology is separable
since anynfinite set is dense iX.

Example 3.11 The set of all pointsx(xy, Xo, ...,Xn) With rational coordinates is a countable
dense subset in the metric sp& HenceR" is separable.

Example 3.12 The set of all points=x (X4, X, ..., %, ...) With only finitely many nonzero
rational coordinates, is countably dense in thespa

C x 0
l, = X = (X1, X2y eeey Xy -2) - Xy |® < o
k=1

Hence,} is separable.

Example 3.13 The set of all polynomials with ratibooefficients is countably dense in the
spaceCla,b] of continuous real valued function. Her€ga,b] is separable.

Theorem 3.2Any second countable topological space >saepaable

Proof. Suppose X is second countable, then X amhtacountable basgs= {B,,n e N}.
For each re N choosed, € B, and define D= {d,,,n = 1}then D is dense iX. |

Remark3.1 The converse of this theorem is not true inegen Notwithstanding in a metric
space, second countability and separability arévatpnt.

Theorem 3.3 Let (X, d) be a separable metric sga@e X is second countable

Proof. Since X is separable, B {d,,n € N} is a countable dense subset of X. Take
B={B(dn, =), n2 1,m2 1} ThenBis a countable basis for (X) d n

3.2.3 Sequenceemma

Definition 3.10 A topological space (X) is metrizable if there exists a metric d ongkeX
such that the topologyon X is induced byl.

Theorem 3.4 (Sequenteemma)
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1. Let X be a topological space, and A be a subiskt If there exists a sequenpsg,} of
elements oA converging to x X, then xe “A. The converse holds if X is metrizable.

2. Let X andY be topological spaces, affid: X — Y be a function. If the functioh is
continuous, then for every sequer{gg} is in X such that{x,} converges to x X,
The sequencff (x,,)} converges td (x) in Y. The converse is true Xfis metrizable.

Proof.

1. Let xe X. Suppose that there exists a sequgrggn A such thatx, - X, you have to
show thatx € AT Let U be a neighbourhood of x;,, - » as n— « implies that
there exist Ne N such that for all = N, X, € U. In particular, x € U.Butxy €
A implies that Un A = @. which implies thak-« A.

Conversely, suppose that X is metrizable ared A. Let d be a metric for the topology
of X. For eacm = 1, the neighbourhood

Choosex,, € B(X, }1) n Aforn= 1. Then{x,}is a sequence of points of A and
0< d(Xn,x) <! - 0asn- =

which implies thak, - x as n—» « .

2. Assume that is continuous. Lefx,} be a sequence in X such tbkat—> x as n—»> « .
You have to show thdt(x,,) - f(x). LetV be a neighbourhood #f(x). Thenf ~1(V)
is a neighbourhood of x, and so there exist& NL such thak,, ¢ f~%(V) forn= N.
Thenf (x,,) € V forn = N, which implies thaf (x,) - f(X) as n—» » as desired.
Conversely, assume that the convergence condgicatisfied. Let A be a subset of X.
You haveto showthat f is continuous, it suffices to show thig®) < T(A). If x € A,
there exists a sequenfe,} of points of A converging to x (by segence lemmay
assumption the sequence the seqefihfe,)} converges td (x). Sincef (x,) € T (A),
the sequence lemma implies th@x) € £(A), as desired.

3.2.4 Neighbourhood Basis

Definition 3.11 (Neighbourhoodbasis). Let (Xg) be a topological space and leex X.
The collectionV is called a neighbourhood basis of the point kéf following conditions are

satisfied;

(i) W is a subcollection of neighbourhoods ofW (€ N(x)) i.e., for all We W, W ¢
N (x).

(i) ForallV € N(x), there exist We W such that Wc V.
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Example 3.14 Let R be endowed with the standarologyy. Then for all x R,
W={x- ,x+ ), >0}

is a neighbourhood basisf

Proof.

() Letxe X. Clearly,forall >0, (x- ,x+ ) isaneighbourhooadfx and sdV € N (x).

(i) LetV e N(x) then there exist an open set U such that ¥ < V. This implies that
there exists >0 suchthat(x ,x+ )c Uc V.

Example 3.15 Let (X, d) be a metric space, let X, then
W= {Bd(xl )! = O}
is a neighbourhood basis in the metric topology.
Example 3.16 Let Rdenote the real line endowed with the lower lirofidlogy. Let xe X,

then
W={xx+), >0}

is a neighbourhood basis for the lower limit togpl@n the real line.
Example 3.17 Let (X1) be a discrete topololgical space. Then for all X,
W ={{x},x e X}

is a neighbourhood basis of x in the discrete togpl

3.2.5 FirstCountability Axiom

Definition 3.12 (FirstCounta_biIityAxiom% A topological space X satisfies the firstuod-
ability axiom or Is said to be first countable mfyapoint xe X has a countable neighbourhood

basis.

Example 3.18 Let R be endowed with the standarologyy. For all xe R define

1 1
W = X— —,X+— :nz21
n n

or
W={(x-rx+r),r>0re Q

In each casdlV is a countable neighbourhood basis of x. ThusfRRsiscountable.

Example 3.19 Let R be endowed with the lower limgology. For all x R, define
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W= x,x+i ,n21.

ThenW is a countable neighbourhood basis for x. HencejtR the lower limit topology is
first countable.

Example 3.20 Let (X, d) be a metric space. forgxes X, define

W= B x,1 ‘n= 1
n

or
W={B(x,r):r>0,re Q}

Then in each cas®/ is a countable neighbourhood basis of x. Thus ewetyic space is first
countable.

Theorem 3.5 Let (X7) be a topological space. If X is second couetathen X is first
countable

Proof. =~ Assume that X is second countable, theraX éncountable badss= {b,,n € N}.
Letx e X, and define

VV = {BXl X € Bn}
thenW c B, so thallV is countable.

1. ForallB, € W, B, € N(X).

2. LetV € N(x), this implies that there exists an open seuthghat xe U < V. This
implies that there exisB,, € W suchthatx B, < Uc V,sothatB, < V

ThusW is a countable neighbourhood of x. Hence X is imintable -

3.2.6 Sequence Lemnfaevisited

Recall that in the sequence lemma which you praMeave, It says that if A is subset of a
topologicals space X and there exists a sequdrgpsf points of A such that,, - x in X as

n - « , then xe A—And you proved the converse in a metrizable spdais tells that the
implication(=)

If {Xn}is a sequence in A such thgf - x in X, then xe A~
is true in any topological space. But the converse

If x € “A then there exists a sequerxg} of A such thai,, - X

is only true if X is a metrizable space.

Similarly for thecontinuous functiori : X — Y, sequentiatontinuityholds for topological
spaces X any, i.e.,

10



3.2 The Axioms of Countability CATEGCRY AND

f is continuous> for all sequencéx,,} of X such thaix,, - x in X, f(x,) > f(X) inY.

The converse i.e.,

For a sequendg,,} of X such tha if,, - x implies thatf (x,,) - f(x) thenf is continuous;

holds if and only if X is metrizable.

In what follows, you shall discorver that if X idiest countable space the X also recorvers
the converse of the sequence lemma. i.e., theecsew of the sequential closure and the se-
guential continuity.

Before you proceed, the following lemma will be fusie

Lemma 3.1 Let X be a topological space and let X. Suppose X is first countable, then
there exisa countable basis of x, saif = {W,,n = 1} such thaW,,; € W,,.

Proof. Let xe X. Since X is first countable then there existoartable neighbourhood
basisV ={V,,n = 1}of x. Define for each iz 1,

and letW = {W,,n = 1} Then

(i) W s countable.

(i) W, € N(x), for each n= 1, because finite intersection of neighbourhoods pbintx
is also a neighbourhood wf

(i) LetV € N(x), there exists N N such thavy € Vand xe Vy € V. But

N\
WN: ViCVNCV.
i=1

Thus for every € N(x) there exist N such thatWe W and W, < V.

1 N N\
(iv) Whir = Vi =Vpaa N V; c Vi =W,. That isW,.1 € W,.
i=1 i=1 i=1
ThusW is a countable neighbourhood basis of x that $ag3iV,,.; € W,,n= 1 []

Theorem 3.6 Let X be a first countable topologisgace and A be a subset of X. Then if
X € A, there exists a sequenpg} of A such thatx,, - x as n— « .

Proof.  Since X is first countable, from lemma 3Here exists a countable neighbourhood
W = {W,,n = 1} such thalW,.; © W,. Now let xe A. This implies that for all = 1,

W,n A=0.Letx, € W,n A. Then{x,}is a sequence of points Af

Claim: X, > xasn-»> «

11
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Proof of Claim: Letv € N(x). Then there exists N N such that x Wy < V and for
alln= N,

Xn € Wp € Wy C V.

This implies that for all & N, x, € V. Hencex, - x as n— « . And the proof isomplete.
|

Theorem 3.7 Let X andl be two topological spaces. And let: X - Y be a function.
Suppose X is first countable. If for every sequesfx,,} of X such thatx, —» x in X asn
- » , one has thakt(x,) - f(x) inY thenf is continuous.

Proof. It suffices to prove that if F is closaedbset ofY, then the preimagé ~*(F) is
closed in X, i.e.f~XF) = f (F). But you have already th&t'(F) c T_—i'(’%) so it is
left for you to show thaf—+F) c f1(F). So let xe F—F), Since X is first countable,
you have by seqeunce lemma that there exist a seg{ig,} of points off ~1(F) such that
Xn = X as n— « . This implies thaf (x,,) is a sequence of elements of F, and by assumption
f(x,) » f(x) inY. Since F is closed, == E and sdf (x) € F, thatis xe f~(F). Thus
f—1(F) c f~Y(F) as required. Therefort;*(F) is closed in X. Henck is continuous.

|

4 Conclusion

In this unit you weréntroducedo dense sets, setsfoét and second category, and Baire spaces.
You also studied the axioms of countability andasapility and saw some examples of spaces
that satisfy some of the axioms. You were ablertwgthat a first countable space satisfies the
converse of the sequence lemma.

S5 Summary

Having gone through this unit, you now know that;

(i) A subset A of a topological X is dense indBX if B € "A. A is everywhere dense X
if A= X, while A is nowhere dense in X iint(A) = 2.

(i) A subsety of a topological space X is of the first categdry iis a countable union of
sets of nowhere dense subsets of X. OtherWiseof the secondategory

(i) A setis countable if it has the same caadity with at least a subset of a countable set.

(iv) A point pe X is called an isolated point of a subset A ofgological space X if there
exists a neighbourhood U of p such thatAp}))n U =7.

(v) Wis a neighbourhood basis of a poirg XX if
(@) forallWe W, W e N(X).
(b) V € N(x) then there exists W W such that Wec V.

(vi) A topological space is first countable itwntains a countable neighbourhood basis.

12
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(vii) A topological space is second countable dantains a countable basis.
(viii) A topological space is separable if it camis a countable dense subset.

(ix) Every second countable space is first couetab
(x) Every second countable space if separablec®heerse is true if the space is metrizable.

(ixX) A topological space X is metrizable if itspmogical structures can be generated by a
metric.

(x) Sequencéemma

(a) If there exists a sequerzg} of elements of a subset A of a topological spéce
such thaix, - x € X, then xe A.

(b) If f: X - Y is continuous, then for all sequerigg} of elements of X, such that
X, = X in X thenf (x,) - f(x) inY.

The converse of the sequence lemma is true if tleer first countable or metrizable.

6 TutorMarked AssignmentgTMAS)

Exercise 6.1

1. X ={a, b,cd,e;and

©={X,7,{a},{c,d {a, c,d{brcd, g}
Let A = {a, ¢. The set Aof limit points of A is given by
(@ A =1{bc e
(b) A’ ={b,d, ¢
(©) A'={b,e}
(d)y A= X

2. Let R the real line be endowed with the disctepelogy. Which of the following subsets
of R is densén R?

(@) Q
(b) R itself
(c) Q.
(d) All singletons.
3. Let A= (0,1]u {2} be a subset of R. Then the isolated points of R iare
(@ 0and 1

(b) 0 and2
(c) 1and 2

13
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(d) 2 only
4. For the set A in question 3, Which of the foliogvare the limit points 0A?

(@ 0and 1
(b) 1 and2
(c) 0 only
(d) 2 only

5. In R with the standard topology, which of th#dwing sets is nowhere dense?

(@) Q°

(b) {1,550 2
(¢) (0,1)

(d) [0,1)

6. The minimal neighbourhood basis of a point ¥him discrete topology contains

(a) the whole set X and the empty genly.
(b) Only the singletons.

(c) All open sets of X only.

(d) The whole set X only.

7. The minimal neighbourhood of a point x in thdigtrete topology contains

(a) the whole set X and the empty genly.
(b) Only the singletons.

(c) The empty set only.

(d) The whole set X only.

8. Which of the following spaces is second courgabl

(a) R with the finite complement topology.

(b) R with the countable complement topology.
(c) R with the lower limit topology.

(d) N with the discrete topology.

9. Which of the following spaces is not first coalole?

(&) R endowed with the lower limit topology.

(b) R endowed with the finite complement topology.
(c) R endowed with the discrete topology.

(d) Q endowed with the indiscrete topology.

14
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In this unit, you shall be introduced to a topot@giproperty playing a very special and impor-
tant role in topology and its application. It is@rt of topological counterpart for the property

of being finite in the context of set theory.
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2 Objectves

At the end of this unit, you should be able to;

(i) Give the definition of Covers and subcorvers.
(i) Define compact sets, subsets and compacespac
(i) Give the sequential characterization of caumess.

(iv) ldentify sequentially, countably and localgmpact sets.

3 CompactSets andSpaces

3.1 Definition andExamples

Definition 3.1 (Covering and Open Cover) A cotlen A of subsets of X is said to be a
corvering of X, If the union of the elementsffs X. i.e.,

whereU; € A forallie I, (I is an index set)A is called open covering if its elements are
open subsets of.

Definition 3.2 (Subcover) IA is a covering of X an® c A is also a covering of X, the
is a subcover or subcovering At

Definition 3.3 (Compact Set) A topological spacescompact if every open covering xf
is reducible to a finite subcovering.

That is A topological space X is compact if for gvepen covering{O; }i. |, there exists a
finite subfamilyQ;, , O;,, ...,0;, such that such that

Definition 3.4 Let A be a subset of a topologigadse X. Then A is said to be compact if for
every family of open set§O, }i., such that

there exists a finite subfami;, , O,,, ..., O;,, such that
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Example 3.1 Let X be endowed with the indiscrepotogy. Then X is compact.

Proof.  In the indiscrete topology, the only operering of X is thed and X itself. Hence,

X is compact. "
Example 3.2 The real line R endowed with the stethtitgpology is not compact.
Proof. It suffices to produce an open coverindgkofvhich cannot be reducible to a finite
subcovering. Now
il
R= (-n,n
n=1
If there exist a finite open subcover, then theiiste n, n,, ..., N, such that
r
R= (= nm,m)=(N,N)
i=1
Where N= max n;. Which is impossible. Hence R is not compact. [ ]

1= i=m

Example 3.3 Let A= (0, 1]. Then A is not compact R.

Proof.  In (0, 1] we have the trace topology (isetbspace topology(3,2),ne N} is an
open covering of

ou=" to

n=1

Suppose that (0, 1] is compact, then there exists.nn, such that

"L
©o1=" 22 =1,
=g i N

Where N1: max n;, which is a contradiction. Hence (0,1] is not cacip u

=I=m

Example 3.4 _, =(0,+« ) is not compact.
R

Proof. Suppose th&" ilg*compact{(l, n), ne N} is an open covering of such that

=+ n =+
1
R, = —,Nn
n

So there existy;, ..., ny, such that
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Where N= max n;. This is imposible

1= i=m

20
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Example 3.5 Let (X1) be a topological space and (&) be a sequence of points of X such
thatx, - x in X, then{x,,n= 1} u {x} is compact.

Example 3.6 Any finite set of a topological set ¢X,is compact

Proof. LetAc X be dfinite set, the thelement®of A can be listed, i.e., A& {X1, X2, ...,Xn }.
Let{O, }i.| be an open covering for A, i.e.,

L
AC O
iel

The for eaclx; € A, choose an open s&; suchthak; € O;;. Thus

Remark3.1 So you see from example 3.6 that every firgtdis a topological space) is com-
pact. Indeed, as earlier mentioned in the beginirtgis unit, “compactness” can be thought as
a topological genralization of “finiteness”.

Example 3.7 A subset A of a discrete space is cotmpand only if it is finite.

Proof. If Ais finite then Example 3.6 shows titas compact.

Conversely, let A be compact. Then the family oigieton sets Q= {x}, x € Als
such that each,Ois open and [
Ac Ox.
Xe A

Since A is compact, there exist,x,, ...,X, such that

thatis AS {Xq,....Xn
by

Theorem 3.1Any closed and bounded interval in R is compact.

Proof. Let[a,b]a < b be a closed and bounded interval of R £&; };., a family of open
sets of R such that r
[a,b] € O

iel

Step 1. Suppose & Xx < b. Then there exists ¥ x such tha{x, y] can be covered by at
most fwoO's. For this end, if x has an immediate successdhen the intervalx, y] has
only two elements, so it can be covered by, at nmwstU’s. If x does not have an immediate
successor, find; containingx. Pick z> x such thafx, z) ¢ U;; this is possible becausk is
open. Since x does not have an immediate succéisem,is y such thatx y < z. Then[x, Y]

21
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c U;.

Step 2: Now let

22
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A = {y e (a,b]:[a,y] can be covered by finitely maty}

By step 1, there exists an elemeritya such thafa,y] can be covered at most by twds.
Therefore A is nonempty and bounded above. letstpA.

Step 3: Claim: e A.

Leti such that € U;. SinceU; is open and & a, there exists an interval @@,c U;. Since d
cannot be an upper bound for A, there is an eleofehiarger that d. Let z such thatdz < c.
Then[a,c"] can be covered Hinitely manyU'sand[c’,c] ¢ U;. Thereforda,c] = [a,c']u [, ]
can be covered by finitely manys. Hence e A.

Step 4: Claim: &= b. Suppose & b. By step 1, there exist 3 ¢ such thafc, y] can be
covered by at most twd’s. Since & A, [a,c] can be covered Hinitely manyU’s. So[a,y] =
[a,c]u [c, y] can be covered by finitely matyfs and therefore y A. This contradicts the fact
that c= sup . Hence & b. [ ]

Theorem 3.2A closed subset A of a compact topological spacer Xs compact.

Proof. Let{O;}i., be a family of open subsets of X such that

L
AC Oi.
el
Now [
X=AUA°=  QjuA°
iel

Since X is compact, there exists.i., i, such that

r
X = 0juAc
j=1
This implies that
r
AC Oij
j=1
Hence, A is compact. u

Theorem 3.3 If A is a compact subset oHausdorfftopological space (Xg), then A is
closed.

Proof. Suppose A is a compact subset of X and tetA°. Then for all ye A, x =y. Since
X is Hausdorff, there existUopen in X and contains ¥, openin X and contains y such that
UynV,=d.So [
Ac Vy.
ye A
Since A is compact, there exists ..., yn such that

m
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Let

and

i=1
Then U is open and contains x, V is open and cositAj and Un V. = . This implies that

Un A=, that is Uc A°. Thus A is open. Hence A is ]
closed.

In the course of the proof of theorem 3.3, you ptbthe following result.

Theorem 3.4 Let A be a compact subset Blaasdorfftopological space X and let X.
Thenthere exist open sets U addwith A ¢ V and xe U suchthat n U=O.

This result is the third separation axiom T

Theorem 3.5 Let A and B be compact subsetstédasdorfftopological space X sudhat
An B = J. Then there exists open sets U &navith Ac U and Bc V suchthat lh V =
D .

3.1.1 Compactness in ProduSpaces

Theorem 3.6 (Tube Lemma) LetXY be the product topology. Suppose tiats compact.
If W is an open subset of XY containing{x} xY for some xe X, then it contains some
tube UxY around{x} xY. Wher U is an open set containixg

X

A

Ux Y

xy

Figure 1: Tubd.emma
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Proof. Observe thafx} xY =Y, and sincef is compact{x} xY is compact. Now for
each ye Y, youhave (x, y)e {x}*xY ¢ W. Therefore, there exists open sefsddntaining

26
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X, Vy containingy such that (x, ¥) Uy xVy ¢ W. Thus{Uy xV,,y e Y } is an open cover of
{x3 xY. Since{x} xY is compact, there exisys, ...,y such that

r
{x}xY c Uy x vy,

i=1

Take

i=1
Then U is open, it contains x aqck} xY ¢ UxY c W. For if (z, y)e U xY, you have
that ze Uandye Y.ye Y implies that there exists such that y V,, . This implies that z
e Uy, and (z,y) Uy, xV, € W. "

Theorem 3.7A finite product

of compact space§X; }2; is compact.

This theorem is called the Tychonoff product theareThe converse of the Tychonoff product
theorem is also true.

Proof. You can prove this for a product XY of two compact spaces X and The
generalization follows by induction. So I§tW; }i., be a family of open sets of the
product topology, such that

L
X xY ¢ W,
icl
Let x ¢ X be fixed. You have that
{x}xY € X xY C W;

icl

{x} xY is compact sinc¥ is, and so there exists i.., i, such that

r
OFxY € Wy =W,
j=1

By tube lemma, there exists an open setbhtaining x such thafx} xY ¢ Uy xY & Wy.

And so L
X c Ux.
Xe X
Since X is compact, there exists x., X, such that
r
X c Uy,
i=1
Therefore,
[ r Cr
XxY e (U, xY)S Wy, ¢ Wi, .
i=1 i=1 i=1j=1
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Hence, XxY is compact.
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3.1.2 Heine-BorelTheoem

Theorem 3.8A subset A oR" is compact if and only if it is closed and bounded.

Proof. &) LetR" be endowed with the euclidean metric

X
d(x, y)= i = yi)?

i=1

N =

Assume A is compact the A is closed sifReis Hausdorff. Alse{B(0, n), ne N} is a family
of open sets dR" and

L
Ac B(0, n)
n=1
Where B(0, n)= {y ¢ R : d(y, 0)< n} is the open ball with center O and radius n. By th
compactness of A, there exists n., ny such that

Ac r B(0,n,) € B(0, N)
i=1

where N= Enax nik. Hence A is bounded.
= I=

(< ) Suppose A is closed and boundedRh, and show that A is compact. It suffices
to show that A is a subset of a compact set. Big Bounded implies that there exist>R0

such that
_ e
Ac B(O,R)¢ [- RR]
i=1
. . Y . . .
eacH— R,R]iscompactin R and so [— R, R]is compact as a finite product of compact

sets.

i=1
And so A is a closed subset of a compact set, fibrer,eA is compact. [ |

Remark3.2 Notethat the above theorem was provedRlh In an arbitrary metric space, what
you have ighatany compact space is closed and bounded but tiverse is notrue

3.2 FiniteIntersection Property (FIP)

Definition 3.5 Finite intersectiorProperty(FIP). Let X be a a topological space. A collec-
tion C of subsets of X satisfies the Finite Intersecticoprty (FIP) if any intersection of a
finite subcollection of is nonempty.
N\
C={Aj,ie | }satisfyFIP ifforanyde P;(l), A,

ieJd

.

WhereP (1) (finite part ofl ) denotes a the set of all finite indexeg of
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Theorem 3.9 Atopological space X is compact & anly if collectionC = {C; ;i€ 1}
of closed sets having the FIP, one tiast

Proof. (=) Let X be a compact set afd= {C;,i € |1} be a collection of closed setsXf
having the finite intersection property, i.e., &rJ ¢ P (1) such that
AN

Ci =
%)
i€eJ
You have to show that N
Ci =9
i€l
Suppose
PP N
Ci =J
Then !
L
X= (Xrg).

iel
Each X r C; is open sinc&; is closed, thus{X r C;,i € |1} is an open covering for X
and since X is compact, there exid§s= P (1) such that

L
X = X rG).
ieJ
This implies that N
Ci =0
ieJ
contradictinghe assumption thétsatisfies F | P. Hence our supposition was wroigerefore

AN
Ci=

%)
i€eJ

Corollary 3.1 Let X be a compact space and{lef,,n = 1} be a collection of
nonemptyclosed sets such th@l,,, ¢ C,. Then
AN

31



6 Tutor Markec Assignment (TMAS) CATEGCRY AND

Proof. Letn, ..., n € N, sinceC,,; ¢ C,, and eaclC, is nonemptythen

X
Cni :CN:®

i=1
Where N= gnax n; Thisimplies that{in, n =1 satisfiesthe F°. So by the last theorem,
=i=p

AN
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Theorem 3.10 If X is a compakiausdorffspace having no isolated points, then X is un-
countable

Proof. Step 1: First show that given any nonengpign set of X and any point x of X, there
existsanonemptysetV contained in U such thatée V.

Choose a point y U different from x, this is possible if x in U batse x is not an isolated
point of X and it is also possible if x in not indimply because U is nonempty. Now choose
disjoint neighbourhood Wand W of x and y respectively. Then take= U n W..

Step 2: Leff : N— X. Then show that is not injective.

Letx, = f(n). Apply step 1 to the nonempty open setX to choose a nonempty open ¥et
such that x 6e V ;. In general, giverV,.— 1, an nonempty open set, choogg to be a
nonempty open set such thgt ¢ V- ; andc, 6e V ,. Consider the nested sequedcé; }
of nonempty closed sets of X. Since X is compdueird exists a pointx nV . Now if f is
surjective, then there exists n such thgnh) = x, = x, which implies thatx, ¢ V m.
Contradiction.

Corollary 3.2 Every closed and bounded intervdR a§ uncountable.

3.3 Compactnesand Continuous function

Theorem 3.11 Let X and be topological space, and et X - Y be a function. If X is
compact and is continuous, thé&(X) is compact.

Proof. Let{V;}i., be a family of open sets ®f such that

L
f(xX)c
iel
This implies that [
Xef if(X)ec £ V)
i€l

By the continuity off, {f~1(v; < is a family of open sets of X, and since X is contpa
)i
there existsij ..., in such that Xe T fTNY)
j=1
which implies that

f(X)c f IIf‘l(v-,) c l’If(f-l(v])):lﬁvij

H X)is j=1
ie. en  compact.
ce -
T
(
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f(X) ¢ Iijvi
j=1

i

This theorem says that the continuous image ofi@eat set is compact.

10
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Theorem 3.12 Lekt : X - Y be a continuous bijective function. If X is compaadY is
Hausdorff,thenf is a homeomorphism.

Proof. LetF be a closed subset of X. Since Xommgact, you have by theorem 3.2 that F is
compact.Also by the continuity off, and theorem 3.6, you have tHgF ) is compact. Since
Y is Hausdorff, theorem 3.3 gives you thigF ) is closed irY. And sincef is a bijectionf ~*
exists and is continuous. |

3.3.1 TheExtremumValue Theoem

Theorem 3.13 Th&xtremumValue Theorem Lef : X - Y be continuous, where is an

ordered set in the order topology. If K is a commambset of X, then there exists pointand
¢ in K suchthat

f(c) = [(ni}Qf(x) andf (c)= r)r(1aKxf(x)

Proof.  Sincd is continuous, and K is compact, the setAf (K) is compact. So you can
show that Ahasa largest element M and a smallest element m. Thee $n and M belongs
to A, you have to show that m f(c) and M= f(c) for some pointsandc in K.

By contradiction, assume that A has no largest efénthen the collection

{(- = ,a)ac
A}

forms an open cover of A. Since A is compact, sém& subcover{ « , &), ..., & » , a,

)

covers A. Ifa, is the largest of the elements, a.,a, theng, belongs to none of these sets,

contrary to the fact that they cover A (becaages A). A similar argument shows that A has
a smallest element. u

Definition 3.6 Lebesgue Number LAtbe an open cover of X4 is a Lebesgue number én
if for all subsets A of X such that the diameteros less tham, there exists 4 A such that
Ac U.

Theorem 3.14 Let (X, d) be a metric space,Aet {U;,i € |} be an open cover of X. If X
is compact, then there exists> 0 such that any subset of X, having diameter leasd is
contained in one of thigs.

Proof. LetA = {U;,i e |} be an open cover of X such that

If X e A, then any positive number is a lebesgue numbg&r &b you can assume that ( X.
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TakeC; = X r U; and defind : X - R by

X
f)=-  dxG)

i=1

11
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Now for any xe X, there existgd € | such that xc U;,. SinceU;, is open, that there exists
> 0 such that B(x, £ U;,. Ifye Cj, theny6e U, ie., ybe B(x, ) which implies

that

dix,y)= andsod(xCi,) = ,thusf(x) =

n.

o »

Sincef is continuous on X (which is compact), themas a minumum valug > 0. You
now haveto showthatd is the Lebesgue number. For this let A be a sulise{ of diameter
less thard. Choose ¥ € B, then Ac B(Xp, 8). Now

8= f(x)= d(x,
Cm)

where d(x, C,,) is the largest of the number ¢(;C;). Then B(%, 6) € U,,, as desired. =

Definition 3.7 Let (X, ¢ ) and(Y, dy) be metric spaces. A functidn: (X, dx) - (Y, dy)

is said to be uniformly continuous if given any 0 there exists & > 0 such that for every
pairy of points x, x, of X,

dx (X1, X5) < 6 impliesthatdy (f (x1), T (x2)) <

Theorem 3.15 Let (X, d) and(Y, dy) be metric spaces and fet X - Y be continuous. If
X is compact therffi is uniformly continuous.

Proof. Let > 0 be given. {By(y, /2),y € Y } is an open covering of Y. So that

{f 1By (y, /12)),ye Y} is an open covering of X, and has a Lebegue nuihisarceX

is compact. Let X, X, be points of X such that d(xx,) < . This implies that diameter
({x1, % }) < 8. Thus{xy, x>} € - 1(B(yo, /2)) and sdf (x)), f(x;) € B(yo, /2). There-

fore,

d(f (x1), f(x2)) = d(f (x1), Yo) + d(f (x2), Yo) <, t,=

i.e., df (x1), f(x,)) < asdesired. ]

3.4 Limit Point andSequential Compactness
3.4.1 Limit PointCompactness

Definition 3.8 A space X is said to be limit poicwmpact if every infinite subset of X has a
limit point.

Theorem 3.16Any compact space is limit point compact, but not coseg.

Proof. Let X be a compact space. Given a subseft A, the goal is to prove that if A is
infinite, then A has a limit point. The proof isr®by contraposition. That is If A has no limit
point then A must be finite.

Suppose that A has no limit point. Then A is clos8&thce X is compact. Furthermore, for
each ac A, you can choose an open neighbourhogdta such that Uintersects A in the
point a alone. The subspace A is covered by tha opeer{U, : ac AY}; being compact, it
can be covered by finitely many of these sets. Eichontains only one point of A, the set A

|
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The next is to show that for metrizable spaceséleo versions of compactness coincides.
That is (X,p) is compact if and only if (Xp) is limit point compact. To this end, you shall
be introduced to another version of compactnessctcaéquentiacompactness.

12
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3.4.2 SequentiaCompactness

Definition 3.9 A topological space X is said to $equentially compact if every sequence of
points of X hasa convergence subsequence.

Theorem 3.17 Let X be a metrizable space. Thefotloaving are equivalent.

1. X is compact.
2. X is limit point compact.

3. X is sequentially compact.

Proof.  You have already shown that &) (2) in theorem 3.14. To prove that (2) (3),
assume thak is limit point compact. Given a sequensg,) of points of X, consider the
set A= {x, : n = 13}. If the set A is finite, then there is a point xcBuhatx,, = X

for infinitely many values of n. In this case, teequencgXx,) has a subsequence that is
constant, and therefore converges. On the othet, lilah is infinite, thenA has a limit point x.
Define a subsequence ©f,) converging to x as follows. First chooseso that

Xn, € B(X, 1)

1
Then suppose the positive integgr ;| is given. Because the ball B(¥/i) intersects A in
infinitely many points, you can choose an inég»> n,— 1 such that

X € B(X, /1)

Then the subsequen¢e,, ) converges ta.

Finally you have to show that (3> (1). This is the hardest part of the proof. Fisstpw
that if X is sequentially compact, then the Lebesgumber holds for X. (This would form
compactnessand compactnesss what you want to prove.) L& be an open cover of X.
Assume that there exist 80> 0 suchthat each set of diameter less th&ias an element &
containing it.

Your assumption implies in particular that for eguasitive integer n, there exists a set of
diameteressthan 1/n that is not contained in any elementfof Let C,, be such set. Choose

a pointx, € C, for eachn. By hypothesis, some subsequeHoe, } of the sequencéx,,
} converges, say to a point a. Now airissomeelement U of the open cové&. Because

U is open, you may choose> 0 such that B(a, ¥ U. Let k be sufficiently large such
that
1/ng < /2 andd(x, ,a) < /2, then there existS,, < B(a, ). Contradiction.

Secondly, you have to show that if X is sequemntieimpact, then given , there exists a
finite cover ofX - balls. Once again, proceed by contradiction. Asstimt there exists an
> 0 such that X cannot be coveredfiojtely many — ball. Construct a sequence of poiris
as follows: First, choose xo be any point of X. Noting that the ball B(x) = X (otherwise
X could be covered by a single ball) choose x to be a point of X notin B¢x, ). In general,
given x, ...,Xn, Cho0sex,,+1 to be a point oKX not in the union
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using the fact that these ball do not cover X. Bypstructiond(Xn+1,Xi) =  fori =1, ...,
n.

Therefore, the sequen¢e,) can have no convergent subsequence. In fact ahpfradius
/2 can contairx, for at most one value of.

Finally, show that if X is sequentially compacgthX is compact. LeA be an open cover
of X. BecauseX is sequentially compact, then the open cévéias a Lebesgue numberl et
= 6/3; using sequentially compact of X to find a finitever of X by - balls. Each of these
balls has diameteat most26/3, so it lies in an element &. Choosing one such elementAof
for each of these- balls, youobtaina finite subcollection oA that coversX. [ ]

3.5 Locally Compactnesand One-point Compactification
3.5.1 LocalCompactness

Definition 3.10 A topological space X is locallyropact if each point of X has a neighbour-
hood with compact closure.

Example 3.8 R the real line endowed with the stechtigpology is locally compact because
forall xe R, (x - 1,x+ 1) is a neighbourhood of x whose closure is theerlcand bounded
interval[x = 1,x+ 1] of R, which is compact by theorem 2.1.

Example 3.9 The sets Z, and N are locally competstia R but are not compact.
Example 3.10 In R, Q the set of rational numbersat locally compact. Theorem
3.18 Every compact space is locally compact.

Proof. Letxe X and U be a neighbourhood of x. Suppose X is campiaen U is a closed
subset of a compact space, and hence is compact. |

3.5.2 One-PoinCompactification

Let (X, Q) be a Hausdorff topological space. et be the set obtained by adding a point
X. to X (of course, x does not belong tX ). LetQ" be the collection of subsets X"
consisting of

» setsopenin X and

* sets of the fornX™ r C, where Cc X is a compact set. i.e.,
Q" =Qu {X" rC:Cc X isacompacsef}.
Then

1. Q" is atopological structure ox” .
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2 (X )iscompact.
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3. The inclusion (XQ) ~» (X" ,Q" )is a topological embedding.
4. If X is locally compact, then the space™(¥Q" ) is Hausdorff.
Definition 3.11 A topological embedding of a spacénto a compact space is a compactifi-

catioin of X if theimage of X is dense . In this situationy is also called a compactification
of X.

If X is a locally compact Hausdorff space, ahis acompactificatiorof X with one-point
Y r X, then there exists a homeomorphiésm X* which is the identity oiX.

Definition 3.12 Any spac¥ that satisfy the above condition is called a onedpoompactifi-
cation or Alexandrov compactification Xf.

4 Conclusion

In this unit you have studied compactness; cowaspact sets and subsets of compact spaces
and proved some important results as regards tpacimess, some of them you have always
used in its special case in your studies in Analgsid calculus. You were also introduced to
the notions of limit point, sequentially and logatbmpactness and one-point compactification.

5 Summary
Having gone through this unit, you now know that;

(i) A collectionA = {U.i ¢ |} of open subsets of a topological space X is amope
covering of X ifX = U

icl

(i) A topological space X is compact if every opsovering of X can be reducible to a finite
subcovering.

(i) Every finite set is compact.
(iv) The real line R is not compact.
(v) Any closed and bounded interval of R is comipac
(vi) Any closed subset of a compact space is campa
(vii) Any compact subset of a Hausdorff spacdased.
(viii) A finite product of compact spaces is corapa
(ix) Any compact set of a metric space is closad lrounded.

(x) In the metric spacR" compactness and closed and bounded are equivalestis the
Heine Boreltheorem
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(xi) A collectionC of subsets of a topological space X satisfies thaeFIntersectiion Prop-
erty (FIP) if any intersection of a finite subcallien ofC is nonempty.

(xii) A topological space X is compact if and il any collectionC of closed sets oK
satisfying the FIP, one has that the arbitraryrggetion is nonempty.

(xiii) The continuous image of a compact set is compact.

(xiv) If K is a compact subset of a topologicabsp X andf is a continuous function from
X to an ordered spacde thenf attains its maximum and minimum on K. This ressilt i
called the Extrem&alueTheorem.

(xv) & is a Lebesgue number on an open cdvesf X if for all subsets A of X such that
diameter of is less thaf there exists WU A such that Ac U.

(xvi) A continuous functiorf from a compact metric space X to another metricsyais
uniformly continuous.

(xvii) A space X is called limit point compactea¥ery infinite subset of X has a limit point.

(xviii) A topological space is sequentially consp# every sequence of points of X has a con-
vergent subsequence.

(xix) A topological space X is locally compactaéch point of X has a neighbourhood with
compact closure.

(xx) A topological embedding of a space X intopaceY is a compactification of X if the
image of X is dense i¥i. In such situationY is also called a compactification Xf

(xxi) A spaceY is called one-point compactification of X if X id@cally compact Hausdorff
space, and is a compactification of X with one-poiit r X, such that there exists a
homeomorphisnY —» X* which is identity onX.

6 TutorMarked AssignmentgTMAS)

1. Which of the following spaces is not compact?

(a) Everydiscrete space.
(b) Every indiscrete space.
(c) Any finite space.

(d) A finite discrete space.

2. Which of the following statements is false?

(a) Any closed subset of a compact space is compact
(b) Any compact subset of a Hausdorff space is @mtp
(c) Any finite set is compact.

(d) Any closed and bounded set of a metric spacengpact.
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3. Which of the following sets is compact in R?
(@ [0,1]n Q

(b) [0, 1]n Q°
(c) [0,1)
(d) [0,1]
4. Letf :[a,b] = R be a continuous function. Th&([a, b)) is

(a) closed but not bounded.
(b) bounded but not closed.
(c) neither closed nor bounded.
(d) closed and bounded.
5. Which of the following sets is not compact?
(@ S*={(x,y)e R? : x> +y?> =1} =1}
(@) S" = {(x1, %z, o Xy Xnr ) R 0 X2 X2 4+ - -+ %2 +
1 2 n n+1
() RT ={(X4, ..., Xn) € R 1 xq ,
(d) A=L{x =Xy, X, .., Xn) : X, =01=1,2,..n}

\%
o
b
o}
v
o
(S

6. Let X =0, 1)u [2, 3] be a subspace of the standard topology on R. TeesA= [0, 1)
of X is

(a) closed, bounded and compacKin

(b) closed, bounded and not compacXin
(c) closed and compact K.

(d) bounded and compactiq

7. In an arbitray metric space ()

(a) every closed and bounded set is compact.
(b) everycompact set is closed and bounded.
(c) every bounded set is compact.

(d) every closed set is compact.

8. Let Ay be the closed and bounded inteff@all] in R. Let A be the set obtained froAy
by deleting its middle third %% . Let A, be the set obtained fromy Ay deleting its

middle thirds ég and 79 g . In general, defind,, by the equation
L 1+3k 2+3k
An = An— 1 3n ’ 3n
r k=0
The intersection N
K= An
ne N
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is called the Cantor set. It is a subsei0pt]. Which of the following is not truabout
K.
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(a) K is compact.

(b) K has no isolated points.
(c) K is countable.

(d) K is uncountable.

9. Which of the following sets is not locally congta
@R

(b) Q
(c) R"
(d) a discrete space.
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UNIT 5: CONNECTEDNESS
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1 INTRODUCTION

In your study of calculus, you must have come actbs all important results called the in-
termediate value theorm which states thdt if| - R is continuous, and r is a real number
betweenf (a) andf (b) then there exists€ | such thaff (c) = r, wherel denotes an interval
of R. Although this theorem refers to continuousdtions, notwithstanding it also depends on
the topological property of the interval In fact we can restate the intermediate valeerttm

as follows; The continuous image of an intervalf R is also an interval . This topological
notion property of the intervdl on which the intermediate value theorem dependslied
connectedness.
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In this unit, you will be introduced togeneralizatiorof theintermediategheorem, and some
other related theorems which you have proved itiquaar cases of the real line.

2 Objectves

At the end of this unit, you should be able to;

() Differentiate between connected sets and s¢pdispaces.
(i) Define connected spaces.
(i) Understand the connectedness to the real lin
(iv) Identify the connected components of a gigpace.

(v) ldentify locally connected spaces.

(vi) Know and use of the concept of path connauted.

3 ConnectedSpaces.

3.1 Separatednd Connected Sets
3.1.1 Definitions andExamples

Definition 3.1 Let X be a topological space. A Segpian of X is a pait, V of disjoint open
sets of X, whose uninon }s.

Definition 3.2 A topological space X is connectédt has no separation.

Example 3.1 In R, Let X= [- 1,0)uv (0, 1].[- 1,0) and (0, 1] are open in X. They are
nonempty and disjoint. And so is a separation off Kerefore X is not connected.

Example 3.2 Let X= {a,b}. If X is endowed with the indiscrete topology, tiehas no
separation and thus is connected.

Another way of formulating the definition of coniedness is the following:

Theorem 3.1 Aspace X is connected if and ontlgefonly subsets of X that are both open
and closed irxX are theemptyset and X itself.

Proof. If A'is a nonempty proper subset of X tisdboth open and closed in X, then the sets
U= AandV = X r A constitute a separation of X, for they are ohsjoint and nonempty,
and their union ix.

Conversely, if U and V form a separation of X, théms nonempty and different from X
and it is both open and closed in X.
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Example 3.3 If X is any discrete space with moantbne element, then X is not connected
as each singleton set is both open and closed.

Example 3.4 If X is any indiscrete space, thersitonnected as the only sets that are both
closed and open are X a@d

3.1.2 Connectedets

If you refer to a seY as connected, you mean thvatlies in some topological space (which
should be clear from the context) and, equippet tié subspace topology, thereby making
a connected space. %ads connected in a topological space X ifs connected in the subspace
topology induced by the topology oh

Theorem 3.2 Let be a subspace of a topological spaceAXeparation of is a pair A, B
of nonempty disjoints sets whose uniorY i@nd neither of which contains a limit point of the
other (i.e., Ay B'=@ andBn A'=@).

Proof.  Suppose first that A and B form a sepanatibY. Then A is both open and closed
in Y. Theclosureof A inY is the set A Y, which implies that A B = &. Since A is the
union of A and its limit points, B contains no linpioints of A. A similar argument shows that
A contains no limit points oB.

Conversely, Suppose that A and B are disjoint ngrigrsets whose union ¥ neither of
which contains a limit point of the other. ThemAB = & and An B = & ; therefore,
we conclude that A= An Yand B= Bn Y. Thus A and B are closed ¥ and since A=Y r
B, and B=Y r A, they are open iif, as desired. [ ]

Example 3.5 Let X= [0,1]u (1,2] = AU B. The A, B is not a separation of X since
1e B'n A =
.

Example 3.6 Q the set of all rational numbers issn@onnected set. Indeed the only connected
subspace of) arethe one point sets. Yf is a subspace of Q containing two points p andhqg, o
can choose an irrational number a lying betweemdpga and

Having seen some examples of sets that are noectat) what follows are result that will
help you determine how to construct connectedfsats existing ones.

Lemma 3.1 Ifthe sets A and B forms a separatiod, &ndY is a connected subspacexaf
then eitherY lies entirely in either A oB.

Proof. Since A and B are both open in X, the set A and Bn Y are open inY, and
Y =(AnY)u (BnY). If both of them are nonempty, then they contituseparation, of.
But sinceY is connected, either AY = J orBn Y = . So thaty either liesin A or B
as required. [ ]

Theorem 3.3 The Union of a collection of connectallspaces of X that have one point in
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Proof. Let(C)i., bea collect'gn of connected spaces<aret p be a point o-frie , Gi. You
have to prove that the spate= ,_, C; is connected. Suppose that= AU B is a separation
of Y. The point p is in one of the sets A or B; supposef. SinceC; is connected, it must
lie entirely in either A§r B, and it cannot lie Bhbecause it contains the point p of A. Hence,
Ci c Aforeveryi, so ., C; ¢ A, contradiction the fact that B is nonempty. |

ie

Theorem 3.4 Let A be a connected subspace of X.dfB c ‘A then B is connected and in
particularA.

Proof. Let A be a connected subspace of X anfiletB c A. Suppose B=CU D is a
separation 0B, then by lemma 3.1, the set A lies entirely in Grob. Suppose A C, then
A c C;since Ch D = @, B cannotintersect D, this contradicts the fact that D isoaempty
subset oB. |

Theorem 3.5 The image of a connected space uncamtanuous function is connected.

Proof. Letf : X > Y be a continuous map, let X be connected. You haghdow that the

space Z= f(X) is connected. Since the map obtained fifolmy restricting its range to the
space Z is also continuous, it suffices to condidercase of a continuous surjective map

g: X-»> 2

Suppose Z= A U B is a separation of Z into the disjoint nonempbg sets. Theg™ 1(A)
and g 1(B) form a separation of X, contradicting the asption that X is connected. ]

Theorem 3.6A finite cartesian product of connected spaces is connected.

Proof.  You can prove this theorem for the proaiidtvo connectegpaces X andl. Choose a
point (a,b) in X xY. Note that the horizontal slice ¥{b} is connected, being homeomorphic
with X, and each vertical slicfx} xY is connected being homeomorphic withAs a result
eachT - shaped space

T = (X x{b})u ({xFxY)
Is connected, being the union of two connectedespduat the poin{x, b} is common.Now

form the union ,_, Ty of all thisT - shaped spaces. The union is connected becaudhet is
union of collection of connected spaces that hheepbint (ap) in common. Since this union
equals Xx Y, the space XY is connected. m The proof for any finite product ohcected
spaces follows by induction.

3.2 Connected Subspacefkthe RealLine

Here you shall show that the real line is connecBadalso is the intervals of R or the rays i.e.,
sets of thdorm (a,~ ).

You are also going to prove a generalization ofithermediate value theorem of calculus.

Definition 3.3 A simply ordered set L having mohamn one element is called linear contin-
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1. L has the least upper bound property.

2. If x <y, there exists z such thatxz <.

Theorem 3.7 If L is a linear continuum in the artigology, then L is connected, and so are
the intervalsandrays inL.

Proof.  Recall that a subspateof L is said to be convex if for each pointdaf Y with
a < b, one has the intervid,b] lies inY. You have to prove that ¥ is a convex subspace of
L, thenY is connected.

Supposethat = Au B is a separation of. Choose & A andb e B, suppose that & b.
The intervala,b] of points of L is the union of the disjoint sets

Ao =An [a,bland B, =B n [a,b]

each is open ifa,b] in the subspace topology, which is the same asrther topology. The sets
Ao and B, are nonempty because ad, andb € By. Thus A and B, constitutea separation of
[a,b]. Let c= sup Ay. You have to show that ¢ belongs tg ér to B, which would contradict
the fact thafa,b] is the union of A andB,.

Case 1: Suppose thatcBy. Then c= a, so either &= b or a< ¢ < b. In either case, it
follows from the fact that B is open in[a,b] that there exist some interval of the formd{d,
contained in B. If c = b, you have a contradiction at once, for d is allemapper bound in A
than c. If c< b, observe that (¢] does not intersectA(because c is an upper bound qf).A
Then

(d,b] = (d,c]u (c,h]

does not intersectAAgain, d is a smaller upper bound og than ¢, contrary toonstruction.

Case 2: Suppose that cA, then c= b, so either &= a or a< ¢ < b. Because 4 is open
in [a,b], there must be some interval of the fojene) contained in 4 Because of the order
property(2) of the linear continuum L, you can cé®a point # L such thatc< z < e. Then
z e Ag, contrary to the fact that c is an upper boundigr ]

Corollary 3.1 Thereal line R is connected an@rsointervals and rays R.
As an application, the intermediate value theoréoatulus is suitably generalized.

Theorem 3.8(Intermediatevalue Theorem) Let : X - Y be a continuous map, where X

is a connected space avds an ordered set in the order topology. If a hiage two points of
X and ifr is a point ofY lying betweenf (a) andf (b), then there exists a point ¢ in X such
thatf(c)=r.

Proof. Assume that the hypothesis of the theoidm.sets
A=FfX)n (o ,r)andB=F(X)n (r,+x» )
are disjoint, nonempty because one contéif@ and the other contaifigh). Each is open in

f (X). If there is no point € X such thatf (c) = r, the A and B form a separation B{X)

|
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3.3 PathConnectedness
Definition 3.4 Given points x and y of the topologl space X, a path in X from x toy is a

continuous mag : [a,b] - X of some closed interval in the interval in thalrene to the
space X, such thd&t(a) = x andf (b) =y.

Definition 3.5 PathConnectednessA topological space X is said to be path connedted
every pair of points of X can be joined by a patiXi

Theorem 3.9 If X is a path connected space thés connected.

Proof.  Suppose X= AU B is a separation of X. Let x A and ye B. Choose a path

f :[a,b] - X joining x and y. The subspat¢a, b]) of X is connected as a continuous image
of a connected spac@&hereforeit lies in entirely in either A or B which contradicthe fact
that A and B are disjoint. [ ]

Example 3.7 Define the unit b&" in R" by

B={xe R":kxk =
1y

where
kxk = (X3 + x5 + - - - + x2)M2

The unit ballB" is path connected, given any two points X, \Bify the straight line path
f :[0,1] > R" definedby
f)=(01- t)x+ty

liesinB".
3.4 Componentand LocalConnectedness
3.4.1 ConnectedComponents

Definition 3.6 ConnectedComponentssiven a topological space X, define and equvalence
relation~ by

x ~ vy if and only if there exists a connected subsdicé containing x and
y.

Claim: ~ is an equivalence relation.
1. x~ x becausdx} is connected (se- is reflexive.)
2. — is symmetric by definition.

3. — s transitive, because x* y and y~ z implies that there exists connected
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subspaces and G of X suchthatx, ¥ C; andy,ze C,. LetC=C,U C,,thenC is
connected sincey C,; n C, and x, ze C. Hence x— .

A connected component or a component is all eqeimva classes for this equivalence relation.
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Theorem 3.10 The connected components of X araemed disjoint subspaces of X whose
union is X, such that eactonemptyconnected subspace of X intersects only one of them

Proof. Being equivalence classes,thmponent®f X are disjoint and their union is X. Each
connected subspace A of X intersects only onearhthFor if A intersects the components C
and G of X, say in the pointsx and % respectively, then x — X, by definition, this
cannot happen unless G= C,. To show that the component C is connected, chagsaint

Xo of C. For each point x of C, we know that x- X, so there is a connected subspage A
containing ¥ and x. By the result just proved, & C. Therefore

L
C= A

Xe C

sincethesubspaceA, are connectednd have the poingXn common, their union is connected.
|

3.4.2 LocallyConnectedness

Definition 3.7 A topological space (X, is said to be locally connected if it has a b&si
consisting of connected open sets.

Example 3.8 Z the set of integers is a locally @mted space which is not connected.

Example 3.9R" is locally connected for all &= 1

Example 3.10 Let (X7) be the subspace of Ronsisting of the points in the line segments
joining (0,1) to (0, 0) and to all the pointsr%(O), n=1,2,3,... Then the space (%), is
connected but not locally connected.

Proposition 3.1 Every open subset of a locallynemted space is locally connected.

Proposition 3.2 A finite product of locally conrned spaces is locally connected.

4 Conclusion

In this unit, you were introduced to a topologipabperty called connectedness. You studied
connected and separated spaces with example ancbtinectedness of the real line. You
also studied the connected components of a givanespgocally connected spaces and path
connectedness. You also proved some importantsesidh as the intermediate value theorem.

S5 Summary

Having gone through this unit, you now know that;
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(i) A separation of a topological space X is & paV of disjoint open sets of X, whose
union isX.

(i) A topological space X is connected if it has separation. Or X is connected if and only
if the only closed and open sets in Xdsand X itself.

(i) A setis connected if it is connected in thaspace topology induced by the topology in
the topological space.

(iv) A union of a collection of connected subsEaoé X that have one point in common is
connected.

(v) The continuous image of a connected spacerinacted.
(vi) A finite cartesian product of connected sgaiseconnected.
(vii) The real line is connected. So also is titerivals and rays.

(viii) A simply ordered set L having more than oglement is called linear continuum Lif
has the least upper bound property and<f ¥, then there exists z such thatxz <.

(ixX) A linear continuum in the order topology isrmected.

(x) Iff: X - Y is a continuous map from the connected space Xdamtdered space

in the order topology, a aridare two points of X and if is a point ofY lying between
f (a) andf (b), thenthereexistsa point ¢ in X such thdt(c) = r. This is the intermediate
valuetheorem

(xi) A path from a point x to y in the topologicgbace X is a continuous mép [a,b] - X

of some closed interval in the real line to thecgp¥, such that (a) = x andf (b) = .
X is called path connected if every pair of poiotsX can be joined by a path in X. If
X is a path connected space then X is connected

(xii) A connected component is all equivalencessés for the equivalence relation ~x

y if and only if there exists a connected subspace X containing x andhg
connected components of &re connecteddisjoint subspaces of X whose union is X,
such that eachonemptyconnected subspaocéX intersects only one of them.

(xiii) A topological space X is said to be locally cortedcif it has a basiB consisting of
connected open sets.

6 TutorMarked AssignmentgTMAS)

Exercise 6.1

1. Let X be a discrete topological space. If X asmected, then

() X isinfinite.
(b) X is countable.
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(d) X is a singleton.

2. Let X = {a,b,c,d,e}. Suppose X is connected when endowed with theldgypa,
which of the following could be?

(@) T = P(X), the power set oX.

(b) = = {X,2,{a},{c,d},{a,c,d}}

(c) T =4{X,9,{a},{c,d} {a,c,d}, {b,c,d, e} }.

d) t ={X,a,{a},{c,d} {a,c,d} {be} {abe}{b,c,d e}

3. Let X = {a,b}. Which of the following topologies will make X

disconnected. (a3 = {X, 9 ,{a},{b}}.
(b) r ={X,9,{a}}

(€t ={X.g,{b}}

(d)=+{X,0}

4. In which of the following spaces is the sub§etl} of real numbers connected.

(&) R with the standard topology

(b) R with the finite complement topology

(c) Ry =0, ) with the topolog¥2 = {Z , X, (a,+x» )}.
(d) R with the discrete topology

5. If R is endowed with the finite complement togmp), then the following sets are con-
nected except

(a) the empty set.
(b) singleton sets.
(c) infinite sets.
(d) N

6. Every connected space is path connected. (TRALSE)
7. Every connected space is locally connected. @RALSE)

8. Every locally connected space is connected. @RALSE)

9. Let A be a subset of a space X. Then thelpalris a separation such that:AU U B
if and only if

(@U'cVorvicu
O VnU=g andU’nV =&
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dVinUu=gandU'n V= orVinU=g andU’n V =&

10. If C; and G are connected components and A is a connecteithapt,
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(@) eitherGn C, = or G, =C,, and A intersects both;GndC;
(b) C,n C, = and G =C,, and A intersects both,GndC..

(c) eitherG n C, =& or C; =C,, and A intersects either,@rC,
(d) Cn C, =g and G =C,, and A intersects either,@r C,.

11. A topological space is totally separated iftalcomponents agngletons.
Which of the following spaces is not totally sepad?

(&) Any discrete space.

(b) The space Q endowed the topology induced fitamdsird topology oR.
(c) The cantor sk

(d) R with the standard topology

12. If X is a connected space ahd X — R is a continuous function. Thdr{X) is an
interval | of R. Which of the following is not correct about thissartion.

(a) T(X) is connected.

(b) The interval of R is connected.

(c) Ris connected.

(d) The interval is a continuous image of the connected space
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