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Introduction

Mathematical Methods IV is a continuation of MTH281, MTH381 and
MTH302. It is a three -credit course. It is a compulsory course for any
student majoring in mathematics at undergraduate level or B.Sc.
(Education) Mathematics. It is also available to students offering
Bachelor of Science (B.Sc.) Computer and Information Communication
Technology. Any student with sufficient background in mathematics can
also offer the course if he/she so wishes although it may not count as a
credit towards graduation if it is not a required course in his/her field of
study.

The course is divided into three modules as listed below:

Study Unit

Module 1

Unit 1 Ordinary Differential Equation

Unit 2 The Fixed Point Theorem

Unit 3 The Method of Successive Approximation
Module 2

Unit 1 Special Functions

Unit 2 Hyper Geometric Function

Unit 3 Bessel Function

Module 3

Unit 1 Legendry Function

Unit 2 Some Examples of Partial Different Equations

What You Will Learn in This Course

This Course Guide tells you briefly what the course is about, what
course materials you will be using and how you can work with these
materials. In addition, it advocates some general guidelines for the
amount of time you are likely to spend on each unit of the course in
order to complete it successfully. It gives you guidance in respect of
your Tutor-Marked Assignment which will be made available in the
assignment file. There will be regular tutorial classes that are related to
the course. It is advisable for you to attend these tutorial sessions. The
course will prepare you for the challenges you will meet in
Mathematical Methods IV.

Course Aim
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The aim of the course is to provide you with an understanding of
Mathematical Methods IV. It also aims to give you a modern way of
solving complex problems in Mathematics, make clear distinctions on
the ways we handle problems in Real Analysis, and provide you with
solutions to some problems that may arise in Engineering and other
areas of human endevour.

Course Objectives

To achieve the aims set out, the course has a set of objectives. Each unit
has specific objectives which are included at the beginning of the unit.
You should read these objectives before you study the unit. You may
wish to refer to them during your study to check on your progress. You
should always look at the unit objectives after completion of each unit.
By doing so, you would have followed the instructions in the unit.

Below are comprehensive objectives of the course as a whole. By
meeting these objectives, you would have achieved the aims of the
course as a whole. In addition to the aims above, this course sets to
achieve some objectives. Thus, after going through the course, you
should be able to:

) determine Existence and Uniqueness of Solutions

) solve Special Functions such as Gama Functions, Beta Functions,
and Legendry Functions etc

. solve Partial Differential Equations

Working through This Course

To complete this course, you are required to read each study unit, read
the textbooks and read other materials which may be provided by the
National Open University of Nigeria.

Each unit contains Self-Assessment Exercises and at certain points in
the course, you would be required to submit assignments for assessment
purposes. At the end of the course there is a final examination. The
course should take you about a total of 17 weeks to complete. Below
you will find listed all the components of the course, what you have to
do and how you should allocate your time to each unit in order to
complete the course on time and successfully.

This course entails that you spend a lot of time to read. | would advice
that you avail yourself of the opportunities of the tutorial classes
provided by the University.
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Presentation Schedule

Your course materials have important dates for the early and timely
completion and submission of your TMAs and attending tutorials. You
should remember that you are required to submit all your assignments
by the stipulated time and date. You should guard against falling behind
in your work.

Assessment

There are three aspects to the assessment of the course. The first is made
up of Self-Assessment Exercises, the second consists of the Tutor-
Marked Assignments and third is the written examination/end of course
examination.

You are advised to do the exercises. In tackling the assignments, you are
expected to apply information, knowledge and technique you gathered
during the course. The assignments must be submitted to your facilitator
for formal assessment in accordance with deadlines stated in the
presentation schedule and the assignment file. The work you submit to
your tutor for assessment will count for 30% of your total course work.
At the end of the course you will need to sit for a final or end of course
examination of about three hours duration. This examination will count
for 70% of your total course mark.

Tutor-Marked Assignment

The TMA is a continuous assessment component of your course. It
accounts for 30% of the total score. You will be given four (4) TMAS to
answer. Three of these must be answered before you are allowed to sit
for the end of course examination. The TMA would be given to you by
your facilitator and returned after you have done the assignment.
Assignment questions for the units in this course are contained in your
reading references and study units. However, it is desirable in all degree
level of education to demonstrate that you have read and researched
more into your references, which will give you a wider view point and
may provide you with a deeper understanding of the subject.

Make sure that each assignment reaches your facilitator on or before the
deadline given in the presentation schedule and assignment file. If for
any reason you can not complete your work on time, contact your
facilitator before the assignment is due to discuss the possibility of an
extension. Extension will not be granted after the due date.

Final Examination and Grading
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The end of course examination for Mathematical Methods IV is about 3
hour and has a value of 70% of the total course work. The examination
will consist of questions, which will reflect the type of self-testing,
practice exercise and tutor-marked assignment problems you have
previously encountered. All areas of the course will be assessed.

Use the time between finishing the last unit and sitting for the
examination, to revise the whole course. You might find it useful to
review your self-test, TMAs and comments on them before the
examination.

Course Marking Scheme

Assignment Marks

Assignment 1 - 4 Four assignments, best three marks
of the four count at 10% each —
30% of course marks

End of course examination 70% overall course marks.

Total 100%

Facilitators/Tutors and Tutorials

There are 16 hours of tutorials provided in support of this course. You
will be notified of the dates, times and location of these tutorials as well
as the name and phone number of your facilitator, as soon as you are
allocated a tutorial group.

Your facilitator will mark and comment on your assignments, keep a
close watch on you progress and any difficulties you might face and
provide assistance to you during the course. You are expected to mail
your Tutor-Marked Assignment to your facilitator before the schedule
date (at least two working days are required). They will be marked by
your tutor and returned to you as soon as possible.

Do not delay to contact your facilitator by telephone or e-mail if you
need assistance.

The following might be circumstances in which you would find
assistance necessary, hence you would have to contact your facilitator if:

) You do not understand any part of the study or the assigned
readings

) You have difficulty with the self-tests

) You have a question or problem with an assignment or with the

grading of an assignment.
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You should endeavour to attend the tutorials. This is the only chance to
have face to face contact with your course facilitator and to ask
questions which are answered instantly. You can raise any problem
encountered in the course of your study.

To gain much benefit from course tutorials, prepare a question list
before attending them. You will learn a lot from participating actively in
discussions.

Summary

MTH382: Mathematical Method IV is a course that intends to provide
solutions to problems normally encountered by engineers and
mathematicians in the course doing their normal jobs. It also enables
mathematicians to widen the frontiers of their analytical concerns to
issues that have significant mathematical implications.
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MODULE 1 EXISTENCE AND UNIQUENESS OF
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UNIT 1 ORDINARY DIFFERENTIAL EQUATION

CONTENTS

1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1  Definitions and Examples
4.0  Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

In this unit, we shall study the theory of ordinary differential equations
with a discussion on existence and uniqueness theorems which cover
various types of equations. A differential equation is a functional
equation where the unknown function or functions are present as
derivatives with respect to a single variable in the case of an ordinary
differential equation. The order of the highest derivative is called the
order of the equation. Derivatives in a differential equation can occur in
various ways and we do not admit equations where the unknown is
subjected to other operations than algebraic and differential equations.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

) classify various types of differential equation
. answer correctly exercises on differential equations.
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3.0 MAIN CONTENT
3.1 Definitions and Examples

A differential equation is a functional equation where the unknown
function or functions are present as derivatives with respect to single
variables in the case of an ordinary differential equation. Consider the
following six examples of functional equations involving derivatives.
Some are bona fide equations while some are not:

Example (1): f'(x) = f(x)

Example (2): f'(x)= f(x+1)

Example (3): f'(x) =a,(x)+ ag(x) f(x) +a,()[f (X)]°
Example (4): f"(x) =6x+[f(X)]?

Example (5): f'(x) = jox{1+ [ (s)]2}%ds

Example (6): f(x) = j:{[f ') +[f (OI¥2ds

Examples 1 and 3 are ordinary and first order differential equations,
while example 2 is a difference differential equation, not a differential
equation in the usual sense. Example 4 is a second order differential
equation. Example 5 is not a differential equation as it stands but on
differentiating will yield

f"(x) =fL+[f(x)]’}'* which is a second order differential equation

equivalent to example 4. Finally, example 6 is not a differential
equation and is not reducible to such an equation by elementary means.

The normal form of a first order differential equation is given as
y'=F(xy) ...(Q)

In the simplest case, x and y are real variables and F(x,y) is a
function on
R* toR'. We can also allow x and y to be complex variables and F to

be a functionon C? to C'.

We can also let
Y =(Y1, Yz, Yas Yareeeon y,) and F= (F,F,,F....F) ....... 2

Where y and F are functions on R™* to R'. We then define the
derivative of a vector as the vector of the derivatives:
Y =V Yo, VoY) 3)
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With this notation, equation (1) becomes a condensed convenient way of
writing a system of first order differential equations:

Yi(X) =F; (X, Y1, Y5, Yareeen ¥ )y 1 =1,2,3,.0.00 N ()]

Conversely, every such system can be writing as a first order vector
differential equation. The generalisation has the advantage of covering
nth order equations. To convert nth order differential equation in y to a
first order vector equation in y, we set

Y=Y,y sy L (5)

We can consider differential equations in more general spaces than the
Euclidean. Here, the interpretation of the derivatives becomes a matter
of concern, and convergence questions also arise if the space is of
infinite dimension.

Differential equations normally have infinite number of solutions. In
order to find a particular one we have to impose some special conditions
on the solution, usually an initial condition. The intent of an existence
theorem is to show that there exists a function which satisfies the
equation in some neighborhood of point (x,,y,) . A uniqueness theorem

asserts that there is only one such function. We can, however, assert the
existence of solution under much more general conditions than those
which guarantee uniqueness. This is beyond the scope of this course.

4.0 CONCLUSION
We have examined differential equations in a general setting in this unit.

This unit is important to the understanding of other units that would
follow subsequently.

5.0 SUMMARY
In this unit, we have a general introduction to various forms of

differential equations. This unit must be read carefully before
proceeding to the other units.

6.0 TUTOR-MARKED ASSIGNMENT
1. If f(x) satisfies the integral equation

f(0) =y + [ Fls, F(9)ds,

Find a differential satisfied by f(x). What initial condition does f (x)
satisfy?
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2. Transform  f(x) = jox[f(s)]zds into differential equation. Here

f (x) =0 is obviously a solution. Are there other solutions of the
functional equation?

3. The functional equation f(x)=1+] f(s)ds implies that f

satisfies a differential equation. Find the latter and find the
common solution.

7.0 REFERENCES/FURTHER READING

Earl, A. Coddington (nd). An Introduction to Ordinary Differential
Equations. India: Prentice-Hall.

Einar, Hille (nd). Lectures on Ordinary Differential Equations. London:
Addison-Wesley Publishing Company.

Francis, B. Hildebrand (nd). Advanced Calculus for Applications. New
Jersey: Prentice-Hall.
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UNIT 2 THE FIXED POINT METHOD
CONTENTS
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2.0  Objectives
3.0 Main Content
3.1 The Fixed Point Method
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5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

In this unit, we shall use a topological method based on the contraction
fixed point theorem. To apply this theorem successfully we have to
replace the differential equation by an equivalent integral equation that
can be used to define a contraction operator on a suitably chosen metric
space.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

) apply the contraction fixed point theorem

. determine the existence of solutions for a given differential
Equation

. solve correctly the tutor-marked assignment that follows.

3.0 MAIN CONTENT

3.1 The Fixed Point Method

Consider the following differential equation defined by

f'(x) = F[x, f(X)], f(X,) =Y, .. (D)

Here F=(F,F,,....,F) is a vector valued function defined and
continuous in B:[x—x,|<a, [y—y,|<b
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We may define the norm on R" as follows:
n 1/2

{Z(yj —y,-o)} or maxly; - y,|
1

We impose two further conditions on F :
IF(x, y)|<M .. (2

[F O y2) = F O o) < Kys =Yy .. (3

Conditions (1) and (2) are called boundedness and Lipschitz conditions
respectively.

We now replace the vector differential equation by a vector integral
equation defined as:

f(X) =y, + j F[s, f(s)lds .. (4)

We again impose the following property which follows from the
definitions of integrals by Riemann as:

J': Fds

< J;X |F[ds, x, < x ... (5)

Theorem (1): Under the stated assumptions on F, the equation (1) has a
unique solution defined in the interval (x, —r,x, +r) where

. b 1
r<min(a,—,—)
M K

Proof: We consider the space N of all functions g(x) on R to R"
continuous in X (x, —r,x, +r) such that g(x,)=y, and |g—-y,|, <b
where

9= Yo, =sup,Jg(x)—y,|.. For such, a g(x) the function F[x,g(x)]

exists and is continuous. Furthermore, its N-norm does not exceed M.
We now define the transformation:

T:g(x)—>y0+J'XX F[s,g(s)lds, —r<x—x,<r ... (6)
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Here, T[g](x) is continuous,T[g](x,) =Y, and

TI91(X) = Yo| < Mr <b . (D
(by the choice of r). It follows that T[g] € N . We next observe that

X

[{F[s,9.(s)]- Fs,9,(s)I}ds

Xo

[Tl8.109 - Tlg.100] - <K o)~ 8.0l

This shows that
"T[gl] _T[gz]”N < Kr”gl - gz||N = k”gl - gz||N

Where Kr =k <1 by choice of r. Hence T is a contraction. This
implies that there exist one and only one function f(x) e N such that

f(x):y0+J':0F[s,f(s)]ds,f(xo):y0 is the unique solution of the

differential equation (1) with the stated initial condition.
40 CONCLUSION

We have shown that we can apply the fixed point theorem to establish
the existence of solution to the differential equation stated in (1). You
are supposed to master the concept developed in this unit before
proceeding to the next unit.

5.0 SUMMARY

The contraction fixed point theorem applied in this unit enables us to
develop a unique solution to the differential equation stated in (1). It is
one of the most powerful theorems in mathematical analysis. It can be
extended to spaces of infinitely in many dimensions. However, this is
beyond the scope of this unit.

6.0 TUTOR-MARKED ASSIGNMENT

Determine an interval  (x, —r,x, +r) where the existence of solution to
the following differential equations is guaranteed:

I y' =vy,y(0)=1
ii. y' =y% y0)=2
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iii. y' =xy+y%y0)=0

iv. y1’ =Y. +Y, yl(o) =-1, Y, (0) =1

7.0 REFERENCES/FURTHER READING

Earl, A. Coddington (nd). An Introduction to Ordinary Differential
Equations. India: Prentice-Hall.

Francis, B. Hildebrand (nd). Advanced Calculus for Applications. New
Jersey: Prentice-Hall.

Einar, Hille (nd). Lectures on Ordinary Differential Equations. London:
Addison-Wesley Publishing Company.
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UNIT 3 THE METHOD OF SUCCESSIVE
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2.0  Objectives
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5.0 Summary
6.0  Tutor-Marked Assignment
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1.0 INTRODUCTION

The method of successive approximations is a refinement of the old
device of trial and error. What has been added is control of the limiting
process. We know how often the process must be repeated to bring the
result with the desired limit of tolerance. The method of trial and error
can be traced back to Isaac Newton who was the first to be concerned
with approximate solution of algebraic equation. An infinite iteration
process for the positive solution of the transcendental equation defined
as:

X=qarctanx, 1<a ........ (A)

was given by Joseph Fourier in his Theorie Analytique de la Chaleur
(1822). Fourier’s argument is geometrical and highly intuitive. It is not
difficult to give a strict analytic convergence proof.

The method of successive approximation was given by Emile Picard for
differential equation in 1891. This method soon became the standard

method for proving existence and uniqueness theorems for all sorts of
functional equations.

2.0 OBJECTIVES

At end of this unit, you should be able to:

) apply the method of successive approximation to
. determine existence and uniqueness of differential
J equation.
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3.0 MAIN CONTENT
3.1 The Method of Successive Approximations

Let us consider a vector differential equation defined by

Y =F(XY),¥(X) =Y,

(1)

F(x,y) is defined and continuous in:

B:lx—x,|<a ly = ol <b, IF(xy)|<M
)

IFOay) =Fy,)| < Kly: =y
(3)

We shall state the following theorem:

Theorem (1): There exists a unique function f(x),on,R'to,R" defined
for
[X=X,| <r , where

. b
r <min(a, V)
(4)

Proof: We replace the differential equation with the initial by the
equivalent integral equation:

f(X) =y, + | FIs, f(s)Ids (5)
fo (X) =Y,

Now define

f0 () = Yo + [ FIs, fs(8)lds,m=1.23,.... (6)

For these functions to be well defined, we restrict x to the interval
(X, =T, %, +r). Suppose it is known that for some value of m, the

function
f..(x) is well defined in this interval. It is obvious that f_,(x)=y,,

but the induction hypothesis must also include that f__(x) is
continuous and

10
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|fms(s)—Yo| <b. We then see that F[s, f
continuous. Furthermore:

(s)] is well defined and

m-1

IFls. foa(e)] <M,
Hence
J'X F[s, ., (s)]ds, exist as a continuous function of x and its norm does

not exceed M|x—X,|<Mr <b by the choice of r.
This implies that f_(x) is also continuous and satisfies

fm(Xo) = yO’”fm(X) - yo” <b
It follows that the approximation are well defined for all m. To prove

the existence of lim f_(x), we resort to the Lipschitz condition. We
have

11000 = 000 = || €FLs. 2 (0] FLs, 1, o (5)s

< KUZ”fm4(s)— ﬁma(smd4

We know that for some m we have the estimate

Km—2
(m-1)!

[fa(S) = s (5)] < Ms —xo|™ |5 —xo| <
(7)

This estimate is certainly very true for m = 2. We then get

11000~ faa 0] < o1

the estimate is true for all m

m-1 X 1 m-1 m
Ty M UXO s — %] ds‘ =M [x=x,|". Therefore

Hence the series
fo () + 2 [, (0 = f,. (0]

n=1
(8)
Whose partial sum is  f (x), converges in norm for |x—x|<r
uniformly in  x.Hence,it,sum, f(x), is a continuous function on
R!'——>R".
The strong uniform convergence of the vector series (8) obviously
implies the absolute and uniform convergence of the n component series

to continuous functions onR*,to, R". The estimate (7) obviously implies
that

11
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1600 — £, (0 < oM exp(K[x = X, x| ...... )
m!

It is an easy matter to observe that if [x—x,| is not large, f_(x)
converges rapidly to its limit f(x). Therefore, from the uniform
convergence of f_(x)to f(x) it follows that F[s, f__(s)] converges to
uniformly to F[s, f(s)] and

J': F[s, f._(s)]ds —>J': F[s, f(s)]ds uniformly in x. From (6) it follows

that f(x)satisfies (5) and consequently, the differential equation and the
initial condition. That this is the only solution also follows from the
Lipschitz condition. So to prove uniqueness we may suppose that g(x)

is a solution defined in some interval (x, —r,,x, +1,). Then

g(x) =Y, +j F[s,g(s)]ds, and if [x—x,| < min(r,r,) we have

|60- 900 = [/ €FLs. ()] Fls. g (o)

< K‘ J':O |f(s)-g (s)||ds‘

Set h(x) =|h(x)-g(x)|, then h(x) is a continuous non-negative function

that satisfies, 0<h(x) <K

j:h(s)ds‘. Hence h(x) is identically O.
Therefore, f(x) is the only solution of (1) with f(x,) =y,

4.0 CONCLUSION

Various questions arise when we want to use theorem (1) above. The
first of these concerns the effective determination of a, b and M and the
verification of the Lipschitz condition. We leave this for future
considerations. We have justified the existence of solution to functional
differential equations. We have also proved the uniqueness of this
solution. You are required to read carefully before proceeding to the
next unit.

5.0 SUMMARY

We have proved the existence of functional differential equations by
successive approximation methods. Successive approximation method is
essentially an iterative method that needs to be carefully designed to
give a solution to the differential equation under consideration. Once the
equivalent integral equation of the given differential equation is known,
then it is just an easy matter to design the appropriate iterative scheme

12
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for the equation, which will eventually converge to the solution of the
equation.

6.0

1.

7.0

TUTOR-MARKED ASSIGNMENT

Solve y'=y+x,y(0)=C, by method of successive

approximation
If y(x) is asolution of

y" - Xzy =0, Y(O) = Yo y’(O) =Yoo
Show that

YO) = Yo + Ve X + || (x=3)s7y(s)ds.
Use the method of successive approximations to find y(s) in the
special case y,, =1,y, =0, Take f(x)=1

The Thomas-Fermi equation defined by
1/2,nm 3/2

XTyr=y

arises in nuclear physics. Show that it has a solution of the
formCx“. Show also that it can be transformed into a system to
which method of successive approximation can be applied so that
its solution in some interval [0,r] satisfies an initial condition of
the form y(0)=a>0,y'(0) =b.

REFERENCES/FURTHER READING

Earl, A. Coddington (nd). An Introduction to Ordinary Differential

Equations. India: Prentice-Hall.

Francis, B. Hildebrand (nd). Advanced Calculus for Applications. New

Jersey: Prentice-Hall .

Einar, Hille (nd). Lectures on Ordinary Differential Equations. London:

Addison-Wesley Publishing Company.
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1.0 INTRODUCTION

In this unit, we shall examine some special functions such as Beta
function, Gamma function and Factorial function. These functions are of
very useful mathematical importance in solving differential equations
and other applied mathematics problems.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

) define beta function, gamma function, and factorial notations
) apply these functions to solve mathematical problems.

3.0 MAINCONTENT
3.1 Special Functions

Below are some of the special functions worthy of note.

14
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3.1.1 Gamma Functions

One of the most important functions is the gamma function, written and
defined by the integral

D) rE@=]" ettt

(More generally, if we consider also complex values, for those ot whose
real part is positive). By integration by parts, we find

Mo +1) = jo e'tedt =—e 't + aj: e 't ldt = ol ()
Thus we obtain the important functional relation of the gamma function

(2) I'a +1)=al (@)

Let us suppose that the « +ve integer, say, n. Then repeated application
of (2) yields

I'(n+2)=nI'(n)
=n(h-)r(n-1

=N =2, 321 (1)
Now F(l):j: eldt =—e \2 =1

3 Tm+n=mn ..

Hence gamma function can be regarded as a generalisation of the
eliminating fractional function.

By repeated application of (2)

Na+1) T(a+2) I'la +k+1)

(@) (@)(a+]) (@)@ +1)....(c +K)
Thus we obtain the relation

IN'a)=

IM'a+k+1)
(a)(a+])....(a +K).
Gauss defined Gamma function as follows

(5) (a)=lim

(6) M(a) = lim nin

n—oa(a+l)..... (o +n)

15
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Where

Problem 1, ya >0 and n is a tveinteger, then

lim ¢n t
I'a) = 1-— )"t*dt.
(a) n—>oo~[0 { n )

Proof: Now consider the integral

" t oo
[, {1_ﬁ )'tedt.

Substitute t=n*in the integral, we obtain
n t Ngyo-1 o 1 nyoa-1

JO {l—E )'t*?d =n JO (L—x)"x*"dx

By integrating by parts gives the formula

Jon (L-x)x“"dx = 5.[01 (L-x)"*x%dx

Repeating integration by parts, we get

n(n-Y(n-2)....... 1

Jn (L-x)"x*'dx =
0 a(a+1)..(a+n-1)

1 +n-1
J X* T dx
0

Thus

n Uvaay, nin

J (1_H i dt_a(a+)...(a+n—l)

_ n U niea _ dt Nnei _
st {1 e S wa@idai )@ @

Lemmal. If 0<a<1 1+a<€Xpa <@-a)*, compare the three series.

l+a)'=1+a, €XP (a)= 1+a+i o

N
1
> N
l+a)“ =1l+a+ i a"
N=2

Lemma2. If 0<a <1, @-a)">1-n“, for a position integer

Proof: Forn=1, 1-ga=1-«, asderived.

16
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Assume that

(1-a)p21-pa,

Multiply each member by 1- «, to obtain
l-a)’'>21-a)l-pa)=1-(b+Da +ba’
So that

L-a)’*21-(b+1)=1-(b+Da +ba?
Lemma 2. Follows by induction

Lemma 3. If 0<t<n., na positive integer

<t
0<e™ —( 1=t )”stzeft
n nl

Proof: In Lemmal, puty =1, we get
n

t t t 4
(1+— )Seﬁﬁ(l—ﬁ}
From which
t t t
a AR L -t v - n
(a) (1+n )y <e ns(l : )
Or
typserts(g by
(1+E ) >e n2(1 - }
So that

(-t yeea by

nZ

In Lemma 2, we have shown that
l-a)"21-na.

t2
.-.(1—F ) >1-na

t et

et (1-— )<

( n ) n

Problem 2. Show that the two definitions of gamma function are
equivalent.

17
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Proof: By using Gauss’s definition, we proved that

dlm t t n,z-1
I'(z) = 1-— )'t*dt
@) n—>w-([ ( n) )

Now

Lim n i t 7 © oty 7
:n—>w[-[0 [et—(l—ﬁ] It 1dt+.[n e't*dx

From the convergence of the integral
j: et ldt =T(2)

It follows
__Lim [[et—tidt=0

n— w?-Jo
Hence

et dt — r(2) + e (1—— )j*'dt
[. @+ — [ [er(1-— X
Now

r e't*dt Converges, so j e 't dx IS bounded.
0 0

Thus
. t
|Im.|‘O [ e —( l_ﬁ

n—o0

J*tdt=0

j: et it =T(2)

Problem 3. Show that

T(2)r(l-z)=—" (z#0.21L,#2,........
Sinnz
Proof: using Gauss definition of gamma function
r@-lim -
now Z(Z+1D)(24+2).......... (z+n)

2
0 z
222 (1-2
s
_ Sinnz

T
Note if we put z = 1/2 , we get
1 1
[rar T =
or

r( % )=+
Problem 4. Show that

I'(2z) = ﬁl‘(z)l‘( z +% ) (2z=0-1-2...... )

Jr
Proof :
22T(2)T(z + %)

I'(2z)

18
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) ) 1
22%nin’nin? +E

=lim{

1 3 1
z2(z+1)...z+nN)(z+=2+—(z2+n+—
(z+1)...(z+n)( 2( 2“_.( 5

Y (ni)222n+1
"!ID (2n)Wn ]

The last quantity is independent of z and must be finite since the left
side exists.

2z 1
. 2°T()I'(z +§) _

I'(2z)

Putz =%

We have
A=2/n

27T () (2 +%

Jr

~T'(22) =

3.1.2 Beta-Function

We define Beta-function B(p,q) by
(1) B(p.0)=[ t**@-t"* dx R(c) >0,R(g) >0

Another useful form of this function can be obtained by putting t =
t=Sing?, thus arriving at

(2) B(p,q) = 2jOT Sin29Cos26d6, R(p) > 0, R(q) > 0
Next we establish the relation between gamma and beta-functions

Problem: If R(p)>0,R(q)>0.Then

_r(p)r(a)
B(p.9)= r(p+q)

. " a-tsP14:[* 4-u g1
Proof: r(p)r(q)_.[O e 't dt.[O e 'u’tdu
Substituting t=x2andU = yzit giVGS r(p)r(q) :4.[: e”‘zxz”’ld)(.[ooC e Y2y2dy

r(p)r(a) =4[ [ exp(-x* —y*)x*"*y*dxdy

19
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Next, turn to polar co-ordinate for the iterated integration over the first
quadrant in xy-plan. r(pr(q)=4f" Ioz exp(_2%)r 2212 Cos 2P 18I 2 Lrd oo

2.[: exp(—r? )rz‘Hq’ldrzjT Cos?P'esin“ado

Take rtando =2 o, We obtain
2

180

r(p)r(q):_[: EXp(eftthrqfldtZJ.OT Sin2*1aCos 2 1dg

=r(p+09)B(p,q)
“B(p.q)= r(p)r(a)
r(p+q)

3.1.3 Factorial Notations

1) (), =ﬁ(a+k—1)

The function (), is called the factorial notation

Problem: Show that

=[ (@)(@+2)....(@+2n-2) | (@ +1)(a+3)......(a +2n-1) ]
:22n[(g)(a+2 )(a+4 ) (a+2n—2 )]

2 2 2 2
[(0‘7*1)(‘%1 | I— (‘%rlm—l)]
22”(%)n(a7+1)n

Similarly, we can show that

O N e .

Problem: show that

_T(a+n)
(a)n - F(a)

20
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Proof:

I'a+n)=(az+n=-D(a@+n-2)......... ol '(a)
=(a)(a +)......... (¢ +n-DT'(x)
[(o+n)=(a),T'(a)
) _T'(a+n)
S(a), = @)

40 CONCLUSION

In this unit, we have studied Gamma function, Beta function and
Factorial notations. You are required to study these functions because
you would be required to apply them in future.

5.0 SUMMARY

The study of special functions in mathematics is of significant
importance. Study this area properly before moving to the next unit.

6.0 TUTOR-MARKED ASSIGNMENT

(1) The Beta function of p,and,q is defined by the integral

B(p,q) = [ "1~ dt,(p,q > ).
By writing t =sin? @ obtain the equivalent form
B(p,q) = Zjoﬂlzsin“"1 6cos® 1 6do,(p,q > 0)

(2)  Show that

I'(p)I'(q)
B(p,q) = ————+
I'(p+q)
(3) By writing t=x/(x+a) in the definition of Beta function, show
that
= xPdx .
L mza B(p.q)

21



MTH382 MATHEMATICAL METHODS IV

7.0 REFERENCES/FURTHER READING

Earl, A. Coddington (nd). An Introduction to Ordinary Differential
Equations. India: Prentice-Hall.

Francis, B. Hildebrand (nd). Advanced Calculus for Applications. New
Jersey: Prentice-Hall.

Einar, Hille (nd). Lectures on Ordinary Differential Equations. London:
Addison-Wesley Publishing Company.

22



MTH382 MATHEMATICAL METHODS IV

UNIT 2 HYPER GEOMETRIC FUNCTION
CONTENTS

1.0  Introduction
2.0  Objectives
3.0  Main Content
3.1  Hyper Geometric Functions
4.0  Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

In this unit, we shall consider a class of function usually referred to as
hyper-geometric functions. The series solution of the associated
differential equation usually takes the form of a geometric series. Most
often, hyper-geometric equation has x=0,x=1 and x=o0 as regular

points and ordinary point elsewhere.
2.0 OBJECTIVES

At the end of this unit, you should be able to:

) determine the differential equations that can give rise tohyper-
geometric functions

. explain the properties of this functions

) apply this function where necessary.

3.0 MAIN CONTENT
3.1 Hyper-Geometric Function

The solutions of the differential equation

d’y dy
e +[c—(a+b+1)x)dx_aby:0 (1)

are generally called Hyper-geometric functions.

X(L—x)

Note that a, b, and c are fixed parameters.

We solve this equation (1) about the regular singular point x =0
Shifting the index

3 n(n+c—1)x”’1—z (v+a-1)(n+b-2e, x""=0

n=0 n=1

23
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For n>1
o :( a(a+a)(n+b-1)
" n(n+c-1)
a(@+a)@a+2)..a+n-0)bb+HMm+2)..0+n-1e,
nlc(c+(c+2)(c+2)...c+n=-1)
Using factorial notation, we have
e - (a), (b), N
nL.(c),
Let us choose e, =1
o (@), (0), n

n-1

e =

n=r 2 o,
_ & @,0), .,
"2 o

We have the symbol
2F,(a,b,c, x) to represent solution

& @),
().t

Xn

i

o

n=l

2F1(a,b,c,x):i (2)(2)1 o

The solution is valid in 0<| x<1]. The other root of the indicial equation
IS
(i-c). We may put y_3 f "xm

n

For the moment, let ¢ be not an integer for (1), the indicial equation has
root zero and i-c. Let y—3" e x™

n=1

0

3 e X" (+h-0x" -3 e, (b +b—Dx"? 43 e, (1+b)(n+b-DxX™* +¢3 €, (n-+H)x"
n=0 n=0 n=0

n=1
—(a+h+1))_ g x™*?
n=0

or
i e, (n+b)(n+b-1+c)x"**

n=0

i e,[ ab+1)(@a+b+1)(n+b)(n+b)(n+b-1) x™* =0
n=0

The indicial equation is

e (b)(b-1+c)=0

(Note c is not an integer).

Corresponding tob =0,

d n(n+c-1e, = d (n+a)(n+b)e, x"=0
n=1 n=0
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Problem 1: If r(c-a-b)>o0and if c is neither zero nor a negative
integer,

2F1(a,b,c,1):w
r(c—a)r(c-b)

Proof

2F,(a,b,c))

_ ()

r(b)r(c—h)

3 r(c) r(b)r(c—a-b)
Cr(br(c-b)  r(c-a)

Problem 2: Show that

(a) 2F (@, B, B, X) = (1-%)"
(b) X2F (3;1;,2;—x) = Log (1+ x)
Solution:
(a) 2F (@, B, B,X)

= (¥a n

2 o

=1+ax+wx2+ ...... Wx3+ ...... (1-x)™
(b) x2F (11;,2;—x) = Log (1 + x)

11 1212, ., 123123,
{ ™52 10328 ¥

y, =X"°2F (a+1-c,b+1-c;2—c;X)

Problem: If 1<1<1 and ifR(c) > R(b) >0,

R T _ F(C) 1 b1 4\c-b-1pq =a
2F1(a,b,c,z)—7r(b)r(c_b) jot L-t)** T (1-tz)=dt

Proof

Beta-function now
I(b+n)I(c-b) _ r £ t)eb gt
Ir'(c+n) 0

Also
(b),  T() (b+n)I'(c-b)
(c), T(b)[(c-b) T(c+n)

25
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Thus

I'(c)

2F (a;b;c; 2) :m

- (@2,
2 N1

n=0

J‘l tb+n—1 (1—t) c-b-1 dt

0

T ppas (@)(zt)"dt
TorenhtE T wm

_ ) feaay e
T (b)F(c—b)-[Ot (L-zt)"at
Where

aoay -3, CObasd.Camnind'y

3 i (o +1)..(x +n-1)y"
n=0 nl

_ i ala+1)...(a+n=-1y"

nl

n

= (a),Y
_HZ::; nl

4.0 CONCLUSION

MATHEMATICAL METHODS IV

You have learnt in this unit some properties of hyper-geometric
functions. You are requested to study this unit properly before going to

the next unit.

5.0 SUMMARY

Recall that you learnt about the class of differential equation, which
usually give rise to hyper-geometric functions. You also learnt about the
relations of this function to Gamma and Beta functions. Study this unit

properly before going to the next unit.

6.0 TUTOR-MARKED ASSIGNMENT

1. If R(c —a—b) >0 and if c is neither zero nor a negative integer
show that
2F, (a;b;cl) = r)f(c—a-h)

I'(c-a)l'(c-bh)
2. Show that
@  2R@EBBN=0U-X"
(b)  x?F,@1,2;-x) = log(1+ X)
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1.0 INTRODUCTION

In solving differential equation, we often come across some problems
which exhibit some characteristic which needed to be studied further.
Such equations are Legendry equation and Bessel equations. We shall
study in detail in this unit the Bessel equation which gives rise to Bessel
functions. This is because of the wide applicability of this function in
physics and applied mathematics.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. identify Bessel functions correctly
) solve problems related to Bessel functions.

3.0 MAIN CONTENT

3.1 Bessel Function

The equation

2
@ x? Cdl 2l+x3y+(x2 —v =0
X X

is called Bessel’s equation of index v.

(1 x = 0 is the regular Singular point of the equation (1) in the
finite plane
(i)  Assume that v. is not integer.

y= i mem+r
n=0
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Substituting this expression and its first and second derivatives into
Bessel equation, we obtain

=Y M+2)(M+z-1)c, X"+ (M+r)c, x™ +> ¢ x™ VN ¢ x™F =0
n=0 m=0 m=0 m=0

@ r(r—1yc, +rc, —vc, =0 (m=0)
(b) (r+1)(r)c, +(r+1)c, —v?c, =0 (m=1)
(©) (m+r)(m+r-1)c_+c, ,-vc, =0 (m=23,....

Now ¢, =0, thus the indicial equation from (a) (r+v)(r-v)=0
The roots are r=v-v=0
2,-r,=2v
v=0,
v # integer
2v integral multiply of 2v, i.e. v is zero or +ve integer

Now we obtain the solution corresponding to the value r=v.

From (b) we obtain ¢, =0 (c) can be written
(m+r—-v)(m+r+v)c, +c,,, =0

Sincec, =0, it follows that ¢, =c, =¢c, =.....0. Thus we put replace m by

2m.
@m+r-v)(2m+r+v)c, +¢,, , =0

Now r=v
(2m+2v)(2m)c,,, +C,, , =0

___ %2 (but v isnotinteger) (m=12..)

< Come
M 22 (v m)m

Assume
1

Cp=—"—+
v,r(v+1)

o 1

S 2%(v+1)  2"M1r(v+2)

o 1

S 22°(W+2) 2“?21r(v+3)
) “ gy
22™Vmlr(v+m+1)

C,

C,

2m

Thus, the solution is
© (_1)mX2m

y=2

= 2™ mir(v+m)
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We denote this solution by the notation
Jv(x):xvi (D)7 x (2)

m0 22" (m4v+D)ml

Jv(x) is called the Bessel Function of the first kind of order v.

By Ratio test we know that the series converges for all values of x
Replacing v by -v, we have

Loy @)
m=0 22" p(m-v+1l=1)ml

(2) and (3) are the independent solutions.
Thus y=c,J,(x)+c,J_,(x)

(i) If v=0,then the solution J (xyand J_ (x) are identical. One can
verify from (2) and (3)

(i) If v is +ve integer, then the second solution J (x)is not
independent of J_(x)

Say v=nthen the factor

L _ 1 in(@)iszero
r(cm—n+1 m-nl
When m<n hence (3) is equivalent to

Replace m by m+nin 5, we get change the index

N L G
- 2 6
09 mz:(; mlm+nl ©)
From (2), when v =ninteger, thus
. (_1)m( i )2m+n
J,(0)=x">] 2 (7)

prar ml, m+nl
From (6) and (7), we get
I_,(0)=(-D"J,(x) (8)

Further properties of Bessel functions of first bind
From (2)
(_1)m X2m+2v

XVJV(X) :Z +v

m=0 22" p(m+v+1)ml
Now we use the formula
ar(a) =r(a+1)

0 _1 m X2m+2v—l
Xv—lxv — Z E )
2™ r(m+v)ml

m=0
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- ® _1)mX2m
— Xv 1Xv — (
2, 2™ mir(m+v)

Thus we obtain
L9, 1=x3,, (9 ©)
dx

Similarly, we can show that
S1x,00 1= (03,0 (10)

(9)  can also use written
v, () + XYV (X) = x"J, 4 (X) (11)

(10) Can also be written
—vx’HJv (X)+X" W) =—x"J,,,(X) (12)

Multiplying (12) by x* and subtracting from (11), we have
30043400203, (13)

Multiplying (12) by x* and adding with (11), we get
3,,00-3,,(0=23)(x) (14)

(i) we know that

NOW 2k +11=r(2k +2) =(2),,
2%+ (D) =(2) 5
3
2k kl -~ k
2% +k1( > )

2% 4 k1 g )k

2%Kir( k +1+% )

r(5)

N w
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But (2 )=2r( )=5x

2 2 2
2%kl ( k+1+% )
S 2k+11= =
N R

k=0 22 kir(k +1+%
(15)

If we take v Z%, then from (2), we have

0 -1 k 2k
JV(X)ZX%Z (1)7)(1
K0 2% ar(k +)

(16)

From (15) and (16), we have
Iv(x) = ( i)sin X
X

MATHEMATICAL METHODS IV

In similar manner, by considering the expansion

& (Dz”" | \we obtain
cosznZ; o

The formula
I, ) =( i)cosx
X

Problems

(i) I,0=-13,(x
(ii) J;’v=%(.]n_2 “23 43 +2)

(i) 3,00 =350~ 3,09

W) 3,00=0--13,00-23,(0
X X

™ [ X", (0dx=x"3 () - (m=-n-D)[ x"*J

Solution
[ x™3,09dx = x™ X" ()]dx

J xS 00X

32
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Integrating by parts, we have
=X"Jp () =(m=n-1)[ x"*J ., (x)dx

This proves the result
Prove that:

i) [ 3,00dx=—x" =3, +(m+n-1)[ x"*J(x)dx
(Vii) [ 3. 09dx= [ 3,5 (x)dx =23, ()

It immediately follows from the identity 2J)(x)=J,,(x)-J,.,(X)
(viii) I J,,()dx=-x""J ,(X)+c¢

(ix) I X', (X)dx =—x"J, L (X)+¢C

(X) I x>, (X)dx = —x3J,(x) = 2°xJ, (X) +¢C

Problem: Defining the Bessel function J.(x) by means of the general
function

Example exp{%x(t—t‘l)}:i J.(x) show that,

n—oo

If n isan integer

e Sy
@ J”(X):(Ex)ng;‘ ri(n+r)l
B 3,09=(3,(

©  3:(0+3,.00=203,00

d I+, (x)=237(x)

Solution
(@ Replace thy —% in the definition

xpy (- =2 (-3,

Il
NgE

D"t"I, (9

S
1l
8

NgE

t"J.(x)

S
1l
8

Thus we get
‘]n (X) + (_1)” ‘]n+1 = ‘]—n (X)
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The exponential on the left can be expressed as a product of two
exponential
1

X _1 2 X “n
exp[=(t —t (=)"t
L ( ZO —G

e 1
— __ )tm—m
= ml

Every product of a term of the first series by a term of the second
contains a factort"™. Let’s associate with each term of the second
series the term of the first series correspondingto n=p+m(p>0). The

product contains the factorst?. Therefore the series expansions of the
coefficient j, (x) with +ve p follow.

By associating with each term of the first series the term of the second
series which corresponds tom= p+n(p >0, the product contains now

the factort™. Thus j (x) is obtained.

Problem: Prove that
] 1 2
jO(Z):EL cos(z cos0)d0

Proof: We know that

expl - Lit-tt) = Z i (Dt

n—oo

Put
t=ie’, take real parts of both sides and integrate between 0 and 2

exp[éie“g +ie")] = i j. (2)i" (cosO +tan6)

N=00

(@+Y i, (2)i" (cosh + tan6)

n=1
+> J,(2)i"(cos6 + tan 0)
n=1

exp[zcosO) + J,(z2)+"+"

Problem:; Prove that

J'OE J,(zcos@)cosodl = sz
z
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Solution
ORI g
Put p=0

Replace 2 by zcosd multiply both sides of integrate between 0 to
T

2

T

jf j,(zcos@)cosodo

1 ZZm T ) -
—Z n(11m)122m J; Jo(cos0)™"do
=0

22m (m1)2

Now F (cos0)do =
0 (2m+1)1

_ z ( 1)m 2m
= (2m+1)1
Now we know that

3 5
sing = 9—9—+9— ..............
13 15
sin@ 1 6> 6*

+
0 13 15
sin @

z

3.1.1 Bessel Functions of the First Kind

In the definition of Bessel function j_ (z)putz =iy, then ( p integer)
oL +—iMIp

JpGiy)=e 2 °(y)

PGy =e? "('y') 2 =y

= mim+p, 2
(2) Bessel functlon of the second kind

Solution

[} t,@@t)J, (ot)dt

2{a) (b2)J. (az) —bJ, (az)J! (b2)}
b? —al
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Solution

22 dzy
dz?
yl :‘]n(at)!yZ :‘]n(bt)

+zﬂ+(z2 -n?)y=0
dz

(i) t?y"+ty; +(@*t>—n?)y, =0

2. ,"

t7y; +ty; +(b2t2 _nz)y2 =0

byy, and (2) by vy,, and subtracts, we find

(Y,Y, )+t(y,y, — Y.y, (b* —a®)t?y,y,
or

d " ’ ’ ’
a{t(yZyl _y1y2)+t(y2y1_ylyz):(bz_az)tylyz
or

d " ,
a{t()ﬁ Y. — ylyz) = (b2 - az)tylyz

Integrating with subtract to t from o to z yield
(02 —2%)[" t(y, Y0t =t(y,; ~ V1y3)
4.0 CONCLUSION

We have considered Bessel function in its general setting in this unit .
You are required to read this unit carefully before going to the next unit.

5.0 SUMMARY
Recall that Bessel functions are usually associated with a class of

equations called Bessel equations. They are usually denoted by the
notation:

0 _1m 2m
Lw=xy DX
m=0 227 r(m+v+I)ml

We gave some examples to enable you understand the contents of this
unit. We also examined another type of Bessel function usually referred
to as Bessel Function of the First Kind. However, you are to master this
unit properly before going into the next unit.
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6.0 TUTOR-MARKED ASSIGNMENT
1. Given that
X, 1 o
e =31, (%)

Deduce that (n+1)J_,(x) = g[J )+,

2. Obtain the general solution of each of the following equations in
terms of Bessel functions, or if possible in terms of elementary
functions.

(a)xdzy—3ﬂ+xy:0 (b) xﬂ—ﬂ+4x3y:0 (c) x4ﬂ+a2y:0

dx?>  dx dx®  dx dx?
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MODULE 3 SPECIAL FUNCTIONS AND PARTIAL
DIFFERENTIAL EQUATION

Unit 1 Legendry Function
Unit 2 Some Examples of Partial Different Equations

UNIT 1 LEGENDRY FUNCTION
CONTENTS

1.0  Introduction
2.0  Objectives
3.0 Main Content

3.1 Legendry Function

3.1.1 Legendry Polynomial

4.0 Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

In this unit, we shall consider another class of special functions which
has wide application in physical problems. This class of functions has
orthogonality properties. The functions are legendry functions.

2.0 OBJECTIVES

At the end this unit, you should able to:

. identify legendry functions and legendry polynomial
) solve problems relating to legendry functions
) determine the properties of legendry functions and

legendry polynomial.
3.0 MAIN CONTENT
3.1 Legendry Functions
The Legend differential equation of order n is given by:

d? dy d
(1—x2)d7y—2xd—i’+d—i’+ p(p+1)y =0
2

The solution of this equation is known as Legendry function
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@=x*)D c,n(n-x"? -2xD>_ c,,x"+ p(p-1)> ¢,x" =0
n=2 n=1 n=0

S {(n+2)(n+1)c,,, ¢, [n(+1)— p(p+ D" =0

Recurrence relation
(n + 2)(” +1)Cn+2 = C2 (n2 +n-— p2 - p)

Thus
(p—n(p+n+1) .
"2 (n+2)(n+1) "

Therefore
¢, PR o p(+D
21 21

c _ |0(|0+1)C
3 31 0
c, - |0(|0—2)(F’+3)C2
21
(|0—2)(|0)(|0+1)(F’+3)C
4.1 0
CS_(IO—?>)(F’+4)C2
5.4
(|0—?>)(|0—1)(|0+2)(F’+4)C etc
4.1 0

2 4

Y =1-p(p+D) 2+ (P-2P(p+D(P+3)— =~

3 5

yz:x—(p—1>(p+2>%+(p—3>(p—1)(p+2)(p+4>% —————

= (-D)*(2n-2k)1
P,(X) =
(=2, 2"k1n —kin —2k1

k=0

Where m is the largest integer and runs greater thang.

In particular
1
po(¥)=1 py(x) = (3" -1)
P, (X) =%(35x2 —30x* -3)

pl(x) =X
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J_ll Pn(2)p,(z)dz=0 ifm=n
Solution:

@-z*)p, Py — PnPml—0z{p, Py, — P, P,
=[b(n+1)-m+1)P P, =0

and subtracting, we have

d 14 14 ’ ’
(1_22)d_z PoPm = PnPrl-22{p, P}, - P, P,
=[n(n+1)-m(m+1p,p,

d 14 ! ! !
(1_ Zz)a PrPm — P pn]_zz{pn Pm — Pn Py
Integrate from -1 to 1 we have

1
[n(n+D) -m(m+D] p,p,d,
(L-2°)(p, Py = P, Py, =0

1 2
i [ p,(2)p,(2)dz=——"— if m=w
- 2n+n

Solution'

=> p, ("
\/1 2zt +t' oo
Square IS

> p, (" = S P, (2)p, t""

Integratlng from 1

0

-1to
e ZM -2 2 {[, p.(p,(@)dzt™"

> [ p.@Ip, (T 3™

LH.S = —ilog(l— st +12)it, = Lin 1L
2! Tt t-—t

0

z 2n+1

n=0
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Equating the coefficients, we have
(”I) (n+1) pn+1(2)_(2n+1)zpn +npn—1(z) =0

Solution: Differentiating with respect to both sides of the identity
1 = n
=, p(2)t

N1-27zt+t* "o

Multiply by1-2z +t?, we have
-0 @)t = @-2z+t2)3 npn(2)t™
n=0 n=0

Or
i zpn(z2)t" —i = npn(z)t"* —i 2nzp, (2)t" +i mp, (2)t"*
n=0 n=0 n=0 n=0

Equating the coefficient problem: Show that

@L-2x2+2%)7"% = py(X) + p,(X)Z+ P, (X)Z° + .o > pn(x)z

n=0
Proof:-
2 1
(1-2xz +2%)? :1+E(2XZ_ZZ)+
13 1,..3,,5
EE(ZXZ -12%)? (E)(E)(E)[(Z p-112]
+(2xz-2%)+ (2x2—1z%)®
21+....... P1

The power of z” can only occur in the term going from the pth term
(2xz—12%)" [=z"(2x~-z)down. Thus, expanding the various powers of
(2x —z), we find that the Coefficient of z" is

2 p
. (2x)
Prove that
A
Z — 22 _1 n
P, (2) 2nnlO|Zn( )

_ $ (_1)I’(2n_2r) n-2r
Pa(2)= ; 2"ri(n—ri(n-2r)1 :

Wherepis p %nor%(n—l).

_ 1 dn i (_1)2n122n—2r
2"nldz" = rin-rl
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_ 1 dn i (_1)2n122n—2r
2"nldz" = rin-r1

1 dn 2 n
= z° -1
2”n1dz”( )

3.1.1 Legendry Polynomial

The equation (1- x )OI y ij +n(n+1)y=0
X

is called Legendry equatlon.

() x = +1 are the regular singular points of the equation. We solve
the equation with the singular pointx=1, we put x=1=uand
obtain the transformed equation.

2
(i) u@u+2) 3 2/ +n—(n+1)y =0 is the regular singular point.
u

We assume the solution point
y — z ak u k+c
k=0
_i a uk+cuk+cl
- k
u o

2
duZ’ > (k+c)(k +c—Tauteue?
k=0

o O |9
<

The roots of the indicial equations are ¢=0,00. Hence one solution is
logarithmic. We are only interested here in the non-logarithmic
solution.

Hence

y = i au
k=0

We assume a, is non-zero arbitrary constant, and

a  ~(k=n-1)(k+n) Ay
2k?

Solving the recurrence solution, we have

_ (-)" (-n), @+n), a,
< 2% (k1)
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Thus the solution is

n), (n+1), (x—1)"
2 (k1)?

po1¥ EVC

Where a, =1
d (—1)k(n+1)k( 1-k

L ok 2

y, = 2F, (-n,n+11 (1_7)()
=P, ().

P (x)is called the Legendry Polynomials

It is customary to take

C, :ﬂ, n=012,..
2" (n1)?
But from (3)
¢ —__nn-1) ¢ or
"t (@@n-1’ e
__(m(2n-1) (2n-2)!
" n(n-1) C”:_Z”(n—l)!(n—Z)
- (2n-4)
"t 2n21(n-2)(n-4)
or
c ok = (2n - 2k)1(-D)*
" 2nk!(n —k)(n - 2k)!

Then the legendry Polynomials of degree n is given by

M _ k _ 1
P (X) — z ( 1) (2n Zk) Xn—2k
" & 2"kin—k!'n—k!n—2k!

integer not greater that g .

i (_1) d (X2n—2k—1)

WA= 2 i ora
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Since

d 2n-2k
dx" -
(2n-2k)(2n -2k -1)....... (n — 2k +1)x"%
2n - 2k! Xn_Zk

n—2k!

2n—2k—1)

Hence

M 1 dn M _1kn1X2 n-k
Pn (X) — z - - z ( ) ( )

koo 2'nldx" k3 ki(n—k)1
We may now extend the range of this sum by taking k range from 0 to n.
This extension will not affect the result, since the added terms are a
polynomial of degree less than n and the nth derivative will vanish.

(=1)"ni(x*)""

F)
o T 2" nLdx” z kn —k1

and by binomial theories, we have

1 d"
P,(X) =
(%) 2"nl dx"

(x* =)™ n=012,......

This is known as Rodrigues formula

Example: Show that
P, () =~ (3¢ -1

Solution: By Rodrigues’ formula

1 d? 1d? )
P == === (x*-2n+1
200 = o7 (¢ D =g ('~
= —3x2—1

(3 1)

Problem: Show that

() P +1) =@n+D)P, (X)+ P’ (X). n=12,........(1)

(i) P/ +1(x) = xP/(x) + (n+1)P, (x). 2
Solution
. 1 dn 2 n+l
(I) n+1( ) [ dx 2" nl dx n+l (X _1) : ]
1 d [x(x*=D"]] (n+D(n*-1)"2x

:dx 2"nl dx"
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1 d n+1 .
= 2nn1 = d n+1 [X(X2 _1) ]
1
= 2nn1 = d n+1[ (X _) ]
l d n n 2 n-1
= i = [(2n +1)(x2 D" +2n(x® -)" ]

=[(2n +1)Pn(X) D+PL(X)
Solution (ii)

Now we have that
d )
d—[f(X)(X)+ f'(x)
X
d—zz[xf )]=f"(xX)+2f'(x)
dx

and in general

p+1 p+1

DX (0] = (x) X 1)

Now
1 dn+1 dn+1 .
pn+1( )2 dx o ptl dx n+1[ (X2 _1)
1 dn+1 n
X -1 n+1
2"nl d”*l( )+(+)

= Xpn+1 + (n - +1) pn (X)

Eliminating p;,, we have np(x) = p; — p'(X) - p,.n=12,........ 3
Finally

(N+D)Pps (X) = (2,5 XP, (X) + Py (X)

_ XPra () =P () X(Praa(X) = Pria (X)

) €) ®

Thus
—(n+1)p,., (X)+np,,(X) = (2n +1)xp, (x)

py"+6'+Ry=0 (A)
Pu+(2p' =0)u'+(p"~0"+R)u=0 (8)
pu"+(2p"=2p" = O)p'+(p"~2p"~0)+ p" -0+ R)u=0
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4.0 CONCLUSION

You have learnt about legendry polynomial and legendry functions in
this unit. Read this unit properly before going to the next unit.

5.0 SUMMARY

You will recall that the legendry polynomial is defined as:

M _ k _ 1
P (X) — z ( 1) (2n 2k) Xn—2k
" & 2"kin—k!'n—k!n—2k!

This polynomial has Orthogonality property which we have mentioned
in this unit.

6.0 TUTOR-MARKED ASSIGNMENT

1. Show that the substitution t =1- xtransform Legendre’s equation
to the form:

d’y dy
t(z—t)F'i‘Z(l—t)a'F p(p+l)y =0

2. Problem: Show that
a. P/ .(X)=2n+)P,(X)+P/,(x). n=12,.......
b. P, +(X)=xP,(x) +(n+1)P, (x).
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UNIT 2 SOME EXAMPLES OF PARTIAL
DIFFERENTIAL EQUATIONS
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1.0 INTRODUCTION

A partial differential equation is an equation that contains one or more
partial derivatives. Such equations occur frequently in application of
mathematics. We shall only discuss certain partial differential equations
which are used frequently in applied mathematics. In fact, we are going
to discuss a kind of boundary value problems which enters modern
applied mathematics at every turn.

20 OBJECTIVES

At the end of this unit, you should be able to:

) recognise partial differential equations by type and character
) explain the methods of solving partial differential equations
) apply the knowledge in some other related field.

3.0 MAIN CONTENT

3.1 Some Examples of Partial Differential Equations in
Applied Mathematics

Many linear problems in applied mathematics involve the solution of an
equation obtained by specialising the form.

d?0  do
AN+ T =2 - 1
" dt? TH dt (1)

Where f is a specified function of position and 4 and u are certain

specified physical constant. Here, A? is the Laplacian operator in one,
two or dimension under consideration and is of the form.
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d?> d* d?

A? +—+
dx? dy® dz?

(2)

In rectangular co-coordinator of three space, the unknown function ¢ is
the function of the position co-ordinates (X, y, z) and the tine t.

() Laplace Equation
A9 =0 ©)

It is satisfied by the velocity potential in an ideal incompressible fluid
without vertical or continuously distributed sources; and by gravitational
potential in free space; electrostatic potential in the steady flow of
electric currents in solid conductors, and by the steady-state temperature
distribution in solids.

(i)  Poisson’s Equation

A0+ T =0 4)

is satisfied, for example, by the velocity potential of an incompressible,
irrotational, ideal fluid with continuously distributed sources or by
steady temperature distribution due to distributed heat sources, and by a

‘sheds function’ involved in the elastic torsion of prismatic bars, with a
suitably prescribed function f.

(ili))  Wave Equation

©)

This arises in the study of propagation of waves with velocity c,
independent of the wave length. In particular, it is satisfied by the
components of the electric or magnetic vector in electromagnetic theory,
by suitably chosen component of displacement, in the theory of elastic
vibrations, and by the velocity potential in the theory of sound
(acoustics) for a perfect gas.

(iv)  The Equation of Heat Conduction

1 06
ANO=—— 6
a’ ot ©)
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This is satisfied, for example, by the temperature at a point of a
homogeneous body and by the concentration of a diffused substance in
the theory of diffusion, with a suitably prescribed constant 6.

(V) The Telegraphic Equation

0?0 00 00
axz +ZUE+‘UE (7)

This is one dimensional specialisation of (1), and is satisfied by the
potential in a telegraph cable, where 2 = Lc and u = Rc, if the Leakage is
neglected (L is inductance, c capacity and R resistance per unit length).

(vi) Differential equation of higher order, involving the operator A%,

are rather frequently encountered, in particular, the bi-Laplacian
equation in two dimensions.

u 2
Ao =nng="912 6292+69= (8)
ox'  oxoy? oy

is involved in many two dimensional problem of the theory of elasticity.

The solution of a given problem must satisfy the proper differential
equation, together with similarly prescribed boundary condition or initial
conditions (2 f time is involved).

The above equation can be changed to cylindrical co-ordinates
réoz, related to x, y and z by the equations

x=rCosf,y =rSin6,z=1z2

0’0 1060 100 i629+629

A0 = = + =
or: 2aor 2o r?o0% o012

0 9)

In spherical co-ordinates P,0,0 related to x,y,zby the equations
x = PSin@Cos#,y = PSinf,z = PCos@ . Laplace’ equation is

o’v. 2ov 0°v cotd ov Cos’d 0°v
t——t—— St —— ~=0. (10)
dp® poe 00 pe 00 p° 06

In what now follows we shall solution methods of partial differential
equations:

Method of separation of variables
Consider the equation

2
aza—\;:a—u,0<x<l,t>0 (a)
dx* dt
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This is called the heat conduction equation

Straight bar

0 xs

x=0 X=p

This is a straight bar of uniform cross section and homogenous material.
The temperature v can be considered constant on any given cross
section.

v=U(x1).

a? is a constant known as v=U(x,t). In addition, we shall assume that
the ends v=U(xt).of the bar are held at temperature zero: thus
v=0when and x =e.

~ut) =0, ulit)=0,  t>0, 1)

Finally, the initial distribution of temperature in the bar is assumed to be
given thus U (x,0) = h(x) 0<x<I (2

(1) and (2) are called boundary conditions
We assume that

u(x,t) = F()g(t) 3)

Substituting equation (3) for u(x,t) in (1) yields

a7 ()g() = (99’ (4)

or

L1700 _g'®) )
00~ 9

Now equation (5) is said to have its variable separated; that is, the left
member of equation (5) is a function of x alone and the right member of
equation (5) is a function of x (5) alone.

Since x and tare independent variables, the only way in which a

function of x alone can equal to function of t alone is for each function
to be constant.
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) e

T b (6)
2 9'(X)

T 0

In which b is arbitrary

The partial differential equation (1) has now been replaced by two
ordinary differential equations. This is the essence of the method of
separation of variables.

Boundary Conditions

xv(o,t) = f(0)g(t) =0 (8)

by (1), if g(t)= 0 then ux,twill be identically zero. It is not acceptable
because it does not satisfy the equation (2). Thus it must satisfy the

condition
f(0)=0 9
Similarly, the boundary condition at x(lI) U(l,t) = 0requires

f(ly=0 (10)

There are two possible values of the constant k i.e. k =00r k #0.
Values of the constantk :

(i) k =0, then the general solution of equation (6) is

f(x)=c, +c, (11)
(11) Must satisfy the boundary value conditions (9) and (10). In order
to satisfy (9)
f(o)=c,+c,==c¢,=0 (12)

It is also satisfies the equation (10)
~f()=cl=c, =0 Since | =o.
~c, =0 (13)

Hence, f(x)is identically zero, and therefore U(x,t0 is also identical
zZero
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(i) k=0, wetakek=-24*> , where A is a new parameter. Thus,
the equation (6) becomes
f7(x)+ A2 (x) =0 (14)

and its general solution is
fbe”™ +b,e™ (15)

Applying the boundary condition (9) and (10), we have

b, +b, =0 (16)

The system (16) has a non-trivial solution k, =0 and k, = 0always, but
it is not acceptable u(x,t)is identically zero. Non-trivial solution exists
if and only the determinant.

| ieixei i =0 (17)

e e

If we write, A = u+ivthen

—vie A ve

e e —e"e™ =0 or
e " (cos e —1sin pe) —e " (cos i +sin ue) =0

cosue(e” -e™)=0

sin ue(e* —e™) =0 (18)
Now cos pe(e*” —e™ >0 forvand I, thus sin ue =0 = v =0 (19) must be
so chosen that

1 nl—” , (20)

where n is a non-zero integer. From (16) k, =k, (21)

From (15), we have

f(x)=b, (e " —e'") = b—2‘(e

—yieeiye

2

)

Thus, f(x)is proportional to  sin ux (23)
n’m?
|2

k=-2%=—

(24)
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Where n is an integer

From (7), we have (25)
Hence the function

2_2 2
u (1) =c, exp[— ”I % L gin 17X (26)

n=123,.....where c. is an arbitrary constant, satisfies the boundary
conditions 2,9,10as well as the differential equation (1). The functions
u, are sometimes called fundamental solution of the heat conduction
problem (a) (1) and (2).

By the boundary condition (2) we get from (26).
u_(x,0) = c, sin ”T”X (27)

Forn=12,..........

Each solution given by (27) satisfies the differential equation and the
boundary condition. Since partial differential equation involved is linear
and homogeneous in u and its derivatives, a sum of solution are also a
solution. From the known solutions, u,u,........ u we may thus

construct others with sufficiently strong convergence condition. It is true
that even the infinite series

u=> u,or
n=1
“rlo’t Nzax

ux =3 c,exp( - " S sin (28)

is a solution of the differential equation. In order to satisfy the initial
condition (2) we must have

u(x,0) = i c, sin nTm(h(x) (29)

Now let us suppose that it is possible to express h(x) by means of an
infinite series forms

h(x) = i b, sin ”T”X (30)
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We know how to compute b, i.e

We can satisfy the equation (29) by choosing c, =b, for each n. With

the coefficient selected in this manner, equation (28) gives the solution
of the boundary value problem (a) (1) and (2)

Thus, we have solved the problem consisting of the heat condition
equation.

2
aza—l::a—u,0<x<l, t>o0 (1)
OX ot

The boundary condition
u(o,t) =0, u(l,t) =0, t>o0 2

and the initial condition
u(x,0) = h(x), 0<x<I 3

we found the solution to be

u(x,t) :g C, exp[nﬂlzzazt]sin n:TX 4
With the coefficientsb, are the same as in the series

h(x) = 2 b, sin ”T”X ‘ )
Where

b, :IE [ h(xsin ”I—”de (6)

The series in equation (5) is just the Fourier

Example 2: If we consider the problem of the heat conduction equation
of boundary conditions and the initial condition, the boundary
conditions are known as non-homogeneous boundary condition.

Solution: If we shall reduce the present problem to one having
homogeneous boundary condition, we use the physical argument. After
a long time, i.e. ............... , We anticipate a steady state temperature
distribution .................... will be reached, and must satisfy
difficulties (1), then (which is independent of time t and initial
condition).
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............. 4)
and it satisfied the boundary condition

............. (5)
Which apply evenas ................. The solution (4) with condition (5)

.............. (6)

Hence the steady state temperature is a linear function of x.

We shall express U (x,t) as the sum of the steady state temperature and
another distribution w(x, t).

SU(x ) =U(X)+(x,1) ©)
(7) satisfies (1), we have

a’(U+w)xx = (U +w), (8)
It follows that

a’W, =W, ©)

Now boundary condition
w(o,t) =u(o,t)—u(0) =T, -T, =0 (10)
w(l,t) =u(l,t)-u(l) =T, -T, =0 (11)

The initial condition
w(x,0) = (u(x,0) —u(x) = f(x)—u(x) (12)

Where u(X) is given by (6)
The problem now becomes precisely the previous one and we have the

solution

2_2 2

Nz a‘t Nzx

W(xt) =3 b exp[ - Isin (13)

Where "

b, :IE [ W(x,O)SinnTﬂde (14)

Where

U (x.t) :(Tz—Tl)TX+T1+i b, exp| — "L 1qin N (15)
=
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Where
b, :%j; [ f(x)—(Tz—Tl)Ii—T1 ]Sin”T”de
(16)
Example 3: Now we consider the problem of the heat conduction

equation with the boundary condition
a’U, =U, )

v.ot=0, V(It)=0 t>0 (2)
and the initial condition

v(x,0) = £(x) ©)
Solution: We solve the equation by the method of separation of

variables. [when the ends of the bar are insulated so that there is no
passage of heat through them].

V(xt) =h(x)g(t) (4)
(4) satisfies (1), we have
M) _1g® -

h(x) o2 g(t)

We assume that « is real, we consider three cases o =0 and —ve.
() If « =0 then equation (5) given
V(x,t) = Kx+K, (6)

Applying boundary condition (2), we get

K, =0. Hence corresponding

h'(x) =0

h(x)=C,+C,

g'(t)=0->9()=Cs (7)

Solution is

(i) If a=2*where Ais real and +ve
()= Ah(x)=0 (8)

g'(t) - A"h(x) =0 (9)

From (8) and (9), we have
U (X,t)=,, A% (k,SinhAx + k,CoshAx). (10)
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Now we apply the boundary condition (2)

U, (xt) = e****(k,AC0sAX + K,SixAx)
U,(o,t)=0 and U, (I,t)=0
K,ASinAl = 0 = K,,0

K,ASinAl = 0 = K,,0

—K,=0and K, =0

This is not acceptable, because it does not satisfy the initial condition of
some examples of partial differential equation, hences, can not be
positive.

(ili) o =-2*, where A is +ve and real. From (8) and (9), we obtain

U, (xt) = e****(k,AC0sAxX + K,CosAX) (11)

Now we apply boundary condition, we get (x=0) K, =0and (x=e)

/lifor n=1,2,...... Sind =0,0 =nrx)
e
n27T2
..o =—(——), where n is +ve integer (12)

Combining the solution, we have
U, (xt) = % Co (13)

nzﬂzazt

U,(x,t)=C, exp[ — ]CosT n=12,.. (14)

These solution functions satisfy the differential equation (1) and
bounding conditions (2) for any value of the constant C, .Both

differential equation and boundary values are linear and homogeneous,
any finite sum of the fundamental solutions will also satisfy them. We
will assume that this is also line for convergent infinite sums of
fundamental solution as well.

Thus

nﬂ'OCt nzax

Icos

U(x,t) = %Co + i c,exp| —
n=1
(15)
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Where C, are determined by the initial requirement that

U(x.0) =%Co+i chosnTﬂX ~ f(x) (16)

n=1

Thus, the unknown coefficients in equation (15) must be coefficients in
the Fourier Cosine series of period 2e for f. Hence

|
U, o] f00Cos ™ Zdn=0, 1,2, .ccee.e.
e e

With this choice of the coefficients, (15) provides the solution of the
equation.

Example: Elastic string with non-zero initial displacement

First, suppose that string is displaced from its equilibrium position, and
then released with zero velocity at time t = O to vibrate freely. Then in
vertical displacement U(x,t) must satisfy the wave equation.

XU, =U, 0<x<l, t>0 1)

XX

The boundary conditions are
U(,t)=0, U(,t)=0, t=>0 (2)

and the initial conditions
U(x,0) = f(x),U,(x,00=0, 0<x<I 3

Where f is given function describing the configuration of the string at t =
0

Solution: We use the equation (1) by the method of separation of
variables.

Assuming that
Uxt)=X(x) TI(t) 4

Substituting u in (1), we get
X" 1Tt
X AT
(4)

We assume that ois real (we shall prove it somewhere else. We
consider these cases o =0, -ve and +ve.

o
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() o =0,then X" =0, and X(x) =K x+K, 5)
(i) If o>0, then X"=A’x=0 and X(x) = K,;SinhAx + K,Coshix (6)

Where A =+o

Consider the solution given by (5)
U(x,t) = (Kx+K,)T(t)

By boundary conditions U(o,t) =0

U(o,t) =(0+K,)T(t) =0, T(t)can not be zero, because U(x,t) will be
identically zero. Thus, K, =0. Next consider the second boundary
condition U(l,t) =0 then U(l,t) =(KI)T(t)=0= K, =0

Thus X(x) = 0, it is not acceptable.

(iii)  Similarly, we can show that for (6) under boundary condition
K,=0=K,.

Thus, o =0and o =+vereal number are not acceptable. We now
consider the last cast

(i) o=-Ax=0
(7)
X"+AX =0
(8)
T"+ 2a’T =0
- X(x) = K;SinA + K,CosAx 9)
T(t) = K,SinAot + K,Cosiat (10)
Thus
U (x,t) = (K,SinAx + K Coslat)(K,Sinlat + K,Coslat) (11)

Satisfies (1) for all values of K ,K,,K,,K, and for and 4 > 0.

Now we impose the boundary conditions
U(o,t)=0, Thus

U(o,t) = K, (K,Siniat + K,Cosiat) = K, =0 (12)
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Secondly, boundary condition U(l,t) =0,
U (l,t) = (K, SinAl)(K,Sindat + K Coslat) = 0 (13)

If K, =0, then U (x,t) is zero identically, thus for non-trivial solution.
SinAI:O:A:nTﬂ,nzl,Z ........ (14)

Hence the functions which satisfy the equation (1) and boundary
condition (2) are of the form.

U (xt) = SinnTﬂX(CnSinnﬂTat+ KnCosnﬂTat) (15)

Where n=1,2,........ C, and K, are arbitrary constants. Now we apply
the principle of super position of solution and assume that

U,(xt)=3 U, (Y

> Sin”T”X(c:nsm—r”io‘t + K,pos—”ﬁ“t)
n=1

(16)
Further, we assume that (16) can be differentiated term by term with
respect to t
U,(x,0) =0 yields
U,(x0)=3 cnﬁsm”T”X:o

n=1

17)
= C, =0 for all values of n
= The other condition U (x,0) = f (x)

Given

U,(x0)=3 Knsmﬁ — f(x)
n=1

(18)

Consequently, K must be line coefficients in the Fourier Series of
period 2 | for fand are given by
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K

n

|
%j f(x)Sin@dx,n ~12,... (19)
0

Thus, the formal solution of the problem (1) with condition (2) and (3) is
NmaX (20)

U,(xt) = K,ﬁin?Cos

n=1

Where the coefficients K are given by (19).

For a fixed value of n the function

. hma Nrox
Slnl—Cos

is periodic in time t with the period 2—I; it therefore
nNa

represents a vibratory motion of the string having this period or having

the frequency @ The quantities Aa:@for n=1, 2,...... are the

natural frequencies of the string. The factor KnSinﬁrepresents the

displacement pattern occurring in the string, when it is executing
vibrations of the given frequency.

In the case of heat conduction problem, it is attempting to try to show
this by directly substituting equation (20) for U(x,t) in (1), (2) and (3),
we compute.

Uy (xt) ==Y Kn(”l—”)zsm”T”Xc:os”I—”at
n=1

(21)

Due to the presence of the factor n*in the numerator, this series may not
converge. It is not possible to justify directly with respect to either
variable in 0,] and t>0, provided h is twice continuously differentials on
(- w,w). This require f' and f"are continuous on [o,l]. Furthermore,

sinceh”, we must have
f"(0)=f"()=0
Example: General problem for inelastic string.

Consider the equation
aU, -U, =0, 0,<x,1, t>0; 1)

The boundary condition
U (o,t) =0, u(lit)=0 (2

61



MTH382 MATHEMATICAL METHODS IV

and the initial conditions
U (x,0) = f(x),Ut(x,0) = g(x),0<x<0 3

Solution: As we have done in the previous case, we obtain the solution

.00 =5 0,060 = 3 Sne, s s ()
n=1 n=1

Applying the initial condition U(x,0) = f(x) yields

U(x,0) = —i KnSinnT”X = f(X) (5)
n=1

Where the coefficients K, are given in the Fourier Sine Series of period

2l for f and are given
|

K %j f(x)Sin@dx,n:l,z,.... (6)

n
0

Differentiate (4) with respect to t and putting substitution. We establish
the validity in a different way. We show

Ux,t)== [h(x at) +h(x+at) | (22)

Where h is function obtained by extending the initial data f(x) into (-1,0)
as an odd function, and other values of x as a periodic function on
period 2I.

That is
h(x +21) = h(x).

Now

hx) =3 Knsmnl—”x
n=1

Then
h(x-at) = Z K, (Sin n:TXCos miat _Cos " sin ”T“t)

U(xt)= ZU (xt)= ZSIH—QSIH——I—&COM&

Equation h is the function (20) follows on adding the two equations.
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Note: [If f(x)has a Fourier series, then it must be periodic and
continuous].

1. If U(x,t)is continuous for 0< x<land t>0provided that h is
requires that f is continuous on line interval (—oo,00). This

requires that f is continuous on the interval (o,I) and, since h is
odd periodic extension of f, that f be zero at x=0 and x=p.

2. U is twice continuously differentiable t=0, we get
U,x0 =3 %Cnsmﬁz 9(x) )
n=1

Hence the coefficients lsl(ﬁ)cn are the coefficients in the Fourier Sine

series of period 2l for g: Thus

$=Cn|§ﬂ [ 9(sin™™dx, n=12........ )

Thus, the equation (4) with the equation (6) and (8) constitutes the
formal solution of the equation (1).

Example:  Laplace equation: One of the most important of all the
partial differential equations occurring in applied mathematics is
associated with the name of Laplace. Here is Laplace equation in two
dimensions.

U,+U, =0 1)

and in dimension
U,+U, =0 (2)

Now solve (1) under the boundary condition. The problem of finding a
solution of Laplace equation which takes on given boundary values is
known as Dirichilet problem.

Problem I: Solve the Laplace equation
U,+U, =0 1)

In the rectangle 0 < x<a, 0<y<b, and which satisfies the boundary
condition

U(x,0)=0, U(x,b) =0, O<x<a, 2
U(o,y) =0, U(a,y)=f(y), 0<y<b
Where f is given functionon 0<y<b
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Solution:
U(xy) = X(X)Y(y) (3)

Substituting U (x,y) in (1), we get

X” Y”
—=-—=K 4
Y (4)

We assume that k is real.

(i) IfK=0then X"=0and Y"=0,and U(x,y) = (K, +K,)(C,y+C,)
®)

The homogeneous boundary conditions y=0 and y=b can be satisfied y
C,=C,=0=U(x,y),is identically zero. Hence K=0 is acceptable.

(i) K=A,1>0,then

X" =X =0

Y"=2Y =0
and thus
U (x,y) = (K;SinhAx + K,CosAx)(C,SinAy + C,Cos1y)

(6)

In order to satisfy the boundary conditions x=0and
y=0=K,=0=C,
The condition at y=b becomes
K,C,SinAxSinib =0

(7)
= Sinib =0
It follows that
b=nz, =1,23,........... (8)
Thus, the solution of the differential equation must be of the forms.
U.(xy) = cnsmh”T”XSin”b_”X, n=1,2,3,.... (9)

)

There functions are the fundamental solution of the present problems.
We assume

Uy) =Y Uxy) = cnsm”T”chsmh ”T)“X 4 Sin ”’;“t (10)
n=1 n=1
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Now the last boundary conditions

U @y)=fy)=Y cnsmh”;’asmh ”gx Sinngy (11)

n=1

Thus, the coefficients CnSinh% must be the coefficients in the Fourier
Sine series of period 2b for f(y) and are given by

b
cnsmhﬁs f(y)SinnTﬂydy (12)

0

Thus, (10) is the solution of the equation (1) satisfying the boundary
condition (2) and coefficients CnSinh%are computed from (12).

(iv) If K =-2*then
X"+ 2PX =0
X"+2% =0

and

U(x,y) = (K,SinhAx + K,CosAx)
C,(x,y)SinhAy + C,Coshy)
(13)
Again, the boundary condition at y=0 and y=b lead to C,=C, =0, so
again U(x,y) is zero, everywhere. Hence K = A*is not acceptable.

Problem: Dirichilet problem for a circle

Consider the Laplace equation in polar co-ordinates

UZZ+£U2£+U2%U99 @
z "2 yA

With boundary condition
U(a,0) = (f(0) (2)
f is a given functionon 0< 0 < 92r.

Moreover, in order that U(z, o) the single valued, it is necessary that, as

a function of 9, U must be periodic with period 27.
Solution: Let U(z,0) = R(2)0(0) 3
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We substitute (3) in (1)

r'o +£R’9+%R9” =0
2 r
Or
R RO 9 g )
R R 0

Again, we assume that the separation constant must be real.

@ Suppose K=0
r’R"+rR'6 =0
0"=0
~U(r,0) = (K, +K,Log2
0(0)=C,+C,0

= U(r,0) = (K, +K,Log2(C, +C,) 5)

Since equation is periodic in 6,thus C, =0.

Further r —0the term log r is unbounded. This behaviour is
unacceptable. Thus, we impose the condition that U (z, o) remains finite
at all points of the circle and hence we must take

K,=0

~.U,(r,0) =Constant = % c, say (6)

(i) If K=A*then
0"— 270 =0 7

~00)=C +Ce™ (8)

The function U ((r,0) is periodic thus C,+C, =0.
This makes U (r,0) identically zero. This is not acceptable.

(iii) Finally, K = 22,4 > 0,yields
r’R"+rR"- 2R =0 9
And
0"+ 720 =0 (10)

~R(r) =K'+ K,r
0(0) = C,Sin16 + C,Cos 10 (11)

In order that & be periodic with period 2z, it is necessary that Abe a
positive integer.
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Moreover, the solution r“of (a) be discarded, since it becomes
unbounded as r —» 0. Consequently, K, =0. Hence the solutions (1)
are

U, (r,0) =r"(C.Cosné + K Sinng), n=12,............

These functions, together with that of equations (6), serve as
fundamental solutions of the present problem. Thus

u(r,0) :%Co+z r"(C,Cosné + K_Sinng) (13)

n=1

The boundary condition (2) then requires that
f(0)=U(a,6) = %Co +Y_ a"(C,Cosnd +K,Sinno)

n=1
(14)
for 0<0 < 2r.

The function f(0)may be extended outside the interval. So also it is
periodic of period 27,and has a Fourier series of the function (14).

¢ n_l 2
a‘C —EL f (9)Cosnodo (15)

a’K_ zljz” f (6)Sinn6do (16)
T 0

With this choice of coefficients (13) represents the solutions of the
boundary value problem of equations (1) and (2).

(1) The heat conduction equation in two space dimension may be
expressed in terms of polar co-ordinates as

oﬂ(uzz+%u2+2—1zuee)=ut

Assuming that

U(r,0,t) = R(rOO)T (). Find ordinary equation satisfied by
R(r),0(0)T (t)

The integrand is an even function.

= (1 Cos 2™ dx
0 C
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Similarly, we can obtain
l,= [ Cos*™dx=C forn=1,23............
e c
=2C for n=0.

Similarly, we can show that

l, ZJC sin? " sin k™ g if k=n
- c c

I, = Cos—Cosk—dx C if k=n
c c

Periodic Function: A function f is said to be periodic with period T if
the domain of f contains x + T whenever it contains x, and y.

f(x+T)= f(x) forevery value of x.
f(x+T)= f(x)
With fundamental period T =21/m, every such function has the period

(2l)

The function Sin® I—andCosmTﬂX n=12,...... are periodic.
3. Fourier Series
We assume that there exists a series expansion of the type
1 < N7zX
f(x)=—a,+ aCos—b Sin—
(0)=Z8+2 | c - )
1)

Valid in the interval —-C <x<C

O

@ is called the Fourier series corresponding to f(x), a,andb, .
Multiply (1) by Sm( c )dx where k is a tve integer, and then
integrate  each term from -c to ¢, thus arriving at
c b 7x 1 o nax 2 c k7x
f(x)Sin—adx=—-ao| ——dx a —Cos—Sln—dx
.[—c ( ) c 2 J‘—c C +§ [ nJ‘_ C C ]
2 |
As seen earlier
j Cos " sin¥™ 4x = 0 for all k and n

C C
And
j Sln—Sln—dx =0 ifk#n

C

=c ifk=#n
Using (2), we have

j_c f(X)SIn?d bk K 123 [EERREERRRREEERERERER]
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or
bnlaojc F0SIN2dx, N=1,2, oo,
c Je C

Let us now evaluate the coefficients a, using the multiplies

Cosl%xdx throughout equation (1) and then integrating term by term for

—C to ¢, we get
Kk c 2 ¢ .
jc f(x)Cos—m(dx:laOJ‘ Cosk—ﬂxdx+z [ anj Cosn—ﬂXCosk—ﬂde+bnj Slnn—”XCosk—ﬂde
~ C 2 e C =) ~ C C ~ C C
(4)

Now we know that
IC Cosn—ﬁXCosk—mdx=0 for n=k
-C C C

=c for nzk

If k=0, (4) reduces to

J'_CC f(x)Cosl%D(dx=eak

or

a, J'_:: Cosf (x)Cosn?m(dx (%)
Next we determine the coefficienta . Suppose K =0 in (4)

c 1 c d nzx ¢ . hax
[ f(x)dx:anL f(x)dx+n§ [[a]. Cos?dx+bn.|:c Sin="~ dx (6)

Thus we have
[© fooux= %aO(ZC)

or [° a, == f(x)dx (7)
L B=

Thus we write the formal expansion as follows

f(x):%a0 +i [ anCos%ernSin%dx ) (8)

With

a Z%L f(X)Cosn?m(dX,nzo, 1., 9

b, ZEJ' f(X)SinnﬂdX,nzl, 2, i, (10)
coc Cc

Note that the formulae (9) and (10) depend only upon the values of f(x)
in the interval —c<x<c. Since each of the terms in the Fourier series (8)
is periodic with period 2c, the series converges for all x whenever it
converges in —c<x<c., and its sum is also a periodic function with
period 2c. Hence f(x) is determined for all x by its values in the interval
—C<X<C..
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4.0 CONCLUSION

You have been introduced to partial differential equation in this unit.
The attempts here are just introductory. You are required to study this
unit properly because you will refer to it in your subsequent courses in
mathematics.

5.0 SUMMARY

In this unit, various forms and types of partial differential equations
were studied. These include (1) Wave equation (2) Laplace equation and
(3) Heat equation. We also proposed various methods of solving these
equations which include method of separation of variables and Fourier
series applications. You are required to study this unit properly and
attempt all the exercises at the end of the unit.

6.0 TUTOR-MARKED ASSIGNMENT

1. Show that the boundary-value problem
2
Z—z— k*y=0,y(0) = y(I) =0 cannot have a nontrivial solution for
X
real values of k
2. Determine those values of k for which the partial differential
equation
2 2
Z I Z I =0possesses nontrivial solutions of the form
X y
T(x,y) = f(x)sinh ky which vanish when x =0,and, when, x =1
3. By considering the characteristic functions of the problem
d’y . dy
1-Xx*)——=—2x—=>+ Ay =0,
( ) dx? ax Y

Show that [" P, (x)P, (x)dx =0
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