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1.0 INTRODUCTION

You have been introduced to the limiting procesyanious ways. In
MTH 241, this process was discussed in terms ofirthie point of a set.
The limit concept as applied to sequences was eduisi MTH 241.
Also, limit concept was formalized for many funct It was used to
define the continuity of a function. In this unite shall consider another
Important aspect of the limiting process in relatio the development of
the derivative of a function.

You may think for a while that perhaps there is soohronological
order in the historical development of the limitipgocess. However,
this is, perhaps not the case. As a matter of faifterential Calculus
was created by Newton and Leibnitz long before stracture or real
members was put on the firm foundation.

Moreover, the concept of limit as discussed eailleMTH 241 was
framed much later by Cauchy in 1821. How, therthes limit concept
used in the development of the definition of thewdgive of a function?
This is the first and foremost question we haveabile in this unit.
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The limit concept is common to both continuity atifferentiability of a
function. Does it indicate some connection betwées notions of
continuity and differentiability? If so, what iseghrelationship between
the two notions? We shall find suitable answelthése questions

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. define the derivative of a function at a point age its
geometrical meaning
. apply the algebraic operations of addition, subibac

multiplication and division on the derivatives ofttions

. obtain a relationship between the continuity arftecgntiability
of a function

. characterized the monotonic functions with the hefptheir
derivatives.

3.0 MAIN CONTENT

3.1 Derivative of a Function

The well-known British mathematician, Isaac Newid®42 — 1727)

and the eminent German mathematician, G. W. Leibfii646 — 1716)

share the credit of initiating Calculus towards tral of seventeenth
century. To some extent, it was an attempt to angn@blems already
tackled by ancient Greeks but primarily Calculussveaeated to treat
some major problems viz.

)] To find the velocity and acceleration at any instaina moving
object, given a function describing the positiortted object with
respect to time.

1)) To find the tangent to a curve at a given point.

i)  To find the maximum or minimum value of a function.

These were some of the problems among others wleidhto the

development of the derivative of a function at anpoWe define it in
the following ways:
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Definition 1: Derivative at a Point

Let f be a real function defined on an open interya, b]. Let c be a
point of this interval so that a < ¢ < b. The fuoctf is said to be
differentiable at the point x = ¢ if

F@ - f)
limr(n = ¢c)  x — ¢ exists and is finite.

We denote it by f'(c) and say that ‘f is derivaldex = ¢’ or ‘f has
derivative at x = ¢’ or simply that f'(c) existsufher, f'(c) is called the
derivative or the differential co-efficient of tifenction f at the point c.

Note that in the definition of the derivative, teaduate the limit of the
guotient

f&)— f(e)

X — cC

at the point c, the quotient must be defined inBDNbf the point c. In
other words, the function f must be defined in aON& the point c. It is
because of this reason why we define the derivaiiva function at a
point c in an open interval [a, b].

However, at the end points a and b of the intejfaab], we can define
one sided derivatives as follows. For, let

f@)— f(&)

limr{n — c+) Xx— ¢

exists and is finite, then we say that f is derledlbom the right at c. Itis
denoted by f'(c+) or Rf(c). Also, it is called thight hand derivative of f
at c. Similarly, if

f&)— fle)

lim-r(n = c-) X —-C

exists and is finite, then we say that f is demxafrom the left at c. It is
denoted by f'(c-) or Lf'(c). It is also called theft hand derivative of f at
C.

From the definition of limit, it follows that f'(ckexists if and only if
Lf'(c) and Rf'(c) exists and Lf'(c) = R f'(c)

l.e., f'(c) exists= Lf'(c), Rf’'(c) exists and Lf'(c) = R f'(c).
For example, consider the function f defined orbJaas
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f(x) = x4, Ox Oa, bl.
Let ¢ be an interior point of ]a, b[ i.e., a < ©<Then

o fO= )
Lf(c) = noe- . ¥—r

lim L (e —h) = fl)

= k=0 c—h—¢ (r>0)

lim =7 W® - (O _

2c.
= h—0 —h

Similarly, you can calculate Rf'(c) and obtain R)'E 2c.

This shows that Lf'(c) = Rf'(c) = 2c. Hence f'(ckists and is equal to
2C.

Now, let us consider the question: What happeng i§ defined in a
closed interval [a, b] and either ¢ = a or ¢ = lz ¢akes any value in the
interval? To answer this question, we give theotelhg definition:
Definition 2: Derivative in an Interval
Let the function f be defined on the closed intéfaab]. Then
)] fis said to be derivable at the end point afi(@) exists, if

L f0) - fa)

x—at r—a exists. In other words,f'(a) =

. _f&) - fla)
lim &—M——

x—+a+ X—a

1)) Likewise, we say f is derivable at the end pdinif

L _F0 - FO)
ab-" r—a exists and
_f&)— f(b)

)= S8 x—b

iii)  If the function f is derivable at each point the open interval ]a,
b[, then it is said to be derivable in the interjdl|.
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iv)  If fis derivable at each point of the openeintal ]a, b[ and also
at the end points a and b, then f is said to bevalgde in the
closed interval [a, b].

We can similarly define the derivability in [a, bf ]Ja, b] or ] -, a[ or
]- w0, a[ or Ja,o[ or [a, [ or R = ]-co, oo[.

g =S — (O
Note that for finding=—e= = x =b _ * generally we write x = ¢ + h,
so that x— c is equivalent to k» 0. Accordingly, then we have

limz::;M — limel (c +h) = fle)

A ¥—=nn =0 il

I i__i}"!‘{r: +h)— flc)
and f'(c) =w=6 R

Now let us discuss the following example:
Example 1
Let f: R— R be a function defined as

(i) fx)=x"0xOR,
where n is a fixed positive integer, and

@)y fx)=k OxOR,
where k is any fixed real number.

Discuss the differentiability of f at any pointxR.
Solution
0] Let ¢ be any point of R. Then

. flx)— fle) . xt—m
limii————— = limi:
= X—rc = X—-C

. n—-1 _ - -
= lim (%ae + "+ X%+ .+ &Y
=nd?t

= f'(c) = nd"*
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Since c is arbitrary point R, therefore, f'(x) asidor all x |

given by f(x) = n®*, O x O R.
Example 2

Let a function f:[0, 5}~ R be defined as

2y +1,when0x =<3
22 when3 =x 55}

) =
Is f derivable at x = 3?

Solution

e f@) - (3
f{3 —]— :lrliI%i._i—

x— 3

(x+D-(9-2)

x—+3 x— 3

o fGI— £(3)
and f(3+) = ;lrlfé e —
o xr=2)-7
= lim::
x—+3 x— 3

= lim~(x—3) (x + 3) =6, and so,

f(3-) #f(3+)

—=f'(3) does not exists i.e. f is not derivable at 8.

Now, try the exercises below:

SELF ASSESSMENT EXERCISE1

Let f: R— R be defined

f[xj _ I?;,ifx < (.'l}

Jifx =0

show that f(0+)# f'(0-).

SELF ASSESSMENT EXERCISE2

MODULE 1

R. Itis

10
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0] Find the points at which the function f:-R R defined by
fx)=|x- 1 +|x- 2|, 0x0R,
IS not derivable.

1)) Prove that f: R— R defined by
f(x) =x1x1,Ox0OR,
is derivable at the origin.
Example 3
Let f: R— R be defined as
f(x) = x? cos (1/x) if x# 0 and f(0) = 0.

Find the derivative of f at x = 0, if it exists.

Solution

5 1
 f-f . xFeos(y)
llms..s— = llm i
0 x— 0 x—0 x

= limZxcos |—
¥

a0

Also, cos% takes values between - 1 and 1 and thus, is bodunde

M = limZxcos—=10
X

1 117 6
‘cos; < 1. Hence:—? x— 0 x>0

So that f'(0) exists and is equal to 0.
SELF ASSESSMENT EXERCISE3
Let f: R— R be defined as

1.
f(x) = xsm;, ifx#0

=0,ifx=0
Is f derivable at x — 0?

Example 4

11
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For the function, f defined by
f(x) = [log x| (x> 0),
determine f'(1 +) and f'(1-).

Solution

- @)

f(l+) =21+ x— 1

. _f1+h)-f@)
lim
= r—0+ h
=limr{k - 0) (|log(l+ k)| —|logl])/h

_lim= log(1+ h)

= ron h
= 1%= log (1 + h}"
=loge=1.

Also f(1-) = m= %’h) = 1.

SELF ASSESSMENT EXERCISE 4

A . Ak
) Given: f(x) = x.e]/ €

F 1 e%’ if x * 0 and f(0) = 0. Determinate
f’(0+) and f'(0-).

i) Let f be a function defined by

_ X
f(x)—l+|X|,DxDR.

Show that f is differentiable everywhere.

iii)  If the function given by

axZ,bx =0
fixj o xz,IrJg,x = U}

possesses derivative at x = 0, then find a and b.

Iv)  Let f be an even function defined on R. If §,@&xists, then find its
value.

12
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3.2 Geometrical Interpretation of the Derivative

One of the important problems of geometry is thdtrmling or drawing
the tangent at any point on a given curve. The dahglescribes the
direction of the curve at the point and to defienie have to use the
notion of limit. A convenient measure of the direntof the curve is
provided by the gradient or the slope of the tahg€his slope varies
from point to point on the curve. You will see thiae problem of
finding the tangent and its gradient (slope) at pant on the curve is
equivalent to the problem of finding the derivativethe function y =
f(x), which represents the curve. Thus, the tang@nihe curve y = f(x)
at the point with abscissa x exists if the functi@s a derivative at the
point x and the tangent slope = f(x). This is what called the
geometrical interpretation of the derivative oluadtion at a point of the
domain of the function. We explain it as follows:

y-axis N &zf(x)
I f(c+h)-f(c)
ANy
[
h
TO cc+h X-axis
Fig 1

Fig. 1: The Geometrical Interpretation of the Derivative of a Function at
a Point of the Domain of the Function

Let f be a differentiable function on an intervalThe graph of f is the
set {(x, y)ky = f(x), x O}

Let ¢, ¢ + hil, so that P(c, f(c)) and Q(c + h, f(c + h)) aretpoints on
the graph of f.

Therefore, the slope of the line PQ is the number
f(c+ h)- f(c). f(c+ h)- f(c) _
(c+ h)- h le., n = tanJQ.

Also as h— 0, Q— P. By definition, the derivative of f at c is

f(c + h)- f(c)
h

f(c) = limr(h - 0)

13
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=1im+(Q = P) (slope of PQ)

In the limit, when Q— P, the line PQ becomes the tangent at P.
Therefore, f'(c) =lim+(Q@ = P) (slope of PQ) = slope of the tangent line
to the curve y = f(x) at p.

Thus, when f'(c) exists, it gives the slope of thegent line to the graph
of f at the point (c, f(c)). That is f'(c) is tharigent of the angle which
this tangent line at (c, f(c)) makes with the p@sitdirection of the axis
of x.

If '(c) = 0 the tangent line to the graph of Hat c is parallel to the axis
of x and if f(c) exists and does not have finitelue, then the tangent
line is parallel to the axis of y.

3.3 Differentiability and Continuity

You have seen that the notion of limit is esserarad common for both
the continuity and the differentiability of a furmmt at a point.
Obviously, there should be some relation betweencibntinuity of a
function and its derivative. This relation is saa® the one between
curve, the graph of the function and existence @ngent to the curve.
A curve may have tangent at all point on it. It nfewe no tangent at
some points on it. For instance, in the figure 2if2@ curve has tangents
at all points on it while the curve in figure 2(bas a point P, a sharp
point P, where no tangent exists. In fact, difféadnlity of function at a
point implies smooth turning of the correspondingve along that
point. Therefore, a curve can’t have a tangenhatgspoints.

\| /TN
\/

Fig. 2(a Fig. 2(b)

The fact that a curve is continuous does not nadgssmply that a
tangent exists at all points on the curve. Howeweujtively, it follows
that if a curve has a tangent at a point, therctinege must be continuous
at that point. Thus, it follows that the existeradea derivative (tangent
to a curve) of a function at a point implies tha function is continuous
at that point. Hence, differentiability of a furatiimplies the continuity
of the function. However, a continuous function mayt be always

14
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differentiable. For example, the absolute valuecam f: R - R
defined as f(x) =|x|,] x 0 R, is continuous at every point of its domain
but it is not differentiable at the point x = O hese, at x = 0, there is a
sharp bending in its graph. This is evident frone tjraph of this
function .

Now we prove it in the form of the following theone
Theorem 1

Let a function f be defined on an interval 1. lisfderivable at a point ¢
I 1, then it is continuous at c.

Proof
Since f is derivable at x = c, therefoliar{x = ©) f(x) f(c) exists and
is equal to f'(c). Now, f(x) — f(c) M (x - c), for x# c.

So,limr(x = €) [f(x) - f(c)] = |imw. lim (x — ¢) = f(c).0 = 0.

This implies that
'xin f(x) = f(c).
That is, f is continuous at X = c.

We have given the proof for the case when c isamoénd point of the
interval I. If ¢ is an end point of the intervahenlim+{x = ¢) is to be

replaced b)&llﬂ - orlimr(x = o) according as c is left end point or the
right end point of the interval.

Thus, it follows that continuity is a necessary dition for derivability
at a point.

However, it is not sufficient; many functions aeadily available which
are continuous at a point but not derivable thér§\Ve give example of
two such functions below:

Example 5

Left f: R — R be the function given by

f(x) =|x[,0x O R.

Then, fis continuous at x = 0 but it is not deblathere at.

Solution

15
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Recall from Unit 4 that f(x) is of the form

_ (xifx =0
f(x) = [—x,ifx{(.'l

We claim that f is continuous at x = 0, for
AT f(x) = limr(k = 0-) f(X) = 0 = £(0).

Now,
flon) == 100 1O _ymex- 0y

and, f/(0-) =M%~ —= 0-1.

Thus, fis not derivable at x = 0.
SELF ASSESSMENT EXERCISE 5
Justify that f: R— R defined as

) f(x) = |x| + |x - 1] is continuous but not dexble at x = 0 and x =
1.

i) f(x) = |X| + |x - 1| + |x - 2| is continuoustmot derivable at x = 0,
1, 2.

Example 6
Let f: R— R be defined as

. JJor0 =x <1
F) = UL forx =1 }

Then f is not derivable at x = 1 but is continuatis = 1.

Solution

Clearly, 2L~ f(x) = J0L = f(x) = 1 = f(1).
This shows that f is continuous at X =1. Now

F(1+) =8 f(xi f1(1)

16
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:Ixi(glx_ l:O.

and f(1-) =limr(x » 1) z: 1 = 1i.e., F(1+)# lim F(L-).

This shows that f is not derivable at x = 1.

From the above examples, it is clear that deriugbils a more
restrictive property than continuity. One might uatise that if a
function is continuous on an interval, then it migil to be derivable at
finitely many points at the most in the said in&rvlrhis, however, is
not true; there exists functions which are contusion R but which are
not derivable at any point whatsoever. In 1872 nazar Mathematician,
K. Weierstrass, first gave an example of such actfon. Here we
mention an example due to Van der Waerden. Theitumis defined as

[10%% — [107"x + a]|
FG) = -
f(x) = 2 10

where a = 1/2 or -1/2 according &) or x < 0. This function is known
to be continuous everywhere but derivable nowhere.

Now try the following exercise.
SELF ASSESSMENT EXERCISE 6

Prove that a function f: ® R defined as

1 . . .
f(x) = x sin < x # 0; and f(0) = 0, is continuous but not derivaki¢ha
origin.
3.4 Algebra of Derivatives
You have seen that whenever we have a new limititieh a natural
guestion arises. How does it behave with respecth& algebraic
operations of addition, subtraction, multiplicatiand division?
In this section, we shall discuss some theoremsardégy the
derivability of the sum, product, quotient and casipe of a pair of
derivable functions.

l. Sum of Two Derivable Functions

Let f and g be two functions both defined on aenmval I. If these are
derivable at d | then f + g is also derivable at x = ¢ and

17
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(f+9)(c) =f(c) + g'(c).

Proof
By definition, we have

lim= f(x) - Hc) _ = f'(c), and
X- C

lim= 900 - 9(©) _ gy

=

X- C
Then,
tme ((+9)- F+ 9 _ o 0+ 909- f(0)- g(c)
X- C X- C
_tim= {f(x) - (0} +{g(x) -g(©)}
X- C

_iime 00- £(©) |, im- 909 9(0)
X- C X- C

=f(c) + g'(c).
= (f+9)'(c) =f(c) + g'(c).
Thus, f+ gis derivable at x = c.

In the same way you can also prove that f — gge derivable at x = ¢
and

(f-9)(c) =f(c) - d'(c).
[l Product of Two Derivable Functions

Let f and g be two functions both defined on arnval I. If these are
derivable at d I, then f.g. is also derivable at x = ¢ and

(fg)'(c) = F(c).g(c) + f(c).g'(c).

Proof
By definition, you have

lim= f(x) - f(c) _
X-C

f(c)

18
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andlim{x = c+) g(x) (C) =g'(c)
w {9 (X) - (fg)(C) _ (fX)g(X) (fc)a(c)

X-C X-C

_ {f(x) - f(9)}a(x) +f(c){g(x) -9(c)}

X- C

10010 g gy, 900 99

X- X- C

By using the above two definitions of f'(c) and @'(as well as the
algebra of limits we have

lim = (fg)(x) - (fg)(c)

X-C

exists and is equal to

f'(c) . g(c) +f(c) . g'(c)

=(fg)'(c) = f'(c) . g(c) + f(c) . g(c)

Hence fg is derivable at x = c.

If a function f is derivable at a point c, then fach real number k, the
function kf is also derivable at ¢c and

(kf)'(cO = k. f'(c).

For the proof, take f = k, g = f in result Il andeuthe fact that derivative
of a constant function is zero everywhere.

Il Quotient of Two Derivative Functions

Let f and g two functions both defined on an in&grk If f and g are
derivable at a point €1 | and g(c)# O, then the function f/g is also
derivable at c and

g(c).f'(c)- f(c).g'(c)

(l9)(©) = 2

Proof
By definitions we have

lim = f(x) - f(c) _
X- C

=f(c)

and

19
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:lriﬂ Q(X) - g(C) - g’(C)

X- C

Now

(f/ 9)(x) - (f/ g)(c) _ f(x)/ 9(x) - f(c)/ g(c)
X- C X- C

_ fx)9(x) - g(x)i(c)
(x- c)a(x)a(c)

g(O){f(x) - f(c)} - f(c){a(x) - 9(c)}
(x - ¢)g(x)g(c)

(){f(x) f(C)}_ f( ){ (X) (C)}
9(x)g(c)

Proceeding to limit as %> ¢, keeping in mind that f and g are derivable
atx =cand g(c} O, we get

(©)f'(c)- f(c)g'(c)

ey =9
(flg)(c) = QO ,

which proves the result.

In particular, let f be derivable at ¢ and let #d), then%L is derivable at
c and (1/f)'(c) = -F(c)/{f(c)}>
This is known as the Reciprocal Rule for derivativieor its proof, take

f(x) = 1, and g = f in result Ill and use the fabat derivative of a
constant function is zero everywhere.

Vv Chain Rule

Let S and T be subsets of R and ST, g: T— R be two functions. If

f is derivable at c0 S and g is derivable at f(d) T, then gf is
derivable at c and

(gof)'(c) = g'(f(c)).F'(c).

Proof
(gof) e+ h)— (gof)ile)
Let y(h) = h ,h+#0. (1)

20
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Now, we have to show thalZ~ y(h) exists and is equal to
g'(f(c)).f(c). Let us define a new function g =¥ R as

g(fc +m) - g(rc))
@(h) = fle+h)—- flc) JAffle+h)— fle)+0
g (f)), if fc+h)— fe)=0

Observe that

v = oy DO

if h # 0. Then limr(h—=0) y(h) = limr(hk-0) f (h).f(c), by
derivability of the function f at ¢, providdifn{(k = 0) f (h) exists.

Thus, the proof of the theorem will be completevié can show that
lim—(h » 0) g(h) exists and is equal to g'(f(c)).

Now, to show thatlimr{k—0) y(h) = g'(f(c)), observe that, by
derivability of g,

k
which implies that givere > 0,008 > 0, such that

, exists at f'(c) and equals g’(f(c)),

D<lkl<s = Ig(f(c]+ K- g(rlca))

X g (Fl)] < e @

And f is derivable at ¢
= fis continuous at c
= for 8> 0,1 > 0 such that |h| & = | f(c + h) — f(c)|d. (3)

Let us consider a number h such that |d]. ¥Ve have to consider the two
cases:

0) fc+h)=f(c),and (i) f(c + h¥f(c).

In case (i), by definition of g(h),

|2 (h) —g°(f(c))| = 0 =. (4)

In case (ii), if we write f(c + h) — f(c) =% 0, then, by the definition of g(h),

g(h) =
g(fc+m) - g(f©) _ g @+ - g(f(©) . _

21
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(5)
Now, by (3),
lh| <&" =[f(c + h) —f(c)) | D
=0 < |k| <, by the definition of k,
- [fFOE D= 00O g (o)< = oy ()
= |a(h) — g (f(c)) | <, (6)

by (5). By (4) and (6), we get
lh| <6" ={a(h) — g'(f(c)) | <

= limr(h = 0) g (h) = g'(f(c)), as was to be shown. This congslet
the proof.

Alternately, we can say that if y = f(x) and z y)g(where both

dz dy d=
and e exist, thern —

dy dx dx exists and given by
dz dz ady
dx dy dx

Recall that this form of chain rule is generallgdsn problems of Calculus.
For example, to find the derivative of the function

f(x) — 0¢ + X2 + 2)°, lety = h(u) = @, where u = X+ >* + 2. Then

idh - a 24 du -
=t 4 _ 3 3z = g2
—, =25u 25(x* +x¥ + 2)7 ,and = =37+ 2x.
d dh du
Therefore, f'(x) SR
dx du dx

= 25(X + ¢ + 2% (3% + 2x)
We now show how to differentiate the inverse of ifetentiable
function. Let f be a one-one differentiable funatmn an open interval I.
Then f is strictly increasing or decreasing and rdwege (1) of f is an
interval J, say. Then the inverse function g'shés the domain J and

fog = iJ, gof = i|,
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where | and j are the identify function and | and J, respectivé@lhen
you know that f(x) = y= g(y) =x,0x 01, y OJ.

Consider any point ¢ of I. We have assumed thatderivable at c. A
natural question arises: Is it possible for g talbavable at f(c)? If it is
so, then under what conditions? We discuss thistgreas follows:

Now, f is derivable at c. If f is derivable at f(¢hen by the chain rule
for derivatives, g f is derivable at ¢ and ¢d)’(c) = g’f(f(c)) f'(c).

But (go f)'(x) = g(f(x)) = x, O x OI. Therefore,
(gefy(x) =1, Ox Ol
In particular for x = ¢, we get

(go1)'(c) = 1= g(f(c)). f(c) = 1= f(c) #0.

Thus, for g to be derivable it is necessary th@) # 0 i.e., the condition
for the inverse of f to be derivable at a poin ficthat its derivative
must not be zero at point c i.e., f'¢¢)0. In other words, we can say that,
if f'(c) = 0, then the inverse of f is not derivabdt c. Thus, we find that
a necessary condition for the derivability of thedrse function of f at ¢
Is that f'(c) # 0. Is this condition sufficient also? To answersth
guestion, we state and prove the following impdrtaaorem:

Theorem 2
Inverse Function Theorem

Suppose f is one-one continuous function on an apernval | and let J
= f(I). If f is differentiable at ¥l and if f(xo) # O, then T is
differentiable at y= f(xo) [0J and

Iy _ 1
() (o) = fx)

Proof
Note that J is also an open interval, by Intermedvéalue Theorem.

Since f is differentiable aty¥ 1, therefore,

Hm-{x = x,0) M = f(Xo)

0

Since f'(x) # 0 and f being one-one, f(3¥)f(xg), for x# Xo, we have
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lim—{x - x,0) 1 = 1 e, lime{x - x0) _ X X
f(x)- f(xd  f'(x,) f(x) - f(x,)
X - X,
1
f'(X,)

So, givere > 0, there existd > 0 such that

X - X,

1
f(x) - f(xg f(x9

<g, for0<|x- X,| <o.

Let g =f*. Since f is one-one continuous function on |, ¢fere, by
inverse function theorem for continuous functiotig inverse function
g is continuous on J. In particular, g is continsi@t y. Also, g is one-
one. Hence, there exigis> 0 such that

0<|g(y)- 9(¥,)| <8,for0<|y- y,| <n

i.e., 0<|g(y)- X,| <9d,for0O<|y- y,| <n.
From (7) and (8), we get

ay)- % 1
fla(y)) - f(xo)  f'(xd

<g for0<[y- y,[<n.

g(y)' Xo — 1
flaly)) - f(xo)  f'(xJ

It follows that lim—{v - y,0 )

Now, yo = f(Xo) = Xo =g(¥) and f(g(y)) =y.

Thereforefim—(y 03 3= D) - _1
Y- Yo F'(%o)

Hence, g is differentiable at ynd g’(y) = . Replacing g by,

(o)

we can say that'fis differentiable atyand (f')'(yo) = !

f'(xo)

To illustrate the above theorem, consider the exartoplow:
Example 7

Find the derivative at a poing ¢f the domain of the inverse function of
the function f, where f(x) = sin x, X] - 102, T72].
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Solution

You know that the inverse function g of f is derbbe sin'. Domain of
gis]-1, 1[. Since f is one-one continuous fimcton |-, 102, 12 [ and

it is differentiable at all points of w2, 172 [, using the above theorem,
you can see that g is differentiable in ]-1, 1[ ahgly = sin % is nay
point ]-1, 1[, where x0J] -1v2, V2 [, we have

1 _ 1
f'(x,) cosx,

g'(Yo) =

And, since cosg= /1- sint x, = 1- Y..

. o 1
l.e., (SIn =
Ty (sin)’'(yo) Ty

Hence, g'(y) =
Try the following self assessment excercise.
SELF ASSESSMENT EXERCISE 7

Find the derivative at a poing »f the domain of the inverse function of
the function f, where f(x) = log x, K]0, [.

3.5 Sign of a Derivative

In this section, we shall discuss the meaning &f derivative of a
function at a point being positive or negative. t Bare we require the
concept of increasing or decreasing function abiatpf the domain of
the function. So we give all these concepts infoflewing definition.

Definition 3
Monotonic Functions

Let f be a function with domain as interval | aeti¢ 0 I. Then, fis said
to be an increasing (or a decreasing) functiorheninterval 1 if, for x,
Xo, U,

X1 <X = f(Xy) £ f(xp) (or f(xy) 3 f(Xy,), respectively).

Also, f is said to be strictly increasing (or deasimg) in | if, for X, Xo,
al,

X1 <X = f(Xy) £ f(xp) (or f(xy) 2 f(Xyp), respectively).
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Using these concepts, we say that f is an incrgdsimction at a point x
= c if, there exists & > 0 such that f is increasing in the interval f €
+o[.

Again, we say that f is a decreasing function gioapt x = c if, there
exists ad > 0 such that f is decreasing in the intervaldce +90 [.

Finally, f is said to be monotone or monotonic infleither it is
increasing in | or it is decreasing in I. We camifarly define strictly
monotone (or monotonic) functions.

Obviously the function f defined by f(x) Zn [0, 1] is an increasing
function. And, the function f defined by

f(x) = 1/x in [1, 2] is a decreasing function.

Now we give the significance of the sign of theiive of a function
at a point.

Meaning of the Sign of the Derivative at a point

It is often possible to obtain valuable informat@mout a function from
the knowledge of the sign of the derivative of adion.

We discuss the two according as the derivativeostpe or negative
le.,

f(x) >0 and f'(x) <0,

for some x in the domain of f.

Case (i) Let c be any interior point of the domfainb] of a function f.

Let f'(c) exist. Suppose f'(c) > 0.

This meandimr{x - c) f(x) f(c) =f'(c) > 0.

Thus, for a given ¢(0 < ¢ < f'(c)), there existsd & 0 such that

0<|x—c|d= f(x) f(c) f'(c) <e

ie., xOJc -6, ¢c+9[, x £ c = f(c) - f(X) f(C)

_ 109~ f(©)
X- C

< f(c) + ¢

> 0, by the choice of which is less than f'(c).
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Therefore, for all xJ]c, ¢ +9], f(x) > f(c)

and, for all x]c - 9, cl, f(x) <f(c). Thus, f increasing at x = c. Nole{
f'(c) < 0. Define a function @ as

@ (x) = -f(x),0 x O[a, b].

So o'(c) = -f(c) > 0. Therefore, using the abovevpd result, there
existsd > 0 such that

OxOc, c+d [, 8(X) > g(c)= f(x) < f(c).

and, xJ]c - 8 ,c[, 8(x) < g(c)=> f(x) > f(c).

Thus, fis decreasing at x = c.

We now consider the end points of the intervabl]a,

Case (ii) Consider the end point ‘a’. You can slasan case (1),
if f'(a) exists, there existsl > 0 such that

f'(a) > 0= f(x) > f(a), for x[J]a, a +9[,
and f'(a) < 0= f(x) < f(a), for x(]a, a +9],

Case (iii) Consider the end point ‘b’. You can shibat there existsd >
0 such that

f'(a) > 0= f(x) < f(b), for xO]b -, by,
and f'(b) < 0= f(x) > f(b), for xO]b - 5, b,
Consider the following examples to make the idearcl

Example 8
Show that the function f, defined on R by

f(x) = x* = 3¢ + 3x — 5,0 x OR.
is increasing in every interval.

Solution
Now f(x) = x¢ — 3¥ + 3x — 5. Therefore,

f(x) =3x*—6x +3=3(x— D

= f'(x) > 0, when x# 1.
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Let ¢ be any real number less than 1. Then f igimoous in [c, 1] and
f(x) > 0in]c, 1[. This implies that f is increeng in [c, 1].

Similarly, f is increasing in every interval ]1,,dyhere d is any real
number greater than 1. We find that f is increasingvery interval.

Example 9
Separate the intervals in which the function f dedi on R by f(x) = 2k
— 15¥ + 36x + 5,0 x OR, is increasing or decreasing.
Solution: Here f(x) = 2% — 15X + 36x + 5, therefore,
f(x) = 6x¢ — 30x + 36
= 6(X — 5x + 6)
=6(x—2)(x—3)
so that f'(x) > 0, whenever x > 3 or x < 2.

Thus, f is increasing in the intervalsd; 2] and [3,00].

Also f'(x) <0, for 2 < x < 3. Therefore, f is deasing in the interval [2.
3].

Now try the following exercises.
SELF ASSESSMENT EXERCISE 8

Separate the intervals in which the function, fijree on R by
f(x) = x> — 6 + 9x + 4,0 x OR,

IS increasing or decreasing.
SELF ASSESSMENT EXERCISE 9

Show that the function f, defined on R by
f(x) = 9 — 12x + 6% - X4, O x OR,

Is decreasing in every interval.
Let f be a function with domain as an interval R.
Let Iy = {xo OI: f'(x o) exists}. If I, # &, we get a function f’ with domain

[. We call f’ the derivative or the first derivagwf f. We also denote the
first derivative of f by { or Df.
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If we write y = f(x), xI |, then the first derivative of f(x) = y is also

written as% or y; or Dy.
X

Again let b = {t 01,0 f'(t) exists}. If |, # @, we get a function (')’ with
domain }, which we call second order derivative of f andate it by f’
or f,. We can define higher order derivative of f in #zane way.. In the
meantime, let us study the following example.

Example 10
Letf: R® R be defined as

£6) = {x“ siue)ifx # ﬂ}
Oifx=0
Show that ’(0) exists. Find its value.

Solution
For x# 0, clearly

f'(x) = 4x° sin (%) - X% cos (%)

while

o — i 1(X) - f(0)
PO) = 1lm==—5—

= lim x® sin(l) = 0.
X-0 X
Thus, we get

f(x) = 4% sin (%) - X% cos (%), if X #0

f(0) = 0.
Now f7(0) = lim W

_ o 4xPsin(d/ x)- X cos(1/ x
= lim .
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:Iirr(! 4x* sin(1/ x)- xcos(l/ x=0.

4.0 CONCLUSION

5.0 SUMMARY

In this unit, we have discussed the differenti&pilof a function.

domain, an open interval ]a, b[. lint{x = ©) M exists, then
the limit is called the derivative of f at ‘c’ ansl denoted by f'(c). If we

consider the right hand limitim—{x = c+) Mand it exists, then

it is called the right hand derivative of f at ‘@hd is denoted by Rf'(c).
f(X) f(C)

Likewiselim—+{x = c—) , If it exists, is called the left hand

derivative of f at c and is denoted by Lf'(c). Fothe definition of limit

it follows that f'(c) exists= Lf'(c) and Rf(c) both exists and Lf'(c) =
Rf'(c). If f is derivable at each point of the operterval ]Ja, b[, then it is
said to be derivable in ]a, b[. If the functionsf defined in the closed
interval [a, b], then f is said to be derivabletta left end point ‘a’ if
lm-(x = b) —f(x)z - ;(a) exists and the limit is called derivative of f at
‘a’ and denoted by f'(a).

Similarly, if lim—+{x = b-) Mexists, that f is said to e derivable

at ‘b’ and the limit is denoted by f'(b) and is leal the derivative of f at
‘b’. The function f is said to be derivable in [&,if it is derivable in the
open interval ]Ja, b[ and also at the end pointsaiad ‘b’. In the same
section, geometrical interpretation of the deriatis discussed and you
have seen that the derivative f'(c) of a functioatfa point ‘c’ of it
domain represents the slope of the tangent at ¢irg fc, f(c)) on the
graph of the function f. In section 11.3, the nelaship between the
differentiability and continuity is discussed. Wavle proved that a
function which is derivable at a point is contingothese at and
illustrated that the converse is not true alwalydas been proved that if
f and g are derivable at a point c, thes fg, fg are derivable at ‘c’ and
(f+ g)(c) =f(c) £ g'(c), (fg)'(c) = f(c) + f'(c) g(c). Further, if () #
g(c)f'(c)- f(c)g'(c)

[9(c)f

0, then f/g is also derivable at ¢ and (f/g’(c)

Also in this section, the chain rule for differextion is proved that is, if
f and g are two functions such that the range i&f ¢ontained in the
domain of g and f, g, are derivable respectivelycaf(c) then gf
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derivable at ¢ and (gof)'(c) = g'(f(c)).f'(c). Rels concerning the
differentiation of inverse function is discussedhie same section. If fis
one-one continuous function on an open intervald &l) = J and if f is
differentiable at x0 I, f(xo) # 0, then T is differentiable at I, (o)
+ 0, then T is differentiable at ¢= f(xo) O J and (f)'(yo) = fl(l "
XO
you have seen that a function f is increasing arefesing at a point ‘c’
of its domain if its derivative f'(c) at the poirgt positive or negative.

6.0 TUTOR-MARKED ASSIGNMENT
If f: R — R is defined as

f(x) =sin (sin x)U x O R,

then show that

f(x) + tan x f'(x) + cogx f(x) = 0.

7.0 REFERENCES/FURTHER READING
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UNIT 2 MEAN-VALUE THEOREMS
CONTENTS
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7.0 References/Further Reading

1.0 INTRODUCTION

In unit 1, you were introduced to the notion of idable functions.
Some interesting and very useful properties ar@caed with the
functions that are continuous on a closed inteaved derivable in the
interval except possibly at the end points. Thesepgrties are
formulated in the form of some theorems, called M¥alue theorems
which we propose to discuss in this unit. Mean #dheorems are very
important in analysis because many useful and f&gnk results are
deducible from them. First, we shall discuss thdl-lweown Rolle’s
theorem. This theorem is one of the simplest, lyetrhost fundamental
theorem of real analysis. It is used to establghmean-value theorems.
Finally, we shall illustrate the use of these tle®os in solving certain
problems of analysis.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. state Rolle’s theorem and its geometrical meaning

. deduce the mean value theorems of differentiablhyy using
Rolle’s theorem

. give the geometrical interpretation of the meameaheorems

. apply Mean Value theorems to various problems dalysis

. apply the Intermediate Value Theorem for derivatiand the

related Darboux Theorem.
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3.0 MAIN CONTENT

3.1 Rolle’s Theorem

The first theorem which you are going to study his tunit is Rolle’s

theorem given by Michael Rolle (1652-1719), a Frem@athematician.
This theorem is the foundation for all the mearugagheorems. First we
discuss this theorem and give its geometrical jm&gation. In the

subsequent sections you will see its applicatiornvdaous types of
problems. We state and prove the theorem as follows

Theorem 1: (ROLLE'S THEOREM)

If a function f: [a, b]> R is

0] continuous on [a, b],

(i)  derivable on (a, b),

and

(i) f(a) = f(b),

then there exists at least one real numher(a, b) such that f'(c) = 0.

Proof: Let sup. f = M and inf. f = m. Then there aremsic, dl [a, b]
such that

f(c) = M and f(d) = m.

Only two possibilities arise:

Either M = m or M£# m

Case (i): When M = m.

Then M = m= f is constant over [a, b]

= f(x) = kO x O [a, b], for some fixed real number k.
= f(x)=00x0[a, b].

Case (ii)): When Mt m. Then we proceed as follows:

Since f(a) = f(b), therefore, at least one of thenbers M and m, is
different from f(a) (and also different from f(b)).
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Suppose that M is different from f(a) i.e.,Mf(a). Then it follows that
f(c) # f(a) which implies that ¢ a.

Also M # f(b). This implies that f(c¥ f(b) which means & b. Since ¢
a and ¢£ b, therefore, €l]a, b[.

Therefore,
f(x) <f(c) O x O [a, b]

= f(c — h)<f(c)
for any positive real numbers in such that cZ &, b]. Thus,

fe+hr) - f)

0
kR

Taking limit as c— 0 and observing that f'(x) exists at each poirfx
]a, b[, in particular at x = ¢, we have

f'(c-)>0
Again, f(x) < f(c) also implies that

fic+ h)- f(9)_,
- <

for a positive real number h such that ¢ +1Ha, b]. Again on taking
limits as h— 0, we get f'(c+x 0.

But

f'(c-) = f'(c+) = f(c).

Therefore, f'(c-> 0 and f'(c+)< 0 imply that

f(c) £ Oand f'(c)>0

which gives f'(c) = 0, where Cl]a, b|[.

You can discuss the caseAmM(a) and m# f(b) in a similar manner.
Note that under the conditions stated, Rolle’s tbep guarantees the

existence of at least one c in ]a, b[ such thaf) £ 0. It does not say
anything about the existence or otherwise of mdrantone such
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number. As we shall see in problems, for a givethére may exist
several numbers c¢ such that f'(c) = 0.

Next, we give the geometrical significance of thearem.

VN /

V
>

X

x
(o

aQ x=q4 X =C

(@]
w
X

1

I

I
1 1
1 I
| 1
I
! 1

X=C X= X

(@] X=a

Fig. 2 Geometrical InterpretaFt'f“gn of Rolle’s Theorenm

You know that f'(c) is the slope of the tangenthe graph of f at x = c.
Thus, the theorem simply states that between twiopemts with equal
ordinates on the graph of f, there exists at lea&t point where the
tangent is parallel to the axis of X, as showrhmfigure 1.

After the geometrical interpretation, we now giveuythe algebraic
interpretation of the theorem.

Algebraic Interpretation of Rolle’s Theorem

You have seen that the third condition of the higpsts of Rolle’s
theorem is that f(a) = f(b). If for a function fothn f(a) and f(b) are zero
that is a and b are the roots of the equation=(R) then by the theorem
there is a point c of ]a, b[, where f'(c) = 0 whiefeans that c is a root of
the equation f'(x) = 0.

Thus, Rolle’s theorem implies that between two samtand b of f(x) =
0, there always exists at least one root ¢ of f¥x) where a < c < b.
This is the algebraic interpretation of the thearem

Before we take up problems to illustrate the usRalfe’s theorem you
may note that the hypothesis of Rolle’s theorermoabe weakened. To
see this, we consider the following three cases:

Case (i)
Rolle’s theorem does not hold if f is not continaon [a, b].
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For example, consider f where

if0 <x {1}

ke
Fb) = 1 0if x=1.

Thus, f is continuous everywhere between 0 andcémxat x = 1. So f
is not continuous in [0, 1]. Also it is derivative]0, 1[ and f(0) = f(1) =
0.Butf(x) =10x0]0, 1[.

Case (ii)

The theorem no more remains true if f' does nostegven at one point
in Ja, b[. Consider f where

f(x) = [x| OxO]-1, 1[.

Here f is continuous in [-1, 1], f(-1) = (1),
but f is derivablé] x (I ]-1, 1] except at x = 0.

—1,-1 <=x =<0
1,0 =« x =< 1.

Also flx) = {
Hence, there is not pointld]-1, 1[ such that f'(c) = 0.

Case (iii)

The theorem does not hold if f(&)(b). For example, if f is the function
such that

f(x) = xin [1,2], then

f(1) = 1# 1+ 2 =1(2).

Also f(x) =10 x U]1, 2[ i.e. there is no point@d ]1, 2[ such that f'(c)
=0.

Now we consider one example which illustrates beotem:
Example 1: Verify Rolle’s theorem for the function f definey
() fx)=x*-6X+11x—-60x0 [1, 3].

(i) f(x) =(x—-aj'(x—bf Ox0O [a, b] where m and n are positive
integers.

Solution:
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(i)

(ii)

Being a polynomial function, f is continuous df, 3] and
derivable in ]1, 3[.

Also f'(1) = f(3) = 0.
Now f'(x) = 3 —12x + 11 =0

i 1
S X=2+-——=,2- "~
NE

NE

Clearly both of them lie in ]1, 3.

f(x) = (x — a)"'(x — b)’

Obviously f is continuous in [a, b] and derivatinda, b.
Also f(a) = f(b) = 0.

Now f(x) = m(x — a)"* (x — b)' + n(x — aJ' (x — b)"* = 0 implies
that

x—a"t (x=by" [m(x=b) +n(x—-a)]=0
l.e. m(x—Db) + n(x—a) =0.

(As x# a or b : we want those points which are in ]a, bl)

a+mb}
m+n

Thus x =

Thus is point ¢ and it clearly lies in ]a, b[. Youay note from
example 1(i) that point c is not unique.

SELF ASSESSMENT EXERCISE 1

Verify Rolle’s theorem for the function f where
f(x) = sin x, xI [-211, 2.

SELF ASSESSMENT EXERCISE 2

Examine the validity of the hypothesis and the tasion of Rolle’s
theorem for the function f defined by

(@)
(b)

f(x) =cosxd x O [-W2,102]

fx) =1+ (x—1¥°0x0 [0, 2].
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Next we give an example which shows applicatioRolle’s theorem to
the theory of equations.

Example 2

Show that there is no real numidefor which the equation
x3 — 27x +A = 0 has two distinct roots in [0, 2].

Solution: Let f(x) = X — 27x +A.

Suppose for some value df f(x) = 0 has two distinct roat andf3 that
is f has two zerost andp, a #p in [0, 2].

Without any loss of generality, we can suppaeseg,(3.
Therefore, ¢, B] O [0, 2].

Now f is clearly continuous oru| (], derivable in Ja, B [ and f@) =

f(B) = 0.

Therefore, by Rolle’s theorerlcl]a, (], such that
F(c)=0

—3¢¢-27=0
—--9=0=>c=+3,

Clearly none of 3 Or — 3 lies in O, 2[, whence
-3 or 30] a, B[.

Thus, we arrive at a contradiction, hence, thelresu
SELF ASSESSMENT EXERCISE 3

Prove that between any two real roots’ofia x = 1, there is at least one
real root of &cos x + 1 = 0.

SELF ASSESSMENT EXERCISE 4

Prove thatif g a, ..., & 1 R be such that

a .
O .. a, = 0, then there exists at least one real
n+1 n n

number x between 0 and 1 such that
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ax"+ax"t+ ... +a=0.

Next examples show how Rolle’s theorem helps invisgl some
difficult problems.

Example 3 If f and g are continuous in [a, b] and derivalriela, b[
with g’ (x) # 0 O x OJa, b[; prove that there existd fa, b[ such that

f'(e) _ f(c)- ()
g 9(0)- g(c)

Solution: The result to be proved can be written as

f(c) g'(c) + f(c) g(c) —f(a) g'(c) —g(b) f'(c) &

the left hand side of which is the derivative o ttunction f(x) g(x) —
f(a) g(x) — g(b) f(x) at x = c. This suggests theat should apply Rolle’s
theorem to the function g where

2 (x) = f(x) g(x) - f(a) g(x) — 9(b) f(x).] x U [a, b].

Since f and g are continuous in [a, b] and derwabl]a, b[, thereforé

Is continuous in [a, b] and derivable in ]a, b[sé| g (a) = -g(b) f(a) = @
(b). So g satisfies all the conditions of Rolléiedrem. Thus, there is a
point c in ]a, b[ such that g°(c) = 0 that is

f(c) g'(c) + f(c) g(c) - f(a) g'(c) — g(b)f'(c) 0

i o f(c)- f(a) _ f'(c)
Tg(h)- 9€) g

which proves the result.
Example 4 If a function f is such that its derivative, & continuous

and on [a, b] and derivable on ]a, b[, then shoat tthere exists a
number cl ]a, b[ such that

f(b) = f(a) + (b — a) f'(a) % (b — af F(c).

Solution: Clearly the function f and f' are continuous ashetivable on
[a, b].

Consider the functiof where
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a(x) = f(b) — f(x) — (b — x) F(x) — (b — XA, O x O[a, b] where A is a

constant to be determined such that

@ (a) =a (b).

Of(b)—f(@)—(b—a)f(@—-(b-2=0

Now @, being the sum of continuous and derivablections, is itself

continuous on [a, b] and derivable on ]a, b[ asb & (a) = @ (b), for the
value of A given by (1).

Thus, g satisfies all the conditions of Rolle’sateam.

Therefore, there existslda, b[ such that g’(c) = 0.

Nowf ’(x) = -f'(x) + f'(x) — (b — x) f"(X) + 2(b — X)A

This gives 0 =@’(c) =-(b—c) f’(c) + 2(b — c)A
which means A % f’(c) since b+ c.

Putting the value of A in (1), you will get

f(b) = f(a) + (b —a) f'(a) % (b — af f'(c).

SELF ASSESSMENT EXERCISE 5
Assuming f” to be continuous on [a, b], show that
b-

f(c) - f(a) .¢

QmeE:Z:%@—m@—mﬁw)

where both c and d lie in [a, b].

Note that the key to our proof of the above exanijplend 4 and Self
Assessment Exercise 5 and many more such situat®tise judicious
choice of the function, g, and many students comparwith the

magician’s trick of pulling a rabbit from a hat.dhe can hit at a proper
choice of g the problems are more than half done.

3.2 Mean Value Theorem

In this section, we discuss some of the most usefuDifferential
Calculus known as the mean-value theorems giveim dma the two
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famous French mathematicians Cauchy and Lagraraggahge proved
a result only by using the first two conditionsRille’s theorem. Hence,
it is called Lagrange’s Mean-Value theorem. Caudayve another
mean-value theorem in which he used two functiorfead of one
function as in the case of Rolle’s theorem and &age’'s Mean-Value
theorem. You will see later that Lagrange’s theoisma particular of
Cauchy’s mean value theorem. Finally, we discussgimeralised form
of these two theorems. We begin with Mean-Valuetém given by J.
L. Lagrange [1736 — 1813].

3.3 Lagrange’s Mean-Value Theorem

If a function f: [a, b}> R is

0] continuous on [a, b] and

(i)  derivable on ]a, by,

then there exists at least on poinilja, b[ such that

f(b) - f(a) f(a)

(o) = —=-

Now the functiorg, being the sum of two continuous and derivable
functions is itself

0] continuous on [a, b]

(i)  derivable on ]a, b[, and

(i) @@ = a(b).

Therefore, by Rolle’s theorema real number €l ]a, b[
Such that, 4c) =0

But g(x) =f'(x) + A

So0=¢(c)=1(c) + A

which means that fc) = -A _f(b)- f(a) f(a)

b -

In the statement of the above theorem, sometimesdplaced by a + h,
so that the number c between a and b can be takar@h where 0 <9
< 1. According them, the theorem can be restatddllasvs:
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Let f be defined and continuous on [a, a + h] aadvdble on ]a, a + h|,
then there exist$ 0 <6 < 1 such that
f(a + h) =f(a) + hf'(a #h).

Certain important and useful results can be deddomu Lagrange
Mean-Value theorem.

We state and prove these results as follows:
You already know that derivative of a constant fiorc is zero.

Conversely, if the derivative of a function is zetioen it is a constant
function. This can be formalised in the followingyv

) If a function f is continuous on [a, b], deridalon Ja, b[ and f'(x)
=00 x O ]a, b, then f(x) = KJ x I [a, b], where k is some fixed
real number.

To prove it, letl be any point of [a, b].

Then [aA]O [a, b]

Thus, fis

)] continuous on [aA]

i) derivable on Ja)[

Therefore, by Lagrange’s mean value theor@m[] ]a, A[ such that

f)— fla

re=tru-a
Now f'(x) =0 O x O]a, b[

= f(x)=00x0a,A[

= f(c)=0

= f(l )=f(@UOA0O][a, b]

But A is nay arbitrary point of [a, b]. Therefore
f(x) =f(a) =k (say)d x I [a, b].

Note that if the derivatives of two functions aiual, then they differ
by a constant. We have the following formal result:
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1)) If two functions f and g are (i) continuous [ia, b], (ii) derivable
in ]Ja, b[ and (iii) f(x) = g'(x) O x O]a, b[, then f — g is a constant
function.

Proof: Define a function g as

a(x) =f(x) —g(x)d x O [a, b]

Therefore, 4dx) = 00 x [I ]a, b[ because it is given that

f'(x) = g'(x) for each x in ]a, b[

Also g is continuous in [a, b], therefore,

a(x) =k,0x0 [a, by,

where k is some fixed real number. This means that

f(x) —g(x) =kOx 0O [a, b]

le. (f—g) (X)) =kdx 0O [a, b].

Thus, f — g is a constant function in [a, b]

The next two results give us method to test whethegiven function is
increasing or decreasing.

[I) If a function f is (i) continuous on [a, b]ifiderivable on ]Ja, b[
and (iii) f'(x) > 00 x O ]a, b, then f is strictly increasing on [a,
b].

For the proof, let ¥ X, (x; < X)) be any two points of [a, b]. Then f is

continuous in [x X] and derivable in ] X X[, so by Lagrange’s mean
value theorem,

f(x,) - f(xy)

=f(c)>0,f <c<
XX, (c)>0,forxy<c<x

which implies that
f(X2) — f(Xy) > 0= f(x5) > f(xy) for x, > X,

Thus, (%) > f(xy) for X, > x;
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Therefore, f is strictly increasing on [a, b].

If the condition (iii) is replaced by'(k) > 0 O x U [a, b], then f is
increasing in [a, b] since you will get §{> f(x1) for x, > x;.

IV) If a function f is (i) continuous on [a, b] Jiderivable on ]a, b[
and (iii)

f'(x) <00 x O ]a, b[ then f is strictly decreasing on [a, b].

Proof is similar to that of Ill. Prove it yourself.condition (iii) in 1V is
replaced by {x) <00 x O ]a, b, then f is decreasing in [a, b].

The result lll and IV remain true if instead of [B] we have the
intervals [ao [, ] - o0, b], ]- o0, o [, Ja, 0 [, -0, b[, etc.

Note that the conditions of Lagrange’s mean vaheotem cannot be
weakened. To see this consider the following exaspl

1) Let f be the function defined on [1, 2] as folk

lifx=1
F) = {x’ 1f1,x,2}
2ifx=2

Clearly f is continuous on [1, 2[ and derivable]an?2[, it is not
continuous only at x = 2 i.e. the first conditioh leagrange’s
Mean Value theorem is violated.

f2)- 1Y) _, ., _
Also—2_1 =2-1=1

And f'(x) =2xforl1<x<?2
If this theorem is to be true then

f'x) = 1lie.2x=11i.e.x =% must lie in |1, 2fhich is clearly
false.

2) Let f be the function defined on [-1, 2] as
f(x) = |x|.

Here f is continuous on [-1, 2] and derivable &paint of ]-1, 2[
except at x = 0, so that the second condition @frhage’s Mean
Value theorem is violated.
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As

FG) = xif0 =x =2 }

—xif—-1=x=<10

lif0=x=2
=1 = [—1if—1=:x=‘:ﬂ

f(2)- f(-1) _2- (+1) _1
Also 2 D > =3
()- f(-1) |
SO thatz_—(_l) #f (X) for any xin ]-1, 2[

We may remark that the conditions of Lagrange’s nealue
theorem are only sufficient. They are not necesdarythe
conclusion. This can be seen y considering thetiomon [0, 2]

defined as:
f0 = =::1
oif 0 =x 2
&)= xa’f%ix:‘:%

X

S+ 11;’% =x =2
Forl <x<£,f’(x):1.
4 2

In particular, '(3/8) = 1.

Al =
S0 =%

f(2)- f(0) _2- 0 . .
—5=1=f@3B)

even though f is neither continuous in the interi@l 2] nor it is
derivable on ]0, 2|, since f is neither continuaus derivable at ¥ and
Ya.

Now you will see the geometrical significance ofgtange’s Mean
Value theorem.
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Geometrical Interpretation of Lagrange’s Mean ValueTheorem

Y

B(b, f(b))

Fig. 2

Draw the graph of the function f between the twinf®A(a, f(a)) and

B(b, f(b)). The numbew gives the slope of the chord AB.

Also f'(c) gives the slope of the tangent to thamr, at the point P(c,
f(c)). Thus, the geometrical meaning of Lagrandéé&an Value theorem
IS stated as above:

If the graph of f is continuous between two poidtsand B and
possesses a unique tangent at each point of tlie batween A and B,
then there is at least one point on the graph Ilyoetyveen A and B,
where the tangent is parallel to the chord AB.

Before considering example, we have another iné¢sion of the
theorem.

We know that f(b) — f(a) is the change in the fimtta as x changes
from a to b so that {f(b) — f(a)}/(b — a) is theexage rate of change of
the function over the interval [a, b]. Also(d) is the actual rate of
change of the function for x = c. Thus, the Lagelagmean value
theorem states that the average rate of changefohaion over an
interval is also the actual rate of change of thecfion at some point of
the interval.

This interpretation of the theorem justifies thenea'Mean Value’ for
the theorem.

Now we consider an example which verifies Lagrasgdean Value
theorem.
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Example 5 Verify the hypothesis and conclusion of Lagrasgeiean
value theorem for the functions defined as:

)

f(x) = % 0x 041, 4].

i) f(x)=logxOx0O[1,1 +%].

Solution:

(i)

(ii)

Here f(x) = 1/x; xI [1, 4].

Clearly f is continuous in [1, 4] and derivable iy 4[. So f
satisfies the hypothesis of Lagrange’s mean vaheorem.
Hence there exists a pointk]l, 4[ satisfying

o f(4)- ()

Mo ==

Putting the values of f and f’, you get
1 _1r4-1

c? 3

which gives €= 4 i.e. c =+ 2.

Of these two values of ¢, c = 2 lies in ]1, 4[.

Here f(x) = log x; xO [1, 1 + &'].

Clearly f is continuous in [1, 1 +and derivable in ]1, 1 +§.

Therefore, the hypothesis of Lagrange’s mean vdieerem is
satisfied by f. Therefore, there exists a point

cO]1, 1 + é'[ such that
o fa+ eh- f()
f =

(©) 1+ e’)- 1

Putting the values of f and f’, you get

log(1+ €')- log1

1

e

1_
c
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which gives ¢ = [e log(1 +8]*

You can use the inequality

1:_( ~<log(1 +X) <x (x>1) to see thatc]1, 1 + é'l.
SELF ASSESSMENT EXERCISE 6

Verify Lagrange’s mean value theorem for the fumrcti defined in [O,
n/2] where f(x) = cos xI x O [0, n/2].

SELF ASSESSMENT EXERCISE 7

Find ‘c’ of the Lagrange’s mean value theorem Far tunction f defined
asf(x) =x(x—1) (x -2 x 0[O0, 3].

Now you will be given examples showing the use afjlange’s mean
value theorem in solving different types of probgem

Example & Prove that for any quadratic function?lx mx + n, the
: . 1
value of6 in Lagrange’s mean value theorem is alwaﬁy,swhatever 1,

m, n, a and h may be.

Solution: Let f(x) = 1¢ + mx + n; xd [a, a + h].

f being a polynomial function is continuous in &+ h] and derivable in
]a, a + h[. Thus, f satisfies the conditions of taagge’'s mean value

theorem.

Therefore, there exists(0 <6 <1) such that
f(a + h) = f(a) + hf(a +6h)

Putting the values of f and f' you will get
l@a+hf+m@+h)=n=fa+ma+n+h[21(@®h)+m]
i.e.= 1 = 216K

which givesh = %2, whatever a, h, I, m, n may be.

Example 7:If a and b (a < b) are real numbers, then thergt®xa real
number ¢ between a and b such that

48



MTH 341 MODULE 1

(& + ab + B).

le

Solution: Consider the function, f, defined by
f(x) = x* O x O [a, b].

Clearly f satisfies the hypothesis of Lagrange’'samealue theorem.
Therefore, there existslt]a, b[ such that

f(c) = f(bt)) faEa)
which gives

3= _ppipa+a
b- a

i.e. 02:%(a2+ab+5) where a<c <b.

SELF ASSESSMENT EXERCISE 8

Show that on the curve, y =%% bx + ¢, (a, b, & R a# 0), the chord
joining the points whose abscissae are x = m anadxis parallel to the
tangent at the point whose abscissa is given bym = n)/2.

SELF ASSESSMENT EXERCISE 9

Let f be defined and continuous on [a — h, a +rd derivable on ]Ja — h,
a + h[. Prove that there exists a real nundpéd <6 < 1) for which

f(a + h) + f(a — h) — 2f(a) = hifa +6h) — f'(a -6h)].

With the help of Lagrange’s mean value theorem wae grove some
inequality in Analysis. We consider the followingaenple.

Example 8 Prove that sin x < x for 0 <xm/2.
Solution: Let f(X) = x — sin x; X x < /2.

fis continuous in [Ox/2] and derivable in 10g/2].
Also, f'(xX) =1 —-cos x>0, for 0 < x w/2.

Therefore, f is strictly increasing in [0/2], which means that
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f(x) > f(0) for 0 < x<x/2. (Using corollary Ill of Lagrange’s mean value
theorem) i.e., X — sin x > 0, for 0 <<xu/2.

We can also start with the function g(x) = sin x,4or 0<x <m/2. Then
we have to use corollary IV of Lagrange’s mean @dheorem to arrive
at the desired result.

Example 9: Prove that tan x > x, whenever 0 < x/2.

Solution: Let ¢ be any real number such that 0 <@/ Consider the
function f, defined by f(x) = tan x — x] x [0, c].

The function f is continuous as well as derivabid@ c].
Also, f(x) = seéx — 1 = tafix > 0,0 x )0, ¢[

Thus, f is strictly increasing in [0, c].
Consequently, f(0) < f(cx 0 < f(c),

which shows that 0 < tan x — X, when x = c.
This implies, tan x > x, when x = c.
Since c is any real number such that 0 <n¢Z; therefore,

tan x > X, whenever 0 < x=2.

Example 1Q Show tha

X

< +X) < > 0.
t1+ ” log (1 +x)<xdx>0
Solution: Let f(x) = x —log (1 + x), % O.

1 _ X
1+ x 1+ x°

Therefore, f(x) =1 -

Clearly, f(x) > 0, for x > 0.

Therefore, f is strictly increasing in [@]. Therefore,
f(x) >f(0)=0,0x>0

l.e.,, x>log (1 +x)[1x>0

l.e., log (1 +x) <x[dx>0.

X
1+ x

Again, let g(x) = log (1 + x) , X>0. Then
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1 1 _ X
1+ x (L+ x) @1+ x)°

g'(x) =

Clearly, g(x) >0 x>0

: X
e., | 1+X)>——,0x>
l.e., log (1 +x) 1 x' x>0

I.e

_ < +x)," x>0.
T+ x log (1 +x)," x>0

SELF ASSESSMENT EXERCISE 10
Prove that

)  x-—x <tan'x, ifx>0;and

i) e*>1-x,ifx>0.

Cauchy generalized Lagrange’s mean value theoremudiyg two
functions as follows.

3.4 Cauchy’s Mean Value Theorem

Let f and g be two function defined on [a, b] sticht

)] f and g are continuous on [a, b]

i) f and g are derivable on ]a, b[, and

i)  g'(x) #00x 0 ]a, bJ,

then there exists at least one real numbeéra, b[ such that

f'(c) f(b) - f(a)
g(c) g(b)- gfa,

(This is also known as Second Mean Value Theorembitferential
Calculus.)

Proof: Let us first observe that the hypothesis impijés) # g(b)
(Since g(a) = g(b), combined with the other twaditions h has,

means g satisfies the hypothesis of Rolle’s theoif@ms, there exists ¢
0 ]a, b[ such that gdc) = 0, which violates condition (iii)).
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Let a functionf be defined by

a(x) =f(x) + Ag(x)d x O [a, b],

where A is a constant to be chosen such that

(a) = 2(b)

l.e. f(a) + Ag(a) = f(b) + Ag(b)

which gives

A = -{f(b) - f(a)} / {g(b) — 9(a)}-

A proved above, g(b) — g(&)0).

New (1)f is continuous on [a, b], since f and g are so,
(2)f is derived on ]a, b[ since f and g are so,

and (3)f (a)=f (b).

Thus, g satisfies the conditions of Rolle’'s thear@mmerefore, there is a
point c] Ja, b[ such that'gc) =0

which means that f'(c) + A¢gc) =0

[@__,_ [0- @

i.e

T g T og® - g’
Alternative Statement of Cauchy’s Mean Value Theors
If in the statement of above theorem, b is repldogd + h, then the

number clJ ]a, b[ can be written as a6h where 0 <6 < 1. The above
theorem then can be restated as:

Let f and g be defined and continuous on [a, a,«létivable on ]a, a +
h[ and d(x) # 0 x O ]a, a + h[, then there exists a real nuntbhé <6
< 1) such that

f@+6h) _ fla+h- f@
g+ 6r) gla+h)— gla)

As remarked earlier, Lagrange’s mean value theorambe deduced
from Cauchy’s mean value theorem in the followirayw
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In Cauchy’s mean value theorem, take g(x) = x. Thg¢x) = 1 and
have d(c) = 1. Also, g(a) = a, g(b) = b. Result of Caucmgan value
theorem becomes

f(b) - f(a) _ ..
“boa O

This holds if (i) f is continuous in [a, b] and)(fi is derivable in ]a, b[
which is nothing but Lagrange’s mean value theorem.

Note that you might be tempted to prove Cauchy'smealue theorem
by applying Lagrange’s mean value theorem to treftmctions f and g
separately and then dividing. The desired resuihota be obtained in
this manner. In fact, we will obtain

) - f@)
cz g®)- gl@’

where ¢ [ ]a, b[ and ¢ [ ]Ja, b[. Note that here,ds not necessarily
equal to 6.

As in the case of Rolle’s theorem and Lagrange’smealue theorem
we give geometrical significance of Cauchy’s medsotem.

Geometrical Interpretation of Cauchy’s Mean Value Theorem

The conclusion of Cauchy’s mean value theorem neaytitten as

e A e e

This means

slopeof thechordjoining (a,f @) and (b, f (b))
slopeof the chord joining (a,g9(@)) and (b,g(b))

_ slopeof thetangentto y =f(x) and (c,f(c))
slopeof thetangentto y = g(x) and (c,g(c))

Suppose that two curves y = f(x) and g = f(x) aoatmually drawn
between the two ordinates x = a and x = b a showthe Figure 3.
Suppose further that the tangent can be drawndb ehthe curves at
each point lying between these abscissae and newduss the tangent
to the curve, y = g(x), between these abscissagnheparallel to the X-
axis. Then there exists a point ¢ between a angch that the ratio of

53



MTH 341 MODULE 1

the slopes of the chords joining the end pointthefcurves is equal to
the ratio of the slopes of the tangents to theesiat the points obtained
by the intersection of the curves and the ordiaate

y =19 4

4
4

Y

Vi /
Va V4

/ y= g(X)j% X

O Xx=a X=c x=b

Fig. 3

As in the case of Rolle’s theorem and Lagrangesamvalue theorem,
we now give examples concerning the verification application of
Cauchy’s mean value theorem.

Example 11: Verify Cauchy’s mean value theorem for the funcsid
and g defined as f(x) Zxg(x) = X O x 0[2, 4].

Solution: The function f and g, being polynomial functionse a
continuous in [2, 4] and derivable in ]2, 4[. Alg{x) = 4 # 0 O x
]2, 4[. All the conditions of Cauchy’'s mean valubedrem are
satisfied. Therefore, there exists a poift |2, 4[ such that

f(4)- 1(2) _ f'(0)
g4)- 92 g'(c)

. 12 2c
Le.— = —

24C  4c®
.e.c =+ 410

c =+/10 liesin ]2, 4]
So Cauchy’s mean value theorem is verified.

Example 12: Apply Cauchy’s mean value theorem to the functibns
and g defined as f(x) Zxg(x) = xO x O [a, b],

And show that ‘c’ is the arithmetic mean of ‘a’ aihd
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Solution: Clearly the function f and g satisfy the hypoieed Cauchy’s
mean value theorem. Therefore:

f(b) - f(a)

© _ i(b)- f(a)
OcO Ja, b[ such tha&g'(ic) ~g(b)- g(@)

Putting the values of f, g, f', g’ we get

2c _b*- &
— = =b+a
1 b- a
1
c=-(a+b
= 2( )

which shows that c is the arithmetic mean of ‘ad &

Sin & — 5in f§
Example 13:Show thatcos 5 — cos a

= cotf.
Where 0 <0 <0 < <m/2.

Solution: Let f(x) = sin x and g(x) = cos X.
Wherex e [o, f] =10. nf2].

Now f'(x) = cos x and g'(x) = -sin x

Functions f and g are both continuous anlp], derivable on ]Ja, b[,
andd(x)#00x0] a, bl.

By Cauchy’s mean value theorem, there eXisis]a, B[ such that

sin f—sina  cotd
cosff—cosa —sinf

Sin & — 5in B

— = coté.
cosf§—cosc

SELF ASSESSMENT EXERCISE 11

Verify the Cauchy’s mean value theorem for the fioms, f(x) = sin X,
g(x) = cos x in the interval /2, 0].

SELF ASSESSMENT EXERCISE 12

55



MTH 341 MODULE 1

Let the functions and f and g be defined as : (&f and g(x) = &, 0 x
O[a, b].

Show that ‘c’ obtained from Cauchy’'s mean valueotken is the
arithmetic mean of a and b.

SELF ASSESSMENT EXERCISE 13

Let f(x) = Vx and g(x) = W/x, O x O [a, b] given that 0 < a < b.
Verify Cauchy’'s mean value theorem and show thabtained thus is
the geometric mean of a and b.

The following theorem generalises both Lagrangai @auchy’s mean
value theorems. In this theorem, three functiorgs fy is involved. Both
Lagrange’s and Cauchy’s mean value theorems aspéisial cases.

35 Generalised Mean Value Theorem

If three functions, f, g and h are continuous inlfpand derivable in ]a,
b[, then there exists a real number ¢a. b[ such that

f'©) g h(©
f@ 9@ h@|=0.
f(b) gb) h(b)

Proof: Define the functiong, as

f(x) g(x) h(x)
g(x)=f@ 9@ h@E)
f(b) g(b) h(b)

for all x in [a, b].

Since each of the functions f, g and h is contisuon [a, b] and
derivable on ]a, b[, therefore @ is also continuonga, b] and derivable
on Ja, bl.

f@ 9@ h@E)
g@ |f@ g@ h@) = 0, since two rows of the determinant are

f(b) g(b) h(b)
identical.
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Similarly, g(b) = 0.

Thus, g(a) = g(b0.

Therefore, g satisfies all the conditions of Rallgieorem.

So there exists @ ]Ja, b[ such that

@' (c) =0.

') gx) h(x)

gxX)=|f@ g@ h@| OxO]a,b.

f(b) gb) h(b)

f'© g@© h(©

Sod(c)=|f@ g@ h@]| =0.

f(b) gb) h(b)

which proves the theorem.

Now we show that Lagrange’s and Cauchy’'s mean véleerems are
deducible from this theorem by choosing the fumtiband g specially.

(i)

First we deduce Lagrange’s mean value theoreomfthe
generalized mean value theorem.

Take g(x) = x and h(x) =l x O [a, b],

so that
f(x) x |
a(x) = f@ a |
f(b) b |1
f'(x) |
>gXxX)=|f@ a I|=f(X) (a-Dhb)-I[f(a)-"f(b)]
f(b) b |
Now @(c) = 0 gives f(c) :w which is Lagrange’s

mean value theorem.

Next, we deduce Cauchy’'s Mean Value Theoremmfrthe
Generalised Mean-Value Theorem
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Take h(x) =10 x O [a, b]

f(x) o) |
Sothatg(x) 3f(@ g@ |

f(b) gb) |

f'(x) g(x)
=a()=|f@ 9@ I=F(x)l9(a)-g(b)]-gX)f(a)—f(b)]
f(b) o) |

Now f '(c) = 0= f'(c) [g(a) — g(b)] — () ) [f(a) - f(b)] = O
f'(c) _f(b) - f(a)

g© ob)- g@a)
Ja, b.

provided d(x) # O for x [

which is the Cauchy’s mean value theorem.
3.6 Intermediate Value Theorem
We end this unit by discussing Intermediate Valueedrem for

derivatives. There is an Intermediate Value Theoifer derivable
functions, which we now state and prove.

Theorem 5: (Darboux) Intermediate Value Theorem forDerivatives

If a function f is derivable on [a, b] and f'(&)f'(b), then for k lying
between f'(a) and’{b), there exists a pointl¢ ]a, b[ such that’{c) = k.

In case, ¢(a) < 0 and ¢b) > 0, then
-g’(a) >0 and —g’'(b) < 0.

Therefore, at some pointlic ]Ja, b,
-g'(c)=0or—f(c)+k=0i.e.f(c) =k.

Theorem 5 is due to French mathematician, J. Gbder [1842 —
1917], which is useful in determining the maximurmanimum values
of a function. This is popularly known as Darboue®rem. Another
important result, which is a particular case of laux’s Intermediate
Value Theorem, is as given below:

Theorem 6
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Let f be derivable in [a, b]. If'fa) and f(b) are of opposite signs, then
there exists a pointid ]a, b[ such that'{c) = 0.

Proof: Since f'(a) and f'(b) are of opposite signs, #fere, one of {a)
or f'(b) is positive and other is negative. Take=l0 in the Darboux
Theorem. You get a pointld]a, b[ such that f’(c) = O.

An immediate deduction from above theorem is th#te derivative of
a function does not vanish for any point x in ]g,then the derivative
has the same sign for all x in ]a, b[. This is moun the following
example.

Example 14

If f is derivative in ]a, b[ and f'(x} 0, 0 x []a, b[, then f(x) retains the
same sign, positive or negative, for all x in ]a, b

Solution

If possible, suppose xx, []a, b[, % < X are such that x,), f'(x) have
opposite signs. By Theorem 6, there exists a poiaf X1, X[[]a, b[
such that f(c) = 0, which is a contradiction. Hencéx)) retains the same
sign, for all x in ]a, b[.

4.0 CONCLUSION

5.0 SUMMARY

In this unit mean value theorems of differentidpihave been proved. I.
According to this theorem: if f: [a, b} R is a function, continuous in
[a, b]. derivable in ]a, b[ and f(a) = f(b), therete is at least one point ¢
OJa, b[ such that’{c) = 0. The geometric significance of the theoism
also given. Geometrically, on the graph of the fiorcf, there is at least
one point between the end points, where the tariggydrallel to the x-
axis. It states that if a function f: [a, B} R is continuous [a, b] and
derivable in ]a, b[, there is at least one poininc]a, b[ such that
f(b) - f(a)

W = f,(C)

An important consequence of the theorem is thiisifcontinuous on [a,
b] and derivable on ]a, b[ with (k) = 0 on ]a, b[, then f is a constant
function on [a, b]. Another important deductionrfrahe theorem is that
if f i continuous in [a, b] and derivable in ]a, thlen (i) f is increasing or
decreasing on [a, b] according a f'&)0, O x O ]Ja, b[ or f(x)< 0, [0 x
OJa, b[ (i) f is strictly increasing or strictly deeasing in [a, D]
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according as f'(x) > 0l x O]a, b[ or f(x) < 0,0 x O ]a, b[. Applying
these results, some inequalities in real analysseatablishe It states
that if f and g be two functions from [a, b] to Rch that they are
continuous in [a, b], derivable in ]a, b[ and)g # 0, 00 x Ja, b[, then
f(b)- f(a) _ f'(c)
g(b)- 9(@) g©
Lagrange’s mean value theorem is particular cas€afchy’s mean
value theorem if we choose the function g as g(x)&=x [ [a, b].

there exists at least one point c in ]a, b[ suctt

You have seen that it is also established with b of Rolle’s
Theorem. According to this theorem, if f, g, h beete functions from [a,
b] to R such that they are continuous in [a, bjwddale in ]a, b[, then
there exists at least one pointlfa, b[, such that

f'© g@© h@E)
f@ og@ h@ =0
f(b) g(b) h(b)

Both Lagrange’s mean value theorem are particuses of this
theorem. If you take g(x) = x and h(x) #1 x O [a, b], then you get
Lagrange’s theorem from it. Cauchy’s mean valuertke follows from
this general theorem if you take only h(x) B k I [a, b].

Finally, in this section, Intermediate Value Theuoréor derivatives is
given according to which if f is derivative in [lal, f'(a) * f(b) and k is
any number lying between f'(a) and f'(b), then thexists a point €l
]a, b[ such that f'(c) = k. From this follows Danpo Theorem namely, if
f is derivative in [a, b] and'fa) f'(b) < 0, then there is a point c in ]a, b[
such that f'(c) = 0.

6.0 TUTOR-MARKED ASSIGNMENT
Two functions f and g are defined as:
f(x) = x*and g(x) =¥, O x O [a, b], given that @ [a, b].

Apply Cauchy’s mean value theorem and show thdius bbtained is
the harmonic mean of a and b.

7.0 REFERENCES/FURTHER READING
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UNIT 3 HIGHER ORDER DERIVATIVES
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1.0 INTRODUCTION

In unit 2, you learnt Rolle’s theorem and have skew to apply this
theorem in proving mean value theorems. In Thesertms only the
first derivative of the functions are involved. tims unit, you will study
the application of Rolle’s theorem in proving thexms involving the
higher order derivatives of functions.

Given a real function f(x), can we find an infingeries of real-numbers
say of the form@+ aX + & + ..oeeevn.....
whose sum is precisely the given function?

To answer this question we have to approximate retion with an

infinite series of the above form which is also Wwmoas the infinite

polynomial or power series. This approach of appnaxing a function

was known to Newton around 1676 but is was develdge by the two
British mathematicians Brook Taylor [1685 — 173tfis&5. C. Maclaurin
[1698 — 1746]. The functions which can be repre=gass infinite series
of the above form are some of the very specialtfans.

Such a representation of a function requires a murob derivatives of
the functions i.e. the derivatives of higher ordpasticularly at x = 0
which we intend to discuss in this unit.

Some work done by Taylor in this direction has fdurecent

applications in the mathematical treatmentPtiotogrammetry — the
science of surveying by means of photographs taken from an aeroplane.
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Besides, we shall also demonstrate the use ofatems for finding the
limits of indeterminate forms and the maximum andimum values of
functions in this unit.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. state theorems involving higher order derivatives Waylor's
theorem

. expand functions in a power series viz. Maclaurggses

. evaluate the limits of indeterminate forms

. find the maximum and minimum values of functions.

3.0 MAIN CONTENT

3.1 Taylor's Theorem

In this session, we shall discuss the use of Rolleéorem in proving
theorems involving higher order derivatives of fumcs. Before proving
these theorems, you will be introduced to the iofehigher derivatives
through the following definitions:

Definition 1: Higher Derivatives

Let f be a function with domain D as a subset of &.D, # @ be the set
of points of D at which f is derivable. We get dmat function with
domain O such that its value at any point ¢ of D, i&kf. We call this
function the derivative of f or first derivative$ foand denote it by’f If
the derivative of " at any point c of its domain &xists, then it is called
second derivative of f at c and denoted '§g)t If D, # @ be the set of all
those points of D at which f' is derivable, we get a function with
domain B such that its value at any point c of B f (c). We call this
function second derivative of f and denote if by $imilarly we can
define 3 derivative f and in general, the nth derivative 6f the
function f.

The following example will make the definition clea

Example 1: Find the nth derivative'fof the function f : R— R defined
by f(x) = [x| Ox OR.

Solution: You already know that this function f is derivaldverywhere
in R exceptatx =0
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Now f(x) = _x ;}Z ; x:_:iu[]
1
and f*() = 1U:fxx}=~:nn

So the first derivative f' is a function with domalR ~ {0}. Since f(x) =
1 for x > 0, f is a constant function on ]6g[. Since derivative of a
constant function is 0, therefore f' is derivabteath points in ]0,00[ and
f(x) =00 x 0 ]0, oo[.

Likewise, f(x) =00 x 0] - oo, 0.

So the second derivativer is a function with domain R ~ {0}.
Continuing like this, you will get

f*(x) = 0 and in general for n > 1'(¥) =00 x O R ~ {0}.

So you find that f and in general for n > 1jd a function with domain
R ~ {0}

SELF ASSESSMENT EXERCISE 1

Find the nth derivative f” of the function f : R [ - 1, 1] defined by
f(x) = sin x.

Now we give a theorem known as Taylor's theorencivimvolves the
higher derivatives of a function.

Theorem 1: (Taylor's Theorem with Schlomilch and Rche form of
Reminder)

If a function f : [a, b} R is such that
i) its (n -1)th derivative, ™" is continuous on [a, b];
1)) its (n -1)the derivative is derivable on ]a, b[
then there exists at least one real rurohbl]a, b[ such that
i) = ) + (- 2) ¥a) + 2 1oy +

Lb-a) (b- ay(b- ¢
1T " (a) + SO " (c),

p being a positive integer.
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Proof: By hypothesis, f, ', ..., ¥ are all continuous in [a, b] and
derivable in ]a, b[. We define a function g, onlj},as follows:

—_ ( = X) (b - X)n- ! n-
a(x) = f(b) — f(x) — (b — x)f'(x) - @ - T fn-)
(b- x)

where A is a constant to be determined such tha} &(g(b). It is
obvious from (1) that g(b) = 0. Now

(@) = 1(6) - f2) - (b - a2 A @) - .- & A,

Therefore, g(a) = g(b) =6

(b a)2 (b ay " (n-1)
A=f(b)-f(@) - (b-a)f(@) —F— f(a) - (n- 1),f @. (@

i) @ is continuous in [a, b], since f, f.., " and (b — ), for all
positive integers p, are all continuous in [a, b];

i) @ is derivable in [a, b[, since f,,f..., {"Y and (b — %, for all
positive integers p, are all derivable in ]a, bida

i) @ (a) =g D).

Therefore, by Rolle’s Theorerlc [I ]a, b[ such that'gc) = 0

_(b- )" (b- x)y*
Now, g(Xx) = —(n Y f(x) + Ap —(b Ty
which gives A =2 9" "(0-_aJ 1wy

p.(n- 1)!

Substituting this value of A in (2), we obtain,
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f(b) = f(a) + (b — a) f(a) )2 f’(@) + ... + %

This completes the proof of the theorem.

The expression,

_(b- af(b- I
Ry= = T 1O @

which occurs in (3), after n terms, is called Ta@aemainder after n
terms. The form (4) is called Schlomilch and Rofdren of remainder.

From this we deduce two special forms of remairadier n terms.

) Take p=nin (4),
R, = (b- ay aT (n)( o).

This is caIIed Lagrange’s form of remainder.

i) Take p=1in (4),
R _(b- a)(b- c)*
n (n- 1!

This is called Cauchy’s form of remainder.

f"(c).

The Taylor's theorem with Lagrange’s form of rendg@instates:

If a function f defined on [a, b] be such th4t¥is continuous on [a, b]
and derivable on ]a, b[ théna real number €l Ja, b[ satisfying

fb)y=f@)+(b-a)f (a) )2 f'(@) + ..... + ... +
f(n-l)(a) + (b-n—laj] f(n)(C) (5)

Alternative form of Taylor's theorem with Lagrange’form of
remainder is obtained if instead of interval [a, W have the interval
[a, a + h].

If we put b = a + h then we can write ¢ = & i for somed between 0

and 1 and the theorem can be restated as:
If f"Vis continuous on [a, a + h] and derivable on }&,H, then
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f(a + h) =f(a) + hf(a) + hz—l f'(a) +...+ ﬁf(”'l)(a)

+ P(a+ ah), ©)
n!

for some reab satisfying 0 <0 < 1.
Now, let x be nay point of [a, b]. If f satisfielset condition of Taylor’s

theorem on [a, b], then it also satisfies the ctoliof Taylor's theorem
on [a, x|, where x > a. Therefore, from (5), we &dav

100 = i) + (x - )f(a) + E 2L ) +..+ X8 s

where c is some real number in ]a, X|.

Note that (7) also holds when x = a because, tigmreduces to the
identify f(a) = f(a), as the remaining term on tight hand side of (7)
vanish.

You may note that we can have forms similar to (6),and (7) for
Taylor's theorem with Cauchy’s form of remainder.

If in Taylor's theorem, we take a = 0, then we gegheorem known as
Maclaurin’s theorem. We give below, Maclaurin’s dhem with
Lagrange’s and Cauchy’s form of remainders. You edsp write
Schlomilch and Roche form of remainders.

Theorem 2: (Maclaurin’s Theorem with Lagrange’s Fom of
Remainder)

If f be a function defined on [0, b] such th&f't is continuous on [0, b]
and derivable on [0, b], then for each x in [0, thlere exists a real
number ¢ (0 < ¢ < x) such that

f(x) = f(0) + xf"(0) + XEZ f(0) + ... + —nx 11! ") + %fm)(c).

You may note that
Xn

R =% 1) =X f(ax) (0<a<1),

in case of Lagrange’s form of remainder and
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X(x- ¢)"*

(n- 1)1 )

Rn(X) =

_Xn(l' q)n_l n
‘Wf()(QX)(O<q<l),

in case of Cauchy’s form of remainder.

By applying Taylor's theorem or Maclaurin’s theorealso we can
prove some inequalities of real analysis. Earlierthe last unit, you
were given a method of proving the inequality cammning the sign of
derivative of some function. Consider the followgample now.

Example 2: Using Maclaurin’s theorem, prove that

X2
COS X > 1-7,DXDR.

Solution: For x = 0, result is obvious. Now, let x > 0 asahsider f(t) =
cos t. Then f has derivatives of all orders, fort & R. By Maclaurin’s
theorem with remainder after two terms appliedito[D, x],

2
f(x) = f(0) + x F(0) + % f(0x) where 0 <0 < 1.

Putting the values of f, ff” we have

X2
cosx=1 w3 cos (x).

X2 X2 X2
Now cosbx <1 and so 1 E CosSQgx > ) i.e.cos x> 1 - >

If x < 0, then — x > 0 and therefore, cos (3x)1 — (1 — x§

2 2

thatiscos&l-%.Hence, cos % 1-% Ox0OR.

SELF ASSESSMENT EXERCISE 2

Using Maclaurin’s theorem, show that

3 3 5

X . X X
X-—<sinx<x~— +—, forx>0; and

3 3 8
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3 3 5

X . X X
X-—>sinx>x-— +—, forx>0.

3 3 8

Now you will see how to find the Maclaurin’'s expas of certain
elementary functions of the typ€, sin x, cos x, (1 + X)and log (1 + x)
in terms of an infinite series (power series) @% ax + ax® + ..., with
the help of Taylor's and Maclaurin’s theorems.

We have seen before that

f'@) + ... + % ") +

(x- ay
21

f(x) = f(a) + (x — a)f(a) +
Rn(X),
where R(X) is the Taylor's remainder after n terms. Put

(x -
2!

(x- ay "

(n- 1)!

S(x) = f(a) + (x — a)f(a) + ay (@) +...+ f"Y(a).

Then, f(x) = &(x) + Ry(x). (8)

A natural question arises as to whether we canesspi(x) in the form
of the infinite series

(x- a)’

(n-1
(n- D1 " a) + ... (9)

fa)+ (x—a)f(a) + ...+
and if so under what conditions? This question loarsplit up in the
following situations:

) Under what conditions on f is each term of tedes defined?

1)) Under what conditions does the series (9) coge@

i)  Under what conditions is the sum of the se(f@s f(x)?
We examine these now one by one.

) Each term of the series (2) is defined if"f(f) exists for all
positive integers n.

i) Assuming f(a) existsd n, we have from (8), .S= f(x) — R(X)

(assuming the conditions for Taylor's theorem aaéisfed in
some interval [a, a + h])
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From this, it follows that <S> converges if imr(n = @) R (x)
exists and the series (9) convergedlifnfr(n — @) R (X) exists.

i)  Assuming series (9) converges, we find fronoad that its sum
f(x) -limr(n —» @) R (X).

Now f(x) -limr(n » @) Ry(x) = f(x) if f lim(n = @) Ry(x) =0,

showing that the series (9) converges to f(x)tifafr(n = «) R (x) =0,
showing that the series (9) converges to f(x)lifnfr(n - ®) R,(x) = 0.

Summing up the above discussion, we have the folipwesults.
Theorem 3:1f f : [a, a + h]— R be a function such that

) f(”)(x) exists for each positive integer n, for alll§a, a + h].
i) limr(n - ) R(x)=00x0][a, a+h],

Then

B ooy L (X - a2, (x- a)™*
f(x) = f(@) O (x — a) f'(a) +Tf (@) +...+ RN

for every xJ [a, a + h].

This is called Taylor's infinite series expansidri(g). We also
sometimes call it the expression for f(x) as a posegies in (x — a).

We give an example to illustrate Taylor’'s seriesgdunction.

Example 3: Assuming the validity of expansion, show that

) _ -3
+;£ 4(1+"'13—;)L

+.......¥x eR

=
|
=] 5
R

tanix = tant

Solution: Let f(x) = tari'x
= tafi(n/4 + x -7/4)

Here a =/4), h = x -n/4.

f"(x) existsl] x and( n.

, 1 .
NOWf(X):m,f(X):'
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) —_— 1 1 — p
f(n/4)—m,f(p/4)— 2(1+ p2/16f’ .....

By Taylor’s series,
) h2 1
fla+ h)=f(a) + hf(a) +§ f'(a) + ....

Putting the values of f, f', ", ..... , We obtain

X- p/l4 p(x- play
1+ p?/16 41+ r*/ 16}

tanix = tan® % +

SELF ASSESSMENT EXERCISE 3
Assuming the validity of expansion, expand cos gowers of (X -t/4).
If you put a = 0 in the Taylor’s series you willtgke following result.
Theorem 4:Letf: [0, h]— R be a function such that
) f"(x) exists for every positive integer n and forfead] [0, h];
i) lim—r{n - @) R (x) = 0, for each XJ [0, h].

2 n
Then f(x) = f(0) + xf'(0) +% (0) + ... + % fM(0) + ,...., for every x
0 [0, h].
This series is called the Maclaurin’s infinite gsrexpansion of f(x).
Note that Taylor’s series remains valid in the imé [a — h, a + h] and
Maclaurin’s series remains valid in the intervdd,[h] also provided the
requirements of the expansion are satisfied inrttegvals.
You may also note that one may consider any formeofainder R(x)
in the above discussion. We shall now consider Blaah's series

expansions of the functions, €os x and log (1 + x).

Example 4: Find the Maclaurin series expansion &f@s x and log (1
+ X).
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Solution: Expansion of &

Let f(x) = & O x O R. Then f(x) = &, O x O [-h, h], h > 0 and for all
positive integers n. In other word§)(k) exists for each n and for all x
in R.

Let us now consider the limit of the remainder,(XR Taking
Lagrange’s form of remainder, we have

_ X" _ X" ok
Rn(X)—mf (qX)—me (0<a, ).

n

So,lim{n -+ =) R.(X) = lim-{n — o) % eek_

n

. X
But, limr{(n —» =) - = 0 as shown below:

X
Letu,= n!,then
lim-r(n - 00) Unti — lim(n - o) 'X'1 =0, if x#£0.

n

So, by Ratio tesfy|u,| is convergent and, therefofguy, is convergent
and consequently

n

lim(n - )y, = limr(n - w) % =0, if x#0.

n

If x = 0, then alsdimr{n - o) % = 0. Thereforelimr{n = @) R (x) =
0. |

Thus, the conditions of Maclaurin’s infinite expasare satisfied.

Also, f(0) = 1 and®(0)=1,n =1, 2, .... Hence

f(x) = f(0) + xP(0) + % £(0) + ...
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Expansion of cos x.

Let f(x) = cos x,d x O R.

T
Then f(x) = cos (x ¥z ), forn =1, 2, ...

Therefore, f(0) = 1 and™(0) = cos (m/2), " n.
Clearly f and all its derivatives exist for all tea

Taking Lagrange’s form of the remainder,

Ro() = 2 10(0x)

X" nr
:m cCos Px +2)

Therefore R, (X)| = % _‘COS(qXJ, n_zp*
Sm —0asn- o, OxOR.

Thus, the conditions of Maclaurin’s infinite exparsare satisfied.

T
From {”(0) = cos(nT], we get

(Zm+ 1w
fem1X0) = cos( 2 ) =0 and $™(0) = cos ((2my/2) = cos m =
-1

Substituting these values in the expansion, we have

X2n

@) - L UXOR.

Cos x = -X—+—+—+....+(-15‘

Expansion of log (1 + X)
Let f(x) =log (1 + x) for -1 < x< 1.

_ED"(n- D!
S @+

Then fV(x) X > -1,
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We shall consider the following cases:

)

0<x<1.

MODULE 1

Taking Lagrange’s form of remainder after n terme,have

R() == 19(6%)

I G A Lt .
T (1+ 8x)"

)

n + 8x

Since X x<1, 0<0< 1, therefore

Also%—>0asn—>oo

Hencelimr{n - @) R (x) = 0.

So the conditions of Maclaurin’s infinite expansiare satisfied for &

x<1.

i)

-1 <x<0.

In this case, x may or may not be numerically kss 1 +6x; so that

x n
nothing can be said about the limit &'+Hx] as n— o. The
Lagrange’s form of remainder does not help to dramt definite
conclusion. We now take the help of Cauchy’s fofmeonainder, which

IS

Ry (x)=

x"(1— g)n1

L))
m-1n @9

B (_ -l::'n—l P (_ B}?‘!—l
B 1+ )"

73



MTH 341 MODULE 1

| A

1+ 6x 1+ 6x
Now0O<1-0<19x(for-1<x<0;0<0<1)
Th (1—[])“‘1_,{] —
erefore 1T B2 asn o

Also X" — 0 as n—o,

1
and1l + €x<1

! o and it is independent of n.

Thus,lim+(n - @) R(X)=0

Hence, the conditions of Maclaurin’s series expamsire satisfied also
when -1 <x < 0.

Thus, substituting f(0) = 0™{(0) = (-1)! In the expansion, we get

~|

x?  x*
log (1 +X) =X - T3 T T+ for-l<x<l.

SELF ASSESSMENT EXERCISE 4

. X3 X5 (_ l)n 1X2n— 1
Prove thatsinx=x— + — + ...... +— ... Ox OR.
31 B @n- 1! X
SELF ASSESSMENT EXERCISE 5
_ m(m- 1) > -
Prove that (1 + X)= 1 + mx + ———=X" + ...... for all integers m

21
and whenxi , 1.

SELF ASSESSMENT EXERCISE 6

Assumin% the validity of expansion, expand log (&irx) in powers of
X, up to 4" power of x.

3.3 Indeterminate Forms

We have proved in Unit 8 (Block 3) that

- - e {x] - mm
lim [@ EMBED Equation. DSMT4 BEE = (,— allw--f}f{ — ali™= g(x)
"

xra
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provided lim—(x = a) f(x) and HmT{x = a) g(x) both exists and
im-(x 2@ g(x) # 0. It may sometimes happen that
Hm=-(x = @) {f(x)/g(x)} exists even thoughim=(x = @) g(x) = 0. One
can easily see that HmT(x = @) g(x) = 0, then a necessary condition
for im+(x — @) % to exist and be finite is thdim(x = @) f(x) =

0.

In fact, if im+(x = @) {f(x)/g(x)} = k,

thenimr(x = @) f(x) = Hmr(x = @ [f(x)/g(x). g(X)]
=lim-(x = @) {f(x)/g(x)} . im+x = @) g(x)
=k.0=0.

In this section, we propose to discuss the methbdevaluating
im-(x = @ {f(x)/g(x)} when both MNmT(x—=af(x) and

lim-(x = @) g(x) are zero or infinite. In these ca ;))(()) are said to

assume indeterminate forms 0/0-dto respectively as x> a.

Definition 2: Indeterminate form g

If im—r(x = @) f(x) = 0, im—(x = @ g(x) = 0 then——= is said to

f(x)
g(x)
assume the indeterminate fo%nas X tends to ‘a’.

(K]
Definition 3: Indeterminate form o

If imT(x = @) f(x) = oo, HImT(x = @ g(x) = o, then (( )) is said to

o0

assume the indeterminate fosmnas x tends to ‘a’. Other indeterminate
forms are 0 %, o - o, O, 1° and«” which can be similarly defined.
Ordinary methods of evaluating the limits are of thtle help. Some
special methods are required to evaluate theselipedumits. This
special method, generally called, L’'Hospital’s ridedue to the French
mathematician, L’'Hospital (1661 — 1704). In fatlistmethod is due to
J. Bernoulli, who happened to be a teacher of Lyjtas and his
(Bernoulli’s) lectures were published by the latiterthe book form in
1696; but subsequently, Bernoulli's name almosagleared. Let us

. ) ) 0 )
consider the indeterminate for@ and discuss some related theorems.
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Note the differences in the hypothesis of theserttras and the line of
proof should be very carefully noted.

Theorem 5 Let f and g be two functions such that
) limr(x = @) f(x) = 0,lim+(x = @) g(x) = 0,
i) f'(a) and g’(a) exists, and
i)  g'(a) #O0. Therf1 f
: X ‘(a
Hm-(x = a) % = ﬁa))
Proof: By hypothesis, f and g are derivable at x = a
= they are continuous at x = a
—Him(x = a) f(x) = f(a),
andlim+(x — @) g(x) = g(a)

Therefore, by condition, (i), f(a) = 0 =g(a)

Also, f'(a) =limr{x = a) fx)- f(a) _ limr(x = a) f(x)
X- a X- a

and g’(a) :limfo — ) g(X) - g(a) = lim-rfx — (@) —g(X)
X- a X- a

@: imr{x = a )/ (x - a) a): imr{x = a o)
To@ =T s ) T g

We may remark that condition (i) in the above tle@orcan be replaced
by f(a) = g(a) = 0.

Theorem 6: (L’Hospital rule for g form)

If f and g are two functions such that
) lm-(x = @) f(x) = HmT{x = @) g(x) = 0,

i) f'(x) and g’(x) exists and g’(x} O for all x in
la—-9, a +d[, 6 > 0, except possibly at a, and
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iy time(x - @ (gwﬁs

'(x

thenlimr{x — @) M =lim(x = a) f'(x)
g(x) g'(x)

Proof: Define two functions g ang such that

B8 = [-(f[X),‘v'x Ela- .a+ 5[cmcix + a@ lim f(x),x = q, )}
and
Plx)= {-(9[3:},"?’3: Ela- S.a+ S[cmd x # a@;li_ﬂf[x}’x —a )}

Since f'(x) and g'(x) existé] x []Ja — 5, a +96[ except possibly at a, @
andy are continuous and derivable on ]&,-a +5[ except possibly at a.
Also sincelimr(x = a) g(x) =lim(x = @) f(x) =f (a)

andlimr(x — a) 2(X) =lim—(x = a) g(x) =[1(a),

therefore, @ ang are continuous at x = a, as well.

Let x be a point of ]a 8, a +5[ such that x£ a.

For x > a, @ andy satisfy the conditions of Cauchy’'s mean value
theorem on [a, x] so that

20) - 0@ _ ¢'©
Pe)- P@ Y@  for some dJa, x[.

But g(a) imT(x = @) f(x) = 0 & y(a) =limT(x = @ g(x)=0

PW_ ¢©
v PO

Proceeding to limits

N ¢ (x) _— ¢'(c) Jim (P (x))
x—a+ P xoat I,IJ (c) vx)
Jm (@) L r©
g[_x) xr=a+ g (&)
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For x < a, we can similarly prove that

N (9]
90%) SO
. txlit’él+ = (f(x)) y £ lim= ()
u - = lim & —= = -
g (x) x—~a— g(x) g (x)
Y lim & (f(x)) I AC))
ence [x) = jﬂ}ﬂ g {r]
You may note that if the expressitimr(x = @) % represents the

indeterminate formg and the functions f(x) and g'(x) satisfy the

conditions of the above theorem, then

Hm—(x = a) m =lim—+(x — @) f(x) — lim+(x = a) f"(x)

9(x) 9'(x) 9"(x)
In fact, the above rule can be generalised asvistio
If f and g are two functions such that

) ), d”(x) exists and §(x) #0 (r = 1, 2, ....., nO for any x in
]a -9, a +d[ except possibly at x =a,

lim f(x)

limf'(x) =..... = limf(™Yx) =0 }
as X— aq,
limg'(x) = ..... limd™ Y(x)= 0

lim g(x)

£M(x)

i) tmr(x > )
oM (x)

exists, then

lim—(x — a) M =lim+(x = a f(”)(x)

a(x) odM(x)

This is known as Generalised L'Hospital’'s Rule gorform.

Note that L’Hospital’s Rule is valid even if> co.
In fact, we have
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lim-r[x — o0) m = lim-r[z —= 0] L’ where x :1' ,
960 o)
z
1
'O 2
=lime(z = 04) % (by L’'Hospital's Rule)
g '(E)(' ?)

=lim(z — 04) f'(%)
g '(2)

—lim(z — o) ﬂ

9'(x)

Now we give examples to illustrate the use of L'pital’'s rule in
evaluating the limits of indeterminate forgn

Example 5: Evaluate each of the following limits:

X cos x- log (1+ x)

i) Hm(x +0) ve

Solution:

V- 2!3!]5(%4‘ x)  feo
i) Let us write X gy’

Where f(x) =v/2 - 2 cos f/4 + x) and g(x) = X.
lim—(x - 0) f(x) = +/2 - 2 cost/4 =0 andimT{x - 0) g(x) = 0.

f(x)/g(x) is, therefore, of the form 0/0 asx 0.
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Applying L'Hospital’s rule,

S 12
3161_1’}5 (‘*E — 2cos (@ + x)) }gi—% (2 sin (g + x))
= =2sinm

X 1 -
2 = 42
1)) Writing
tanx- X _tanx- X X
X2 sin X X3 "sin x
we find that
lim-(x - 0) M =
X2 sin X
lim—-(x - 0) M_lim-r[x - 0) _X
3 sin x
. tanx- x ,0
= lim—(x + 0) — (6 form)

=lim{x — 0) seéB—X>§-1 (By L'Hospital's Rule)

= } lim-r[x - 0) (tan X)2 = E
3 X 3

, X cos X- log (I+ X
ii) lim=(x - 0) g ) 0

X2 (6 form)
( cos x- xsin X 44 & 0
=lim—(x - 0) . 0
T % (again 0 form)

_ }_lim-r(x—»nj - sin x- (sinx+ xcosx)+ 1/(#* X)

2 1

1 1
==.1==.

2 2

Example 6: Determine the values of a and b for which
lim—(x - 0) {x(a— cos x) + b sin x} / Xexists and equals 1/6.
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Solution: The given function is of the form (0/0) for allluas of a and
b when x 0.

a- cosx)+ bsin»

0 time(x - 0) X(
X3

(a- cosx)t xsin x+ b cos x
3x?

= lil’ﬂ-r(_’){.' - 0)

The denominator tends to 0 as x tends to O, thetidra will tend to a
finite limit only if the numerator also tends toraeas x— O.

This requires
a-1+b=0 (20)
Supposing (10) is satisfied, we have

a+ (b- 1) cos x+ x sin>

lim—(x - 0)
T 3x?
. - (b- 1) sin x+ x cos x+ sin
= lim={(x - 0)
6X
, X cos X+ (2- b) sin »
, - X sin X+ cos x+ (2 b) cos x
=lim+{x = 0)
6
= —3-6 6 = % (given)
=>b=2

From (10), a = -1.
SELF ASSESSMENT EXERCISE 7
Evaluate the following limits:

sin 3¥

' lim—(x - 0)
) T log cos(2X - X)

81



MTH 341 MODULE 1

sin h x- sinx

ii lim—(x - 0)
) X tan X

1+ X - e+ Lex
iii)  1im=(x - 0) 2
X2

SELF ASSESSMENT EXERCISE 8

sin 4x + a sin 2x

If the limit v as x— 0 is finite, find the value of ‘a’

and the limit.
SELF ASSESSMENT EXERCISE 9

What is wrong with the following application of Li$pital’s rule:

3. +

Hm—(x - 1) X ax+ 3 = lim—(x - 1) 3x*- 4 = lim—(x - 1)
x>+ x- 2 2x+ 1

6X

— =3.

2

Find also the correct limit.

L) oo
Next we consider the denominate fosm L'Hospital’s rule fores form
L)

Is similar to that for 0/0 form. We only state thesult for e form
without proof.

L0
Theorem 7:(L’Hospital’s rule for o form)
If f and g be two functions such that
i) Hm-r(x = a) f(x) = Hm=+(x = @) g(x) =,

i) f(x) and g’(x) exists, g’'(x)# 0,1 x [ Ja -6, a +9[, 6 > 0 except
possibly at a, and

i) Hm(x = 09 exists; then

g'(x)
im-(x = a m:im-rx—a-am
Hm-r( ]g(x)l ( Jg,(x).

82



MTH 341 MODULE 1

The above theorem tells us thERT(x = @ % when f(x) and g(x)

both tend to infinity as x> a, cab be dealt with in the same Way(%é

00
form. In fact forms(g) and(E] can be interchanged and care should be

taken to select the form which enable us to evaltra limit quickly.
The above theorem also hold in the case of infimtés.

Now we consider examples to illustrate the apphcadf L’'Hospital’s
LEL)

rule for finding the limit of indeterminate foria.
Example 7

Evaluate the following limits:

) rime(coony ) l0gtaN 2X

logtan x
iy  lm-(x - ) loxga X (4> 0)
Solution:

log tan 2x _ f(x)
logtanx  g(x)’

) Writing

where f(x) = log tan 2x and g(x) = log tan x, wedithat the
2]

given expression is of the form as x— 0"

0 lim==(x = 074 ) logtan 2x =

logtan x

, 2 cot 2x set 2
lim—(x - 0"+)

cot X seé X
_ Hmo(x - 0%+ ) 2_sm XCOSX _ jim(x — 0'+) 1 _
Sin 2X COS 2x COS 2X
logx 00

i)  Hme(x sw) Ta@ (¢ >0)isew form.
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X—C0 ]

SELF ASSESSMENT EXERCISE 10

Evaluate the following limits:

i)

log sin x
cot X

lim—{x - 07— )

Now we consider the indeterminate formsdandw —w. These can be
converted to 0/0 on/x forms as shown below:

)

lim—(x = @) f(x) = 0 andlim={x = a) g(x) =, then
Hm—-(x = @) f(x) . g(x) is 0.0 form.

We can write
__fx) 9(x)
19900 = 17500 " 17 ()
o0
which are respectivelyg or m forms and hence can be evaluated

by L'Hospital’s rule.

If Hm-(x = a) {f(x) — g(x)} is o —oo form.
This can be reduced % form by writing

1 1

() - g = X

f(x)g(x)
and then we can apply L’'Hospital’s rule.
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The following example will clarify the procedureir$t we consider &

from
Example 8
Evaluate:
i) lim—(x - 0™-) xlog x
. mx

i)  Mm=(x =1)secz log (1/x).
Solution:
)] Take f(x) = x and g(x) = log x.

Thenimr(x - 0™+) f(x) = 0 andimr{x = 0™+ ) g(x) = -oo,

so that the given form isX .

We can write it as

timr( ' o e - logx 2

T(x > 0™+) x|og x =Hmr(x - 0"+) l/—x(m form)
: ' 1/ x - t
Aim(x - 07+) = dim{(x -+ 0+) x=0.
1/ x?

1)) Taking f(x) = log(1/x) and g(x) = seaX/2),

We get that the given form isX0« as x— 1.

gum={x =+ 1) sec {x/2) log (1/x)

log @)
E

=limr(x » 1) 0% ( 2 ) (g form)
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wx

1
x
—limr{x = 1) —sm T) )

!

= 2.
SELF ASSESSMENT EXERCISE 11
Evaluate the following limits:
i) lim—(x = 0) sin x log X
i)  lim—(x =1) (1-x)tan px/2).
Now we consider example for - «o form.

Example 9 Evaluate

) lil'n'r[%ﬂ{log(xl- 3) x-l 4}

iy tme(x - m/2) (secx- —)
1- sinx
Solution:
) Letf)= —— and g(x) =—>—
log(x - 3) g X- 4

Both these tend t® as x— 4.
Thus, the given limit iso - co form.

We can write it as

- L4y (X- 4)- log(x- 3) 0
Hm=(x - 4) X~ Dlog(x- 3) (Oform)

1
= lim(x - 4) x- 3 1
log( - 3)+;‘(: .

X- 4 0

—lim{x - 4) (= form)

(x- 3log(x- 3)+ (x- 4)°'0
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, 1 1
—limr(x = 4) ==
T 1+ log(x- 3)+ 1 2
i) lim—(x = m/2) (sec x - ;):lim-r[x—ﬂrfm
1- sinx
1- sinx- cosx,., .
: t -oo f
cosx(1- sin x)(I S o0 - oo form)
- CosX+ sinx 1

= lim=(x = m/2)

- sinx(1- sinx)- cod > -1- 1

SELF ASSESSMENT EXERCISE 12

Evaluate the following limits:

i) lim—(x - 0) (ﬁ_ %()’

. 1 1
i 1IM=={Y =0 .
D ™ ) (x2 tan? x)'

Finally, we consider the indeterminate fornfs4°, ¢°.
For all these forms we have to evaluate

lim-—(x = a) [f(x)]g(x),

wherelim+(x = @) f(x) = 1,0 or 0 andim=(x = @) g(x) = or 0, 0
(respectively).

We can write

y = [f9]1°%,

Therefore, log y = g(x) log f(x)

lm-(x = @) jog y =Hmr{x = @) [g(x) log f(x)].
(11)

In each of these three cases, right hand side asf@om which can be
evaluated.

Let im—{x — @) [g(x) log f(x)] = 1.
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Thereforelimr(x = @ Jogy=1
Which implies

log lim+x =@ vy]=1

S lime(x =0 y=¢

— lim-(x = @) [f(x)]9¥ = €.

The following example discusses these indetermifwaites.

Example 1Q Evaluate

) lim-(* - 0) (tan X)/X2

X

i) lim—-(x — m/2) (sec ontx
i) lim=e(x = 1-) (1- X2)2llog (1-x)
Solution:

)] It is of the form T.

tan xyx?
Let :( y
ety ”

Therefore, log y :% log (

tan X)
X

log (ta: X) 0

lim-(x > 0) |ogy =lm(x - 0) (= form)

X2 0
seé x 1
= lil’ﬂ-r(_’){.' - 0) tanx X
2X

xseé x- tan x(g form)

= lim={(x - 0)
2x? tan x 0
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2xseé xtanx

=lim [_'X.'—rﬂ]
T 22xtan x+ X set x

seé xtanx
2tan x+ xset »

—lim{x = 0)

tanx (9 form)

—limr(x—-0) "< 7
T sin2x+ x'0

— lim(x - 0) _sec x  _

1
2cos2x+ 1 3

which givestimr{x = 0) y=¢/

i)  Itis of the formoo’.
Lety = (sec X"

Solog y = cot x log sec x.

Therefore im—(x = 7/2-) |og y = im7{x — 7/2-) Iotgasne; X
[ril
m form)
1
——__secxtan>
= lim(x — m/2-) SECX
se€ X

= lim(x = 7/2-) (sin x cos x) = 0.

which implies log = lmt(x—=m/2-)y = 0 =

lim-(x — 7/2-) y = €=1,

i) Itis of the form O
Let y= (1 _ )%)2”09 (1-x)

Sology -2 log (1 - X)

log(1- x)
_ ,109(1- X)
~ Tlog(1- x)
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. _ . _, log(a- ») 2
lnm={x = 1 = nm={x — 1 I 4
( ) log y = 2.1im—( ) g ) (mn form)
- - 2x/1(1- X) .
= M= = 1- ! !
2. 1im=( ) — %) (By L'Hospital’s Rule)
: X
= 22 lim(x - 1) =2
+ X

which givestimr(x +1) y=¢

SELF ASSESSMENT EXERCISE 13

Evaluate the following limits:

2 T
) [sin‘ (?. jr n.x)]sgc o

i)  lime(x - 04) (cot xF"*

i)  lm—(x = 7/2-) (cos x>
3.4 Extreme Values

In this section, we shall be concerned with the liepfons of
derivatives and Mean Value theorems to the detextmoin of the values
of a function which are greatest or least in th@mnmediate
neighbourhoods; generally known as local or redatmaximum and
minimum values. The interest in finding the maximamhe minimum
values of a function arose from many diverse dioest During the war
period, the cannon operators wanted to know if tbeyld somehow
maximize (and if so, to what extent) the distanmewdlled horizontally
l.e. the range, when a cannon ball is shot fromcdrenon. The position
of the angle at which the cannon was inclined égfound mattered the
most in such cases. Another direction was the stoidynotion of
planets. It involved maxima and minima problemshsas finding the
greatest and the least distances of the planetstite sun at a particular
time and so on.
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We shall find below, the necessary and sufficieonditions for the
existence of maxima or minima. First, we definerexte values of a
function.

Definition 4: Extreme Value of a Function

Let f be a function defined on an interval | andddoe any interior point
of I.

1) f is said to have a local or relative maxima va(aelocal or
relative maxima) at x = c ifla numbeb > 0 such that

OxO]c =9, c+9[, x#c= f(x) < f(c)

l.e. f(c) is the greatest value of the functiorthe interval ]c -9,
c +9[ i.e. f(c) is a local maximum value of the furetif if (16 >
0 such that f(c) > f(c + hy f(c + h) —f(c) <0 for 0 gh| <54.

2) f is said to have a local or relative minimumuea(a local or
relative minimum) at x = c ifla numbe® > 0 such that

O x O]c -6, ¢ +9[, x 6 c = f(x) > f(c)

or equivalently f(c + h) —f(c) > 0 for O fh| <3.

or f(c) is the least value of the function f in tinéerval Jc -9, c +
Jl.

3) f is said to have an extreme value (an extremuna turning
value) at x = c, if it has either a local maximum a local
minimum at x = c.

The following simple examples will clarify your ide about maximum
and minimum values.

Example 11:Let f be a function defined on R as
f(x) = x*0x OR,

then f has a local minimum at x = 0. From the gréfh. 1), the values
in the neighbourhood of the values at x = 0 is grrethan O.

—> f(x)=x?

A\
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Example 12:Let f be a function defined on R as
f(x) =sinxOx O R;

then f has a local minimum at x =/ and a local maximum at xm&#2.
In fact, f has a minimum at x = 2nr /2 and a maximum at x = 2n+
n/2; n being any integer as is evident from theolelhg Figure 2:

X 1 / AN X
/ T T O T T 7
o -3n/2 - N\_1t/2 /2 n\\y o

Y
Fig. 2
Example 13 Let f be a function f defined as:

f(x) = x*0x OR;

then f has neither a maximum nor minimum at x AOx = 0 f(0) = 0.
If we take any interval ]-d, d[ about the pointtBen it contains points
X1, Xo such that x> 0 and x < 0. Now f(x) > f(0) = 0 and f(x) < f(0) =
0.

Note that while ascertaining whether a value %@n extreme value of f
or not, we compare f(c) with the values of f in @amyall neighbourhood
of c, so that the values of the function outsideikighbourhood do not
come in question.

—> f(x) = x°
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><

Ps
. /R/ h

ar

> X

Fig. 4

Thus, a local maximum (minimum) value of a functimay not be the
greatest (least) of all the values of the functiora finite interval. In
fact, a function can have several local maximum amaimum values
and a local minimum value may even be greater sharaximum value.
A glance at the above Figure 4 shows that the atd@of the points,P

Ps, Ps are the local maximum and the ordinates of thatpds, P, are

the local minimum values of the corresponding fimrctand that the
ordinate of R which is a local minimum is greater than the oatknof

P;, which is a local maximum.

Further you must have noticed that the tangentseapoints B, P, P,
P., Ps in the above figure are parallel to the axis oo that if g, &, Cs,
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C4, G are the abscissae of these points, then eackicof, f'(c,), f'(cs),
f'(cy), T'(Cs) Is zero.

We proceed to establish the truth of this resulhwe

Theorem 8 A necessary condition for f(c) to be an extrerakug of a
function f is that f'(c) = 0, in case it exists.

Proof: Here, we assume f is derivable at c. Let, furtli@) be a local
maximum value of f. Thus, there exists a real nunibbe0 such that

Ox0O ]Jc-98,c+o[, x#c= f(X) <f(c)

ie.0h0 ]-8,8 [, h# 0= f(c + h) < f(c)

Now for h > 0, we have " hh) sOFY (12)
and for h < 0 we havic* M- 10 4 (13)

h
From (12) and (13), we have

fic+ h)- f(c)_

timr(x > 04) ¢ 9 ¢ o andtimr( - 0-)

0 :

c+ h)-
h

which gives
f'(c) <0 and f'(c)> 0.
Therefore, f(c) = 0.

It can be similarly shown that f'(c) = O, if f(c3 & local minimum value
of f.

The vanishing of f'(c) is only a necessary but acufficient condition
for f(c) to be an extreme value as we now show i help of the
following example.

Consider a function, f, defined by

fx) =x*0x0 R

Then
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f(x) = 3%,

f(0) = 0. Also f(0) = 0.

Clearly for x > 0, f(x) > 0 = f(0)

and for x <0, f(x) < 0 = f(0)

thus, f(0) is not a local extreme value even thotiff)) = O.
Furthermore, you can note that a function may laleeal maximum or
a minimum value at a point without being derivahtethat point. For

example, if f(x) = | x J x O R, then fis not derivable at x = 0, but has
local minimum at x = O.

Y
N
—> f(x) = IX]
X
o X
Fig. 5

We may remark that in view of the above theorem,fiwd that if a
function f has a local extrema value at a point & then either f is not
derivable at x = ¢ or’fc) = 0. Thus, in order to investigate the local
maxima and minima of a function f, we have to fitat out the values
of x for which f'(x) does not exists of if x) exists, then it vanishes.
(These values are generally called the criticabeslof f). We then
examine for which of these values, does the func#otually have a
local maximum or a local minimum. The points whésg derivative of

a function vanish are called stationary points.

Definition 5: Stationary Value of a Function
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X = c is called a stationary point for the functioi f"(c) = 0. Also f(c)
is then called the stationary value.

You have seen that if a function f is derivabl@am@tinterior point c of its
domain and 1c) = 0O, then f may not have an extreme value afcc.
decide whether f has an extreme value or not dt aupoint, we need
some method. By knowing the sign of the derivataethe left and right
of the point we can decide whether f has a locakimam or local
minimum at the point. This is the purpose of thetnleeorem.

Theorem 9 (First Derivative Test)

Let a function f be derivable on an interval ]8,-c +9[, 6> 0, and let
f'(c) =0. If

) f'(x) >00x 0O Jc-6,c[and f(x) <00 x O]c, ¢ +9[, then f
has a local maximum at x = c.

1)) PX)<0OxO]Jc-6,c[and f(x) .> 00 x 0O ]c, ¢ +9[, then f

has a local minimum at x = c.

) Let b be an arbitrary point of ]c &, c[. Then f satisfies the
conditions of Lagrange’s mean value theorem ircJpso that
f(c) — f(b) = (c — b) f& ) for somen 1 ]b, .
Since f(x) > 0,0 x O ]c -9, c[,
therefore, f(d) > 0,
and so f(c) — f(b) > 0.
Now b is any point of ]c 8, c|,

O f(c)-f(x).0,0x0]c -9, cl.

Let now d be an arbitrary point of ]Jc, cof Then f satisfies the
conditions of Lagrange’s mean value theorem imJcso that

f(d) — f(c) = (d —c) f(b) for somef3 O ]c, d[.
f'(x) <00 x0O]c, c +9[

O f(b) < 0. (14)
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So, f(d) — f(c) < 0.
Now d is any point ]c, ¢ 3],

therefore, f(x) — f(c) < 01 x O ]c, ¢ +9[.
(15)

From (14) and (15), we find that

OxO]Jc-96, c +9[, x#c= f(x) <f(c)
= f has a local maximum at x = ¢

1)) You can similarly prove it.
If 06 > 0 such that

xO]c-6,c[=f(X)>0
and xO]c,c+d[ =f(x) <O,
then we say that f'(x) changes sign from positvaégative as x
passes through c.
Similarly, if (16 > 0 such that
xOJc-6,c[=f(xX)>0
and xO]c,c+o[ = f'(x) <0,

then we say that @x) changes sign from negative to positive as x
passes through c.

In view of this terminology, the above theorem banstated as follows:
Let f be derivable on an open interval | and Ié&t)f= 0 at some point ¢
O I. If f(x) changes sign from positive to negative (negatovpositive)

as x passes through c, then f has a local maximmuimirum) at x = c.

You may note that the conditions of the above theoare sufficient but
not necessary. For example, consider the functideffined by

f(x) = x* (2 + sin)%) when x# 0,

and f(0) = 0.
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This function f is derivable everywheré(X) does not change sign from
negative to positive as x passes through 0 antihet a local minimum
at x=0.

You may further note that, if (k) does not change sign i.e., it has the
same sign throughout the interval ]8, + d[, for somed > 0, then f is
either strictly increasing or strictly decreasingproughout this
neighbourhood and, so, f(c) is not an extreme vafuie

Geometrically interpreted, the above theorem stifi&isthe tangent to a
curve at every point in a certain left handed nleagithood of the point
P whose ordinate is a local maximum (minimum) makes acute
(obtuse) angle and the tangent at any point inrtaioceright handed
neighbourhood of P makes an obtuse (acute) angftetine axis of X. In
case the tangent on either side of P makes an atgfie (or obtuse
angle, the ordinate of P is neither a local maximoor a local
minimum.

The following example shows the application of #i®ve theorem for
finding extreme values of a function.

Example 14

Examine the function f given by

fx) = (x=2f (x + 1F; Ox OR,

for extreme values.

Solution: Here f(x) = (x — 2 (x + 1)

Thus, f(x) = 4(x — 2y (x + 1P + 5 (x — 2} (x + 1}’
= (x -2 (x + 1} (9x - 6)

Sof(x) =0forx=-1,2/3, 2.

Thus, we expect the function to have extreme valoethese values of
X.

Now f'(x) >0 for x < -1,

And f'(x) > 0 when x is slightly greater than -1.
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Therefore, f has neither maximum nor minimum at-4. =

Next f'(X) changes sign from positive to negativexa= 2/3, therefore, f
has a local maximum at x = 2/3.

Also f'(x) changes sign from negative to positivexa= 2 and therefore
it has a local minimum thereat.

SELF ASSESSMENT EXERCISE 14:
Examine the polynomial function given by

10X — 24X + 15% — 408 + 1080 x LI R
for local maximum and minimum values.

We can also decide about the maximum and minimufoegsaof a
function at a point ¢ from the sign of second datiixe at c. This you
will see, in the next theorem, called the secornrdrdBve test.

Theorem 10 (Second Derivative Test)

Let f be derivable on an interval |é-c +g[and f(c) =0

)] If f’(c) < 0, then f has a local maximum at x = c.
i) If f’(c) > 0, then f has a local minimum at x = c.

Proof: The existence of f’(c) implies that f and f' in certain
neighbourhood, Jc8; ¢ +5,[, 0 <8, <3.

) Let f’(c) < 0.

This implies that f' is a strictly decreasing fuloct at X = c.

Thus, there exist8, (0 < 8, < d,) such that

f'(x) <f(c)=00x0 ]c, c +3 (16)

and f(x) >f(c) 00 x 0O Jc- &, [ a7
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Now (16) gives f(x) < 00 x O ]c, ¢ +0,[ which implies that f is a
decreasing function in [c, ¢ &,] and (2) gives f'(x) > @1 x O ]c - 0,
c[ which implies that f is an increasing function[c - d,, c], so that at
x = ¢ f has a local maximum.

1)) You may similarly work out the proof.

We may remark that the above theorem ceases telp&hif for some
c, both f'(c) and f’(c) are zero. To provide foidhdeficiency, we need
to consider higher order derivatives. We make usie Higher Mean
Value theorem i.e. Taylor's theorem to obtain gahsation of this
result after the following remark.

It is not possible to draw any conclusion regardgxgyreme values of a
function at a point x c if f’(c) = 0.

)] Let the function, be defined by
f(x) =x°, OxOR

Here '(0) = 0 =f"(0) and the function f has neitleelocal maximum nor
a local minimumatx =0

1)) Let the function be defined by
f(x) =x*, OxOR.

Here f'(0) = 0 = f’(0) and f has a local minimumyat O.
Similarly f(x) = -, 0 x O R has a local maximum at x = 0.

Now we give general criteria for finding extremdues and the second
derivative test is also special case of this.

Theorem 11: (General Criteria)

Let f be a function defined on an interval | antddébe an interior point
of I. Let

i) f(c)=f(c)=....f"c)=0
and

i)  f"(c) exists and be different from zero,
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then if n is even, f(c) is a local minimum or adbmaximum value
of f according as"fc) > 0 or f(c) < 0; if n is odd, f(c) is not an
extreme value of f.

Proof: Since (c) exists, we have that

f, P, f, ..., f""all exist and are continuous at x = c.

Also, continuity at x = ¢ implies the existencefof, f’, ...., f"*in
a certain neighbourhood &, ¢ +5, of ¢ (6, > 0).

As f(c) # 0, [a neighbourhood ]cé&, ¢ + [ (0 <& < §;) such that

for f'(c) > 0,

f"{(x) < f"%c) = 00 x O Jc -d, ¢

and f(x) > "(c) =00 x O ]Jc, ¢ +d (18)
and for f(c) < 0,

") > " %c) = 00 x OJc -5, ¢[ (19)

and f(x) < f"Y(c) = 00 x OJc, ¢ +9[

Again for any real number h, where | h |, we hayd &ylor's theorem
with Lagrange’s form of remainder after (n — 1)er

f(c + h) — f(c) + hf’(c) +r2]—2| f’(c) +....+(nh_;_ll)!f(”'l)(c +6h)(0 <6 <1).

From which we get

n-1

f(c + h) —f(c) = (nh_ o1

f"Y(c + h) (20)

where ¢ +gh ]Jc -, ¢ + [. (Putting f'(c), f’(c), ..... T4(c) equal to zero).
Let n be odd:

Clearly H™* > 0 for any real number h and further, wh8)f> 0, we
deduce from (18) that for h negative 6RO ]c - 0, c[ and F*(c +6h) <

0 and for h positive,

f"Y(c +6h) > 0.
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So from (20), f(c + h) <f(cld c + hO]Jc -9, C[
andf(c+h)>f(cdc+h ]c, c B
which shows that f(c) is not an extreme value.

When f(c) < 0, it may similarly be shown that f(c) is nat extreme
value.

Let n be even
In this case, i is positive or negative according as h is positive
negative, we deduce from (18) and (20) as befaeiftf"(c) > 0, then

for every point

c+hlc-6,c+5 [, f(c + h) >f(c)
which means that f has a local minimum at x = c.

It may similarly be shown from (19) and (20) thath&s a local
maximum at x = ¢ if{(c) < 0.

The second derivative test can be deduced fromgémeral criteria by
taking n = 2. From this theorem, we see that ex@reaiues exist only if
the first non-vanishing derivative is of even ordar the following
example, you will see the application of these galneiteria.

Example 15:Examine the function (x — 3fx + 1) for extreme values.

Solution: Let f(x) = (x — 3} (x + 1}
Then f(x) = (x — 3f (x + 1)’ (9x = 7),

f(x) = 8(x — 3 (X + 1F (9 — 14x + 1),

f(x) = 24(x — 3F (x + 1) (21X — 49%X + 7x + 13),

(x) = 24(x — 3) (3x — 1) (21%— 49 + 7x + 13)
+168(x — H(x + 1) (9% — 14x + 1),

and f'(x) = 48(3x — 5) (21X%— 49¥ + 7x +13)
+336(x — 3) (3x — 1) (%x 14x + 10

+336(x — H(x + 1) (9x = 7),
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Now f” vanishes for x = % , 3.

Let us now test these for extreme values.

Atx =-1, ¥ is the first non-vanishing derivative and
f¥(-1) = -24.4.4.64 < 0.

Therefore, x = -1 is a point of local maxima.

At x =, f” is the first non-vanishing derivative.

(7)- o (20Y 16 40
and f (9)—8.(9).9.§>0.

7. : -
So x :§ Is a point of local minima.

At x = 3, the first non-vanishing derivative If find it is of odd order.

Thus, x = 3is neither a point of local maxima ngraént of local minima
for the function.

Example 16: Show that function sin x (1 + cos x) has a locakima at
ax=#/3, (0<x< 2n).

Solution: Let f(x) = sin x (1 + cos x)I x (I [0, 2n].
Then f(x) = cos x (1 + cos X) — SiX = COS X + COS 2X
and

f'(X) = -sin x — 2 sin 2x.

Atx =n/3, F(n/3) = 0, f(n/3) = %3 <0

s
Therefore, f has local maxima at & =
SELF ASSESSMENT EXERCISE 15

Find the local maximum and minimum values of thection f defined
by
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i) f(x) =4x'— (x—-1), OxO R-{0, 1}.
1)) f(x) =sin x + sin 2x + sin 3kl x [ [0,]
SELF ASSESSMENT EXERCISE 16

Show that the function f defined by
fx)=x"(1-x'UOx0O R,

where m and n are positive integers has a localrman value at some
point of its domain, whatever the values of m amday be.

SELF ASSESSMENT EXERCISE 17

) <%
Show that the local maximum value (3)%) is €

We end this section by giving a method of findingajest and lest
values of a function in an interval provided thadtion is a derivable at
all interior point of the interval.

The greatest and the least values of a functiomlareits extreme values
in case they are attained at points within the ruate so that the

derivatives must be zero at the corresponding point

The greatest value of a function is also calledbgloor absolute

maximum. Similarly, the least value of a functisraiso known a global
or absolute minimum.

If ¢4, G, ...., G be the roots of the equation, f'(x) = 0 which bejdo ]a,

b[, then the greatest and the least values oftthetibn f in [a, b] are the
greatest and the least members respectively dirtite set

{f(a), f(cy), f(cy), ..... , f(g), f(b)].
Consider the following example.

Example 17: Find the greatest and the least values of thetifumd
defined by

f(x) =3 —2X - 6X + 6x + 1
in the interval [0, 2].

Solution: We have
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f(x) =3x' = 2% —6X + 6x + 1

Therefore, f(x) = 12%— 6 — 12x + 6
=6(x—-1)(x+1)(2x-1)
f(x)=0forx=1, -1, +1/2.

The number -1 does not belong to the interval [Oar®d is not to be
considered. Now

1) = 2, f(%): %’ £(0) = 1 and f(2) = 21.

Thus, the greatest value of fin [0, 2] is 21 dmelleast value is 1.

4.0 CONCLUSION
5.0 SUMMARY

In this unit, some theorems involving higher ordmrivatives of a
function have been proved and also the applicatioderivatives for
finding the limits of indeterminate forms and findithe extreme values
of a function has been discussed.

In module 1, unit 3, Taylor's Theorem has been pdowith the help of
Rolle’s Theorem. According to this theorem, if fa, b] > R is a
function such that its (n — 1)th derivatiVE'fis continuous in [a, b] and
derivable on ]a, b[, then there is at least onémamber clJ ]a, b[ such
that
— 1 (b B a)2 b1 (b - aj]_ : n-1
f(b) =f(a) +(b —a) f'(a) +T f'(@) + .... +—(n— i (@)
(b- af(b- cf®
¥ p(n- 1)! )

p being any positive integer.
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(b- ay(b- cf

p(n- 1)!
terms and denoted by,Rand this form of remainder in due to
Schlomilch and Roche. By putting p = n and p = &,get respectively
Lagrange’s and Cauchy’s form of remainder. If we @& O is Taylor’s
theorem, we obtain Maclaurin’s theorem. In the saewion, you have
seen how to obtain Maclaurin’s series expansiaa foinction. If f: [a, b]
— R is a function such thal(k) exists for any positive integer n and for
each xO [0, h] andlim=(1 = @) R (x) = 0 for each >J [0, h], then for
all x in [0, h].

The term

p
f'(c) is called Taylor's Remainder after a

f(x) = f(0) = xF(0) + F(0) + .... + f(0) + ....

which is Maclaurin’s series for f(x). Using thisstdt, Maclaurin’s series
expansions of g sin x, cos x, log (1 + x), (1 + R)have been obtained
as:

2 2

X X
€=1+x+— +...+— +....0x0OR,

2! n!
sinx—x-g—j +)E(>_5! e + (-1} %ﬁ ...0xOR,
cosle-)2(—2!+2—i Fo (1) (;‘:)!+ .OxOR
Iog(1+x):x-)2(—2! +),;—3! Le-l<x<1
(l+x)“:1+mx+m(m2—!_l)x2+....,|x|<1.

[ri]
,m, 0,00, 0 -0, 1°, o°, O have been given. All these are based on

olo

—

'Hospital’s Rule forg form. If imr(x = @) f(x) = 0,

lim-(x = @) g(x) = 0, thenm is said to assume the indeterminate

9(x)
formsg as x tends to ‘a’. L’Hospital’'s Rule fog from states that if
Hm—-(x = @) f(x) =im+(x = a) g(x) = 0, f(x), g'(x) exists and g'(x)
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) i)
#0 for all x in ]a, «S a +3[ (5 > 0) andx*ﬂﬂ g (x) exists, theﬁ‘*“ g(x)

L’Hopital’s rule form form is similar.

In section 3.4, application of derivatives for fing extreme values of a
function is given. If f is a function defined on apen interval | and c is
any interior point of I, then f is said to haveoadl or relative maximum
at c if there exists a numb&r> 0 such that X1 ]Jc -5, c +3[, x #c =
f(x) < f(c). Likewise, f is said to have a local mlative minimum at c if
there exists a numbeér> 0 such that XJ Jc - 3, ¢ +§[, X # c = f(X) >
f(c). f is said to have an extreme value at c dither a local maximum
or a local minimum at c. you have seen that thessary condition f'(c)
= 0 is not sufficient for f to have an extreme aht c is that f'(c) = 0
provided it exists. The condition f'(c) = 0 is m&ifficient for f to have
an extreme value at c. For example, the functidefined by f(x) = | x |
O x O R it has a local minimum at x = 0 but f(0) doest exist. For
deciding whether a function f has an extreme valug point ¢, we have
the following general test.

Suppose that f is a function defined on an intehad c is an interior
point of | such that

f'(c) = f'(c) = .... "%c) = 0 and ¥(c) # 0. Then if n is odd, then f does
not have an extreme value at ¢ and if n is evean thhas a local
maximum or local minimum at ¢ according &g¥ < 0 or f(c) > 0.

6.0 TUTOR-MARKED ASSIGNMENT

Find the least and the greatest value of the fandtdefined by:

fx) =x* =48 —2¢ +12x + 1

in the interval [-2, 5]
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