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Introduction

MTH315 - Analytical Dynamics is designed to teaclbuyhow
mathematics could be used in solving problems & d¢bntemporary
Science/Technology and Engineering world. Thereftine course is
structured to expose you to the skills requiredattain a level of
proficiency in Analytical Dynamics.

What you will Learn in this course

You will be taught the basics of Analytical Dynasiican aspect of
Applied Mathematics.

Course Aims

There are thirteen study units in the course anch amit has its
objectives. You should read the objectives of aathand bear them in
mind as you go through the unit. In addition to thimgectives of each
unit, the overall aims of this course include to:

0] introduce you to the words and concepts in AggbMathematics

(i)  familiarise you with the peculiar characterist in Analytical
Dynamics

(i)  expose you to the need for and demands ofherattics in the
Science/ Technology and Engineering world

(iv) prepare you for the contemporary Sciencefifietogy and
Engineering world.

Course Objectives

By the end of the course, you should be able to:

. define the term “constraint”

. mention the types of constraint

. differentiate between the various types of constrai

. state D’Alambert’s Principle and relevant theorems

. apply the Lagrange’s equations to find the difféisdrequations

. state the Lagrange function of particle(s) moving a
conservation force field

. derive Lagrange’s equations for holonomic and nolmomic
constraint respectively

. define and explain simple harmonic motion

. state the forces causing simple harmonic motion

. explain the suspension by an elastic string

. define conical pendulum
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. relate discreet and continuous system to degrée@edfom
. define conical pendulum

. identify the forces causing simple harmonic motion

. discuss the suspension by an elastic string

Working through this Course

You have to work through all the study units in twrse. There are
seven modules and thirteen study units in all.

Course Materials
Major components of the course are:

Course Guide

Study Units

Textbooks

CDs

Assignments File
Presentation Schedule

o0k wNE

Study Units

The breakdown of the seven modules and thirteedystimits are as
follows:

Module 1

Unit 1 Degree of Freedom

Unit 2 Constraints

Module 2

Unit 1 Lagrange’s Equation
Module 3

Unit 1 Impulsive Motion
Module 4

Unit 1 Simple Harmonic Motion

Unit 2 Collation of Smooth Spheres



MTH315 ANALYTICAL DYNAMICS

Module 5

Unit 1 Newton’s Law of Motion

Unit 2 Work, Power and Energy

Unit 3 Rectilinear Motion

Module 6

Unit 1 Reduction of Coplanar Forces Acting on ai®Rigody to a
Force and a Couple

Unit 2 Moment of a Force

Module 7

Unit 1 The Hamiltonian

Unit 2 The Calculus of Variation

Textbooks and References

Every unit contains a list of references and furtieading. Try to get as
many as possible, of those textbooks and matdisédsl. The textbooks
and materials are meant to deepen your knowledgeeafourse.

Assignment File

In this file, you will find all the details of thevork you must submit to
your tutor for marking. The marks you obtain frone¢e assignments
will count towards the final mark you obtain forighcourse. Further
information on assignments will be found in the igasent File itself

and in the section on assessment of this CoursaeGui

Presentation Schedule

The Presentation Schedule included in your courgemals gives you
the important dates for the completion of tutorkear assignments and
attending tutorials. Remember, you are requiredsubmit all your
assignments by the due date. You should guarastgailing behind in
your work.

Assessment

Your assessment will be based on Tutor-Marked Assants (TMAS)
and a final examination which you will write at teed of the course.
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Tutor-Marked Assignments (TMAS)

Every unit contains at least one or two assignmefus are advised to
work through all the assignments and submit themagsessment. Your
tutor will assess the assignments and select fauchwvill constitute
the 30% of your final grade. The tutor-marked assignts may be
presented to you in a separate file. Just knowfdnagvery unit there are
some tutor-marked assignments for you. It is imgdriyou do them and
submit for assessment.

Final Examination and Grading

At the end of the course, you will write a finalaxination which will
constitute 70% of your final grade. In the examoratwhich shall last
for two hours, you will be requested to answer ghyeestions out of at
least five questions.

Course Marking Scheme

This table shows how the actual course markingakdn down.
Assessment Marks

Assignments Four assignments, best three martkeedbur
count at 30% of course marks

Final Examination 70% of overall course marks

Total 100% of course marks

How to Get the Best from this Course

In distance learning, the study units replace thiearsity lecture. This
is one of the great advantages of distance learryiog can read and
work through specially designed study materialgaatr own pace, and
at a time and place that suits you best. Think akireading the lecture
instead of listening to the lecturer. In the sanag & lecturer might give
you some reading to do, the study units tell yoemvto read, and which
are your text materials or set books. You are plediexercises to do at
appropriate points, just as a lecturer might giga §n in-class exercise.
Each of the study units follows a common formate Tinst item is an
introduction to the subject matter of the unit, &oav a particular unit is
integrated with the other units and the course wha@e. Next to this is
a set of learning objectives. These objectivesytat know what you
should be able to do by the time you have complétedunit. These
learning objectives are meant to guide your stiide moment a unit is
finished, you must go back and check whether yote lechieved the
objectives. If this is made a habit, then you witjnificantly improve
your chances of passing the course. The main bbdlye unit guides
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you through the required reading from other sour@éss will usually
be either from your set books or from a Readingi@ecThe following
is a practical strategy for working through the rseu If you run into any
trouble, telephone your tutor. Remember that yatorts job is to help
you. When you need assistance, do not hesitataltared ask your tutor
to provide it.

In addition, do the following:

1)

2)

3)

4)

5)

6)

7

8)

Read this Course Guide thoroughly, it is your fassignment.

Organise a Study Schedule. Design a ‘Course Owgriteguide
you through the Course. Note the time you are erpeio spend
on each unit and how the assignments relate to uihiés.
Important information, e.g. details of your tutdsisand the date
of the first day of the semester is available friv@ study centre.
You need to gather all the information in one pjaeh as your
diary or a wall calendar. Whatever method you chotms use,
you should decide on and write in your own dates schedule
of work for each unit.

Once you have created your own study scheduleyelything to
stay faithful to it. The major reason that studdatkis that they
get behind with their course work. If you get idkifficulties with

your schedule, please, let your tutor know before foo late for
help.

Turn to unit 1, and read the introduction and thgctives for the
unit.

Assemble the study materials. You will need yourlsmks and
the unit you are studying at any point in time.

Work through the unit. As you work through the uryiou will
know what sources to consult for further informatio

Keep in touch with your study centre. Up-to-dateurse
information will be continuously available there.

Well before the relevant due dates (about 4 weeeré due
dates), keep in mind that you will learn a lot bgind) the
assignment carefully. They have been designed lfoyoel meet
the objectives of the course and, therefore, vélphyou pass the
examination. Submit all assignments not later thendue date.
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9) Review the objectives for each study unit to confithat you
have achieved them. If you feel unsure about anythef
objectives, review the study materials or consaitntutor.

10) When you are confident that you have achieved a'suni
objectives, you can start on the next unit. Proceeitl by unit
through the course and try to pace your study ab ybu keep
yourself on schedule.

11) When you have submitted an assignment to your tédor
marking, do not wait for its return before startomgthe next unit.
Keep to your schedule. When the assignment is metiirpay
particular attention to your tutor's comments, boththe tutor-
marked assignment form and also the written comsnentthe
ordinary assignments.

12) After completing the last unit, review the coursed gorepare
yourself for the final examination. Check that ywave achieved
the unit objectives (listed at the beginning of eaait) and the
course objectives (listed in the Course Guide).

Facilitators/Tutors and Tutorials

The dates, times and locations of these tutoridlsb& made available

to you, together with the name, telephone number the address of
your tutor. Each assignment will be marked by ytuior. Pay close

attention to the comments your tutor might make@m assignments as
these will help in your progress. Make sure thatryamssignments reach
your tutor on or before the due date.

Your tutorials are important. Therefore, try notdbkip any. It is an
opportunity to meet your tutor and your fellow stuats. It is also an
opportunity to get the help of your tutor and dsswany difficulties
encountered on your reading.

Summary

Analytical Dynamics is designed to teach you howthamatics could
be used in solving problems in contemporary Scifrezhnology and
Engineering world. Therefore, MTH315 is duly stured to expose you
to the skills required to attain a level of pro#iccy in Analytical

Dynamics.

Wishing you the best of luck as you read through ¢burse.

Vi
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MODULE 1
Unit 1 Degree of Freedom
Unit 2 Constraints

UNIT 1 DEGREE OF FREEDOM
CONTENTS

1.0 Introduction
2.0 Objective
3.0 Main Content
3.1 Degree of Freedom
3.2 Total Kinetic Energy
3.3 Total Angular Momentum
3.4 Conservation Theory of Total Angular Momentum
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Elementary classical dynamics evolved as a resulieodynamics of an
object which may be seen as a point-mass or acfeartPractical
situations often involve studying the dynamics oflections or systems
of particles. If the particles of such a system separated from each
other, the system is said to be discrete; othervaalbed a continuous
system. However, a discrete system having a langéinite number of
particles can be said to be continuous as well.

Conversely, in practical cases a discrete systermdpa very large but
finite number of particles can be called a contimisystem.

2.0 OBJECTIVE
By the end of this unit, you should be able to:

. relate discreet and continuous system to degrée@edfom.
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3.0 MAIN CONTENT
3.1 Degree of Freedom

The number of coordinates required to specify thgitipn of a system
of particle is called the number of degrees ofdoe®s of the system.

For instance, a system of N particles, moving frael space has 3N
independent coordinates or degrees of freedom. si@enthe system
represented below:

Where G, denotes the centre of mass

Let 1,1, .... I, denote the positive vectors of System of N pasiaf

constants masses;mm... my. If the centre of the system of the
particle (i.e. centre of mass) is defined as thatg®, where its position
vector R, thenR is given as:

ZN:Miri N
R=8 = ﬁzm ‘ e (D)
ZMi i=1

i
N

N
Where M =>"M,. This is the total mass of the system.

i=1
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Then the total momentuRof the system is given as:

Where Vi = ﬂ =r
- dt -

N d N
But P= > MV, =—> M,
= dti=

Where :;—‘? is the velocity of the centroid.

Consequently,

3.2 Total Kinetic Energy

The total kinetic energy T of a system of N paeticis given by:

2

1

_15 2_1dg
_2;Mi|vi| 2dti2:1:Mi d

Motion of the Centre of Mass

In considering the motion of the centre of massaofystem of N
particles, we must distinguish between externatdsracting on the
particles due to the influence outside the systewh iaternal forces.
Then, by Newton’s second law of motion, the equatibmotion for the
ith particles is obtained as:
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Where F, (e) is the resultant external force on ilie particles due to the

jthparticle butF,, =0 ..., (7)

Assuming that the system obeys Newton’s third Lawotion which
states that “If particl¢ acts on particlel with a for F; in a direction
along the line joining thé&h andjth particles, while particlg acts on
particlei with a forceF;, conversely, then action and reaction are equal
and opposite.

Mathematically, it can be shown that:

F12— = F21 ...................................................................... (8) .....
BUL Fut Fy S0 Fut Fyy 20 oo, (9)
Consequently,

N

Dl L (10)

In view of equation (10), equation (6) can.

Substituting equation (1) into equation (6), weanid:

> :%Z:‘Min :Z:Fi(e) .............................................. (11)

N
i=1 -~ i

Consequently, equation (1) can be written as

—2R=ZN:Fi (B) S F(B) ceveeee i, (12)

M
dt? "

Remarks
Equation (12) above states that the centroid (eevftmass) moves as if
the total external forcecewere acting on the centre of mass. Thus,

purely internal forces therefore have no effectstlom motion of the
centre of mass. It is clear thatFfe) = 0.

Then:

%M(z—ﬂ:%(M\{)zo ..................................................... (13)
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Equation (12) implies that the total linear momentis conservative.
This is called the Conservative Theorem for lineawmentum of a
system of particle.

3.3 Total Angular Momentum

The angular momenturh, of theith particle is given by:

Hence, the total angular momentum of the system is given by:

B EE D YL L I (15)
Thus, L :i—(r, xPi)—ZN:(rI XP) o, (16)

Using equation (6) equation (10) becomes:

I;_:iwl%(eﬂirixlzji .................................................. (17)

i=1 = i=1 ~

But, the last term on the right hand side of (1Ayrbe considered as a
sum of pairs of the form

|

rxF +r xF =[ri—riijji .............................................. (18)

Going by the equality of action and reaction, singer, =r, is the

vector formj toi, the law of action and reaction yields

X ) =0 ittt s (19)

SinceF, is along the line between the two particles,
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Where N(e)is the applied (i.e. external) torque of the system

3.4 Conservation Theory of Total Angular Momentum

L, is said to be conserved if the applied (externaifjue is zero. In

other words, the total angular momentum remainssteon if the
resultant external torque acting on a system dfghas is zero.

Remarks

Note that the conservation of angular momentum alystem in the
absence of applied torques holds, only if the |ldwaation and reaction
Is valid. In a system involving moving charges, vehéhe law is
isolated, it is not the total mechanical angularmmeatum which is
conserved but the sum of the mechanical and thetreleagnetic
“angular momentum?” of the field.

Considering the diagram below:

Let r, be the radius vector from the centre of mass tatthearticles.

Then:
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where V' = —, andV = — ... (24)

In view of (22), we have that

N Miri N Miri
R=EY =D - *+R (25)
i=1 ZMI i=1 ZMI
i=1 i=1
Hence,iMi L T 0 e e e (26)

i=1

This in turn implies

N
Next, withL=>"rPR,
ST

from equation (22) we obtain

=3 Rhw v+ |

i=1

:ZN:BxMiV +ZN:ri’xMiVi'+[ZN:Mi ri'JxV+ RX%ZN:Mi E e, (28)
i=1 - - i=1 ~ - i=1 -

i=1

Hence, using equation (22) and (26) we obtain

N
L=RXMV A+ EXP' i (29)

i1~ -

Thus, the total angular momentum about a point Qhe angular
momentum of the system concentrated at the certraass plus the
angular momentum of motion about the centre of magsiation (29)
shows that in general, depends on the region O through ved®pnly

if the centre of mass is at rest with respect wilD L be independent of
the point of reference.

In the latter caseRxMV =0and L reduces to the angular momentum
about the centre of mass.
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4.0 CONCLUSION
We have been able to show that if the net extelorgue acting on a

particle is zero, the angular momentum will remanthanged. This is
often called the principle of conservation of amguhomentum.

5.0 SUMMARY
This unit has briefly discussed elementary classiygnamics of an
object viewed as a particle (point mass). Discratel continuous

systems, degree of freedom were focused matheratica

These terms are briefly defined below:

. Discrete and Continuous System

A discrete system having a very large but finitenber of particles can
be considered as a continuous system. On the b#raf, a continuous
system can be considered as a discrete systenstngsif a large but
finite number of particles.

. Degree of Freedom

This is the number of coordinates required to dpebie position of a
system of one or more particles. For instance racamoving freely =

space requires 3 coordinates e.g. (X, y, z) toigpis position. Thus,

the number of degrees of freedom is 3.

We also discussed the centroid (centre of masteodystem of particle.

. Centre of Mass (Centroid)

Let r,ry,....... r, be the position vectors of a system of N partidés
massesn,m,,.....m, respectively.
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Hence, the center of mass or centroid of the systieparticles is
defined as that point C having position vector.

I:: mr, +m2r2+ ......... +mNrN
m+m, +........ m,
1 N
= Vzmrl

N
Where M =" m is the total mass of the system.

i=1

. The kinetic energy of a system of particles candigned as:
1d, 2
T==>mf
2=
. We further discussed extensively the total angmlamentum of
the system of particles about origin O as
N
> m(rxv)
i=1
. The total external torque acting on a system. {Dtel external

torque about the origin is

N
> rxF,. WhereF; is the external force acting on the particle

i=1
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. Conservation of Angular Momentum

If the resultant external torque acting on a systérparticles is zero,
then the total angular momentum remains constantaenserved that is:

N
> m(rxV,) =constant.

i=1
SELF ASSESSMENT EXERCISE 1
Describe the motion of a particle in free space.
Solution

Here, no constraints are involved and hence, we usaythe Cartesian
coordinatesx, y, zas the components of the position vector of the
particle, i.e.r =x +vy, +z,

Let Fbe the force applied on the particle. The compounds
generalised force are then:

dr )
=F.—=F.i=F
Qu - dx - -
dr
.Qy:If.d—y:lf J:Fy ....................................................... (1)
QZ=F.ﬂ=F..k=FZ
- dz -

Thus, they coincide with the components-ofthe applied or motive
force.

The kinetic energy T of the patrticle is
T :%m(x2+y2+22) ........................................................... (2)

Using equation (1) and (2) we obtain

i[d_TJ LT 3)
dt\ dx /) dx

ie.mx=F my=F and mz=F,.
These equations may be combined to obtain

10
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F.i+Fj+kF, =mX+my+mz

= m(is +j§ +12)

Where =a=iX +jy+kz and
F =iF, + JF, +kF,.

Equation (4) is Newton’s second law of motion.

SELF ASSESSMENT EXERCISE 2

1. Describe the motion of a particle in space usinglaiPo
Coordinates (r9).

2. Describe the motion of a system of two particlesnexted by a
string over a fixed, frictionless pulley.

3. Determine the number of degree of freedom in fimetigles
moving freely in a plane.

4. Prove that the total momentum of a system of dagican be

found by multiplying the total masMl of the system by the
velocity vof the centroid.

6.0 TUTOR-MARKED ASSIGNMENT
1. Define the following terms with examples:

a. Centre of mass
b. Degree of freedom.

2. Determine the number of degrees of freedom in agemoving
on a given space curve.

3. A system of a particles consists of a 2 gram masatéd at (0, O,
1), a1l gram mass at (-1, 0, 1) and 3 gram mags &t -1). Find
the coordinates of the centre of mass.

4. Prove that if the total momentum of a system isstamt i.e. is
conserved, then the centre of mass i.e. eithezsatar in motion
with constant velocity.

5. State and prove the conservation theorem for TAtagular
Momentum.

11
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1.0 INTRODUCTION

The motion of a particle or system of articlesdstricted in some ways.
For example, gas molecules in a container are @net by the wall of
the vessel to move only inside the container, wailgarticle placed on
surface of a solid sphere is restricted by the ttaim so that it can
move on the surface or in the region exterior t@ thphere.
Consequently, a constraint can be defined as théations on the
motion of a particle.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

. define the term constraint

state the types of constraint

distinguish the different types of constraint

define D’Alambert’s principle and relevant theorems

3.0 MAIN CONTENT
3.1 Holonomic and Non-Holonomic Constraints

In practice, equation (6) in Module 1 Unitl, mayt nmmpletely
describe the motion of théh particles of a system of N patrticles; for it
may be necessary to take into account the conraihich limit the
motion of system. For example, in rigid bodies itih@ion must be such
that the distance between any two particular dagiof the rigid body is
always the same. Such limitations on the motionaoparticle are

13
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referred to as constraints. The constraint contditan be expressed
mathematically as

1] (P P P D) T 0 (30)

If the position vectors of the particle are constdealong with the time
taken, then the nature of constraint condition im&d could be regarded
as holonomic otherwise and non-holonomic conssaishall be

discussed in detail next.

Furthermore, if the constraints are independertinoé, we say they are
Scleronomous but if they depend explicitly on time. It can &&id that
the constraint condition iheonomous

Remarks

In the presence of constraints, the coordin&tes|ri| are no longer all

independent, hence the equations given by equ#ipnn Module 1
Unit 1 above are not all independent; the forcesamistraints are no
longer known.

They are among the unknown of problem and mustiteireed from the
solution we seek. In fact, the presence of conmdggaiis an
acknowledgement of the fact that there are forctimgaon the system
which cannot be specified directly but are knowityan terms of their
effect on the motion of the system.

3.2 Generalised Coordinate

Remarks

If the constraints imposed on a system of N partare holonomic and
are expressed by means of k equations of the farm aquation (30),
then the equations may be used to eliminate k ef3N coordinates
which describe the system. There are then left 8Nyk independent
coordinates and the system thus possesses 3N-dedegfrfreedom.

The elimination of k dependent coordinates may égarded as an
exercise in transformation theory involving theraaluction of 3N—k
new independent variables;,q®, .......... vk COnnected to the
coordinates,,r,,........ ry- Thus,

14
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r1~: r}(ql, (o IEUURU yOan-k o 1)
r2~=r~2(ql, (o IEURRUN yOan-k o 1)
s =r5(0;,0 . neeee yOan-k s 1)
............................................... (31)
ry =M (G Qe Osn-k »1)

These equations contain the constraints explicilliie new variable,
Oos vevvnennned Osnk are called generalised coordinates. We shall eynpl
them a great deal in the sequel.

3.3 D’Alambert’s Principle
Virtual Displacement (Assumed Infinitesimal)

A virtual displacement of a system of N particlethwiposition

vectors(rl,r2 ......... rNj, is a change in the configuration of the system

arising from an arbitrary infinitesimal changeésof the coordinates
r.the changesd, being assumed consistent with the forces and

constraints imposed on the system at the given time

The symbol has the usual properties of the diffgmbd. For instance,
o(sind) = cosh 6 6.

Consequently, the displacement described in equg{®) above is
called virtual displacement to distinguish it fran actual displacement
of the system occurring in a time interval [t, ©d# during which the
forces and constraints may be changing.

Principle of Virtual Work

For a system of N particles, with position vector® be in equilibrium,

the resultant force acting on each particle mustdve. ThenF, =0, for
i=12,......, N.

15
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However, it is obvious that the virtual wof.a, =0, for i=12,......, N.
But if the total virtual work is considered, we aioted

Remarks

If constraint are present, the motion, then we iabthe total force
involved in the displacement is sum of the actuaicé and the
constraint force acting on thh particle. Then

F. =F (actual) +F (virtual).........cocoveiii i, (32)

In view of equation (30) and (31) we obtain

N N

> r (actual). & + > F (virtual) 8. =0 (32)
i=1 i=1
Theorem

Suppose in the following that we are considerindy asystems of

particles for which the virtual work of the force$ constraint kanish.

This theorem is valid, for example for all rigiddes. On the strength of
the mentioned theorem, we obtain from equation {320

SUF, (ACHUAN). &, 0. (33)

i=1 -~

This equation is generally referred to as the HMplacof Virtual work.
Note that since the coordinatedori =1, 2 ....... N are connected by

the equations of constraints, the infinitesimal ndesd, are not
independent, and hence

F (actual).z0,ingeneral ..........coooiiiiiii i (33)

In order to obtain an equation of the form (34wihich the coefficient
of & may be set to zero, we must recast (34) by usiagrittependent

coordinates). To achieve this, we may write the equations ofiom

F-P =0, (fori=1,2....... ) PR (7. )|

16
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Consequently, equation (32) may be re-written eaftrm

= ~
This becomes:

N . N .
Y| E (actual)-P, |8r,+> | F (virtual) =P, |85, =0..........oeeeee. (36)

-1 -

From the remark that led to equation (32) we cadude another
theorem thus. A system of particles with positi@ctter r,.for i = 1, 2

....... N moves in such a way that the total virtual kvor

D R@ctual)=P [ 85 =0 ..o, (37)

i-1

With the theorem, equation (36) is referred to las D’Alambert’s
Principle; hence we can consider dynamics as aamase of statics.

4.0 CONCLUSION

From the remark that led to equation (32), oneiobtthat a system of
particles moves in such a way that defines thd toteual work as in
equation (36).

5.0 SUMMARY

This unit has briefly discussed the motion of mdes, the constraint of
motion, types of constraints, which are definedb#lews:

. The limitation to the motion of a particle is calla constraint.
The components are wusually expressed in the form
72 (P P ry.t)=0 wherer,r,,.......... r, are position vector
of the patrticles.

. Holonomic Constraint is a typical constraint coiudit that is

involved if the position vector of the particleaensidered along
the time-taken.

. But for non-holonomic it means that the positiorctee of the
particle is not considered along the time taken.

17
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. Scleronomous constraint condition occurs when thestaint is
independent of time.
. While rheonomous constraint is a constraint coaditivhich is

explicitly dependent on time.

We further discussed the transformation theory Iwviag the
introduction of;\ new independent variableg, ds ........ Osn-k that are
connected to the coordinates,r,,.....r,. where k are dependent

coordinates.

Thus,
rl-=r-l(ql,q .......... +Oan-i o £)
rp = rf(ql, (o IR Oanok o L)
r3~=r~3(ql, o U yOan-k > 1)

As in equation (31) in Module 1, Unit 1

Consequently, the generalised coordinates arereefdo as the new
variablesqy, oo ........ Osn — the above.

We discussed the equation of the Principle of \dirtuork as:

N
> F (actual).a; =0 also, for total virtual work equation is

i=1 -~

N

Y| F(actual)-P |51, =0

i
i-1 =

This is called D’Alambert’s Principle.
SELF ASSESSMENT EXERCISE 1

Two particles having masses, and m, are located on a frictionless
double inclined curves and connected by an inediknmass less string
passing over a smooth pulley. Use the principleiwfial work to show

that for equilibrium we must have Sint, =ﬂ, where ], andd, are

Sin(l, m,
the angles of the incline.

18
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Solution

Let r,andr, the respective position vectors of massesndm, relative
to O.

The actual forces (due to gravity) actingropandm, are respectively:
FP=mg, B mg (1)

According to the principle of virtual work,

> FA&, =0.

Alternative solution
FOF + B, 0.l (2)

Where d&,and J&r,are virtual displacement ofry, and m, down the
incline.

Using equation (1) in (2)

We obtain,

Or  mg.a, Sinld; +m,g.a, SINO,=0. ..o, (4)

Then, since the string is inextensible,
lLe.d, +da,

19
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Consequently, equation (4) becomes
(mlg.ér1 SinJ, —-m,g.ar, Sin Dz)érl =0.
But sinced, is arbitrary we must havey, 9., SinlJ; +m,g.4r, SinJ,=0.

e Sink, _m_
sing, m,

SELF ASSESSMENT EXERCISE 2

Use D’Alambert’s principle to describe the motioh tbe masses in
example 1.

Solution

We introduce the reversed effective foreagiandm,i, in the equation
(3) of example 1 to obtain:

(m,g -m).8r, +(m,g -mK,).8r, = 0o (1)
This can be written as:
(m,g Sin0, -m).8r, +(m,g Sin0, -m,t,).8r, =0. ............. 2)
Now since the string is inextensible so that
r, +r, = constant, we have
or, +0r, =0, L+l =0 (3)
Consequently, in view of (3), equation (2) becomes
m,g SinlJ, —m;i;, —m,g SinJ, —m,f, =0.

_m,g Sind, —m,g Sin{J,
m, + m,

1

In conclusion, particle 1 goes down or up the meliwith constant
acceleration according asg Sin(J; >m,g Sin[, .While particle 2 goes
up or down respectively with the same constantlacaon.
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6.0

1.

7.0

TUTOR-MARKED ASSIGNMENT

Two particles having masses; and m, move so that their
relative velocity isV and the velocity of their centre of mass is

V. If M = m + myis the total mass andl = ﬂis the
(m, +m,)

reduced mass of the system, prove that the tatetiki energy is

vz -z,

2 2

Find the centroid of a uniform semi circular wiferadius] .

A uniform chain has its ends suspended from twedigoints at
the same horizontal level. Find an equation fa turve in
which it hangs.

T+AT
0 +A0

B
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MODULE 2

Unit 1 Lagrange’s Equation

UNIT 1 LAGRANGE'S EQUATION
CONTENTS
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5.0 Summary
6.0 Tutor-Marked Assignment
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1.0 INTRODUCTION

Scientists (applied mathematicians) have dealt gmign with the
formulation of problems in mechanics by Newton'sMsaof Motion.

However, it is possible to give treatments of meetg from rather
general view points, in particular those due toduage and Hamilton.
Although such treatments reduce to Newton’s lawlseyt are
characterised not only by the relative ease withclwvimany problems
can be formulated and solved but by their relatigmé both theory and
application to such advanced fields as quantum arech, statistical
mechanics, celestial mechanics and electrodynamics.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. apply Lagrange’s equations in solving dynamicabjpgms

. trace find the Lagrange function of particle(s) mmgvin a
conservation force field

. derive Lagrange’s equations for holonomic and nolmomic

constraint respectively.
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3.0 MAIN CONTENT

3.1 Lagrange’s Equations

Definition

Consider a system df particles, with position vectors and constant

massesm.. suppose thak holonomic constraints are imposed on the
system such that there are only n independent cwies. Them + k =

3N and we may introduce new independent coordinatgsfor i = 1,
2...,n, by means of equation

r}: E(%’qz’ ............ ,qn,t)
~2: |"2(q1,q2, ............ ,qn,t)
|:3: E(quz’ ............ ,qn,t)
r = r;q(ql’qZ’ ............ ,qn,t)

We shall assume that there are sufficient diffeade transformations.
From the general equation:

r,:rl (o e PR o) e (37)
We have

. Of or,
/=1, % Gty (38)

Also, we have the virtual displacement

N, o,
A e ¢ [H (39)

-~ =1

No time variationdtis involved in equation (39) above since only a

virtual displacement is involved in the displacemsesf coordinates.

N .
(F (actua) — R).0r, and set the result to zero.

=1 ~ ~
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Now, Z (F (actua) - P) 6r

=1 -

WhereQ, = ilﬁ(actua).% .......................................... (42)

i

The scalarQ, are called components of the generalised force.

Similarly,

SRE = Ym ity

- 3 Zmi e

3 im{;(m.ﬁ%} m ;{%ﬂ ................. @)

g(dr N O, d%r,
— - = —q, + T T PP 43
at| % > G+ 5 (43)

—= by (38
qu()

j
Also from equation (38), we obtain

oV, Or,

24
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This may be viewed as “cancellation of dots”, since

Where we have set

N
T= Z%mi V2 e e s (44a)

i=1
which is referred to as total kinetic energy of slystem.

From the preceding; D’Alambert’s Principle now yisl

S d(sr) or||. _
2 [Q, ‘{a(a—%j—é—%}]m] =0 (45)

Since the constraints have been assumed holontimicoordinatesi
fori=1,2,3,...... N, have that:

dlod | oT
e Tl e (R 46
dt[esqj] 6q, ° ()
forj=1,2...,n
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Equation (44a) are often referred to as the Lagrangguation.
Remarks

Suppose that the system considered above is ircémservative. With
this assumption, there is a scalar potential fonas called the potential

energy of the system such that

Fi(actual) == L1 ..o 47)

Then the component), of generalised force become:

Q :ZN:F(actua) o —iFDfZJi
: i=1 I aq] i=1 I aq]
oo
e LT T 48
& (48)
Using equation (48) in (47), we now have:
AT =) g (49)
dt{ aq, q,

If # depends only om,,q,,0,........ gy 1.e. @ is independent of z, then
equation (49) may be written thus:

A1 =0) | _oT=8) 5 (50)
dtl a9, 5,
forj=1, 2...,N.

Consequently, setting

Equation (50) may now be written thus:

5(5—_"]—6—":0, .......................................................... (52)
dt| 59, | &q,

forj=1, 2...,n
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The equation given by (52) rather than equatiomsrgby (46) are what
are often referred to as LAGRANGE’S EQUATIONS. Tiuaction L
= T - @ in equation (51) is referred to as the bagian function or
simply the Lagrangian.

Remarks

The equations given by (52) are Lagrange’s equsationa conservative
system.

Now, suppose that the system is non-conservativg, that the
componentxQ, of generalised force are given by a velocity —efej@nt

function.

(quJ) - u(qjqj) as fO”OWS[Qj =

O O e (53)
8, dt| aq,

Then equation (52) remains valid with
L = T — U o (54)

The function U is called a generalised potential aorvelocity —
dependent potential, and it is a dissipation fuorcti

Remarks

)] The function P, :s—_l‘, where L is the Lagrangian and is called
j
the generalised momentum associated with the giesexta
coordinates; .

1)) The kinetic energy T is given by

N 1 2
T:;Emw.”m” erveeee.. (B5)

But from equation (3)
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Substituting this in the expression

For T, we have

N 1 2
T:ZEmi‘\/

i=1

2
N1l o, 6rj

=2 oM Dt
o 2 j:16qj ot

If the transformation equations (37) do not invalyee. in the presence
of Scleronomous constraints thanc0 =A=j,forj=1, 2, ...,nand

T is reduced to the following homogenous quadratigression in the
generalised velocities.

N
T2 Y MK BBy v vevee e (57)

jk=1
Examples on Lagrange’s Equation
SELF ASSESSMENT EXERCISE 1

Find the motion of a system of two particles coteeddy a string over a
fixed, frictionless pulley.

Solution

Let L be the length of the string connecting thesses and let D denote
the diameter of the pulley.

SettingL-D .
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Then, it is clear that there is only one indepehdanable,x, say since
from the diagram we must always have distancesateld.

Now the potential energy of the system is:
V =-m,gx-m,g(L —x)
And the kinetic energy¥ of the system is

T =§(m1 +m,)x?

Hence, the Lagrangian L of the system is
1 "
L=T-V ZE(ml +m,)X" +m,gx+mg(L —X)

By equation (52), we now obtain

d (6L) oL G

Thus: (m, + m,)X —(m, +m,)g

This is the equation of motion of the system.

Remarks

) The above problem is an example of a consergatixsstem with
holonomic, Scleronomous constraints. The holonaroitstraint
is given by:

X+y=/

Wherex, y are the distances of the massgsamd m respectively from
the horizontal plane through the centre of thegyull

This problem also shows that the forces of constriae. the tension in
the string do not appear in the Lagrangian fornmmat

Hence, the tension in the string cannot be founectdy by the
Lagrangian method.
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SELF ASSESSMENT EXERCISE 2

Investigate the motion of a bead of massliding freely on a smooth
circular wire of radius ‘a’ which rotates in a hmontal plane about one
of its point ‘O’ with constant angular velocity, *w

Solution

The plane of rotation is that of the paper andtimtais anti-clockwise,
with ‘O’ as the centre of revolution. At tintethe wire rotates through
an angleu = wt as shown. The angle made by the bead with OAC
(where C is the centre of wire) is also shown. Tberdinatesx, y) of
the bead B are given by.
a. x=a Cosvt + a Cos@ + wt)

y=a Siwt + a Sin(6 + wt)
Hence, we see that there is only one generalisedlic@ate, namel.

Consequently, from (a) and (b) alone, we havettiakinetic energyl
of the bead is given by

C. :%ma{w2 +(0+w)? +2W(9+W)Cos(9+wt)}

The potential energy of the system is clearly zem@. This implies that
the generalised force is zero since the systemnseasvative.
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From (c), we have:

oT

— =ma*(8 = w +wCoP)

5
E(E] - + ma (6 - w + woSing)
dt| 36

5T

5= mat [w(®+ wsing]

Hence, we have:
ma’ (6 — wOSinB) + ma*w(6 = w)Sind =0
(d) Implies
0+w?’Sin6 =0
SELF ASSESSMENT EXERCISE 3
Compare 8+w?Sin@ =0with the equation of motion of a simple

pendulum of length given by: 0 +%Sin€) =0

Here, we see that the befdoscillates about the line OA as if it were a
g

simple pendulum of Iength:F.

SELF ASSESSMENT EXERCISE 4

X1 Y1

In the diagram, M is a mass constraint to slidéhenrsmooth track AB.
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A particle of mass M is connected to M by a mass lmextensible
string of lengtlY. Find the equation of motion leading to small
oscillations of the system.

Solution

Let x denote the position oh at timet and let (%, y1) be the position of
m also at timd. Notice that here, y, is measured from the equuirb
position of m. Le®be the angular displacement of the string conngctin
m to m. 0 is assumed increasing the counter clockwise dinectlt is
clear att=0.

Next, we seek T and g, the kinetic energy and pialeenergy of this
system of two particles, we have

1 1
3a. T==m®+=m(x +v.
) ) (X +Y;)

and
3b. @=mgy,

Next, x; andy; may be expressed in termsxadnd 6.
Thus,

3c. X, =x+/(Sind

3d. vy, =x+/(1-Co9)

Using (3c.) and (3d.) in (3b.), we have:
1 . 2 1 . a 2 2A2Qin2
T=om +Em[(x+€9Cose) +070°Sin?)

2=mg/(1l-Co9).

From the expressions for T arfidvhich involves only two coordinates

X, and0 the generalised coordinates for this problem, amclude that
the system under consideration has two degreesedfdm.

Next, we have:

L=T-6 :%mxz +%m{+ (x2/BCoD)? + 2 B°Sin’ e} —mg/ (1- Cob)
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g—lé =m(x + (6Cog) / cosB+m ¢*6Sin’6 .

E(O_LJ = m(x + (8Co® - (6SinB ) £ Sin - m(x + (6CoH) + (BSind

dt Y
+2m £26°Sind CoH + m¢26Sin?0

‘;—'é = ~m(x(6CosD) (BSind +%mx2€ 267Sind Co + - fmg Sing

Hence, the first Lagrangian equation of motion is

g[a_tj_a_tzo
dt\ 59/ 00

SELF ASSESSMENT EXERCISE 5
m(x + (BCoP — £62SinB)(CoH — m(x + (BCODH)
fGSin@+%2m€2€)28in€) Co® + m¢28Sin®0 — mg/ Sing.
Since we are only interested in small oscillatiohghe system, we have

the approximations.

SirB =6 and
Cod=1.

0 x+¢8+g8=0 Neglecting terms involving
6%, 62and 6 and higher other terms

Terms

6_% = mx + m(x + (6Co)
oX

oL _

—=0
[)'¢
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%(mx +mx + m¢8CoP) =0

(m+m)x + m¢8CoH - mrdSin =0

Neglecting terms involve®? 6%, we get
mx +mx +m¢@ =0

(M+m)x +mB=0

4.0 CONCLUSION

We have discussed the Lagrange’'s equation in geremd for
Holonomic and Non-holonomic constraints with rethtexamples as
shown above.

5.0 SUMMARY

In summary, we have assumed that from the gengqualten:

. r :E(ql,qz, ....... q,,t)

n O or,
. V.= =) . —Qq +—
JZ:]; j : 6qi
n O,
. or, :Z.—Iqj being the virtual displacement.

=1 j

By using equation of D’ Alembert Principle we conpthat

. Q= ZN: F (actua).ﬂ
=] oq;
This is called the component of the generaliseddor

Similarly
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a. 6q1 5C|j |
oV, o,
5q, i

Consequently, from (5) and (6) can conclude thus,

N, |d|oT | d

N |
L4 Pi6. = — |7 . ;
; i JZ:;‘ dt 50, dt o,
J

Where

N
. T= Zl m, V* which is the total kinetic energy of the system.

i=1

From D’Alambert’s Principle, we have that

N d(sT)| &T ~
‘ Ele‘{aﬁm—eJ‘a—%HM“”

Hence,
. Q, = d 6—T —6—_T forj = 1, 2...,n. are called at Lagrangian
dt{ &g, ) 9q,
equation.

6.0 TUTOR-MARKED ASSIGNMENT
1. A double pendulum vibrates in a vertical plane, tevrihe

Lagrangian of the system and hence obtain the equaif
motion.
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2. Use Lagrange’s equations to describe the motica pérticle of
massm down a frictionless inclined plane of angle

3(a) Set up the Lagrangian for a one dimension baitnoscillator;
and

(b)  Write out the Lagrange’s equation.
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1.0 INTRODUCTION

Phenomena of an impulsive nature, such as thenadtiovery large

forces (or voltages) over very short internal ahdj are of great
practical interest, since, they arise in variougligptions. This situation
occurs, for instance, when a tennis ball is hitgyatem is hit by a
hammer, an air plane makes a “hard” landing, a shipit by a high

simple wave, and so on. In this unit, we shallierested in the change
of momentum produced by variable foreecting from time t such
thatt, <t <t,.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. define impulsive motion
. identify equations of motion for impulsive forces
. define conservative fae fields.
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3.0 MAIN CONTENT

3.1 Impulsive Motion of Particles

Definition

The state of rest or motion of a body sometimestguks an apparently
instantaneous change owing to the sudden applicafi@ force which
acts for a very short time only.

For example, a ball stuck by a bat or a collisibiwm billiard balls. In
such cases it is not possible to measure the fateange of momentum
because a finite change of momentum takes plaae infinitesimal
interval of time.

We know that the change in momentum produced bgreahie force
¢acting from time

t=t andt=40is
| L gt
tl

Of course, it is possible for the force to increasd at the same time the
interval b — t; to decrease in such a way that the integral temdsfinite
limit although, we gave no means of measuring ttectevalue of L at
any instant during the interval. Thus, this sorfa@fce is measured by
the change of momentum it produces. Any motion ltiegufrom this

impulsive force is called an impulsive motion.

The equations of motion for a system of particlee@ upon by finite
forces are known to be given as:

> mk=% X
S =3
D> ne=xZ
and%Zm(xy— yX) =2 (XY= yx)

By integrating these equations w.r.t. t throughraéerval from 0 to t, we
get
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t
> m-Xmk, =X [ Xdt
. . t
> my-3my, :ZL Ydt

> - =X| Zdt

In particular if t — to is so small that change iy, are neglected.

Then:
2 M(xy = yX) =2 m(Xy, =YX, )

=Z{XJ.: ydt—yftt xdt}
Where x,,y, denote the values of ,y at time to.

By concerning ourselves with the above definitidnnopulsive forces
then,

_[: xdt,jtt ydtandjtt ydt andf zdtare

The measures of the components of the impulse whiajloe denoted by F,
Q. R, respectively which may be rewritten as

> mx-Ymx, =X F
zmy_zmyozz Q
Y mz-Ymz, =¥ R

and X m(Oy = y) =X m(x, ~ y%;) =2(XQ-YF).

Thus, these equations revealed the fact that #tantaneous increase in
the linear momentum in any direction is equal te $um of the
externally applied impulsive forces in that direati

Note, that if M is the total mass of the systenpafticles andx, y, z are
the coordinates of the centre of gravity, then
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m(X-x,) =2 F
m(y-V,) =XQ

m(z-z,) =X R

Also, the equations confirm the principle of consgion of linear and
angular momentum, in that if there be a directionvhich the external
impulsive forces have zero components, there is change of
momentum in that direction.

The Problem Involving Impact of Two Forces
Definition

The coefficient of restitution (e) is the ratiotbe relative velocity of the
bodies, along their line of centres, after impactite relative velocity
before impact. For example, for a hard substarkeedieel, (e) is nearly
unit, but for a soft substance, it is small. Whesuastance is perfectly
elastic e = 1 and when, t is inelastic e = o.

Let my, m, be the masses of the two spheres, U} their velocities
before impact and,uv, their velocities after impact and let the motion
be along the line of centres.

The momentum in the line of motion is unalteredhms impact so that
My Vy+Mp V=1 U+ My Uy,

By Newton'’s rule,

Vi—V=-e(U-)

These equations determine the velocities after atnpamely,

Vismu+nplp—em (Vi — V)
m + M

Vismu+nplp—em (Vi — V)
M+ Ny

the impulse of the spheres which reduces the wglotithe first from y
to vy is my (U, — vy), which is equal to

(I+e)mm, (U — W)
My + My
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It is easy to show that the loss in

K, E_ — lnqlmZ (1_e) (ul _u2)2
2 m, +m,

3.2 Conservative Force Fields
Definition

Let V be a scalar function and F the force (exteh@eting on a particle
of mass M, such that

F=-0V
Theorem 1

The total work done in moving the particle along tturve C from Pto
P, is

W=[" F [tx=V(P)-V(P,)
o ¢

z
In such case the work done is independent of thie §a joining the
points R and B. If the work-done by a force field in moving a e
from one point to another point is independentha path joining the
points, then the force field is said to be consgrea

The following theorems are valid:
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Theorem 2

A force field F is conservative if there exists a continuously
differentiable scalar field V such that

F=-0Vor
Equivalently, if (0 * F = O identically.
Theorem 3

A continuously differentiable force field F is camgative for any closed
non-intersecting curve C (simply closed curve).

jF@r=0

l.e. the total work-done in moving a particle arduany closed path is
zero.

Remarks
The scalar V such that # - [IV is called the potential energy or scalar
potential of the particle in the conservative fofieéd F. In this case, the
total work-done from Pto P, along C = potential energy at Binus
potential energy atP
L.e. W= Vi — Vo, V=V (Pl)’ Vo=V (Pz)
3.3 Conservative Forces
Definition
If there is no scalar function V such that FEV i.e.
OMNE£O,
Then Fis said to be a nhon—conservative force field.

SELF ASSESSMENT EXERCISE 1

Show that F= X%y zi — xyx%k is non — conservative.

42



MTH315 ANALYTICAL DYNAMICS

Solution
i ik
O0E = 9 90 9
- |ox oy 0z
x’yz o -xyZ
=-xZi +(X*y + yZ°) j - Xzk
Butd A F 20

Therefore, the field is non-conservative.

4.0 CONCLUSION
The instantaneous increase in the linear momentuany direction is

equal to the sum of the externally applied impu@siorces in that
direction.

5.0 SUMMARY

The change in momentum produced by a variable foreeting from
timet, to t, is defined as

f L dt

This is called an impulsive force. Any motion résgy from this
impulsive force is called an impulsive motion.

The measure of the components of the impulsiveefdenoted by F, Q
and R are:

Yo oY = XF
XM >y, =2 Q———(2
Y -Ym YR

and) mOy-yX) - > mxy-y%) = > (XQ-YA———— (3
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From the above equation, it can be summarisedtktegatnstantaneous
increase in the linear momentum in any directioagsal to the sum of
the externally applied impulsive forces — that clii@n.

Consequently, ifm is the total mass of the system of particles and
X,yandz are the coordinate of the centre of gravity, then,

m(x—x,)=> F
m(y- yo):ZQ
m(z-z)=> R

We further showed the loss:

_1 1-6) (U -u,)*
K.E.=2 L
R -

Theorem 1

The total work-done: moving the particle along tueve C from pto
P, is given as

w= [ Fiix= V (P)-V (P)

Theorem 2

A force field F is conservative if there exists a continuously
differentiable scalar field V such that

F=-0V consequently,

Theorem 3

A continuously differentiable force field F is camgative if for any
closed non-intersecting curve C

fF tr =o.

That is, the total work-done in moving a particteuand any closed path
IS zero.
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7.0

la.
b.

2.

3.

7.0

TUTOR-MARKED ASSIGNMENT

When is a force field said to be conservative?
Define the following:

impulse
impulsive force and
impulsive motion.

Show that the force field F defined by F Zzfy- 6x2) i + 2 x y
Z°; + (3xy’Z” 6X2) k is a conservative force field.

Prove (Theorem 1) that if the force acting opasticle is given
by F =0V. Then the total work-done in moving the particle
along a curve C from P to P, IS
w:j: F@r=V (P)-V (P,) =%mVBZ —%mvj where
V,and\, velocities at pointsp,andp, respectively.

A mass of 5000kg moves on a straight line frorspaed of
540km/hr to 720km/hr in 2 minutes. What is the ifspu
developed at this time?

Show that the force field given by:

F = »yzi — xyZk is non-conservative
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MODULE 4
Unit 1 Simple Harmonic Motion
Unit 2 Collation of Smooth Spheres

UNIT 1 SIMPLE HARMONIC MOTION
CONTENTS
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1.0 INTRODUCTION

If a small body or a particle vibrates or movesmal fro along a straight
line under the influence of a force that its ac@len towards a fixed
point (or its equilibrium position) is proportionab its distance or
displacement from that point, the body is saiddaweha simple harmonic
motion.

The term simple harmonic motion is not limited totran in a straight
line, and can be applied to the variation of anyalde quantity which

satisfies a differential relation of the type calesed. Examples include
simple pendulum, loaded test-tube in a liquid, n@sa spring.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. define simple harmonic motion
. identify the forces causing simple harmonic motion
. define conical pendulum.
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3.0 MAIN CONTENT

3.1 Simple Harmonic Motion

If a particle moved in a straight line in such ayvilaat its acceleration is
always directed toward a fixed point of the linelaiis proportional to
its distance from that point, the particle is seadmove with simple
harmonic motion.

Let O be the fixed point on the line (straight) PCad let x be the
distance of the particle from O at time t, x is t@gight and —ve to left.
The acceleration of the particle can be taken a®fyas —ix, where
w? is a constant which is +ve. If x is +ve, this elecation is directed
towards O, and if —ve, it is directed towards O

v - W
dx
e d (Evzj = WX
dx \ 2
0 Le=tua+c
2 2

Where v = velocity, t = time, acceleration =3Jx\9 and c is constant.
Soift=0,x=aandv =0 (where a = distance)
Then, 0 %Wzaz +c,

v? =w?(a? - x?)

V:iw\/(m

If the initial stage of the motion V is —ve as tparticle is moving
towards O.
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Therefore,c(;—): = -w,/(a® - x%)

wt = coslg+ d (where d is a constant)
Whent=0, x = a, and ¢0% = 0, and d = 0 and we get

1 X
Wt = cost 2
a

X = acos (wt)
V = (-aw) sinwt
Definition

If a small body or a particle vibrates or movesmal fro along a straight
line under the influence of a force that its ac@len towards a fixed
point (or its equilibrium position) is proportionab its distance or
displacement from that point, the body is saiddaweha simple harmonic
motion.

The term simple harmonic motion is not limited totran in a straight
line, and can be applied to the variation of anyalde quantity which
satisfies a differential relation of the type calesed. Examples include
simple pendulum, loaded test-tube in a liquid, n@sa spring.

Note: When wt = n/2w with velocity —aw. It continues along the

straight line, and its velocity is zero when wtz=and x = -a. It then

returns towards 0, arriving at O when wtg’g with zero velocity. The
w

motion is then repeated, and continues indefinitel\ess it is destroyed

by a frictional force of some kind. Below is theagh of distance

against time.
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U k j |
a = length is called amplitudef the motion and is the distance of the
extreme points from the centre of the oscillation.

Time Eis called the_periodf the oscillation and is the time of a
W

complete oscillation from one extreme point to oliger and back again.
The frequency n Sl
27

SELF ASSESSMENT EXERCISE 1

A particle is moving with simple harmonic motion @ériod 47 about a

centre O, it passes through a point distance 4m foowith the velocity

4m/sec away from O. Find the time which elapsderbdt next passes
through this point.

Solution

Since period = [ w:1
w 2

From V¥ = W (& — ),

A=Y, (& -5,

A =4+4/5m

Therefore we have that
X = a cos wt

X = 44/5 cos%
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and when x = 4, co

N—

1
J5
a, 1

=2nn +cos' (—

( @)
Whenn =0, 1, 2... etc.
So the shortest distance between instants whempatteles is in this
1 _ a1
— ,t=4co8—.

5 5

3.2 Forces Causing Simple Harmonic Motion

position is given byt5 = 2cos

The force acting on a particle earlier discussegiien as m#x which

is proportional to the distance from O. Thus, SidMaused by forces
whose magnitude varies with distance. Example$aroes in a spring,
which is proportional to the increase or decredsgsdength from its
natural length and the force of tension in an &lasting.

A patrticle with mass m, length |, modulN®n a smooth horizontal table

displayed a distance x from equilibrium positiowl have a forcexl—x

towards O. Then

Its period =2™ \where i =
w mi

_ o A
Its extension c Is given as mg—|=c

3.3 Suspension by an Elastic String

A particle suspended by an elastic string also eapees SHM
provided. The string does not return to its natuesgth during the
motion; if this happens, the string will becomecg&land the particle
begin to move freely under gravity.

Thus, we have mg %a where a is the distance

A _mg
| a

50



MTH315 ANALYTICAL DYNAMICS

If the particle of mass M hangs freely at the ehthe string and given a
small vertical displacement x then

2
Md;( :ﬂx,
dt M a
d’x _ -mg
dt2  me X

Then, the period is (mJ
ma

SELF ASSESSMENT EXERCISE 2

One end of an elastic string of length 24 cm iedibended and to the
other suspended end, a mass of 5 kg is attacheath withen in
equilibrium stretches the string 4 cm. The maspuked down at a
distance of 3cm below its equilibrium position ahén released. Find
the period of oscillation and the maximum kinetieryy of the mass.

Solution

Let A be the modulus of elasticity then from mg?a

x4

5g="—

g 24
A =30g N.

For a displacement xm from the equilibrium positioie have

2
5d ;( _ 309 N
dt 0.24
d?x
—— =-25g N
dt? g

Hence, i = 25g, w = 15.66, and the period is 0.45.
The amplitude is 3cm and force the epoch is zero,

X = 0.03 cos 15.66t

— =v =-0.47 sin 15.66t
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So the max velocity is therefore 0.47m/sec ancttineesponding kinetic
energy is

%XSXOA?

= 0.552J.
SELF ASSESSMENT EXERCISE 3

A spiral spring supports a carrier weighing 2 kgdavhen a 10 kg
weight is placed in the carrier the spring extebd®. The carrier with
its load is then pulled down another 7.5 cm andjéet How high does it
rise and what is the period of its oscillation?

3.4 Conical Pendulum

An arrangement by which a particle tied by a sttio@ fixed point O,
and move in a horizontal circle, so that the stdegcribe a cone whose
axis is vertical through O is called conical pemuahal

Let the mass be m, height of the cone be h anskits-circle angle be
a. Therefore, the speed of resolution and the éenisi the string may
be found in terms of h and

a.

mhw’tara<

mg

If w = angular velocity, T = tension in the strirthe radius of the circle
is h tana and the reversed effective force is mttana. The particle

may be considered as in equilibrium under the ®fEemg and mhiv

tanll.

So  Tsina = mhw tana, T sina = mh sina w?,

O T = mhw = 4rn’mh
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T cosa = mg
O w? = g/h,

T = mg sea

If wis m rad/sec, the time of a complete resohuﬁisgsec, and the
W

number of r.p.m. is?&’v = 30 g/h
T T

SELF ASSESSMENT EXERCISE 4

A mass of 10g rests on a rough horizontal tablén wibefficient of
function %2. It is attached to one end of a ligiextensible string which
passes through a smooth hole in a mass of 4 ki3 &tee end. If the
mass 4 g describes a horizontal circle with a vslaf 8 m/sec and the
mass on the table is on the point of shipping, threlradius of the circle
and the length of string below the table.

Solution
Since the 10 kg mass is on the point of slippirgtdnsion in the string

must be 5 gN. Let a m be the radius on the can@ the angle made
by the string with the horizontal.

4x8?
a

The reversed effective force (T) is givengg— =

4 kg mass may be considered as in equilibrium utideforces 5 g, 4 g

andﬁsN.

a

Then, 5g co$ = %6
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59 sinB = 4h
sin = 4

5

_ 3 _ 256

cosf===—"—

5 5x9.81xa'
a= 256 8.7

29.43

the length of string below the table is

ased==-a=14.5m

wl o

4.0 CONCLUSION

If a small body or a particle vibrates or movesma fro along a straight
line under the influence of a force that its ac@dlen towards a fixed
point (or its equilibrium position) is proportionab its distance or
displacement from that point, the body is saiddaweha simple harmonic
motion.

Simple harmonic motion is not limited to motionanstraight line, and
can be applied to the variation of any variablenixawhich satisfies a
differential relation of the type considered.

5.0 SUMMARY

In summary, we explained the term SHM which is doted as not
being limited to motion in a straight line.it waks@ discussed in this
unit that SHM is caused by forces whose magnitudees with
distance. It was also noted that a particle susgebifay an elastic string
also experiences SHM, provided the string doegetorn to its natural
length during the motion. Lastly, conical pendulwas also discussed
and some examples are solved in all these.

8.0 TUTOR-MARKED ASSIGNMENT
1. A particle is moving with simple harmonic motion périod 4n
about a centre O, it passes through a point dist&m from O

with the velocity 4.5m/sec away from O. Find theei which
elapses before it next passes through this point.
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2. A mass of 12 g rests on a rough horizontal tabté woefficient
of function 0.3. It is attached to one end of dtighextensible
string which passes through a smooth hole in a 0B6$5 kg at
its free end. If the mass 6.5 g describes a hot@aircle with a
confirm velocity of 3 m/sec and the mass on théetad on the
point of slipping, find the radius of the circlecathe length of
string below the table.
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1.0 INTRODUCTION

An object remains in a state of rest until an exdeforce impacts on it.
The ratio of the momentum after impact to the mownenbefore impact
is called the coefficient of restitution (or elagty). This momentum is
denoted by the symbol e. If the net external f@ceng on a particle is
zero, its momentum will remain unchanged. Thatwsmtonstant.

The relative velocity of the spheres along the bheentres immediately
after impact is — e times the relative velocitydsefimpact.

2.0 OBJECTIVES
By the end of this unit, you should be able to:

. define and explain, collision of smooth spheres
. identify the forces causing collision of smooth s@s.

3.0 MAIN CONTENT

3.1 Collision of Smooth Spheres

When a body strikes a fixed surface, the impactdpced causes the
momentum of the body to be destroyed where it ugwks compression

thereby altered, its shape. This is followed by exiq@ known as
restitution in which the body regains its shape amsmentum. The
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ratio of the momentum after impact to the momenhefore impact is
called coefficient of restitution (or elasticityguloted by e.

l.e.
e = _momentum after impact
momentum before impact (1)

= -e = _velocity after impact
velocity before impact ---  --- (i)

If velocity is measured in (ii)

NOTE: In the above, when e = 0 we have inelastic bodyveineh e =
1, we have perfectly elastic body.

This important theory is mostly applicable to thepact of spheres on

smooth surfaces or on each other, so that the sapwuring
compression and restitution is normal to the sarfac

3.2 Law for the Impact of Spheres

“The relative velocity of the spheres along theelif centres
immediately after impact is —e times the relativelogity before
impact.”

3.2.1 Direct Impact

The impact is direct when it is normal to the scefand we have that

V =-eu

Where v = velocity after impact, u = velocity befompact and
e = coefficient or restitution.

So, if h is, the height when a sphere falls to aaim plane, the velocity
before impact is

U= 1/iZghi

The velocity after impact is (upward)

eu =./(2ghe?)
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The velocity is destroyed by gravity when the sphbas risen to a
height.

0 y/[2ght) = {2ghe

1
h_g
h
hl
e=,—
h

3.2.2 Indirect Impact

If the surface diagram of the impact is of the form

The velocity before impact parallel to the surfeéea cosa and velocity
after impact is v.

O u cosa = v cosP
= Vv sinf3 = eu sinx

Hence, Gcosp + VAsin’P = ¥ (coga + €sirfa)

v =uy(cosa +€sinta)

tan = e tana
= ¥ - V= ¥ (1-&)sirfa

and loss of kinetic energy due to impact is

1muz—lmv2 = 1muz(l—ez)sm2 a
2 2 2

O the proportional loss of kinetic energy is @sa*]
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SELF ASSESSMENT EXERCISE 1

Three smooth spheres, A, B, C of masses m, 2miandespectively
rest on a smooth plane (horizontal) with their cesitcollinear, and B
lies between A and C. The coefficients of resbtutbetween any two
pairs are equal. If A is projected towards B wwiklocity U and C

moves with velocity% after it has been struck by B, find the common

coefficient of restitution and subsequent velosité A and B.

m 2m 4m
Let V,, V, be velocities of A and B respectively aftércbllision and let

e be the common coefficient of restitution betwegry two spheres.
Then momentum conservation and Newton’s Law give

Solution

mVi + 2Mv, = mu - ---------mme oo (2)
Vi—V, =-e(u-0) = -eu ---------------- (2)
(1) and (2)= 3v, = u(1+e)

0 v2:u(l+e)

Thus, \, = u(l;se) -eu = u@

B then moves faster ahead of A to strike C atcassing second
collision.

Let V3, V4 be velocities of B and C respectively after theosel

collision,
Then,
2mvs + 4my, = 2m u(l%e) ---------- 3)
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Vs—V, = -eutr® (1;‘3) -------------------- 4)

(1+e)

(2)and (4)= 3v,=u 3

+ eu

L+e)
3
Therefore, \{ = %(l +e+e+8= %(1+e)2

But, V, =

J>IC

Thus, 2 (1+ef = or 1+ e =3
9 4 2

21
=e==
2

Velocity of A after £' collision is

(1—2x1)
V.= UTZ =0

Velocity of B after 2% collision is

1
1+7)
V3:V4_eu@:E-u 2
3 4 6
:E_E:O
4 4

Therefore, subsequently, A and B are put to restr dirst and second
collision respectively.

SELF ASSESSMENT EXERCISE 2

A particle falls from a height h upon a fixed hanital plane; if e be the
coefficients of restitution on, show that the whdlistance described

before the particle has finished reboundlng—((}se—);] and that the

whole tune taken ié1L+_e X 2h
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Solution
(@) Let u be the velocity on first hitting the péago that

U? = 2gh
Then the particle rebounds with velocity eu. Théoey when it hits
the plane the second time is eu and the velocigy #fe second rebound
is €u. Similarly, the velocity after the third, fourttc.; rebounds are

e’u, éu etc.

(b)  The height to which the particle rises aftex finst rebound is
(ey)’
29
u)?
And after the secon 29 and so on.
(c)  Since G=2gh0O the distances aréte €h, etc.

Hence, the whole distance described is
H+ 2(éh + € + .....to infinity)

2 2
=h+2f-S | = pi*e
1-¢€? 1-¢€?

(d) The time of flight after the first impact is2g, after the second
2€fu/g, and so on, and the time of falling originasly

5

Hence, the whole time of motion :(%hJ + M e+@+é+ .. 10
g

_ J(%h] +2J[%hj_(e+é+ ..... )

infinity)
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3.3 Resultant of any Number of Forces Acting on ad?ticle

The resultant force is that single force whichragtalone will have the
same effect in magnitude and direction as two orenforces acting
together. Also, the equilibrant of two or moredes is that single fore
which will balance all the other forces taken tbget Note that the
equilibrant force is equal in magnitude but oppo&it direction to the
resultant force.

If we have a number of forces acting on a part@&tl®, and we draw a
polygon with its sides proportional and parallethese forces and close
the polygon then we know that the system is in ldgium or if not
close, the resultant of the forces is represemyetid straight lines. i.e.

(a) (b)
In vector notation, the resultant of the false é&srABCDEF is a force
acting at O. It is represented in magnitude amelction by AF. Thus,
AF=AB+BC + CD + EF

3.3.1 Method of Finding the Resultant of any Numberof
Forces in One Plane Acting on a Particle

Consider the figure below,

Let the forces P, Q, R etc. act upon a particl®.at
Let the forces P, Q, R ...... makes anglé3, vy ..... with OX.

The components of P in the directions OX and OY are
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Pcost and P sir respectively.

Similarly, the components of Q are:

Qco$ and Qsifp and so on.

Hence, the forces are equivalent to a component
Pcost + Qco$ + RcosY...... along OX

and a component
Psira + Qsi + RsinY....... Along OY

If the components be X and Y respectively and Ehiee resultant ané
its inclination to OX,

Then, FcoB8 = X
Fsib=Y
FP=X+Y?

and ta® = X
Y

SELF ASSESSMENT EXERCISE 3

Three forces of magnitude 15Q, 10Q, 5Q act onracfain directions
which make 12bwith one another. Find their resultant.

Solution

10Q

\\12(9
>15
ﬁz@ N

5Q

Since forces 5Q, 10Q, 15Q in the directions indidaire in equilibrium,
they can be represented in magnitude and direttyothe sides of an
equilateral triangle.
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Hence, the three given forces are equivalent tee®rl0Q and 5Q
inclined at an angle 120of which the resultant R is given by

R? = (10QF + (5QF + 2 x 10Q x 5Q x cos?f2
1008+ 25Q - 50GF

= 75G@
R =5/3Q

The anglef the resultant makes with the direction of the éod&P is
given by

arp= N6 _ 5J3
10-5co:<60 15
1

tarD = —
V3

06=3d¢

SELF ASSESSMENT EXERCISE 4

A particle is acted on by forces of 1N, 2N, 3N, a4M, the angles
between them being 8030, 60 respectively, find the magnitude and
direction of the resultant.

4.0 CONCLUSION

Conclusively, having gone through this unit youddde able to define
the following terms: coefficient of restitution, rdct and indirect
iImpacts. Also, you should be able to solve simptblems on resultants
of forces acting on a particle.

5.0 SUMMARY

In this unit, we studied that the ratio of the momaen after impact to
the momentum before impact is called coefficientrestitution (or
elasticity) denoted by e.

I.e.

e = momentum after impact
momentum before impact and
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— -e = _velocity after impact
velocity before impact

We remark here that when e = 0 we have inelastiy lamd when e = 1,
we have perfectly elastic body.

It was also discussed that the relative velocityhef spheres along the
line of centres immediately after impact is —e sntiee relative velocity

before impact. Direct impact and indirect impactevereated as well in

this unit. However, the impact is direct when inisrmal to the surface
and we have that

V=-eu
Where v = velocity after impact
u = velocity before impact and

e = coefficient or restitution.

So, if h is, the height when a sphere falls to aaim plane, the velocity
before impact is

u=,(2gh
The velocity after impact is (upward)

eu =./(2ghe?)

The velocity is destroyed by gravity when the sphbas risen to a
height.

0 /(2gh*) = \2ghe

1
h_e
h
hl
e=.—
h

while in indirect impact the velocity before impaetrallel to the surface
is u cosa and velocity after impact is u.

O u cosa = v cosP

= Vv sinf3 = eu sinx
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and from above it was shown that the loss of kinemergy due to
impact is expressed mathematically as

1 muz—1 mv? -1 mu’(1-e”)sm’ O
2 2 2

where ((1-8sin’0 )is the proportional loss of kinetic energy of the
system of particle.

Remarks

1. Suppose two bodies of massesand m moving with velocity
u; and y respectively collide directly. If vand y are the
velocities after impact the principle of momentuimeg us the
equation

MV, + MpVo = MU + Moy

2. MV — g

U —Uu,
then, y— v, = -e(u-u,)

3. From (1) & (2) above,
(M + mp) v = (M — em) up + mp (1+e)y
and ((m + mp) v,= my(l+e) y + (M — em) .

SELF ASSESSMENT EXERCISE 5

1. A ball of mass 10kg, moving at 5m/s, overtakes la@mobf mass

4kg, moving at 2m/s in the same direction. €l % find the

velocities after impact.

Solution

AN
the direction
N,

Let v, v, m/s be the velocities of 10kg and 4kg spheresecsly
after impact. By the principle of momentum

10v; +4%, =10x5+4x2 =58
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and by Newton’s law

1 -3
Vi—\=-=(5-2)=—
1= =-2(5-2) =7

_ _ A9
D14v1—520r\4—37

3
and 14y=73 ory=5—.
¥ ¥ 14

SELF ASSESSMENT EXERCISE 6

Two masses fand m travelling in the same straight line collide
Find

(@) velocities of the particles after collisionterms of  the
velocities before collision
(b)  Briefly discuss:

0] a perfectly inelastic collision and
(i) a perfectly elastic collision for the two massesamd .

(c)  Show that for a perfectly elastic collision of {harticle m and
m,, the total kinetic energy before collision equéte total
kinetic energy after collision.

Solution

(a)

Assume that the straight line is taken to be thaxks and that the
velocities of the particles before and after cmhs are v, v, and \, Vv,
respectively,

By Newton'’s collision rule,

V1=V = €(Up — W) 1

By principle of consideration of momentum, total mentum after
collision = total momentum before collision.

MyVy + MV, = MUy + MpUy -=---=---=----- 2
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MV, + MV = MU + my,
10v; + 4% =10 X5+ 4 X 2 =58 -------------—- 0]

By Newton’s law,

Vi — Vo = €(Up — W) ---------------- ... - (i)
10y, + 4v, = 58
and from (ii) v — v, = ‘73
3
Vo = 5 TV
Putin (i)

10v; + 4(2 +v;) = 58

10w, + 6 + 4y = 58
14w, = 52

5
Vi, = 3=
1757

also

10(3%) + 4 (w) 58
3
Vo=5—,
2714

Solving equations (1) and (2) simultaneously,

— (m, —em,)u, + m,(1+e)u,
m, +m,

Vi

— m1(1+ 8)“1 + (mz - Sml)uz
Vo = -4
m, + m,

(b) (i) Here we put = 0 in (3) and (4) above to obtain
m,u, + myu, Vo = m,u, + myu,

V1= y V2
ml+m2 m1+m2
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Thus, after collision the two particles move wille tsame velocity i.e.
they move as if they were stuck together as asipaiticle.

(€)

6.0

7.0

(i) Here we put: = 1 in (3) and (4) above to obtain

vy = (m,-m,)u;+2m,u, Vo = 2myv,+(m,—m,)u,

m1+ m2 m1+ m2
Then velocities are not the same

2
2m1U1+ (mz_ ml)UZ}

Total kinetic energy after collision émz{
2 m,+m,

%mluf+%m 2u3

= total kinetic energy before collision
TUTOR-MARKED ASSIGNMENT

Three forces of magnitude 20Q, 15Q, 10Q act onracfain
directions which make 180with one another. Find their
resultant.

A particle is acted on by forces of 5N, 2N, 1.5Mda8N, the
angles between them being®6@5’, 9& respectively, find the
magnitude and direction of the resultant.
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MODULE 5 NEWTON'S LAW OF MOTION AND
APPLICATIONS TO SIMPLE PROBLEMS

Unit 1 Newton’s Law of Motion
Unit 2 Work, Power and Energy
Unit 3 Rectilinear Motion

UNIT 1 NEWTON'S LAW OF MOTION
CONTENTS

1.0 Introduction

2.0 Objectives

8.0 Main Content
3.1 Newton’s Law of Motion
3.2 Force

4.0 Conclusion

50 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Isaac Newton, the great scientist considered thanmg:

0] how a body A will move when left to itself

(i)  how the motion is affected by the action of an exdéforce

(i) if this external force is due to another body Bow the action of

B on A is related to the reaction of A on B.

He then gave three laws which we perfectly call Mewve laws of
motion in mechanics.

2.0 OBJECTIVES
By the end of this unit, you should be able to:

. state Newton’s laws of motion
. define impulsive forces and make some simple agipdios.
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3.0 MAIN CONTENT

3.1 Newton’s Law of Motion
Isaac Newton considered the following:

0] how a body A will move when left to itself

(i)  how the motion is affected by the action of an exdéeforce

(i) if this external force is due to another body Bow the action of
B on A is related to the reaction of A on B.

He then gave three laws which we considered asattiems of
mechanics which shall form the bases of the unit:

(1) Every object (particle) continues in a stateredt or of uniform
motion in a straight line (i.e. with constant vetgr unless acted
upon by a force.

(2) If F is the force acting on a particle of masswhich as a
consequence is moving with velocity v, then

where P = mv is called the momentum. If m is inchejeat of
time t this becomes

where a is the acceleration of the particle
(3) If particle A acts on particle B with a forcegFin a direction
along the line joining the particles, while pamicB acts on

particle A with a force ga, then Ea = Fag. In other words, to
every action there is an equal and opposite reactio

3.2 Force

Force is defined as a measure of the “push orgulan object”. The
unit of force is Newton (N).
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SELF ASSESSMENT EXERCISE 1

Due to a field, a particle of mass 3 units moves@la space curve
whose position vector is given as a function ofetinoy

r = (4f + 20 + (6 -t +10)j - 6k

Find (a) the velocity, (b) the momentum (c) theedemtion and (d) the
force field at any time t.

Solution

(@) Velocity = V :% = (8t +2) + (3 - 21)] - 18k

(b)  Momentum =P = mv = (24t + g+ (9 — 6t)j - 54fk
2

(c)  Acceleration = a :(;ll_\t/ = % =8i + (6t - 2) - 36tk

d) Force=F 2(3—? = m =24 + (18t - 6) - 48tk

SELF ASSESSMENT EXERCISE 2
A particle of mass 4 moves in a force field depagdin time t given by
2
F=12i + (16t—-8) - 20tk
Assuming that at t = O the particle is locatedyat i — j + 6k and has

velocity V, = 3i + 7] - 4k, find (a) the velocity and (b) the position at
any time t.

Solution

(@) By Newton’s second law, apply equation (iiipab

dv _ ,,2 -
450 =121 + (16t 8) - 20t

2
& =310+ (4t-2) - 50K

Integrating with respect to t and calling ¢, thestant of integration,

we have J'% = j 3tf + (44 — 2)- 5k
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3 2
V=ti +(12—2t)i -5—;“5 +G
Since
V=V,=3i +7j -4k att=0, we have c, =i3+ 7] - 4k

: 2 .. 5t?
and sov = {t+ 3)i +(t2+7)] -(7 - 4)k

(b)  Sincev :% we have by part (a)

% =(E+3)i +(F-2t+7) -(5—; - Ak

Integrating with respect to t we have

_(t (2, . (5.5
r=|—+3t|i+| ——-t+7t|j - | =-t"-4tk+c,
4 2 - 4

wherec, is the constant of integration. Since

r=rh=2i—j+6katt=0,
we have g= 2i - j+6k

and so

([t N G . (5.3
r=|—+3t+2 i+ ——-t"+7t-1|j - | -t"-4t+6 |k
4 2 = \4

SELF ASSESSMENT EXERCISE3

A particle of mass m moves in the xy plane so itlsgtosition vector is r
= acoswt + bsinwtj

where a, b and w are positive constants and a>b
(@) Show that the particle moves in an ellipse

(b)  Show that the force acting on the particle iwags directed
toward the origin.
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Solution

The position vector is

r=xi+yi

= a coswt i + bsinwtj

and so x = acoswt, y = bsinwt which are the parametuations of an

ellipse having semi-major and semi-minor axes ofgles a and b
respectively.

(g
Y

2 2
Since&j + (%j = coswt + sirfwt = 1

2 2
the ellipse is also given b);y5+ % =1

(b)  Assuming the particle has constant mass mfaitoe acting on it
is

mdv d’r _ md? : :
F= =m = acoswt) + (bsinwt
dt dt>  dt? (« L+ 1)

= m[-wfacoswt i — bsinwt)j)]

= -mw/acoswti + bsinwtj |

which shows that the force is always directed tavibe origin.
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4.0 CONCLUSION

Having concluded this unit, you should be able tiiespromptly the

three Newton’s law of motion)that is,every object (particle) continues
in a state of rest or of uniform motion in a sthdifine (i.e. with constant
velocity) unless acted upon by a force. Secondye of change of

momentum is proportional to the applied force amke$ place in the
direction of the applied force.

Mathematically, F = ma. Lastly, the third law stathat to every action
there is an equal and opposite reaction.

5.0 SUMMARY

In summary, the first, second and third laws ofats&Newton were
defined and extensively explained coupled with s@mngple problems
on forces that were attended to.

9.0 TUTOR-MARKED ASSIGNMENT

1. State Newton’s law of motion.

2. In a forcefield, a particle of mass 10 units moves along @cep
curve whose position vector is given as a functbtime t by r
= (5¢ + )i + (-t +3)j - 7tk

Find (a) the velocity, (b) the momentum (c) theederation and
(d) the force field at any time t.
3. A particle of mass 7kg moves in a force field depeg on time t

2
givenby  F =15t + (10t +3)] - 12t

Assuming that at t = O the particle is locatedyat f — j + 3k and has
velocity V, = 2i + j +4k, find (a) the velocity and (b) the position at
any time t.

7.0 REFERENCES/FURTHER READING
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UNIT 2 WORK, POWER AND ENERGY
CONTENTS

1.0 Introduction

2.0 Objectives

9.0 Main Content
3.1  Work, Power and Energy
3.2  Principle of Linear Momentum
3.3  Principle of Angular Momentum
3.4  Principles of Conservation of Energy

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

According to Oxford English dictionary, work is daio be the use of
bodily or mental power in other to do or make sdnmgt. While power

is said to be the ability to do something/performarkv Consequently,
energy is said to be the strength and vitality eeedor vigorous

activities. In other word, energy is the abilitydo work. Energy can be
expressed in two forms namely: kinetic and poténgaergies

respectively.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. define work, power and energy

. state the principles of linear momentum and somapl&
applications

. state the principles of angular momentum and som®ls
applications

. state the principles of conservation of energy aomhe simple
applications.
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3.0 MAIN CONTENT
3.1  Work, Power and Energy
3.1.1 Work

If a force F acting on a particle gives it a digglaent dr, then the work
done by the force on the particle is defined as

dw = F.dr.

Since only the component of F in the direction ofigl effective in
producing the motion.

The total work done by a force field (vector field)in moving the
particle from point IPto point B along the curve C of the figure below
is given by the line integral.

P1

P,
r+dr

Where  and p are the position vectors of pnd p respectively.

3.1.2 Power

If the particle in work above has constant massdhtimestand § it is
located at pand p and moving with velocities V= % and \, = %
respectively.

Theorems on Power

Theorem 1

The total work done in moving the particle alongfrGm p, to p, is
given by:

W = _[ JFdr= %m(vg—vf)
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3.1.3 Kinetic Energy

If we call the quantity T =%mv2, the kinetic energy of the particle, then

the theorem 1 above is equivalent to the statement.
Total work done from fto p, along C.
= Kinetic energy at - Kinetic energy at P

W=T,-T)
— 1 2 _1 2
where T, = Emv1 and T, —Emv2

SELF ASSESSMENT EXERCISE 1

A patrticle of constant mass m moves in space utigeimfluence of a
force field F. Assuming that at timesand § the velocity is y and vy
respectively, prove that the work done is the clraimgkinetic energy,

ie. [*Fdr = 1mv§ - 1mvl2
4 2 2

Solution

Work done = j:z F.dr dt = fz F.vdt

= (" my vdt
. dt

SELF ASSESSMENT EXERCISE 2

Prove that if F is the force acting on a partiaid a is the velocity of the
particle, then the power applied to the particlgiven by P = F-V
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Solution

By definition the work done by a force F in giving particle a
displacement dr is

dw = F.dr
then the power is given by

_dw
dt

=g
dt

P=F.v

SELF ASSESSMENT EXERCISE 3
Find the work done in moving an object along a @ect

r = 6i + 4) — 10k if the applied force is F = 4P}— 2k

Solution

v

N

work done = magnitude of force in direction of ootk distance moved

=FcoB xr

=F.r

= (6i + 4j — 10Kk). (4i -2j — 2k)
=24-8+20

= 36.

3.2 Principle of Linear Momentum

If r is the position vector of the centre of mass ofyal body relative
to an origin O, then

Imi=mr=F

dt
where m is the total mass, and F is the net extéonee acting on the
body.
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3.3 Principle of Angular Momentum

If J'c is the moment of inertia of the rigid body abdwe tentre of mass,

w is the angular velocity andc is the torque or total moment of the
external forces about the centre of mass, then

-4
= (Jow)
= [ew
3.4  Principle of Conservation of Energy

If the net external forces are conservative so tthafpotential energy of
the rigid body is V, then

_1 2 1 2
T+V=Zmr +—jcw + v
2 2

= constant

Note: % mr® is the kinetic energy of translation an;djv cw? is the
kinetic energy of rotation of the rigid body abthe centre of mass.
SELF ASSESSMENT EXERCISE 4

Show that the total momentum of a system of padiclan be found by
multiplying the total mass m of the system by tleemal force acting
on the system.

Proof

The centre of mass is by definition,

X r

rr

m

r=

The total momentum is

P =2myv,

= Zmr .rr = mﬂ
B ai

=mv Q.E.D.
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SELF ASSESSMENT EXERCISE 5

Explain why the ejection of gases at high velodiym the rear of a
rocket will move the rocket forward.

Solution
Since the gas particles move backward with higloaigt and since the
centre of mass does not move, the rocket must ricoward.

SELF ASSESSMENT EXERCISE 6

A solid cylinder of radius a and mass m rolls withelipping down on
an inclined plane of angke Show that the acceleration is constant and

2 .
equal to—sina .

39
Solution

The potential energy is composed of the P.E dubdcexternal forces
l.e. gravity the P.E due to internal forces whialn be neglected.

Taking the reference level as the base plane adrasg that the height
of the centre of mass above this plane initialljHisand the height at
anytime tis h, we have

.2
%mr + %ICW2+ mgh = MgH ........cco (1)
or using
H =N = XS o (2)
andr =X +
S et (3)
i.e.y¥=0
Substituting (2) and (3) into (1) we have
1 2.1 2 _ :
Smx +§jcw = MG XS o ane s (4)
Butw =0 = 2 ............................................................................... (5)
_1
and | = ST (6)
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Substituting (5) and (6) into (4) we obtain

>'<2 :ﬂgisina
3
Differentiating w.r.t, we have
2xx = ﬂg>.<sin0c
3
'>; =ggsim
3
3.4.1 Angular Momentum (/1)
_d
Inrx F=—[m(r x v)]
dt
then the quantity
JU =m(rxv)
rxp
Is called the angular momentum or moment of monmargbout O

3.4.2 Conservation of Momentum

If we let F = 0 in Newton’s second law, we find
d

—(mv)=0

Olt( )

Or mv = constant
Remark

If the net external force acting on a particle ésaz its momentum will
remain unchanged.

Torque

If a particle with position vector r moves in aderfield F

Y4

O

we define O=r x F. As the torque or moment of the forcatidut O.
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Impulse

Suppose that the particle in the figure below

P1

P>
r+dr

X

IS located atp,andp, at timest,andt, where it has velocitie¥,andV,
respectively. The time integral of the force Fegi\by

[ Fdt

is called the impulse of the force F.

SELF ASSESSMENT EXERCISE 7

Determine the torque and the angular momentum aheudrigin for the
particle of mass 4 moves in a force field dependindime t given by F
= 12f i+ (16t — 8)j — 20tk. Assuming that at t = O, thezrticle is located
at p = 2i — j + 6k and has velocityo\& 7] — 4k.

Solution

Hint: Torquel=rx F

4.0 CONCLUSION

If a force F acting on a particle gives it a digglaent dr, then the work
done by the force on the particle is defined as=dW.dr. If the net

external force acting on a particle is zero, itsnmeatum will remain
unchanged.
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5.0 SUMMARY
Work is defined as work done by the force on theigla thus

dw = F.dr. Power is defined as the total work damemoving the
particle along the path C from @ p, above is given by

W = ICF—dr: %m(vg—vf). The kinetic energy of the particle is given as
= %mvz. We further discussed therinciple of conservation of

.2
energy asE = constant =T + V =;-mr + % jcw2 + V.

Furthermore, the angular momentum or moment of nmbuame about O
is given as’L = m(r x v).

It is remarked here that if the net external foacéing on a particle is
zero, its momentum will remain unchanged. That is

mv = constant. Each sub section is followed byegample for better
understanding of the unit.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain the following terms and express their mathgcal
formulae: (a) Work (b) Power  (c) Energy
2. Determine the torque and the angular momentum aheutrigin

for the particle of mass 4kg moves in a force figéghbending on
time t given by F = 32t i+ (32t — 8)j — 5tk. Assimgthat att =0,
the particle is located ag # i —3 | + 6k and has velocityo\= 3i —
4Kk.
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UNIT 3 RECTILINEAR MOTION
CONTENTS
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10.0 Main Content
3.1 Redctilinear Motion
3.1.1 Uniform Force Fields
3.1.2 Uniformly Accelerated Motion
3.2  Weight and Acceleration due to Gravity
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

A force field which has constant magnitude and afioa is called a
uniform constant force field.

2.0 OBJECTIVES
By the end of this unit, you should be able to:

. define rectilinear motion
. define weight and acceleration due to gravity.

3.0 MAIN CONTENT
3.1 Rectilinear Motion
3.1.1 Uniform Force Fields
Definition

A force field which has constant magnitude and diom is called a
uniform constant force field.

Consider the diagram below, if the direction of fledd is taken as the

negative z direction as indicated below and themtade is the constant
Fo> 0,
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Ak
F = -Rok
) bj y
i
X
then the force field is given by F ={~------------ (@)

3.1.2 Uniformly Accelerated Motion

If a particle of constant mass m moves in a uniféonge field, then its
acceleration is uniform or constant. The motiorthisn described as
uniformly accelerated motion.

Using our known F = main (a) above, the accelenatiba particle of
mass m moving in a uniform force field (a) is giv®en

a= DK
m

3.2 Weight and Acceleration due to Gravity

By experiment, objects fall near the earth’s swefagth a vertical
acceleration which is constant unless air resigtéaegligible.

This acceleration is denoted by g and is calledateeleration due to
gravity or the gravitational acceleration. The aomate magnitude of
g is 9.8m/set

-mgk
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Assuming the surface of the earth is representethédxy plane in the
figure above, the force acting on a particle of smasis given by
w = -mgk.

This force, which is called the weight of the pa#gj has magnitude w =
mg.

SELF ASSESSMENT EXERCISE 1
A particle of mass m moves along a straight lindaurthe influence of a
constant force of magnitude F. If its initial spesdV,, find (i) the

speed, (ii) the velocity and (iii) the distanceveted after time t.

Solution

A
X
\4

\ 4
®
X

0] Let's assume that the straight line along whtble particle P
moves is the x-axis and suppose that at time tp#ngcle is at a
distance x from origin O. If I is a unit vector tine direction OP
and V is the speed at time t, then velocity is V

By Newton’s second law we have

Thus, dv =" dt or [av= Fat
m m

R A o L @)
m

where G is a constant of integration. To find, @e note the
initial condition that V = \§ at t = 0 so that from (2) ,,&G V, and

= P eV Or V=Vt ot e )
m m
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(i)  From (3) the velocity at time t is
Vi=Vg+ tiorV=Vo+ -t
m m
where V = Vi, \§ =Vy and F = Fi.
. _dx
(i) SinceV = m we have from (3),
X v+ Ft oordx= g+ )t
dt m m
then on integrating, assuming © be the constant of integration,
we have
F
X = Vot + [%jtz‘k C2
Since x=0att=0, we find,G 0
Thus,
F
X = Vot + t? 4
i+ (o] @

SELF ASSESSMENT EXERCISE 2

From example (1), show that the speed of the pamicany position x is

given by V = V02+[—jx

2F
m

Solution

From example 1,

dv

m— =F
dt
dv _F ., dvadx _F
t m’ dxdt m
orsinceV:%,
dt
v - F e vdv=Fdx
dx m m
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2
Integrating,v— = Ex + G
2 m

2
Since V =\ when x = 0, we find €= \% and hence

V= V02+(ij
\ m
4.0 CONCLUSION

This unit is concluded thus, going by example kdction 3.2 above,
you will observed that use is made of Newton’s séclaw which has
been discussed earlier in unit 1 of this moduleisTit to advise the
reader that the units are interrelated.

5.0 SUMMARY

Uniform force fields which have constant magnitude and direction are
defined as uniform constant force field. Alsoiformly accelerated
motion is defined as motion of a constant mass m in whish
acceleration is uniform or constant. Using Newtosécond law we
have,

Fok
o

a=

Lastly, we show that the approximate magnitudeaziekeration due to
gravitational force as 9.8m/sec

Objects fall near the earth’s surface with a vaftacceleration which is
constant unless air resistance is negligible.

This acceleration is denoted by g and is calledateeleration due to

gravity or the gravitational acceleration. The @pgmate magnitude of
g is 9.8m/set

6.0 TUTOR-MARKED ASSIGNMENT

1. State Newton’s laws and give their mathematicahidee where
they are applicable.
2. An object of mass m is thrown vertically upwémin the earth’s

surface with speedy
3. Find (i) the position at anytime t (ii) the timeké&n to reach the
highest point and (iii) the maximum height reached.
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MODULE 6

Unit 1 Reduction of Coplanar Forces Acting on ai®Rigody to a
Force and a Couple

Unit 2 Moment of a Force

UNIT 1 REDUCTION OF COPLANAR FORCES
ACTING ON A RIGID BODY TO A FORCE AND
A COUPLE

CONTENTS

1.0 Introduction
2.0 Objectives
11.0 Main Content
3.1 Reduction of Coplanar Forces Acting on a Riydly to a
Force
3.2  Analytical Representation
3.2.1 Theorem
3.3 Centre of Mass of Simple Bodies
3.4  Motion of the Centre of Mass
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Coplanar forces are forces that lie in the samaepld rigid body is a
body that is made up of many particles which arfexatl distances from
each other. Examples include, metre rule, turnidy,fwriting desks,
towers supporting a suspended bridge, landing @feam aircraft etc.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. prove that any system of coplanar forces acting aigid body
can be reduced to single force on a single couple
. state that the sum of the moment of the forceb@bistem about

any point on the line of action of the resultanil & zero.
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3.0 MAIN CONTENT

3.1 Reduction of Coplanar Forces Acting on a Rigid Bodyo
a Force

Theorem 1

Any system of coplanar forces acting on a rigidypodn be reduced to
single force on a single couple.

Proof

By the parallelogram of forces, or theorems onltasuparallel forces,
the resultant of any two forces P.Q may be fouhid, ¢ontinues with a
third force R will determine the resultant of thesif (P).

Or

We can reduce any three forces P, Q and R to twaeAlleot compound
P with either Q or R, unless P forms a couple wdbh of them. In this
case, Q and R are equal, parallel, and like fo(émseach is in the
opposite direction to P), and therefore Q and Rbmnompounded.

By taking another force of the system with the fwixes obtained and
by repeating this process we shall obviously redheesystem to two
forces which, if not in equilibrium must either fora couple or have a
single resultant.

3.2 Analytical Representation

With reference to rectangular axes through a gigemt O, let the
forces of the system in figure below bg P, Ps.....

Let the forces act at the pointg,(¥1), (X, ¥2), Xs, ¥3) €tc. respectively.

LetP, P, Ps...... parallel to the axes bg &and y, X,and y, X3 and ¥....
Then, introducing at O the equal and opposite frgeparallel to OX
and two equal and opposite forces parallel to GYien we have forces
X1 and y acting at O and two couples whose moments akg and -y
X1.

Y Y1
) P} X1
1 t X X1 Vi
o O '\
A A4
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If the resultant of all forces acting at O has comgnts X and Y parallel
to the axes, then

X = X+EXo+Xg+ ... :ZX]_,
Y =VitYotysta :Zyl-

Also, compounding the couple into a single couple/li®se moment is
the sum of the moment of all the couples, that is,

G=[XY1-Y1 Xa] + [Xo Y2 —Yo Xo] + [X3 Y3 —Ya X3] + .........
= 2 (X1 Y1-Y1 X4].

The forces X and Y are equivalent to a single fqraging at O, where
P =J(x*+y?®) . Hence, the system reduces to a single forc©Ratd a
couple G.

3.2.1 Theorem

If the system of forces reduces to a single fotséne of action may be
found.

The sum of the moment of the forces of the systeoutany point on
the line of action of the resultant will be zero.

The moment of Pat (x Y1) about the point (h,k) is

(X1-h) - (y-K)x1
= (X1y1-Y1X1) — hy + kxg

Hence, the sum of the moments of all the forcesiath@ point (h,k) is
Z(X1y1y1x1) - hxy; + k&xq

=G —hy+kx
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If the point (h,k) lies on the resultant, we have

G-hy+kx=0
and finally,
G-xY-yX=0

This equation determines a definite straight linkess the coefficient of
x and y are both zero, and this is the case wiheraystem reduces to a
couple.

3.3 Centre of Mass of Simple Bodies

Definition

Letry, Io........ Ry be the position vectors of a system of N particés
masses.

my, M,....My respectively. The centre of mass of the systepadicles
is defined as that point C having position vector

where M :_%1 m; is the total mass of the system.

Definition

The continuous systems of particles occupying @re® of space in
which the volume density ig, the centre of mass can be written

- IRcrdr
chdr

(1)

where the integral is taken over the entire regton
If we write thatr = xi+yi+zk, rv = xvi + yvi + zvk

then (1) above can equivalently be written as
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X = Emvxv, )—/ _ Emvyr’ 2= xmvzr @)
m m m
_ oxdr _ oydr _ ozdr
andx:IR , :IRy ,z:IR , (3)
m m
where total mass is given by m&=mv or m :j godr ------ 4)
Remarks

(@) The integrals in (1), (3) or (4) can be singleuble or triple
integrals.

(b) If a system of particles is in a uniform grawbnal field, the
centre of mass is sometimes called@eatre of Gravity.

3.4 Motion of the Centre of Mass

Suppose that the internal forces between any twitclgs of the system
obey Newton’s third law. Then, if F is the resottaxternal force acting
on the system, we have

5=
F :EP = md_; = mﬂ
dt dt dt

where P is the linear momentum.
Remarks

(@) The acceleration of the centre of mass of tery®f particles is
the same as that of a single particle having a regsal to the
total mass of the system and acted upon by the slurhe
external forces.

(b)  If we consider as an example, a swarm of dagimoving in a
uniform gravitational field. Then

> F =>mg
=M g
40 CONCLUSION

This unit deals with the Reduction of Coplanar Esrécting on a Rigid
Body to a Force.
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5.0 SUMMARY

In the prove of the first theorem above, we renthgk by taking another
force of the system with the two forces obtained by repeating this
process we shall obviously reduce the system tdfnees which, if not

in equilibrium must either form a couple or havergle resultant. Also,
this remark is made in respect of the theorem 3Thiis, the sum of the
moment of the forces of the system about any pmrthe line of action

of the resultant will be zero.

More so, the centre of mass of the system of pestis defined as that
point C having position vector

|
3
2
i
+
3
N
I\.)_1
+
+
3
b4
Z-‘

N
whereM = % m is the total mass of the system.

10.0 TUTOR-MARKED ASSIGNMENT

Differentiate between centre of mass and centggafity.
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UNIT 2 MOMENT OF A FORCE
CONTENTS

1.0 Introduction
2.0 Objectives
12.0 Main Content
3.1 Moment of a Force
3.2 Couples
3.3 Moment of a Couple
3.4  Equilibrium of a Particle
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The moment of a force about a given point is thedpct of the force
and the perpendicular drawn from the given poirth®line of action of
the force.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. define Moment of a Force

. define the term, “Couples”

. state the Moment of a Couple

. prove the Equilibrium of a Particle.

3.0 MAIN CONTENT
3.1 Moment of a Force

When a number of forces are acting on a body, thebaaic sum of
their moments is obtained by giving the value & thoment of each
force its proper sign and adding them together.migot of a force is a
vector quantity as it has both magnitude and doectlts unit is NM.

The Principle of Moments can be verified experimaéiytby applying
known forces to a rigid body, such as bar, and nwplkappropriate
measurements. Therefore, principle of momentdbeansed as the basis
of static.

97



MTH315 ANALYTICAL DYNAMICS

SELF ASSESSMENT EXERCISE 1

A uniform beam is 24m long and has a mass 100kgaamsses of 60kg
and 80 kg are suspended from its ends; at what paist the beam be
supported so that it may rest horizontally?

Solution

Let AB be the beam, O its centre of gravity

O X
12 (12-x) Tox

A

v

v v
60g 1009 R 809

We need a point about which the moments of thestiweights balances
and let that point be X. Let R be the supportioggé R acting on the
beam at X.

= R =(60 + 100 + 80)g
= 240gN

Let BX = xm, then if we take moment about X,
80x = 100 (12-x) + 60 (24-x)

80x = 1200 — 100x + 1440 — 60x

80x = 2640 — 160x

240x = 2640

X=11

Alternatively, the position of X can be obtained taking moments of
all the forces about one end of the rod.

Hence, taking moments about B,
RX =100g x 12 + 60g x 24

= (1200 + 1440)g
240X = 2640

X=11
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SELF ASSESSMENT EXERCISE 2

A uniform rod AB, of length 12m, and of mass 60kgsts or two
supports, one at A and the other 2m from B. Mas$és 10 and 20kg
are attached at points 2m, 4,, and 8m respectivelp A. Find the
thrust on the supports.

Solution
A a b O c d B
2m 2m 2m 2m 2m 2m
R 89 10g 609 209

Let ¢ = the position of the other support

Let o = the centre of gravity of the rod

Let d, e, f = the points where the masses arehathc

Then R and S are the reactions at A and B in Newtaspectively.

Taking moments about A,

20s = 8gx2+10gx4+60gx6+20gx8
= (16 + 40 + 360 + 160)g

20S = 576

S = 28.8
O taking moments about C,

20R = 20gx2+60gx4+10gx6+8gx8
= (40 + 240 + 60 + 64)

20R = 404

R = 20.2

3.2 Couples

Couple is a term used to denote two equal unlikelieded forces
whose line of action are not the same.
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Consider the figure below,

F
P
A OR r
O B
l &
P
0. Couple consists two unlike equal lines

1. Different sense
2. Different directions
3 The same magnitude

Let P, P be the forces acting as shown above

Let O be any point interior plane

Draw OAB perpendicular to the forces to meet thie&s of action in A
and B the sum of the moment about O is

B
AB = AC =BA
AB =CB

P x OB - P x OA (i.e. clockwise and anticlockwise)

= P(OB - OA i
p X(AB ) Fockmse J anticlockwise

and it is independent of the position of O.
3.3 Moment of a Couple

The moment of a couple about any point in the plahée forces is
equal to the product of one of the forces and #@gndicular distance
between the lines of action of the forces.

In above, the product PXAP, whose P is the magaitfdeither of the

forces of the couple, and AB is the perpendiculatatice between the
forces, is called the moment of the couple. Thisy rha positive or

negative, depending on the sense of rotation of dlple.
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Remarks

A couple has turning point effect.

Theorem

A force acting at a point of a rigid body can beigglently replaced by
2oiiglgl.e force acting at some specified point togetvith a suitable

Proof

Let the force be Facting at Point Pas in the figure below:

fl PL F1

fy

If Q is any specified point, it is seen that théeef of f, alone is the
same if we apply two forces &nd —{ at Q.

In particular if we choose £ -f; and if R has the same magnitude as F
but is opposite in direction, we see that the ¢fééd-1 alone is the same
as effect of the couple formed by &d f, = -f; (which has moment, x
F1) together with the force £ f,.

3.4 Equilibrium of a Particle

Conditions of Equilibrium of any Number of Forces Acting on a
Particle

If we resolve the forces in any two directions ight angles and the
sums of the components in these directions be XYaritie resultant F
is given by

F=X+Y?

But if the forces are in equilibrium (see backedahiést be zero.

Now, it must be noted that the sum of the squarés@ real quantities

cannot be zero, unless each quantity is separztety
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Therefore,
X=0andY=0

Then we conclude that if any numbers of forcesngctin a particle are
in equilibrium the algebraic sums of their compdsem any two

directions at right angles must separately vanish.

Conversely, if the sums of their components in tlu@ctions at right
angles are both zero the forces are in equilibtibem for both X and Y
zero, therefore F is zero.

SELF ASSESSMENT EXERCISE 3

ABCD is a parallelogram and P is any point. Prthet the system of
forces represented by PA, BP, PC, DP is in equulibr

Solution

C

In above diagram, the resultant (a single forcectvineplaces 2 or more
forces) of the forces represented by BP, PA isesgmted in magnitude
and direction by BA. This resultant acts at P.

Again, the resultant of the forces represented By BC is represented
in magnitude and direction by DC and act at P.

Now, AB is equal and parallel to DC, so that theulants are equal in
magnitude, and as they act at the same point §, ale in the same
straight line. Since their directions are oppqditey will balance and
the system is in equilibrium.

Vectorially, we can write that the vector sum o fbrces
(BP + PA) + (DP +PC)

BA + DC
O
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(This is because AB and DC are equal and paratiéltbe two vectors
are oppositely directed).

[0 Since the forces act at a point and their veation-&s zero, they are in
equilibrium.

Q.E.D.

SELF ASSESSMENT EXERCISE 4

A string is tied to two points at the same leveld @ smooth ring of
weight W which can slide freely along the string pslled by a
horizontal force P. If in the position of equililom, the portions of the
string are inclined at angles%énd 38 to the vertical, find the value of
P and the tension in the string.

Solution

A

AB are the 2 points, C is the position of the rl@D perpendicular to
AB Tension T is smooth.

Resolving vertically,

Tcos39+Tcos6d= W

[ﬁ+1j T=W
2 2

_ 2W

J3+1

Rationalize to give T = Wv/3-1).
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Resolving horizontally,

P+ T sin 300 =T sin 600

_ 4B 1. T B
P="T -ET—E(\@ 1)
P = W(2+/3)

SELF ASSESSMENT EXERCISE 5

E is the mid-point of the side CD of a square ABCBorces 16, 20, P,
QN act along AB, AD, EA, CA in the directions indied by the order
of the letters. Find P and Q, if the forces arequilibrium.

Solution
25 42|,
Remarks

An important special case of motion of a partickecws when the
particle is, or appears to be, at rest or in elguilm with respect to an
initial co-ordinate system or frame of reference.

A necessary and sufficient condition for thisfrsm Newton’s second
Law, thatF =0

l.e. the net (external) force acting on the pagtislzero.

Also 0= 0 i.e. external torque on the particle is zero.
SELF ASSESSMENT EXERCISE 6

A particle moves along the x axis in a force fielling potential
V= %kxz, k > 0. Determine the point of equilibrium.

Solution
Equilibrium points occur where
OV = 0 or in this case

%:kxzo
dx

orx=0

Thus there is only one equilibrium point, at x = 0
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3.5 Linear Motion

In addition to our earlier study, we consider atipkr moving in a
straight line so that its distance from a fixednpdl in the straight line is

x after time t, we than have velocity V at timestgcel)? along that straight

line away from 0.

Again its acceleration at time t in the same dicegcis % thus

2
V:_’a:ﬂ :i % = d_X :Vﬂ_
dt dt dt dt? dx
Therefore, it is possible to find the accelerationterms of x or t by
differentiation if the distance x is given as adtion of the time, or the
velocity V as a function of the distance or time.

3.6 Motion in a Straight Line

Let S be the distance moved in time t, then if dceeleration has a
constant value a, we obtain
2
ﬂ = d”s = Vﬂ - a
dt dt® ds

Integrate, with respect to t, we have

V= % = at+ constant

If u be the value of the velocity at time t = 0, have

VS U Al e 1)(
Writing % for V and integrating again w.r.t. t,
S = UL+ Yo &+ CONSLANT ..o, (2)

Also if we write V@ = a, we integrate w.r.t.s to obtain %¥ a s t

ds

-

constant
If u is initial velocity when s = 0, then our coast = %

TRENVE = U + 28'S oo (3)
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Equation (1) to (3) above determines the motiompanticle moving in
straight line with CONSTANT acceleration. But iet acceleration is
VARIABLE, the equation does not hold. Therefore emh the
acceleration is given as a function of the timdoeiy expressions for
the acceleration and finds the velocity and th&adrse by integration.

SELF ASSESSMENT EXERCISE 7

A train moving with constant acceleration passeseliposts, A, B, C on
a straight road. The distance from A to B is 15nd &dom B to C 20m.

The train takes 6 sec to go from A to B and 5 segd from B to C.

Find the acceleration of the train and its distainoen A when its speed
is 5.5 m/sec.

Solution

Assume Vm/sec be initial velocity of the train amt/seé its
acceleration. We have for the two stages A to @/Amo C:

AtoB AtoC
u=\Vm/sec u=Vm/sec
v="7 v="

a =0m/¢ a =0m/¢

s =15m s =35m

t = 16sec t=11sec

Applying our formula s = ut- ¥ ato each of the stages A to B and B to
C we have

15 =6v + 18
35=11v + 60.5

Solving simultaneously, we have that
[0 =3/11 m/$and V = %,,m/s.
If the speed be 5.5m/sec at a point X, we havéh®stage

Ato X, u = 37/22m/s, v = 5.5m/s, a = 3/11mfsec
s=?andt="?

Applying formula \f = ¥ + 2as, we have
2 X 3/11 x s = (5.5)- (1.682§

Hence, the speed is 5.5m/sec at 50.27m from A.
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4.0 CONCLUSION

Moment of a force is a vector quantity as it hashbmagnitude and
direction. Its unit is NM. The Principle of Momentan be verified
experimentally by applying known forces to a ridgpddy, such as bar,
and making appropriate measurements.

5.0 SUMMARY

In summarythe Principle of Moments can be verified experitaéiy by
applying known forces to a rigid body, such as bamd making
appropriate measurements. Therefore, principlaahents can be used
as the basis of static.

Couple is a term used to denote two equal unlikeallgded forces
whose line of action are not the same.

The moment of a couple about any point in the plahée forces is
equal to the product of one of the forces and #@gndicular distance
between the lines of action of the forces. it imaeked further that A
couple has turning point effect as it is provedthi& foregoing unit.

THEOREM: Force acting at a point of a rigid body can beiegjantly
replaced by single force acting at some specifieidtpogether with a
suitable couple.

6.0 TUTOR-MARKED ASSIGNMENT

1. An electric train starts from rest at a station aodhe to rest at
the next station, one kilometre away, in 3 min. h#ts first a
uniform acceleration for 40 sec, then a constapedpand it is
brought to rest by a constant retardation for 2€ s€&ind the
maximum speed of the train and retardation whenimgno rest.

2. A train moving with constant acceleration passesdlposts, A,
B, and C on a straight road. The distance from B te 35m, and
from B to C 30m. The train takes 8 sec to go frdrio B and 5
sec to go from B to C. Find the acceleration @ tfain and its
distance from A when its speed is 10 m/sec.
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MODULE 7 HAMILTONIAN THEORY

Unit 1 The Hamiltonian
Unit 2 The Calculus of Variation
Unit 3 The Hamilton-Jacobi Equation

UNIT 1 THE HAMILTONIAN
CONTENTS
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3.1.2 Ignorable or Cyclic Coordinates
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4.0 Conclusion

5.0 Summary
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7.0 References/Further Reading

1.0 INTRODUCTION

We investigated a formulation of mechanics due &grange. In this
unit, we shall investigate a formulation due to H&on known

collectively as Hamiltonian methods or Hamiltonidoeory. Although
such theory can be used to solve specific problamsiechanics, it
develops that it is more useful in supplying funeatal postulates in
such fields as quantum mechanics, statistical nmechaand celestial
mechanics.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. define the Hamiltonian

. state the Hamiltonian for Conservation Systems
. define Ignorable or Cyclic Coordinates

. define phase space

. state Liouville’s theorem.
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3.0 MAIN CONTENT
3.1 The Hamiltonian

Just as the Lagrangian function, or briefly the raagian, is
fundamental to the previous module so the Hamitoniunction, or
briefly the Hamiltonian, is fundamental to this wni

The Hamiltonian, symbolised by, is defined in terms of the
LagrangiarlL as

H = 22:1 Pa ‘I-?a —L (1)

It must be expressed as a function of the genethtisordinate’s gand
generalised moment,plo accomplish this the generalised velocities
Must be eliminated from (1) by using Lagrange’s a&@ns. In such
case the function H can be written

H (py-........ B < R0 TR , Q1) (2)

Or
briefly, H (p,, g, t), and is also called the Hamiltonian of the system.

3.1.1 The Hamilton’s Equations

In terms of the Hamiltonian, the equations of motal the system can
be written in the symmetrical form

Eja = = Fa.
Qo (3)

Go =
These are called Hamilton’s canonical equationdyrafly Hamilton’s
equations. The equations serve to indicate thaptla@d g play similar
roles in a general formulation of mechanical pites.

The Hamiltonian for Conservation Systems

If a system is conservative, the Hamiltonian H bannterpreted as the
total energy (kinetic and potential) of the sysiem

H=T+V 4)
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Often this provides an easy way for setting up Haaniltonian of a
system.

3.1.2 Ignorable or Cyclic Coordinates

A coordinate g which does not appear explicitly in the Lagrangisn
called anignorable or cyclic coordinatdn such case

aL

Pa=7—=0 (5)

dq
So that p is a constant, often calleccanstant of the motion
In such case we also ha@® /dqg, = 0.
3.1.3 Phase Space
The Hamiltonian formulation provides an obvious syetry between
the p, and g which we call momentumand position coordinates
respectively. It is often useful to imagine a spat&n dimensions in
which arepresentative poins indicated by the 2n coordinates
H (py,........ B < R o R , @) = constant = E (6)
Such a space is called a 2n dimensig@hase spacer apq phase space.
Whenever we know the state of a mechanical systetimat, i.e. we
know all position and momentum coordinates, thén ¢hrresponds to a
particular point in phase space. Conversely, atpoirphase specifies
the state of the mechanical system. While the mechbsystem moves

in the physical 3 dimensional space, the represeatpoint describes
some path in the phase space in accordance wittieqs (3).

3.1.4 Liouville’s Theorem

Let us consider a very large collection of constweamechanical
systems having the same Hamiltonian. In such dasdiamiltonian is
the total energy and is constant, i.e.,

H(py, -.... B G, -.-.G) = constant = E (7)

Which can be represented by a surface in phase spac

Let us suppose that the total energies of all tsgseems lie between E
and B. Then the paths of all these systems in phaseespat lie
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between the two surfaces H 5 &d H = k& as indicated schematically
in the figure below.

Rz

Flg. 33 1

Since the systems have different initial conditigdhgy will move along
different paths in the phase space. Let us imatiaethe initial points
are contained in regio®, of Fig. 12 — 1 and that after time t these
points occupy regidr,. For example, the representative point
corresponding to one particular system moves fromtpA to point B.
From the choicer, and®, it is clear that the number of representative
points in them is the same. What is not so obviguthe following
theorem called Liouville’s theorem.

Liouville’s Theorem

The 2n dimensional volumes &, and®., are the same, or if we define
the number of points per unit volume as the deribiéyn the density is
constant.

We can think of the points @&, as particles of an incompressible fluid
which move fromiR, to R, in time t.

4.0 CONCLUSION

The Hamiltonian formulation provides an obvious syetry between
the p, and g which we call momentumand position coordinates
respectively. It is often useful to imagine a spat&n dimensions in
which arepresentative poins indicated by the 2n coordinates
H(py,........ B < B o , §) = constant = E

Such a space is called a 2n dimensi@hase spacer apq phase space.
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5.0 SUMMARY

The Hamiltonian, symbolised by, is defined in terms of the
LagrangiarlL as

H = 22=1 Po e — L 1)

And must be expressed as a function of the gesethkoordinate’s q
and generalised moment,.pTo accomplish this the generalised
velocitiesq ,

Must be eliminated from (1) by using Lagrange’s amns. In such
case the function H can be written

H(@@,........ B < R0 TR , Q1) (2)
Eja = — S_:I
_ o (3)

These equations above are called Hamilton’s cambrquations, or
briefly Hamilton’s equations.

Liouville’s Theorem

The 2n dimensional volumes ®f, and®, are the same, or if we define
the number of points per unit volume as the dertbiéyn the density is
constant.

11.0 TUTOR-MARKED ASSIGNMENT

1. Using surface in phase space represent Liouvillasorem.

2. Can Hamilton be interpreted as a total energy? @wasons for
your answer.

3. Define 2n dimensionglhase spacer apq phase space.
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UNIT 2 THE CALCULUS OF VARIATION
CONTENTS

1.0 Introduction

2.0 Objectives

14.0 Main Content
3.1 Calculus of Variation
3.2  Hamilton’s Principle
3.3 Canonical or Contact Transformations
3.5 Condition that a Transformation be Canonical
3.6 Generating Functions

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

A problem which often arises in mathematics is tifdinding a curve y
=Y (x) joining the points whene = a andx = b such that the integral.

b - :
J. Flx,y, vy )dx (i)
Wherey’' =dy/dx is a maximum or minimum, also called an extremum

or extreme value. The curve itself is often cabledexternal. It can be
shown that a necessary condition for (i) to havexdremum is

we) =50 (i

dy day

which is often called Euler's equation. This anchikr problems are
considered in a branch of mathematics called tleikess of variations.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. define the calculus of variation

. state the Hamilton’s principle

. define canonical or contact transformations

. prove that a transformation can be canonical.
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3.0 MAIN CONTENT

3.1 Calculus of Variation

An important class of problems involves the deteation of one of
more function subject to certain conditions, sotasmaximise or
minimise certain definite integral, whose integrashepends upon the
unknown function(s) and /or certain of their detives.

For example, to find the equation y = u(x) of thewve along which the

distance from (0,0) to (1,1) in the xy plane atsteave would seek u(x)
such that

w/‘1+(u')2 )dx = min

With u(0)=0, u(1)=1.

O ey

This section presents a brief treatment of som@@kimpler aspects of
such problems.

We consider first the case when we attempt to mgeror maximise an
integral of the form

F(xu,u’)dx 1

O ey

Subject to the conditions
u(o)=A and u(l)=B 2

where a, b, A and B are given constants to beméted. We suppose
that F has continuous second-order derivatives we#ipect to its three
arguments and require that the unknown function) possesses two
derivatives everywhere in (a,b). To fix ideas, weose that | is to be
maximised.

We thus visualise a competition, to which only fiilmes which have
two derivatives in (a,b) and which take on the priégd end values are
admissible.

The problem is that of selecting from all admissibtompeting
functions, the function(s) for which | is largest.

Under the assumption that there is indeed a fumaii®) having this
property, we next consider a one-parameter familyadmissible
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functions which includes u(x), namely, the set bffanctions of the
form u(x)+0n(x), where n(x)is any arbitrary chosen twice

differentiable function which vanishes at the emh{s of the interval
(a,b)

n(a)=n(b)=0 3

and where.lis a parameter which is constant for any one fondin the
set but which varies from one function to another.

The incremeriiin(x), representing the difference between the varied

function and the actual solution function, is ofalled a variation of
u(x).

If the result of replacing u(x)+0n(x) in | is denoted by
b
1[0) = [F(xu+07,u)+Drp'dx 4

a

It then follows thatl (O) takes on its maximum value wher0, that is,
when the variation of u is zero. Hence, it musioielthat
di0)

—Z =0, whent=0 5
dO

The assumed continuity of the partial derivative§ avith respect to its
three arguments implies the continuity %q%, so that we may

differentiate | () under the integral sign to obtain

I'(O)=Jq{g—z/7(x)+g—5/7’(x)}dx= 0 6

a

Here we write, F =F(xu,u’), noticing that the partial derivatives

a—Fand a—F have been formed with X, u andtreated as independent

ou ou
variables.

The next step consists of transforming the integfahe second product
(6) by integration by parts, to give
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:—z%(%)r/(x)dx:O

in consequence of (3). Hence, equation (6) becomes

T[%(S_D_g_i}?(x)dx: 0 7

a

It is possible to prove rigorously that since (3)tiue for any function
n(x) which is twice differentiable in (a,b) and zerotla¢ ends of that

interval; consequently, the coefficient gfx). In the integrand must be
zero everywhere in (a,b), so that the condition

i(a_Fj—a_F:O 8
ox\ou' ) odu

must be satisfied. This is called Euler’s equation.
SELF ASSESSMENT EXERCISE 1

We seek to minimise the integral

_E dy) _ ..
I—ﬂ(aj -y +2y

With y(0)=0 andy(n/2)=0.

dt 9

The Euler's equationi(a—lz,j _OF 10
ox\ou') ou

with u and x replaced by y and t, respectivelygdmees

d(,dy

—|2—=|-(-2y+2t)=0 11
dt( dtj 2y+2)
Or

d?y

+y=t, 12

daz 7
from which there followsy =c, cost +c, sint +t 13
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The end conditions then gives

y =t—(7z/2)sint. in correspondence with which 14
o 15
2 1

Generalisations in which more dependent and/orpeddent variables
are involved or which involves other modificationas well as
formulations of sufficiency conditions, may be folun the literature.

Two such generalisations, which are particularhaightforward, may
be described here:

(@) If the equation

F(xu,u')dx is replaced by the integral 16

QD C— T

F(XUy, Uy U, U, UL, U, ..U )dx 17

QD e, T

Where values of the n independent unknown functions
u, (), u, (x),ug (X), ... u,(x) are each given at the end points x=a and

x=b, we obtain an Euler’s equation similar to
i(a—Fj JOF 0. In correspondence with eaal 18
ox\ou ou

ox\au | au,
19

O(GFJ 9F _0, where r=1,2,....n.

SELF ASSESSMENT EXERCISE 2

The Euler’s equation associated with b the integral
b
I(uf,u’f -2u,u, + 2xul)dx 20

are obtained by use of equation(19) in the form.
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di(zu;)—(— 2u, +2x) =0 21
X
and
d
a(2u1)—(— 2u,)=0 22
Or
u; +u, = x,andu, +u, =0. 23
(b) suppose that we are to maximise or minimise
b
I :IF(x,u,u')dx, 24
b
| = [F(xu,u’)dx= maximise or minimise. 25

Where u(x) is to satisfy the prescribed end coodgiu(a)=A and
u(b)=B as before, but that also a constraint dardis imposed in the
form

b
[e(xu,u)dx=k. 26

a

where k is a prescribed constant. In this caseafiopriate Euler’s
equation is found to be the result of neglectingn Fequation (19) by
auxiliary function

H=F+AG. 27
Where, A is an unknown constant. This constant, which ithefnature
of Lagrange multiplier, this generally will appearthe Euler’'s equation

and in its solution and is to be determined togethéh the two
constants of integration such a way that the thogelitions of u(a)=A,

b
u(b)=B and[G(xu,u)dx=k are satisfied.
SELF ASSESSMENT EXERCISE 3

1
To minimise the integraf y*dx
0

subject to the end conditions y(0)=0, y(1)=0 28
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1
And also to the constaﬁydx: 1. 29
0

We write H=y?+y, in correspondence with which the Euler's
equation is
2y"-A=0 30

Hence, y must be of the form
1,5
y=Z/1x +gX+C, 31

The end conditions and the constraints conditioneldgi
¢, =6,c, =0andA =2x,

and hence there follows y=6x(1-x). 32
3.2 Hamilton’s Principle

The obvious similarity of (9) of Lagrange’s equasoleads one to
consider the problem of determining the externéls o

J-:f L({h""-"qn’q‘l’"'rqn,tj dt .
or briefly
[ Lt )

Where L = T — V is the Lagrangian of a system.

We can show that a necessary condition for an et

d aL aL

) 5= 3
which are precisely Lagrange’s equations. The tdsdl Hamilton to
formulate a general variational principle known &kamilton’s

Principle. A conservative mechanical system moves from timeo
time t in such a way that

[ Ldt 4
2

sometimes called the action integral, has an exnesiue.
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Because the extreme value of (4) is often a minimtn@a principle is
sometimes referred to as Hamilton’s principle afskeaction.

The fact that the integral (4) is an extremum itemfsymbolised by
stating that

B f: Ldt=0 5
Whered is the variation symbol.

3.3 Canonical or Contact Transformations

The ease in solution of many problems in mechaofies hinges on the
particular generalised coordinates used. Conselyuénis desirable to
examine transformations from one set of positiod anomentum
coordinates to another. For example, if we call and m the old

position and momentum coordinates while @hd R are the new
position and momentum coordinates, the transfoonas

P,=P, (P «ooes P Gy --ee D), Q=Q, (py, .- B o N o , O 1)

denoted briefly by

P = R)Pw G 1), Q= Qu (P, G ©) 7

We restrict ourselves to transformations calledoo#al or contact
transformations for which there exists a functic]h called the
Hamiltonian in the new coordinates such that

g a1

Pa = — 2. Qa =7
di db,

In such case we often refer tq &hd R as canonical coordinates.

The Lagrangian’s in the old and new coordinateslafg,, q,, t) and
L(P, Q. t) respectively. They are related to the Hamiltosiéh(p,, q,,
t) andH (B, Q.. t) by the equations
H=Epa¢a_£"j'f=2paoa_£ 9

Where the summations extend frars 1 ton.
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3.4 Condition that a Transformation be Canonical

The following theorem is of interest.

Theorem 12.2. The transformation

B, =B (PG ), Qo= Qu(Parart) 10
is canonical if Yp,dg, — 2P, dQ, 11
in an exact differential.

3.5 Generating Functions

By Hamilton’s principle the canonical transformati¢s) or (6) must
satisfy the conditions that

j:f Ldt andf:f L dt are both extrema, i.e. we must simultaneously have
[ t
6. 'Ldt=0ands [ Ldt=0 12

These will be satisfied if there is a functigrsuch that

i
dr

L-LC 13

We call G a generating function.
By assuming thag is a function, which we shall denote &yof the old

position co-ordinates,cand the new momentum coordinatgsaB well
as the time, i.e.

6 =36(qq P t) 14
We can prove

35 85 . a5

Pa=£,Qa—ﬁ,—%,ﬂ—E+H 15
(il ax
WhereP, = _E_%’G“ = a5, 16

Similar results hold if the generating function asfunction of other
coordinates.
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Examples of Hamilton’s Principle

1. Prove that a necessary condition ffet f; F(x,y,v?)dx to be an
E.i'F) ﬁ — 0

. .. . d
extremum [maximum or minimum] %( — =

Suppose that the curve which makes) extremum is given by

v=V(x), a=x=b 17
Then yv=Yx)+enx)=Y+en
(18)

Wheree is independent of , is a neighbouring curve through= a
andx = b if we choose

nla) =n(b) =0 19

The value of for the neighbouring curve is

I(E:}=IﬂhF(X,Y +ET]',YI+ETJ"){£_XI 20

This is an extremum fcg = 0. A necessary condition that this be so is

that = — 0.
de E:D

But by differentiation under the integral sign,@assng this is valid, we
find

dl

de

b (GF gF |
E=G=fa (a—y’r}—i-gn)dx:{]

Which can be written on integrating by parts as

" aF’ ; oF lb r’ d(é‘F)d
a ax ! x+é‘}r’n a a T dx ay' *

- [ e o
- ané‘y_dx ay' =
Where we have used (19), singés arbitrary, we must have

dF d(aF) d(aF) aF o
ady’

— —— | —1]=0 _ [
dy dx\ady’ o dx ay
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This is called Euler's or Lagrange’s equation. Tiesult is easily
extended to the integral

b
.L F' (x,y ’Ly B LA LA )dx

and leads to the Euler’s or Lagrange’s equations.
d ( dF 0F 0 L5
dx a}”a _ﬁya = a=12,..,n

By using a Taylor’s series expansion we find fr@@)(that

a d . .
1(e) — 1(0) = ef; [573 +£,n’) dx + Higher order terms ine?,e?,
etc. 21

The coefficient ofe in (20) is often called the variation of the intalg
and is denoted by

b
.:‘.-‘J F(x,v,y)dx

The fact that

f: F(x,y,y)dx is an extremum is thus indicated by

b
c?f F(x,y,yNdx =0

4.0 CONCLUSION

The ease in solution of many problems in mechawifiie hinges on the
particular generalised coordinates used. Conselyuénis desirable to
examine transformations from one set of positiod anomentum
coordinates to another. For example, if we call and @ the old

position and momentum coordinates whilg ghd B are the new
position and momentum coordinates, the transfoonas

P,=P, Py, - P Gy --- - 1), Q=Q. (py, --..... B o N o TP , Oy 1)

denoted briefly by £ = R, )pu, G, 1), Q= Qu (Pu G ©)
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5.0 SUMMARY

Obviously, similarity of equation (9) above of Lagge’s equations
leads one to consider the problem of determiniegetttremes of

f: Ly, G Gy e G, ) dE

or briefly

( Ldt
ot ri
Where L =T — V is the Lagrangian of a system.

We can show that a necessary condition for an exités
d [ 8L aL

— (,—) ——=20

de a4, Oq

Which are precisely Lagrange’s equations. The tdedl Hamilton to
formulate a general variation principle knownkemilton’s Principle.
A conservative mechanical system moves from tinte time ¢ in such
a way that

f:; L dt

Sometimes called the action integral, has an exresiue.

Because the extreme value of (12) is often a mimnilne principle is
sometimes referred to as Hamilton’s principle afskeaction.

The fact that the integral (12) is an extremum figro symbolised by
stating that

[ Ldt=0

Whereé is the variation symbol?

Canonical or Contact Transformations was also dsed as the ease in
solution of many problems in mechanics often hingeghe particular

generalised coordinates used. Consequently, iesgrable to examine

transformations from one set of position and momentoordinates to

another. For example, if we callegand @m the old position and

momentum coordinates while ,and B are the new position and
momentum coordinates, the transformation is

125



MTH315 ANALYTICAL DYNAMICS

Pa:Pa (p]_, coeny Py Gy e y Ghy t), Q).:Q(l (p]_, ....... y B Oy eeeen y Chy t)
denoted briefly by

Po = R)Pw G 1), Q= Qu (Puy Gy 1)

We restrict ourselves to transformations calledoo&al or contact
transformations for which there exists a functidfi called the
Hamiltonian in the new coordinates such that

dH o

8P,

In such case we often refer tq @hd R as canonical coordinates.
The Lagrangians in the old and new coordinatesLap,, g,, t) and
L(P, @, t) respectively. They are related to the Hamiltosigh(p,, q,,
t) andH (P,, @, t) by the equations

H=Epa'{?a_£" H = EFaOa_L

Where the summations extend frams 1 ton.

6.0 TUTOR-MARKED ASSIGNMENT

1. State the Hamilton’s principle.

2. Under what condition can a transformation be caraifli

3 What do you understand by the term ‘generatingtfant?

7.0 REFERENCES/FURTHER READING

Ajibola, S.T. (2006)Vector Analysis and Mathematical Method.
Avner, FriedmanDifferential Games

Kibble, T. W. B.Classical Mechanics.

KREYSZIC. Advanced Engineering Mathematics.

Murray, R. SpiegelTheoretical Mechanics.

Vladinirou, U.S.Generalised Function Mathematical Physics.

126



MTH315 ANALYTICAL DYNAMICS

UNIT 3 THE HAMILTON-JACOBI EQUATION
CONTENTS

1.0 Introduction
2.0 Objectives
15.0 Main Content
3.1  The Hamilton-Jacobi Equation
3.1.1 Solution of the Hamilton-Jacobi Equation
3.2 Case Where Hamiltonian is Independent of Time
3.3 Phase Integrals, Action and Angle Variables
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION
If we can find a canonical transformation leadia¢it = 0, then we see
from (24) that R and Q will be constants [i.e., Pand Q will be

ignorable coordinates]. Thus, by means of the toanstion we are
able to find p and g and thereby determine the motion of the system.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. state the Hamilton-Jacobi equation
. state a case where Hamiltonian is independeninef i
. define phase integrals, action and angle variables.

3.0 MAIN CONTENT
3.1 The Hamilton-Jacobi Equation
The procedure hinges on findings the right genegatunction. From

the third equation of (23) we see by puttitt) = 0, that this generating
function must satisfy the partial differential etjaa

85
o T H®g. q0.t) =0 (1)

or =+ H (5 g t) =0 )

O

This is called the Hamilton-Jacobi equation.
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3.1.1 Solution of the Hamilton-Jacobi Equation

To accomplish our aims we need to find a suitaldkit®n of the
Hamilton-Jacobi equation. Now since this equationtains a total oh

+ 1 independent variables, i.@,, &, ..., g andt, one such solution
called the complete solution, will involve+ 1 constants. Omitting an
arbitrary additive constant and denoting the remgim constant by
B+, B,. -, B, [NnONe of which is additive] this solution can batten

'5 = 5[{;1’{;2! '"!CE:I‘I!JBIJJSZJ "'rjgnr t] (3)

When this solution is obtained we can then deteemthe old
momentum coordinates by

Po =2 (4)

dq,

Also, if we identify the new momentum coordinates With the
constantg,, then

Qa:nﬁ_azj”a 5)

8 Bz
Wherey,,a = 1,..,n are constants.

Using these we can then filegd as functions of3,, y, andt, which gives
the motion of the system.

3.2 Case Where Hamiltonian is Independent of Time

In obtaining the complete solution of the Hamiltdacobi equation, it is
often useful to consider the equation

§=8,(q;) + S,(gq,) +-+ 5, (g,) + F(t) (6)

where each function on the tight depends on onky wariable. This
method, often called the methods®paration of variabless especially
useful when the Hamiltonian does not depend explicn time. We
then find that R} = - Et, and if the time independent part of
J is denoted by

§=51(g,)+ 5,(q,) +--+85,(q,) (7)
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The Hamilton-Jacobi equation (26) reduces to

H(=>,q,) =E 8)

F‘EJ Qa
whereE is a constant representing the total energy oylséem.
The equation (8) can also be obtained directlydsuming a generating

function Swhich is independent of time. In such case eqnat{@®) and
(1) are replaced by

as a5
Pa=£,'?g=a—%,3{=H=E (9)
amH amH
where P, = PP Q= Fr (20)

3.3 Phase Integrals, Action and Angle Variables

Hamiltonian methods are useful in the investigatmin mechanical
systems which are periodic. In such case, the giojes of the motion
of the representative point in phase space ongmmy plane will be
closed curves £ The line integral

Jo=9. Padae (11)
is called a phase integral or action variable.

We can show that

8§ =5(qy, . Gn.J 1 Jn) (12)

as a5

where Py = a,@a = ﬁ'_ja

(13)

It is customary to denote the new coordinatg®¥w, so that equations
(13) are replaced by

as as
Pa =5 % =5 (14)

Thus, Hamilton’s equations become [see equatioBsgid (14)]

aH g

Ja=—5..9=5 (15)

129



MTH315 ANALYTICAL DYNAMICS

Where# = E in this case depends only on theThen from the second
equation in (15),

w, =fa*+¢c, (16)

Where f, and ¢ are constants. We call ,wangle variables. The
frequenciesf, are given by

ax

fa= 7 (17)

4.0 CONCLUSION

The Hamilton-Jacobi equation (26) reduces to
H( % )=k
dq, %)
whereE is a constant representing the total energy osylséem.

5.0 SUMMARY

The Hamilton-Jacobi equation is:
i
o T H(Pg. 1) = 0

Or g+H(_;—iqa,t)=U

It was also found that Hamiltonian methods are wlseh the
investigation of mechanical systems which are pkeioln such cases
the projections of the motion of the representapeet in phase space
on anyp,q, plane will be closed curves,CHence, the line integral

Jo=9. Pada,
is called a phase integral or action variable.

Lastly, the issues of phase integrals, action amgleavariables were
discussed extensively
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6.0 TUTOR-MARKED ASSIGNMENT

1. Define phase integrals.

2. What happens when Hamiltonian is independent a#2im

3 How would you express angle variables with respéxt
Hamilton-Jacobi equation?
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