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Introduction
This course is a group and rings which we haveduced in MTH 211.

The course elaborated on a class of subgroups whate some
characteristics to make us call them normal sulzgou

We also consider the concept of some algebraicatlistinguishable

systems. We say such systems are isomorphic.wohé isomorphism

was first used in 1870 by the mathematician Caniilelan, to describe
two groups that are not equal but have the sanebadg behaviour.

Isomorphisms are special cases of homomorphisnghadaie functions
between groups that preserve the algebraic steiofutheir domains.

All concepts will also be learnt in module 2 ofgtdourse which is on
Rings Theory.

Our exposition of ring theory will follow the pate used for group
theory.

We shall define ring and sub-rings and give différypes of rings and
sub-rings.

We shall also deal with ring homomorphism and isgghsms.
What you will learn in this course

This course consists of two modules. Module 1liwsddd into fours
units and Module 2 is divided into three units.

During this course you will learn about sub-growgrsl normal sub-
groups, quotient groups, Isomorphism, rings sulsringd Ideals, and
Ring Homomorphism.

This course is a core course in pure mathematics aasuch it is
recommended as part of the course a career in matlos.

Course Aims

This course aims as giving understanding of comcepts in algebra.
This could be achieved through the following measur

. Inducing you to normal subgroups
. Explaining concepts of isomorphism and homomorphism
groups
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. Introducing you to rings, sub-ring and ideals, ateleloping
another groups and rings using normal subgroupsdmadis

Course Objective

At the end of this course you should be able tandethe following
concepts successfully

. Normal subgroups,

. Group isomorphism and homomorphism,

. Quotient groups

. Ring and Sub-rings

. Ideals

. Solve problems on the above concepts currently.

Working Through This Course

For you to successfully complete this course yauraguired t master
all the contents in MTH 211, and then proceed adhe.

You will also do a lot of exercises. However thatemials are well
written and self contained as possible.

Course Materials
Study units

There are seven study units divided into two maslule

Module 1

Unit 1 Normal — Subgroup
Unit 2 Group Homomorphism
Unit 3 Permutation groups
Unit 4 Finite groups

Module 2

Unit 1 Rings

Unit 2 Subrings and Ideals
Unit 3 Ring Homomorphisms

Vi
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Self Assessment Exercise
Self Assessment Exercises are given as you prooedtie units, you

should solve the exercises as they serve to intedwu to a new
concept or emphasis the ones you have learntdgirea

Tutor Marked Assignment

These assignments are to be submitted at the eedabf unit as they
will form part of your final grade in the course.

Final Assessment
At the end of the course you will be assessed terohene how well you

have master the course. The tutor marked assignmikfiorm 30% of
the total grade whole examination will be 70%.

vii
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MODULE 1

Unit 1 Normal Subgroups

Unit 2 Group Homomorphisms
Unit 3 Permutation Group

Unit 4 Finite groups

UNIT 1 NORMAL SUBGROUPS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1  Normal Subgroups
3.2  Quotient Groups
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further

1.0 INTRODUCTION

In MTH 211, you studied subgroups and cosets. Y& gis unit by
discussing a special class of subgroups, callethalosubgroups. You
will see that the sets of such a subgroup formoaigmwith respect to a
suitably defined operation. These groups are calleatient groups we
will discuss them in some detail in sec. 3.2.

Once you are comfortable with normal subgroups @unatient groups,
you will find it easier to understand the conceptsl results that are
presented in the next unit. So make sure that ywe Imet the following
objectives before going to the next unit.

2.0 OBJECTIVES

After reading this unit, you should be able to

. Verity whether a subgroup is normal or not,
. Obtain a quotient group corresponding to a givemnmab
subgroup.

3.0 MAIN CONTENT
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3.1 Normal Subgroups

When we treated Lagrange’s theorem in MTH 211 yaw that a left
coset of a subgroup H, aH, need not be same agtitecoset Ha. But,
there are certain subgroups for which the right deff cosets
represented by the same element coincide. Théesdfgubgroup is very
important in group theory, and we give it a specahe.

Definition: A subgroup N of a group G is callecharmal subgroup of
G if Nx =xNO x [ G, and we write this as AG.

For example, any group G has two normal subgroogsely, {e} and
G itself. Can you see why? Well, {e}x ={x}=x{e} dr any xOG, and
Gx = G = xG, for any xXIG.

Let us consider another example.

Example 1: Show that every subgroup of Z is normal in Z.

Solution: from Example 4 of unit 3, of MTH 211, y&aow that if H is
a subgroup of Z, then H = mZ, for sometd. Now, for any Z1Z,
H+z={.,-3m+2z -2m+z,-m+2z,z, m+2n+z,...}
={.,-3m,z-2m,z-m, z,z, + m, Z + 2m ...}r(se + is
commutative)
=z+H.
0 HAZ.

Example 1 is a special case of the fact that ewrygroup of a
commutative group is a normal subgroup. We widiver this fact later
(in Theorem 2).

Try the following exercise now.

SELF ASSISMENT EXERCISE 1

Show that AAS; (see Example 3 of unit 4in MTH 211).

Let us now prove a result that gives equivalenddamns for subgroups
to be normal

Theorem 1:Let H be a subgroup of a group G: The followingtetent
are equivalent

a) His normal in G
b) ¢HgOHOQOG.
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c) g¢'Hg=HOgOG.

Proof: We will show that (a)= (b) = (c) = (a). This will show that
the three statements are equivalent.

(@) = (b) : Since (a) is true, Hg = gHg O G. We want to prove (b).
for this, consider gHg for g G. Let g'Hg.

Since hgl Hg = gH,Ch; OH such that hg = gh
0g'hg = g'ghy = by OH.
0 (b) holds.

(b) = (c): Now, we know that (b) holds, i.e., folgG, g-1HgOH. We
want to show that HI g*Hg. Let HIH. Then.
H = che = (¢'g) h (g'g)

) g-1 (ghg )1g 1 1 :

=g"{(g™) "hg"} g0g"Hg, since (§)g*hg™ U (g")* H(g-1) 0 H
OH O g*Hg.
0g-1Hg=HOgUG

(c) = (a): for any gJ G, we know that gHg = H.
0g(g-1Hg) = gH, that is, Hg = gH
OH AG, that is, )a) holds.

We should like to make the following remark abobe®rem 1

Remark: Theorem 1 says thatAG - ¢g'Hg = H OgOG. This does
not mean that'thg = hOh U H and gUG.

For example, in E1 you have shown that2S;. Therefore, by theorem

1,
(12)'A5(12)%(132) (12)2(132). Infact, itis (1 2 3).
Try the following exercise now.

SELF ASSISMENT EXERCISE 2

Consider the subgroup SR) = {A0OGL, (R) | det (A) = 1} of GL(R)
(see Example 5 of unit 20fMTH211). Using the fabist

1
det(A),
prove that AL(R) A GLx(R).

det (AB) = det (A)) =
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We now prove a simple result that we stated afteantple 1. it is
actually a corollary to Theorem 1.

Theorem 2: Every subgroup of a commutative group is normal.

Prove: Let G be an abelian group, andHG. For any @G and hiH,
g'hg = (g'g)h = hO H.O g'Hg OH. Thus, HAG.

Theorem 2 says G be an abelian, then all its suipgare normal.
Unfortunately, the converse of this is not truehaflis, there are non
commutative group where subgroups are all nornvgé will give you
an example after doing Theorem 3. let us first lablanother example
of a normal subgroup.

Example 2: consider the Klein 4-group,4Kgiven in Example 7 of unit
3.0f MTH 211, Show that both its subgroups < a & 4arb > are normal.

Solution: Consider the table of the operation given in Exi@npof Unit
3.0f MTH 211, Note that a and b are of ordefTherefore, a ="aand
b = b'. Also note that ba = ab.

Now, let H = <a > = {e, a}. We will check that AK,, that is, g-1hg
OH Og OK4 and hO H.

Now, g'eg = edH O g OK,.

Further, &ae = aiH, a'aa = adH, b*ab = bab = @H and (ab)a(ab)
= b*)a'aa)b = bab = aH.
OHAK,.

By a similar proof we can show that < A>K,.

In Example 2, both < a > and < b > are of index Xj. we have the
following result about such subgroups.

Theorem 3: Every subgroup of a group G of index 2 is normabi

Proof: Let N < G such that |G: N| = 2. Let the two right cosdtsl de
N and Nx, and the two left cosets be N and yN.

Now, G = NUYN, and x00 G.0Ox ON or x I yN.
Since NTNx =g, xON.OXN = yN.
To show that MG, we need to show that Nx = xN.

Now, for any n0ON, nx G = N U XN. Therefore, nXIN or nx 0 xN.
But nx ON, since xON. U nx LIXN.
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Thus, NxOXN.
By a similar argument we can show that XNNX.
ONx = XN, and NAG.

We will use this theorem in Unit 7 to show thatr fmy n> 2, the
alternating group Ais a normal subgroup of,S

In fact, if you go back to the end of sec. 4.3in 211, you can see
that A, A S, since Lagrange’s theorem implies that

o(S 4

SiAd = 250 =2 =g
o(A,) 12

Now let us look at an example to show that the eoss of Theorem 2is

not true.

Consider the quaternion group,@hich we discussed in Example 4 of
unit 4of MTH211,. It has the following 6 subgroupk = {1}, H, = {1,
-1}, H,={1,-1,A, - A}H3, ={1, - 1,B, -B},

Hy={1,-1,C,-C}, H=Qs.

You know that | and H are normal in @ Using theorem 3, you can
see that Bl H; and H, are normal in

By actual multiplication you can see that

g Hig O H 0 g0 Qe IH1AQs

Therefore, all the subgroups o @e normal.

But you know that ®is non-abelian (for instance, AB = - BA).

So far we have given examples of normal subgrougsus look at an
example of a subgroup that isn’t normal.

Example 3:show that the subgroup < (1 2) > gfiSnot normal.
Solution: we have to find ¢] S; such that g (1 2)gld < (1 2) >.
Letustryg = (12 3).

Then, g-1(12)g=(321)(12)(123)

=B821)((23)=(13Y<(12)>
Therefore, < (1 2)>is not normal ig s
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Try the following exercise now.
SELF ASSISMENT EXERCISE 3

Consider the group of all 2 x 2 diagonal matricesrdR*, with respect
to multiplication. How many of its subgroups aremal?

SELF ASSISMENT EXERCISE 4

Show that Z(G), the center of G, is normal in Gerfikmber that Z(G) =
{x 0G| xg = gxig 0G}.)

SELF ASSISMENT EXERCISE 5
Show that < (2 3)> is not normal in.S

In Unit 3of MTH211, we prove that if & G and K< H, then K< G.
That is, £’ is a transitive relation. ButA’ is not a transitive relation.
That is, if HAN and NAG, it is not necessary that&dG. We'll give

you an example in Unit3 of this course.. But, esponding to the
property of subgroups given in Theorem 4 of unitwg have the
following result,

Theorem 4 let H and K be normal subgroups of a group Genrh n
KAG.

Proof: From Theorem 4 of unit 3, you know thatHK < G. We have
to showthatgzgO H n K O x OH n K and gOG.

Now, let xOH n K and gOG. then xO H and HAG. O g* xg OH.
Similarly, g'xg OK. Og'’xg OH n K.
Thus, Hn K AG.

In the following exercise we ask you to prove ampamtant property of
normal subgroups.

SELF ASSISMENT EXERCISE 6

I Prove that if HKAG and K< G, then HK< G.
(Hint: Use Theorem 5 unit 3.)

ii. prove that if HAG, K AG then HKAG.

Now consider an important group, which is the paidof two
subgroups, of which only one normal.



MTH 312 GROUPS AND RINGS

SELF ASSESSMENT EXERCISE 7

Let G be the group generated by

X yIx*=e,¥=e xy=yxh
LetH=<x>and K=<y >,

Then show that KAG, H AG and G = HK.

Solution: Not that the elements of G are of therfofy!, where i = 0, |
andj=0,1, 2, 3.

DG = {e, X, Xy, Xﬁ, Xy31 y, yzi )/3}

O|G:K| = 2. Thus, by Theorem 3,4G

Note that we can’t apply Theorem 2, since G is abalian (as xy =y
and yz y.

Now let us see if AG.

Consider ¥xy. Now y'xy = xy?, because Jx = xy.
If xy? OH, then xy = e or xy = x. (Remember o(x) = 2, so that x x.)
Now, xy¥ = e= y*=x'=x
= y* = xy = y'x
=y =x
= e = X, a contradiction.
Again xy* = X = y* = e, a contradiction.
Oy*xy = xy? O H, and hence, BG.

Finally, from the definition of G you see that GHK.

The group G is of order 8 and is called the dihlegraup, . It is the
group of symmetries of a square, that is, its etgmeepresent the
different ways in which two copies of a square barplaced so that one
covers the other. A geometric interpretation af gienerators is the
following (see Fig. 1):

Take y to be a rotation of the Euclidean plane abwaiorigin through

g, and x the reflection about the vertical axis.

\Vj V

1 4 4 3 3 4

Fig. 1: Geometric representation of the generatoref Dg.
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We can generalizedo the dihedral group
Don=<{X, y|¥=e, ¥ =¢e, xy=y-1x}>, for n > 2.

Try the following exercise now.
E7) Describe Band give its geometric interpretation.

Let us now utilize normal subgroups to form newealgic structures.
3.2  Quotient Groups

In this section we will use a property of normabgroups to create a
new group. This group is analogous to the conoépmjuotient spaces
given in the Linear Algebra course.

Let H be a normal subgroup of a group G. Then gHg=for every g
G. Consider the collection of all cosets of H in (Note that since H
AG, we need not write ‘left coset’ or ‘right coseimply ‘coset’ is

enough.) We denote this set by G/H. Now, forXHy we have

(Hx) (Hy) = H(xH)y, using associativity,
= Hhxy, using normality of H,
= Hxy, since HH = H because H is a subgroup.

Now, we define the product of two cosets Hx andadgl G/H by
(Hx) (Hy) = Hxy for all x, y in G.

Our definition seems to depend on the way in whieh represent a
coset. Let us explain this. Supposea@id G are two cosets, say;&
hx and G = Hy. Then GC, = Hxy. But G and G can be written in the
form Hx and Hy in several ways so, you may thinkieB GC, depends
on the particular way of writing and G?

In other words if @= Hx = Hx, and G = Hy = Hy,, then is GC, = Hxy
or is GC, = Hx y? Actually, we will show you that Hxy = H, that is,
the product of cosets is well defined.

Since Hx = Hx and Hy = hy, xx,* OH, yy;* OH
O(xy) (X YD) ™= (xy) (%)= x (yyr ) xg™
=x(yyi %) x.F (xxY) OH, since xxOH and HA G.

i.e., (xy) Oay.)™* OH.
LHXY = HXpy;.

We will now show that (G/H,.) is a group.
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Theorem 5: Let H be a normal subgroup of a group G and G/hbtke
the set of all cosets of H in G. Then G/H becoraegroup under
multiplication defined by Hx.Hy = Hxy,xNG.

The coset H = He is the identity of G/H and theerse of Hx is the
coset HX".

Proof: We have already observed that the product of tesets is a
coset.

This multiplication is also associative, since

((Hx) (Hy)) (Hz) = (Hxy) (Hz)

Hxyz, as the product in G is associative,
Hx (yz)

= (hx) (hyz)

= (Hx) ((Hy) (Hz)) for x, y, 21 G.

Now, if e is the identity of g, then Hx, He = HxeHx and He Hx = Hex
Hx for every x(1 G. Thus, He = H is the identity element of G/H.

Also, for any x0 G, Hx hx™.

So, we have prove that G/H, the set of all cosessrmrmal subgroup H
in G forms a group with respect to the multiplicatidefined by Hx.Hy
= hxy. This group is called thguotient group (or factor group) of g
by H.

Note that the order of the quotient group G/H ie ihdex of H in G.
thus, by Lagrange’s theorem you know that if g isde group, then

0(GH) = %

Also note that if (G, +) is an abelian group andsHs, then HAG.
Further, the operation on G/H is defined by (H+#xH +y) =H + (x +
y)-

Let us look at a few examples of quotient groups.

Example 5: Obtain the group G/H, where Gs&dH=A={1, (12
3), (132)}

Solution: Firstly, note that AAS;, since |SA3] = 2.

From example 3 of unit 4 you that g/H is a groupooder 2 whose
elements are H and (1 2) H.
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Example 6: Show that the group Z/nZ is of order n.

Solution: The elements of Z/nZ are of the form a + nZ = {atk 0Z}.
Thus, the elements of Z/nZ are precisely the canpe classes nodulo
n, that is, the elements of Zn (see Sec. E.5.1).

Thus, ZInZ ={,1,2,...n—-1}.

do(Z/nZ) =n.

Note that addition in Z/nZ is given by + b = a+b.
Try these simple exercises now.

SELF ASSISMENT EXERCISE 8

For any group G, determine the quotient groupsesponding to {e}
and G.

SELF ASSISMENT EXERCISE 9

Show that the quotient group of a cyclic groupyslic.
(Hint: if G = < x>, then show that G/H = < Hx.>

Now, do G and G/H always have the same algebrajogpties?

On solving the following exercise you will see thfaG is abelian, then
so is G/H; but the converse need not be true. ®)a may not so.
Thus, G and G/H need not have the same algebraperes.

SELF ASSISMENT EXERCISE 10

Show that if a group G is commutative, then so/id,Gor any HAG.

SELF ASSISMENT EXERCISE 11

Take the group P of Example 4. Show that JIK is abelian, even
though 03 is non-abelian.

You may be surprised to know that given a groupn@,can always
defined a normal subgroup H, such that G/H is aheliThis subgroup
is the commutator subgroup.

Definition: Let G be a group and xMG, Then Xyxy is called the
commutator of x and y. It is denoted byy]].

10
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The subgroup of G generated by the set of all cotatouis called the
commutator of G. It is denoted b§ [G]

For example, if G is a commutative group, then
xtyxy = x'xy* = € x,y 0G.0[G,G] = {e}.

Try this exercise now.
SELF ASSISMENT EXERCISE 12
Obtain [G,G], where g is cyclic.

Now, let us prove the commutativity of the factoowgp corresponding
to the commutator subgroup.

Theorem 6: Let G be a group. Then [G,G] is a normal subgrois.
further, G/[G, G] is commutative.

Proof: We must show that, for any commutator x-1y-1xy &rdany g
0G,

-17,-1, -1 -
g (x"y xy)g =[G, G].

Now g'(x'y'xy)g = (g°xg)" (g'yg)™ (g'xg) (g"yg) O[G,G].
0[G, G]AG.

Now, for x, yOG,

HxHy = HyHX = Hxy = Hyx = (yx) (yx)-100H
= Xy X-1y-1[1H.

Thus, since xy x-1y{IH O x, y 0G, HxHy = HyHx [0 x, yOOG/H is
abelian.

Note that we have defined the quotient group G/l drH AG. But if
H AG we can still define G/H to be the set of all [git right) cosets of

H in G. But, in this case G/H will not be a groughe following
exercise will give you an example.
SELF ASSISMENT EXERCISE 13

For G = S3 and H = < (12) >, show that the prodfatight cosets in
G/H is not well defined.

(Hint: Show that H(1 2 3) = H(2 3) = H(2 3) and B2) = H(1 3), but
H(123)(132¢H23)(13))

11
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Self Assessment Exercise 13 leads us to the fatigwemark.

Remark: if H is a subgroup of G, then the product of cesaft H is
defined only when HAG. This is because, if Hxhy = Hxyx, y G,
then, in particular,

Hx-1 Hx = hx-1x = He = HJ x OG.

Therefore, for any iH, x-1hx = ex-1hkIHx-1Hx = H.
That is, x-1HxH for any x[G.
OH AG.

Let us now summarise what we have done in this unit

4.0 CONCLUSION
We have been able to establish a fundamental matieahstructure of
group theory which make the study very interestivigu are to master

every detail in order to be able to follow subsetudevelopment of the
course.

5.0 SUMMARY

In this unit we have brought out the following pisin

. The definition and examples of a normal subgroup.

. Every subgroup of an abelian group is normal.

. Every subgroup of index 2 is normal.

. If Hand K are normal subgroups of a group G, theis HNK.

. The product of two normal subgroups is a normagsop.

. If H AN and NAG, then H need not be normal in G.

. The definition and examples of a quotient group.

. If G is abelian, then every quotient group of Gaislian. The
converse is not true.

. The quotient group corresponding to the commutsdidagroup is
commutative.

. The set of left (or right) cosets of H in G is agp if and only if
HAG.

SOLUTIONS/ANSWERS

SELF ASSISMENT EXERCISE 1

S$3={1,(12),(13),(23),(123),(132)}

12
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A;={1,(123),(132)}

You can check that

Azl = As=1A3 A3(12) =(12) A, and so on.
OA3 ASs.

SELF ASSISMENT EXERCISE 2

For any A0 GL,(R) and B SL, (R),
det (A'BA) = det(A') det(B) det(A)

= L1 det(A), since det(B) = 1
det(®)

=1

OABA OSLy(R).
OSLy(R) AGLy(R).

SELF ASSISMENT EXERCISE 3

All, since this group is abelian.

SELF ASSISMENT EXERCISE 4

Let G and xOZ(G). Then
g'xg = g'gx, since xJZ(G)

=x Z(G)

Og'z(G)gO Z(G) O g OG.

0Z(G) AG.

SELF ASSISMENT EXERCISE 5

Since (123} (23) (123) = (120 <(2 3)>, <(23)>4S;

SELF ASSISMENT EXERCISE 6

a)

Take any element ikKHK. Since HA G, k-1hk[JH. Let k

1hk = h1. Then hk = khil KH.

Ohk OKH O hk OHK OHK O KH.

Again, for any kHIKH, khk* OH. Let khK* = h,. Then kh = h2k
OHK.

Okh O HK O kh O KH.

OKH O HK.

Thus, we have shown that HK = KH.
OHK < G.

13
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b) From (a) we know that HK G. To show that H&KG, consider
g O G and hkOJHK. Then. G-1hkg = gh(ggY)kg = (G*hg)(g'kg)
OHK, since HAG, K AG.
Og'HKg O HK O g OG.
OHK AG.

SELF ASSISMENT EXERCISE 7
Dg is generated by x and y, wherexe,¥ = e,y =e and y = yx.

This is the group of symmetries of an equilatemahgle. Its generators
are x and y, where x corresponds to the reflectibaut the altitude
through a fixed vertex and y corresponds to aimrtaibout the centroid
through 120 (see fig. 2).

3

Fig.2: Generators of

SELF ASSISMENT EXERCISE 8

GHe} ={{e} g |9 0OG} ={{g}| g UG}
G/G ={Gg| d1G} = {G}, since Gg = GI g IG.
So G/G consists of only one element, namely, thatit.

SELF ASSISMENT EXERCISE 9

Let G = < x> and G/H be a quotient group of G. atgment of G/H is
of the form Hxn = (Hx)n, since any element of Goisthe form xn,
OG/H = <Hx>.

SELF ASSISMENT EXERCISE 10
for any two elements Hx and Hy in G/H,

(Hx) (Hy) = Hxy = Hyx, since G is abelian

= (Hy) (Hx).
O G/H is abelian.

14
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SELF ASSISMENT EXERCISE 11

D8/K = {K,Kx}, you can check that this is abeliarv.ou have already
seen that xy yx, [0 Dg is not abelian.

SELF ASSISMENT EXERCISE 12

Since G is cyclic, it is abeliart]l [G, G] = {e}
SELF ASSISMENT EXERCISE 13

Now, (123)(132)=1,(23)(13)=(1223).
OH(123)(132)=H1=H={1,(12)}, and
H(23)(13)=H(@123)={(1223),(23).

So H(123)=H(23)and H (1 32) = H(L 3), butlkX(3) (1 3 2} H(2
3) (1 3).

6.0 TUTOR MARKED ASSIGNMENT

Show that every subgroup of a commutative is norisalhe converse
true? Justify your answer.

7.0 REFERENCES/FURHTER READINGS
Blacksell: Topics in Algebra.

Birkhaffand Melhnew (1972): Survey of Modern Algabr
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UNIT 2 GROUP HOMOMORPHISMS
CONTENTS

1.0 Introduction
2.0 Objective
3.0 Main Content
3.1  Homomorphisms
3.2  Isomorphism
3.3  The Isomorphism Theorems
3.4  Automorphisms
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

So far in this course we have not discussed funstioom one group to
another. You may have wondered why we reviewetwuaraspects of
functions. In this unit you will see why.

In sec. 3.1 we will discuss various propertieshafse functions between
groups, which preserve the algebraic structureneir tdomain groups.
These functions are called group homomorphismerra introduced by

the mathematician Klein in 1893. This concept malagous to the

concept of a vector space homomorphism that yadiedun the Linear

Algebra course.

In Sec. 3.2 we will introduce you to a very impaottanathematical idea,
an isomorphism. You will see that an isomorphissnai bijective

homorphism. The importance of isomorphisms liethm fact that two

groups are isomophic if and only if they have elyaitie same algebraic
properties.

In Sec. 3.3 we will prove a very basic theorem @iug theory, namely,
the Fundamental Theorem of Homomorphism. We Jslb @ive some
of its important consequences.

Finally, in sec. 3.4 we will discuss automorphismshich are
iIsomophisms of a group onto itself. We shall l@adkhe group of inner
automorphisms in particular. This allows us toéhan insight into the
structure of the quotient group of G by its center,any group G.

Before starting this unit, we suggest that you lgmugh sec. 1.5 and
unit 5.

16
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2.0 OBJECTIVES

After reading this unit you should be able to

. Verify whether a function between groups is a hormghis or
not;

. Obtain the kernel and image of any homomorphisms;

. Check whether a function between groups is an isphiem or
not;

. State, prove and apply the Fundamental Theorem

Homomorphism;
. Prove that Inn Q@ Aut G and G/Z(G)= Inn G, for any group G.

3.0 MAIN CONTENT

3.1 Homomorphisms

Let us start our study of functions from one graapanother with an
example.

Consider the groups (Z, +) and ({1, - 1},.). lewlefine

1,if niseven

FiZ—{1,-1}byf(n) = { -1,if nisodd

Then you can see that f(a + b) = f(a). f(bf, b0Z. What we have just
seen is an example of a homomorphism, a functiah pheserves the
algebraic structure of its domain.

Definition: Let (G,,[3) and (G, [}) be two groups. A mapping ;&
G, is said to be a group homoorphism (or just a hoorpirism), if.

F(xOy) = f(x) bf(y) O x, y UGy

Note that a homomorphism f from, @ G, carries the produce® y in
G; to the product f(x)3 f(y) in G..

Before discussing examples, let us define two sgltted to a given
homomorphism.

Definition: Let (G1,0}) and (G2L}) be two groups and f: G2 G2 be a
homomorphism.

Then we define

17
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) The image of f to be set
Im f = {f(x) | x OGq}.

1)) The kernel of f is defined to be the set
Ker f = {x 0G,| f(x) = &}, where g is the identity of G

Note that Im fO G,, and Ker f =T ({e,}) O G..
Now let us consider some examples.

Example 1: Consider the two groups (R, +) and{R Show that the
map exp: (R, +)- (RO.) : exp(r)= éis a group homomorphis. Also
find Im exp and Ker exp.

Solution: For any n, 0 R, we know that'€™ = &' &2,
Hexp(n + 12) = exp(k). exp(p).

Hence, exp is a homomorphism from the additive grolureal numbers
to the multiplicative group of non-zero real nunsber

Now, Im exp = {exp(r) | 1 R} = {e'] r OR}.
Also, Ker exp = {fIR|€ = 1} = {0}.

Note that exp takes the identity O of R to the tdgrl of Rl exp also
carries the additive inverse — r of r to the miitgtive inverse of exp

().

Example 2: Consider the groups (R, +) and C, +) and define
F:C,+)> (R, +) by f(x +iy) = x, the real part of x + iyShow that f is
a homomorphism. What aree Im f and Ker f?

Solution: Take any two elements a + ib and ¢ xi@i Then,
F((a +ib) + (c +id)) =f((a + c) + I(b + d)) =1ac = f(a + ib) + f(c = id)
Therefore, f is a group homomorphism.
Imf={f(x +iy) | x, yOR} ={x |x R} = R.
So, fis a surjective functon (see sec. 1.5).
Kerf={x+iyOC|f(x+iy)=0}={x+iyC|x=0}

= {iy| yORY}, the set of purely imaginary numbers.

Note that f carries the additive identity of C ke tadditive identity of R
and (and ( - z) to — f(z), for anyzC.

The following exercise will help you to see if ybave understood what
we have covered to far.

18
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SELF ASSISMENT EXERCISE 1

Show that r: (.) = (R, +) : f(x) = Inx, the natural logarithm of 5 &
group homomorphism. Find Ker f and Im f also.

SELF ASSISMENT EXERCISE 2

Is f: (GLg(R),.) - (R".) : f(A) a homomorphism? If so, obtain Ker f and
Im f.

In Example 1 and 2 we observed that the homomamghisarried the
identity and the inverse to the inverse. In fuése observations can be
proved for any group homomorphism.

Theorem 1:Let f: (G o) - (Gy) be a group homomorphism.

Then
a) f(e) = &, where gis the identity of Gand ¢ is the identity of G

b) f(x%) = [f(x) ™ for all x in Gy.

Proof: (a) Let x[0G;. Then we have,;g; x = X. Hence,
f(x) =f(e;n X) = f(e)  f(X), since fis a homomorphism. But
FX)=erp f(X)in G2
Thus, (@) = f(X) = & f(X).

So, by the right cancellation law in, &e,) = e.

(b) Now, for any XJG,, f(x) f(x™1) =f(x m x*) = f(e) = e.
Similarly, f(x%) 5 f(x) —&.

Hence, f(X) = [f(x)] ™ O x OG,.

Note that the converse of Theorem 1 is false. ®hattf: G1 - G2 is a
function such that f(el) = e2 and [f(x)-1 = f(xd)x 0G1, then f need
not be a homomorphism. For example, consider$: Z: f(0) = 0 and

n+10n>0
f(n) =
n-1n<0

Since f(1 + 1) f(1) + f(1), f is not a homomorphism. But fle= &

and
f(n) = - f(-n) O n OZ.

19
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let us look at a few more examples of homomorphisave. We can get
one important class of homomorphisms from quotgeatips.

Example 3:let HAG. Consider the map p: G G/H : p(x) = Hx. Show
that p is a homomorphism. (pis called the natoratanoical group
homomorphis.) also show that p is onto. What is K&

Solution: for x, yOIG, p(xy) = Hxy = Hx Hy = p(x) p(y). therefore, p i
a homomorphism.

Now, Im p = { p(x)| xUG} = {Hx| x OG} = G/H. therefore, p is onto.
Ker p = {x 0G| p(x) = H}. (Remember, H is the identity of GJH.

= {xOG| Hx = H}
= {xOG| x[OH }, by theorem 1 unit 4.
=H.

In this example you can see that Kek@. You can also check that
theorem 1 is true here.

Before looking at more examples try the followingises.
SELF ASSISMENT EXERCISE 3

Define the natural homomorphism p fromt8 s/As. Does (1 2)1 Ker
p? Does (1 2)JIm p?

SELF ASSISMENT EXERCISE 4
Let S = {zOC| |z| = 1} (see Example 1 of Unit 3).

Define f (R, +) - (S,.) : f(x) = &, where n is a fixed positive integer.
Is f a homomorphism? If so, find Ker f.

SELF ASSISMENT EXERCISE 5

Let G be a group and AG. show that there exists a group G and a

homomorphism f: G- G1 such that Ker f = H.
(Hint: Does Example 3 help?)

Another class of examples of homomorphisms condéegclusion
map.

Example 4 Let H be a subgroup of a group G. Show thatnthae i: H

- G, i(h) = his a homomorphism. This function adled theinclusion
map.

20
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Solution: Since i(hhy) = hhhy = i(hy)i(hy) O hy, by, [OH, 1is a group
homomorphism.

Let us briefly look at the inclusion map in the text of symmetric
groups. Consider two natural numbers m and n, evhreg n.

Then, we can consider S&Sn, where any [1 Sm, written as

1 2 .... mm
o) o2.... a(m)} , Is considered to be the same as

1 2. mm +1.7n
o(Q)o(2)....c(mym+1..... %DSn,i.e.,a(k):kform+1sksn.

Then we can define an inclusion mag,i-S S..

. 1234
For example, under i::S, S (1 2) goes t{ 213 4}

Try this exercise now.
SELF ASSISMENT EXERCISE 6
what are the kernel and image of the inclusion mag - Z?

We will now prove some results about homomorphisrienceforth,
for convenience, we shall drop the notation forlihreary operation, and
write allb as ab.

Now let us look at the composition of two homomaspfs. Is it a
homomrphism? Let us see.

Theorem 2: If f G1 - G, and g.G - Gs are two group
homomorphisms, then the composite map: §; — gs is also a group
homomorphism.

Proof: Let x, yOI G;. Then

gef(xy) = g(f(xy))
= g(f(x)f(y), since f is a homoorphism.
= g(f(x)) g(f(y), since g is a homomorphism.

= g f(x). gof(y).
Thus, ¢ f is a homomorphism.

Now, using Theorem 2, try and solve the followixgeise.
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SELF ASSISMENT EXERCISE 7

Let nCON. Show that the compositionft Z - Z: f(x) = nx and
G:Z - ZInZ: g(x) = x is a homomorphism. What are Kergand
Im(gof)?

So far you have seen that the Kernel and imagehafnamorphism are
sets. In the examples we have discussed so famgyuhave noticed
that they are subgroups. We will now prove tha Hernel of a
homomorphism is a normal subgroup, and the imagesigbgroup.

Theorem 3 Let f: G, - G, be a group homomorphism. Then

a) Ker fis a normal subgroup of,G
b) Imfis a subgroup of &

Proof: a) since f(@ = &, e[l Ker f. OKer f £ @.

Now, if x, y OKer f, then f(x) = eand f(y) = @

Of(xy™) = f(x) fy™) = f(x) [f{] " = &

Oxy™* OKer f.

Therefore, by Theorem 1 of unit 3, KesiG,. Now, for any y(1G,; and
x O Ker f

F(y'xy) = f(y™) f(x)f(y)
=[f(y)] *e:f(y), since f(x) = e and by Theorem 1
= e.

OKerf AG;

b) Imf#z @, since f(g) O Im f.

Now, let %, vy, OIm f. Then[Xk,, y;00G; such that f(x) = x and f(y) =
Yo.

Oxayo * = f(xq) f(y: ™) = f(xqy: ™) Olm f.
OImf <G,

Using this result, from Example 2 we can immediasale that the set of
purely imaginary numbers is a normal subgroup of C.

Let us also consider another example, which is réicoéar case of E
4(whenn=1

Considerg: (R +) - (C*,.) :¢(x) = cos x + i sin x. We have seen that

(X)a(y), that is,@ is a group homomorphism. Naav(x) = | iff Xx = 2rm)
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for some nJZ. Thus, by Theorem 3 Keg = [2rt| nO Z} is a normal
subgroup of R +)

Note that this is cyclic, andds a generator.

Similarly, Im @ is a subgroup of C*. This consists of all the pten

numbers with absolute value 1, i.e., the compleximers on the circle
with radius 1 unit and center (0.0)

You may have noticed that sometimes the kerneltedraomorphism is
{e} (as in Example 1), and sometimes it is a lasgdgroup (as in
Example 2), Does the six of the kernel indicatetlaing? We will prove
that a homomorphism is 1-1 iff its kernel is {e}.

Theorem 4: Let f: G, - G, be a group homomorphism. Then f is
injective iff Ker f ={el}. Where ¢ is the identity element of the group
Gi.

Proof: Firstly, assume that f is injective. LetkKer f. then f(x) = e
l.e., f(x) =f(e). Butfis 1-1.00 x = &a.
Thus, Ker f = {g}.

Conversely, suppose Ker f 5§e Let x, y 0 G; such that
F(x) = f(y). then f(xy") = f(x) f(y™)

= () [fY]" = &.
Oxy'OKerf={e}. O xy'=gandx=y.
this shows that f is injective.

So, by using Theorem 4 and Example 4, we can imatelgl say that
any inclusion i:H- G is 1-1, since Ker i= {e}.

Let us consider another example.
Example 5: Consider the group T of translations df (Example 6, unit
2). We define a mag: (R% +) - (T,0) byo(a, b) =f,, Show thatp

is an onto homomorphism, which is also 1-1.

Solution: for (a,b), (c, d) in R we have seen that
I:a+c,b+d: fa,b fe,d

O@(a, b) + (c, d)) =p(a, b) ¢(c, d).

Thus,g is a homomorphism of groups.
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Now, any element of t is fa,b e(a, b). Thereforeg is injective. We
now show thatp is also injective.

Let (a,b)0 Kerg. Theng(a,b) = .o,

le., bp="Too

0 fa(0,0) = %,0(0,0),
i.e., (a,b) = (0,0).

OKerg ={(0,0)}
Ogis 1-1,

so we have proved thatis a homomorphism, which is bijective

Try the following exercise now.
SELF ASSISMENT EXERCISE 8

For any n > 1, consider,Zand U, (the group of nth roots of unity
discussed in Example 5 of unit 3). Lketdemote an nth root of unity
that generates Un. Then Un= {1, w, ? ..., @™'}. Now, consider the

map f.Z, - U, :1(r) = o". Show that f is a group homomorphism. |Is f
1-17? Is f surjecive?

And now let us look at a very useful property dfaanomorphism that is
surjective.

Theorem 5: If £:G1 - Gz is an onto group homomorphism and S is
a subset that generates G1, then {(S) generates Go.

Proof: We know that

Gy = <S> ={x"%,%... xy™ | MON, x,0S r; OZ for all i}. We will show
that

G, = <f(S) >.

Let x 0 G,. since f is surjective, there existslyG; such that f(y) = x,
Since yO Gy, y = %" ...xn™, for some niIN, where xO S and r0Z,
I<si<sm.

Thus. X =f(y) = f(xirl... xmrm)
= (fx))™ ... (F(xm))™, since f is a homomorphism.
= x O <f(S) >, since f(y O f(S) foreveryi=1, 2, ..., .

Thus. G = <{(S)>.
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In the following exercise we present an importardperty of cyclic
groups which you can prove by using Theorem 5.

SELF ASSISMENT EXERCISE 9

show that the homomorphic image of a cyclic graupyiclic, i.e., if G is
a cyclic group and f:G» G is a homomorphism, then f(G) is cyclic.

Once you have solved E 9, you can immediately kayany quotient

group of a cyclic group is cyclic.

So far you have see examples of various kinds ofidmorphisms —
Injective, surjective and bijective. Let us nowoko at bijective
homomorphisms in particular.

3.2 Isomorphism

In this section we will discuss homomorphisms thi 1-1 and onto.
We start with some definitions.

Definitions: Let G, and G be two groups. A homomorphism f.G»
G, is called an isomorphism if f is 1-1 and onto.
In this case we say that the groupi&isomorphic to the group,®@r G,

and G are isomorphic. We denote this fact by~&,.

An isomorphism of a group G onto itself is calledatomorphism of
G. For example, the identity functiog t G — G : 1G (x) = is an
automorphism.

Let us look at another example of an isomorphism.

a, bR 1

J

Example 6: Consider the set G {—ab Z}

Ten g is a group with respect to matrix addition.

a

Show that f:G— C:f ﬂ ZD =a + ib is an isomorphism.

Solution: Let us first verify tha f is a homomorphism. Ndar anytwo
elements.

{a b}and{c d}inG,
-b a -d ¢
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(L 2[5 e
-b a -d c -(b+d a+c
=(a+ib) + (c +id)

(5l )

There, fis a homomorphism.
a= O,bzo}:{o 0}
00

o Kerf:{—ab ﬂa”bzo}:{—ab l:j

Therefore, by Theorem 4 fis 1-1

Finally, since Im f = C, is surjective.
Therefore, f is an isomorphism.

We would like to make an important remark now.

Remark: If G; and G are isomorphic groups, they must have the same
algebraic structure and satisfy the same algebpaoperties. For
example, any group isomorphic to a finite group trhesfinite and the
same order. Thus two isomorphic groups are algediha
indistinguishable systems.

The following result is one of the consequencessomorphic groups
being algebraically alike.
Theorem 6 If f: G- H is a group isomorphism and3G, then <x>

~ <f(x)>
Therefore,

)] if x is of finite order, then o(x) = o(f(x)).
1)) If x is of infinite order, so is f(x).

Proof: If we restrict f to any subgroup K of G, we have ttunction
flc:K - f(K). Since f is bijective, so is its restrictidrik. [0 K= f(K) for
any subgroup K of G. In particular, for anyDG, <x>=f(<x>) = <
f(x)>, by EO9.

Now if x has finite order, then o(x) = o(<x>) = d&(x)>) = o(fx)),
proving (i).
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To prove (i) assume that x is of infinite ordeFhen <x> is an infinite
group.

Therefore, <f(x)> is an infinite group, and henf{&) is infinite order,
so, we have proved (ii).

Try the following exercise now.

SELF ASSISMENT EXERCISE 10

Show that Z nZ, for a fixed integar n.
Hint: Consider f: (Z, +)-» (nZ, +) : f(k) = nk.)

SELF ASSISMENT EXERCISE 11

Is f: Z- X: f(x) = 0 a homomorphism? An isomorphism?

The next two exercises involve general propertfegnoisomorphism. E
12 is the isomorphism analogue of theorem 2 E 1@gyus another
example to support that isomorphic groups have stame algebraic
properties.

SELF ASSISMENT EXERCISE 12

If : G - Handb: H - K are two isomorphisms of groups, then show
thatBo@ is an isomorphism of G onto K.

SELF ASSISMENT EXERCISE 13

If f: G - His an isomorphis of groups and G is abeliam steow that
H is also abelian.

So far we have seen examples of isomorphic groljmswy consider the
following example.

Example 7: Show that (R*,.) is not isomorphic to (C*,.).

Solution: Suppose they are isomorphic, and f.-C*R* is an
isomorphism. Then

o(i) = o(f(i), by Theorem 6. Now o(i) = 4l o(f(i)) = 4.

However, the order of any real number differentfeb 1 is infinite: and
o(l)=1,0(-1)=2.

So we reach a contradiction. Therefore, our supposnust be wrong.
That is, R* and C* are not isomorphic.
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Try these exercises now.
SELF ASSISMENT EXERCISE 14
Show that (C*,.) is not isomorphic to (R, +).

SELF ASSISMENT EXERCISE 15

IsZ~= Z InZ, for any nz 1?

You must have noticed that the definition of amrmsophism just says
that the map is bijective, i.e., the inverse maistex It does not tell us
any properties of the inverse. The next resulsdme

Theorem 7if f: G;— G, is an isomorphism of groups, theh®, - G,
Is also an isomorphism.

Proof: From Unit 1 you know thatfis bijective. So, we only need to
show thatt is a homomorphism. Let,b' 0G, and a=1(a’), b =f;(
b'). Then f(a) =a and f(b) =b'.

Therefore, f(ab) = f(a) f(b) ='b'. On apply f;, we get
fi(ap)=ab="f(g)fi(b). Thus,

fi(ap)=f1(a)fi(b)foralla, bUG..

Hence, ' is an isomorphism.

From Example 5 and Theorem 7 we can immediatelytisaty
g T - R?:¢'(fan = (a, b) is an isomorphism.

Theorem 7 says that if G1G,, then G = G;. We will be using this
result quite often (e.g., while proving Theorem 9)

Let us now look at a very important theorem in groleory. In Block
3 you will study its analogue in ring theory andtie Linear Algebra
course you have already studied its analoguerieati transformations.

3.3 The Isomomorphism Theorems

In this section we shall prove some results abbetrelation between
homomorphisms and quotient groups. The first tegal the

Fundamental Theorem of Homomorphism for groups. isltcalled

‘fundamental’ because a lot of group theory depemasn this result.
This result is also called the first isomorphisredrem.
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Theorem 8 (Fundamental Theorem of Homomorphism)let G, and
G, be two groups and G- G, be a group homomorphism. Then

G,/Ker f ~ Im f.

In particular, if f is onto, then G1/Ker=f G,.

Proof: Let Ker f = H. Note that HA G;. Let us define the function
¢ :GJ/H -Imf: ¢ (HX) = f(x).

At first glance it seems that the definition ¢f depends on the coset

representative. But we will show that if x,[y G; such that Hx = Hy,
theny (Hx) = ¢ (Hy). This will prove thaty is a well-defined function.

Now, Hx = Hy= xy' OH = Ker f= f(y™) = &, the identity of G.
= f[f(Y)] ™ = & = f(x) = f(y).
= ¢ (Hx) = ¢ (Hy).

Thereforeyw is a well-define function.

Now, let us check that is a homomorphism. For Hx, Hy G,/H,

¢ (HX)(Hy)) = @ (Hxy)

= f((xy)
= f(x) f(y), since fis a homomorphism.

= ¢ (HX) ¢ (Hy).
Thereforew is a group homomorphism.

Next, Let us see whether is bijective or not

Now, ¢ (Hx) = ¢ (Hy) for Hx, Hy in G/H

= f(x) = f(y)

=>f() [fY)] " = &

=>fy™) = &

— xy ! OKer f = H.

= Hx =Hy

Thus,y is 1-1

Also, any element of Im fis f(x) = (Hx), whexd] G,
Oim g =Imf.

so, we have proved that is bijective, and heanasomorphism. Thus,
Gi/Ker f = Im f.

Now, if f is surjective, Im f = G Thus, in this case Ker f =~ G,.
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The situation in Theorem 8 can be show in the valhgy diagram.
r I

Gl i’ Im f <G,

."’
Gy/Ker

Here, p is the natural homomorphism (see example 3)

The diagram says that if you first apply p, andtlge to the elements
of G1, itis the same as applying f to them. Tikat

wP=f

Also, note that Theorem 8 says that two elementSDbhave the sane
image under f iff they belong to the same coséaff.

Let us look at a few examples.

One of the simplest situations we can considergis G - G. On

applying theorem 8 here, we see that G/{e)G. we will be using this
identification of G/{e} and G quite often.

Now for some non-trivial examples.

Example 8: Prove that C /R= R.

Solution: Define f: C- R: f(a + ib) = b. Then f is a homomorphism, Ker
f = R and Im f = R. Therefore, on applying Theor8rwe see that C/R

~ R.

1, if nis ever

Example 9: Consider f: Z— ({1, - 1},.) : f(n) =
P ({ o) + 10O {1,ifnisodd

At the beginning of Sec. 6.2, you saw that f isenbmorphism. Obtain
ker f and Im f. What does Theorem 8 say in thse@a

Solution: Let Z. and % denote the set of even and odd integers,
respectively. Then

Kerf={nOZ|f(n) =1} =Z.

Imf={f(n) |n0Z}={1, - 1}

Thus, by Theorem 8, Z[Z {1, - 1}

This also tells us that o(Z{¢Z= 2. The two cosets of.4n Z are Z and
201
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0{Zc, 2} = {1, - 1}.

Example 1Q show that GK(R)/SLy(R) =~ R*, where
SL2(R) ={AO GL2(R) | det (A) = 1}.

Solution: We know that the function

F:GL2(R) - R* : f(A) = det (A) is a homomorphism. Now, Ker f=
SL2(R).

. . 0
Also, Im f = R*, since any Il R* can be written as d{; 1D

Thus, using Theorem 8, GL2(R)/SL2(RR*.
Try the following exercises now.

SELF ASSISMENT EXERCISE 16

Consider the situation in Example 1 show that (Rz€R*,.), the group
of positive real numbers.

SELF ASSISMENT EXERCISE 17

Let U, be the multiplicative group of"4roots of unity.

Define f: Z - Uy f(n) = in. Use Theorem 8 to show that ZU,. (I =
J-1.)

Now we will use the fundamental Theorem of Homorhism to prove
a very important result, which classifies all cgajroups.

Theorem 9 Any cyclic group is isomorphic to (Z, +) orZ).

Proof: Let G = <x> be a cyclic group. Define
f.Z - G :f(n) =X.

fis a homomorphism because

f(n+m) = X" = X", X" = f(n) f(m).

Also note that Im f = G.
Now, we have two possibilities for Ker f — Ker {6} or Ker f # {0}.

Case 1 (Ker f = {0}): In this case f is 1-1. Theyed, f is an
isomorphism. Therefore, by Theorem 7, f1 is amisphism. That is,

G=(Z, +).
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Case 2 (Ker f {0}): Since Ker f< Z, from example 4 of Unit 3 we
know that Ker f = nZ, for some O N. Therefore, by the fundamental
Theorem of Homomorphism, Z/nZG.

0G=~ZINZ = (Z, +).

Over here note that since <x>Z,, o(x) = n. so, a finite cyclic group is
isomorphic to 4, where n is the order of the group.

Using Theorem 9 we know that all cyclic groups fder 4 are
isomorphic, since they are all isomorphic tp ZSimilarly, all infinite
cyclic groups are isomorphic.

And now you can prove the following nice result.

SELF ASSISMENT EXERCISE 18

Let S be the circle group {ZC | z | = 1}. Show that R/ZS.
(Hint: Define f: R - S: f(x) = eZ*. Show that f is an onto
homomorphism and Ker f = Z).

We will now prove the second isomorphism theorerthwhe help of
the Fundamental Theorem of Homomorphism. It isceomed with
intersections and products of subgroups. To ptbeeheoremyou will
need the results given in the following exerciseo why not do this
exercise first!

SELF ASSISMENT EXERCISE 19

Let G be a group, 4G and KA G. Then
I Hn K AH; and
ii. if A <G such that KJA, then KAA.

Now let us discuss the theorem.

Theorem 10:If H and K are subgroups of a group G, with K nalrnm
G, then H/(Hn K) = (HK)/K.

Proof: we must first verify that the quotient groups H/(HK) and
(HK)/K are well-define. From E 19 you know thatHK A H. from E

6 of unit 5 you know that HK G. Again, from E 19 you know thatX
HK. Thus the given quotient groups are meaningful.
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Now, what we want to do is to find an onto homosphif : H -
(HK)/K with kernel H n K. then we can apply the Fundamental
Theorem of Homorphism and get the result. We @éefinH

- (HK)/K:f(h) = hK.

Now, for x, yOO H,

f(xy) = xyK = (xK) (yK) = f(x) (y).
Therefore, f is a homomorphism.

Im f = { f(h) | hO H} =(hK | h OH}

We will show that Im f = (HK)/K. Now, take any elemt hK O Im f.
since h(JH. h[OHK

Ohk O (HK)/K OIm f O(HK)/K. on the othr hand, any element of
(HK)>K is hkK = hK, since KIK.

OhkK O Im f. O (HK)/K O Im f.

O Im f = (HK)/K

Finally, Ker f = {h0OH | f(h) = K} = {h OH| hK = K}

= {hOH| hZK}
=Hn K.

Thus, on applying the Fundamental Theorem, we géHHMK) =
(HK)/K

We would like to make a remark here.

Remark: If H and K are subgroups of (G. +). Then Theorednsays
that

(H + K)/K =~ H/H n K.
Now you can use Theorem 10 to solve the followixereises.
SELF ASSISMENT EXERCISE 20
Let H and K be subgroups of a finite group G, and &. show that
O(HK) = 2HO()

o(H n K)

SELF ASSISMENT EXERCISE 21

Show that 32/12%& Z,
(Hint: Take H =3Z, K=42).
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And now for the third isomorphism theorem. Thisiso a corollary to
Theorem 8.

Theorem 11 Let H and K be normal subgroups of a group G ghelh
K OH. then

(G/K)/(H/IK) =G/H.

Proof: We will define a homomorphism from G/K onto G/iWhose
kernel will turn out to be H/K.

Consider f: G/IK- G/H: f(Kx) = Hx. F is well-define because Kx = Ky
for x, yOG

=Xy-1 0K [OH = xy-1 0 H = Hx = Hy= f(Kx) = f(Ky)

Now we leave the rest of the proof to you (seddliewing exercise).

SELF ASSISMENT EXERCISE 22

Show that f is an onto homomorphism and Ker f = H/K

Let us now look at isomorphisms of a group ontelits

3.4 Automorphisms

In this section we will first show that the setalf automorphisms of a
group forms a group.

Then we shall define a special subgroup of thisigro

Let G be a group. Consider
Aut G ={f: G - G| fis anisomorphism }.

You have already seen that the identity mapl@&ut G. From E 12 you
know that Aut G is closed under the binary operatdd composition.
Also. Theorem 7 says that if @ Aut G, then f-10 Aut G. We
summarize this discussion n the following theorem.

Theorem 12: let G be a group. Then Aut G, the sautbmorphisms of
G, is a group.

Example 11:show that Aut Z=Z.

Solution: Let f:Z —» Z be an automorphism. Let f(1) = n. We will show
thatn=1orn=-1

. Since fis onto and Z, Om [0 Z such that f(m) =1, i.e.,, mf(1) =

1l,.e.mn=1.
On=1orn=-1.
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Thus, there are only two elements in Aut Z, 1 ardd —
SoOAutZ =<-1>x7,.

Now, given an element of a group G, we will defamreautomorphism of
G corresponding to it.

Consider a fixed element(gG. Define

Fys G - G: fy(x) = gxg".

We will show that fg is an automorphism of G.

) fg is @ homorphism : If x, ¥IG, then
fg (xy) = g(xy) ¢"
= gx(e) yg', where e is the identity of G.
=0x(d.9) ¥
=(gxd") gyg")
=fg (X) fo(y).
iy  fyis 1-1: for x, yO G, fy(x) = fy(y) = gxg"' = gyg" = x =y, by
the cancellation laws in G.
i)  fgis onto: If yOIG, then
y=(99")y (997)
=g(g y9) g
=fy(g" yg) O Im f,.

Thus, { is an automorphism of G. We give this automonphisspecial
name.

Definition: fy is called an inner automorphism of G induced by th
element g in G. The subset of Aut G consisting atif inner
automorphism of G is denoted by Im G.

For example, considersSLet us compute of1). fy(1 3) and §1 2
3).Where

g=(12). Notethatg'=(12) =g.

Now. fy (1) = golog™ = 1.

f(13)=(12)(13)(12)=(23),
fg(123)=(12)(123)(12)=(132).

The following exercise will give you some practineobtaining inner
automorphisms.

SELF ASSISMENT EXERCISE 23

Obtain the image of fg@l Inn G, where
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a) G=GL2(R)andg {_Ol (ﬂ

b) G=Zandg=3.
C) G =Z/5Z and g = 4.

You will now see that Im G is a normal subgrouof G.
Theorem 13 Let G be a group. Then Inn G is a normal subgaiufut
G.

Proof: Inn G is non-empty, becausg fy U Inn G, where e is the
identity in G.
Now, Let us see if fgth (I Inn G for g, fl.
For any xOG fg. fh(x) = fg(hxHh?
=g(hxf) g*
= (gh) x (gh)
= fn(X).

Thus, §,=fg- fh, i.e., Inn G is closed under composition. Alge 1
belongs to Inn G.

Now, for f, 0 Inn G,0f,™ O Inn G such that
fgo fg = fgg = . = I. Similarly, % fy = I,

Thus, §* = (f)™". Thatis, every element of Inn G has an invenskmn
G.

This proves that Inn G is a subgroup of Aut G.

Now, to prove that Inn GAut G, letagl] Aut and G andCUinn G.
then, for any XJG

o-1 ofgod (X) =8 ™" ofy (@ (X))
=2 (9e(X)g")
=2 (9)e ™" (2 (x) @ (g™
=2 (9) x{ 2 @)}
= fz (g) (x). Note that *(g) 0G.)

Oe-1f,e=fy,(@0InnGOg0AutG and§0Inn G,
Olnn G A Aut G.

Now for some exercises! From E 23 you may haveadireyot a hint of
the
useful result that we give in E 24.
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SELF ASSISMENT EXERCISE 24
Show that a group G is commutative iff Inn G g}l
SELF ASSISMENT EXERCISE 25

Show that if xJJG such that{x) = x1 g U G, then <x>A G.

Now we will prove an interesting result, which tekathe costs of the
center of a group G to Inn G. Recall that the eeat G, Z(G) = X G|
xg = gx=0 gl G}

Theorem 14 Let G be a group. Then G/Z(&) Inn G.
Proof: As usual, we will use the powerful Fundamental dreen of
Homomorphism to prove this result.

We define f: G- Aut G: f(g) = {.

Firstly, f is a homomorphism because for @@,
F(gh) = §n

= fyofh (see proof of Theorem 13)

= f(g)-f(h).
Next, Inn f = {fg|gLG} = Inn G.

Finally, Ker f = {g0 G| f; = Ig}
={g UG fy(x) = xOx vG}
={f0G|gxg" = xOxOG}
={g O G| gx = xd1 x(1 G}
= Z(G).

Therefore, by the Fundamental Theorem
G/Z(G) =Inn G.

Now you can use Theorem 14 to solve the next eserci

SELF ASSISMENT EXERCISE 26

Show that S3=Inn S3.

Now let us see what have done in this unit.
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4.0 CONCLUSION

In this unit we have established some basic faocbuabgroup

isomorphism namely that if group;@nd group @ are isomorphic
groups they must have the same algebraic struangesatisfy the same
algebraic properties.

5.0 SUMMARY
In this unit we have covered the following points.

. The definition and example of a group homomorpism .
. Let f: G - G, be a group homomorphism. Thenj(e e,
o [f(X)} ™ =f(x-1), Imf< G, Kerof A G,.

. A homomorphism is 1-1 iff its kernel is the trivelibgroup.

. The definition and examples of a group isomorphism.

. Two groups are isomorphic iff they have the sangelaaic
structure.

. The composition of group homomorphisms (isomorpBkijsia a
group homomaorphism (isomorphism).

. The proof of the Fundamental Theorem of Homomorphis
which says that if f: - G, is a group homomorphism, then G
/Ker f = Im f.

. Any infinite cyclic group is isomomorphic to (Z, .+Any finite

cyclic group of order n is isomorphic to(Zt+).

. Let G be a group, & G, KAG. Then H/(Hn K) =(HK)/K

. Let G be a group, AG, KAG, K OO H. Then (G/K) /(H/K)
~G/H.

. The set of automorphisms of a group G, Aut G, gr@up with
respect to the composition of functions.

. Inn G AAut G, for any group G.

. G/Z(G) =Inn G, for any group G.
SOLUTIONS/ANSWERS

SELF ASSISMENT EXERCISE 1

For any x, y{I R*, f(xy) = In(xy) = Inx + Iny.
f is a homomorphism.

Ker f={x OR* f(x) =)} = {1}.
Im f = { f(x) | xOR*} = {In x| x OR*}.
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SELF ASSISMENT EXERCISE 2

For any A,BO GL; (R),

F(AB) = det (AB) = det(A) det(B) = f(A) f(B)

[f is a homomorphism.

Ker f ={A 0 GL3 (R)| f(A) = 1} = {A O GL3(R)| det(A) = 1}
=Sl3 (R), the special linear group of order 3.

Im f={det(A) | AU GL; (R) }

r 00
= R* (because for anyld R*,[JA=|0 1 O0|0OGLj3 (R) such that det (A) =r.)
0 01

SELF ASSISMENT EXERCISE 3

pP: S - SYAz: p(X) = AX

Note that A={1, (1 2 3), (1 3 2)}.
Now Kerp=A0 (1 2)0Ker p.
Imp={Ax|x0S}. O (12)0Im p.

SELF ASSISMENT EXERCISE 4

For any x, yd r, f(x) + y) = &'**Y)

=€" ™ = f(x). f(y).
Of is a homomorphism '
Kerf={xOR|f(x)=1}={xOR | " =1}

=(xJR| nx02mZ}= Z—n“ Z.
SELF ASSISMENT EXERCISE 5

From Example 3, we know that if we take G1 = G/Id take f to be the
natural homomorphism from G onto G/H, then KerH =

SELF ASSISMENT EXERCISE 6
1:13Z - Z:1(3n) = 3n.

Keri={3n| 3n =0} = {0}
Imi=3Z.

SELF ASSISMENT EXERCISE 7

gof: Z - ZInZ : gof(x) =
Then, for any x, y1Z
gof(x +y) = of(x) + g f(y).
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g fis a homomorphism.
Ker (gof) = Z, Im (g f) = {0}.

SELF ASSISMENT EXERCISE 8

For anyr,sO Z,.

F(r +s)=f(r+s) =« = a-ra®=f(r).f(s).

O fis a homomorphism.

Fis 1-1 because

fR)I=1=a" =1

= r| o(e) =n (see Unid)

=r=0
O Ker f = {0}
f is surjective because any element of Un.isfor 0 <r<n -1,
and " = f(f).

SELF ASSISMENT EXERCISE 9

let G =< x>andf. G— G be ahomomorphism. Then :& f(G) is
an onto homomorphism.
Therefore, by Theorem 5, f(G) = < f(x)>, i.e., f({S)cyclic.

SELF ASSISMENT EXERCISE 10

a) The function f:Z- nZ: f(k) = nk is a well-defined function.
Now, f(m + k) = nm + nk = f(m) + f(kJ m, kO Z.

(f is a homomorphism

Kerf={0}, Ofis 1-1

Im f=nZ.0O fis surjective.

O fis an isomorphism and ZnZ.
SELF ASSISMENT EXERCISE 11
fis a homorphism, but not 1-0J f is not an isomorphism.

SELF ASSISMENT EXERCISE 2

By Theorem 20-g is a homomorphism. Now letxKer 0 -9).
Then, @ -9) (X) = 0= 6(a(x)) =0
= @(x) =0, sincéis 1-1.
= x=0,sinceg is1-1.
OKer 0 -9) ={0}. 0 B.@is 1-1

Finally, take any KIK. Then k =6(h), for some hJH, sincef is onto.
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Now, h = g(g), for some @G, since @ is onto.

Ok =00.g (g).000 -g is onto.
0 6 o@ is an isomorphism.

SELF ASSISMENT EXERCISE 13

Let a, bOH. thendx, y OG such that a = f(x), b = f(y).
Now ab = f(x) f(y) = f(xy).
= f(yx), since G is abelian.

= f(y) f(x)
= ba.

[OH is abelian.

SELF ASSISMENT EXERCISE 14

Suppose C*=~ R and f: C*— R is an isomorphism. Then o*f(i) = 4.
But, apart from O, every element of (R, +) is dirite order, and o(0) =
1. so, we reach a contradiction.

JC* and R are not isomorphic.
SELF ASSISMENT EXERCISE 15

Since Z is infinite and Z/nZ is finite, the two gy can’'t be
isomorphic.

SELF ASSISMENT EXERCISE 16

Imexp ={€|rO0R}=R".
Ker exp = {0}.

Thus, by the Fundamental Theorem of HomomorphismRR
SELF ASSISMENT EXERCISE 17

Us={1,1,i2,i3} = {1, £ I}.
F is a homomorphism, Ker f = {A 1} = 4Z
Imf= U4.

0 2/4Z ~U,

In Unit 5 we have seen that Z/4Z is the sameas Z
0Z, U,
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SELF ASSISMENT EXERCISE 18
f(x + y) = €Y = ™ 22V = f(x)f(y).
O fis a homomorphism.

Now any element of S is of the form dbs i sin6

:cosmi +isin ZTi :f(ij.
27T 27T 217

O fis onto
Also Ker f = {x 0 R| e2™ = 1}
={xOR]cos 2x + i sin 2x = 1}
=Z,sincecod +i sing =1iff 6 O21Z.
Therefore, by the Fundamental Theorem of HomomsmhR/Z

~ S.
SELF ASSISMENT EXERCISE 19

a) you know that Hh K < H. Now, letlJ H and xOH n K.
Then h'xh OH, since h, xJH.
Also, h*xh 0K, since x(K and K AG.

hixhOHnNn K.OHNn K H,.

b) Since K< G, K< A. also, for any alA, allG.
Therefore, since K\G, a'Ka = K.OK AA.

SELF ASSISMENT EXERCISE 20

by theorem 10. (HK)/H= K/(H n K).
0 o(HK) _ o(K) Jie. o(HK) = o(H)o(K)
o(H) o(Hn K) o(HNnK)

SELF ASSISMENT EXERCISE 21

Let H=3Z, K=4Z. By Theorem 10 we know that (KKYK =~ H/(H n
K).

Now H + K=3Z+ 3Z +4Z =Z. (Use E 9 of Unit Bathe fact that 1
=4-3)

Also HnK =3Zn4Z =12Z7(since X1 3Z n 4Z iff 3| x and 4|x).
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Thus, by Theorem 10, Z/4Z 3Z/12Z.
You also know that Z/4% Z,.
0 32/12Z~ Z4.

SELF ASSISMENT EXERCISE 22

For any Kx, Ky in G/K,

F((K x) (Ky)) = f(Kxy) = Hxy = (Hx) (Hx) (Hy) = fKx)f(Ky).
Of is a homomorphism.

Now, any element of G/H is of the form Hx. And
Hx = f(Kx) O Im f: OIm f = G/H.
Finally, Ker f = {Kx O G/K | f(Kx) = H}
={Kx O G/K| Hx = H}
={Kx O G/K | xOO H}
= H/K

Therefore, by Theorem 8, (G/K) /(H/KG/H.

SELF ASSISMENT EXERCISE 23

SR RGN o | B RS
e [% Jor[) 3
Dab_l_OlabO—l_d—c
P L | e R
ng(GLz(r):{_db ‘a} E (ﬂ 0 GLs(R) }

b) foZ > Z f(X)=g+x+(-9)=x.
0 fg=1,0 fy(2) = Z.
c) Here too, since G is abeliag~1.

(@]

SELF ASSISMENT EXERCISE 24

Firstly assume tht G is abelian. Then, for anylfgn G.
Fo'(X) =gxg' = gd'’x =x0x 0 G.

Ofy = 1.

O Inn G = {1g}.

Conversely, assume that Inn G xJ1
Then, for any x, y1 G, fg(y) =Y.
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= XyX' = y= Xy = yX

therefore, any two elements of G commute with edbRr. That is, G is
abelian.

SELF ASSISMENT EXERCISE 25

To show that § <x> g = <x>0 g G, it is enough to show that
g'xg O<x> OgOd G. Now, for any ¢JG, we are given that

fgt (X) = X.

=g x(g") " =x

= g'xg = Xx.

Ogt<x>g=<x>.0<x> AG.

SELF ASSISMENT EXERCISE 26

We know that §2)S;) =~ Inn S.
But, Z(S) ={1}. 0S3 = Inn S.

6.0 TUTOR MARKED ASSIGNMENT

Let G be a group. Then AutG, the set of automomplo$ G is a group.
Prove!

7.0 REFERENCES/FURTHER READINGS
Blacksell: Topics in Algebra.

Birkhaff and Melhnew(1972): A Survey of Modern Algra.
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UNIT 3 PERMUTATION GROUPS

CONTENTS

1.0 Introduction
2.0 Objective
3.0 Main Content
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3.2  Cyclic Decomposition
3.3 Alternating Group
3.4 Cayley’'s Theorem
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit we discuss, in detail, a group that ybudied in Sec. 2.5.2.
This is the symmetric group. As you have oftemseeprevious units,
the symmetric groupSas well as its subgroups, have provided us with
a lot of examples. The symmetric groups and thégroups are called
permutation groups. It was the study of permutagooups and groups
of transformations that gave the foundation to grtheory.

In this unit we will present all the information@ld permutation groups
that you have studied so far, as well as some m@fe.will discuss the
structure of permutations, and look at even pertrmuts in particular.

We will show that the set of even permutations igreup called the
alternating group. We will finally prove a resbly the mathematician
Cayley, which says that every group is isomorplaicat permutation
group. This result is what makes permutation gsagimportant.

We advise you to read this unit carefully, becatigeves you a concrete
basis for studying and understanding the theorgroips. We also
suggest that you go through Sec. 2.5.2 again, &é¢dakling this unit.

2.0 OBJECTIVES

After reading this unit, you should be able to

. Express any permutation i & a product of disjoint cycles;

. Find out whether an elementiS odd or even;

. Prove that the alternating group of degree n isnabin S, and is
of order

. Prove and use Cayley’s theorem.
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3.0 MAIN CONTENT

3.1 Symmetric Group

From Sec. 2.5.2, you know that a permutation onraempty set X is a
bijective function from X onto X. We denote the séall permutations
on X by S(X).

Let us recall some facts from Sec. 2.5.2.

Suppose X is a finite set having n elements. Hoplsity, we take
these elements to be 1, 2, ..., n. Then, we dertweset of all
permutations on these n symbols by S

We represent anyl S, in a 2-line form as

fo 1 2 .....n

Q) f(2).... f(n)
Now, there are n possibilities for (1), namely?2l..., n. Once f(1) has
been specified there are (n — 1) possibilitiesf®y, namely, {1, 2, ...,
n}{f(1)}. This is because f is 1-1. Thus, therezan(n — 1) choices for

f(1) and f(2). Continuing in this manner, we séattthere are n!
different ways in which f can be defined. Therefds has n! elements.

Now, let us look at the algebraic structure of Sy any set X. The
composition of permutations is a binary operatiarS¢X). To help you
again practice in computing the composition of p#ations, consider
an example.

Letf= [1 23 4jandg:[1 23 4] bein g
2 41 3 4 1 3 2

Then, to getdg we first apply g and then apply f.
0 fog (1) = f(9(1)) = f(4) = 3.
fog (2) = f(9(2)) = (1) = 2.
fog (3) = f(9(3)) = 1(3) = 1.
fog (4) = f(9(4)) = 1(2) = 4.

Dfog:(1234j
3214

We show this process diagrammatically in fig. 1.
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fog
| ; |
| J | |
1 1 1
2 2
3 3
4 a 4

Fig.1:(1243)(142)inS.

Now, let us go back to S(X), for any set X. Wed&avoved the
following result in Sec. 2.5.2.

Theorem 1:Let X be a non-empty set. Then the system (S(Xjprms
a group, called the symmetric group of X.

Thus, S is a group of order n|, we call ®ie symmetric group of degree
n. note that if £ S,, then

1 (fQ) 1) . f(n)
1 2 .. n)

Now, with the experience that you have gained @vimus units, try the
following exercise.

SELF ASSISMENT EXERCISE 1

show that (§) is a non-commutative group forn3.

Hint: Check that[1 2 3] and(1 2 3] don’t commute.)
2 31 3 21

At this point we would like to make a remark about terminology and
notation.

Remark: From now on we will refer to the compositaf permutations
as multiplication of permutations. We will alsm@rthe composition

sign. Thus, we will writedg as fg.
Te two-line notation that we have used for a peatmon is rather

cumbersome. In the next section we will see hous®a shorter
notation.
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3.2 Cyclic Decomposition

In this section we will first see how to write parmations conveniently,
as a product of cycles. Let us first see whatdicys.

. . 1 2 3 4
Consider the permutation f{g 1 4 2j.Choose any one of the

symbols, say 1.

Now, we write down a left hand bracket followedlyl

Since f maps 1 to 3, we write 3 after 1: a3
Since f maps 3 to 4, we write 4 after 3: (134
Since f maps 4 to 2, we write 2 after 4: (1342
Since f maps 2 to 1 (the symbol we started with),

after the symbol we close the brackets 1342

Thus, we write f = (1 3 4 2). This means that fpsia@ach symbol to the
symbol on its right, except for the final symbolthe brackets, which is
mapped to the first.

If we had chosen 3 as our starting symbol we wdwade obtained the
expression (3 4 2 1) for f. however, this meanstydhe same as (1 3
4 2), because both denote the permutation whicthawe represented
diagrammatically in Fig 2.

Such a permutation is called a 4-cyclic, or a cyoh length 4.Fig 2 can
give you an indication as to why we give this name.

1 3

Fig.2: (134 2)
Let us give a definition now.
Definition: A permutation f(I S, is called an r-cyclic (or cyclic of

length r) if there are r distinct integegsip, i3, ..., i, lying between 1 and
n such that

f(iy) =ip, f(i2) =g, ..., f(i.q) =i, f(ir) =il.

And f(k) = kO kO {i 1, Iz, ... i}

Then, we write f = (i, ..... Ir)
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In particular, 2-cycles are called transpositiofiSor example, the
permutation
f=(2 3) S is a transposition. Here f(1) =1, 3 and f(3).= 2

Later in this section you will see that transposif play a very
important role in the theory of permutations.

Now consider any 1-cycles (i) in,S It is simply the identity
permutation

12 .. . . S,
1= (1 ) 2] Since it maps i to i and the other (n — 1) symliol
themselves.

Let us see some examples of cycles4n 8 2 3) is the 3-cycles that
takes 1 to 2, 2 to 3 and 3 to 1. There are als@ar&positions in
namely, (1 2), (1 3) and (2 3).

The following exercise will help you to see if yog'understood what a
cycles is.

SELF ASSISMENT EXERCISE 2
Write down 2 transpositions, 2 3-cycles and a Secyt S

Now, can we express any permutation as a cycles?Cdosider the
following example from S5. Let be the permutatitaiined by

(1 234 5
9% 3541 2)
If we start with the symbol 1 and apply the progedior obtaining a
cycle to g, we obtain (1 3 4) after three stepscdiise g maps 4 to 1, we
close the brackets, even though we have not ydtewrdown all the
symbols. Now we simply choose another symbol Hagtnot appeared
so far, say 2, and start the process of writinggy@decagain. Thus, we

obtain another cycle (2 5). Now, all the symbaos exhausted.
0g=(134)(25).

We call this expression for g a product of a 3-eyamhd a transposition.

In Fig.3 we represent g by a diagram, which shdwes3-cycle, and the
2-cycle clearly.
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1 4
Fig. 3:1 3 4) (2 5)

Because of the arbitrary choice of symbol at thgarbeng of each cycle,
there are many ways of expressing g. For example,
g=(413)(25=(125)(134)=(52)(341).

That is, we can write the product of the separgtées in any order, and
the choice of the starting element within each eyslarbitrary.

So, you see that g can’'t be written as a cycles & product of disjoint
cycles

Definition: We call two cycles disjoint if they have no symbol
common. Thus, disjoint cycles move disjoint sdt®lements. (Note
that 1JS, moves a symbol i if f(i: i. We say that fixes i if f(i) = i)

So, for example, the cycles (1 2) and (3 4) grar® disjoint. But (1 2)
and (1 4) are not disjoint, since they both move 1.

Note thatif f and g are disjoint, then fg = gf since f and g move
disjoint sets of symbols.

Now let us examine one more example. Let h be#meutation in §
defined by

hol 2345
4 2351

Following our previous rules, we obtain

h=(145)(2) ()

because each of the symbols 2 and 3 is left undohrigy h. by
convention, we don't include the 1-cycles (2) aBili( the expression
for h unless we wish to emphasize them, since jhslyrepresent the
identity permutation. Thus, we simply write h =4b).

If you have understood our discussion so far, ydube able to solve
the following exercises.
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SELF ASSISMENT EXERCISE 3

Express each of the following permutations as petlwof disjoint
cycles in the manner demonstrated above.

1 23 45
5 42 13

. 1 23 45 67 8
' 8 47 21 36 5

i 12345]

4 53 12

SELF ASSISMENT EXERCISE 4
Do the cycles (1 3) and (1 5 4) commute? Why?

What you have seen in E 3 is true in general. Y&t ghe following
result.

Theorem 2: Every permutation f1 S, f # 1, can be expressed as a
product of disjoint cycles.

The proof of this statement is tedious. It is Hane process that you
have applied in E 3. So we shall not do it here.

Now we will give you some exercise in which we gs@me interesting
properties of permutations.

SELF ASSISMENT EXERCISE 5
Show that every permutation iR S a cycle iff n < 4.
SELF ASSISMENT EXERCISE 6

Iff=(@1i,..... i) O S, then show that
1= (i g ... ipiq).

SELF ASSISMENT EXERCISE 7

If f is an r-cycle, then show that o(f) =r, i.€.= 1 and ¥+ 1, if s<r.
(Hint: iff=(iyi5 ....I;), then () =i, f2 (i) =izy.eny il (i) =1)
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and now let us see how we can write a cycle as alugt of
transpositions. Consider the cycle (1 5 3 4 Zsin You can check that
this is the same as the product

(12)(14)(13)(15). Notthat these transpoaiss are not disjoint. In
fact, all of them move the element 1.

The same process that we have just used is truanfocycle. That is,
any r-cycle

(iy ip...... i) can be written as (ii;) (i i1 ..... (iy 1), a product of
transpositions.

Note that, since the transpositions aren’t disjoititey need not
commute.

Try the following exercise now.
SELF ASSISMENT EXERCISE 8

Express the following cycles as products of trasgjmnms:
a)(135), b) (531), ¢)(24523).

Now we will use Theorem 2 to state a result whidtoves why
transpositions are so important in the theory piqeation.

Theorem 3 Every permutation in Sn gn2) can be written as a product
of transpositions.

Proof: The proof is really very simply. By Theorem 2 eey
permutation, apart from 1, is a product pf disjaiytles. Also, you
have just seen that every cycle is aproduct ofsprasitions. Hence,
every permutation, apart from 1 is a product afggosition.

Also,1=(12) (12) Thus, 1 is also a productrahspositions. So, the
theorem is proved.

Let us see how Theorem 3 works in practice. Thenpttion in E 3(a)
is(15324). Thisisthe same as (1 4) (1 Z)(@ 5).

. . 1 23 45 6
Similarly, the permutation ( j

364125

=(134)(265)=(14)(13)(25)(26).
Now you can try your hand at this process.
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SELF ASSISMENT EXERCISE 9

Write the permutation in E 3(b) as a product ohsgzositions.
SELF ASSISMENT EXERCISE 10

Show that (1 2....10) = (1 2) (2 3) ....(9 10).

The decomposition given in Theorem 3 leads usdobgroup of Sthat
we will now discuss.

3.3 Alternating Group

You have seen that a permutation inc@n be written as a product of
transpositions. From E 10 you can see that thefaa the product are
not uniquely determined. But all such represeostihave one thing in
common — if a permutation in,3$s the product of an odd number of
transposition in one such representation, thenilitbe a product of a
odd number of transpositions in any such repretientasimilarly, if (I

S, is a product of an even number of transpositions one
representation, then f is a product of an even rurobtranspositions in
any such representation. To see this fact we tieedoncept of the
signature or sign function.

Definition: The signature of f1 S, (n> 2) is define to be

o fG) —10)

Sign f :i1j1:1 =
i<j
for example, forf=(12 3} S;,
sign £ =@~ f3)-f1) f(3)-(2)

2-1 3-1 3-2
_(3—2) (1—2) (1—3) _
= =1.
1 2 1
Similarly, iff=(12),0 S, then

f(2) -f(1) f3)-f1) f(3)-f(2)
2-1 3-1 3-2

7)) ()=

Henceforth, whenever we talk of sign f, we shafiuase that f1 S, for
some > 2.

Signf=

Try this simple exercise now.
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SELF ASSISMENT EXERCISE11
What is the signature of[1 S,?

Have you noticed that the signature define a foncti
Sign: § — Z? We will now show that this function is a homaptasm.

Theorem 4 Let f,gS,. Then sign (kg) = (sign g).

Proof: By definition,
Sign frg = Hl f(g(J))j—if(g(l))
i, j= —_
i<j
n fe) -fe®) L 90 -9®)
aoogl)-gl) W i
Now, as i and j take all possible pairs of digtimalues from 1 to n, so
do g(i) and g(j) since g is a bijection

QW) =) _ gign 1.
<) () -9
O sign (f-g) = (sign f) (sign g).

Now we will show that Im (sign) = {1, - 1}.

Theorem 5 a) If t0 S, is a transposition, then signt = - 1.
b) signf=1or-11f 0 Sn.
C) Im (sing) = {1, - 1}.

Proof: a) Lett = (p q), where p <q.

Now, only one factor of sign t involves both p andamely,
t@)-tp) _p-d _ 4

q-p q-p
Every factor of signt that doesn’t contain p orqg&ls 1, since
0= 21 29 it j2p, q.

=) =]

The remaining factors contain either p or g. butbbath. These can be
paired together to form one of the following protduc

M -tp) H-tQ) _ =g I=p _; 554
i-p i—q i-p i-q ’ ’
-t (@)=t _i-a p=i g sy
i-p g-i i=p g-i |
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tp)—t() 1aq)—t()
p-i q-i

Taking the values of all the factors of sign t, see that sign t = -1.

b) Let fOO S,. By Theorem 3 we know that f st4 .....t for some
transpositions
t, .nee tin S,
O sign f=sign {t, .... t)
= (sign t1) (sign t2) ..... sign)Xtby Theorem 4.
= (- DLr, by (a) above.
Osignf=1or-1.

C) We know that Im (sign)l {1, - 1}.
We also know that sign t = -1, for any transpositipand sign 1
=1
0 {1, -1} O Im (sign).
OIm (sign) = {1, - 1}

Now, we are in a position to prove what we saithatbeginning of this
section.

Theorem G Let fO S, and let

f= tito ... t =t ...t

X two factorization of f into a product of transjgams. Then either
both r and s are even integers, or both are oddens.

Proof: We apply the function

Sign: $—{1,-1}tof=tt, ..... t..

By Theorem 5 we see that

Sign f = (sign{) (signt) ..... (signt) = (-1).
Osign (it .....t = (- 1), Substitutingtyt; .....t; for f.
thatis, (- 1)= (- 1.

This can only happen if both s and r are evenptn bre odd.

So, we have shown that forf S, the number of factors occurring in
any factorization of f into transpositions is alwagven or always odd.
Therefore, the following definition is meaningful.

Definition: A permutation fI S, is called even if it can be written as a

product of an even number of transposition. f ibedaoff if it can be
represented as a product of an odd number of tosigms.
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For example, (1 2)] s;is an odd permutation. In fact, any transposition
is an odd permutation. On the other hand, anycBcis an even
permutation, since (i jk) (i k) (i j).

Now, see if you've understood what odd and evempgations are

SELF ASSISMENT EXERCISE 12

Which of the permutation in E 8 and 9 are odd?

SELF ASSISMENT EXERCISE 13

Iff, g0 §, are odd, then is§ odd too?
SELF ASSISMENT EXERCISE 14
Is the identity permutation odd or even?

Now, we define an important subset gframely,
An ={f O S| fis even}.

We'll sow that A, AS,, and that o(f) = %' fornz= 2.

Theorem 7: The set An, of even permutations jnf&ms a normal

subgroup of sof order%!

Proof: Consider the signature function,
Sign: § — {1, - 1}.

Note that {1, - 1} is a group with respect to mplication. Now
Theorem 4 says that sign is a group homomorphigiiTaéaeorem 5 says
that Im (sign) = {1, - 1}. Let us obtain Ker (sign)
Ker (sign) = {fJS, | sign f = 1}

={f0S,|fis even}

= Ah
OAq AS,.

Further, by the Fundamental Theorem of Homomorphism

SYAn = {1’ - 1}

_ .. 0(S) _
Oo(SYA,) = 2, that |s,m =2

n
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_ oS) _ n
U o(Ay) = = —.
(A= == 7
Note that this theorem says that the number of @eEmutations in S
equals the number of odd permutationsjn S

Theorem 7 leads us to the following definition.

Definition: A,, the group of even permutations iR, $ called the
alternating group of degree n.

Let us look at an example that you already seegpréwious units, A
|
Now, Theorem 7 says that ofA= % = 3.

Since (12 3) = (1 3) (1 2), (1 2 B)As.

Similarly, (1 3 2) As. Of course, 11 Aas.
O0A3={1,(123)=(132)}

A fact that we have used in the example aboveaisah r-cycle is odd if
r is even, and even if r is odd. This is becaugg.(.i;) = (i1i;) (i1y.1)
...... (i115), a product of (r — 1) transpositions. Use tlastfto do the
following exercise.

SELF ASSISMENT EXERCISE 15
Write down all the elements of,A

Now, for a moment, let us go back to unit 4 andraage’s theorem.
This theorem says that the order of the subgroum dinite group
divides the order of the group. We also said ifhva{ o(G), then G need
not have a subgroup of order n. Now that you kndvatwA, looks like,
we are in a position to illustrate this statement.

We will show that A has no subgroup of order 6, even though 6 |sp (A
Suppose such a subgroup H exists. Then o(H) £/4%,) & 12.00|A; :

H| =2.0 H AA, (see Theorem 3 unit 5). Nowy/A is a group of order
2. Therefore, by E 8 of unit 4,

(Hg)* = HO g O A, (Remember H is the identity ofyM.)

O OHOgOA,

Now, (123)0A,0(123)2=(132)H.

Similarly, (1 3 2§ = (1 2 3)0JH. By the same reasoning (1 4 2), (1 2 4)
(143)(134),(234), (24 3) are also distieletment of H. of course, 1
OH.

Thus, H contains at least 9 elements.
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Jo(H) > 9. This contradicts our assumption that o(H) = 6.
Therefore, A has no subgroup of order 6.

We use A to provide another example too. (See how usefuish In
Unit 5 we’d said that if HAN and NAG, then H need not be normal in
G. well, here’s the example.

Consider the subset,¥ {1(1 2) (3 4), (14) (2 3), (1 3) (2 4)) of,A

SELF ASSISMENT EXERCISE 16
Check that (V, o) is a normal subgroup of,A

Now, let H = {1,(1 2) (3 4)}. Then H is a subgroopindex 2 in \4. O
HAV,.

So, HAV,, V4 AA, But HAA, why? Well, (1 2 3)1 A4 is such that
(123)-1(12)@B34)(123)=(13(24@H.

And now let us see why permutation groups are gmrtant in group
theory.

3.4 Cayley’s Theorem

Most finite groups that first appeared in matheosatvere groups of
permutations. It was the English mathematician I€aywvho first
realized that every group has the algebraic stractéi a subgroup of
S(X), for some set X. In this section we will diss Cayley’s result and
some of its applications.

Theorem 8 (Cayley): Any group G is isomorphic tsubgroup of the
symmetric group S(G).

Proof: For &1G, we define the left multiplication function
fa G—G: f, (X) = ax.

fais 1-1, since

fa(X) =f(y) = ax = ay= x = y[x, y G.

f,is onto, since any KG is f(ax).

Of, 0 Z(G) 0 allG.

(Note that S(G) is the symmetric group on the s¢t G
now we define a function f: G S(G) : f(a) = £

we will show that f is an injective homomorphisifor this we note that
(faofy) (X) =15 (bx) = abx = £, (x) O a, b0 G.

O f(ab) = §, = fofp = f(a) of(b) Ua, b G.

that is, f is a homomorphism.

Now, Ker f ={al] G| fa = IG}
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={al G| fa (x) =x00xOG }

={alG | ax = x x G}

= {e}.
Thus, by the Fundamental Theorem of Homomorphism,
G/Ker f=Im f < S(G),
That is, G is isomorphic to a subgoup of S(G).

As an example of Cayley’s theorem, we will show vioat the Klein 4 —
group K4 (ref. Example 7, unit 3) is isomorphictb@ subgroup V4 of
S4. the multiplication table for K4 is

QDO |Tc|T
DIV ITIolO

O|IT| |-
ol |m|D
T oo o |

SELF ASSISMENT EXERCISE 17
Check thatf=1,f,=(e a) (bc),§=(e b) (ac),f= (e c) (ab).

On solving E 17 you can see that

Ks={1,(e a) (b c), (e b) (a c), (e c) (a b)}. Now, jusplace the symbols
e,a b,cbyl, 2, 3, 4andyou’ll get.V

0 K4 ’:V4.
Try the following exercise now.

SELF ASSISMENT EXERCISE 18

Obtain the subgroup of;&0 which Z is isomorphic. Is £Z=A,?
So let us see what we have done in this unit.

4.0 CONCLUSION

In this unit we have studied permutation groups #rel structure of
permutations. We have studied the set of even peatron which is
called the alternating group. We also proved Cagl@heorem which
says every group is isomorphic to a permutatiorugrarhis singular
result makes permutation groups so important
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5.0 SUMMARY

In this unit we have discussed the following paints

1. The symmetric group S(X), for any set X and theugr®, in
particular.

2. The definitions and some properties of cycles aaispositions.

3. Any non-identity permutation in,&an be expressed as a disjoint
product of cycles.

4, Any permutation in $(n > 2) can be written as a product of
transpositions.

5. The homomorphism sign;,S» {1, - 1}, n> 2.
6. odd and even permutations.

7. An, the set of even permutations ip 8 a normal subgroup of,S

of order %' forn>2

8. Any group is isomorphic to a permutation group.

SOLUTIONS/ANSWERS

SELF ASSISMENT EXERCISE 1

. 12 3 1 2 3 1 2 3
Since o = and
23 1 3 2 1 1 3 2

1 2 3 12 3) (1 2 3

3 21 23 1) (2 1 3
These two permulations don’t commute.
[] S;is non-abelian.

In Unit 6 (after Example 4) we showed howsS S, On = 3.
[ S, will be non-abeliaridn = 3.

SELF ASSISMENT EXERCISE 2

There can be several andswers.
Our answeris (12),(24),(135),(123), (253).
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SELF ASSISMENT EXERCISE 3
a) (1532 4)

b) (185)(24)(376)
c)(14)(25)

SELF ASSISMENT EXERCISE 4

No Because
13)(15 4) 12345 =(1543), and
5 2 1 3 4) ’
1 2 3 4 5
154)(13 =(1354).
(154)( ){32514j( )

SELF ASSISMENT EXERCISE 5

You know that all the elements of, &, and S are cycles. So, if nc,
every permuation is a cycle iR S

Conversely we will show that if B 4, then there is a permutation ip S
which is not a cycle. Take the element (1 2 ¥).3This is an element
of §, On =4, but it is not a cycle.

SELF ASSISMENT EXERCISE 6

Since (i ip......... D (ir irgeeeennne. bi) = 1= (ir i bi1) (ixi.e.... )
(PP N (AR big).

SELF ASSISMENT EXERCISE 7

Let f = (igig....ii).

Then f(i) = iy, f(io) =g, ........  f(i0) = iy £(i) = i
O (i) = f(ip), £(1) = f(is) = i, -....... ) = () =iy
Similarly, f(ix =ik Ok =2, ........ T

Of = 1.

Also \, for s <r, ¥(iy)=s+1# i, O % 1.

Ho(f) =r.

SELF ASSISMENT EXERCISE 8
a) (15)(13)

b) 51)(53)
c) (23)(25)(24)
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SELF ASSISMENT EXERCISE 9
(1) 18)(24)(36)(37)
SELF ASSISMENT EXERCISE 10

For y three symbols i, j and k,
(i) GK)=(]Kk).

Then, if m is yet another symbol.
(ijK) (km)=(ijkm), and so on.
(1 2)(23)...(910)
=(123)((34)..... (9 10)
=(1234)....(910)
=(123..... 10)

SELF ASSISMENT EXERCISE 11

Sing 1 :i,|j2=|i I(Ji%(l) - i,|j£=|i % =1

i<j i<j

SELF ASSISMENT EXERCISE 12

The permutation in E 8 (¢) and E 9 are odd.

SELF ASSISMENT EXERCISE 13

Sign(f)=sign(g) =-1
Osign (fe@)=(-1)(-1)=1
[Ifogis even.

SELF ASSISMENT EXERCISE 14
Sign1=1[11is even.

SELF ASSISMENT EXERCISE 15

|
We know that o(4) = 45 =12. Now ILIA,. Then, all the 3-cycles are in

Ay

Theare (123),(132),(124),(142),(1)31443),(234),(243).
Then we have all the possible disjoint productsaaf transpositions.
Theyare (12)(34)(13)(42),(14)(23)

So we have obtained all the 12 elements @f A
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SELF ASSISMENT EXERCISE 16

By actual multiplication you can see thatids closed with respect to,
and each element of,\&s its own inverse.

OV4 <Ay

again, by actual multiplication, you can see that

ffgLV, and gIVa.

OV4 A A,

SELF ASSISMENT EXERCISE 17

Fe (X) = ex = XOXx LK, Ufe =1
Now, fi(e) = a, f(a) = e, f(b) = ¢, £(c) = b.

Of,= (e a(bc).
Similarly, f, = (e b) (a ¢) and.& (e c) (a b).
SELF ASSISMENT EXERCISE 18

We know that Z= < 1> and oQ) = 4. Therefore, the subgroup of S
isomorphic to Z must be cyclic of order 4

It is general by the permutatioh,f

Nowf1 = (x) =1+ xOXUZ,.

0 f1 = ((i 23 2) which is the same as (1 2 3 4).
[1Z4,~<(1 2 3 4)>, which is certainly not isomorphicAg

6.0 TUTOR MARKED ASSIGNMENT

Let (GL2) be a set of nxn matrices , show thatlS{)Gform a group
called the symmetric group of GL2

7.0 REFERENCES/FURTHER READINGS
Blacksell: Topics in Algebra.

Birkhaff and Melhnew(1972): A Survey of Modern Alga.
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UNIT 4 FINITE GROUPS
CONTENTS

1.0 Introduction

2.0 Objective

3.0 Main Content
3.1 Direct Product of Groups
3.2 External Direct product
3.3 Internal Direct Product
3.4 Sylow Theorems
3.5 Groups of order 1 to 10

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References/Further Readings

1.0 INTRODUCTION

By now you are familiar with various finite and imte groups and their
subgroups. In this unit we will pay special attentto certain finite
groups and discuss their structures. For examyple,will see that any
group of order 6 is cyclic or is isomorphic tg S

To be able to describe the structure of a finiteugr we need some
knowledge of a direct product of groups. In Sé&a@nd 3.3 we will
discuss external and internal direct product.

In Sec. 3.4 we discuss the uses of certain resbtened by the famous
mathematician Sylow (1832-1918). These theorems,wal as a

theorem by Cayley, allow us to determine variousgsoups of some
finite groups.

Finally, in 3.5, we use the knowledge gained in.$e8 and Sec.3.4 to
describe the structures of several finite groulpsparticular, we discuss
groups of order less than or equal to 10.

With this unit we wind up our discussion of grolnqgary. In the next
module you will start studying ring theory. Of ¢se, you will keep

using what you have learnt in the first two blodbscause every ring is
a group also, as you will see.

2.0 OBJECTIVES

After reading this unit you should be able to
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. Construct the direct product of a finite numbegadups;
. Check if a group is a direct product of its subgrou
. Use Sylow’s theorem to obtain the possible subgsoapd

structures of finite groups.
. Classify groups of order p, p2 or pq where p anare primes
such that p > q andp — 1.

3.0 MAIN CONTENT

3.1 Direct Product of Groups

In this section we will discuss a very importanttihheel of constructing
new groups by using given groups as building block#e will first see
how two groups can be combined to form a third gro@hen we will
see how two subgroups of a group can be combinddrio another
subgroup.

3.2 External Direct Product

In this sub-section we will construct a new groupni two or more
groups that we already have.

Let (G,«) and (G, «) be two groups. Consider their Cartesian product
G=G XG={(x,y) | xUGy, yl Gy}

Can we define a binary operation on G by usingdperations on G1
and G2? Let us try the obvious method, namely, @aptwise

multiplication. That is, we define the operatioon G by (a, b) (c, d) =

(a« ¢, bpd) O a, cGy, b, dO Go.

The way we have definecensures that it is a binary operating.

To check that (Gy) is a group, you need to solve the following eis&c

SELF ASSISMENT EXERCISE 1

Show that the binary operatieon G is associative. Element and the
inverse of any element (x, y) in G.

If you have proved that G -,& G; is a group with respect toWe call
G the external direct product of {G;) and (G, »).

For Example Ris the external direct product of R with itself.
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Another example is the direct product (Z, +)X(R*i) which the
operation is given by (m, x)(n, y) = (m+n, xy).

We can also define the external direct product,&f 8r more groups on
the same line.

Definition: Let (G, «) (Ga, ), ..... , (G, -n) be n groups. Their external
direct product is the, be n group (g, where
GC=G XG,..... X G, and

(X1y Xoeevvy %) * (V1o Youuun¥n) = (Xav1ya, x2 %2 y2,....xn 0 yd 0 Xq, YiOGy.
Thus, R is the external direct product of n copies of R.

We would like to make a remark about notation now.

Remark 1: Henceforth, we will assume that all therations , - 1...... ,

» N are multiplication, unless mentioned otherwi3dwus, the operation
on

G =G X G, X....X G, will be given by

(%....a), (by,....., 1)

= (aby, & by,......abn) O &, b1G,.

Now try the following exercise.
SELF ASSISMENT EXERCISE 2
Show that G X G, G, X G, for any two groups Gand G.

Because of E 2 we can speak of the direct produ @r n) groups
without bothering about their order.

Now, let G be the external direct product & G,. Consider the
projection map
T: G XG, - Gty (X, y) =X
thenTy is a group homomorphism, since
m ((a, b) (¢, d))) =u (ac, bd)

= ac

=11 (a, b)m(c, d)
Tl is also onto, because anyl6; is Ty (X, &)
Now, let us look at Kery.
Kerm ={(x,y) DG X Gz | T4 (X, y) = &}

={(ewn y) Iy G} ={e} X Go.

O{e} XG, AG; x G,.

Also, by the Fundamental theorem of HomomorphismXG,)/ ({e1} x
Gz) = Gl-
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We can similarly prove that &{e,} AD; xG, and (GXxG,)/(G; x{e,}) =
Go.

In the following exercise we give you general faab®ut external direct
products of groups.

SELF ASSISMENT EXERCISE 3

Show that G x G,is the product of its normal subgroups H x{&,)
and K = {e}x G..

Also show that @Gx {e5}) n ({e} X Gy) = {(e1, &)}
SELF ASSISMENT EXERCISE 4

Prove that Z(G X G,) = Z(G,) Z(G,), where (G) denote Im Theorem 2
of unit 3).

SELF ASSISMENT EXERCISE 5
Let A and B be cyclic groups of order m and n, eespely, Then apply
Prove that AXB is cyclic of order mn.

Hint: Define f: Z- Z, X Z,, : f(r) = (r + mZ, r + nZ). Then apply
Fundamental Theorem of Homomorphism to show thaXZ,, ~ Z,..

So far we have seen the construction oG5, from two groups Gand
G,. Now we will see under what conditions we canregp a group as a
direct product of its subgroups.

3.3 Internal Direct Product

Let us begin by recalling from Unit 5 if H and Keanormal subgroups
of a group G, then HK is a normal subgroup of Ge awve interested in
the case when HK is the whole of G. We have thevoahg definition.

Definition: Let H and K be normal subgroups of a group G, \4le@
the internal direct product of H and K if

G = HK and HN K = {e}.

We write this factas G = H X K.

For example, let us consider the familiar Kleinrégp

K, ={e, a, b, ab}, where d=¢e, 5 = e and ab = ba.
Let H =<a>and K = <b>. Then A K = {e}. Also, K; = HK
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OK,=H XK.

Note that H~Z, and K~Z, 0K, ~Z, X Z,.

For another example, considef,Zit is the internal direct product of its

subgroups
H={0, 5} and K={0, 2, 4, 6, 8}. This is becaais
) Z10=H + K, since any element of,gs the sum of an element of

H and an element of K, and
i) H N K ={0}.

Now, can an external direct product also be arrnialedirect product?
Well, go back to E 3. What does if say? It says tha external product
of G; X G is the internal product

(G1 X {e2}) X ({e 1} X Go).

We would like to make a remark here.

Remark 2: Let H and K be normal subgroups of a group G. nTthe

internal direct product of H and K is isomorphicthe external direct
product of H and K. Therefore when we talk of ametnal direct
product of subgroups we can drop the word interuad, just say ‘direct
product of subgroups’.

Let us now extend the definition of the internaledt product of two
subgroups to that of several subgroups.

Definition: A group G is the internal direct produof its normal
subgroups.

|) G= H1H2 ...... Hn ) and
||) HlﬂHl ...... Hi-]_HH.]_ ..... Hn - {E}D [ — areas , N

For example, look at the group G generated by {&,Jowhere 4= e =
b’ = ¢ and ab = ba, ac = ca, bc = cb. This is the intafinact product
of <a>, <b> and <c>

That is G:ZZ X Zz X Zz.

Now, can every group be written as an internalalipgoduct of two or
more of its proper normal subgroups? Consideruppsse Z = H X K,
where H, K are subgroups of Z From Example 4 oft3nyou know
that H = <m> and K = <n> for some m[hZ. Then mnJ H N K. But
if H X K is a direct product, Hh K = {0}. So, we reach a contradiction.
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Therefore, Z can’t be written as an internal dir@coduct of two
subgroups.

By the same reasoning we can say that Z can’t peeeged as +X H,
X ... XH,whereHEZ0Oi=1, 2, ..... , N.

When a group is an internal direct product of ubgoups, it satisfies
the following theorem.

Theorem 1: Let a group G be the internal direct product «f it

subgroups H and K. then

a) each xJG can be uniquely expressed as x = hk, whernéihk OK;
and

b) hk =khO hOH, k OK.

Proof: a) we know that G = HK. Therefore, ifG, then x = hk, for
some h1H, k [OK. Now suppose x =k, also, where {ilH and k[IK.

Then hk = hk;.

Ohy'h = kk™. Now hy*h OH.

Also, since i*th = kk™ 0K, hy*h OK. Oh*h OH N K = {e}.

O hy*h = e, which implies that h 5 h

Similarly, kkk™* = e, so that = k.

Thus, the representation of x as product of an etenof H and an
element of K is unique.

c) The best way to show that two elements x and y cot@mns to
show that their commutator z-1y-1 xy is identitp, &t h[IH and k
0K and consider Tk *hk. Since
K AG, H'k*h OK.

Oh'k'hk OK.
by similar reasoning, tk*hk O H. O h'k*hk OH nK = {e}.
O h'k™hk = e, that is hk = kh.

Try the following exercise now.
SELF ASSISMENT EXERCISE 6

Let H and K be normal subgroups of G which sat{afyof Theorem 1.
Then show that G = HXK.

Now let us look at the relationship between intetheect products and
guotient groups.

Theorem 2:Let H and K be normal subgroups of a group G sbah

69



MTH 312 GROUPS AND RINGS

G =H X K. Then G/H=K and G/H=~H.

Proof: We will use Theorem 8 of Unit 6 to prove this reésul
Now G = HK and H\ K = [e}. Therefore,

G/H — HK/H =K/H N K = K{e} =K.
We can similarly prove that G/KH.

We now give a result which immediately follows Them 2 and which
will be used in Sec. 8.4.

Theorem 3: Let g be a finite group and H and K be its subgeosuch
that G = H X K.
Then o(G) = o((H) o(K).

We leave the proof to you (see the following exse¥i
SELF ASSISMENT EXERCISE 7
Use Theorem 2 to prove Theorem 3.

And now let us discuss some basic results aboustiueture of any
finite group.

3.4 Sylow Theorems

In Unit 4 we proved Lagrange’s theorem, which st the order of a
subgroup of a finite group divides the order or gneup. We also said
that if G is afinite cyclic group and m| o(G), then G has a subgroup of
order m. But if G is not cyclic, this statemenedenot be true, as you
have seen in the previous unit. In this context, 1845 the
mathematician Cauchy proved the following usefalute

Theorem 4 If a prime p divides the order of a finite gro@ then G
contains an element of order p.

The proof of this result involves a knowledge obwp theory that is
beyond the scope of this course. Therefore, we bmiAn immediate
consequence of this result is the following

Theorem 5: If a prime p divides the order of a finite group Ben g
contains a subgroup or order p.

Proof: Just take the cyclic subgroup generated by anezieof order p.
This element exists because of Theorem 4.
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So, by theorem 5 we know that any group of orderw#id have a
subgroup of order 2, a subgroup of order 3 andogrewp of order 5. In
1872 Ludwig Sylow, a Norwegian mathematician, ptbaeremarkable
extension of Cauchy’s result. This result, callge first Sylow
theorem, has turned out to be the basis of fimbeig theory. Using this
result we can say, for example, that any group mfeo 100 has
subgroups of order 2, 4, 5 and 2 let us see wimptwerful theorem is.

Theorem 6 (First Sylow Theorem): Let G be a finitegroup such that
o(G) = p'm, where

A prime, n= 1 and (p, m) = 1. Then G contains a subgroup @érop[]
k=1, ..... . n

We shall not prove this result or the next two 8ytbeorems either.
But, after stating all these results we shall show useful they are.

The next theorem involves the concepts of conjugenclySylow p-
subgroups which we now define.

Definition: Two subgroups H and K of a group G eoajugate in G it
g O G such that K= gHg, and then K is called a conjugate of H in G.

Can you do the following exercise now?
SELF ASSISMENT EXERCISE 8

Show that HA G iff the only conjugate of H in G is H itself.

Now we define Sylow p-subgroups.

Definition: Let G be a finite group and p be a prime suchphib(G)
but g**  0o(G), some & 1. Then a subgroup of G of order pn is called a
Sylow p-subgroup of G.

So, if o(G) Pm, (p, m) = 1, then a subgroup of G of ordérispa Sylow
p-subgroup. Theorem 6 says that this subgroupyalezists. But, a
group may have more than one Sylow p-subgroup. nExeresult tells
us how two Sylow p-subgroups of a group are related

Theorem 7:(Second Sylow Theorem) Let G be a group suchaf@}
=p'm, (p,m) =1, p a prime. Then any two Sylow p-sobgs of G are
conjugate in G.

And now let us see how many Sylow p-subgroups agoan have.
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Theorem 8: (Third Sylow Theorem): Let g be a group of ordémp
where (p, m) =1 and p is a prime. Therhe number of distinct Sylow
p-subgroups to G, is given by A 1 + kp for some k 0. And further, p

| o(G).

We would like to make a remark about the actualafiSeheorem 8.

Remark 3: Theorem 8 says that & 1 (mod p) (see Sec. 2.5.1)(n,
p") = 1. also, sincey o(G), using theorem 9 of Unit 1 we find thagt| n
m. This fact helps us to cut down the possibilifsn,, as you will see
in the following examples.

Example 1: show that any group of order 15 is cyclic.

Solution: let g be group pf order 15 = 3 X 5. Theorem ¥sghat G has
a Sylow 3-subgroup. Theorem 8 says that the numib&uch subgroups
must divide 5 and must be congruent to 1 (Mod 3jusl the only
possibility is 1. Therefore, G has a unique Sywubgroup, say H.
Hence, by Theorem 7 and E 8 we know thaAB since H is of prime

order, it is cyclic.

Similarly, we know that G has a subgroup of ordertlte total number
of such subgroups is 1, 6 or 11 and must dividetBus, the only
possibility is 1. So G has a unique subgroup oeoi5, say K. Then
KAG and K is cyclic.

Now, let us look at HN K. let x[J H N K. Then x(OH and xCK.
Oo(x) | o(H) and o(x) |o(K) (by E 8 of Unit 4), i.@(x) | 3 and o(x) | 5.
Oo(x) =1. Ox =e. Thatis, H K = {e}. Also,

_ Oo(H)o(K) _ . _
o(HK) = W =15 =0(G).

UG = HK.
S0, G =H XK= Z3 X Zs~=Z;5 by E5.

Example 2: Show that a group G of order 30 either has a nbrma
subgroup of order 5 or a normal subgroup of order.e8 G is not
simple. A group G is called simple if its only nwal subgroups are {e}
and G itself.

Solution: Since 30 =2 x 3 x 5, G has a sylow 2-subgroufylaw 3-
subgroup and a Sylow 5-subgroup. The number adv&¥a-subgroups
is of the form 1 + 5k and divides 6 (by Remark Jherefore, it can be
1or6. ifitis 1, then the sylow 5-subgroup @mal in G.
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On the other hand, suppose the number of Sylowb§rsup is 6. Each
of these subgroups are distinct cyclic groups depsb, the only 5, the
only common element being e. Thus, together tloeyagn 24 + 1 = 25
elements of the group. So, we are left with 5 elet® of the group,
which are of order 2 or 3. Now, the number of 8y®-subgroups can
be 1 or 10. We can’'t have 10 Sylow 3-subgroupsabse we only have
at most 5 elements of the group, which are of o&leso, if the group
has 6 Sylow 5-subgroups, then it has only 1 Sylesul3group.

This will be normal in G.

Try the following exercise now.
SELF ASSESSMENT EXERCISE 9

Show that every group of order 20 has a proper abmon-trivial
subgroup.

SELF ASSESSMENT EXERCISE 10

Determine all the Sylow p-subgroups of Z24, whekapes over all the
primes dividing 24.

SELF ASSESSMENT EXERCISE 11

Show that a group G of order 255 (= 3 X 5 X 17) bdker 1 or 51
Sylow 5-subgroups. How many Sylow 3-subgroupsichave?

Now let us use the powerful Sylow theorem to cfgisgioups of order 1
to 10. In the process we will show you the algebs&ructure of several
types of finite groups.

3.5 Groups of Order 1 To 10

In this section we will apply the result of the yas section to study
some finite groups. In particular, we will list #ie groups of order 1 to
10, onto isomorphism.

]We start with proving a very useful result.

Theorem 9: Let G be a group such that o(G) = pq, where pegames
suchthatp>qand gp—1. Then G is cyclic.

Proof: Let P be a Sylow p-subgroup ad Q be a Sylow gisulpof G.
Then o(P) = p and o(Q) = g. Now, any group of grionder is cyclic, so
P = <x> and Q = <y> for some x,03G. by the third Sylow theorem, the
number g of subgroups of order p can be 1, 1 + p, 1 + 2pand it
must divide q. But p > q. Therefore, the only gibsity for n, is 1.
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Thus, there exists only one Sylow p-subgroup, iRe.,Further, by
Sylow’s second theorem&PG.

Again, the number of distinct Sylow g-subgroupsois n, = 1 + k, for
some k, and{| p. Since p is a prime, its only factors ared p.Cing =
lorn=p Nowifl+k=p, thenqg|p - 1. Butwe started by
assuming that g p — 1. So we reach a contradiction. Thyssi is

the only possibility. Thus, the Sylow g-subgroupgs@ormal in G.

7. Let o(G) = p2, p a prime. Then
) G is abelian.

i) G is cyclic or G=Zp X Zp.

8. The classification of groups of order 1 to 10, whige give in
the following table.

(G) Algebraic Structure

{e}

Z

Z

Lor Zo X Z5

4

&Or Z3

Z

gor Z, X Z, or Z, XZ, X Z, (if G is abelian)
gor Dg (if G is non-abelian)
9 Lor Zz X Z;

10 40r Dy

oO~NO Ul WNEF|O

SOLUTIONS/ANSWERS
SELF ASSISMENT EXERCISE 1

« IS associative: Let (aby), )a, by), (a, bs) OG.
Use the fact that and., are associative to prove that

((a]_, bl) * (aQ’ bZ)) * (38, b3) = (a.h bl) * ((aZ, bZ) * (38, b3))

The identity element of G is {ee,), where ¢ and g are the identities of
G; and Grespectively
The inverse of (x, yJ G is X%, y%).

SELF ASSISMENT EXERCISE 2

Definef: G X G, - G, : f(a, b) = (b, a).
Then f is 1-1, surjective and a homomorphism. Tisatf is an
isomorphism

U G XGy, =G, X Gy
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SELF ASSISMENT EXERCISE 3

We need to show that any element GG, is of the form hk, where h
OH and kOK

Now, any element of GX G, is (X, ¥) = (X, @) (e. y) and (x, ) U H,
(e, y) O K.

U G]_ Gz = HK

Now, let us look a Hh K. Let (x, y)[OH N K.

Since (x, ) H, y = e. Since (X, YK, x =&

O(x,y) =(a, &). UH K={e, e)}.

SELF ASSISMENT EXERCISE 4

Now, (X, y)OZ (G X Gy).

= (X, y) (& b) = (a, b) (x,yJ] (a, b)T G, X Gy,
= (xa, yb) = (ax, byd allG,, b0 G,

=S xa=axdald G andyb =bylbOG,

= x [0 Z(Gy) and yll Z(Gy)

= (x,y) 0 Z(G1) X Z(Gy)

OZ(GX Gy) = Z(Gy) X Z(Gy).

SELF ASSISMENT EXERCISE 5

Let A = <x> and B = <y>, where o(x) = m, o(y) = n.
Then A=Z,, and B=Z,.
If we prove that 4 X Z, =Z,». Then we will have proved that A X B
Z....thatis, A X B is cyclic of order mn.
So, let us prove that if (m, n) = 1, thep,ZZ, X Z,
Definef: Z - Z, X Z,: f(r) = (r +mZ, r + nZ).
(Remember that Z, = Z/sZ, for anyI§.)
Now, f is a homomorphism because
F(r+s)=((r+s)+mZ, (r+s)+nZ)

=(r+mZ, r+nZ)+(s+mZ, s+ n2).

= f(r) + 1(s).
Kerf ={f0Z]|rO0mZN nZ}

={r O rOmnZ}

mnZ.

Finally, we will show that f is surjective. Nowate any element
(u+mzZ,v+nz2)dZ,XZ, Since (m, n)=1]s, tl] Z such that
ms + nt = 1 (see Sec. 1.6). using this equatioserethat

f(u(l —ms) + v(1 —nt)) = (u+ mZ, v + nZ).

Thus, f is surjective.
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Now, we apply the Fundamental Theorem of Homomarphand find
that

ZIKer f ~Im f, that is, ZImnZ=Z, X Z,, that is, Zyn =~ Zm X Z,.
A X B is cyclic of order mn.

SELF ASSISMENT EXERCISE 6

We know that each XIG can expressed as hk, whergh and k(O K.

0 G =HK.

We need to show that HK = {e}. letx O H N K.

Then xOOH and xUOK. Oxe OHK and ex[] HK.

So, x has two representations, xe, as a prodwm element of H and an
element of K. but we have assume that each elemst have only on
such representation. So the two representatioasmaex must coincide,
that is,

X =e.OH NK = {e}.

0 G=HXK.

SELF ASSISMENT EXERCISE 7

G = H XK= G/H =K =0(G/H) = o(K)= 0o(G)/o(H) = o(K).
= 0(G) = o(H) o(K).

SELF ASSISMENT EXERCISE 8
HAG < g'Hg =HOgOG < the only conjugate of H in G is H.
SELF ASSISMENT EXERCISE 9

Let G e a group of order 20. Since 20,X5, G has a Sylow 5
subgroup. The number of such subgroups is congtaein(mod 5) and
divides 4. Thus, the number is 1. Therefore Siew 5-subgroup of G
is normal in G, and is the required subgroup.

SELF ASSISMENT EXERCISE 10

0(Zps) =24 =2 X 3.

0Z,4 has a Sylow 2-subgroup and a Sylow 3-subgoup. nlimeber of
Sylow 2-subgroups is 1 or 3 and the number of Sy8esubgroups is 1
or 4. Now, if %4 has only 1 Sylow 2-subgroup, this account for 8
elements of the group. So, we are left with 16 elets of order 3. But
this is not possible because we can only have at idistinct Sylow 3-
subgroups (i.e., 8 elements of order 3). So, \@etre contradiction.

0Z,4 must have 3 Sylow 2-subgroups. And then it wdvé only 1
Sylow 3-subgroup. These are all the Sylow p-sulngsf Z,.
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SELF ASSISMENT EXERCISE 11

255=5X5X 17 =5 X 51.

The number of Sylow 5-subgroups is congruent toat(r) and must
divide 51.

Thus, itis 1 or 51.

Since 255 = 3 X 85, the number of Sylow 3-subgrahps$ g can have is
congruent to 1 (mod 3) and must divide 85. This,1 or 85.

SELF ASSISMENT EXERCISE 12
We can apply Theorem 10 here.
SELF ASSISMENT EXERCISE 13

apply Theorem 12, we see that
); 0(G)=4= G = Z,0r G=Z, X Z,.
||) O(G) =9=G ~7Zq0r G ~73 X Zs.

4.0 CONCLUSION

So far we have shown the algebraic structure ofmlps of order to
10, except groups of order 8. Note that if G isahelian group of order
8, then

1) G=2% the cyclic group of order 8,
2) G=4XZ,,or
3) G=2%XZ,XZ,

If G is a non-abelian group of order 8 then

G=Q; the quaternion group discussed in Example 4 ot Wrof MTH
211

G=Dg the dihedral group discussed in Unit 1

5.0 SUMMARY
In this unit we have discussed the following paints

1) The definition and examples of external directdoict of groups

2) The definition and examples of internal direct pretd of normal
subgroups

3) If (m,n)=1then % X Z,=Zmn

4) o(H X K') =o(H)o(K)

5) The statement and application of Sylow’s theorems

6) Leto(G)=p, pisaprime. Then
i) G is abelian or (i) G is cyclic or G=,X Z,
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6.0 TUTOR MARKED ASSIGNMENT
1) Show that H is a normal subgroup of G iff

the only conjugate of Hin G is H itself.
2) Show that any group of order 15 is cylic

7.0 REFERENCES/FURTHER READINGS
Blacksell: Topics in Algebra.

Birkhaff and Melhnew(1972): A Survey of Modern gibra.
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MODULE 2 ELEMENTARY RING THEORY

Unit 1 Rings
Unit 2 Subrings and Ideals
Unit 3 Ring Homomorphisms

UNIT 1 RINGS

CONTENTS

1.0 Introduction
2.0 Objective
3.0 Main content
3.1 Whatis a Ring?
3.2 Elementary Properties
3.3 Two Types of Rings
4.0 Conclusion
5.0 Summary
6.0 Tutor Mark Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

With this unit we start the study of algebraic sys$ with two binary
operations satisfying certain properties. Z, Q Rmate examples of such
a system, which we shall call a ring.

Now, you know that both addition and multiplicaticare binary
operations on Z. Further, Z is an abelian grougenmddition. Though
it iIs not a group under multiplication, multipliea is associative.
Also, addition and multiplication are related b thstributive laws.

a(b+c) =ab + ac, and )a +b) c = ac + bc

For all integers a, b and c. We generalize thesg groperties of the
binary operations to define a ring in general. sTé&finition is due to
the famous algebraist Emmy Noether.

After defining rings we shall give several examptégings. We shall
also give some properties of rings that follow fridme definition itself.
Finally, we shall discuss certain types of ringat dre obtained when we
impose more restrictions on the “multiplication”thre ring.

As the contents suggest, this unit lays the fouaddbr the rest of this

course. So make sure that you have attained fleving objectives
before going to the next unit.
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2.0 OBJECTIVES

After reading this unit, you should be able to

. Define and give examples of rings

. Derive some elementary properties of rings from deéning
axioms of a ring;

. Define and give examples of commutative rings,singth

identity and commutative ring with identity.
3.0 MAIN CONTENT

3.1 Whatis a Ring?

You are familiar with Z, the set of integers. Yalso know that it is a
group with respect to addition. Is it a group withspect to
multiplication too? No. But multiplication is assative and distributive
over addition. These properties of addition andltiplication of
integers allow us to say that the system (Z, 15 g ring. But, what do
we mean by a ring?

Definition: A non-empty set R together with two binary opiers,
usually called addition (denoted by +) and multation (denoted by .),
is called a ring if the following axioms are sayisf

R1) a+b=Db+aforalla, binR,ie., additis commutative.

R2) (a+b)+c=at+ (b+c)forall a b, e inik., addition is
associative

R 3) There exists and element (denoted by 0) sifi¢h that
a+t0=a=0+aforallainR, ie.h& an additive identity.

R 4) For each a in R, there exists x in R suel éh+ x = 0 = X
+ a, i.e., every element of R has an additive iseer

R5) (a .b).c = a.(b.c) for all a, b, c in R, i.eultiplication is
associative.

R6) a(+c)=a.b+a.c,and
(a+b).c=a.c+ .bc
foralla, b, cin R,

i.e., multiplication distributive over adidib from the left

as well as the right.

The axioms R1 R4 say that (R, +) is an abelian grotihe axiom R5
says that multiplication is associative. Hence, vam say that the
system (R +,.) is aring if

)] (R, +) is an abelian group,
1)) (R,.) is a semigroup, and
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1)) Foralla,b,cinR,a.(b+c)=a.b+a.camdp).c=a.c+bec.

From MTH 211, you know that the addition identityiQunique, and
each element a of R has a unique additive invelseoted by — a). We
call the element O the zero element of the ring.

By convention, we write a — b for a + ( - b).

Let us look at some examples of ring now. You haveady seen that Z
is a ring. What about the sets Q and R? Do (Q,and) (R, +, .) satisfy
the axioms R1=R67? They do.

Therefore, these systems are rings.

The following examples provide us with another sttexamples of
rings.

Example 1: Show that (nZ, +, .) is a ring, weré nZ.

Solution: You know that nZ = {nm | nid Z} is an abelian group with
respect to addition. You also know that multiplica in nZ is
associative and distributes over addition from tiglit as well as the
left. Thus, nZ is a ring under the usual additamel multiplication.

So far the examples that we have considered haseibgnite rings,
that is, their underlying sets have been infindgess Now let us look at a
finite ring, that is a ring (R, +, .) where R idimite set. Our example is
the set £ that you studied in earlier .Let us briefly recdhe
construction of £ the set of residue classes of modulo n.

If a and b are integers, we say that a is congrieebtmodulo n if a- b is
divisible by n, in symbols, & b (mod n) if n | (a — b). The relation
‘congruence modulo n’ is an equivalence relatioZ.imhe equivalence
class containing the integer a is
a={b0Z|a-Dbis divisible by n}

={a+ mn | nmi}.

It is called thecongruence class of a modulo ar theresidue class of a
modulo n. The set of all equialence classes is denote,b$&

Z,= {012,..0-1}.

We define addition and multiplication of classes terms of their
representative by

a+b=a+b and
ab=ab 0O ab0Z,.

81



MTH 312 GROUPS AND RINGS

Earlier in our algebra course, you have seen tiedet operations are
well defined in Z to the help you regain some practice in adding and
multiplying in Z, consider the following Cayley table fop.Z

slwiN 1ol +
slwiniFolol
ol BNk =
N P I INTIENY
iR ol Blwr el
NS =]ENIEN
NlwINI|-i|ol

ollolollolol|ol
NI =
wilm | iNolN
NI D[R wiollw!
NN FSIEEN

Now let us go back to looking for a finite ring.
Example 2: Show that (4,+) is aring
Solution: You already know that (£) is an abelian group, and that

multiplication is associative in,ZNow we need to see if the axiom R6
Is satisfied.

Foranyab,cOZ, , ab+c)=a(b+c)=ab+ac=ab+ac=ab+ac
Thus, a(b+c) = ab+ ac.

Similarly, @+ b)c=ac+bc O ab,c UZ,

So, (4 + ,.) satisfies the axioms R1 — R6. thereforss & ring.
Try this exercise now.

SELF ASSISMENT EXERCISE 1

Write out the Cayley tables for addition and mudikigtion in Z_, the set
of non-zero elements of;ZIs (Z , +, .) a ring? Why?

Now let us look at a ring whose underlying set sibset of C.
Example 3:Consider the set

Z+iZ={m+in|mand n are integers }, whefei-1.

We define +" and ‘’ in Z + iZ to be the usual atiodn and
multiplication of complex numbers. Thus, for nmtand s + it in Z+iZ,

(m+in) + (s +it) = (m +s) + I(n + t), and
(m+in. (s +it) = (ms —nt) + I(mt + ns).
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Verify that Z + iZ is a ring under this additioncamultiplication. (This
ring is called the ring of Gaussian integers, after mathematician Carl
Friedrich Gauss.)

Solution: Check that (Z + iZ +) is a subgroup of (C, +). Thtise
axioms R1 — R4 are satisfied. You can also cheak th

((@a+ib) .(c +id)). (m +in) = (a +ib) . ((cid) . (m +in))
Oa+ib,c+id, m+in0Z + iZ.

This shows tha R5 is also satisfied.

Finally, you can check that the right distributiagv holds, i.e.,

((a+ib) + (c +id)).(m +in) = (a + ib) . (m +)ir (c +id) . (m + in) for
any

a+ib,c+id, m+indZ +iZ.

Similarly, you can check that the left distributiV@w holds. Thus,
(Z+iZ, +,.) is aring.

The next example is related to example 8 of unilTBe operations that
we consider in it are not the usual addition andtipiication.

Example 4 Let X be a non-empty sét, (X) be the collection of all
subsets of X and denote the symmetric difference operation. Show
that (0 (X), A, n) is a ring.

Solution: for any two subsets A and B of X,
A AB=(A\B) O (B\A)

In example 8 of unit 2 we showed that (X), A) is an abelian group.
You also know thath is associative. Now let us seenf distributes
overA..

Let A, B, COO (X). Then

An (BAC)=An [(B\C)O (C\B)]
=[A n (B\C)] O [A n (C\B)], sincen distributes overl.
=[(A n B)\(A n C)\(A n B)], sincen distributes over
complementation.
=(An B)A (A n C).

So the left distributive law holds.
So,(BAC)n A=An (BAC), sincen is commutative.

=(AnB)A(An C)
=(Bn A)A(Cn A)
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Therefore, the right distributive law holds also.

Therefore, [0 (X) A, n) is a ring.
So far you have examples of rings in which both dperations define
on the ring have been commutative. This is nohgbe next example.

Example 5: Consider the set

MZ(R) — {|:a11 a12j|

21 22

&1 8128 and a, are real number%

Show that M(R) is a ring with respect to addition and multglion of
matrices.

Solution: Just as we have solved Example 2 of Unit 3,of MZIIH. you
can check that (MR) ) is an abelian group. You can also verify the
associative property for multiplication. (Also segample 5 of Unit
2.0fMTH 211) we now show that A.(B+C) = A.B + A.0rfA,B,C in

My (R) .

A (B + C) _all a12 bll b12 + Cll C12
. a'21 a22 . b21 b22 C21 C22
— all a12:| |:b11 + C11 b12 + C12:|

a'21 a22 b21 + C21 b22 + C22

- _all(b11+ Cll) + a12 (b21+ CZl) all(b12+ ClZ) + a12 (b22+ C22) :|
_aZl(bll + Cll) + a'22 (b21 + C21) all(b12+ ClZ) + a12 (b22+ C22)

—_ |: (a11b11+ a12b21) + (a11C11+ a12c21) (a11b12+ a12b22) + (allClZ + a12022)j|

(a21b11+ a22b21) + (a21cll+ a22(':21) (a21b12+ a22b22) + (a21C12+ a22022)

{allbll-l- a12bZl a:I.1blZ + a:I.2b22:| + |:a11C11+ a:I.2c:21 all C12 + a12 C22:|
a'21bil.1+ a'22bZl a21blZ + a22bZl a21C11+ a22021 a21 C12 + a12 C22

:|:a11 a12:| |:b11 b12j| + |:a11 a12j| |:Cll C12:|
aZl a22 b21 b22 a21 a22 CZl C22
=A.B+A.C.
In the same way we can obtain the other distrileutw, i.e. (A + B). C
=A.C + B.CLA.
B,B OM4(R).

Thus,M4(R) is a ring under matrix addition and multiplication
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Note that multiplication ove ,(R) is not commutative so, we can’t say
that the left distributive law implies the rightstlibutive law in this
case.

Try the following exercises now.

SELF ASSISMENT EXERCISE 2

Show that the set Q ¥2Q ={p++/2q|p,q0Q}is a ring with respect to
addition and multiplication of real numbers.

SELF ASSISMENT EXERCISE 3

anly?

matrix addition and multiplication.

a, b are real numbe%s show that R is a ring under

SELF ASSISMENT EXERCISE 4

e ot

matrix addition and multiplication.

a, b are real numb%r. Prove that R is a ring under

SELF ASSISMENT EXERCISE 5
Why is (J (X),[J, n) not a ring?
Let us now look at ring whose elements are funetion

Example 6: Consider the class of all continuous veéued functions
defined on the closed interval [0, 1]. We denbis by C[0, 1]. If f and
g are continuous functions on [0, 1]. We defired and fg as

(f+9) (). =1(x) + g(x) (i.e., pointwise additn)

and (f.g) (x) = f(x). g(x) (i.e., pointwise multiphtion)

for every xUJ[0, 1]. From the calculus course you know thatfthrection
f + g and fg are defined and continuous on|[0, .&], if f and gJICJO, 1],
then f + g and f.g are in C[0O, 1]. Show that C[pPisla ring with respect
+and .

Solution: Since addition in R is associative andnowtative, so is
addition in CJ[O, 1]. The additive identity of C[Q] is the zero function.
The additive inverse of fIC[O, 1] is (- f), where (- f)(x) = -f(x)Ix O[O,
1]. See fig. 2 for a visual interpretation of (- fThus, )C[O, 1], +) is an
abelian group. Again, since multiplication in R dssociative, so is
multiplication in C[O, 1].
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&\

Fig. 2 The graphs of f and (-1) over [0,1].
Now let us see if the axiom R6 holds.

To prove f.(g +h) = f.g + f.h, we consider (f .(gh}) (x) for any x in
[0,1].
Now (f.(g +h)) (x) = f(x) (g + h) (x)
=1(x) (9(x) + h(x))
= f(x) g(x) + f(x) h(x), since distributesme + in R
(f.9) (x) + (f.h) (x)
(f.9) () + (f.h) (x)
(f.g + f.h)(x)
Hence, f.(g + h) = f.g + f.h.

Since multiplication is commutative in C[0, 1], tb&her distributive law
also holds. Thus, R6 is true for C[0, 1]. TherefdC[O, 1], +, .) is a
ring.

This ring is called theing of continuous functions on [0, 1].
The next example also deals with functions.

Example 7: Let (A, +) be an abelian group. The set of all
endomorphisms of A is

End A ={f:A—-A\f(a + b) =f(a) + f(b)O a,b0 A}
For f,gJENnd A, we define f + g and f.g as
(f+9g) (a) =f(a) + g(a), and

(f.9) (a) = fog(a) = f(g(a)) all A } - (1)

Show that (End A, +, .) is a ring. (This ring idled the endomorphism
ring of A.)

Solution: Let us first check that + and . defined by (1) &reary
operations on End A

For all a, b1 A,

(f+g)(a+b)=f(a+b)+g(a+b)
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= (f(a) + f(b)) + (9(a) + g(b))
= (f(a) + g(a)) + (f(b) + g(b))
(f+9)(a) + (f+g) (b), and
(f.9) (@ + b) =f(g(a + b))
= f(g(a) + g(b))
= f(g(a)) + f(g(b))
= (f.9) (@) * (f.9) (b)
Thus, f + g and f.gl End A.

Now let us see if (End A, +,.) satisfies R1 = R6.

Since + in the abelian group A is associative amdroutative, so is + in
End A. The zero homomorphism on A is the aero el@nm End A. (-
f) is the additive inverse offil End A.

Thus, (End A, +) is an abelian group.

You also know, that the composition of functionsais associative
operation in End A.

Finally, to check R6 we look at f.(g + h) for ang,hJEnd A. Now for
any allA,
[f.(9 +h(l (&) =f((g + h) (a))
=f(g(a) + h(a))
=f(g(a) + f(h(a))
=(f.g) (a) + (f.h) (a)
= (f.g +f.h) (@)
Of.(g + h) =f.g +f.h,

We can similarly prove that (f + g).h = f.h + g.h.

Thus, R1 = R6 are true for End A.

Hence, (End A, +,.) is ring.

Note that is not commutative sincegf need not be equal to ffor f, g
0 End A.

You may like to try these exercises now.
SELF ASSISMENT EXERCISE 6

Let X be a non-empty set and (R, +,.) be any ribgfine the set
Map(X,R) to be the set of all functions from X to Rhat is

Map (X, R) ={f| :X - R}.

Define + and . in Map (X, R) by pointwise additiand multiplication.
Show that (Map (X, R), +,.) is a ring.
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SELF ASSISMENT EXERCISE 7

Show that the set R of real numbers is a ring uaddition and
multiplication givenby @ b=+b +1,and @b=a.b+a+b

For all a,hIR, where + and .denote the usual addition and phigkition
of real numbers.

On solving Exercise 7 you must have realized thgivan set can be an
underlying set of many different rings.

Now, let us look at the Cartesian product of rings.

Example 8: Let (A, +,.) and (B0 [0 ) be two rings. Shomat their
Cartesian product

AX B is a ring with respect td1 andC defined by
(a,ba(d,p)=(a+a', bl b')and

(@, b)C (a,b') = (aa,bd ,b")

for all (a,b), (@,b") in A X B.

Solution: we have defined the addition and multiplicationAnX B
componentwise. The zero element of A X B is (Q, O)he additive
inverse of (a, b) is (- &1 b), whizle  bates the inverse of b with
respect t(

Since the multiplication in A and B are associatives associative in A
X B. Again, using in fact that R6 holds for A and\Be can show that
R6 holds for A X B. Thus,

(AXB, O,0) is aring.

If you have understood this example, you will béeald do the next
exercise.

SELF ASSISMENT EXERCISE 8

Write down the addition and multiplication tables ¥, X Z3

Before going further we would like to make a remaldout notational

conventions in the case of groups, we decided ¢othes notation G for

(G, ) for convenience. Here too, in future, we shak the notation R
for (R, +,.) for convenience. Thus, we shall assuimt + and . are
known. We shall also denote the product of twg efement a and b by
ab instead of a.b.

So now let us begin studying various propertiesrafs.

88



MTH 312 GROUPS AND RINGS

3.2 Elementary Properties

In this section we will prove some simple but intpot proterties of
ring which are immediate consequences of the defimiof a ring. As
we go along you must not forget that for any ringdR, +) is an abelian
group. Hence the results obtained for groups e dhrlier units are
applicable to the abelian group (R, +). In parécyl

I) The zero element, 0, and the additive inverse gf @lement is
unique.

ii)  The cancellation law holds for addition,
Le.,0a,b,dR,a+tc=b+c=a=h.

As we have mention earlier, we will write a — b #or (- b) and ab for
a.b, where a, bIR.
So let us state some properties which follow fromaxiom R6, mainly.

Theorem 1 Let R be aring. Then, for any a, 4R,
) a0 =0 =0a,

i) a(-b) =(-a)b =- (ab),

i)  (-a)(-b)=ab,

Iv) a(b—-c)=ab-ac, and (b-c)=ba- ca.

Proof: i) Now,0+0=0
= a(0+0) = a0
= a0 + a0 = a0, applying the distributive law.
= a0 + 0, since 0 is the additive identity.
= a0 = 0, by the cancellation law for (R, +).
Using the other distributive law, we can similadiiow
that0a =0
Thus, a0 = 0 = Oa for allZR.

1)) From the definition of additive inverse, weadw
that b +(- b) =0.

Now, 0 = a0, from (i) above.
za(b+(-b),as0=b+(-h).
= ab + a( - b), by distributivity.

Now, ab + [- (ab)] = 0 and ab + a(- b) = 0. butymow
that the additive inverse of an element is unique

Hence, we get — (ab) = a( - b).

In the same manner, using the fact that a + (= @) we
get — (ab) = (-a(b.
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Thus, a(- b) =- (- a)b = -(ab) for all a[Iir.

1)) for a, bO R,
(- ) (- b) = -(a(- b)), from (ii) above.
= a(- (- b)), from distributivity.
= ab, since b is the additive investe- b).

V) for a, b, R,
alb-c) =a(b+(-c)
=ab + a( - ¢), by distributivity
=ab + (- (ac)), from (ii) above.
=ab —ac.

We can similarly prove (v).
Try this exercise now.
SELF ASSISMENT EXERCISE 9

Show that {0} is a ring with respect to the usuddidion and
multiplication. ( This is called the trivial ring.

Also show that if any singleton is a ring, thegéeton must be {0}.
SELF ASSISMENT EXERCISE 10

Prove that the only ring R in which the two opeyas are equal (i.e., a +
b = abl] a, bOR) is the trivial ring.

Now let us look at the sum and the product of tlmemore elements of
a ring. We define them recursively, as we didhi& tase of groups (see
Unit 2 MTH 211).

If k is an integer (k= 2) such that the sum of k elements in a ring R is
defined, we define the sum of (k + 1) elemenisaa ..., 3.1 in R, taken
in that order, as

+ ...+ 3= (ad . K).ae

In the same way if k is a positive integer sucht tie product of k
elements in R is defined, we define the produdikof 1) elements of
&, &, ..., &+1 (taken in that order) as

&. ...&1 = (A% &) -1
As we did for groups, we can obtain laws of indiae the case of ring

also with respect to both + and ,. In fact, we htne=following results
for any ring R.
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If m and n are positive integers andR, then

) a".d'=d"" and
@)= dm

1)) If m and n are arbitrary integers and &JR, then
(n+ m)a=na+ ma,
(nm)a = n(ma) = m(na),
n(a + b) = na + nb,
m(ab) = (ma)b = a(mb), and
(ma) (nb) = mn (ab) = (mna)b.

1)) If a; &, ..., @ by, ..., by OR then

a@+ ... +an(bt+ ... +h)
=ab;+...+aby+ab +...+ab,+ ...+ ab + ... + ab,

Try this simple exercise now
SELF ASSISMENT EXERCISE 11

If R is aring and a, bir such that ab =ba, then use induction an N
to derive thébinomial expansion.

(@+bf=d+"Cid + ... +"Cad™ " + ... +"Cpat + B
where"C, =

There are several other properties of rings tatwile be discussing
throughout this block. For now let us look closatytwo types of rings,
which are classified according to the behaviourthed multiplication
defined on them.

3.3 Two Types of Rings

The definition of a ring guarantees that the binasperation

multiplication is associative and, along with +fisf@ées the distribitive

laws. Nothing more is said about the propertiesoftiplication. If we

place restrictions on this operation we get sevgras of rings. Let us
introduce you to two of them now.

Definition: We say that a ring (R, +,.) t®@mmutativeif. , i.e.itif ab =
ba for all a, BJR.

For example, Z, Q and R are commutative rings.
Definition: We say that a ring (R, +,.) is a ring with ident{prwith

unity) if R has an identity element with respectialtiplication, i.e., if
there exists an element e in R such that
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ae =ea=afor all@R.

Can you think of such a ring? Aren't Z, Q and Ramyples of a ring
with identity?

Try this quickly before we go to our next definitio

SELF ASSISMENT EXERCISE 12

Prove that if a ring R has an identity element wibpect to
multiplication, then it is unique. (We denote thisque identity element
in a ring with identity by the symbol 1.)

Now let us combine the previous two definitions.

Definition: We say that a ring (R, +,.) is @mmutative ring with
unity, if it is a commutative ring and has the multiptica identity
element 1.

Thus, the ringZ, Q, R and Care all commutative rings with unity. The
integer 1 is the multiplication identity in all therings.

We can also find commutative rings which are nogsi with identity.
For example, 2Z, the ring of all even integersaommutative. But it has
no multiplicative identity.

Similarly, we can find rings with identity whiche@mnot commutative.
For example, M(R)

) 1 0
has the unlt-elemenﬁO J.

But it is not commutative. For instance,
1 0 01

If A= and B = , then
2 0 0 2

s [1 3 31 e
SN

Thus, ABZ BA

Try this exercise now.
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SELF ASSISMENT EXERCISE 13

Which of the rings in Example 1, 2, 3, 4, 6, 7 edenmutative and
which have unity?
Give the identity, whenever it exists.

Now, can the trivial ring be a ring with identitggtnce 0.0 = 0, O is also
the multiplicative identity for this ring. So ({0}+,.) is a ring with

identity in which the additive and multiplicativelentities coincide.

But, if r is not the trivial ring we have the folling result.

Theorem 2:Let R be a ring with identity 1. If R {0} then the elements
0 and 1 are distinct.

Proof: Since Rt{0}, OalR, a# 0. Now suppose 0=1. Thena=a. 1=
a.0 = 0 (by Theorem 1). That is, a = 0, a conttamh. Thus, our
supposition is wrong. That isZ01.

Now let us go back to example 8. When will A X B dmmmutative? A
X B is commutative if and only if both the rings And B are
commutative. Let us see why. For convenience wé denote the
operations in all three rings[}, B and A X B by rda.. Let (a, b) and
(ab’) OA X B.

Then (a, b).&b') = (ab) . (a, b)
~ (ad,b.b)= @b).(ab)

-~ aa =d.aandbb =b.b.
Thus, A X B is commutative iff both A and B are amutative rings.

We can similarly show that A X B is with unity ik and B are with
unity. If A and B have identities, @nd g respectively, then the identity
of AXB is (e, &2).

Now for some exercises about commutative rings idigmtity.

SELF ASSISMENT EXERCISE 14

Show that the ring in E7 is a commutative ring waténtity .

SELF ASSISMENT EXERCISE 15

Show that the set of matric%i ﬂ

xOR } IS a commutative with

unity.
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SELF ASSISMENT EXERCISE 16

Let R be a Boolean ring (i.e.? & aJ aOR). show that a = -[@a OR.
Hence show that R must be commutative.

Now we will give an important example of a non-coutative ring with
identity. This is the ring of real quaternionswhs first described by the
Irish mathematician William Rowan Hamillion (18051865). It plays
an important role in geometry, number theory and #tudy of
mechanics.

Example 9:Let H = {a + bi + ¢j + dk | a,b, c,[tR}, where i, k are

symbols the satisfy’l= -1 = f =&, ij= k= -ji,jk=1=-kj, ki=j = -

ik.

We define addition and multiplication kh by
+bi+cj+dk) + (a+ bi + cj + dik)

(a+a)+ (b+h)i+(c+q)+(d+d)k and

( +bi+cj+dk) (@+ by + ¢+ dik) = (aa —bh — cg ddy)
(@b + 1 +cd —dg)+ (ag +bd, + ag + bdl)j + (ad + bg - chy + da)k.

This multiplication may . But it is no,gbis simply performed as
for keeping théatmnship between i, j and k in
mind)

Solution: Note that &£ 1, i, = j, = k .} is the group @ (Example 4,
Unit 4).

Now, you can verify thatH, +) is an abelian group in which the
additive identity is 0 = 0 + 0i + 0] + Ok, multipation in H is
associative, the distributive laws hold and 1 = @i + 0] + Ok is the
unity in H.

Do you agree thaH is not a commutative ring? You will if you
remember that i ji, for example.

4.0 CONCLUSION

So far, in this unit we have discussed various sypierings. We have
seen examples of commutative and non-commutatwgs.rinThough
non-commutative rings are very important, for takesof simplicity we

shall only deal with commutative rings henceforthus, from now on,
for usa ring will always mean a commutative ring. We would like

you to remember that both + and . are commutativa commutative
ring.
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5.0 SUMMARY

In this unit we discussed the following points.

. definition and examples f a ring.

. Some properties of a ring like
a.0=0=0.a,
a(-b)=-(ab)=(-a) b,
(-a) (- b) = ab,

a(b —c)=ab —ac,
(b-cla=ba-ca
(a, b, cinaring R.

. The laws of indices for addition and multiplicatj@nd the
generalized distributive law.

. Commutative rings, rings unit and commutative ringih unit.

Henceforth, we will always assume that a ring meaosmmutative
ring, unless otherwise mentioned.

SOLUTIONS/ANSWERS

SELF ASSISMENT EXERCISE 1

Addition in Z ¢ Multiplication in “g
+ |1 2 3 4 5 . |1 2 3 4 5
1 |2 3 4 5 0 1 |1 2 3 4 5
2 |3 4 5 0 1 2 |2 4 0 2 4
3 |4 5 01 2 3 /3 0 3 0 3
4 |5 0 1 2 3 4 |4 2 0 4 2
5 |0 1 2 3 4 5 |5 4 3 2 1

From the tables you can see that neither additwmmultiplication are
binary operations id,,since 000 Z,. Thus, ¢;, +,.) can’'t be a ring.

SELF ASSISMENT EXERCISE 2

We define addition and multiplication in Q#2Q by

(a +~/2b)+ (c+~/2d) = (a+ c) +/2(b+ d),amd

(a ++/2b).(c+v/2d) = (ac+ 2bd) ++/ Aad+ be) Oa, b, ¢, AIQ.

Since + is associative and commutative | n R, #mesholds for + in
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Q +/2Q.0=0++/20 is the additive identity and ( - a) ¥2(-b) is the
additive inverse of a ¢2b.

Since multiplication in r is associative, R5 hoédso. Since
multiplication distributes over addition in R, ibels so in Q ¥2Q as

well Thus, (Q +V/2Q,+,.)is a ring.
SELF ASSISMENT EXERCISE 3

+ and are well defined binary operations on R.R2,, RS and R6 hold
since the same properties are trueMg(R) (Example 5).

The zero element ig 0 .The additive inverse 1‘a 0 IS a 0
00 0Ob 0 -b

Thus, R is ring.
SELF ASSISMENT EXERCISE 4

+ and. Are binary operations on r. you can cheek (R, +,.) satisfies
R1 - R6.

SELF ASSISMENT EXERCISE 5

0 andnare well defined binary operations oin(x). let us check which
of the axiomdR1-R6 is not satisfied by [ (X), [1, n). Sincell us
abelian, R1 is satisfied.

Sincell is associative, R2 is satisfied.

Also, for any A X, A [0 @ = A. thus, @ is the identity with respectio
Thus, R3 is satisfied.

Now, for any ALl X, A # g, there is no B] X such that A B = g.
Thus R4 is not satisfied. Hendé (X), (I, n) is not a ring.

SELF ASSISMENT EXERCISE 6

Since satisfies R1, R2, R5 and R6, so does Map)(Xlie zero element
is 0: X— R:)(x) = 0. The additive inverse of f=XR is (-f) : X— R.
Thus, (Map (X, R,), +,.) is a ring.

SELF ASSISMENT EXERCISE 7

Firstly, O and® are well defined binary operations on
R. Next, let us check iR, O ,®)satisfies R1-R@ a, b, cIR.
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Rl.(aCb=a+B+1=b+a+1=0 a.

R2: (a0 b)0c=(@+b+1ldc=a+b+1+c+1
—a+(b+c+1)+1=@ (b0 c)

R3:al (-1)=a-1+1=4a alR. Thus, (-1) is the identity with

respect tol]

R4: a0 (-1-2)=a+ (-a-2)+1=-1.Thus, -a -2 is theerse pf a with
respect tod .
R5: (acb)oc=(@ab+a+bp c=(ab+a+b)c+(ab+a+Db)+c
= albc+b+c)+a+(bc+b+c)
= aoe (b ov).
R6:a (b0 c) =ao(b +c+l) = a (b+c+1) +a +(b+c+1)
= (ab +atb) + (acta+c) + 1
= (a®b) O (a®c).
Thus, (R,0, ®) is a ring.

SELF ASSISMENT EXERCISE 8
Z,={01}, Zz={ 012}
[1Z,X Zs={(0,0}, (0,1) (0,2), (1 0) (1 2)}.

Thus, the tables are

T 100 01 (02) (1L0) (11) (12)

©00) | ©0) (01 (0.2) (10) (11) (1.2)

©01) | 01) (02) (00 (11) (12) (L0)

(02) | (02) (00 (01 (L2) (10) (11)

(10) | (10) (11) (12) (©0) (01 (0.2)

(11) | (11) (12) (10) (01 (0.2) (0.0)

(12) | (12) (10) (11) (0.2) (00) (0

00 (01 (0.2) (L0) (11) (1.2)

00 | 0,00 (00 (00 (00 (0.0 (0.0)

01 | 00) (01 (02) (00) (01 (0.2)

(02) | 00) (02) (0) (00 (0.2) (0J)

(10) | 0.0) (0.0 (00 (10) (01 (L0)
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(11) | 000 (01 (0.2) (10) (11) (0.2)

(12) | 00) (0.2) (01 (L0) (12) (11)

SELF ASSISMENT EXERCISE 9

Note that + and . are binary operations on {0}.eTimoperties R1 — R6
are invially satisfied.

Now, suppose a singleton {a} is a ring. Then thisst contain the
additive identity).
Thus, {a} = {0}.

SELF ASSISMENT EXERCISE 10

We know that a + 0 =[@a [JR. But, by Theoren 1 we know that a. 0 =
0. Thus, a=0alR.
That is, R = {0}

SELF ASSISMENT EXERCISE 11

Since (a+b)= & + b', the statement is true for n = 1. Assume that the
equality is true forn =m, i.e.,
(a+tbf"=d"+"C,d" b + ... +"Cpp @™t + B

Now, (a+bJ™*! = (a+b) (a+B = (a+b) (ki "Cy ™ 1)

:ki mC, A by + kﬁ mC, d™* B, by distributivity.
=0 =0

=@ +MC, &b+ "MC, &P + ... +"Cral")
+("Cod"b +MC, A" b + ... "Cpq a" + ™Y
=d™ + ("C,+"Co) d™ b +... + ('C + "Cig) O+ L+ !
=d"t+™ic d" M p + L +™c ™+ L +™IC ad" + b ™!
(Sinceka + ka-l = m+1Ck)

Thus, the equality is true for n = m + 1 also.

Hence, by the p[principle of induction, it is triae all n.

SELF ASSISMENT EXERCISE 12

Let e ande' be two multiplicative identity elements of R. tthe
e = e.€, since e is multiplicative identity.

= €, since e is multiplicative identity.
Thus, e =¢', i.e., the mtliplicative identity of R is unique.
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SELF ASSISMENT EXERCISE 13

forn =1, nZ =Zis a commutative ring with idemtiL.
On > 1, nZis commutative, but without identity.

Zn is commutative with identitl.

Z +iZ is commutative with identity 1 + i0.

0 (X) is commutative with identity X, since A X = A0OA O X.
C{0, 1} is commutative with identity {0,1} R:1(x)=1
End A is not commutative. It has identity: JA — A: 15(X) = X.

SELF ASSISMENT EXERCISE 14

Since a®b = bo ala, bR, ®is commutative. Also, @0 = aJallR.
Thus, 0 is the multiplicative identity.

SELF ASSISMENT EXERCISE 15
you must first check that the set satisfies R1-R6.
Note thatB g} is the additive identity.

Then you should check that AB = BA for any two eésmts A and B.

o . . 1/2 1/2
thus, the ring is commutative. It has identity .
72 1/2

SELF ASSISMENT EXERCISE 16

foranyal R, & = a.
In particular, (2€)=2a= 4&€=2a= 4a=2a=>2a=0=a=-a.

Now, for any a, IR, a + bOR.
O@+bf=a+b= &+ab+ba+b=a+b
—a_ab+ba+b=a+b, sindesaa and b=b
= ab =-ba

= ab = ba, since — ba = ba.

Thus, R is commutative.

6.0 TUTOR MARKED ASSIGNMENT
1) Show that the set of matrices is a commutative Wit unity.
2) Let R be a Boolean ring,(i.€ a ad a.lR). Show that a= -a for

every alR. Hence show that R must be commutative.
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Blacksell: Topics in Algebra
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UNIT 2 SUBRINGS AND IDEALS
CONTENTS
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2.0 Objectives
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5.0 Summary
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1.0 INTRODUCTION

In this unit we will study various concepts in ritigeory corresponding
to some of those that we discussed in group thed¥e start with the

notion of a subring, which corresponds to that etibgroup as you may
have guessed already.

Then we take a close look at a special kind of gsaggcalled an ideal.
You will see that the ideals in a ring play theeroff normal subgroups
in a group. That is, they help us to define aarotin ring theory
corresponding to that of a quotient group, nameelguotient ring.

After defining quotient rings, we will look at sea¢ examples of such
rings. But you will only be able to realize thepamtance of quotient
rings in the future units.

We hope that you will be able to meet the followilgjectives of this

unit, because only then will you be comfortableha future unit of this
course.

2.0 OBJECTIVES

After reading this unit you should be able to

. give examples of subgrings and ideals of some famihgs;
. check whether a subset of a ring is a subgringogr n

. check whether a subset of a ring is an ideal ar not

. define and give examples of quotient ring.

3.0 MAIN CONTENT
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3.1 Subrings

In Unit 3 of MTH 211, we introduced you to the cept of subgroups
of a group. In this section we will introduce ymuan analogous notion
for rings. Remember th&r us a ring means a commutatiove ring.

In the previous unit you saw that, not only isSCIQQ, but Z and Q are
rings with respect to the same operations. Thesvshthat Z is a subring
of Q, as you will now realize.

Definition: Let (R +,.) be aring and S be subset of R. Wetkat S is
a subring of R, if (S +,.) is itself a ring, i.&.is a ring with respect to the
operations on R.

For example, using Example 1 unit 1 of this medwk can say that
2Z, the set of even integers, is a subring of Z.

Before giving more examples, let us analyse thentiein of a subring.

The definition says that a subring of a ring R isng will respect to the
operations on R, Now, the distributive commutatesed associative
laws hold good in R. Therefore, they hold gooary subset of R also.
So, to prove that a subset S of R is a ring wetdweed to check all the
6 axioms R1-R6 for S. It is enough to check that

)] S is closed under both + and.,
1)) ous, and
i)  for each alS, - alJS.

If S satisfies these three conditions, then Sdslaing of R. so we have
an alternative definition for subring.

Definition: Let S be a subset of a ring (R, +,.). S is cadleslibring of
R if

) Sis closed under + and . , i.e., a + b,@®whenever a, b S,
1)) 0US, and
i)  for each allS, - alJS.

Even this definition can be improved upon. Fos ttgcall from Unit 3
of MTH 211, that (S; +k (R, +) if a — blJS whenever a, bl S. This
observation allow us to give a set of conditions #osubset to be a
subring, which are easy to verify.

Theorem 1:Let S be a non-empty subset of (R, +,.). Then& i

subring of R if only if
a) x—yOSox, yas; and
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b) xyuS Ox, yuUS.

Proof: We need to show that S is a subring of R accgrdm our
definition iff satisfies (a) and (b). now S is absing of R iff(S, +x
(R,+) and S is closed under multiplication, i.g(af and (b) hold.

So, we have proved the theorem.

This theorem allows us a neat way of showing thaublnset is a
subring..

Let us look at some exmples.
We have already noted that Z is a subring of Qfabt, you can use
Theorem 1 to check that Z is subring of R, C an# iZ too. You can

also verify that Q is a subring of R, C and Q/2Q= {u+

V2B 0, 0Q}.

The following exercise will give you some more exdes of subrings.

SELF ASSISMENT EXERCISE 1

Show that R is a subring of C, Z + iZ is a subrfigC and Q +,/2Q is
a subring of R.

Now, let us look at some examples of subring othan the sets of
numbers.

Example 1. Consider £, the ring of integers modulo 6. show, that 3Z
{3.0,3.1......, 3.5} is a subring ofZ

Solution: firstly, do you agree that 32 {6,5}? Remember that =
09 = 3, and so on.
Also, 0-3=-3= é.Thus, X — y13Zg is a subring of £

Example 2: Consider the rin@ (X) given in Example 4 if unit 1 of this
module . show that S = {@, X} is a subringto{X).

Solution: Note that AA A = gOA 0O (X). OA=-Ain O (X).
Now to apply theorem 1 we first note that S is eompty.

Next, oA @ = g[1S, XA X = glIS,

oA X =XUS, an g =00S, X n X=XOS, g X=4dIS.
Thus, by Theorem 1, S is a subring1ofX).
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Try a related exercise now.
SELF ASSISMENT EXERCISE 2
Let AL X, A# @. Show that S = {g, A, AX} is a subring ofd (X).

E 2 shows that for each proper subset of X we gebang ofd (X).

Thus, a ring can have several subrings. Let usidentwo subrings of
the ring Z.

Example 3 show that S = {n, 0}|nZ} is a subring of Z X Z. Also
show that D = {(n, n) | mZ} is a subring of Z X Z.

Solution: You can recall the ring structure of #om example 8 of unit
1. Both S and D are non-empty. Both of them saf&f and (b) of
Theorem 1. Thus, S and D are both subrings’of Z

We would like to make a remark here which is basethe examples
of subrings that you have seen so far.

Remark: i) If R is a ring with identity, a subring of R mmar may not
be with identity. For example, the ring Z has itkgri, but its subring
nZ (n = 2) is without identity.

1)) The identity of a subring, if it exists, mapt coincide with the
identity of the ring. For example, the identitytbé ring Z X Z is
(1, 2).

But the identity of its subring Z X {0} is (1.0).

Try the following exercise now.

SELF ASSISMENT EXERCISE 3

showthats{{a O}
0 b

R= {3 ﬂ‘ a, bR } Does S have a unit element?

a, buz }is a subring of

If yes, then is the unit element the same as th&fo

Now let us look at an example which throws up savenbrings of any
ring.

Example 4:Let R be a ring and@R. Show that the set aR = { ax | x
[JR} is a subring of R.
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Solution: Since Rz g, aR# @. Now, for any two elements ax and ay of
aR,Ax — ay = a(x- y)J aR and (ax) (ay) = a(xay)aR.
Thus, by Theorem 1, aR is a subring of R.

Using Example 4 we can immediately say tﬁa‘tn is a subring of £

Om 0Z, This also shows us a fact that we have alreadg:nZ is a
subring of ZOnUZ,.

Try these exercises now.

SELF ASSISMENT EXERCISE 4

For any ring R, show that {0} and R are its subsing
SELF ASSISMENT EXERCISE 5

Show that if A is a subring of B and B is a subrafdC, then A is
a subring of C.

SELF ASSISMENT EXERCISE 6
Give an example of a subset of Z which is not aisgb

SELF ASSISMENT EXERCISE 7

Is very useful. For instance, E1 and E5 tell i @ +./2Qis a
subring of C.

Now let us look at some properties of subringsonfrunit 3 you know
that the intersection of two or more subgroup ssilagroup. The
following result says that the same is true forrsgs.

Theorem 2 Let S and $ be subring of aring R. Then & S; is also a
subring of R.

Proof: Since @S;and OLIS,, 00 S, nS,. US, 1 S, 20.

Now, let X, yUU S;n S,. Then x, y1S; and z, yLIS,. thus, by Theorem
1, x—yand xy are in;&s well as in §theyliein $nS,.

Thus, $ n S, is a subring of R.

On the same lines as the proof above we can phatthe intersection
of any family of subring of a ring R is a subring ¢ R.
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Now consider the union of subrings of a ring. Sa ffunk it will be a
subring? Consider the following exercise.

SELF ASSISMENT EXERCISE 8

You know that Z + iZ and Q are subrings of C. Isithunion a subring
of C? why?

Now let us look at the Cartesian product of sulwing

Theorem 3: Let Sand $ be subring of the rings;Rand $, respectively.
Then § X S, is a subring of RX R,.

Proof: since $and S are subringsof Rand R, S, #zgand $#@. 0S;
XS #£0.

Now, let (a, b) and4,b')0S; X S,. Thena,a O S, and b,b' 0S,. As §
and S are subrings,aa’,a.a’00S;and b -b’, b. b'US,.

(WE are using + and . for both Bnd R2 here, for convenience.) Hence,
(a,b)—@,b)=(a-a',b-b)0OSXS, and

(a,b) . @,b")-aa’ ,bb") US; X S,.
You can use this result to solve the following exs.

SELF ASSISMENT EXERCISE 9

Obtain two proper non-trivial subrings of Z X Re(i. subrings which are
neither zero nor the whole ring).

Let us now discuss an important class of subrings.

3.2 ldeals

In Module 1, you studied normal subgroups and tie that they play
in group theory. You saw that the most importagason for the
existence of normal subgroups is that they allowtcugefine quotient
groups. In ring theory we would like to define ianigar concept a
guotient ring. In this section we will discusslass of subrings that will
help us to do so. These subrings are called Ide'ile exploring
algebraic number theory, the "L@entury mathematicians Dedekind,
Kronecker and others developed this concept. ketae how we can
use it to define a quotient ring.

Consider a ring (R, +,.) and a subring 1 of R. Rs¥) is an abelian
group, the subgroup, 1 is normal in (R,+), and kehe set R/1 = {a +1|
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allR}, of all cosets of 1 in R, is a group under theaby operation +
given by

@+1l)+b+1l)=(@+b)+1

for all a + 1, b+ LIR/1. we wish to define. on R/1 so as to make R/1 a
ring. You may think that the most natural way tosw is to define
(a+1).(b+1)=ab+da+1,b+ 1R

But, is this well defined? Not always. For instagnoensider the subring
Z of R and the set of cosets of Z in R. now, siheel - 00Z, 1+ Z =
0+Z

Therefore, we must have

(V2+2). (1+2)=(2+2).(0+2),i.e.2+Z =0+ 2Z,i.e20Z.
But this is a contradiction. Thus, our definitiohmultiplication is not
valid for the set R/Z.

But, it is valid for R/1 if we add some conditiona 1. What should
these conditions be? To answer this, assume teamtiitiplication in
(2) is well defined.

Then,(r+1).(0+1)=r0+1=0+1=1farR.

Now, you know that if x11,thenx+1=0+1=1

As we have assumed that is well defined, we get
(r+l).(x+1)=(r+1).(0+1) =0+ 1whenevelR, x 1.
l.e., rx + 1 =1 wheneveriR, x1.

Thus, rx(J1, whenever fJR, xU1.
So, if. is well defined we see that the subring listnsatisfy the
additional condition that rxl1 whenevertlR and x/1.

In sec3.3 we will prove that this extra conditiam bis enough to make
the operation, a well defined one and (R/1, +ring. In this section we
will consider the subrings 1 of R on which we im@adise condition

rxdJ1 whenever fIR and x01.

Definition: We call a non-empty subset 1 of a ring (R, +.jdeal of R
if

) a—bdl0a, bOl, and

1)) ra01 for all rOR and ail.

Over here we would like to remark that we are asvagsuming that our
rings are commutative. In the cse of non-commugatiings the
definition of an ideal is partially modified as halvs.

A nomn-empty subset 1 of a non-commutative ring Bn ideal if
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) a—bUl0Oa, bUl, and
1)) radland aril0all rOR.

Now let us consider some examples. In E 4 youtkawfor any ring R,
the set {0} is a subring. In fact, it is an idedIR called the trivial ideal
of R. Other ideals, if they exist, are known as-trivial ideals of R.

You can also verify that every ring is an idealtsélf. If an ideal 1 of a
ring R is such that # R, then 1 is called proper ideal of R

For example, if n£0, 1, then the subring nZ = {nm| oz} is a proper
non-trivial ideal of Z. This is because for anyiZ, z(nm) = n(zm)
OnZ.

Try this exercise now

SELF ASSISMENT EXERCISE 10

Show that {0 3} and { 0,2,4} are proper ideads ofZ
Now let us consider some more examples of ideals.

Example 5: Let X be an infinite set. Consider ¥ thiass of all finite
subsets of X. Show that 1 is an ideallogX).

Solution: 1 = {A| A is a finite subset of X}. Note that

) @1, i.e., the zero elementofX). is in 1.
i) A-B=a+(_B)=A+B,asB=-Bin(X).
= AA B.

Thus, if A, B[1, then A —B is again a finite subset of X, anddeeA —
B O1./

i)  AB — A nB. Now, whenever A is a finite subset of X andsB i
any element of] (X), A n B is a finite subset of X\. Thus, Al
and BUO (X). = ABL1.

Hence, 1 is an ideal af (X).

Example 6:Let X be a set and Y be a non-empty of X. Shaat th
1={A00 (X)|AnY =g}is an ideal of] (X).

In particular, if we take Y = {§, where X% is a fixed element of X, then

1 ={A00 (X) | xo A} is an ideal oftd (X).
Solution: Firstly, a11.
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Secondly,0A,. B U1,
(A-B)nY=(AAB) nY=(anY) (B nY)=gAg =g, so that A -
BO1

Finally, for A U1 and B1O (X),

(AB)nY=(AnB) nY=(AnY) n B=gn B=g, sothat ABI1.
Thus, 1 is an ideal af (X).

Example 7: Consider the ring C[0, 1] given in Example 6 ofitth

Let M = {f OC[O, 1] | f(1/2) = 0}. Show that M is an ideal of(Z 1].
Solution: The zero elemen is defined byO(x) = 0 for all x 0[0,1].
Sinc 0(1/2) = 0O M.

Also, if f, 0 M and gU CJ0,1] then (fg) (1/2) = f(1/2) g(1/2) = 0 g(1/2)
=0, so fguM.

Thus, M is an ideal of C[0,1].

When you study Unit 11, you will see that M is tkernel of the
homomorphism

@: C[0, 1]— R: g(f) = f(1/2).

Now you can try an exercise that is a generalinatioexample 7.

SELF ASSISMENT EXERCISE 11

Let all[0, 1]. Show that the set
1.={f UC|[O, 1] | f(a) = 0 } is an ideal of C[O, 1].

In the next exercise we ask you to look at theiaglin Example 4.
SELF ASSISMENT EXERCISE 12
Let R b a ring and &R. show that Ra is an ideal of R.

Now that you've solved E 11, solving E 9 is a nratteseconds! Let us
see if E 11 can be generalized.

Example 8: For any ring R and;a& [IR, show that
Ra, + Ra2 = {xa; + X,X,| IR } is an ideal of R.

Solution: Firstly, 0 = 0a+ 0a. U OUR& + ra.

Next, (xaq + Xoa) — (Y18 + Yo8)
= (X1 —Yaw+ 2 — )& ORay + Ra OXq, X1, Y1, Y2 OR.
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Finally, for rR and xa, + X%& [JRa, + + Ra,
R(xia; + X&) = g, [IRa + Ra.
Thus, Ra+ Ray is an ideal of R.

This method of obtaining ideals can extended te gieals of the form
{X1& +r3 + ... +Xsa,| X%[OR } for fixed elementsa ...., g of R. such
ideals crop up again and again in ring theory. §ie them a special
name.

Definition: Let &, ..... , & be given elements of a ring R. Then the ideal
generated byia....., &is

Ray+Ra+ ...+t Ra={Xxa + X2 +m+xa,| X OR}. a, ..... , @ are
called the generators of this ideal.

We also denote this ideal by <@ .. -

When n = 1, the ideal we get is callegrancipal ideal. Thus, if alR,

then Ra = is a principal ideal of R. In the nelick you will be using
principal ideals quite a lot.

Now an exercise on principal ideals.

SELF ASSISMENT EXERCISE 13

Let R be a ring with identity\. Show that <1>=R.

SELF ASSISMENT EXERCISE 14

Find the principal ideals of,§dgenerated b)@ and5.

Now we look at a special ideal of a ring. Butdtmso we need to give a
definition.

Definition: An element a of a ring R is call@dpotent if there exists a
positive integer n such thata 0.

For Example, 3 and 6 are nilpotent elements ofyZsince 32 =
9=0and6? = 36=0. Also, in any ring R, 0 is a nilpotent element.

Now consider the following example.

Exmple 9 Let R be a ring. Show that the set of nilpotdatrent of R is
an ideal of R. This ideal is called th& radical of R.

110



MTH 312 GROUPS AND RINGS

Solution: Let N = {alUR | & = 0 for some positive integers n}. Then 0
ON.

Also, if a, bLIN, then 4= 0 and B = 0 for some positive integers m and
n.

Now, (a — b}™" = T e, a(-b)™"" (see E 11 of Unit 9.
r=0

Foreachr=0,1, ..... , m + n, neitheen or m + n — r>m, and hence,
either a= 0 or B""" = 0. Thus, the ternT&™""= 0. So (a- B} = 0.
Thus, a (af)=dr" =0, i.e., alJN.

Finally, if a LN, d' = 0 for some positive integer n, and hence, for an
rd, (ar)'=dr" =0, i.e., atJN.

So, N is an ideal of R.
Let us see what the nil radicals of some familiags are. For the rings

Z, Q, RorC, N=/{0}, since the power of any nogra element of these
rings is non-zero.

For Z, N ={0,2}.
Try the following exercises now.
SELF ASSISMENT EXERCISE 15

Find the nil radicals of ZandO (X).

SELF ASSISMENT EXERCISE 16

Let R be aring and @R. show that 1 = {fIR |ra =0} is an ideal of R.
(This ideal is called the annihilator of a.)

By now you must be familiar with the concept ofatee Let us now
obtain some results about ideals.

Theorem 4:let R be a ring with identity 1. If 1 is an idezl R and 1
U1, then 1 =R.

Proof: We know that IIR. We want to prove that Rl 1. Let tIR.
Since 101 and 1is an ideal of R, r = r11. So, RO 1. Hence 1 = R.
Using this result we can immediately say that Z1a¢ an ideal of Q.
Does this also tell us whether Q is an ideal ofr Ra? Certainly. Since
10Q and Q#R, Q can’'t be an ideal of R.
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Now let us shift our attention to the algebra c#al$. In the previous
section we proved that the intersection of subrisgssubring. We will
now show that the intersection of ideals is anlidéde will also show
that the sum of ideals is an ideal and a suitabfindd product of ideals
Is an ideal.

Theorem 5:1f | and J are ideals of a ring R, then

a) InJd,

b) I+J={a+ blall and b(JJ}, and

c) IJ={xUR | xis a finite sumd, + ... a,bn, Where all land b
[1J}and ideals of R.

Proof: a) From Theorem 2 you know thatlJ is a subring of R. Now,
if all nJ,then al |l and allJ. Therefore, axl land axtJ J for all X in
R.Soaxd | nJforall all nJ and xOR. Thus In J is an ideal of R.

b) Firstly, 0 =0+ Ql + JUI+JZ Q.
Secondly, if x yil + J, then x = a+ b, and y = a + b, for some
&, & Uland h, b, OJ.
Sox—-y=@+tbhy=(@+h)=(@a-a)+ (- +J

Finally, let xOI + J and rJR. then x = a + b for somel@l and b[J.
now xr = (a + b) r = ar + bl + J, as all implies arlJl and b[J
implies br1J for all fR.

Thus 1+J is an ideal of R.

C) Firstly, IJ# @ and J# @.
Next, let x, y(IIJ. Then x = &, + ... + a,b,, and
y=ab, +...+a b forsomea, ..., a ---------------- Ol and by,

NN o S o}

Ox—y=(@aby+... +aby)—(ab; +... +ab))
:a]_b]_ ot anbm+(' a;_)b']_"' ..ot (' a'n)b'n
Which is a finite sum of elements of the form abhval and b1J.
So, x — ytIJ.

Finally, let x0IJ say x = &'+ ... + ab, with & Ol and h0J. Then, for
any rlJR

xr = (aby + ... aby)r = a(bir) + ... + a(byr),

which is a finite sum of elements of the form althva [l and b[1J.
(Note that h 0J = byr (0J for all r in R.)

Thus, 1J is an ideal of R.
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Over here, we would like to remark that if we defid = {ab |alll,
b[1J}, then 1J need not even be a subring, leave abmieg an ideal.
This is because if x, yllJ, then with this definition of 1J it is not
necessary that x 34J.

Let us now look at the relationship between thealgleobtained in
Theorem 5. let us first look at the following padiar situation:
R=2Z1=2ZandJ=10Z. Theml J = J, since . Also, any element
of 1 + J is of the form x = 2n + 10m, where n[14. thus, x = 2(n +
5m)02Z. on the other hand 2Z #11 + J. thus, | +J =<2, 10> = <2>.
Similarly, you can see that 1J = <20>.

Note that (X0 I n JOI1 01+ J.

In fact, these inclusions are true for any | arfdeg E 16). We show the
relationship in Fig. 1

R

[+J

InJd

1J
Fig. 1: The ideal hierarchy!

SELF ASSISMENT EXERCISE 17
If | and J are ideals of a ring R, then show that

a) OInJOIO+]
and 1900 JOJOI1+J;

b) | + is the smallest ideal containing both the iddaand J, i.e., if
A is an ideal of R containing both | and J, them#st contain |
+ J;

C) | n Jis the largest ideal that is contained in bathd J;

d) If1 ORand |1 +J =R, then|J =A J, i.e., if top two of fig. 1 are
equal, then so are the lowest two.
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Let us now go back to what we said at the beginoiriis section — the
importance of ideal.

3.3 Quotient Rings

In Unit 5 you have studied quotient groups. Yowwnthat given a
normal subgroup N of a group G, the set of all te€N is a group and
is called the quotient group associated with themad subgroup N.
Using ideals, we will define a similar consept fimgs. At he beginning
of sec---- we said that if (R, +,.) is a ring and & subring of R such that
(R/l, +, ) is a ring, where + and are defined by
(x+)+(y+)=(x+y)+land
x+D).(y+Dh)=xy+I1Ox+1,y+I10R/,

then the subring | should satisfy the extra condithat rx [JI whenever
0R and x[l, i.e., | should be an ideal. We now show thdtshtisfies
this extra condition then the operations that weehdefined on R/l are
well defined.

From group theory we know that (R/I, +) is an adelgroup. So we
only need to check that . is well defined, i.e., if
a+l=a+l,b+1=b +I,thenab+1=b +1I.

Now, sincea+ 1= +1,a-a 0Ol.

Leta=a' =csimilarly, b-b’Ol, say b -b" =,

Thenab =& +x)(b'+y) =ab' +(xb' +a'y + xy).

Llab -a'b’ Ll, since xLl, yUl and | is an ideal of R.

Llab +1=ab" +1.

Thus, . is well defined on RI/I.

Now our aim is to prove the following result.

Theorem 6:Let R be aring and | be an ideal in R. then RA ring
with respect to addition and multiplication definyl
x+D)+(y+)=(x+y)+l and

x+).(y+D)=xy+I0x yOR.

Proof. As we have noted earlier, (R/l, +) is an abeliasugr So to
prove that R/l is a ring we only ned to check thatcommutative,
associative and distributive over +.

Now,
1) .iscommutative: (a+1).(b+1l)=ab+Ilba+I1=(b+1).(a+])for
alla+ 1, b+ IOR/I.

i) . Is associativell a, b, IR

(a+D).(b+1).(c+)=(@b+1).(c+1)
= (ab)c + 1
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=a(bc) + 1
=@+ ). ((b+ 1. (c+1)
iii) Distributive law: leta + 1, b + I, ¢ + TR/I. then
(@+h).(b+)+(ct))=(@a+1)[(be)+1}
=ab+c)+1
=(ab +ac) + 1
= (ab + 1) + (ac +I).
=(@a+l).(b+h)+@+I).(c+])
Thus, R/l is a ring.
This ring is called the quotient ring of R by tldeal I.

Let us look at some examples. We start with treemgde that gave rise
to the terminology ‘R and I'.

Example 1Q Let R =Z and | = nZ. What is R/I?
Solution: In Sec------- you have seen that nZ is an idéal.d-rom Unit

2 you know that
ZInZ={nZ,1+nZ,+nZ, ..., (n-1) + nZ}

= {0 1..n-1}, the same as the set of equivalence classes
modulo n.

So, R/l is the ring £

Now let us look at an ideal of,Zwhere n = 8.

Example 11:Let R = % show that | :{C_),A:} Is an ideal of R. Construct
the Cayley tables for + and . in R/I.

Solution: | :z_lR, and hence is an ideal of R. From group theory yo

know that the number of elements in R/l = o(Rllgo((-—lR) = g:

You can see that these elements are
0+1=(0,4},1+1={15}, 2+1={26},3+1={37)}.
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The Cayley tables for + and . in R/l are

Toloe1 141 241 3+1 © o+l 141 2+1  3+1

(_)+1 E)+1 i+1 é+1 .’},+1 E)+1 (_)+1 E)+1 E)+1 E)+1

i+1 :_L+1 é+1 é+1 E)+1 :_L+1 (_)+1 :_L+1 é+1 i_3+1

241 | 241 3+1 O+1 1+1 241 | 0+1 2+1 O0+1 2+1

3+1 | 3+1 0+1 1+1 241 || 3+1 | 0+1 3+1 2+1  1+1

Try this exercise now.
SELF ASSISMENT EXERCISE 18

Show that if R is a ring with identity, then R/lasring with identity fir
any ideal 1 of R.

SELF ASSISMENT EXERCISE 19

If R is a ring with identity 1 and | is an ideal obntaining 1, then what
does R/l look like?

SELF ASSISMENT EXERCISE 20

Let N be the nil radical of R. Show that R/N ham+zero nilpotent
elements.

4.0 CONCLUSION

You will realize the utility and importance of quett rings after we
discuss homomorphisms in the next unit and when discuss
polynomial rings (Block 4).

Now let us briefly summarize what we have donéhis tinit.

5.0 SUMMARY

In this unit we have discussed the following paimigh the assumption
that all rings are commutative.

1) The definition and examples of a subring.

2) The proof and use of the fact that a non-empbsst S of a ring
R is subring of R iff x — y1S and xyIS Ox, y [IS.

3) The intersection of subring of a ring is a sagrof the ring.
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4) The Cartesian product of subrings is a subrih¢he Cartesian
product of the corresponding rings.

5) The definition and examples of an ideal.

6) The definition of an ideal generated by n eletsien

7) The set of nilpotent elements in a ring is aaldf the ring.

8) If I'is an ideal of a ring R with identity andll, = R.

9) If I and J are ideal of a ring R, themlJ, | + J and 1J are also
ideals of R.

10) The definition and examples of a quotient ring.

SOLUTIONS/ANSWERS
SELF ASSISMENT EXERCISE 1

Ox, y OR, x — yOOR and xy[R. Thus, R is a subring of C. Similarly,
you can check the other cases.

SELF ASSISMENT EXERCISE 2
Clearly, S is non-empty.

Also, forany x, VIS, x—y=xAy

(As pointed out in Example 2).

You can check that& y 0S O x, yS.

Also, for any x, VIS, xy = xny S, as you can check.
Thus, S is a subring af (X).

SELF ASSISMENT EXERCISE 3

Firstly, S# @. Secondly, for any A E (kj and C :L(; ﬂin S,

a-c O

A-C=
0 b-d

0s and AC 2 2 9 |os.
0 bd

Thus, S is a subring of R.

) 10 i
The unit element of S %O J = the unit element of R.

SELF ASSISMENT EXERCISE 4

Both {0} and R are non-empty and satisfy (a) andafoTheorem 1.
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SELF ASSISMENT EXERCISE 5

Since A is a subring of B, A g andOx, y UA, x — y A and xyUA.
here the addition and multiplication are those roefion B. but these
are the same as those defined on C since B israngutf C. Thus, A
satisfies Theorem 1, and hence is a subring of C.

SELF ASSISMENT EXERCISE 6

There are several examples. We take {I}. in faaty finite subset of Z,
apart from {0}, will do.

SELF ASSISMENT EXERCISE 7

1+ and% are elements of the union.

But1+i-% :% +i10Z +iZ 0Q is not a subring of C.

SELF ASSISMENT EXERCISE 8
2Z X R, 3Z X {0} are two among infinitely many exates.

SELF ASSISMENT EXERCISE 9

note that the two sets aész‘:6 and éZG. From Example 4 you know that
they are subrings ofZ Now, by element wise multiplication you can
check that rxD::}Z6 Or 0Zg and xDéZG. (for instance,5.3 = 15 =
303Z;.)

You can similarly see that X2z, Or[0Zg x[J2Z, .

Thus, 3z, and 2z, are ideals of

SELF ASSISMENT EXERCISE 10

1, #9, since @11,

f,g0l,= (f—9) (@) =f(a) —g(a) =& f - glla.

f01, gC[O, 1] = (fg) (a) = f(a) g(a) \= 0.g(a) =B fg 1,
00 1,is an ideal of C[O, 1].

SELF ASSISMENT EXERCISE 11

Ra is a subring of R (see Example 4).
Also for JR and xdJRa,
R(xa) = (rx)alJRa.
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URa is an ideal of R.
SELF ASSISMENT EXERCISE 12

We know that <1>JR. we need to show that R <1>.
Now, for any fIR, r = r.1[0<1>. Thus, RO<1>.
OR =<1>.

SELF ASSISMENT EXERCISE 13

{0,36,9,2,581,4,7}
= Zo_
57,, = {05} .

SELF ASSISMENT EXERCISE 14

Let the nil radical of Zbe N. then0 ON.

10N since1l"=1 # 0 for all n.

2%=0 = 20N.

3" 200n. U 30N.

Similarly, you can check that,6 N and 5,7 ON.

N = {0,2,4,6} .

Forany AOO (X), A"=AnAn... nA=A0n.

Thus, A' = g iff A = g. Thus, the nil radical af (X) is { @}.

SELF ASSISMENT EXERCISE 15

Firstly, 1 # @ since Q11.

Secondly, r,§ll=>ra=0=sa (r—-s)a=0r—-sil.
Finally, r01 and XOUR = (rx)a = x(ra) = x0 = G rx O1.
Thus, 1 is an ideal of R.

SELF ASSISMENT EXERCISE 16

a) For any all and bUJ, abUl and abi1J.
Thus, alill nJ. since InJ is an ideal, any finite sum of such
elements will Iso be ind J. Thus, 1Jd1 n J.
Clearly, InJ Ol and In JOJ.
Also, 1 O1+J,J0 | + Jis obvious.

b) Let A be an ideal of R containing | as wellJag hen certainly | +
J O A. Thus, (b) is proved.
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C) Let B be an ideal of R such thattBl and B0J. Then certainly,
B Ol nJ. Thus, (c) is proved.

d) We want to show thatd J O 1J.
Let xOI and xOJ.

Since IOUOR=1+J, 1 =1+, for somelil and j1J.
OX=xl=xi+xj=ix+xj0lJ
Thus, I n JOIJ.

SELF ASSISMENT EXERCISE 17
1 + | is the identity of R/I.
SELF ASSISMENT EXERCISE 18

from Theorem 4, you know that | = R.
OR/ ={0}.

SELF ASSISMENT EXERCISE 19

Let x + NOR/N be a nilpotent element.

Then (x + NY = N for some positive integer n.
= X'UN for some positive integer n.

= (n")™ = 0 for some positive integer m.

= x"" = 0 for some positive integer nm.

= X ON

= X+ N =0+ N, the zero element of R/N.
Thus, R/N has no non-zero nilpotent elements.

6.0 TUTOR MARKED ASSIGNMENT

1. Show that if R is a ring with identity, thenI R a ring with
identity for any ideal | of R

2. Let N be nil radical of R. Show that R/N has non-zero
nilpotent element

7.0 REFERENCES/FURTHER READINGS

Blacksell: Topics in Algebra
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UNIT 3 RING HOMOMORPHISMS
CONTENTS

1.0 Introduction
2.0 Objective
3.0 Main Content
3.1 Homomorphism
3.2  Properties of Homomorphisms
3.3 The Isomorphism Theorems
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In Unit 2 you studied about functions between geotifat preserved the
binary operation. You also saw how useful theyen@r studying the
structure of a group. In this unit we will discdaactions between rings
which preserve the two binary operations. Suclctions are called
ring homomorphisms. You will see how homomorphisaisw us to
investigate the algebraic nature of a ring.

If a homomorphism is a bijection, it is called aomorphism. The role
of isomorphisms in ring theory, as in group theoiy,to identify
algebraically identical systems. That is why tleag important. We
will discuss them also.

Finally, we will show you the interrelationship beten ring
homomorphisms, ideals and quotient rings.

2.0 OBJECTIVES

After reading this unit, you should be able to

. Check whether a function is a ring homomorphismatr

. Obtain the kernel and image of any homomorphism;

. Give examples of ring homomorphisms and isomorpgjsm
. Prove and use some properties of a ring homomarphis

. State, prove and apply the Fundamental Theorem of

Homomorphism for rings.

3.0 MAIN CONTENT
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3.1 Homomorphisms

Analogous to the notion of a group homomorphism, have the

concept of a ring homomorphism. Recall that a grbamomorphism
preserves the group operation of its domain. Swaitral to expect a
ring homomorphism to preserve the ring structure itef domain.

Consider the following definition.

Definition: Let (R, +,.) and (R, +,.) be two rings and f:R- R, be a
map. We say that f is a ring homomorphism if

f(a + b) = f(a) + f(b), and

f(a.b) =f(a). f(b) for alla, bin R

Note that the + and occurring on the left handssimfethe equations in
the definition above are defined on, ®hile the + and occurring on the
right hand sides are defined op R

So, we can say that f1R» R, is a homomorphism if

) the image of a sum is the sum of the imaged, an

1)) the image of a product is the product of tirages.

Thus, the ring homomorphism f is also a group hommgmism from
(Rl’ +) |nt0 (I%, +)'

Just as we did in unit 6, before giving some exaspf
homomorphisms let us define the kernel and imagef@momorphism.
As is to be expected, these definitions are analego the
corresponding ones in unit 6.

Definition: Let Ry and R be two ring and f: R - R,be aring
homomorphism. Then we define.

) the image of f to be the set Im f = {f(x) |3R4}.
1)) the kernel of f to be the set Ker f = {XR; | f(x) = 0}.

Note that Im fUR, and Ker fOR;.

If Imf=R,, fis called an epimorphism or an onto homomonphiand
then R is called the homomorphic image of.R

Now let us look at some examples.

Example 1:Let R be a ring. Show that the identity maysla ring
homomorphism. What are Keg and Im %?
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Solution: Let x, yUR. Then
1r(x +y) = x +y =1g(x) + 1x(y), and
1r(xy) = Xy = T]r(X) 1r(Y)-
Thus, k(xy) = xy = ]r(X) 1r(Y).
Thus, % is a ring homomorphism.
Ker 1r = {x OR | lr(x) = 0}

={x OR | x=0}
{0}
{1r(x) | x OR}
={x|xOR}
=R.

Im 15

Thus, % is a surjection, and hence an epimorphism.

Example 2:Let sUN, show that the map f: Z Zsgiven by f(m) = m
for all mUZ is a homomorphism. Obtain Ker f and Im f also.

Solution:; For any m, niZ,
f(m+n)=m+n=m+n=m+n =f(m) + f(n), and
f(mn) = mn=mn = f(n) f(n).

Therefore, f is a ring homomorphism.

Now, Ker f ={mOZ | f(m) =0}

={mOZ | m =0}
={mOZ | m =0 (mod s)}
=sZ.
Im f = {f(m) | m OZ}
={m | mOz}

= &,
Showing that if an epimorphism.

Example 3: Consider the map f:¢Z> Z3 : f(n (mod 6)) = n(mod 3).
Show that f is a ring homomorphism. What is Ker {?
Solution: Firstly, for any n, miZ,
F(n(mod 6) + m(mod 6)) = f((n + m) (mod 6)) = (m) (mod 3)
=n(mod 3) + m(mod 3)
= f(n (mod 6)) + f(m(mod 6))

you can similarly show that

f(n(mod 6) . m(mod 6)) = f(mod 6)). f(m(mod 6)).

Thus, f is a ring homomorphism.

Ker f ={n(mod 6) | re 0(mod 3)} = {n(mod 6) | ] 32}
= {0,3}, bar denoting ‘mod 6’.
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Before discussing any more examples, we wouldtkenake a remark
about terminology. In future we will use the tetmomomorphism’ for

‘ring homomorphism’. You may remember that we al&b this in the

case of group homomorphisms.

Now for some exercises.
SELF ASSISMENT EXERCISE 1

If S is a subring of aring R, then S itself isragrwith the same + and .
of R. Show that the inclusion map i.i-SR:i(x) = x is a
homomorphism. What are Ker i and Im i?

SELF ASSISMENT EXERCISE 2

Let R, and R be two rings. Define f: R» Ry : f(x) = 0. Show that f is
a homomorphism. Also obtain Ker f and Im f. (Thisction if called
thetrivial homomorphism.)

SELF ASSISMENT EXERCISE 3
Is f: Z- 2Z: f(x) = 2x a homomorphism? Why?

Note that using E1 we know that f:-Z Q (or R, or C or Z + iZ) given
by f(n) = n is a homomorphism.

Now let us look at some more examples

Example 4: Consider the ring CJ[O0, 1] of all real valued contus
functions defined on the closed interval [0 1].

Define g: C[0, 1]- R: g(f) = f(1/2). Show that @ is a homomorphism.
Solution: Let f and ¢IC[0, 1]

Then (f + g) (x) + g(x) and

(fg) (x) = f(x) g(x) for all xtI C[O, 1].

Now, g(f + g) = (f + g) (1/2) = f(1/2) = f(1/2) {® + &(g), and

a(ig) = (19) (112) = {(1)95) = &(1) o(0).
Thus, g is a homomorphism.

Example 5 Consider the ring R {{3 ﬂ

a, bOR } under matrix
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addition and multiplication. Show that the map f; R: f(n) = {8 ﬂ

Is @ homomorphism.

Solution: Note that f(n) = nl, where | is the identity matadf order 2.
Now you can check that f(n + m) = f(n) + f(m) arfdrh) = f(n) f(m)O
n, mOZ. Thus, fis a homomorphism.

Example 6 Consider the ring@l (X) of Example 4 of unit 9.
Let Y be a non-empty subset of X.

Define f:0 (X) O (Y) by f(A) = A n Y for all A in 0 (X). Show that f is
a homomorphism. Does Y] Ker f? What is Im {?

Solution: For any A and B iri] (X),
f(A A B) =f((A\B) O (B\A))
= ((A\B) O (B\A n Y))
= ((A\B) n Y) O((B\A) n Y)
=(AnY)\(B nY)) O ((Bn Y)\(An Y))
= (f(ANM(B)) O ((B) \{(A))
= f(a)A f(B), and
fAnB)=(AnB)nY
=(AnB)n (Y NnY
=(AnY)n (BnY),sincen is associative and commutative
= f(A) n f(B).

So, fis a ring homomorphism from (X) into O ().
Now, the zero element af (Y) is @ . Therefore,
Kerf={AOO (X) |AnY=g}OY OKerf.

We will show that f is surjective.
Now, mf={AnY|A O0O((X)}

Thus, Im fOJ O (Y). To show that] (Y) O Im f, take any B1 [ (Y).
Then BOO (X) and f(B) = Bn Y =B. Thus, Blim f.

Therefore, Im f =1 (Y).

Thus, f is an onto homomorphism.

The following exercises will give you some more mdes of
homomorphisms.

SELF ASSISMENT EXERCISE 4

Let A and B be two rings. Show that the projectioap
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P:AXB - A:p(X, y) = xis a homomorphism. What are Kearg Im
p?

SELF ASSISMENT EXERCISE 5

Is f: Z +/2Z - Z++/2Z f(a+~/2b) = a-+/2b a homomorphism?

SELF ASSISMENT EXERCISE 6

Show that the map :C[0, 1] R X R: g If) = (f(0), f(1)) is a homamphism.

Having discussed many examples. Let us obtain sm@sie results
about ring homomorphisms.

3.2 Properties of Homomorphisms

Let us start by listing some properties that show B homomorphism
preserves the structure of its domain. The follmuiesult is only a
restatement of Theorem 1 of unit 6.

Theorem 1: Let f: R— R, be a homomorphism from a ring Rto a
rng R, . Then

a) f0)=0,
b)  f(-x) =-f(x) O x OR, and
c) f(x—y)=1(x)—f(y)J x, yOR,.

Proof: Since f is a group homomorphism from(R ) to (R, + ), we
can apply theorem 1 os unit 6 to get the result.

In the following exercise we ask you to prove apofbroperty of
homomorphisms.

SELF ASSISMENT EXERCISE 7

Let: R, — R, be an onto ring homomorphism. If B with identity 1,
show that Ris with identity f(1).

Now, let us look at direct and inverse images &irisigs under
homomorphisms. (see Sec------------ for the déifomi of an inverse
image.)

Theorem 2: Let f: R—> R, be a ring homomorphism. Then

a) if S is a subring of R f(S) is a subring of ;
b) if T is a subring of B f%(T) is a subring of R
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Proof: We will prove (b) and leave the proof of (a) to ysee E 8). Let
us use Theorem 1 of unit 10.

Firstly, since T# @ . Next, let a, Bl f(T). Then f(a), f(b)IT.
= f(a) = f(b) T and f(a) f(b)IT

= f(a—b)OT and f(ab)dT

— a — bOf }(T) and atd f(T)

— f(T) is a subring.

To complete the proof of Theorem 2, try E 8:

SELF ASSISMENT EXERCISE 8
Prove (a) of Theorem 2

Now, it is natural to expect an analogue of Theo&for ideals. But
consider the inclusion i: Z>R: i(x) = x. you know that 2Z is an ideal of
Z. butis i(2Z) an ideal of R? No. For exampld,]2Z, butz.% =%DZZ.
Thus, the homomorphitnage of an ideal need not be an ideaBut,
all is not lost. We have the following result.

Theorem 3 Let f: RR— Ry, be a ring homomorphism.
a) If fis surjective and 1 is an ideal of,Rhen f (I) is an ideal of R
b) If l'is an ideal of B, then (1) is an ideal of Rand Ker 0 (1).

Proof: Here we will prove (a) and leave (b) to you (se®)E

Firstly, since | is a subring of;Rf(l ) is a subring of R

Secondly, take any f(X{)Jf(1) and r OR,. since f is surjectivells [IRy,
such that f(s) =r.

Then

Rf(x) = f(s) = f(sx)O f(l), since sxl.

Thus, f(I) is an ideal of R

To finish the proof try E 9.

SELF ASSISMENT EXERCISE 9
Prove (b) of Theorem 3.

Now, consider an epimorphism f.-RS and an ideal | in R. By Theorem
3 you know that f(l) is an ideal of S and(f(l)) is an ideal of R. How
are | and f(f(1)) related? clearly, 10 f(f(1)). Can f'(f(1)) contain
elements of R\I? Remember that Kdr f(f(1)) also. Thus, | + Ker fJ
f1(f(1)). In fact, | + Ker f = f}(f(1)). Let us see why.
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Let x Of '(f(1)). Then f(x) O f(1). Therefore, f(x) = f(y) for some .
Then

F(x-y)=0.

Ox—yOKerf, ie., xOy + Ker fO | + Ker f.

OfYf(1)) O1 + Ker f.

Thus, I'(f(1)) = | + Ker f.

This tell us that if Ker 11, then

f (f(1)) = 1 (since Ker f0 1 = | + Ker f = 1).

Now you may like to do an easy exercise.
SELF ASSISMENT EXERCISE 10

Let f: R— S be an onto ring homomorphism. Show that ifahisdeal
of S, then f(f(J)) = J.

Our discussion so far is leading us to the follgyineorem.

Theorem 4:Let f* R— S be an onto ring homomorphism. Then

a) if | is an ideal in R containing Ker f, | Z'f(1))

b) the mapping | - f(I) defines a one-to-one correspondence
between the set of ideals of R containing Ker f #mel set of
ideals of S.

Proof: We have proved (a) in the disussion above. Lgtrage (b) now.
Let A be the set of ideals of R containing KerridaB the set of ideals
of S.

Define g:A — B: g(l) = f(I,)
We want to show that @ is one-on-one and onto.
@ is onto : If IIB then f* (J) DA and Ker fO f* (J) by Theorem 3.
Now g (f(3)) = f(*(9)) = J, using E 10.
@ is one-on-one: If;land b are ideals in R containing Ker f, then
2(l) = a(k) = f(11) =1(12)
= F(fly) = F(f(1,))
=11 =1, by (a)
Thus, g is bijective.

Use this result for solving the following exercises
SELF ASSISMENT EXERCISE 11
Find the kernel of the homomorphism

f.Z—Z15:1(2) = z.
Also find the ideals of £.
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SELF ASSISMENT EXERCISE 12

Show that the homomorphism f=2Z X Z : f(n) = (n, n) is not onto.
Find an ideal in Z X Z which is not of the form)f(ivhere | is an ideal of
Z.

And now let us look closely at the sets Ker f amdf] where f is a ring
homomorphism then Ker f is a normal subgroup efa@Gd Im f is a
subgroup of G we have an analogous result for ring homomorpbjs
which you may have already realize from the examptai have studied
so fa.

Theorem 5: Let f:R;—R; be a ring homomorphism. Then
a) Ker fis an ideal of R
b) Im fis a subring of R

Proof: a) Since {0} is an ideal of Rby Theorem 3(b) we know that f

1({0}) is an ideal of R. But f*({0}) = Ker f.
Thus, we have shown that Ker f is an ideal f R

C) Since R is a subring of R f(R;) is a subring of R by Theorem
2(a). Thus, Im fis a subring oL,R

This result is very useful for showing that certagts are ideals. For
example, from theorem 5 and example 3 you can inmatedg say that

{0,3}is an ideal of Z As we go along you will see ore examples of this
use of Theorem 5.

Let us look a little more closely at the kernebdiomomorphism. In
fact, let us prove a result analogous to Theorerhuhit 6.

Theorem @ Let f: R1->R2 be a homomorphisnthen f is injective iff
Ker f = {0}.

Proof: f is injective iff is an injective group h@amorphism from (R +)
into (R,, +). This is true iff Ker f = D}, by Theorem 4 of unit 6. so, our
result is proved.

Using Theorem 6, solve the following exercise.

SELF ASSISMENT EXERCISE 13

Which of the homomorphisms in example 1-6 are 1-1?
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So far we have seen the give a ring homomorphigta»8, we can
obtain an ideal of R, namely, Ker f. Now, giveideal | of a ring R can
we define a homomorphism f so that Ker f = 1?

The following theorem answers this question. Befgoing to the
theorem recall the definition of quotient ringsrrainit 10.

Theorem 7: If is an ideal of a ring R, then there exists agri
homomorphism f:R>R/l whose kernel is 1

Proof: Let us define f:R»>R/1 by f(a) = a + 1 for all &R. Let let us see
if f is @ homomorphism. For this take any aJR. then

F@+b)=(a+b)+1=(a+1)+(b+1)="f(ajb), and

F@ab)=ab+1=(a+1)(b+1)(b+1)="1f(a)f(b

Thus, f is a homomorphism.

Further, Kerf={dIR|f(a) =0+ 1}={d IR |a+1=1}
={0R|al1}=1.

Thus, the theorem is proved.

Also note that the homomorphism f is onto.

We call the homomorphism defined in the proof abthe canonical
(or natural) homomorphism from R onto R/1.

Try this simple exercise now.
SELF ASSISMENT EXERCISE 14

Let S be a subring of a ring R. Can we always @efa ring
homomorphism whose domain is R and Kernel is S?why

Now let us look at the behaviour of the compositdmomomorphisms.
We are sure you find the following result quite unsising.

Theorem 8: Let R, R, and R be ring and f: R—>R,, and g: R—R; be
ring homomorphisms. Then their compositiorf:gR; —R3 give by (¢ f)
(x) = g(f(x)) for all x[J Ry is a ring homomorphism.

The proof of this result is on the same lines as pmoof of the
corresponding result in unit 6. We leave it to ysee the following
exercise).

SELF ASSISMENT EXERCISE 15

Prove Theorem 8
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SELF ASSISMENT EXERCISE 16

In the situation of Theorem 8 prove that
a) ifgofis1l—1,thensoisf.

b) if gof is onto, then so is g.

SELF ASSISMENT EXERCISE 17

Use Theorem 8 to show that the function h: Z X-Z, defined by h(n,
m)) = m is a homomorphism.

Now let us see what the ring analogue of a groomas phism is.

3.3 The Isomorphism Theorems

In Unit 6 we discuss group isomorphisms and varressilts involving
them. In this section we will do the same thingrings. So, let us start

by defining a ring isomorphism.

Definition: Let R and R be two rings. A function f:R->R; is called a
ring isomorphism (or simply an isomorphism) if

) fis a ring homomorphism,
i) fisl1l-1, and
i)  fis onto.

Thus, a homomorphosm that is bijective is an isqiniem.

An f: R;—R; is an isomorphism, we say that Risomorphismto R,
and denote it by R=R,.

Over her we would like to make the following remark

Remark: Two rings are isomorphic if and only if they dabgaically
identical. That is, isomorphic rings must have otlyathe same
algebraic properties. Thus, if, & a ring with identity then it cannot be
iIsomorphic to a ring without identity. Similarlif,the only ideals of R
are {0} and itself, the any ring isomorphic tq Rust have this property
too.

Try the following exercise now. They will help yau becoming more
familiar with isomorphisms.

SELF ASSISMENT EXERCISE 18

Which of the following functions are ring isomorphis?
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a) f:Z ->R:f(n)=n
b) f: Z —5Z: f(n) = 5n
C) f: C—C: f(z) =z, the complex conjugats z

SELF ASSISMENT EXERCISE 19

Let : R, — R2 be a ring isomorphisnThen ¢": R, —R; is a well defined
function since g is bijective. Show thatig also an isomorphism.

SELF ASSISMENT EXERCISE 20
Show that the composition of isomorphism is an isgohism.

And now, let us go back to Unit 6 for amoment. @ivere we roved the
Fundamental Theorem of Homomorphsim for groups,omicg to
which the homomorphic image of a group G is isorh@m theorem or
the Fundamental Theorem of Homomorphism for rings.

Theorem 9 (The Fundamental of Homomorphisni let f: R—S be a

ring homomorphism. Then R/Kerf Im f. In particular, if f is
surjective, then R/Ker £S

Proof: Firstly, note that R/Ker f is a well-defined questt ring since Ker
fis an ideal of R. For convenience, let us put Kerl. let us define.

¢ :RI1-S by ¢ (x+ 1) = f(x).

As in the case of Theorem 8 of unit 6, we neecheck thaty is well defined
,i.e., if

X+1l=y+ltheny(x+1)=¢ (y+1).

Now, x +1 =y +1= x -y 01 = Ker f= f(x — y) = 0= f(x) = f(y)

= Yyx+1)=ygy+1).

Thusy is well defined.
Now let us see whether is an isomorphism or not

1)  is ahomomorphism. : Let x =,[yR. Then

g (x+1)+(y+1)=¢gx+y+1)=fx+y)=1x) +f(y)
=g (x+1)+ ¢(y+1) and

p((x+1)(y+1) =¢ (xy+1)=f(xy)=1(x) f(y)
=g+ yly+1)

Thus, ¢ is a ring homomorphism.
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1)) Imy =Imf:sinceyg(x+1)=f(X)0ImfOXxOR. Img OIm
f. Also any element of Im f is of the form f(x) & (x + 1) for
some X1 R. Thus, ImfJ Im ¢ .

S, Imy =Imf.

1)) ¢ is 1 —1: To show this let x, R such that

@ (x+1)=¢(y+1). Then f(x) = f(y),
sothatf(x—y) =0, i.e., x —yKer f = 1.
e, x+1=y+1.

Thus,y is1 - 1.

So, we have shown that R/Kerfm f.
Thus, if fis onto, then Im f = S and R/Kerf S.

Note that this result says that f is the compasitip o 7, wherenis the
canonical homomorphism: R - R/1: n(a) =a+ 1. This can ve
diagrammatically shown as

R >
o~

R
Let us look at some examples of the use of the &uonedital Theorem.
Consider p: Z-Z : p(n) =n.p is an epimorphism and Ker p = {fr 0

mZ.,} mZ.

Therefore, ZImZ= Z,,.
(Note that we have often used the fact that Z/mZ Apnare the same.)

as another example, consider the projection map

p: Rt X R, - Ry p(a, b) =a, where.Rand R are rings. Then p is onto
and its kernel is

Therefore, (RX Ry)/R, ~ Ry
Try this exercise now.
SELF ASSISMENT EXERCISE 21

What does the Fundamental Theorem of Homomorphagninseach of
the Examples 1 to 67
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Let us now apply Theorem 9 to prove that any riagpbmorphism from
a ring R onto Z is uniquely determined by its KerA@at is, we can’t
have two different ring homomorphisms from R ontavith the same
kernel (note that this is not true for group homagphessm from Z onto
itself with the same kernel, {0}.) To prove thia&ment we need the
following result.

Theorem 10: The only non-trivial ring homomorphism from Z into
itself is 1,.

Proof: Let f: Z —Z be a non-trivial homomorphism. Let n be positive
integer. Then

n=1+1+....1(ntimes). Therefore,

f(n) = f(1) + f(1) + ... + f(1) (n times) = n f(1).

On the other hand, if n is a negative integer, thers a positive integer.
Therefore, f(-n) = (-n) f(1), i.e., -f(n) =-(f, sincefisa
homomorphism. Thus,

f(n) = n f(1) in this case too.

Also f(0) = 0 = of(2).

Thus, f(n) = nf(1)J n OZ.

Now, since f is a non trivial homomorphism, f(mp for somelZ.
Then, 1(m) = 1(m.1) = f(m) f(1).

Canceling f(m) on both sides we get f(1) =1

Therefore, from (1) we see that

FinN)=rdn0OZ, ie.,f=1.

This theorem has an important corollary.

Corollary : Let R be a ring isomorphisc to Z. If f and g awe
somorphisms from
R onto Z, the f=g.

Proof: The compositiondg™* is an isomorphism from Z onto itself.
Therefore, by Theorem 104 g[j'l =1,ie.,f=g.

We are now in a position to prove the followinguies

Theorem 11:Let R be a ring and f and g be homomorphisms from R
onto Z such that Ker f = Ker g. Then f = g.

Proof: By theorem 9 we have isomorphisms.

¢, : RIKer f- Z andy, :R/IKer g - Z.
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Since Ker f = Ker gy, andy, are isomorphisms of the same ring onto
Z. Thus, by the corollary above, = ¢,
Also, the canonical mapg R - R/Ker f andn,R - R/Ker g are the

same since
Ker f = Ker g.
Df :Wfonf :Wgong :g'

We will now give you a chance to prove two applmas of Theorem 9!
They are analogous to Theorem 10 and 11 of unit 6

SELF ASSISMENT EXERCISE 22

(second isomorphism theorem) Let S b a subring &edan ideal of a
ring R. Show that (S + I)&S/(Sn ).

SELF ASSISMENT EXERCISE 23

(Third isomorphism theorem) Let | and J be ideahaing R such that J
Ol. Show that I/J is an ideal of the ring R/J anakt

(RI)/(113)=RII.

Let us halt our discussion of homomorphisms her@ lamefly recall

what we have done in this unit. Of course, we haetfinished with

these functions. We will be going back to themimagand again in the
future units.

4.0 CONCLUSION

We have laid a solid foundation in this courseyfou to proceed
further in studying further algebra as you progiasgur career as
a mathematician . Do all the self assessment sesron order to
understand the course better.

5.0 SUMMARY

In this unit we have covered the following points.

. The definition of a ring homomorphism, its kernetats image,
along with several examples

. The direct or inverse image of a subring under almaophism is
a subring.

. If f: R - S is a ring homomorphism, then
) Im f is a subrig of S,

1)) Ker f is an ideal of R,
i)  f7(1) is an ideal of R for every ideal 1 of S.
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Iv)  If fis surjective, then f(1) is an ideal of S.

. A homomorphism is injective iff its kernel is {0},
. The composition of homomorphisms is a homomorphism.
. The definition and examples of a ring isomorphism.

. The proof and applications of the Fundamental Téwaoof
Homomorphism which says that if f: RS is a ring

homomorphism, then R/Ker=f Im f.
SOLUTIONS/ANSWERS
SELF ASSISMENT EXERCISE 1

For x, yUs,
iX+y)=x+y=i(x) +i(y), and
i(xy) = xy =i(x) i(y)

i is a homomorphism.

Keri ={x 0S| i(x) = 0} = {0}
Imi ={i(x) | x OS} =S.

SELF ASSISMENT EXERCISE 2

For any x, YIR;, f(x) +y) =0=0 + 0 = f(x) + f(y), and
f(xy) = = 0.0 =1f(x) . f(y). Of is a homomorphism.
Kerf={xOR;|f(X)=0=}=R

Im f = {O}.

SELF ASSISMENT EXERCISE 3

f(2.3)=1(6) = 12. But f(2) . (3¢ 4.6=24

Thus, f(2.3) f(2) f(3)

f is not a homomorphism.

SELF ASSISMENT EXERCISE 4

For any (a, b), (c, d)A X B,

P((a, b) +(c,d)) =p(a +c,b+d)=a+c=lpetp(c, d),
P((a, b) (c, d)) = p(ac, bd) = ac = p(a, b) p(c, d)
Kerp={(a, bDAXB|a=0}={0} XB.

Imp={p(a b)|(a, b AXB}={a| (a,b)d0AXB}=A.
SELF ASSISMENT EXERCISE 5

Yes, you can check it.
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SELF ASSISMENT EXERCISE 6

For f, g0 C[O, 1],

g(f+9)=((f+0)(0), (f+g) (1)
= (f(0), (1)) + (9(0), 9(2))
= g(f) + #(g), and

g(fg) = (fg(0), fg(1) = (f(0), 9(0)) (f(1), 9(1))
= a(f) 2(9).

0 @ is a homomorphism.

SELF ASSISMENT EXERCISE 7

Let x JT,. Since f is surjective,lr [JR, such that f(r) = x. since
r.1 =r, f(r) f(1) = f(r).

Thus, xf(1) = x. This is true for anyX R,.

[0f(1) is the identity of R

SELF ASSISMENT EXERCISE 8

Again use Theore 1 of unit 10.
)] Sto=>1(S)£ o

1)) Let &,b'00 f(S). Thena, b S such that f(a) /', f(b) = b’
Now a'-b' =f(a) — f(b) = f(a — b)Jf(S), since a— 1 S, and
ab' =f(a) f(b) = f(ab)T (S), sine aklS.

Of(S) is a subring of R

SELF ASSISMENT EXERCISE 9

Since 1 is a subring of,Rf (1) is a subring of R Now, let al f*(1)
and rOR;. We want to show that af™*(1).
Since a (1), f(a)01. Of(a) f(r) O 1, i.e.,

f(ar) 01.0 arO*(1).

Thus, (1) is an ideal of R

Also, if x O Ker f, then f(x) = 1.
Ox O fY2).

OKer f O f(1).

SELF ASSISMENT EXERCISE 10
Let x O f(f"*(3)). Then x = f(y), where gf*(J),i.e. f(y)0J, i.e., xOJ.
Thus, f(f}(3)) 0 J.

Now, Let x[1J. since f is surjective]y [JR such that f(y) = x
Then yO f1(x) O ().
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Ox = f(y) Of(F*(J))
Thus, JJ f(f(J)).
Hence the result is proved.

SELF ASSISMENT EXERCISE 11

Kerf={n0OZ| n=0 (mod 12)} = 12Z.

Now, you know that any ideal of Z is a subgrouZpénd hence must
be of the form nZ, ON. Thus, the ideals of Z containing Ker f are all
those nZ such that n|12, i.e., Z, 2Z, 3Z, 4Z, 6Z.1Thus, by Theorem
4(b) the ideals of £ are

Z.,.22,,,32,,,4Z,,,6Z,,andp}.
SELF ASSISMENT EXERCISE 12

For example, (0, 1)) Im f.
For anyideal 1 of Z, f(1) =1 X 1. Thus, the idéaX {0} of Z X Z is
not of the form f(1), for any ideal 1 of Z.

SELF ASSISMENT EXERCISE 13

The Homomorphisms in Examples 1 and 5.

SELF ASSISMENT EXERCISE 14

NO. For example, take the subring Z of Q. Since @at an ideal of Q,
it can’t be the kernel of any homomorphism fromoCanhother ring.

SELF ASSISMENT EXERCISE 15

for any x, yORy,

gef(x +y) = g(f(x +y)) = g(f(x) + (y))
= g f(x) + gof(y), and

gof(xy) = gof(x) gof(y).

Thus, ¢ f is a homomorphism.

SELF ASSISMENT EXERCISE 16

a) XJKerf=f(x) =0= g-f(x) =0= x =0, since gfis 1 — 1.
OKer f ={0}.
Ofis1-1.

b) Let x[J Rs. Since gf is ontoy R; such that gf(y) = x, i.e.,
g(f(y)) = x. Thus, g is onto.
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SELF ASSISMENT EXERCISE 17

h is the composition of the projection map p: Z X-ZZ: p(n, m) = m
and the map f: Z. Z,: f(r) = r. Both p and f are ring homomorphisms.
Oh is a ring homomorphism.

SELF ASSISMENT EXERCISE 18

a) Is not onto and hence, not an isomorphism.
b) Is not a homomorphism.
C) ee the appendix of unit 2 for properties ofredats of C.

Then you can easily prove that f is an isomorphism.
SELF ASSISMENT EXERCISE 19

Let x, yOR, and 8'(x) = f, 6'(y) = s. Then x = g(r) and y = &(s).
Therefore,

X+y=a()+ a(s) =a(r +s) and xy = g(rs).

O g'(x+y)=r+s=d(x)+g(y), and

g'(xy) = r1s = g(x) &(y).

Thus, &' is a homomorphism.

You already know that it is bijective. Thus: B an isomorphism.

SELF ASSISMENT EXERCISE 20

Let f;—» R, and g: R - R3 be ring is isomorphisms. From Theorem 8
you know that gf is a homomorphism. For the rest, proceed asdyu
in E 12 of unit 6.

SELF ASSISMENT EXERCISE 21

Example 1 : R~ R.

Example 2 : What we have just done above, namésZ, Z Z,
Example 3: Z{ 0,3} = Z,.

Example 4: Ker g = {f1C[0, 1]| f[%j = 0}
Im g = R (because given anyIrR we can define the constant function

fr [0, 1] - R:fi(x) =r. Then,f(%j =r. Thus, r = g(j OIm ).

Example 5: Z={ nl| n 0Z}
Example 611 (X)/Ker f =0 (Y).
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SELF ASSISMENT EXERCISE 22

Since lis anideal of rand1S + 1, itisanideal of S + 1
Thus, (S +1)/1 is a well-defined ring.

Definef: S- (S+1)/1:f(x) =x + 1.

Then, you can check that f(x + y) = f(x) + f(y),dan

F(xy) = f(x) f(y) Ox, y OS.

As you did in Theorem 10 unit 6, you can check thatsurjective and
Kerf=Sn 1.

Thus, S/($ 1) = (S + 1)/1.
SELF ASSISMENT EXERCISE 23
Define f: RIJ- R/1: f(r + J) = r +1.

As you did in Theorem 11 of unit 2 you can check this well defined,
f is surjective and Ker f = 1/J.

Thus, 1/J is an ideal of R/J and (R/J)/(HR/1.

6.0 TUTOR MARKED ASSIGNMENT

Study eamples 1to 6 and in each case stateutigamental
Theorem of Homomorphism

7.0 REFERENCES/FURTHER READINGS

Blacksell: Topics in Algebra
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Notation and Symbols

a= b (mod n) a is congruent to be modulo n.
a () set of all subsets of X.

A B (A\B) O (B\A)

R/ quotient ring of R by I.

<a> principal ideal generated by a.
<ay,..., &> ideal generated by a . a,

Ker f kernel of the homomorphism f.
~ is isomorphic to.
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