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MODULE 1 

APPROXIMATIONS 
 

UNIT 1: POLYNOMIALS 
 
1.0 Introduction 
Polynomials are very useful in the study of Mathematics especially in Numerical Analysis. Over 
the years polynomials have been used as approximation to several functions. Although 
polynomials are sometimes difficult to solve as equations yet they help in appreciating the value 
of certain functions. To this end, polynomials are of paramount importance when it comes to 
approximation theory.  
 
2.0 Objectives 
By the end of this unit, the learner should be able to: 

(a) define a polynomial; 
(b) understand the degree of a polynomial; 
(c) distinguish between polynomial as a function and a polynomial equation;  
(d) express simple functions as polynomials 
(e) name types of approximation methods. 

 
 
3.0 What is a Polynomial?  
From elementary Mathematics, you have come across polynomials in various forms. The 
commonest one is what is usually called the quadratic expression which can be written as  

ax2 + bx + c 
Thus examples of polynomials may include: 
 2x2 – 3x +1 

x2 + 6x – 5  
 x4 + 3x3- x 2 +2x + 5 
and so on. 
We shall therefore give a standard definition of what a polynomial is 
 
Definition 1 
A function P(x) of the form 

P(x) = a
0 
+ a

1
x + a

2
x

2 
+ … + a

n
x

n      (3.1) 

is said to be a polynomial in x, where ao, a1, a2, . . . , an are the coefficients of the function P(x). 

These coefficients may be real or complex numbers. 
 
3.1  The Degree of a Polynomial  

Definition 2 

The highest power to which the variable x is raised in a polynomial P(x) is the degree of the 
polynomial. 
 
Hence, the polynomial function P(x) given by equation (3.1) is of degree n,  
For example any quadratic expression is a polynomial of degree 2.  
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If  P(x) = x4 + 3x3- x 2 +2x + 5,  then P(x) is of degree 4 
 2x2 – 3x +1  is a polynomial of degree two. 
 
3.2 Polynomial Equation  
A polynomial is simply an expression whereas a polynomial can be come an equation if the 
expression is equated to a quantity, often to zero. 
Thus, when we write P(x) = 0 , from equation (3.1) then equation (3.1) becomes a polynomial 
equation. 
Although (3.1) is called an equation this is only because the polynomial is designated as P(x) on 
the left hand side. Apart from this, it is simply a polynomial. Thus  
 a

0 
+ a

1
x + a

2
x

2 
+ … + a

n
x

n 

is a polynomial of degree n, whereas  
 a

0 
+ a

1
x + a

2
x

2 
+ … + a

n
x

n
 = 0       (3.2) 

is a polynomial equation of degree n. 
 We must observe that if all the terms of a polynomial exist, then the number of coefficients 
exceed the degree of the polynomial by one. Thus a polynomial of degree n given by equation 
(3.2) has n+1 coefficients.  
Polynomial equation can be solved to determine the value of the variable (say x) that satisfies the 
equation. On the other hand there is nothing to solve in a polynomial. At best you may factorize 
or expand a polynomial and never to solve for the value of the variable. 
Thus we can solve the polynomial equation  
 0223 =−+ xxx  
But we can only factorize xxx 223 −+  
To factorize the expression xxx 223 −+  we shall get:  x(x+2)(x – 1) 
But solving for x in the equation we get:  x =  –2 , 0, 1 
 
There are many things that we can do with polynomials. One of such things is to use polynomials 
to approximate non-polynomial functions. 
 
3.3 Function Approximation  
There are functions that are not polynomials but we may wish to represent such by a polynomial. 
For example, we may wish to write cos x or exp(x) in terms of polynomials. How do we achieve 
this?  
The learner should not confuse this with expansion of a seemly polynomial by Binomial 
expansion.  
For example, we can expand 8)1( x+  using binomial expansion. Without expanding this, the 
expression is simply a polynomial of degree 8. 
However, if we wish to write ex as a polynomial, then it can be written in the form: 

......3
3

2
21 ++++++= n

no
x xaxaxaxaae  

This is only possible by using series expansion such as Taylor or Maclaurin series. 
The learner is assumed to have studied Taylor or Maclaurin series of simple functions at the 
lower level. For example, the expansion of exp(x) is written as:  

...
!

...
!3!2

1
32

++++++=
n
xxxxe

n
x  
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This shows that exp(x) can be expressed as a polynomial function. The degree of where the 

polynomial is truncated (terminated), say 
!k

xk
, is the approximation that is written for ex. It may 

be reasonable to let k be large, say at least 2. Hence a fourth order approximation of exp(x) will 
be:  

!4!3!2
1

432 xxxxex ++++=       (3.3) 

That is,  ex is written here as a polynomial of degree 4. 
Similarly the Taylor series for cos x is given by  

 ...
!6!4!2

1cos
642
++++=

xxxx       (3.4) 

The illustration above leads us to the study of approximation theory.  
 
3.4 Types of Functions Approximation  

Before we go fully into the discussion of various approximations in Numerical Analysis, we 
need to state that there may arise two problems. 
The first problem arises when a function is given explicitly, but we wish to find a simpler type of 
function such as a polynomial, that can be used to approximate values of the given function.  
The second kind of problem in approximation theory is concerned with fitting functions to a 
given set of data and finding the “best” function in a certain class that can be used to represent 
the set of data. 
To handle these two problems, we shall in this study discuss some of the basic methods of 
approximations.  
Some of the approximation methods of functions, in existence, include: 

(i.) Taylor’s Approximation  
(ii.) Lagrange polynomials 
(iii.) Least-Squares approximation 
(iv.) Hermite approximation  
(v.) Cubic Spline interpolation 
(vi.) Chebyshev approximation 
(vii.) Legendre Polynomials 
(viii.) Rational function approximation; 
and some few others more.  

 
Every approximation theory involves polynomials; hence, some methods of approximation are 
sometimes called polynomials. For example, Chebyshev approximation is often referred to as 
Chebyshev polynomials. We shall begin this discussion of these approximations with the Least 
Squares Approximation. 
 
Self Assessment Exercise 
1. How many non-zero coefficients has )1)(52( 2 −+ xx  

2. What is the degree of the polynomial involved in the equation: 0)2)(12( 2 =−+
x

xx ?  

hence obtain its solution. 
3. Write a polynomial of degree 3 with only two coefficients 
4. By following equation (3.3) write down the expansion of  e –x  
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4.0 Conclusion 
Polynomials are basic tools that can be used to express other functions in a simpler form. While 
it may be difficult to calculate e3 without a calculator, because the exponential function e is 
approximately 2.718, but we can simply substitute 3 into the expansion given by (3.3) and 
simplify to get an approximate value of e3. Hence a close attention should be given to this type of 
function. 
 
5.0 Summary 
In this Unit we have learnt that 
(i) polynomials are expression involving various degrees of variable x which may be sum 

together. 
(ii) polynomial expression is different from polynomial equation. 
(iii) simple functions can be written through the expansion given by Taylor or Maclaurin series. 
(iv) there are various polynomial approximations which can be used to estimate either a 

function or a set of data.   
 
 
6.0 Tutor Marked Assignment 
 
1. Obtain the Taylor’s expansion of sin x 
2. Distinguish between Taylor series and Binomial expansion 
3. Find the Maclaurin series for e –x as far as the term involving x4 and hence estimate e –2  
 
 
7.0 Further Reading and Other Resources.  

1. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 
2nd ed. McGraw-Hill Tokyo. 

2. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

3. Okunuga, S. A., and Akanbi  M, A., (2004). Computational Mathematics, First Course, 
WIM Pub. Lagos, Nigeria. 

4. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
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MODULE 1 
UNIT 2: Least Squares Approximation (Discrete Case) 
 
1.0 Introduction 
Sometimes we may be confronted with finding a function which may represent a set of data 
points which are given for both arguments x and y.  Often it may be difficult to find such a 
function y = y(x) except by certain techniques. One of the known methods of fitting a 
polynomial function to this set of data is the Least squares approach. The least squares approach 
is a technique which is developed to reduce the sum of squares of errors in fitting the unknown 
function. 
The Least Squares Approximation methods can be classified into two, namely the discrete least 
square approximation and the continuous least squares approximation. The first involves fitting a 
polynomial function to a set of data points using the least squares approach, while the latter 
requires the use of orthogonal polynomials to determine an appropriate polynomial function that 
fits a given function. For these reasons, we shall treat them separately.  

 
2.0 Objective 
By the end of this unit, you should be able to: 

(a) handle fitting of polynomial (for discrete case) by least squares method 
(b) derive the least square formula for discrete data 
(c) fit a linear polynomial to a set of data points 
(d) fit a quadratic or parabolic polynomial to a set of data points 

 
3.0 Discrete Least Squares Approximation  
The basic idea of least square approximation is to fit a polynomial function P(x) to a set of data 
points (xi, yi) having a theoretical solution 

 y = f(x)        (3.1) 
The aim is to minimize the squares of the errors. In order to do this, suppose the set of data 
satisfying the theoretical solution ( 3.1) are 

(x1, y1), (x2, y2), . . . , (xn, yn) 
Attempt will be made to fit a polynomial using these set of data points to approximate the 
theoretical solution f(x).  
The polynomial to be fitted to these set of points will be denoted by P(x) or sometimes Pn(x) to 
denote a polynomial of degree n. The curve or line P(x) fitted to the observation y1, y2, . . . , yn 
will be regarded as the best fit to f(x), if the difference between P(xi) and f(xi) , i = 1, 2, . . . , n  is 
least. That is, the sum of the differences 
 ei = f(xi) – P(xi),   i = 1, 2, . . . , n   should be the minimum. 
The differences obtained from ei could be negative or positive and when all these ei are summed 
up, the sum may add up to zero. This will not give the true error of the approximating   
polynomial. Thus to estimate the exact error sum, the square of these differences are more 
appropriate. In other words, we usually consider the sum of the squares of the deviations to get 
the best fitted curve. 
Thus the required equation for the sum of squares error is then written as  

 [ ]∑
=

−=
n

i
ii xPxfS

1

2)()(        (3.2) 

which will be minimized. 
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where P(x) is given by  
P(x) = a

0 
+ a

1
x + a

2
x

2 
+ … + a

n
x

n      (3.3) 

The above approach can be viewed either in the discrete case or in the continuous case 
 
3.1 Fitting of polynomials (Discrete case) 
We shall now derive the formula in discrete form that fits a set of data point by Least squares 
technique. The aim of least squares method is to minimize the error of squares. 
To do this we begin by substituting equations (3.1) and (3.3) in equation (3.2),  this gives: 

[ ]∑
=

++++−=
n

i

k
ikiioi xaxaxaayS

1

22
21 )....(     (3.4) 

To minimize S, we must differentiate S with respect to ai and equate to zero. Hence, if we 
differentiate equation (3.4) partially with respect to  a0, a1,…,ak, and equate each to zero, we shall 
obtain the following: 

[ ] 0)....(2
1

2
21 =++++−−=

∂
∂

∑
=

n

i

k
ikiioi

o
xaxaxaay

a
S  

[ ] 0)....(2
1

2
21

1
=++++−−=

∂
∂

∑
=

i
n

i

k
ikiioi xxaxaxaay

a
S  

[ ] 0.)....(2 2

1

2
21

2
=++++−−=

∂
∂

∑
=

i
n

i

k
ikiioi xxaxaxaay

a
S     (3.5) 

………….  

[ ] 0.)....(2
1

2
21 =++++−−=

∂
∂

∑
=

k
i

n

i

k
ikiioi

k
xxaxaxaay

a
S  

 
These can be written as  

∑∑∑∑ ++++= k
ikiioi xaxaxanay ....2

21  

∑∑∑∑∑ +++++= 13
2

2
1 .... k

ikiiioii xaxaxaxayx  

∑∑∑∑∑ +++++= 24
2

3
1

22 .... k
ikiiioii xaxaxaxayx     (3.6) 

… . . . . . .  

∑∑∑∑∑ ++++= ++ k
ik

k
i

k
i

k
ioi

k
i xaxaxaxayx 22

2
1

1 ....  

where ∑ is assumed as short form for ∑
=

n

i 1
 

Solving equation (3.6) to determine a0, a1,…ak and substituting into equation (3.3) gives the best 
fitted curve to (3.1).  
The set of equations in (3.6) are called the Normal Equations of the Least Squares Method 
Equation (3.6) can only be used by creating a table of values corresponding to each sum and the 
sum is found for each summation. 
We shall now illustrate how to use the set of equations (3.6) in a tabular form.  
 
Self Assessment Exercise  

1. For a quadratic approximation, how many columns will be required, list the variables for 
the columns excluding the given x and y columns. 

2. Give one reason why we need to square the errors  in a least square method. 
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3.2 Numerical Example 
 
Example 1 

By using the Least Squares Approximation, fit  
(a) a straight line  
(b) a parabola 

to the given data below 

x 1 2 3 4 5 6 
y 120 90 60 70 35 11 

 
Which of these two approximations has least error? 
 
Solution 
(a) In order to fit a straight line to the set of data above, we assume the equation of the form   
 xaay o 1+=  
The graph of the set of data above is given by in figure 1 
 

0

20

40

60

80

100

120

140

0 2 4 6 8

Series1

Figure 1 
 
By inspection a straight line may be fitted to this set of data as the line of best fit, since most of 
the points will lie on the fitted line or close to it. However, some may want to fit a curve to this 
but the accuracy of the curve fitted is a thing for consideration. 
Now from the straight line equation above, we have to determine two unknowns ao, and a1 , the 
normal equations necessary to determine these unknowns can be obtained from equation (1.7) as: 

∑∑ += ioi xanay 1  

∑∑∑ += 2
1 iioii xaxayx  

 
Hence we shall need to construct columns for vales of xy and x2 in addition to x and y values 
already given. 
 
Thus the table below shows the necessary columns: 
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Table 1 

x y x2 xy 
1 120 1 120 
2 90 4 180 
3 60 9 180 
4 70 16 280 
5 35 25 175 
6 11 36 66 

Σ 21 386 91 1001 
 

1

1
91211001

216386
aa

aa

o

o
+=

+=
 

Solving these two equations, we obtain 
20,33.134 1 −== aao  

Therefore the straight line fitted to the given data is  
 y = 134.33 – 20x 
  
(b) In a similar manner, the parabola can be written as 2

21 xaxaay o ++= . Hence the required 
normal equations to determine the unknowns ao, a1 and a2 are:  

∑∑∑ ++= 2
21 iioi xaxanay  

∑∑∑∑ ++= 3
2

2
1 iiioii xaxaxayx  

∑∑∑∑ ++= 4
2

3
1

22
iiioii xaxaxayx  

 
Thus, we construct the necessary columns in Table 2 given below: 
 

Table 2 
x y x2 x3 x4 xy x2y 
1 120 1 1 1 120 120 
2 90 4 8 16 180 360 
3 60 9 27 81 180 540 
4 70 16 64 256 280 1120 
5 35 25 125 625 175 875 
6 11 36 216 1296 66 396 

21 386 91 441 2275 1001 3411 
 
Substituting into the normal equations, we have  

3411227544191
10014419121

38691216

21

21

21

=++
=++

=++

aaa
aaa

aaa

o

o

o
 

On carefully solving these equations, we obtain   

28
5,

4
85,136 21 =−== aaao  

As a learner, you are expected to solve these equations by any simple method known to you. 
Hence the fitted curve is 2

28
5

4
85136 xxy +−=  
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The graphs of the two approximate functions are shown below:  
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Figure 2 
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Figure 3 
 
The two lines look like a straight line but the errors of the two lines will depict the better 
approximation.  
We can now consider the accuracy of the two fitted functions to the data and decide on which 
one of the two approximations is better. To do this we may retain values of x for 1, 2, . . . , 6 and 
evaluate the corresponding y values. 
For example when x = 1, the linear approximation gives y = 134.33 – 20 = 114.33, where as for 
the same x = 1 the quadratic approximation gives:  9.114136 28

5
4

85 =+−=y . For the set of 

values of x tabulated we have the corresponding values for y in both approximations. The 
squares of the errors are considered as (y – yi)2.  The table below describes the error table. 
 
 

Quadratic Approximation  

Linear Approximation  
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Table 3 
 

x y y1 = y(L) y2 = y(Q) (y-y1)2 (y-y2)2 
1 120 114.33 114.9 32.1489 26.01 
2 90 94.33 94.2 18.7489 17.64 
3 60 74.3 73.9 204.49 193.21 
4 70 54.3 53.9 246.49 259.21 
5 35 34.3 31.3 0.49 13.69 
6 11 14.3 14.9 10.89 15.21 

    513.2578 524.97 
 
The sums of squares of the error of fitted lines by linear function y(L) and quadratic function 
y(Q) are shown above in Table 3. The comment here is that the sum of squares of error of the 
linear (513.26) is slightly lower than that of the quadratic (524.97). Invariably the linear function 
is a better approximation to the data above. 
 
4.0  Conclusion  
Fitting a polynomial to discrete data by least squares methods is easily handled by creating tables 
of values and generating all necessary columns that will enable one to obtain the normal 
equations. The normal equations are then solved simultaneously to determine the unknowns 
which are then substituted into the required approximate polynomial equation.  
 
 
5.0 Summary 
In this Unit we have learnt   
(i) how to derive the normal equations of the least squares method 
(ii) that only necessary terms of the normal equations are computed; 
(iii) that the set of normal equations can be used to obtain any polynomial approximation by 

the least square method. 
(iv) that the choice of the degree of polynomial chosen in fitting the data by least squares 

method may not necessarily be the best fit; 
(v)  that computation by least squares method is simple and straight forward to apply. 
 
 
6.0 Tutor Marked Assignment 

1. The table below gives the readings from a laboratory experiment.  
Time t 2 3 5 6 9 

   Reading y 7 17 49 71 161 
Fit  (a)  a linear function  and  (b) a quadratic polynomial  to the above data by method of least 
squares and determine which of the two is a better approximation. 
 
2. How many normal equations will be needed to fit a cubic polynomial? Hence list the entire 
necessary variables for such fitting. 
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7.0 Further Reading and Other Resources 
1. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 

2nd ed. McGraw-Hill Tokyo. 
2. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 

York. 
3. Okunuga, S. A., and Akanbi  M, A., (2004). Computational Mathematics, First Course, 

WIM Pub. Lagos, Nigeria. 
4. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
5. Atkinson K.E. (1978): An Introduction to Numerical Analysis, 2nd Edition, John Wiley & 

Sons, N.Y 
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MODULE 1 
UNIT 3 Least Squares Approximation (Continuous Case) 
 
1.0  Introduction 
We have seen in the last unit how to fit a polynomial to a set of data points by using the least 
squares approximation technique. We shall in this unit consider the situation in which a function 
f(x) is to be approximated by the least squares method in terms of a polynomial. In this case 
since data are no longer given, it would not be necessary to create tables by columns but rather 
by carrying out some integration. The candidate is therefore required to be able to integrate 
simple functions as may be required. 
 
2.0  Objective 
By the end of this unit, the learner should be able to 

(i.) Distinguish between discrete data and continuous function 
(ii.) Fit polynomials to continuous functions by least squares approach 

  
 
3.0 Fitting an Approximate Polynomials (Continuous case) 
If we wish to find a least square approximation to a continuous function f(x), our previous 
approach must be modified since the number of points (xi, yi) at which the approximation is to be 
measured is now infinite (and non-countable). Therefore, we cannot use a summation as 

[ ]∑
=

−
n

i
ii xPxf

1

2)()( , but we must use a continuous measure, that is an integral. Hence if the 

interval of the approximation is [a, b], so that bxa ≤≤  for all points under consideration, then 
we must minimize  

[ ]∫ −
b
a

dxxPxf 2)()(  

where y = f(x) is our continuous function and P(x) is our approximating function. 
 
3.1  Derivation 
Let f(x) be a continuous function which in the interval (a, b) is to be approximated by a 
polynomial linear combination 

k
ko xaxaxaaxP ++++= ....)( 2

21       (3.1) 

[ ] dxxaxaxaayS
b
a

k
ikiioi∫ ++++−=

22
21 )....(  

of n+1 given functions no ϕϕϕϕ ,...,, 21 . Then, c0, c1, …, cn can be determined such that a 
weighted Euclidean norm of the error function f(x) – p(x) becomes as small as possible 

That is,  ∫ −=−
b

a
dxxwxPxfxPxf )()()()()( 22     (3.2) 

where w(x) is a non-negative weighting function. Equation (3.2) is the continuous least square 
approximation problem. 
The minimization problem of f(x) by continuous function P(x) of( 3.1) is given by 

             [ ]∫ −=
b
a

dxxPxfS 2)()(        (3.3) 

where the interval [a, b] is usually normalized to [-1,1] following Legendre polynomial or 
Chebyshev function approximation, hence, substituting equation (3.2) in (3.3), we obtain 
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[ ]∫− ++++−=
1

1
2

2211 )()}(...)()()({)( dxxwxcxcxcxcxfS nnoo ϕϕϕϕ     (3.4) 

where no ϕϕϕϕ ,...,, 21  are some chosen polynomials. 
 
To minimize (3.3) or (3.4), one could consider two alternative methods to obtain the coefficients 
or the unknown terms.  
 
3.1.1 First Method  
The first approach for minimizing equation (3.3) is by carrying out an expansion of the term 
[ ]2)()( xPxf − , next carry out the integration and then by means of calculus, obtain the 
minimum by setting 

0=
∂
∂

kc
S   ,  k = 0, 1, 2, …, n 

This approach will be illustrated by the next example. 
 
Example  
Find the least square straight line that provides the best fit to the curve xy =  over the interval 

10 ≤≤ x . 
 
Solution 
Let the line be  y = ax+b, we must minimize 

[ ]∫ −−=
1
0

2 dxbaxxS  

Expand the integrand, we obtain 

∫ 



 +++−−=

1
0

222 222 2
3

dxbabxxaxbaxxS  

And integrating we get 





 +++−−= xbabxxbxaxx aS 222

3
22

3

3
42

5

5
42

2
1

1

0

 

Evaluating we get 

2
1

3
4

5
42

3
2

+−−++= baabbS a  

For a minimum error, we must set    0,0 =
∂
∂

=
∂
∂

b
Sand

a
S  

Doing this, we get 

02

0

3
4

5
4

3
2

=−+=
∂
∂

=−+=
∂
∂

ab
b
S

ba
a
S

 

Thus, we solve the equations 

3
4
5
4

3
2

2 =+

=+

ba

ba
 

Solving, we get 
15
4

5
4 , == ba  
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Hence the Least squares approximation is  

15
4

5
4 += xy  

WE observe that The line 
15
4

5
4 += xy meets the curve xy =  in two points P(0.1487, 0.3856) 

and Q(0.7471, 0.8643) as shown below. 
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Figure 1 

 
 
This straight line is only a linear approximation to the given curve. We could have as well found 
other polynomial approximation using the same least squares technique.  
It will be observed that if P(x) is a polynomial of higher degree say n = 3 or more, the expression 
[ ]2)()( xPxf − may not be easy to expand before integrating, so we must seek another approach 
for the minimization. 
 
Self Assessment Exercise 

Give one disadvantage of the technique used above.  
 
3.1.2 Alternative Method  
Now, suppose we wish to find the least squares approximation, using a polynomial of degree k to 
a continuous function y over [a,b]. In such a case, we must minimize the integral  
 

[ ] dxxaxaxaayS
b
a

k
ikiioi∫ ++++−=

22
21 )....(  

If we do not want to expand the expression in the squared bracket, then we must first get the 

normal equations. In other words, we derive the normal equation by obtaining 0=
∂
∂

ia
S , before 

integrating the resulting function and evaluating the result. 
 
Doing this we obtain  
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and in general we can write  

0....2 2
21 =





 −−−−−−=

∂
∂

∫ dxxaxaxaayx
a
S b

a
k

koi
r

r
    for   (r = 0,1, . . . , k ) 

The factor  (–2) that appeared first in the integral can be ignored since the right hand side of the 
equation is zero. Hence, the normal equations can be written as  

0....2
21 =





 −−−−−∫ dxxaxaxaayx

b
a

k
koi

r   for   (r = 0,1, . . . , k ) 

This will give (k+1) linear equations in the (k+1) unknowns  a0, a1, . . . , ak which can be solved  
simultaneously by any algebraic process. 
This approach may be simpler than the first one and we therefore suggest this second method. 
However any of the two techniques may be used and are both valid. 
 
Example 2 
Find the least squares quadratic ax2 + bx + c, which best fits the curve xy =  over the interval  

10 ≤≤ x . 
 
Solution 
We need to minimize 
 

[ ]∫ −−−=
1
0

22 dxcbxaxxS  

By this new approach, we shall first of all obtain the normal equations. Thus we have:  

( ) 0
1
0

2 =−−−= ∫∂
∂ dxcbxaxxc
S  

( ) 0
1
0

2 =−−−= ∫∂
∂ dxcbxaxxxb
S  

( ) 0
1
0

22 =−−−= ∫∂
∂ dxcbxaxxxa
S  

 
Integrating, we get the three equations as follows: 
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02
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3
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5

5
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1

0

=−−− cxbxaxx  
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3
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4
15

5
12

7

7
2

1

0

=−−− cxbxaxx  

Evaluating within the limits we obtain three simultaneous equations 
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Solving these equations simultaneously we get 

    
35
6,

35
48,

7
4

==−= cba  

Thus the least squares quadratic function is  

 
35
6

35
48

7
4)( 2 ++−= xxxf   

or ( )32410
35
2)( 2 −−−= xxxf  

The earlier approach of expanding the integrand is also valid. However the number of terms in 
the expansion may not be friendly. The higher the degree of the polynomial we are trying to fit 
by least squares approximation, the more difficult it is to obtain the coefficients of the 
polynomial by expansion. Hence this last approach or method may be more appropriate for easy 
handling. 
 
The error table of the above result is given below 
 

x xy =  ( )32410
35
2)( 2 −−−= xxxf  E= y – f(x)  

0 0.0000 0.1714 0.1714 
0.1 0.316228 0.302857 0.013371 
0.2 0.447214 0.422857 0.024357 
0.3 0.547723 0.531429 0.016294 
0.4 0.632456 0.628571 0.003885 
0.5 0.707107 0.714286 0.007179 
0.6 0.774597 0.788571 0.013974 
0.7 0.836660 0.851429 0.13666 
0.8 0.894427 0.902857 0.094427 
0.9 0.948683 0.942857 0.048683 
1.0 1.0000 0.971429 0.0000 

 
 
4.0 Conclusion  
To conclude this unit, it would be observed using the least squares approximation technique to fit 
a polynomial to a continuous function f(x) could be done in two ways. The reader is allowed to 
use either of the methods. However, expanding the integrand before carrying out the integration 
may be sometimes more difficult than to first of all find the normal equations.  The error 
obtained in using the least square method will depend on how well a polynomial of certain 
degree is suitable in approximating the continuous function.  
 
5.0 Summary 
In this unit we have learnt that 
(i) it is possible to fit a polynomial to a continuous function by Least Squares Method (LSM) 
(ii) fitting a polynomial by LSM for a continuous function will necessarily require integration 
(iii) there are two approaches of fitting a polynomial by LSM for a continuous function  
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(iv) one approach will require expansion of [f(x) – P(x)]2 for a given polynomial P(x) while the 
other approach will go by the way of normal equation. 

 
 
6.0 Tutor Marked Assignment 
Find the least squares quadratic ax2 + bx + c, which best fits the curve 12 += xy  over the 
interval  10 ≤≤ x . 
 
 
7.0 Further Reading and Other Resources 

1. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

2. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
3. Atkinson K.E. (1978): An Introduction to Numerical Analysis, 2nd Edition, John Wiley & 

Sons, N.Y 
4. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N.Y. 
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MODULE 2 

ORTHOGONAL POLYNOMIALS 

UNIT 1 Introduction To Orthogonal System 
 
1.0  Introduction 
Orthogonal polynomials are of fundamental importance in many branches of mathematics in 
addition to approximation theory and their applications are numerous but we shall be mainly 
concerned with two special cases, the Legendre polynomials and the Chebyshev polynomials. 
More general applications are however easily worked out once the general principles have been 
understood. 
 
2.0  Objective 
By the end of this unit, the learner should be able to 

(i.) define what orthogonal polynomials are 
(ii.) formulate orthogonal and orthonormal polynomials 
(iii.) handle inner product of functions 

 
3.0  Orthogonal Polynomials 
We begin this study by giving the definition of orthogonal functions: 
 
Definition 1  
A system of real functions ....),(),( 1 xxo φφ    defined in an interval [a,b] is said to be orthogonal 
in this interval if 





=
≠

=∫ nm
nm

dxxx
n

b
a nm ,

,0
)()(

λ
φφ  

If 1.....10 === λλ  the system is said to be normal. An orthogonal system which is also normal 
is sometimes referred to as an orthonormal system. 
Note that since )(xnφ is real,  λn ≥ 0 and we shall assume that each )(xnφ  is continuous and non-
zero so that λn > 0. 
 
The advantages offered by the use of orthogonal functions in approximation theory can now be 
made clear as follows. Suppose {φn,(x)} is an orthogonal system and that f(x) is any function and 
we wish to express f(x) in the form 
 ....)(....)()()( 11 ++++= xcxcxcxf nnoo φφφ     (3.1) 

Then nn
b

a
nn

b

a
n cdxxcdxxxf λφφ == ∫∫ )()()( 2  

 
since all the other terms on the right-hand side are zero and so 

dxxxfc
b

a
nn

n ∫= )()(1 φ
λ

       (3.2) 

Thus the coefficients cn in equation (3.1) can be found. These coefficients cn are called the 
Fourier coefficients of f(x), with respect to the system {φn(x)} 
 
3.1   The Inner Products 
Let w(x) be the weighting function and let the inner product of two continuous functions f(x) and 
g(x) be defined as  
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∫=
b
a

dxxgxfxwgf )()()(,  

where f, g are continuous in [a, b], then f(x) and g(x) satisfy the following properties: 
 
(i.) ,,,, ><=><=>< gfgfgf ααα    α is a scalar 
(ii.) gfgfgff ,,, 2121 +=+  

(iii.) 2121 ,,, gfgfggf +=+  

(iv.) fggf ,, =  

(v) 0, >ff   for all f ∈ C[a,b]  and 0, =ff iff  f = 0. 
 
The functions f and g are said to be orthogonal if the inner product of f and g is zero, that is if  

0, =gf  
In a similar manner we can define the inner product for the discrete case. The inner product of 
discrete functions f and g satisfy the orthogonality property given by  

 ∑
=

=
m

k
kk xgxfgf

0
)()(,  

where {xk} are the zeroes of the function.  
We remark here that polynomial approximation is one of the best ways to fit solution to 
unknown function f(x). 
A good polynomial Pn(x) which is an approximation to a continuous function f(x) in a finite 
range [a, b] must possess oscillatory property. Among such polynomial approximation functions 
include the Chebyshev Polynomials and the Legendre Polynomials. We shall examine these 
polynomials and their properties in our discussion in this course as we go along. 
 
Definition 2    (Orthogonality with respect to a weight function) 
A series of functions {φn,(x)} are said to be orthogonal with respect to the weight function w(x) 
over (a,b) if 

     




=
≠

=∫ nm
nm

dxxwxx
n

b
a nm ,

,0
)()()(

λ
φφ  

 
The idea and principle of orthogonality properties are now extended to two common polynomials 
in the next few sections. 
 
3.2   EXAMPLE  
The best-known example of an orthogonal system is the trigonometric system 

 
1, cos x, sin x, cos2x, sin2x,… 

Over the interval [-π, π]. 
We shall define various combination of integral of product functions of sine and cosine as 
follows: 

 
)(0sincos

)(0coscos

nmdxmxnx

nmdxmxnx

≠=

≠=

∫

∫

−

−
π
π

π
π  
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)(0sinsin

)(0cossin

nmdxmxnx

nmdxmxnx

≠=

≠=

∫

∫

−

−
π
π

π
π  

and )0(0sin.cos ≠==∫− nmdxnxnx
π
π

 

 

whereas )(0coscos nmdxnxnx ==∫−
π
π

 

  ⇒    dxnxdxnx ∫∫ −−
+=

π
π

π
π

)2cos1(cos 2
12  

     

πππππ

π

π

=−+−−+=

+=
−

))(2sin()2sin(

)2sin(

2
1

2
1

2
1

2
1

2
1

2
1

nn

nxx
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n  

Also     )(0sinsin nmdxnxnx ==∫−
π
π

 

    ⇒     )0(sin 2 ≠==∫− nmdxnx π
π
π

 

 

and finally for n = 0,   )0(210cos 22 ==== ∫∫ −−
nmdxdx π

π
π

π
π

 

 
Comparing this with our Definition 1 above, we obtain from these integrals the following values  

πλλπλ ==== ...,2 321  
It follows therefore that the system 

 
πππππ

xxxx 2sin,2cos,sin,cos,
2
1  

is orthogonal and normal 
 
 
4.0 Conclusion  
The discussion above has simply illustrates the way to determine where a set of functions is 
orthogonal or otherwise.  Other examples can be produced to show the orthogonality property. 
 
5.0 Summary 
In this unit we have learnt that  

(i.) a normal orthogonal system is an orthonormal system 
(ii.) orthogonality of some functions can be obtained by integration  
(iii.) inner product is written as an integral or a sum  

 
6.0 Tutor Marked Assignment 
      Verify whether the following functions are orthogonal or not 
 (i.) 1, ex , e2x , e3x , . . . . 
 (ii.)  ln x, ln2x , ln3x , ln4x, . . .  
 
7.0 Further Reading and Other Resources 

1. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 
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2. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
3. Atkinson K.E. (1978): An Introduction to Numerical Analysis, 2nd Edition, John Wiley & 

Sons, N.Y 
4. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N.Y. 
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MODULE 2 
UNIT 2   THE LEGENDRE POLYNOMIALS 
1.0  Introduction 
Legendre polynomial is known to possess some oscillatory property among which makes it of 
importance in the field of numerical analysis. The polynomial has its root from the Legendre 
equation which is a second order differential equation. The first set of solutions of the Legendre 
equation is known as the Legendre polynomial. 
 
2.0  Objective 
By the end of this unit, the learner should be able to 
(i.)    state the necessary formulae for generating the Legendre polynomials 
(ii.)   generate the Legendre polynomials 
(iii.)  define the Legendre polynomial as a class of orthogonal series. 
 
3.0  Legendre Polynomial Approximation  
When we try to find good polynomial approximations to a given function f(x) we are trying to 
represent f(x) in the form 

  ∑
=

=
n

k

k
k xCxf

0
)(       (3.1) 

which is of the form of series equation (3.1) of the last unit with k
k xx =)(φ . Unfortunately the 

set 1, x, x2,… is not orthogonal over any non-zero interval as may be seen at once since, for 
example 

0)()( 4
31 >= ∫∫ dxxdxxx

b

a

b

a
φφ  

 
which contradicts the assertion that {xk} is orthogonal. It is however possible to construct a set of 
polynomials P0(x), P1(x), P2(x),… Pn(x),… where Pn(x) is of degree n which are orthogonal over 
the interval [-1, 1] and from these a set of polynomials orthogonal over any given finite interval 
[a,b] can be obtained. 
The method for finding a set of polynomials which are orthogonal and normal over [-1, 1] is a 
relatively simple one and we illustrate it by finding the first three such polynomials. 
We shall at this junction give a definition of Legendre Polynomial which can be used to generate 
the set of polynomials required. 
 
Definition 1 
The Rodrigues’ formula for generating the Legendre polynomial is given by  

[ ]n
n

n

nn x
dx

d

n
xP )1(

!2

1)( 2 −=        (3.2) 

From the definition given above, it will be observed that an nth derivative must be carried out 
before a polynomial of degree n is obtained. Thus the first few set of Legendre polynomials can 
be obtained as follows: 

)(xPo will not involve any derivative since n = 0, hence we have  

0 ( ) 1p x =  
Also for n = 1, we shall have  
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To obtain )(3 xP it will require differentiating three times which will become cumbersome as n 
increases. With this difficulty that may be encountered with higher differentiation especially as  
n > 2  in )(xPn  of Rodrigues’ formula (3.2) above,  a simpler formula for generating the 
Legendre polynomials is given by its recurrence relation. This is given next. 
 
3.1 Recurrence Formula for Legendre Polynomial  
The recurrence formula for the Legendre Polynomial Pn(x) is given by the equation 

( ) ( ) )(.)(..)( 111
12

1 xPxPxxP nn
n

nn
n

n −++
+

+ −=    (3.3) 

where Pn(x) is known to have satisfied the Legendre differential equation 
 ( ) 0)()1()(.2)(1 2 =++′−′′− xPnnxPxxPx nnn    
 
Once 0 ( )p x and 1( )p x are obtained from Rodrigue’s formula (3.2) as: 
  0 ( ) 1p x = ,   and   1( )p x x=  
We can now switch over to equation (3.3) to generate higher order polynomials. Thus for n = 1, 
2, 3, . .. , we obtain from equation (3.3) as follows:  
  
For n = 1 we have   ( ) ( ) )(.)(..)( 2

1
12

3
2 xPxPxxP o−=  

 ( ) ( )
2
12

2
3

2
1

2
3

2 1.....)( −=−= xxxxP  

Which is the same as the P2(x) earlier obtained using the Rodrigues’ formula (3.2) 
Furthermore, for n = 2, we have    
 ( ) ( ) )(.)(..)( 13

2
23

5
3 xPxPxxP −=  

 ( ) ( ) ( )xxxxP ...)( 3
2

2
12

2
3

3
5

3 −−=   

⇒ 3
3

1( ) (5 3 )
2

p x x x= −   

Similarly for n = 3 we have  
 ( ) ( ) )(.)(..)( 24

3
34

7
4 xPxPxxP −=  

Substituting previous results we have  

 ( )4 2
4

1( ) 35 30 3
8

p x x x= − +  

Also P5(x) gives  ( )5 3
5

1( ) 63 70 15
8

p x x x x= − +   etc 

The reader may like to generate the Legendre polynomials up to 10 ( )p x  
One of the properties of the Legendre polynomial is its orthogonality property. 



 27 

It is known that the Legendre Polynomial Pn(x) satisfies the following property: 

 

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This is the orthogonality property which permits it to be a polynomial approximation to any 
continuous function within its range [-1, 1]. 
It follows at once from equation (3.4) that {Pn(x)} forms an orthogonal, but not normal, set over 
[-1, 1] with respect to the weight function w(x) = 1 and that the set  

 { }






= + )()(

2
12 xPxq n

n
n  

forms an orthonormal set. 
 
4.0 Conclusion  
We observed that the Legendre Polynomials can be obtained from the Rodrigues’ formula but 
much easier by using the recurrence formula generated from the Legendre differential equation.  
 
5.0 Summary 
In this Unit we have learnt   

(i) how to use the Rodrigue’s formula to generate Legendre polynomials  
(ii) how to use recurrence relation as alternative formula to derive the same Legendre 

polynomials by simple substitution of previously known polynomials 
(iii) that the orthogonality property of the Legendre Polynomial permits it to be a 

polynomial approximation to an continuous function. 
 
6.0 Tutor Marked Assignment 
Obtain the Legendre Polynomials Pn(x) for n = 5, 6, . . . , 10 using both the Rodrigue’s formula 
and the recurrence relation of the Legendre polynomials. 
 
7.0 Further Reading and Other Resources 

1. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

2. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
3. Atkinson K.E. (1978): An Introduction to Numerical Analysis, 2nd Edition, John Wiley & 

Sons, N.Y 
4. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N.Y. 
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MODULE 2 
UNIT 3 Least Squares Approximation by Legendre Polynomials 
 
1.0  Introduction 
Legendre Polynomials are known to be applicable to least square approximation of functions. In 
this sense, we mean that we can follow the least square approximation technique and adapt this 
to Legendre polynomial.  
 
2.0 Objective 
By the end of this unit, the learner should be able to 

(i.)  apply Legendre polynomial to least squares procedures 
(ii.)  obtain least square approximation using Legendre polynomial 

  
3.0 The Procedure 

Let f(x) be any function defined over [-1, 1] and ∑
=

=
n

k
kkn xPaxL

0
)()(  

be a linear combination of Legendre polynomials. We shall now determine what values of the 
coefficients {ak} will make Ln(x) the best approximations in f(x) in the least squares sense over 
the interval [-1, 1]. Our objective is to minimize 

 [ ]∫− −=
1
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2
,1 )()(),....,( dxxLxfaaaI nno    (3.1) 

and so as in the least squares method, we must set 
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Using equation (3.2) in (3.1), we obtain an equivalent term written as 
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Recall from last unit that the Legendre Polynomial Pn(x) satisfies the orthogonality property: 
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when k = r, and by the orthogonality property (3.3) we shall obtain 

 
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When the coefficients {ar} have been found Ln(x) can be re-arranged as desired, as a polynomial 
in powers of x, that is, 

 ∑∑
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k
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which provides a solution to the least squares polynomial approximation problem. The 
evaluation of the integrals on the right-hand side of (2.9) may have to be done numerically.  
The following examples shall be used to illustrate the least squares approximation method using 
the Legendre polynomial. 
 
3.1   Numerical Experiment 

EXAMPLE 1 

Find the fourth degree least squares polynomial to |x| over [-1, 1] by means of Legendre 
polynomials. 
 
Solution 

Let the polynomial be   ∑
=

n

k
kk xPa

0
)(  

 
Then, from equation (2.9) 
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The required polynomial is therefore 
 )()()( 416

3
28

5
02

1 xPxPxP −−       (3.5) 

The expression (3.5) can be converted to normal polynomial form by substituting the polynomial 
form of Po(x), P2(x) and P4(x) as given in the last unit. This ends up giving the required 
polynomial as: 

 I = ( )42 10521015
128

1 xx −+       (3.6) 

Which is therefore the least squares polynomial for |x| over [-1, 1] 
 
Verification 
This result may be verified directly by using the least squares method given in the last module. 

Now the least squares polynomial is ∑
=

4

0k

k
k xa   
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And by least square method we minimize  

[ ]∫ − ++++−=
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Now, setting the respective partial derivatives to zero by equation (3.2), we shall obtain the 
normal equations as follows:  
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Integrating, we get the following equations: 
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Evaluating within the limits we obtain the following equations 
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Solving these simultaneously, we deduce at once that a1 = a3 = 0 and that 
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42 === aaao  

In agreement with coefficients of equation (3.6) 
 
 
Example 2 
Given a continuous function ex for x∈[-1,1] fit a linear polynomial c0 + c1x to ex and determine 
its root mean square error 
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Solution 
Using Equation (3.1) we have  
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For xexf =)( , we can write the linear polynomial as  
xaaxP o 1)( +=  

 
By using equation (3.4) we have  
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Therefore the linear polynomial is  
 P(x) = 1.1752 + 1.1036x 

 
An average error of approximating f(x) by P(x) on the interval [a, b] is given by 
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dxxPxf
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Hence by (3.7), the least square approximation will give a small error on [a, b]. The quantity E is 
called the root mean square error in the approximation of f(x) 

Now since    
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xPxf
E

−

−
=

)()(
 

We can evaluate E using any of the k-, l- , or m- norm     
Using the l-norm, we write  
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Hence the error is as large as 0.3108. If higher approximating polynomial is used the error will 
be smaller that this. 
 
4.0 Conclusion  
The use of Legendre polynomial as a technique for least square approximation shows that the 
same result is achievable from the least square approximation method as well as the Legendre 
Polynomial approach. 
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5.0 Summary 
In this Unit the reader have learnt   
(i.) the technique of using Legendre polynomial to obtain and approximation using the least 

square method. 
(ii.) that both Legendre approach and the Least squares approach will often produce the same 

result. 
 
6.0 Tutor Marked Assignment 
Obtain a fourth degree least squares polynomial for

x
xf 1)( =  over [-1, 1] by means of Legendre 

polynomials. 
 
 
7.0 Further Reading and Other Resources 
 

1. Abramowitz M., Stegun I. (eds) ,(1964): Handbook of Mathematical functions, Dover , 
N.Y. 

2. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 
2nd ed. McGraw-Hill Tokyo. 

3. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

4. Henrici P. (1982): Essential of Numerical Analysis, Wiley, N.Y 
5. Kandassamy P., Thilagarathy K., & Gunevathi K. (1997) : Numerical Methods, S. Chand 

& Co Ltd, New Delhi, India 
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MODULE 2 
UNIT 4: The Chebyshev Polynomials 
 
1.0  Introduction 
It is always possible to approximate a continuous function with arbitrary precision by a 
polynomial of sufficient high degree. One of such approach is by using the Taylor series method. 
However, the Taylor series approximation of a continuous function f  is often not so accurate in 
the approximation of f over an interval [ ba, ]. If the approximation is to be uniformly accurate 
over the entire interval. This may be due to the fact that: 
(i) in some cases, the Taylor series may either converge too slowly or not at all. 
(ii) the function may not be analytic or if it is analytic the radius of convergence of the Taylor 
series may be too small to cover comfortably the desired interval.  
In addition, the accuracy of the Taylor series depends greatly on the number of terms contained 
in the series. However, a process that was based on the fundamental property of Chebyshev 
polynomial may be considered as alternative and it works uniformly over any given interval. We 
know that there are several special functions used for different purposes including 
approximation, polynomial fittings and solutions of differential equations. Some of these special 
functions include Gamma, Beta, Chebyshev, Hermite, Legendre, Laguerre and so on. However, 
not all these are good polynomial approximation to continuous functions. 
However, Chebyshev polynomials have been proved to be very useful in providing good 
approximation to any continuous function.  
To this end, the Chebyshev polynomial is usually preferable as polynomial approximation. The 
Chebyshev polynomial has equal error property and it oscillates between –1 and 1. Due to its 
symmetric property, a shifted form of the polynomial to half the range (0, 1) is also possible.  
 
2.0 Objective 

By the end of this unit, the learner should be able to 
(i.)    state the necessary formulae for generating the Chebyshev polynomials 
(ii.)   obtain Chebyshev polynomials  Tn(x) up to n = 10 
(iii.)  classify Chebyshev polynomial as a family of orthogonal series. 
 

3.0  Introduction To Chebyshev Polynomials 

As it was earlier stated, Chebyshev polynomials are often useful in approximating some 
functions. For this reason we shall examine the nature, properties and efficiency of the 
Chebyshev polynomial.  
Chebyshev Polynomial is based on the function “cos nθ” which is a polynomial of degree n in 
cosθ. Thus we give the following basic definition of the Chebyshev polynomial.  
 
Definition 1 
The Chebyshev polynomial is defined in terms of cosine function as  

)cos.cos()( 1 xnxTn
−=     for   0,11 ≥≤≤− nx    (3.1) 

 
This definition can be translated to polynomials of x  as it would be discussed very soon.  
Before we do this, if we put  x = cosθ , the Chebyshev polynomial defined above becomes  

)cos()( θnxTn =  
Tn(x) is of the orthogonal family of polynomials of degree n and it has a weighting function  
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It has an oscillatory property that in πθ ≤≤0  the function has alternating equal maximum and 
minimum values of  ± 1  at the n+1 points   

n
r

r
πθ = ,   r = 0, 1, 2, . . . , n.  

or 


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
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Thus the orthogonality relation of the Chebyshev polynomial is given as: 










≠=

==
≠

=∫− −
0,

0,
,0

)().(

2
1

1

1 1
1

2

mn

mn
mn

dxxTxT mn
x

π

π      (3.2) 

It also has a symmetric property given by  
)()1()( xTxT n

n
n −=−         (3.3) 

  
3.1    Generating Chebyshev Polynomials 
Over the years the function Tn(x) is the best polynomial approximation function known for f(x). 
In order to express Tn(x) in terms of polynomials the definition can be used to some extent, but 
as n value increases, it becomes more difficult to obtain the actual polynomial except by some 
trigonometric identities, techniques and skill. 
For the reason, a simpler way of generating the Chebyshev polynomials is by using the 
recurrence formula for Tn(x) in [-1, 1]. 
 
The recurrence formula for generating the Chebyshev polynomial Tn(x) in [-1, 1] is given by  

1,)()(2)( 11 ≥−= −+ nxTxxTxT nnn         (3.4) 
Thus to obtain the Chebyshev polynomials, a combination of (3.1) and (3.4) can be used. 
Starting with the definition (3.1), that is  

)cos.cos()( 1 xnxTn
−=  

We obtain the least polynomial when n = 0 as  
10cos)(0 ==xT  

Also when  n = 1, we get  xxxT == − )cos(cos)( 1
1  

 When  n = 2,   )cos2cos()( 1
2 xxT −=  

 with x = cosθ 
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=

x
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θ

θ

 

For n = 3, 4, . . .  it will be getting more difficult to obtain the polynomials. However if we use 
the recurrence formula (3.4) , we can obtain T2(x) by putting n = 1 so that  

)()(2)( 012 xTxxTxT −=  
Substituting  xxTxT == )(,1)( 10 , (from the result earlier obtained), we have   

 121).(2)( 2
2 −=−= xxxxT  
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This is simpler than using the trigonometric identity. 
Thus for n = 2, 3, . . .  we obtain the next few polynomials as follows: 
When n = 2, the recurrence formula gives 
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xxx

xTxxTxT
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3

2
123

−=

−−=

−=

  

Similarly for n = 3, we obtain  
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)12()34(2
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+−=

−−−=

−=

xx

xxxx

xTxxTxT

 

In a similar manner  
xxxxT 52016)( 35

5 +−=  
We can now write all these polynomials out for us to see the pattern which they form. 

xxT
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=
=

)(
1)(

1

0  

12)( 2
2 −= xxT  

xxxT 34)( 3
3 −=        (3.5) 

188)( 24
4 +−= xxxT  

xxxxT 52016)( 35
5 +−=  

You can now derive the next few ones, say up to T10(x), following the same technique. 
Note that the recurrence formula is one step higher than the definition for the “n” value being 
used. In other words, when n = 2 in the definition we obtain T2(x), whereas to get the same T2(x) 
from the recurrence formula we use n = 1. The reason is obvious; the recurrence formula starts 
with subscript “n+1” as against “n” in the definition. 
These polynomials are of great importance in approximation theory and in solving differential 
equations by numerical techniques. 
 
3.2   Properties of Chebyshev Polynomials 
In the interval  –1 ≤ x ≤ 1 the Chebyshev Polynomial Tn(x) satisfies the following properties: 

(i.) – 1 ≤ Tn(x) ≤ +1 

(ii.) Tn(x) = 1 at (n + 1) points x0, x1, . . . , xn, where 





=

n
rxr
πcos  ,  r = 0, 1, 2, . . . , n 

(iii.) n
n xT )1()( −=  

(iv.) The leading coefficient in Tn(x) is 2n – 1 . 
 
3.3   Derivation of the Recurrence Formula 

Now that we have seen the usefulness of the recurrence formula (2.16), it might be necessary for 
us to derive this formula from certain definition. There are two ways to this. We can use some 
trigonometric functions to get this since Chebyshev polynomial is defined as a cosine function. 
However, we can also derive this formula by solving it as a difference equation which can be 
shown to produce the definition (2.13). For the purpose of this course, since we are not treating 
linear difference equation, we shall go via the first type, by using some trigonometric functions. 
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Equation (2.16) is given by  
1,)()(2)( 11 ≥−= −+ nxTxxTxT nnn  

To obtain this formula, we can recall from trigonometric knowledge that  
)(cos)(cos2coscos

2
1

2
1 BABABA −+=+  

If we put  A = (n + 1) arccos x    and    B = (n – 1) arccos x 
Then       cos A + cos B = cos{(n + 1)arccos x} + cos{(n – 1)arccos x} 
   = [ ] [ ]xnnxnn arccos)11(cos.arccos)11(cos2 2

1
2
1 +−+−++  

= [ ] ( )xxn arccos2cos.arccos)2(cos2 2
1

2
1  

    = 2 cos(n.arccos x) . cos(arccos x) 
 cos A + cos B    =  2cos(n arccos x). x 
 cos A =  2xcos(n arccos x) – cos B     
That is    cos[(n + 1)arccos x]  =  2x cos[n arccos x] –  cos[(n – 1)arccos x] 
By definition,   )cos.cos()( 1 xnxTn

−= ,  
we then have 
  )()(2)( 11 xTxxTxT nnn −+ −=  
Thus the recurrence formula is easily established. 
 
4.0 Conclusion  
The derivation of Chebyshev polynomials has been demonstrated and made simple by using the 
recurrence formula rather than using the basic definition (3.1). we have equally given the 
derivation of the recurrence formula  by simply using some trigonometry identities, although this 
derivation can be established by solving the recurrence formula as a difference equation from 
which the basic definition (3.1) is obtained. Other methods of derivation equally exist. 
 
5.0 Summary 
In this Unit we have learnt that: 
(i) Chebyshev polynomials are special kind of polynomials that satisfy some properties 
(ii) Chebyshev polynomials which are valid within [-1, 1] have either odd indices or even 

indices for Tn(x) depending on whether n is odd or even. 
(iii) Chebyshev polynomials can be obtained from the recurrence formula. 
(iv) the recurrence formula for Chebyshev polynomials Tn(x) is more suitable to generate the 

polynomials than its definition. 
 
6.0  Tutor Marked Assignment 
 Obtain the Chebyshev polynomials Tn(x) for  n = 5, 6, . . . , 10 
 
7.0      Further Reading and Other Resources 
1. Abramowitz M., Stegun I. (eds), (1964): Handbook of Mathematical functions, Dover, N.Y. 
2. Atkinson K.E. (1978): An Introduction to Numerical Analysis, 2nd Edition, John Wiley & Sons, N.Y 
3. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 2nd ed. 

McGraw-Hill Tokyo. 
4. Henrici P. (1982): Essential of Numerical Analysis, Wiley, N.Y 
5. Kandassamy P., Thilagarathy K., & Gunevathi K. (1997) : Numerical Methods, S. Chand & Co Ltd, 

New Delhi, India 
6. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, Numerical Analysis, 

John Wiley, N.Y. 
7. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
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MODULE 2 
UNIT 5: Series of Chebyshev Polynomials 
1.0  Introduction 
Chebyshev polynomials can be used to make some polynomial approximations as against the use 
of least square method. The orthogonality properties of the Chebyshev polynomial permit the use 
of the polynomial as approximation to some functions. A case of cubic approximation will be 
considered in this study.   
 
2.0  Objective 
By the end of this unit the learner would have learn  
(i) the form of the function f(x) which permits the use of Chebyshev polynomials as 

approximation to it 
(ii) how to apply Chebyshev polynomials to fit a cubic approximation to a function f(x).  
 
3.0   Approximation By Chebyshev Polynomials  
If we have a function f(x) which we wish to approximate with a series of Chebyshev polynomials 

)(....)()()( 22112
1 xTcxTcxTccxf nno ++++=    (3.1) 

How we can find the coefficients ci? 

The theoretical method is to multiply f(x) by 
21
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use of the orthogonality property of Tn(x). Thus, if we multiply both sides by this factor and 
integrate over [-1, 1], we can write  
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The only term on the right which doesn’t vanish is the one where m = n ≠ 0. In other words if we 
use the orthogonality property given by equation (3.2) of the last unit, we have 
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The evaluation of the integral for cm given by (3.2) will in general have to be done numerically 
and in such cases it is obviously important to ensure that the truncation error is sufficiently small 
or the accuracy available via the Chebyshev approximation to f(x) will be reduced. In a few 
special cases, the integral can be evaluated analytically and the problem of truncation error does 
not arise; the most important of such case is when f(x) = xn (n ≥ 0) and we shall deal with this 
case below; but first we look at an example where evaluation of (3.2) is computed numerically. 
 
3.1 Numerical Examples   
 
Example 1 
Find a cubic approximation to ex by using Chebyshev polynomials 
 
Solution 
Let the approximation be 

)(....)()( 22112
1 xTcxTcxTcce nno

x ++++=     
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Then, from (2.17) 

 dx
x

xTec r
x
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π

  (r = 0, 1, 2, 3) 

Using the substitution x = cosθ , we transform this integral as follows: 

 x = cosθ ⇒  θθθθθ dxdddx 22 1cos1sin −−=−−=−=  
when x = 1 , θ = 0   and when x = - 1,  θ = π    
Substituting into the integral above, we have  

θθ
π
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π
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= ∫ 20

2

cos
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Canceling out the common terms and reversing the limits which eliminates the (-) sign we obtain 

θθ
π θ

π
drecr ∫=

0
cos2 )cos(      (3.3) 

This is better from a numerical point of view since the integrand no longer contains a singularity. 
In evaluating integrals containing a periodic function as a factor in the integrand it is usually best 
to make use of the simplest quadrature formulae, such as the midpoint rule, Simpson rule  or 
trapezium rule. By using any of these methods the coefficients cj can be evaluated for a series of 
decreasing step-sizes and the results compared. This will established some confidence in the 
accuracy of the results. Thus using the trapezoidal (or simply trapezium) rule with step-sizes π/2k 
(k=1,2,3,4)  
 )2.....22()( 1212 nno

h yyyyyxf +++++= −  

where h is the step size. From equation (3.3),  we obtain the following estimates for c0 
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With k = 1 we have 
2
π=h , and for interval (0, π) we have three points ππ ,,0 2

 

Thus we take θcosey =  
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This integral by trapezium rule will give  

( )( )[ ]
543081.2

)1(2

)2()(

1
22

12

212

=

++=

++=

−ee

yyyxf o
h

π
π

 

 
With k = 2, we have 

4
π=h , and for interval (0, π) we have five points ππππ ,,,,0 4

3
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x 0 
4
π  

2
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4
3π  π  

y 2.718282 2.028115 1 0.493069 0.367879 
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K Estimate  
1 2.543081 (6 d.p) 
2 2.532132 (6 d.p) 
3 2.53213176 (8 d.p) 
4 2.53213176 (8 d.p) 

 
And we conclude that c0 = 2.53213176 to 8d.p 
The other coefficients are evaluated similarly and we find (to 8 d.p) 
c1 = 1.13031821,    c2 = 0.27149534,    c3 = 0.04433685 
So that the required approximation is 

)(04433685.0)(27149534.0)(13031821.1)(26606588.1 321 xTxTxTxTe o
x +++≅      (3.4) 

It is not necessary to re-order (3.4) in powers of x for this formula may be used directly for the 
computation of approximations to ex by using the Chebyshev polynomials Tn(x) earlier obtained 
in the last unit. Thus, taking x= 0.8 for an example, we have 
  To(0.8) = 1   ,  T1(0.8) = 0.8 
Also  
 T2(0.8) = 2(0.8)( 0.8) – 1 = 0.28 
and T3(0.8) = 2(0.8)(0.28) – 0.8 =  – 0.352 
and equation (2.19) then gives rounded to (4d.p) 
 2307.28.0 ≅e  
The correct value to 4d.p is 2.2255 
 
 
By comparison the cubic approximation obtained by truncating the Taylor series for ex after 4 
terms gives 

2053.2)8.0()8.0(8.01
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When we consider the errors in the two approximations we note that the error from the 
Chebyshev approximation is  
 0052.02307.22255.2 =−=ChebyE  
While that of the Taylor series is  
 0202.02053.22255.2 =−=TayE  
The error of the Taylor series is almost 4 times as large as that of Chebyshev approximation. For 
small values of x however the Taylor series cubic will give better results e.g. at x = 0.2, The 
Chebyshev series gives     e0.2 = 1.2172   (4 dp) 
While the Taylor series cubic gives e0.2 = 1.2213 and in fact the exact value is  e0.2 = 1.2214 
which illustrates the point that Chebyshev approximations do not necessarily produce the best 
approximations at any given point in the interval [-1, 1] but they do guarantee to minimize the 
greatest error in the interval.  
In general it frequently happens that several approximation formulae are available and each will 
have its own advantages and disadvantages. In particular, different formulae may give the best 
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results over different parts of the interval of approximation and it may require considerable 
analysis to decide which to use at any point. 
We now consider the special case when f(x) = xn (n ≥ 0). The importance of this case lies in its 
role in the method of economization. It is possible to express the Chebyshev the term xn , n = 1, 
2, 3, . . . in terms of  Tn(x). These Chebyshev representations for xn are easily obtained by 
solving the Chebyshev polynomials successively as follows: 
 T0(x) = 1   hence   x0 = 1 =  T0(x) 
 T1(x) = x   hence   x =  T1(x) 
 T2(x) = 2x2 – 1 = 2x2 – T0(x) ,    hence   x2 = ½ [T2(x) + T0(x)] 
 T3(x) = 4x3 –3x = 4x3 – 3T1(x) ,    hence   x3 = ¼  [T3(x) + 3T0(x)] 
Similarly,    ( ))(3)(4)( 0248

14 xTxTxTx ++=  

and so on, Higher powers of x can equally obtained in terms of Tn(x) and the learner is 
encouraged to obtain as far as x8 as an exercise. 
Now, since we can express xk as a linear combination of Tk(x), Tk – 1(x),…,T0(x) we can as well 
any power series expansion of an arbitrary function f(x) into an expansion in a series of 
Chebyshev polynomials. An example is given next. 
 
 
Example 2 
Convert the first 5 terms of the Taylor series expansions for ex into Chebyshev polynomials 
 
Solution 
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If we truncate this result after the term T3(x) we shall obtain  

)()()()( 324
1

248
13

18
9

064
81 xTxTxTxTex +++=      (3.4) 

with the principal error as ....)(4192
1 +xT   

This approximation can as well be regarded as the cubic expansion for ex.  
If we convert the coefficients of equation (3.3) to decimal form we have 

)(041667.0)(2708333.0)(125.1)(26562500.1 321 xTxTxTxTe o
x +++≅   (3.5) 

Thus we can compare equations (3.4) and (3.5) since both are cubic approximations to ex 
.obtained by the use of Chebyshev polynomials. The coefficients from the two equations are in 
the table below.  
 
 T0(x) T1(x) T2(x) T3(x) 
Equation (3.4) 1.26606588 1.13031821 0.27149534 0.04433685 
Equation (3.5) 1.26562500 1.12500000 0.27083333 0.04166667 
 
Since both cubic approximations provide some kind of good approximations to ex we would 
expect them to have similar coefficients but they are not identical because equation (3.4) is the 
approximation to ex using the first 4 Chebyshev polynomials whereas equation (3.5) is based 
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upon the Chebyshev equivalent of the first 5 terms of the Taylor series for ex ‘economized’ to a 
cubic 
 
 
4.0 Conclusion  
It would be observed that as it was done with Legendre polynomials we have similarly obtain a 
approximate functions to f(x) using the Chebyshev polynomials. 
The technique of economization is a very useful one and can lead to significant improvements in 
the accuracy obtainable from a polynomial approximation to a power series. In the next section 
we present the technique in the general case and in passing see how (3.5) may be more easily 
obtained. 
 
5.0 Summary 
In this Unit the reader have learnt that: 
(i.) Chebyshev polynomials is a technique for approximation using the least square 

technique. 
(ii.) Chebyshev polynomial approach to fitting of approximation to a function is similar to 

that of Taylor series for the same function. 
 
6.0 Tutor Marked Assignment 
(1) Obtain a cubic polynomial to f(x) = 1/x over [-1, 1] by means of Chebyshev polynomials. 
(2) Convert the first 5 terms of the Taylor series expansions for e–x  into Chebyshev 

polynomials 
 
7.0 Further Reading and Other Resources 
 

1. Abramowitz M., Stegun I. (eds) ,(1964): Handbook of Mathematical functions, Dover , 
N.Y. 

2. Atkinson K.E. (1978): An Introduction to Numerical Analysis, 2nd Edition, John Wiley & 
Sons, N.Y 

3. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 
2nd ed. McGraw-Hill Tokyo. 

4. Henrici P. (1982): Essential of Numerical Analysis, Wiley, N.Y 
5. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N.Y. 
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MODULE 2 
UNIT 6:    Chebyshev Interpolation 
 
1.0  Introduction 
Often we use Lagrange’s methods to interpolate some set of points defined by f(x). the technique 
is interesting when we involve the use of Chebyshev polynomials. The approach will be 
discussed in this unit with emphasis on terms such as Lagrange and Chebyshev polynomials.  
 
2.0 Objective 
By the end of this unit the learner would have learn how to  

(i) use Lagrange’s formula 
(ii) interpolate using Chebyshev polynomials 
(iii) Compute the error table from the approximation 

 
3.0 Interpolation Technique 
If the values of a function f(x) are known at a set of points x1 < x2 < … < xn we can construct a 
polynomial of degree (n – 1) which takes the values f(xi) at xi (i = 1,2,…,n). The polynomial is 
unique and can be found in various ways including the use of Newton’s divided difference 
formula or Lagrange’s method. Lagrange’s formula is more cumbersome to use in practice but it 
has the advantage that we can write down the required polynomial explicitly as:   
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If f(x) is not a polynomial of degree ≤ (n – 1) the error when we use p(x) for interpolation can be 
shown to be  

 ∏
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n
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n
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fxxxE
1

)(

!
)()()( α        

where α is some number between x1 and xn. If the values x1, x2,…xn have been fixed we can do 
nothing to minimize E(x) but if we can choose any n points within a specified interval it may be 
worthwhile choosing them in a particular way as we now show 
Suppose, for simplicity, that we are interested in values of x lying in the interval -1 ≤ x ≤ 1 and 
that we are free to choose any n points x1, …, xn in this interval for use in the interpolation 
formula (3.1). Now 

 ∏
=

−
n

i
ixx

1
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is a polynomial of degree n with leading coefficient 1 and of all such polynomials the one with 
the minimum maximum value is )1(2 −− n . It follows therefore that if we wish to minimize (3.1) 
we should choose the xi so that  

1
)1(

1 2

)(
)(.2)(

−
−−

=
==−∏ n

n
n

n
n

i
i

xT
xTxx  

And this is equivalent to saying that we should choose x1, x2…,xn to be the n roots of Tn(x), that 
is, we should take 
 ( )πn

m
mx

2
12cos −=  ,   (m = 1 , 2, . . . , n)    (3.2) 

The main disadvantage of Chebyshev interpolation is the need to use the special values of xi 
given by (3.2) rather than integral multiples of a step (such as 0.1, 0.2, . . . , etc). The values, 
however, are easy to compute for a given n. 
 
3.1 Numerical Example 
Example 1 

Use Chebyshev interpolation to find a cubic polynomial approximation to 2
1

)1( x+  over [-1, 1] 
 
Solution 
For a cubic polynomial approximation, we need four interpolating points. Hence, the four 
Chebyshev interpolation points from equation (3.2) are   

)cos(,)cos(,)cos(,)cos(
8

7
48

5
38

3
281

ππππ ==== xxxx  

and these values are   x1 = 0.92388  ,      x2 = 0.382683 ,     x3 = – 0.382683 ,     x4 = – 0.92388       
We note that x3 =  – x2 and x4 = – x1. The cubic can therefore be simplified by combining terms 
involving (x1 and x4) and (x2 and  x3). Thus, from equation (3.1) we shall obtain  
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But x3 =  – x2 and x4 = – x1 , using this we get  
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Substituting for x1 and x2 we obtain  
 

) 0.923882)(0.3826830.92388(
) 0.92388)(0.382683(

) 0.3826831(

) 0.3826832)(0.923880.382683(
) 0.382683)(0.92388(

) 0.3826831(

) 0.3826832)(0.923880.382683(
) 0.382683)(0.92388(
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) 0.382683)(0.853554()6383371.2(
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Opening the brackets and simplifying we shall obtain the cubic polynomial approximation (to 5 
decimal places) as: 
 P(x) = 1.01171 + 0.49084x + 0.21116x2 + 0.12947x3     (3.3) 

Comparison of P(x) in equation (3.3) with 2
1

)1()( xxf += at  x =  – ½  (¼) ½   with the absolute 
error E = f(x) – P(x)  is given in Table 1 below: 
 

Table 1 

x  – 0.5 – 0.25 0 0.25 0.50 
P(x)  0.69732 0.87378 1.01171 1.12325 1.22052 

2
1

)1()( xxf +=  0.70711 0.86603 1.00000 1.11803 1.22475 

Abs. Error  E  0.00979 0.00775 0.00171 0.00522 0.00423 
 
The above table displays the accuracy of the Chebyshev approximation to the given example. 
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4.0 Conclusion  
We have been able to demonstrate the use of Lagrange’s method in our interpolation technique. 
We have also seen that Chebyshev polynomials are of great usefulness in the interpolation of 
simple functions. 
 
5.0 Summary 
In this Unit the reader have learnt that:   
(i.) interpolation technique is possible by using Chebyshev polynomials. 
(ii.) Lagrange’s method of interpolating is basic and very useful. 
(ii) the difference of the actual and the approximate value is the error 
 
6.0 Tutor Marked Assignment 

Use Chebyshev interpolation technique to find a cubic polynomial approximation to 2
1

)1(
−

− x  

over [-1, 1] 
 
7.0 Further Reading and Other Resources 

1. Atkinson K.E. (1978): An Introduction to Numerical Analysis, 2nd Edition, John Wiley & 
Sons, N.Y 

2. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 
2nd ed. McGraw-Hill Tokyo. 

3. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

4. Henrici P. (1982): Essential of Numerical Analysis, Wiley, N.Y 
5. Kandassamy P., Thilagarathy K., & Gunevathi K. (1997) : Numerical Methods, S. Chand 

& Co Ltd, New Delhi, India 
6. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N.Y. 
7. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
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MODULE 3  

FURTHER INTERPOLATION TECHNIQUES 

 
UNIT 1:  CUBIC SPLINE INTERPOLATION 
 
1.0  Introduction 

One of the problems which frequently arises when we try to approximate a function by means of 
a polynomial of high degree is that the polynomial turns out to have closed placed maxima and 
minima, thus giving it an undulatory (or ‘wiggly’) character. This is very undesirable if the 
polynomial is to be used for interpolation, and disastrous if it is to be used for numerical 
differentiation. 
In 1945, I. J. Schoenberg introduced the idea of approximation to functions by means of a series 
of polynomials over adjacent intervals with continuous derivatives at the end-points of the 
intervals. Such a set of polynomials he called ‘splines’, pointing out that architects and designers 
had been using mechanical devices of this kind for years. In his paper Schoenberg explains. A 
spline is a simple mechanical device for drawing smooth curves. It is a slender flexible bar made 
of wood or some other elastic materials. The spline is placed on the sheet of graph paper and 
held in place at various points.. 
The mathematical equivalent of this ‘flexible bar’ is the cubic spline which has proved to be 
extremely useful for interpolation, numerical differentiation and integration and has been subject 
of many research papers. 
 
2.0  Objective 
By the end of this unit, the learner should be able to: 

(f) define a cubic spline; 
(g) derive a method of fitting a cubic spline; 
(h) fit a cubic spline to set of data points;  
(i) interpolate a function from the fitted cubic spline; 
(j) find the error in the cubic spline. 

 
3.0  Spline Function 
To be able to understand this module we shall begin the discussion by defining what is meant by 
splines of degree k and then develop the special case of the cubic (k = 3) 
 
Definition 1 
A spline function S(x) of degree k with n  nodes,  x1 < x2 < … < xn has the properties 
 

(i.) S(x) is given in the interval [xi , xi+1] , i = 0, 1, . . . , n (where xo =  – ∞ ,  xn+1 = ∞)  by 
a polynomial of degree at most k (in general, a different polynomial is obtained in 
each interval); 

(ii.) S(x) and all derivatives of orders 1, 2, …, k–1  are continuous on (– ∞ , ∞) 
 
 
In the case k = 3, the polynomials in each of the intervals are at most cubics and their first and 
second derivatives are continuous at the end points of the intervals. Such a set of polynomials 
form a cubic spline.  
We can narrow down this definition to a cubic spline S(x) as follows: 
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Definition 2 
A Cubic Spline S(x) is a function which satisfies the following properties 
S(x) is a polynomial of degree one for x < x0 and x > xn 
 
S(x) is at most a cubic polynomial in (xi, xi+1)  ,  i = 0, 1, 2,. . . , n – 1; 
S(x) , S′(x) and S″(x) are continuous at each point (xi , yi) ,  i = 0, 1, 2,. . . , n;   
S(xi) = yi ,   i = 0, 1, 2,. . . , n. 
 
3.1   Derivation of Cubic Spline 
How can we construct a cubic spline? How many data points or set is required? We shall give 
simple and interesting, with step by step procedure of derivation of cubic splines. We proceed as 
follows:  
 
Suppose that we are given a set of points x1 < x2 < … < xn, not necessary equally spaced, and a 
set of values f(x1), f(x2),…, f(xn) at these points. Take a particular interval [xi, xi + 1] and fit a 
cubic over the interval which satisfies the definition of a cubic spline. Since the cubic may differ 
from one interval to another let the cubic be 

S(x) = 1
3

3
2

21 ,)( +≤≤+++= iioi xxxxaxaxaaxP   (3.1) 
Equation (3.1) contains 4 unknowns. We impose 2 obvious conditions  

,)( iii yxP =  
and  11 )( ++ = iii yxP .  
The remaining 2 conditions are obtained by choosing the coefficients so that the first and second 
derivatives of Pi(x) at x, are equal to the first and second derivatives of Pi+1(x) at xi , that is 
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There remain special problem at x1 and xn, but we will deal with these later. The conditions are 
now sufficient to determine the (n – 1) cubics which collectively constitute the cubic spline S(x) 
that is: 

1)()( +≤≤= iii xxxforxPxS  
How can we solve these equations? The simplest method is to note that S″(x) is linear in x and is 
also continuous over the whole interval [x1, xn]. 
S″ (x) can therefore be represented in [xi, xi + 1] by a linear function which is only seen to be 
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We rewrite (3.2) in the form 
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We integrate twice then, putting h = hi =  xi+1 – xi  as usual, the result can be written as  
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(x – xi) +b(x – xi+1)  (3.4) 

Hence any expression of the form Ax + B may be written as a(x – xi) +b(x – xi+1) for suitable 
choice of a,b provided 1+≠ ii xx  
We now impose the conditions that  ii yxS =)(  and  11)( ++ = ii yxS  
so that on putting  x = xi , equation (3.4) becomes 
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Also putting x = xi+1  in equation (3.4) , we get   
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Substituting equations (3.6) and (3.7) in equation (3.4) gives: 
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after slight re-arrangement of terms, we obtain  
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This expression is valid for the interval xi < x < xi+1 
It is worth noting that if in (3.8) we ignore the two terms involving S″(xi) and S″(xi+1) we obtain 
the approximation to S(x) 
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)( ++ −−−
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which is the result for linear interpolation. We see therefore that the terms involving S″(xi) and 
S″(xi+1) can be regarded as correction terms obtained by using a cubic instead of a linear 
approximation. Before we can use (3.8) to determine S(x) we must find the values S″(xi) and this 
we do by using the conditions that the first derivatives are continuous at the nodes. 
Differentiating (3.8) and putting x = xi we have 
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If we now replace i by (i – 1) in equation (3.8), differentiate and again put x = xi , we obtain 
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where  in this last equation h = xi – xi – 1  = hi – 1   
The continuity of S″(x) at xi now requires that the expressions on the right of (3.9) and (3.10) are 
equal and this leads to the equation: 
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In the case where the xi are evenly spaced (3.11) is simplified to 
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Since h = ho, xi – xi – 1 = h ,  xi+1 – xi  = h  ⇒    xi+1 – xi – 1 = 2h 
We can simply replace ii MxS =′′ )(   so as to get  
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The sets ( n – 1) equations (3.11) and (3.12) contain (n+1) unknowns S″(xi), (i = 0,1,…,n) and in 
order to obtain a unique solution we must impose conditions on S″(x0) and S″(xn) and this is 
usually done by taking the spline in the intervals  (– ∞ , xo) and  (xn , ∞)  (that is,  x< xo  and  x >  
xn ) to be a straight line, so that  

S″(x0) = 0  ,     S″(xn) = 0.  
This corresponds, in physical terms to allowing the spline to assume its natural straight shape 
outside the intervals of approximation. The spline S(x) so determined under this condition is 
called the natural cubic spline. 
Given these extra two conditions the equations (3.12) are now sufficient to determine the S″(xj) 
and so S″(x). The system of linear equations which is usually generated from this equation is of 
tri-diagonal form and such systems can be solved either by direct methods, such as Gaussian 
elimination or, if n is large, by indirect methods such as the Gauss-Seidel. Often foe a small 
system, simple way of solving simultaneous equation is used.  
The above procedure is the usual mathematical principle of fitting a cubic spline to a set of data 
points. However, there exist an alternative method and this is given as follows: 
 
 
3.1.1   Alternative Method of Deriving Cubic Spline 

In the interval (xi-1 , xi), let S(x) be such that 

iiiii dxcxbxaxPxS +++== 23)()(  i = 1,2,. . . ,n   (3.13) 
Since each of equation (3.13) has 4 unknowns, then we have 4n unknowns  ai, bi , ci , di ¸  i = 1, 
2, . . ., n 
Using continuity of S(x), S′(x) , S″(x0, we get  

iiiiiiiiii dxcxbxayxP +++== 23)(      (3.14) 

11
2

1
3

11 )( +++++ +++== iiiiiiiiii dxcxbxayxP     (3.15) 
 for   i = 1,2,. . . ,(n – 1) 

equations (3.14) and (3,15) give 2(n – 1) conditions 
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for   i = 1,2,. . . ,(n – 1) 

equations (3.16) give 2(n – 1) conditions 
 
Furthermore, 101

2
01

3
010 dxcxbxay +++=  

and  nnnnnnnn dxcxbxay +++= 23  
Hence, totally we have 4n – 2 conditions. 
Furthermore,   let     nnoo MxSMxS =′′=′′ )(,)(  
Now we have 4n conditions to solve for the 4n unknowns. This will give the cubic spline in each 
subinterval. 
If   M0 = 0,   Mn = 0 , we call this cubic spline as natural spline. 
 
 
These two approaches can be used to obtain a cubic spline.  
It is necessary to emphasis that the interval may be uniform or non uniform. When the step is 
uniform, h is constant, but when the interval is uneven, then our step is taken as   
xi – xi – 1  = hi  for each interval.   
 
Some examples are given below to illustrate this method. 
 
3.2 Numerical Examples 

Example 1 
From the following table  
 

X 1 2 3 
Y - 8 - 1   18 

 
Obtain the cubic spline and hence by using your cubic spline, compute y(1.5)  and y′(1),. 
 
Solution 
Here   h = 1,  and   n = 2 . also assume M0 = 0 and   M2 = 0 , we have  

[ ]11211 264 +−+− +−=++ iiiiii yyy
h

MMM   ,     for   i = 1,2,. . . ,(n – 1) 

From this, 
[ ]210210 264 yyyMMM +−=++  

∴    [ ] 7218)1(2864 1 =+−−−=M  
∴   181 =M  
From equation (6) , for 21 ≤≤ x putting I = 1, we get  
 

[ ] )1(4)8)(2()1(18)( 3
6
1 −−−−+−= xxxxS  

151393

124)1(3
23

3

−+−=

−+−=

xxx

xx
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y(1.5) = S(0.5) = 3(0.5)3 + 4(1.5) – 12 =
8
45

−  

4)1(9)( 2 +−=′=′ xxSy  
 y(1) = 4 
 
 
 Remark 

1. We can also find S(x) in the interval (2,3) using the equation (3.8) for i = 2 
2. Since y(1.5)  is required, we have not cared to find S(x) in (2,3) 
3. Note that  y = x3 – 9 also gives the above table values in the range (1,3). 

 
 
Method 2 
We will use the second method and work out the above problem. 
Let the cubic spline be 

11
2

1
3

11 )( dxcxbxaxP +++=    in [1, 2] 

22
2

2
3

22 )( dxcxbxaxP +++=     in  [2, 3] 
8)1( 11111 −=+++= dcbaP    (i) 

1448)2( 11111 −=+++= dcbaP    (ii) 
1248)2( 22222 −=+++= dcbaP    (iii) 
183927)3( 22222 =+++= dcbaP    (iv) 

)()( 1211 xPxP ′=′   gives 

22
2

211
2

1 )2(2)2(3)2(2)2(3 cbacba ++=++  (v) 

2211 2)2(62)2(6 baba +=+     (vi) 
0)()( 001 =′′=′′ xSxP   gives 

02)1(6 11 =+ ba      (vii) 
0)()( 222 =′′=′′ xSxP   gives 

02)3(6 22 =+ ba      (viii) 

Solving (i) to (viii), we obtain  

33,59,27,3
15,13,9,3

2222

1111
=−==−=

−==−==
dcba

dcba
 

Hence the cubic splines are: 
151393)( 23

1 −+−= xxxxP  in [1, 2] 

3359273)( 23
2 +−+−= xxxxP  in [2, 3] 

The learner is expected to verify this result by solving the 8 equations. 
Now we can interpolate at x = 1.5 from our polynomial, we then obtain  

8
4515)5.1(13)5.1(9)5.1(3)5.1( 23

1 −=−+−=P  

413189)1(

13189)(

1

2
1

=+−=′∴

+−=′

P

xxxP
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)2(133)2(59)2(27)2(3)2( 1
23

2 PP =−=+−+−=  

1833)3(59)3(27)3(3)3( 23
2 =+−+−=P  

All these values tally with tabular values as  x= 1, 2, 3. 
 
 
Example 2 
Find the cubic Spline given the table 
 

x 0 2 4 6 
y 1 9 41 41 

 
where 12,0 30 −== MM  
 
Solution 
Here  h = 2 

[ ]

36

)41181(

24

2
3

2104
6

210

=

+−=

+−=++ yyyMMM

 

[ ]

48

)41829(

24

2
3

2104
6

321

−=

+−=

+−=++ yyyMMM

 

Using 12,0 30 −== MM , we get  

364
364

21

21
−=+

=+
MMand
MM

 

Solving we obtain, 
12,12 21 −== MM  

)]12(9[)]0(1)[2()]12()0()0()2[()( 3
2

2
1

3
2

2
133

12
1 −+−−+−+−= xxxxS  

       13 += x   in [0, 2] 
Similarly 32 2183625)( xxxxS −+−=     in [2,4] 

and 2660103)( xxxS −+−=     in  [4, 6] 
 
 
Example 3 
Fit a natural cubic spline to the data below and use it to estimate f(55). 
 

x 25 36 49 64 81 
y = f(x) 5 6 7 8 9 

 
 
Solution 
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We use (3.11) to form a set of linear equations for S″(36), S″(49), S″(64) and we take S″(25) = 
S″(81) = 0. The equations are 
 )(6)49(13)36()24(211).0(

11
1

13
1 −=′′+′′+ SS  

 )(6)64(15)49()28(2)36(.13
13
1

15
1 −=′′+′′+′′ SSS  

 )(6)0(17)64()32(2)49(.15
15
1

17
1 −=+′′+′′ SS  

 
Let cSbSaS =′′=′′=′′ )64(,)49(,)36( , we re-write the equations in terms of a, b, c as  

 
143

121348 −=+ ba  

 
195
121556.13 −=++ cba  

 
255
1264.15 −=+ cb  

Solving these equations simultaneously we obtain 
a = S″(36) =  – 0.001594 b = S″(49) = – 0.000568, c = S″(64) =  – 0.000602 
The point at which we wish to interpolate, x = 55, lies in the interval [49, 64] and we must use 
the cubic appropriate to that interval, i.e. we use equation (3.8) when xi+1 = 64, xi = 49, x = 55 
and so we obtain 





 −

+



 −

+












−−

−′′
+












−−

−′′
=

15
)4955(8

15
)5564(7

)4955(15
15

)4955(
6

)64()5564(15
15

)5564(
6

)49()55(
33 SSS

 

i.e. S(55) = 0.008179 – 0.007585 + 7.4 = 7.415764 
 
So our estimate for f(55) is 7.415764 
As remarked above the last two terms constitute the linear approximation which therefore has the 
value 
  ( ) ( ) 4.787

15
6

15
9 =−  

Since the function, f(x) is in fact x  we can check on the accuracy of the estimate. 
The error E of our cubic spline is obtained by taking the difference from the exact value 
 
 Now  416198.755 =  
Hence  E = 7.416198 – 7.415764 = 0.000434  
And the error of the linear approximation is  E1 = 7.416198 – 7.4 = 0.016198 
Thus the linear estimate is correct to only 1 d.p. while the cubic spline turns out to be correct to 3 
d.p. with little error of 4.34 ×10 – 4  
The result is satisfactory because we are working near the middle of a range of a smooth function 
with a small (absolute) value for its second derivative. Remember that we have taken S″(25) = 
S″(81) = 0.  
 
Self Assessment Exercise 
1. Can you find S(x) in the interval (2,3) for i = 2 in Example 1 above, using the same method. 
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4.0 Conclusion  
Cubic spline has a great advantage of fitting polynomial of degree three simply by using the 
above techniques. It will be cumbersome to think of fitting a polynomial of higher degree as this 
will require deriving a set of formula as it was done in section 3.1. However, it is known that a 
cubic spline gives a good accuracy to several functions that permits polynomial fitting. 
 
5.0 Summary 
In this Unit we have learnt  
(i) how to derive the cubic spline formula involving set of linear equations 
(ii) how to fit a cubic spline or polynomial of degree three to a set of data points using cubic 

spline technique. 
(iii) that cubic spline have good accuracy with minimum error when used to fit a function. 
 
 
6.0 Tutor Marked Assignment 
Fit a natural cubic spline to the data below and use it to estimate f(24). 
 

x 10 15 20 25 30 
y = f(x) 8 10 12 15 18 

 
7.0 Further Reading and Other Resources 

1. Abramowitz M., Stegun I. (eds) ,(1964): Handbook of Mathematical functions, Dover , 
N.Y. 

2. De Boor C. (1978) : A Practical Guide to Splines, Springer Verlag, N.Y. 
3. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 

York. 
4. Kandassamy P., Thilagarathy K., & Gunevathi K. (1997) : Numerical Methods, S. Chand 

& Co Ltd, New Delhi, India 
5. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N.Y. 
6. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
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MODULE 3 
UNIT 2 HERMITE APPROXIMATIONS 
 
1.0  Introduction 
For approximation, or interpolation, of a function defined analytically a method due to Hermite 
is often useful. The method is superficially related to the spline method but in fact the two 
methods are very different because fitting of spline involves solving a system of linear equations 
to obtain numerical values for the second derivatives. S″(xi), whereas for Hermite interpolation 
the values of the first derivatives are given, and the second derivatives are not relevant 
Spline are mainly used for fitting polynomials to data, Hermite polynomials are mainly used for 
approximating to functions 
The most commonly used Hermite approximation polynomial is the cubic, as in the case of 
spline and we shall discuss only this case in detail, the more general case can be analyzed in a 
similar manner. 
 
2.0  Objective 
By the end of this unit, the learner should be able to: 

(i) distinguish between cubic spline and Hermite polynomial 
(ii) figure out the Hermite approximation formula 
(iii) fit polynomial by Hermite approximation technique and find an estimate. 

 
3.0   Hermite Approximation Formula  
Suppose we have an analytic function y = f(x) with values f(xi) and derivatives f’(xi) given at n 
points xi (i = 1,…,n). Across each pair of adjacent points xm, xm+1  we fit a cubic pm(x) such that 
 

)()(,)()(
)()(,)()(

1111 ++++ ′=′=

′=′=

mmmmmm

mmmmmm
xfxpxfxp

xfxpxfxp
 

Since pm(x) contains 4 coefficients, then four necessary equations will determine it uniquely, and 
indeed the formula for pm(x) can be explicitly stated as: 
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(3.1) 

A cubic Hermite approximation thus consists of a set of cubic polynomials; each defined over 
one interval, with continuity of the cubics and their first derivatives at all the nodes. An example 
will be given to illustrate how this is used. This formula is not difficult to know, all it required is 
the placement of each subscript of x. 
 
3.1  Numerical Example 
Example 1 
Use Hermite cubic interpolation to estimate the value of 55  taking xxf =)( , x1 = 49, x2 = 64 
 
Solution  

Given xxf =)(    then  
x

xf
2

1)( =′  
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From (3.1) with xm = 49, xm+1 = 64,  749)( ==mxf , 
14
1

492
1)( ==′ mxf ,  

Similarly, 
16
1

642
1)(,864)( 11 ==′== ++ mm xfxf  

 we have the Hermite cubic approximation as  
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This gives the required Hermite polynomial approximation to xxf =)( . We may simplify this 
as much as possible. However, since we are only to estimate the square root of 55, simplifying 
this expression may not be all that necessary until we have substituted the value for x. 
Hence, putting x = 55 in the last equation obtained yields the estimate 

7.41628655 ≅  
The correct value of 55  to 6 d.p is 7416198, so the error is 0.000088 compared to an error of -
.000434 when we used the natural cubic spline in Example 3 of Unit 1 
 
4.0 Conclusion  
In general the errors when we use the Hermite cubic and the natural cubic spline on the same 
problem will not be very different for in both cases the error is proportional to h4 where h is the 
step between the two relevant nodes. 
 
5.0 Summary 
In this Unit we have learnt that  

(i) Hermite approximation differs from cubic. 
(ii) cubic spline fit a polynomial to a set of data points while Hermite approximate a 

function as a polynomial. 
(iii) Hermite approximation may be more accurate than the cubic spline. 

 
6.0 Tutor Marked Assignment 
Obtain an Hermite approximation of polynomial of degree 3 to the function f(x) = ln x for x1 = 2, 
x2 = 5 and hence estimate the value of ln 3.5  
 
7.0 Further Reading and Other Resources 
1. Abramowitz M., Stegun I. (eds) ,(1964): Handbook of Mathematical functions, Dover , N.Y. 
2. Atkinson K.E. (1978): An Introduction to Numerical Analysis, 2nd Edition, John Wiley & Sons, N.Y 
3. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 2nd ed. 

McGraw-Hill Tokyo. 
4. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New York. 
5. Henrici P. (1982): Essential of Numerical Analysis, Wiley, N.Y 
6. Kandassamy P., Thilagarathy K., & Gunevathi K. (1997) : Numerical Methods, S. Chand & Co Ltd, 

New Delhi, India 
7. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
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MODULE 4 

NUMERICAL INTEGRATION 

UNIT 1 INTRODUCTION TO NUMERICAL INTEGRATION 
1.0  Introduction 
In numerical analysis, integration seems to be easier than differentiation, which is the reverse in 
Calculus. Hence the cases where most integrals have no representation in terms of elementary 
function will only require the use of approximation functions. This is done by the process of 
numerical integration. 
The importance of numerical integration is clearly seen when we consider how frequently 
derivatives are involved in the formulation of problems in applied analysis. It is well observed 
that polynomial approximation serves as the basis for a variety of integral formulas, hence the 
need to have studied some polynomial approximation techniques.  
 
2.0  Objective 
At the end of this Unit, the learner would have learn 

(i) what numerical integration is all about 
(ii) differentiate between analytical approach and numerical approach to integration 
(iii) be able to list various known methods for numerical quadrature 

 
3.0   Quadrature 
In the study elementary calculus especially integration, there are various techniques involved to 
evaluate different kind of integrals. Some integral are cumbersome that sometimes are left in 
form of another integral in a sense. There are several other ones that need the help of special 
functions or reduction of order before they can be evaluated. This is one reason why numerical 
integration comes to play a role in the evaluation of such integrals.   
The main procedure of numerical integration is to divide the range of interval of integration into 
some equal intervals and obtain the integral of the first strip of the interval. Upon the first result, 
other strips are generalized. The other strips after the first are to correct the accuracy of the first, 
thereby quadraturing the strips one after the other. Hence, Numerical integration is commonly 
referred to as Numerical quadrature and their formulas are called quadrature formulas. It is worth 
noting that results or formulas derived in this way are also termed as rules rather than methods. 
Thus, we talk of Trapezoidal rule, Simpson’s rules, Newton-Cotes rules, etc. The main idea is, if 
P(x) is an approximation to y(x) then 

 

∫∫ ≈
b
a

b
a

dxxydxxP )()(       (3.1) 

That is the integral of P(x) can be approximated by some numerical schemes which consider 
some points within the limits of integration. These points are node points or collocating points 
which are subdivided into by equal spacing on the x –axis. 
Thus if the range or limits of integration which is [a, b] are actually points [x0, xn], then the 
interval [x0,  xn] can be subdivided into equal interval as shown below 
 
 
 
Now between any successive interval, is what is called the step length denoted by h, so that  

h = x1 – xo = x2 – x1  = x3 – x2 = . . . . = xn – xn-1  
⇒ xn = xo + nh 

 
      x0   x1    x2       .  .  .   .                    xn-1  xn 
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3.1 Quadrature Formulas 
There are standard rules in numerical analysis that can be used to estimate the above integral. 
Among such rules or formulas are: 

(i.) Trapezoidal rule,  
(ii.) Simpson’s 

3
1 - rule,  

(iii.) Simpson’s −8
3 rule,  

(iv.) Newton – Cotes formulas 
 
The Trapezoidal rule is given by  

  )2.....22(    )( 12102
1

0
nn

nx
x

yyyyyhdxxP +++++= −∫  

The Simpson’s 
3
1 - rule is given by 

    )42.....2424(   )(  12432103
1

nnn
nx

ox
yyyyyyyyhdxxP ++++++++= −−∫  

While the Simpson’s −8
3 rule is given by 

( )nnn
x

x
yyyyyyyyyydxxP

n
++++++++++= −−∫ 1265432108

3 3 3 ...23 3 23 3  h  )(
0

 

The Newton – Cotes formulas depend on the value of n starting from n = 4 ,6, . . .  
 
The derivations of these formulas are very essential to the learning of Numerical integration. 
While they are interesting in the learning of the topic, it also helps in the understanding of the 
workings of these formulae rather than trying to memorize them. Thus attempt will be made to 
give the required techniques of their derivations and the learner will complete the rest.  
 
3.2  Newton Gregory Formula 
The most acceptable way of deriving all these rules listed above is by using the Newton forward 
formula or Newton backward formula. However we shall restrict our learning to using the 
Newton Forward formula for deriving the integration formula in this course. Geometrically the 
Trapezoidal rule which sometimes is simply called the trapezium formula can be derived by 
approximating a curve by a straight line, thereby getting a trapezium.  
The Newton Gregory Forward formula is given by 
 
Pk(x) =  y0 + kC1∆y0 + kC2 ∆2 y0 + kC3 ∆3 y0 + …. + kCn ∆n y0        (3.2) 

     0!
))....(2)(1(

0
3

!3
)2)(1(

0
2

!2
)1(

00 ... yyyyky n
n

nkkkkkkkkk ∆++∆+∆+∆+= −−−−−−  

Integrating this formula of degree n between xo and xn gives several useful quadrature formulas.  
where ∆ is a forward difference operator defined as  ∆yk = yk+1 - yk  
This formula (3.2) is very useful in the derivation of all numerical integration schemes. 
 
The accuracy of these quadrature formulas differs when applied to a definite integral. The 
smaller the stripe h is, the better the accuracy. It must be mentioned here that numerical 
integration deals with only definite integrals. In other words, indefinite integrals are best handled 
by analytical means. However in practice, most practical problems involve definite integrals and 
so numerical integration is very relevant in physical and day to day problems. Each of these 
formulas will be discussed in subsequent Units. 
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4.0 Conclusion  
The use of quadrature formulas are of high importance to this study. We have introduced all the 
relevant formulas which we shall later use to evaluate some definite integrals. 
 
5.0 Summary 
In this Unit we have learnt that  
(i)  quadrature is a numerical analysis terminology that refers to numerical integration 
(ii)  there are three standard numerical integration formulas viz:  Trapezoidal rule, Simpson’s  

rules and Newton – Cotes formulas 
(ii) Newton Gregory formula is the basis for the derivation of these quadrature formulas. 
  
6.0 Tutor Marked Assignment 
Use geometrical approach r to derive the trapezoidal rule. 
 
7.0 Further Reading and Other Resources 

1. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

2. Kandassamy P., Thilagarathy K., & Gunevathi K. (1997) : Numerical Methods, S. Chand 
& Co Ltd, New Delhi, India 

3. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 
Numerical Analysis, John Wiley, N.Y. 
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MODULE 4 
UNIT 2   TRAPEZOIDAL RULE 
1.0  Introduction 
Integration is known to be a method of finding area under a curve. In particular, the curve may 
be bounded by two points on the x-axis. If this be the case, it might interest one to subdivide this 
area under a curve into small stripes of similar or equal width on the x-axis.  As it was mentioned 
in the last unit we shall attempt to derive these formulas before illustrating their computation by 
examples. 
 
2.0  Objective 
At the end of this lesson, the learner would have been able to  
(i)    know how to derive Trapezoidal rule geometrically 
(ii)   learn how to use Newton Gregory formula to derive the Trapezoidal rule 
(iii)  know how to implement Trapezoidal rule to evaluate a definite integral 
(iv)  estimate the error of a trapezoidal rule. 

3.0   Derivation By Geometrical Approach 
Trapezoidal rule, partitions a function f(x) into n equally spaced points on x-axis, leading to 
various arguments (xi, xi+1). In order to derive the trapezoidal rule, the first approach shall be by 
geometrical means. Consider a function f(x) within the interval [x0 , xn] as shown in figure 1 
 

 

 

    f(x) 

 

 

 

  x0      xn  Figure 3.1 

 

The interval is subdivided into n equally spaced intervals with node points   
  x0 , x1 , x2 ,… , xn. 

For any two immediate points x0 , x1 the diagram below (Figure 2) describes the phenomenon 

 
 

       y1          Q  Trapezoidal average point rule 

     Area = ½ (x1 – x0)(y0 + y1) 

       y0  P                = ½ h (y0 + y1)  

 

  x0       x1   Figure 3.2 
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The points P, Q are assumed to be very close to each other; thereby it is approximated to be a 

straight line. Hence, the region x0PQx1 is a trapezium with parallel sides x0P  and  x1Q, making 

(x1 – x0) as the width or height. 

 
Thus for the whole region under the curve f(x) bounded by the x-axis between [x0 , xn], the 
whole region is subdivided into small strips of small intervals 
  [x0 , x1], [x1 , x2] , …, [xn – 1 , xn]. 

 

      f(x) 

   P0 P1   P2         

                      yo 

     A0   A1            An-1  

 

   x0   x1 x2          xn-1   xn  Figure 3 

The first strip is assumed to be a trapezium where the point P0P1 is taken to be approximately a 
straight line. This region A0 is a trapezium x0P0P1x1 with parallel sides x0P0 and x1P1 and the 
height is x0x1. Since Area has same meaning as Integration from elementary calculus, then the 
area of this trapezium A0 is  

 A0 = ½ [x0P0 + x1P1] × (x1 – x0). 

But x0P0 will corresponds to y0 on y-axis, while x1P1 corresponds to y1 , by geometry, hence  
  A0 = ½ (y0 + y1) × (x1 – x0) 
Let the equally spaced interval be h, then h = xi + 1 – xi  
  A0 = ½ h(y0 + y1) 
Similarly in the trapezium A1, the sides are x1P1P2x2 and the area of this trapezium is  
  A1 = ½ (y1 + y2) × (x2 – x1) 
which also gives 
  A1 = ½h(y1 + y2)  
Continuing in this way, we obtain all the n areas Ao, A1, . . . , An – 1 and we the sum them up to 
cover the whole are under the curve and within the required interval [x0 , xn]. Thus we shall have 
the whole area as  
 

 
)(....)()()(

...

12
1

322
1

212
1

12
1

121

nno

no

yyhyyhyyhyyh

AAAAA

++++++++=

+++=

−

−
 

)2....222( 13212
1

nno yyyyyyhA ++++++= −      (3.1) 

 
Equation (3.2) is the Trapezium rule and it is the geometrical way of deriving this formula. 
 
3.1   Derivation By Newton’s Formula 
To derive the same formula by numerical integration, we shall make use of the Newton Forward 
formula given by   
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Pk(x) =  y0 + kC1∆y0 + kC2 ∆2 y0 + kC3 ∆3 y0 + …. + kCn ∆n y0        (3.2) 
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To do this, if we truncate equation (3.2) after 2 terms, we get  
Pk(x) =  y0 + kC1∆y0  = y0 + k∆y0 
then we shall integrate this between x0 and x1, since n = 1, to get 

   dx )( )(
11

0
00∫∫ ∆+=

x

x

x

x o
ykydxxP      (3.3) 

We need to change the variable in the integral from x to k in order to evaluate the integral. 
But we established earlier that  xn = xo + nh 
For any arbitrary variable x, we shall write dkh  dx      , x  x 0 =⇒+= kh  
Thus to take care of the limits of integration,  
when x = x0 , then k = 0,  and when x = x1,    x1= xo + kh  ⇒  k = 1 
Hence, equation (3.3) becomes 
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This is similar to the result obtained geometrically by trapezium area Ao. This result (3.4) is 
termed as one-phase of the Trapezoidal rule.  
By quadrature technique, we can repeat the same for interval [x1 , x2] by shifting the point from 
[x0, x1] to [x1, x2]. That is,  1 replaces 0, while 2 replaces 1 in equation (3.4) 
Thus,  
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1
yyhdxxPx

x +=∫  

This is called quadraturing the points from one interval to a similar interval of equal length. 
Continuing for interval [x0, x1] , [x1, x2] , [x2, x3] , . . .  , [xn-1, xn],  we obtain 
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This gives the same formula as obtained in (3.1) and it is often called the Trapezoidal rule. 
 
3.2   TRUNCATION ERROR  
It must be observed that this formula is merely an approximation and the error committed is due 
to the truncation in the Newton’s formula. Hence, we can estimate the Truncation Error (TE) of 
this formula. We define the error as the difference between the exact y(x) and the approximated 
values P(x). Thus, we write  
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Then for n = 1 we can estimate the TE for the trapezoidal rule as follows: 
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which is the error committed within the first strip [x0 , x1] 
Now applying it on the whole range of trapezoidal rule:    
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Let the derivative be bounded by m < y(2) < M.  The sum is between nm and nM.  This sum will 
be written as  ny ″(ξ) for x0 < ξ <xn 
But   nh = xn – xo  

  )(
12
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3
ξny=  

Thus, E )()2()(
12

2h-    ξyxx on −=  

which is the error committed when using trapezoidal rule to estimate an integral. 
 
 
3.3  Numerical Example 

Example 1 
By using the Trapezoidal rule  integrate x  between argument 1.00 and 1.30 for the data below 

x 1.0 1.05 1.10 1.15 1.20 1.25 1.30 
x  1.00 1.0247 1.04881 1.01238 1.09544 1.11803 1.14017 

 
Obtain the actual error and estimate the truncation error 
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Solution: 
From the table of values given above, we observe that n = 6, and y = x , so we read from the 
second row of the table that y0 = 1.00  and so on up to y6 = 1.14017;  the step length  h = 0.05   
(since h = 1.05 – 1 = 1.10 – 1.05  = 0.05) 
The Trapezoidal rule is given by equation (3.5) as 
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Thus with  n = 6, we have 
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Substituting the values from the table we have  

 
14017.1)11803.1(2)09544.1(2                                                 
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  =   0.32147 
 
The actual integral can be obtained analytically as  

3.1

13
230.1

00.1
2

3
 xdxx =∫ =0.321486 

Hence the actual error is   E = 0.321485 – 0.32147 = 0.000015 = 1.5 × 10-5 

The Truncation Error of the Trapezoidal rule is    
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                        =0.000016 
maximum error is obtained when  x = ξ = 1.00 
 
 
Example 2 

Evaluate    ∫
3

0
dx sin

π

x with 
12
 h π
= , correct to 5 decimal places using Trapezoidal rule 

Solution 

Let y = sin x  , then we construct the table of values with a step length of 
12
 h π
=  as given below 
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 x0 x1 x2 x3 x4 
  x  0 

12
π  

6
π  

4
π  

3
π  

y = sin x 0.00 0.25882 0.50000 0.70711 0.86603 
y y0 y1 y2 y3 y4 
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( )[ ]     86603.0)70711.0(2)5.0(2)25882.0(20  sin 122
1

0

3 ++++=∫ π
π

dxx  

                     =  0.4971426  ≅  0.49714     (correct to 5 decimal places) 
 
Analytically,  

5.00coscoscos
3

0
dx sin 3

0

3
=+−=−=∫ π

ππ

xx  

 
Hence the absolute error is    E = 0.5 – 0.49714 = 0.00286 = 2.86 × 10 -3 

 
4.0 Conclusion  
The lesson has clearly shown that we need not know how to integrate a function before we can 
get an approximate value for such integral within a limiting boundary. We have also shown that 
the error committed can be compared with the actual value. This error is improved if the step 
length h is probably reduced. 
 
5.0 Summary 
In this Unit we have learnt  
(i) how to derive the trapezoidal rule both in geometrical way and using the Newton Gregory 

formula 
(ii) how to implement the trapezoidal rule to evaluate definite integrals 
(iii)  that the error can be estimated by comparing with the analytical solution  
(iv)  that the truncation error of the rule can be estimated 
 
6.0 Tutor Marked Assignment 

Evaluate    ∫
+

5

2
dx 

1
2

x
with 

2
1 h = , correct to 5 decimal places using Trapezoidal rule 

 
7.0 Further Reading and Other Resources 

1. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 
2nd ed. McGraw-Hill Tokyo. 

2. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

3. Okunuga, S. A., and Akanbi  M, A., (2004). Computational Mathematics, First Course, 
WIM Pub. Lagos, Nigeria. 
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MODULE 4 
UNIT 3   SIMPSON’S RULES 
1.0  Introduction 
There are two popular Sampson’s rules. One is called the Simpson’s 

3
1 - rule while the other is 

the Simpson’s −8
3 rule. The Simpson’s rules are similarly useful in approximating definite 

integrals. We shall discuss the Simpson’s 
3
1 - rule in this Unit. Simpson’s 

3
1 - rule is a technique 

that uses 2 steps at a time to estimate the integral of P(x) as against single step used by 
Trapezoidal rule.  So, the interval [x0, xn] is taken in two by two steps as [x0, x2] , [x2, x4] , [x4, x6] 
, . . .  , [xn–2 , xn]. This idea will help us to derive a scheme that would be suitable for integration 
of various functions. 
 
2.0  Objective 
At the end of this unit the learner must be able to  

(i) derive the Simpson’s 
3
1 - rule, 

(ii) distinguish between Simpson’s rule and Trapezoidal rule, 
(iii) know where Simpson rule is applicable in terms of number of node points 
(iv) solve problems using the Simpson’s 1/3 rule 

 
3.0     Derivation of Simpson’s 

3
1 - Rule, 

In order to develop a formula based on Simpson’s rule, we shall consider the integration of 
Newton Forward Formula (NFF) given in Unit 1 of this Module. Recall the NFF, we have  
Pk(x) =  y0 + kC1∆y0 + kC2 ∆2 y0 + kC3 ∆3 y0 + …. + kCn ∆n y0        (3.1) 
     0!
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If we integrate within the interval [x0, x2] and truncating after the third term, we shall obtain 
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The integration has to be limited to 2x  as n = 2 and this suggest the truncation also at ∆2. 

Using the same technique employed earlier in Unit 2, to change the variable to k,  we shall write 

dkh  dx      , x  x 0 =⇒+= kh  
Thus to take care of the limits of integration, we examine x0  and x2, so that  
when x = x0 , then k = 0,  and when x = x2,    x2= xo + kh  ⇒  k = 2 

Hence the integral (3.2) becomes 

 ∫∫ ∆+∆+= −2
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       = h [2y0 + 2(y1 – y0) + 3
1 (y2 – 2y1 + y0)] 

      = 3
1 h [y0 + 4y1 + y2]       (3.3) 

which is a part or one phase of the Simpson’s 
3
1 - rule.   

By quadrature, we can shift to the next two steps, that is, [x2 , x4] to get the next integral as:  
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Continuing this interval up to (xn–2 , xn) and summing up all the phases, we have 
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Equation (3.4) is known as the Simpson’s 
3
1 - rule. It must be noted that due to the nature of this 

formula, the formula will only be valid, if n is an even integer. That is, there must exist odd 
number of ordinates or collocating points within [x0 , xn]. Note that the formula has alternate 
coefficients of 4 and 2 starting with 4 and then followed by 2 and ending the second to the last 
term as 4 with exception of the first and the last term that have coefficient of 1. 
 
3.1 Error Estimate of the Simpson’s 1/3 Rule 
The error committed while deriving the Simpson’s 1/3 rule is the error of truncation after the 
third term at ∆2. For this reason the truncation error can be estimated likewise as it was done for 
the trapezoidal Rule. Thus, if n = 2, the error committed on Simpson’s 3

1 - rule, which is the 
Truncation error  is given by 

 E  =  )(
180

a)-(b- )4(4 ξyh   (3.5) 

The reader is advised to verify this claim. 
 
3.2 Determination of Step length  
Sometimes we may be given problems without specifying the step length h. However if the 
number of ordinates are given, which is the same as our n then we can determine the step length.  
To calculate the step length, the required formula is given by    

 
1−

−
=

m
abh     
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where m is the number of ordinates given, a and b are the boundary of the integral. For example 

given the integral ∫
5

2
)( dxxP and we are required to use 7 ordinates, then we recognize m = 7,  a = 

2 and b = 5, hence the step length h is obtained as  

 5.0
17
25
=

−
−

=h  

Hence our x0 = 2 then add 0.5 to subsequent xi until you get to b = 5. The last value must be the 
seventh ordinate which is x6. Thus we shall have  
x0 = 2,   x1 = 2.5 ,   x2 = 3    x3 = 3.5,   x4 = 4,    x5 = 4.5,   x6 = 5 
 
3.3    Numerical Example 
 
Example 1 
Integrate y= x  within the limits 1.00 and 1.30 using the Simpson’s 

3
1 - rule with 7 ordinates and 

working with 5 decimal places. Hence estimate the error of this method. 
 
Solution: 
We first observe that this is the same question as the previous one in Trapezoidal rule. However 
in this case the table of values is not given hence we are to generate the table of values by 
computing the corresponding values of y for a given value of x. Further more we are to use 7 
ordinates means that we need y0, y1, . . . . ,y6.  , that is n = 6 (even), hence Simpson rule is 
applicable. Also since we are told to use 7 ordinates, we are required to determine the step length 
h. To do this, the given values are   
 a = 1.00, b = 3.00  and m = 7 
thus, the step length is calculated as   

 05.0
17

00.130.1
1

=
−
−

=
−
−

=
m

abh ,    

We then generate the table of values using calculator to find x  for various values of x on the 
table.  

 
 
 
 
 
 

Hence the table of values is similar to the example given in Unit 2 for this same question. 
By equation (3.4) the Simpson 1/3- rule is  
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Thus we evaluate  the integral by simply substituting from our table above as  

   
 14017.1)11803.1(4)09544.1(2                                

)07238.1(4)04881.1(2)02470.1(41
)05.0(   3

130.1

00.1 







+++
+++

=∫ dxx  

         = 0.32149 
 

 x0 x1 x2 x3 x4 x5 x6 
  x  1.0 1.05 1.10 1.15 1.20 1.25 1.30 
y= x  1.00 1.0247 1.04881 1.01238 1.09544 1.11803 1.14017 
y y0 y1 y2 y3 y4 y5 y6 
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The analytical result of this integral is 0.321485, correct to 6 decimal places. However correct to 
5 decimal places will be 0.32149. It seems the error is zero. However if we had computed up to 6 
places of decimal the error will be pronounced.  
All the same we can still estimate the error as 0.32149 - 0.321485 = 5×10-6 . This seems to be 
more accurate than the result given by the Trapezoidal rule in the last Unit.  
The Truncation error stated above for Simpson’s 3

1 - rule is: 

 E  =  )(
180

a)-(b- )4(4 ξyh  

Hence to estimate the Truncation Error with this problem we write 

E = )
16
15()05.0(

180
(0.3)-)()05.0(

180
(0.3)- 2/74)4(4 −−= xy ξ  

                            = 9 .0 × 10-9  
Definitely, the Simpson’s 3

1 - rule is more accurate than the Trapezoidal rule. 
 

3.4 Result by computer output 
The above problem is coded in basic language and the result is easily obtained on a digital 
computer as given below. 
The learner is encouraged to try to code this also as given below and run the program to verify 
the result below. The program is written and coded to solve the example above using the 
Trapezoidal rule, Simpson’s 1/3 rule and the Simpson’s 3/8 rule. The program and the output are 
given next: 
 
 
CLS 
OPEN "SIMP1b.BAS" FOR OUTPUT AS #1 
M = 10 
 
REDIM X(M + 2), YS(M + 2), YT(M + 2), AY(M + 2), EY(M + 2) 
 
DEF FNF (X) = SQR(X) 
DEF FNE (X) = (2 / 3) * X ^ (3 / 2) 
 
X(0) = 1: H = .05 
 
PRINT #1, TAB(11); "I"; TAB(31); "X(I)"; TAB(51); "Y(I)"; 
 
FOR N = 6 TO M 
SUMTR = 0: SUMSP1 = 0: SUMSP3 = 0 
FOR I = 1 TO N + 1 
J = I - 1: Y(J) = FNF(X(J)) 
'   IF N <= 8 OR N = M THEN 
   PRINT #1, TAB(10); J; TAB(30); X(J); TAB(50); Y(J); 
   X(I) = X(J) + H: 
 
'IMPLEMENTATION OF THE RULES 
   IF J = 0 OR J = N THEN 
   TR = Y(J): SP1 = Y(J) 
   ELSEIF J MOD 2 = 0 THEN SP1 = 2 * Y(J): TR = 2 * Y(J) 
   ELSEIF J MOD 2 = 1 THEN SP1 = 4 * Y(J): TR = 2 * Y(J) 
   END IF 
  
   IF J = 0 OR J = N THEN 
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   SP3 = Y(J) 
   ELSEIF J MOD 3 = 1 OR J MOD 3 = 2 THEN 
   SP3 = 3 * Y(J) 
   ELSEIF J MOD 3 = 0 THEN SP3 = 2 * Y(J) 
   END IF 
  
   SUMTR = SUMTR + TR: SUMSP1 = SUMSP1 + SP1: SUMSP3 = SUMSP3 + SP3 
   IF J = N THEN EX = FNE(X(J)) - FNE(X(0)) 
NEXT I 
 
'PRINT #1, TAB(1); " I"; TAB(15); "X(I)"; 
'PRINT #1, TAB(30); "YT(I)"; TAB(45); "YS(I)"; TAB(60); "ET(I)"; TAB(75); ES(I) 
 
INTTR = H * SUMTR / 2: ERTR = ABS(INTTR - EX) 
INTSP1 = H * SUMSP1 / 3: ERSP1 = ABS(INTSP1 - EX) 
INTSP3 = 3 * H * SUMSP3 / 8: ERSP3 = ABS(INTSP3 - EX) 
 
PRINT #1, TAB(5); "TRAPEZOIDAL"; TAB(35); "SIMPSON 1/3"; TAB(55); "SIMPSON 3/8" 
PRINT #1, TAB(5); INTTR; TAB(35); INTSP1; TAB(55); INTSP3 
PRINT #1, TAB(1); "EX"; TAB(5); EX; TAB(35); EX; TAB(55); EX 
PRINT #1, TAB(1); "ER"; TAB(5); ERTR; TAB(35); ERSP1; TAB(55); ERSP3 
 
NEXT N 
END 
 
 
The result obtained after the program is imputed and ran is given next: 
 
          I                   X(I)                Y(I) 
          0                   1                   1 
          1                   1.05                1.024695 
          2                   1.1                 1.048809 
          3                   1.15                1.07238 
          4                   1.2                 1.095445 
          5                   1.25                1.118034 
          6                   1.3                 1.140175 
 
    TRAPEZOIDAL                SIMPSON 1/3         SIMPSON 3/8 
     .3214726                   .3214853            .3214853 
EX   .321485                    .321485             .321485 
ER   1.248717E-05              2.980232E-07        2.682209E-07 
          0                   1                   1 
          1                   1.05                1.024695 
          2                   1.1                 1.048809 
          3                   1.15                1.07238 
          4                   1.2                 1.095445 
          5                   1.25                1.118034 
          6                   1.3                 1.140175 
          7                   1.35                1.161895 
 
    TRAPEZOIDAL              SIMPSON 1/3         SIMPSON 3/8 
     .3790243                 .3598532            .3646492 
EX   .3790384                 .3790384            .3790384 
ER   1.40667E-05             1.918522E-02        1.438922E-02 
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          0                   1                   1 
          1                   1.05                1.024695 
          2                   1.1                 1.048809 
          3                   1.15                1.07238 
          4                   1.2                 1.095445 
          5                   1.25                1.118034 
          6                   1.3                 1.140175 
          7                   1.35                1.161895 
          8                   1.4                 1.183216 
 
TRAPEZOIDAL               SIMPSON 1/3         SIMPSON 3/8 
     .4376521                .4376682            .4304055 
EX   .4376678                .4376678            .4376678 
ER   1.567602               3.874302E-07        7.26226E-03 
          0                   1                   1 
          1                   1.05                1.024695 
          2                   1.1                 1.048809 
          3                   1.15                1.07238 
          4                   1.2                 1.095445 
          5                   1.25                1.118034 
          6                   1.3                 1.140175 
          7                   1.35                1.161895 
          8                   1.4                 1.183216 
          9                   1.45                1.204159 
 
   TRAPEZOIDAL              SIMPSON 1/3         SIMPSON 3/8 
     .4973365                .4774578            .4973541 
EX   .4973536                .4973536            .4973536 
ER   1.713634E-05           1.989585E-02        4.768372E-07 
          0                   1                   1 
          1                   1.05                1.024695 
          2                   1.1                 1.048809 
          3                   1.15                1.07238 
          4                   1.2                 1.095445 
          5                   1.25                1.118034 
          6                   1.3                 1.140175 
          7                   1.35                1.161895 
          8                   1.4                 1.183216 
          9                   1.45                1.204159 
          10                  1.5                 1.224745 
 
    TRAPEZOIDAL              SIMPSON 1/3         SIMPSON 3/8 
     .5580591                 .5580781            .542896 
EX   .5580776                 .5580776            .5580776 
ER   1.853704E-05            4.172325E-07         .0151816 
 
Source:  Computational Mathematics by Okunuga & Akanbi 
 
 
 
Example 2 

Evaluate    dx
x∫ +

3

1 1
1   using the Simpson’s one-third rule with 

4
1 h = , working with four 

floating point arithmetic 
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Solution 

Let y = 
1

1
+

=
x

y   , then we compute the values y with a step length of 25.0
4
1 h ==  as given in 

the table below 
 

 
We observe that n= 8, which is even. Hence the Simpson’s 1/3  rule is applicable. 
The appropriate formula again from equation (3.4) is written as  
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       = 0.6931 

Analytical solution is 6931.0693147.02ln4ln)1ln(
1

1 3

1

3

1
≅=−=+=

+∫ xdx
x

 

The two results agreed. So up to 4 decimal places the numerical result is as accurate as the exact 
solution. 
 
4.0 Conclusion  
From the above discussion with two examples well discussed, it can be deduce that the Simpson 
1/3 rule will only be applicable when n is even. The Simpson’s 1/3 rule is equally seen to be well 
accurate with very small error when compared to the analytical solution obtained from direct 
integration. The learner is encouraged to resolve all the example given so far and do the 
calculation to ascertain the values given in this study. 
 
5.0 Summary 
In this Unit we have learnt  
(i) how to derive the Simpson’s 

3
1 - rule using the Newton Forward formula 

(ii) how to implement the Simpson’s 
3
1 - rule to evaluate definite integrals 

(iii) that the number of ordinates must be odd before the rule can be applicable, 
(iv) that the error can be estimated by comparing with the analytical solution  
(v)  that the truncation error of the rule can be equally estimated 
 
 
6.0 Tutor Marked Assignment 

1. Evaluate    ∫
−

5

2
dx 

1
2

x
with 

2
1 h = , correct to 5 decimal places using Simpson’s 

3
1 - rule 

2. Integrate  ( )21
xx +  between 3 and 7 using Simpson’s 

3
1 - rule with 9 ordinates 

  x  1 1.25 1.5 1.75 2 2.25 2.5 2.75 3.0 
y  0.5 0.4444 0.4000 0.3636 0.3333 0.3077 0.2857 0.2666 0.25 
 y0 y1 y2 y3 y4 y5 y6 y7 y8 
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MODULE 4 
UNIT 4     NEWTON-COTES FORMULAS 
 
1.0  Introduction 

Apart from Trapezoidal rule and Simpson 3
1 rule, we also have the Simpson 8

3 rule. Beyond this 
we have other formulas based on the same Newton Forward Formula (NFF) with higher n. For 

example we recall that Trapezoidal rule use interval [x0, x1], Simpson 3
1 rule use [x0, x2], and 

Simpson 8
3 rule will use [x0, x3] to obtain a one-phase of its formula. The formulas that use [x0, 

xn], where n is greater than 3, are called Newton-Cotes formula. Invariably, Newton–Cotes 
formula generalizes all the rules including the ones earlier discussed. We shall in this unit 
consider the remaining formulas for approximating definite integrals. 
 
2.0  Objective 
At the end of this unit the learner must be able to  

(v) derive the Simpson 8
3 - rule, 

(vi) distinguish between the Newton – Cotes formulas 
(vii) Simpson’s rule and Trapezoidal rule, 
(viii) know where Simpson rule is applicable in terms of number of node points 

(ix) solve problems using the Simpson’s 3
1 rule 

3.0  Simpson 8
3 Rule 

The Simpson 8
3 formula follows from the Simpson 3

1 rule. The complete derivation will not be 
given in this unit, but a sketch of it. However the technique is virtually the same as the ones 
earlier proved, since the derivation is from the same Newton Forward Formula. The learner is 
advised to verify some of the formulas stated in this Unit.  

Suppose the Newton Forward Formula (NFF) is truncated after the fourth term or after the third 
forward difference (that is for n = 3) and integration is carried out within [x0 , x3], we can write  

( )∫∫ ∆+∆+∆+= −−−3

0

3

0

 )( 0
3

!3
)2)(1(

0
2

2
)1(

00

x

x

kkkkkx

x
dxyyykydxxP  (3.1) 

Changing the variables from x to k and integrating, we shall obtain 

)3 3  (h  )( 32108
33

0
yyyydxxP

x

x
+++=∫      (3.2) 

This is known as a one-phase of the Simpson 3/8 – rule. 
When quadrature principle is applied, we obtain the Simpson 3/8 – rule finally as 

( )nnn
x

x
yyyyyyyyyydxxP

n
++++++++++= −−∫ 1265432108

3 3 3 ...23 3 23 3  h  )(
0

  (3.3) 

The coefficients are also systematic. The inner coefficients are 3, 3, 2, while the first and last 
term have 1 as the coefficient.  The number of ordinates can only be 4, 7, 10,   and so on 
When we have 4 ordinates we have the formula 

)3 3  (h  )( 32108
33

0
yyyydxxP

x

x
+++=∫      (3.4) 
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For 7 ordinates we have  

( )65432108
36

0
3 3 23 3  h  )( yyyyyyydxxP

x
x

++++++=∫   (3.5) 

And for 10 ordinates we have  

( )98765432108
39

0
3 323 3 23 3  h  )( yyyyyyyyyydxxP

x
x

+++++++++=∫      (3.6) 

The implementation is exactly the same as we have demonstrated with Simpson 1/3 rule. 
 
 
3.1 The Form of Newton Cotes Formula 
Now as n increases, the number of terms to be included in the NFF will equally increase and the 
set of formulas that will be obtained are termed as Newton-Cotes (N-C) formula. 
We can generally represent the integration value of the NFF within a general interval [x0 , xn] as 

 )nc  .  .  .  11c 00(c dxP(x)
0

nyyyCh
nx

x
+++=∫              (3.7) 

Equation (3.7) provides only one phase of the formula and by quadrature; we can generalize to 
obtain any of these formulae. 

Thus, the table of values of coefficients cr , r = 0, 1, 2, …, n in equation (3.7) is given below: 

 

Rule n F co c1 c2 c3 c4 c5 c 6 

Trapezoidal 

Simpson 1/3  

Simpson 3/8 

N-C of n = 4 

N-C of n = 6 

1 

2 

3 

4 

6 

½ 

1/3 

3/8 

2/45 

1/140 

1 

1 

1 

7 

41 

1 

4 

3 

32 

216 

 

1 

3 

13 

27 

 

 

1 

32 

272 

 

 

 

7 

27 

 

 

 

 

216 

 

 

 

 

41 

F in the table represents the factor of the formula, while cr , , r = 0, 1, 2, …, n are the coefficients 

Equation (3.7) provides a general quadrature formula due to Newton and Cotes and it embraces 
all class of formulas, which follows the NFF in a given interval. Hence, such quadrature 
formulas that have the form of equation (3.7) are called Newton-Cotes formula. 
 
For example Newton Cotes formula for n = 4 from the above table can be written for 5 ordinates 
as  

 ( )4321045
24

0
7 3213 32 7 h  )( yyyyydxxP

x
x

++++=∫   (3.8) 

Each of the Newton Cotes formula is completely written or obtained by implementing quadrature 
technique on one-phase of the scheme. For example equation (3.4) is one phase of the Simpson 
3/8 rule. By quadrature equation (3.5) gives 2 phase of the scheme and so on. Equation (3.8) is 
also one-phase of the Newton Cotes formula (n=4) and by quadrature technique we can get the 
two-phase as  
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( )87654321045
24

0
7 3213 32 14 3213 32 7 h  )( yyyyyyyyydxxP

x
x

++++++++=∫  

Similar procedure is applicable to other Newton-Cotes formula. 
 
Self Assessment Test 
Write from the table the next possible Newton-Cotes formula for n = 4 
 
 
4.0 Conclusion  
We have seen that there are several other formulas that can be used for approximate integration. 
The simplest of them is the Trapezoidal rule without any restriction on the number of ordinates. 
The other formulas or rules however have some restriction on the number of ordinates that must 
be prescribed before each of them could be used. 
 
5.0 Summary 
In this Unit we have learnt  
(i) how to derive the Simpson’s 3/8- rule using the Newton Forward formula 
(ii) the structure of the Newton-Cotes formulas 
(iii)     that the implementation of any of the Newton Cotes formulas is similar to Simpson’s 

3
1 - 

rule for evaluating definite integrals 
(iv) that the number of ordinates is important before a particular rule can be applied, 
(v) that the formulas are obtained by quadraturing the one-phase of the formula. 
 
6.0 Tutor Marked Assignment 

1. Evaluate  ∫
−

5

2
dx 

1
2

x
with 

2
1 h = , correct to 5 decimal places using Simpson 3/8- rule. Compare 

your result with the analytical solution 
2. Integrate  1+x  between 3 and 7, correct to 5 decimal places,  using  
 (i) Simpson’s 3/8- rule with 7 ordinates 
 (ii)  Newton Cotes formula (n=4) with 9 ordinates 
Compare your result with the analytical solution and deduce which of the two is more accurate 

3 Evaluate   ∫
5

1
dx log xe    correct to 6 decimal places with 9 ordinates  

 Use  (i)        Trapezoidal rule   
(ii) Simpson 1/3-rule   
(iii) Newton Cotes formula (n=4)  

 For evaluation. Obtain the actual error, which of these is most accurate? 
 
7.0 Further Reading and Other Resources 

1. Atkinson K.E. (1978): An Introduction to Numerical Analysis, 2nd Edition, John Wiley & 
Sons, N.Y 

2. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 
2nd ed. McGraw-Hill Tokyo. 

3. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

4. Okunuga, S. A., and Akanbi  M, A., (2004). Computational Mathematics, First Course, 
WIM Pub. Lagos, Nigeria. 
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MODULE 5 

BOUNDARY VALUE PROBLEMS 

UNIT 1:       INTRODUCTION TO BOUNDARY VALUE PROBLEMS 
1.0  Introduction 
What is a Boundary Value Problem? 
This is a kind of problem that is related to differential equations. A differential equation can be 
an Ordinary Differential Equation (ODE) or a Partial Differential Equation (PDE). However, an 
ODE can be classified into two, viz: 
(i.)   Initial Value Problem (IVP)   and  
(ii)   Boundary Value Problem (BVP).  
These two classes of differential equations are of great importance and so their numerical 
solutions are equally studied under Numerical Analysis. We shall give the definition of the two. 
 
2.0  Objective 
At the end of this lesson, the learner would have been able to  

(i) distinguish between Initial Value Problem and Boundary Value Problem 
(ii) derive finite difference scheme for solving BVP 
(iii) solve BVP using a finite difference scheme 

 
3.0  Distinction Between IVP and BVP 
There is a distinction between an Initial Value Problem and a Boundary Value Problem. As the 
name goes, one is prescribed with an initial condition while the other is prescribed with boundary 
conditions. For a better understanding we shall define both ordinary differential equation and 
partial differential equation before distinguish between IVP and BVP. We hereby give the 
following definitions. 
  

Definition 1 
A differential equation involving ordinary derivatives (or total derivatives) with respect to a 
single independent variable is called an ordinary differential equation. 
Some examples of ODEs are given below. 

        
2

2 2 0d y dyx y
dxdx

− + =  

         
2

3 7dy dyy x
dx dx

 − = − 
 

 

         2 cosdy xy x
dx

− =  

 
Definition 2 
A differential equation involving partial derivatives of one or more dependent variables with 
respect to more than one independent variable is called a Partial Differential Equation (PDE) 
Some examples of PDEs are given below. 

(i) 2v
s
v

t
v

=
∂
∂

+
∂
∂  
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(ii) 02

2

2

2
=

∂
∂

+
∂
∂

y
u

x
u  

 
Definition 3:  (Initial Value Problem) 
An Initial Value Problem (IVP) can be defined as an Ordinary Differential Equation with a 
condition specified at an initial point. 

For example: oo yxycby
dx
dya ==+ )(,       (3.1) 

Where xo and yo are initial point of the equation.  This example is simple enough as this involves 
only a single first order ODE. It is possible to have a system of first order ODEs with initial 
conditions all through for each of the equations. 
However we may have some other differential equations with some conditions specified either at 
the derivative or at the boundary of the problem being defined. This leads to the next definition. 
 
Definition 4:  (Boundary Value Problem) 
A Boundary Value Problem (BVP) is a differential equation either an Ordinary Differential 
Equation (ODE) or Partial Differential Equation (PDE) with at least two specified conditions at 
the boundary points. 
 
The boundary points often will contain an initial point and the other at the end point of the 
problem. The two serve as the boundary to the problem. 
For example for an Ordinary Differential Equation a simple example of a BVP will be:  

 nono xxxxyxydcy
dx
dyb

dx

yda ≤≤===++ ,)(,)(,
2

2
βα   (3.2) 

 
The above equation is a second order differential equation which is solvable for the specified 
range of values of x. Two conditions are specified at the extremes or the boundaries. That is the 
conditions are given at x = x0  and x = xn. 
 
Example of a BVP involving a PDE will be given later when discussing the methods of solving 
Partial Differential Equations.  
There are several numerical methods available today for solving first order ODEs with an initial 
condition. This is a course on its own as the subject is wide, though not so tasking. However, the 
focus of this course and Module is to expatiate on methods of solving BVPs. Hence, we shall in 
limit our discussion to the numerical methods for solving the BVPs of ordinary differential 
equations. 
 
3.1 SOLUTION OF BVP OF ODE 
The numerical solution of a second order Ordinary Differential Equation usually will involve 
solving system of equations. To do this, some approximations are put in place to replace the 
derivative function involved in the given differential equation.  
Suppose we are to solve the differential equation (3.2) using a numerical method, Two popular 
methods among other methods of solving this equation are either by Finite Difference Method 
(FDM) or by Shooting method. 
We shall in this unit discuss the Finite Difference Method for solving equation (3.2). 
Consider the Taylor series expansion of the function y(x+h) where h is regarded as the step 
length to be used in the problem. Then we shall obtain 

)()()()()( 3
!2
2

hOxyxyhxyhxy h +′′+′+=+      (3.3) 
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where O(h3) is called error of order 3 representing the truncation error of where the expansion is 
terminated. 
We can obtain a first derivative approximation from this expansion by writing  

 
)()()()(

)()()()()(

2

3
!2
2

hOxyhxyhxy

hOxyxyhxyhxy h

+′=−+

+′′+′=−+
 

Dividing through by h we obtain 
 

)()()()( hO
h

xyhxyxy +
−+

=′       (3.4) 

Which shows that for small step length h, the error in approximating )(xy′ is proportional to h.  
Furthermore if we expand the function y(x – h) we equally get   

 )()()()()( 3
!2
2

hOxyxyhxyhxy h −′′+′−=−      (3.5) 

We can also obtain a first derivative approximation from this expansion as   

)()()()( hO
h

hxyxyxy +
−−

=′       (3.6) 

Equations (3.4) and (3.6) are approximations to )(xy′ which can be used to replace the function 
as it may be required. Equation (3.4) is the forward difference representation while equation 
(3.6) is the backward difference representation. 
Now suppose we take the difference of equations (3.3) and (3.5) we shall obtain  

)()(2)()( 3hxyhhxyhxy +′=−−+  
This reduces to  

)()()()( 2hO
h

hxyhxyxy +
−−+

=′       (3.7) 

Equation (3.7) is a central difference approximation to )(xy′ . It would be observed that the error 
in the last equation is smaller than that of the two equations (3.4) or (3.6), since for small h, h2 
will be smaller than h. 
On the other hand if we add equations (3.3) and (3.5) we shall obtain 

)()()2()(2)()( 4
!2
2

hOxyxyhxyhxy h +′′+=−++  

⇒ )()()()(2)( 42 hOxyhhxyxyhxy +′′=−+−+  
Divide through by h2 we obtain 

)()()(2)()( 2
2

hO
h

hxyxyhxyxy +
−+−+

=′′     (3.8) 

This is a standard representation for the second derivative. 
Thus equations (3.4) and (3.8) can be substituted into equation (3.2) to obtain a numerical 
scheme for solving that equation. 
 
Recall the differential equation (3.2) 

ccy
dx
dyb

dx

yda =++
2

2
 

Substituting (3.4) and (3.8) we have  

dxcy
h

xyhxyb
h

hxyxyhxya =+





 −+

+






 −+−+ )()()()()(2)(
2
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evaluating at x = xn,  
we observe that     11)()()( ++ ==+=+ nnn yxyhxyhxy  
Also    11)()()( −− ==−=− nnn yxyhxyhxy  
hence, we obtain  

dxcy
h

xyhxy
b

h

hxyxyhxy
a n

nnnnn =+
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
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dyc
h
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b

h

yyy
a n

nnnnn =+






 −
+







 +− +−+ 1
2

11 2  

( ) ( ) 22
111 2 dhychyybhyyya nnnnnn =+−++− +−+    (3.9) 

On the other hand, we can use the central difference to replace the first derivative to get  
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h

yy
b

h

yyy
a n

nnnnn =+






 −
+







 +− −+−+
2

2 11
2

11      

( ) ( ) 22
112

1
11 2 dhychyybhyyya nnnnnn =+−++− −+−+    (3.10) 

Equations (3.9) and (3.10) are numerical schemes that can be used to solve equation (3.2). Either 
of these will yield the desire result with slight difference in accuracy. 
On applying the boundary conditions in (3.2) and writing the resulting equations for n = 1, 2, . . . 
, k-1, we obtain a system of equations with equal number of unknowns.  The above shall be 
illustrated by the next example. 
 
3.2  Numerical Examples 

Example 1 
Solve the boundary value problem (BVP)  
 22 2)1( xyyxyx =−′+′′+         (3.11) 
Satisfying the boundary conditions 
 y(0) = 1  and  y(1) = 0 
You may use a step length of 0.25. 
 
Solution 
To solve this problem we can apply the approximation of the derivatives to the given equation 
(11), we then obtain 

( ) 211
2

112
2

2
2

1 nn
nn

n
nnn

n xy
h

yy
x

h

yyy
x =−







 −
+







 +−
+ −+−+  

Since 
4
1=h  it implies that the range of x is divided into four parts by 5 node points  

 
 
 
 
Thus x0 = 0 and x4 = 1   (that is :  x1 = 0.25   x2 = 0.5   x3 = 0.75 )   
The boundary condition y(0) = 1 and y(1) = 0 simply transform to  y0 = 1 and   y4 = 0 
Since n = 0 will be invalid as we will not be able to evaluate y-1 then the reasonable thing to do 
as in the theory above is to substitute n = 1,2,3,4.   Hence, we obtain 
With n = 1, the formula above becomes 

      h 

    0      0.25     0.5     0.75      1 
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Also for n = 2, we have  
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And for n = 3, we have  
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since y4 = 0. 
Thus we have a system of 3 equations in three unknowns y1 , y2 , y3. The matrix form of these 
three equations from (i), (ii), (iii), is written as:  
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On solving, correct to four decimal places, we obtain 
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Thus the values corresponding to y1 , y2 , y3 are the results of the differential equation at points  
x1 , x2 , x3. 
 
4.0 Conclusion  
We have seen that the finite difference scheme is systematic and dynamic in producing solution 
to BVP. The resulting technique led to system of linear equations which can be solved by any 
available methods used for solving such system. The learner can also check other texts for other 
method of solving BVP in ODE, such as the shooting method earlier mentioned. 
 
5.0 Summary 
In this Unit we have learnt  

(i) distinction between BVP and IVP 
(ii) how to derive the Finite Difference scheme for solving BVP 
(iii) how to implement the Finite Difference Method on a BVP. 

 
6.0 Tutor Marked Assignment 
Solve the boundary value problem   xyyxyx 22 =−′+′′ ,  satisfying the boundary conditions 
y(0) = 1  and  y(1) = 0, use a step length h = 0.25. 
 
7.0 Further Reading and Other Resources 

1. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

2. Kandassamy P., Thilagarathy K., & Gunevathi K. (1997) : Numerical Methods, S. Chand 
& Co Ltd, New Delhi, India 

3. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
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MODULE 5: 
UNIT 2:     BOUNDARY VALUE PROBLEMS INVOLVING PARTIAL  

        DIFFERENTIAL EQUATIONS 
 
1.0  Introduction 

As earlier stated, a Boundary Value Problem (BVP) could be a Partial Differential Equation 
(PDE) with two specified points at the initial point and at the boundary point. 
In scientific computing many problems are governed by non linear differential equation which 
requires a solution in a region R subject to exact condition on the boundary. 
Unlike the BVP involving an ODE, most BVPs usually occur from problems involving rate of 
change with respect to two or more independent variables. Such problems lead to PDEs. The two 
dimensional second order Partial Differential Equation is generally of the form 
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where u is a function of two variables x and y, that is,  u = u(x, y) 
The solution of this equation subject to prescribed conditions is generally obtained through some 
analytical methods by separating the variables x and y. However, the numerical solution of 
equation (1.1) can be obtained either by the finite difference method or the finite element 
method. 
 
2.0  Objective 
At the end of this lesson, the learner would have been able to  

(i.) define a second order PDE 
(ii.) define a Boundary Value Problem (BVP) involving a partial differential equation 
(iii.) classify various types of PDEs 
(iv.) classify types of boundary conditions among PDEs 
(v.) derive finite difference schemes for PDEs. 

 
 
3.0 Types Of Partial Differential Equations  
A number of mathematical models describing the physical system are the special cases of general 
second order PDE 
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Or    0),,,,()( =−++= yxyyxyxx uuuyxHCuBuAuuL  
The following definitions are given with respect to equation (3.1). 
Equation (3.1) is said to be semi-linear, if A, B and C are functions of independent variables x 
and y only. 
If A, B and C are functions of x, y, u, ux and uy, then (3.1) is termed to be quasi-linear. 
However, when A, B and C are functions of x and y and H is a linear function of u, ux and uy, 
then (3.1) is said to be linear.  
 
Hence, the most general second order linear PDE in two independent variables can be written as 

0),(),(),(),(),(),(),( =++++++ yxGuyxFuyxEuyxDuyxCuyxBuyxA yxyyxyxx   (3.2) 
When G(x, y) = 0, then equation (3.2) is known as a linear homogenous second order PDE.  
A solution of equation (3.1) or (3.2) will be of the form 

u = u(x, y)     
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Which represents a surface in (x, y, u) space called the integral surface. 
If on the integral surface, there exist curves across which the derivatives uxx, uyy and uxy are 
discontinuous or indeterminate then the curves are called “characteristics”. 
For this, we assume the solution of equation (3.1) is passing through a curve C whose parametric 
equations are 
 x = x(s)  ,  y = y(s)   and u = u(s)     (3.3) 
Furthermore, let each point (x, y, u) of curve C and the partial derivates ux and uy be known since 
the solution is of the form (3.3) at each point of x, y of curve C. 
 
3.1  Classification of Partial Differential Equations 

Thus there are two families of curve which can be obtained from equation (3.1) along which the 
second order derivatives will not be determined in a definite or finite manner. There are called 
characteristics curves which are classified according to the following conditions. If 

B2 – 4AC > 0 , then we have real and distinct roots 
B2 – 4AC < 0, then we have imaginary roots 
B2 – 4AC = 0 , then we have real and coincidence or equal roots 

Hence, the Partial Differential Equation (3.1) or (3.2) is said to be: 
Parabolic, if B2 – 4AC = 0 
It is Elliptic if B2 –4 AC < 0 
and it is Hyperbolic, if B2 – 4AC > 0 

Few examples are given below to illustrate these classifications. 
 
Examples 
1. The wave equation is given by  
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This equation is a Hyperbolic equation, since  A = 1, B = 0 , C = -1 so that,  B2 – 4AC = 4 > 0 
 
2. The heat flow equation is given by 
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Comparison with equation (3.1), we note that:  A = 0, B = 0 , C = -1 so that B2 – 4AC =  0, 
Hence the heat flow equation is a Parabolic equation. 
 
3. The Laplace equation is also given by 
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Comparison with equation (3.1), shows that:  A = 1, B = 0 , C = 1 so that B2 – 4AC = – 4 < 0. 
Thus the Laplace equation is an Elliptic equation. 
 
 
3.2 Classification of Boundary Conditions for PDE 
The parabolic and hyperbolic types of equations are either IVP or initial BVP whereas the 
elliptic equation is always a BVP. There are three types of boundary conditions. These are given 
below as follows: 

i) Dirichlet Conditions 
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Here the function (say u(x,y)) is prescribed along the boundary. If the function takes on 
zero value along the boundary, the conditions is called homogenous dirchlet condition 
otherwise it is called inhomogenous dirichlet boundary conditions. 

 
ii) The Neumann Boundary Condition 

Here the derivative of the function is specified along the boundary. We may also have 
homogenous or inhomogenous boundary conditions 

iii) Mixed Boundary Conditions 
Here the function and its derivatives are prescribed along the boundary. We may also 
have homogenous and inhomogenous conditions. 

 
3.3 Finite Difference Scheme 
Most PDEs are solved numerically by Finite Difference Method (FDM), although another known 
method is the Finite Element Method (FEM). Hence, there is the need to develop schemes of 
finite differences for derivatives of some functions. 
In ODE of the second order which was discussed earlier, the function y is a function of a single 
variable x. The treatment of the finte difference method was easier. However a similar technique 
and analogy will be employed for the development of the finite difference schemes (FDS) of a 
second order PDE. The difference now is u being a function of two variables x and y. 
 
In this regard, finite difference schemes or methods required that the (x, y) region of the problem 
to be examined be divided into smaller regions by rectilinear grid, mesh or lattice of discrete 
points with co-ordinates (xi, yj) given by 
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This shows that each axis is divided into set of equal intervals by node points. 
Usually we shall represent kyhx == δδ ,  as our step lengths in x and y directions 
respectively.  Hence, 

rkyyrhxx nrnnrn +=+= ++ ,  
 
Consider a function u(x, y) of two variables, with an increment xδ  in x yield 

),(),( yhxuyxxu +=+δ  
If this is expanded by Taylor series, we shall obtain  
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Similarly ),( yxxu δ− , the expansion yield 
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Other expansions with increments on y give: 
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Truncating equation (i) at second term yields, 
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at point (i, j) we have   

h
yxuyhxu

yxu jiji
jix

),(),(
),(

−+
=  

h
yxuyxu

x
yxu jijiji ),(),(),( 1 −

=
∂

∂ +  

This is then written for easy handling as: 
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Similarly from (iii) by following the same procedure, we get  
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Equations (3.5) and (3.6) are forward difference approximation of ux  and uy respectively. 
Similarly, truncating at third time we shall obtain the second derivative approximation. This can 
be achieved by taking the sum of equations (i) and (ii), to get  
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This simplified to  
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Also adding equations (iii) and (iv), we obtain a similar result as  
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Equations (3.7) and (3.8) are the finite difference approximation for the second derivatives uxx  
and  uyy.  They are sometimes called the second central difference approximations. These 
approximations are often used to develop the finite difference schemes which are tools for 
solving BVPs numerically.  
 
4.0 Conclusion  
We have seen that the subject of BVP is wide. Partial differential equations with boundary 
conditions differ depending on the type of boundary conditions. This will invariably affect the 
scheme which will be developed for its solution. We remark here that the basic differentiation 
formula as we have in analysis is the same used here for the development of the finite differences 
for the partial derivatives. 
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5.0 Summary 
In this Unit we have learnt  

(i) The definition for various types of PDEs, 
(ii) About types of boundary conditions 
(iii) how to derive the finite differences for first and second partial derivatives. 

 
 
6.0  Tutor Marked Assignment 

        Write a finite difference for 
yx
u
∂∂

∂2
 

7.0 Further Reading and Other Resources 
1. Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 

2nd ed. McGraw-Hill Tokyo. 
2. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 

York. 
3. Kandassamy P., Thilagarathy K., & Gunevathi K. (1997) : Numerical Methods, S. Chand 

& Co Ltd, New Delhi, India 
4. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N.Y. 
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MODULE 5: 
UNIT 3:      SOLUTION OF LAPLACE EQUATION IN A RECTANGLE 
 
1.0  Introduction 
There are various technique required when developing finite difference schemes for partial 
differential equations. The type of PDE depends on the type of scheme that will be obtained, 
whether it is parabolic, elliptic or hyperbolic in nature. One PDE that is simple to develop a finite 
difference scheme for is the Laplace equation.  We shall in this unit provide a Finite Difference  
Method for the Laplace equation and its method of solution.  
 
2.0  Objective 
At the end of this lesson, the learner would have been able to  

(i) define a second order PDE 
(ii) define a Boundary Value Problem (BVP) involving a partial differential equation 
(iii) classify various types of PDEs 
(iv) classify types of boundary conditions among PDEs 
(v) derive finite difference schemes for PDEs. 

 
3.0 LAPLACE EQUATION IN A RECTANGULAR BOUNDARY 
Consider the Laplace equation 
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where D is the domain in (x,y) plane, and C is its boundary. For simplicity, the domain D is 
chosen to be a rectangle such that 
 { }byaxyxD <<<<≡ 0,0:),(  
with its boundary composed by 
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        Figure 1 
 
To obtain the numerical solution of (1) we introduce the net spacing 
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Hence, the interior points to D are called δD  
 { }mjniyxD ji ≤≤≤≤= 1,1:),(δ  

The net points on boundary C with exception of the 4 corners of the rectangle are called δC  
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We shall seek an approximate solution u(xi, yj) of (1) at the net points δδ CD + . The PDE (3.1) 
is replaced by a central second difference quotients obtained in the last unit. This will be 
illustrated by the following example. 
 
3.1 Numerical Example  
Solve Laplace equation 
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Subject to the boundary conditions: 
 10,10;1)1,(,0),1(,0),0(,1)0,( ≤≤≤≤==== yxxuyuyuxu  
 
Solution 
For simplicity we shall choose the meshes to be uniform and equal on both the x- and y- axes; 
that is, let hyx == δδ  
 
 
 
 
 
 
 
 
 
 
 
Replace equation (3.1) by second central differences, to have 
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Then we obtain on substituting into equation (3.1)  
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That is the average of 4 points supporting any point uij produces the result at point (xi, yj)  
Using 3 internal meshes, that is, n = 3,  
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          Figure 2 
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Then  
3
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Hence, there are 4 internal points in domain D to be determined, since other points are on the 
boundary (Figure 2) 
 
u(x,0) = 1 ,  for all values of x, at y = 0, j = 0 
u = 1 
u(0,y) = 0 for all y 
u(1,y) = 0 ,  u(x,1) = 1 
Let u11 = u1,  u21 = u2 ,  u12 = u3 ,  u22 = u4 
 
Then by equation (2) 
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Arranging these equations properly, we shall obtain   
 

4u1 – u2 – u3 = 1 
– u1 + 4u2 – u4 = 1 
– u1 + 4u3 – u4 = 1 
– u2 + 4u4 – u3 = 1 

 
Solving for the four u’s, we obtain  

u1 = u2 = u3 = u4 = ½  
Thus the four internal points for this problem are ½ each. 
The internal points may be increased by increasing the number of meshes and different result 
will be obtained. Note that the results obtained are numerical values which serve as the solution 
to the BVP (3.1) at the node points.    
 
4.0 Conclusion  
It is expected that the learner should be able to use the simple approach given above to solve 
elementary BVPs with simple boundary conditions. 
 
5.0 Summary 

In this Unit we have learnt how to 
(i.) develop finite different scheme for the Laplace equation, 
(ii.) solve Laplace equation using the finite difference scheme. 

 
6.0     Tutor Marked Assignment 

Solve the Laplace equation 
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Subject to the boundary conditions: 
 10,10;1)1,(,0),1(,0),0(,1)0,( ≤≤≤≤==== yxxuyuyuxu  
 Use h = ¼ on both axes  
 
7.0 Further Reading and Other Resources 

1. Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2nd ed. McGraw-Hill New 
York. 

2. Henrici P. (1982): Essential of Numerical Analysis, Wiley, N.Y 
3. Kandassamy P., Thilagarathy K., & Gunevathi K. (1997) : Numerical Methods, S. Chand 

& Co Ltd, New Delhi, India 
4. Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N.Y. 
5. Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 
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