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1.0 INTRODUCTION

The set of real number is not adequate to hanadhe sd the numbers we
come across in mathematics. We need another ketecomplex numbers.

In this course we will do analysis on complex vales and establish those results
which are analogue to the real number systems.

2.0 OBJECTIVES

At the end of this unit, you will learn about:

. variables and functions of complex number
. functions and transformation or complex variables.

3.0  MAIN CONTENT

A symbol, such ag, which can stand for any complex number is cadled
complex variable. If to each value a complex vdeab can assume there
correspondence one or more values of a comple&hanv, we say that W is a
function of z and writew = f (z) or w= g(z) etc. The variable is sometimes
called an independent variable whikeis called a dependent variable. The value
of a function atz = a is often written as (a).
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e.g. f(z)=2z% for z=3i, f(2) = f(3)=-9. If one value of w
corresponds to each value of z, we sat that wsiegle-valued
function of z or thatf (z) each value of z, we say w is a multiple-

valued or many-valued function of z.

Example: if w= z°, then to each value of z there is only one value
of w. w= f(2) = Z° is a single-valued function of z.

Example

If w=z"
3.2Transformations

If w=u+iv (where uand v are real) is a single-valued fumctf
z=u=1y (where x and y are real), we can wateiv = f (x+iy).
By equating real and imaginary parts this is edeiviato

UZURGY), VI V(G Y et e e e et e e e

Hence, given a poir(tx, y) in the z —plane, there corresponds a
point (u,v) in the w plane. The set of equations (1) [or the
equivalent,w = f(z)] is called a transformation.

Example 1
If w=2z*, then

f(2%) = (x+iy)® =x* —y* +2xy

Hence,u(x, y) = x* - y?
andv(x,y) = 2xy

Example 2

Let w= f(z):% for

z ()

f(z):iz 1 _ X=iy _ Xy
z x+iy (x+iy)x=iy) x*+y’

3€
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Hence,

u(x,y) = —— -y

Zt y2 and v(x,y) = N y2

3.3The Elementary Functions

1. Polynomial Functions Polynomial functionsP(z) are defined as
— -1
P(2)=a,2" +a, 2" +.coee +a,,z+a, where
%0, a;,.... ,a, are complex constants arpdis a positive
integer called the degree of the polynorfiéd) .

2. Rational Algebraic Function are defined byF(z) = % where
z

P(z) and S(z) are polynomials.
3. Exponential Functions are defined by

w=f(2)=¢*Y =¢* (Cosy-iSiny)

where e is the natural base of logarithms. (e=281L8&omplex exponential
functions have properties similar to those of eeqdonential functions.

For examplel™ s (%% = 2*%2 (2] %2 = (#7722 % e (% = (% (COS \+ i
siny;) e /2 (Cos y+i Sin y)

=¢% +¢*%(Cosy, +iSny, ) (Cisy, +i Sny,)
=e* -e*(Cos yi+1Snyi)(Cos y, +1Sn y,)
=e + nz[Cos y, Cosy,+iCosy, Sny,+1Sny, Cosy,-Sny, Sn y2]
=" [(Cos y, Cos 'y, —Siny, Siny,)+i(Cosy, Siny, +Siny, Cosy, )|
=e"Cos(y, +y,)+ i Sn(y; +,)

- ezl+z2

Note that when w = e*, the number w can be written as
w= e wherep=e*andg¢ =y

If we think of w=e* as a transformation from z to the w plane, we fingsthat
any non zero pointv = pe'? is the z- Logp +i ¢

Therefore the range of the exponential functios e”id the entire nonzero point
w = pe'?is actually the image of an infinite number of geiim the z plane under

the transformatiow = e*. For in generalg may have any one of the values
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p=>0+ Zné(n = 0,21+ 2..) where ® denotes the principal value of awg It
then follows that w is the image of all the points.

z=log p+i®+ir In=0,F1+2..)
Example: find all values of zsuch that e* = -1

Solution

e? =¢e*e” ,and-1=1€"" so that

exeiy =1eir[
By equality of two complex numbers in exponentaht, this
means that
e*-land y=m+2n where nis an integral.
n=logl=0, then
z=(2n+1)7 (h=0zx1+2..)

Example: Find the values affor which e* =1
Solution:
e*” =i

e eM =eli

So that, by equality, w have
e” =e’ = 4x=0=n=0 and

— 7
4y =2nT+—
Y 2
y=120+%for (7=021+2.)

The solution is then;— nri ci%m
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SELF ASSESSMENT EXERCISE
1 . Showthat () le?f|=e* (i) e**"
2. Find the value of for which e* =1

eZ

4. Trigonometric Function: are defined in terms of exponential
functions as follows:

iz -1z iz —-iz
_ - +
Snz:l’ Cosz:l
2i
Secz=—+t =2 cgz=-t -2
Cosz e“+e"” Snz e*-e*
tanz = Sinz :_e. —e_‘ , Cotz:C_OSZ
Cosz |(e'z+e'z) Snz
I(eiz_'_e |z)
e|z_e—iz

Many properties satisfied by real trigonometricdtions are also satisfied by
complex trigonometric function.

e.g.

Sn?z+Cos’z=1 1+ ltan’z=Sec’z, 1+wt’z=csC z
Sn(-z)=-9nz Cos(-z)=Cosz tan-z)=-tanz

Sn(z, +z,)=Snz Cosz, + Cosz, Snz,
Cos(z +z,)=Cos z, Cosz,+ Sinz, Sinz,

tan( +7 )_ tanziitanzz
A% 1-tanz tanz,

Exercise
Prove thatSin’z, + Cos’z, =1

Proof
iz _ A1z iz+ —iz
By definition, Sin z%, Cosz=& t€°
i
iz _ 4-iz 2 iz+ -iz
ThenS’nzz+Coszz=(e 2.e ]{e 2e j
i
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Leziz -2+ e_ZiZj .\ (eziz +2+ e—ZiZJ

L 4 4
=1.
6. Hyperbolic Function: Are defined as follows:

z —-Z z —Z
e —

Snhz= , Cosnz=2"% tanhz=S"%_
e’ +e
Sechz = , Cosechz=— , Coth = C_OShZ
oshz Snhz Snhz

The following properties hold:

Cosh’z-Snh’z=1 1- tanif z=sech’z Coth’z-1=csch’z
Sinh(- z) = -Sinhz, Cosh(-z) = Coshz, tanH- z) = —tanHz)
Sinh(z * z,) = Sinhz, Coshz, + Coshz, Sinhz,

Cosh(z, + z,) = Coshz, Coshz, +Sinhz, Snhz,

tanhz, +tanhz,

tanhlz, £ z,) = :
(22,) 1+ tanhz, tanhz,

These properties can easily be proved from thentdiefs. For example, to show
that:

Cosh?z- Sinh?z =1, we observed that,

z -z2\2 z _-z\?
Cosh’z-Snh’z=| & 7€ | _|€ =€
2 2

- _ - 2
(eZZ +2e2e z +e 22)_%(e22 _2eze z +e2)
(eZZ +2+e—22 _e22 +2_e—22)

Exercise:
The proofs of others are |eft as exercise

Trigonometric and hyperbolic functions are related

For instance:

Sniz=iSnhz, Cosi z=Coshz, tani z=itanhz
Snhiz=iSnz Coshiz=Cosz, tanhi z=itanz

4C
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SELF ASSESSMENT EXERCISE
1. IfCosz=2, Find
(a)Cos2z
(b)Cos3z

2. FindU(x,y) andV (x, y) such that
(@)Snh2z=pu+iv
(b)zCoshz =y +iv

3. Evaluate the following
@) S’nh(g)i

(b) coshznTJrl) T

(3)Tan cosh%

4. Show tha

TanhM‘ =1
4
5. If tarz=u+iv show that
4= Sn2u ve Snh2y
Cos2u+Cosh2y’ Cos2u+Cosh2y

6. Logarithmic Functions

The natural logarithm function is the reverse & éxponential function and
can be defined as:

w=1nz=1nr +1(p+2k7m), k=0, £1, + 2

Where 7= re® = re/(@+27]

1# zis a multiple valued function with the principledlve. Ini +ig where
0<¢<2nor its equivalent.

For z=a"whereais real,w=1log, z where a > 0,anda # 01, in this case,

z=¢e"""® and sav = Anz )
Ina
Exercises
Evaluate
(D)In (-40

41
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@)n({V3-i)

Solution

(i) In (-4)
z=-4+0i, r=[4=+-47+0% =24

argz :tan'lg =tant 0=0=m=m+2k

In (4) = In |4’ "™ |= In a+(m+ 27} fork=0,+122....

@ In (V3=
z=+3+-u, r=|4=VF +(-12 =2
argz=tan‘1_—1=—ﬁﬂ=%+2nk¢£+2kﬂ
J3 180 180 6

In (\/§—i): In (2e%1+2k77j: In 2 +(%+2kn}i

SELF ASSESSMENT EXERCISE
1. Evaluate

(@)In (—%—ﬁij

2

()In (%—%.J
©  In([3-2)

7. Inverse Trigonometric Functions

To define the inverse sin functi@n ™z, we writew=Sn"z
whenz = Snw . That is
iw __ e—iw

w=3Sn"'z ,whenz=

Which is equivalent to:
(") -2izle")-1=0.

Thisisquadraticinw". Solving for € one have

eV =1z+ (1— 22)%
Taking logarithms of both sides and recalling thatSn-%,, we have

42
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Sntz=-i Inliz—\/l— 22J

Which is a multiple-valued function with infinitelpany values at each

Smilarly,
Cos'z=-i Inlz+ ivl- 22J

tantz= ~ In{u}
2 1-2z

Which are also multiple valued functions?

Exercise

Find the values of Sn™*2

Solution

Sn*2=-i Iani+\/1—22)
=—j |n(2i+ 3I):—2 In(2+\/§)l
—_i In(2+ j3)e(%+2kﬁ)i

=—i In(2+ j3)+(g+2knj i
. . 7l
—iIn(2+ 13)+E+2k77

SELF ASSESSMENT EXERCISE

1. Evaluate
(a)Cos™2
(b) Cos™2
8. Inverse Hyperbolic Functions

If z= Snhw thenw= Sinh™z is called the inverse hyperbolic sine of Z.
Other inverse hyperbolic functions are similarlyided.

Snh™z=1n {z+\/?+1}
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Cosh™z= In{z+ JZ2 —1}

tanh™z = 1 In(uj
2 1-2z

In each case, the constaktz , k = 0, 1+ 2... has been omitted. They are
all multiple valued functions.

Cosh™i = In{i +v=1-1 = Inf =2}
=In (1+j2)i = In(1+\/§)exp{7—27+ 2nﬂ}i
=1In (1:\/§)+ig+2nn

SELF ASSESSMENT EXERCISE

1. Find all the values of
(@Snh™i
(b)Sinh™ [In (-2)]
40 CONCLUSION
In this unit we considered in general, functiongamplex variables and

considered various functions in these categoriextiee all exercises in this unit
to gain mastery of the topic.

5.0 SUMMARY

What we have learnt in this unit can be summarized as foll ows;

(a) Definition of Complex Variables
(b)Some Elementary functions of Complex Variables
© Transformation of Complex variables.

6.0 TUTOR-MARKED ASSIGNMENT

1. Show thatCos™z = —i In lz+ i V1- 22J

2. Show that: Ir(2—1) :% In {(u —1)2 + y2}+ i tan_lxi—l
3. Evaluate the following

@)s nh(g)i

44
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2n+1
(b) coshT) T

(3)Tan cosh%

4. Show tha

Tanh @‘ =1

5. If tarz=u+iv show that
4= Sn2u ve Snh2y
Cos2u+Cosh2y’ Cos2u+Cosh2y

7.0 REFERENCES/FURTHER READINGS

Francis B. Hildebrand (1976) Advancedlculus For Application 2" Edition
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1.0 INTRODUCTION
In this unit, we will learnt about limits, and camiity in complex variables,

We shall establish some relevant theorems on liamtscontinuity.
2.0 OBJECTIVES

At the end of this unit, you should be able to:

» limit and continuity of functions of complex varialks
» theorems related to limits and continuity of complariables
* Answer all related questions on limits and contywui

3.0 MAIN CONTENT
3.1 Limits

Definition: Let a functionf be defined at all poinZ in some
neighborhood ,, except possibly for the poird,itself. A complex
number L is said to be the limitof (z) asZ approacheg, if for

each positive number there is a positive numbersuch that
1f(z)-U<e whenevei <|Z -Z,|<J

We write

lim
flz) =L
, 1@

Example: Show that

4€
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lim

, o (2x+iy2)=AtI Z=X+iy

Solution

For each positive number We must find a positive number such that
2x +iy® - 4i| <¢ whenever0<|z-2i| <J

To do this, we must write

[2x+iy? —4i| <2X+[y* -4 =2x +|y-2 |y+2]
and thus note that the first of inequalities wél $atisfied if
A<t and|y-2 |y+2 <

The first of these inequalities is, of course, & ifjx <¢. To establish
conditions ony such that the second holds, we restyisb that]y - 2|< ¢
and then observe that

|y+2|:|(y—2)+4{ s|y—2| +4<5

Henceif |y—-2 < min {1, if followsthat |y -2 |y+2 <[1—50j5=%

An appropriate value od

is now easily seen from the conditions tMadbe less tha;
and thatly -2

be less then mif¢/, 1}
d= min{%,1

Note that the limit of a functiorf (z)

47
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at a pointz,

if it exists is unique. For suppose that

im f(z)= L, and im f(z)=1L,

Z -z, z -z,

Then for an arbitrary positive numbég

and 9,
© such that

[T(2)-L|<e  whenevero<|z-L,| &,
and|f(z)-L| <& wheneverO<|z-L]| <4,

So if 0 <|z-z,| < d whered denotes the smaller of the two numbers
o, and 9, then

(f(2)-Lo)-(f(2)-L) <|f(2)-Ld +|f(2)-Ly| < 2¢
Thatis
|L1 —Lo| <2¢

But
L, - L,is a constant, and can be chosen arbitrarily small. Hence,

L-L,=0or L =L,

Definition: The statement

Means that for each positive number & thereisa positive number J such that
1(2)- Lo| < & wheneverz <%

That is, the point = f(z) lies in thee nbd [l - L,| < & of L, whenever the
point z lies in the nbd |z > ¥; of the point at infinity.

Example: Observe that

48
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lim
e
Z - 07
Since
i—o‘ <g wheneve|12| <1
z? Je
Hence 0 = \/E

When L,isthe point at infinity and z, liesin the finite plane, we write

lim
z - z, f(z)_oo

If for each ¢ there is a correspondingsuch that| f (z)| > L whenever
£

0<|z-2z| <9

Example: As expected
lim 1
— =00
z 027

1

z

for

> 1wheneverO <|z-¢ < Je
£
3.2 Theorems on Limits

Theorem 1: Suppose that
f(z)=U[x Y +V (X y) Z, = %, +iy, and L, =u, +iv, Then

zZ- 2
)
If and only if
lim
(X1 y) - (X01 Yo
lim
(x9) - (0. 0)”

)u(x, y)=u, and

—
X
<
~—
1
<

Proof

e
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Assume (1) is true, by the definition of limit, tieds for each positive number
a positive numbed such that(u —u,)+i (v-v,) < & whenever

0<|(n=n)+i(y-y,) <o

since [u—ug| < |(u-uy)+i(v-v,) and

(u_uo)+i (V_Vo)
V=v,| <|(v=vy) +i (V=)

It follows that
u-ug| <& andjv-v,|<d
whenever
0<|(n+iy)-(n=iy,) <o
which is statement (1), hence the proof

Theorem 2: Suppose that

lim lim
72, f(z)=L, andZ 2 f(z)

then

LO

N

1

N
o

—
—

N
~—

—
o

Proof: (Left as exercise)

SELF ASSESSMENT EXERCISE
1. Evaluate the following using theorems on limits
lim )
a _\z° +10z-15
@ Z - z+i ( )

lim (4z+3)(z—1)
z 2722 722-2z+4

(b)

5C
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lim = 22 +8
7277 +422 +16
@ "™ (z*+22-10)

z- 1

lim 72

z- ez +z+1

(€)

(e)

Show that
lim ) 2240
z . 2" 7' +47° +16

V3

:§—_i
8 8

3.3 Continuity
Definition: A function f is continuous at a poirt, if all the following
conditions are satisfied.
lim .
(1) f(z) exists
z - z,

(2) f(z,) exists

@ "™ t()=t(z)

z - z,

Note that statement (3) contains (1) and (2) asdytthat for each positive
numbere there exist a positive numbér such that

1(2)- f(z,) <& whenevelz-z|< 5

a function of complex variable is said to be contdn a regionRif it is
continuous at each point

Example: The function

f(2) =xy* +i(2x-y)
is its everywhere in the complex plane becauseahgonent functions are
polynomials onx and y and are therefore continuous at each pfiny)

Example: If

51
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Z"T i f(z)=-1Butf(i)=0. Hence,zliT i f(z)# (i)

Therefore the function is not continuous at z =1

Example: The function

f(z)=e? +i Sin (n? - 2ny?)

is continuous for alk because of
the continuity of the polynomials om

andy
as well as the continuity of the exponential ame $unctions.

Theorem on Continuity
1. if f(z) and g(z) are its atz- z,. So also are the
functionsf (z)0g(z), f(z2)-9(2). f(2) a(z). f(2)/g(z), the last
onlyg(z,)+0.

2. A function of a continuous function is is= g[f (z)] is its f(2) is its
3. If f(2) is continuous in a region, then the real and imayi parts
of f(z) and also it's in the region.

4. If a function f (2) is its in a closed region, it is bounded in the
region, i.e. there exists a constant M such |théa)| < M for all points zin
the region.

SELF ASSESSMENT EXERCISE
2’ +4

z2—2i

1. Let f(z)= if z+2i while f(2i)=3+4i

lim , L
(a)Prove that f(z)exists and determine its value
Z i

—

(b)Is f(2) its at z = 2i ? Explain?
(©) Is f(z)its at pointz # 2i ?. Explain

52
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2. Find all possible points of discontinuity of #adlowing function
2z-3
a)flz)=——
@1(2) 2°+22+2
32" +4
b) f(z)=

(c) f(z)= Cot z

Answer

(a) —1+i
(b)£2 +2i
(c)kn, kK£v, +, +2

3. For what values of are each of the following function continuous

_ VA
@f(@=—";

1
(0) 1 (2)=5

40 CONCLUSION

In this unit we have studied limits of functionsntinuity of functions of
complex variables in a manner similar to that @l rariables. You are required
to master them properly so that you can be abégpdy them when necessary.

50 SUMMARY
Recall the following points;

- Continuity in Complex variables can be treated ag@alsly as in the real
variables

* If f(2) is a continuous complex variable so also its agal imaginary
parts.

+ A complex functionf (z)«is bounded if there exist a constant M>0

such that|f (z) <M
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6.0 TUTOR-MARKED ASSIGNMENT

1. Prove that

||m 4 _ 3 2 _
. 32" -27°+8z 22+5:4+4i
Z i z-1

Is the function its at —i ?

2. Factorized
(i) 22+8
(i) z*+4z*+16

(b) () Show that
lim 22 +8 3 3.
A a2 a1e a
zZ-2e*272"+4z°+16 8 8
(i) Discuss the continuity of

2’ +8 _
f(z)=——— at z=2el
(Z) 2% +42° +16 Z

7.0 REFERENCES/FURTHER READINGS

COMPLEX ANALYSIS I

Francis B. Hildebrand (1976) Advancedlculus For Application 2"

Edition
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1.0 INTRODUCTION

In this unit, you will learn about sequences anikeseof complex variables.
You will also learn about the convergence of thessges and sequences.

All related theorems in real variables will be e$ithed for complex
variables. We shall consider Taylor and Laurenieser

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. to define convergence of sequences and seriesroplex variables
. solve related problems on series and sequence.

3.0 MAIN CONTENT
3.1 Definition

An infinite sequence of complex numbegs, z,,........ z, hasalimit

Zif for each positive numbes there exists a positive integral
number such that

|z,-Z <& wheneven>n,
If the limit exists, it is unique.

When the limitz exists, the sequence is said to converge to
Z; and we write
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And

Conseguently,
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lim
=Z
n - o

If the sequence has no limit, it diverges.

Theorem: Suppose that, = x, +iy, (N=12,......)and z = x +iy .
Then

lim

If and only if
i
m X, = xand
n - oo
lim N
Yo TV (1)

n - o

Proof:

Assume (i) is true, for each positive numlzghere exists a
positive integer number such that

|(x, =x)+i(y, - y) <¢ Whenevern > n
But
%, =X < (%, = %) +ily, = y)

1Yo =Y <% = %) +i(y, ~y)

x, =X <& and |y, -y <ewhenevern > n, and (3) are satisfied.

Conversely, form (3), for each positive numb@&, there is positive
numbersn, andn, such that

%,

£
-X < Ewhenevern >n,

And

ly, -y < gwhenever n>n,

5€
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Hence if number is the larger of the two integers andn,,
Then

X, =X <§ and|y, -yl < %whenevern >N,

But
(%, =x)+i(y, = y) < [%, =X +|y, =Y,

And so
z,-4 <€ whenevem > n,

Which is condition (2)

Definition: An infinite series of complex numbers

Zzn =z +z,+.....+z, +..Converges to a sum S, called the sum of
n=1

the series, if the sequence

N

Sy = Z 2,=2+2Z,+..une +2z, (N =12 ... ) of partial sums

n=1
converges to S, we then wrile z, =S
n=1
Note that since a sequence can have at most oitgdigeries can have at must
one sum, when a series does not converge, we aay tliverge,

Theorem: Suppose that = x, +iy, (n=12 ,.andS= X +iY.then

If and only if

D> Xn=X and iYn=Y
n=1

n=1

Definition:  An infinite sequence of single valued functiofi€@mplex
variable

Ul(z),Uz(z), U3(z), ............. ,Un(z), .........
Denoted by{U ,(z)} , has a limitU(z) asn — o, if given any positive
numberg we can find a number N (depending in general dh b@nd
z )suchthaju,(z)-U(z) < eforall n>N.
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lim
We Writen U,.(2)=u(z2) . In such case, we say that the
(o)

—

sequence converges or is convergent {a)

If a sequence converges for all values of Z (pdims region R, we call
R the region of convergence of the sequence. Aesemguwhich is not
convergent at some value (point) Z is called dieatt Z.

Definition: The sum of {J (2)}, denoted by{S, (z)} is symbolized by

U,(2)+U,(2)+ # iun(z) is called an infinite series
=1

lim
it (z) = S(z), the series is said to be convergent and S(8 is i
— 00

sum, otherwise the series is said to be diverdeatseries converges for
all values of Z (points) in a region R, we callli tregion of
convergence of the series.

Definition (absolute convergence): A seri®3U  (z) is called
n=1
absolutely convergent of the series of absolutaesl

ie. i|un(z)| , converges
n=1

If iun(z) converges bui|un(z)| does not converge, we call
=1

n=1
>"U,(2) conditionally convergent.
=1
Definition: In the definition, if a number N depds only ine and not
in Z, the sequencd , (z) is said to be uniformly convergent.
3.2 Taylor Series

Theorem (Taylor's Theorem): Left be analytic everywhere inside a
circle C with center aZ, and radius R. Then at each point Z inside C.

f(z):f(zo)+@(z-zo)+ﬂ(z-zo)2+ .......... LAY P S,

2 nl

That iis, the power series have convergeto f(z) when [z-z,| < R.
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Proof
Let Z, be any point inside C. Construct a circle C, wigntre atz, and
enclosing Z. Then by Cauchy’s integral formula

f(z)=ii§mdw

/ni Yaw — 2

For any point w on C;

(1)

We have
1 _ 1 _ 1 1
PR TR I e e | W
wW-2,
_ 1 HM] .......... (uj(_j}
wW-12, w-z,) \w-z w-Z, W-2,
o L - 1 , 2°% Sz (z—zo)""l+ z-7,) 1
w-z w-z, (w-z) (w-2)° (w-z) (w-2z, Jjw=2z
Proof

We first prove the theoremwhen z, = Oand then extendsto any z,.

Let Zbe any fixed point inside the circle C, centred raahe origin. Then let
|7 =r and note that < Rwhere R is the radius of C. Let S denote pointsgyin
a positively oriented circle bout the origin with radius;Rvhere

r <R <Rthen |[§ =R. Since Z is interior to Cand f is analytic within and
on the circle, the Cauchy integral formula gives

f(z)=—L S @)

£7_7i Q@ S—7
Now, we can write

T and using the first that
s-z s|1-(%)
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(h=12... ) where C is any complex

1 1z 1., L2770
s-z S s s U sV (s-2z)sM
(2

Multiply this equation through b)’ (%Ei and integrate wrt S, we have

2 n-1
L L Mg, 2 [, 2] (022 16,
27 S—z2 (e S (m<a S (e s 7 RS
z”J- f(s)ds
07+ (s-z)S™

In view of expression (2) and applying the this that
1 I f(sds_ 1 ¢ f(s)ds _ £ (0)
s

c, Sn+l fﬂj.cl (S_i)N+l nl

We can write theresult as

f(z):f(0)+flT$O)z+f(;—(!o)zz+ ........ +%Z“+f(z)
Where
f(z)= ZI_; [ (Sf—(SZ))dSSN ........................................................ 4)
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* Recalling thatz =r andd =R,
, Wwherer <R, , we note thajs-7>|§-|4=R -r
e It follows from (4) that when Mdenotes the maximum 4)f (s)| on G,

. |pn(zxs%[[(a§ﬂ;wg,—ﬂgllfg@”B.............................(

5)
But (é} 1 , and therefore

~

Inthe open disk|Z < R

Thisisa special case, of (1) and it is called the maclurin series.
Suppose now thaf is as in the statement of the theorem, sifig)is
analytic Wheﬂwz - zo| <R , the composite functiori (z+ z, ) is analytic
when|(z+2,) - z,| <R . But the last inequality is simply < R;and if we
write g(z) = f(z+ z,), the analyticity of g inside the circ|g = Rimplies
the existence of a Mcdanrim series representation.

o(2) = i g" (O)Zn

nl

(2<R)

Thatis

o f(n) ]
f(z+2)=Y Izoz
n=0

n
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Usingzby z-z,
in this equation, we arrive at the desired Taydoies representation fofr(z)

about the poirg,.

(=3 ez y
(z-2z|<R)

Example: Iff (z) = Sinz, then f®(0)=0 (h= 0,1, 2........ )
and f @9(0)=(-2)" (h=012........ )

hence
2n+1

snz=3 (-1 12—, (4<)

e (2n+1)
The conditi0n|z| < oo follows from the fact that the function is entire.

Differentiating each side of the above equatiorhwaspect to and interchanging
the symbols for differentiation and summation o tight-hand side, we have the
expression

2n

Cos z= Z.o:(—l)n (%T)
n=0

Becaus&inhz = —isin(iz)

, replacingz

by iz

in each side ofe) and multiply through the result by —c, we have

00 22n+l
Snhz=)) ——~
N2=2 onsa)

Differentiating each side of this equation gives

0 2n
Coshz= z

< (2n)
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3.3 Laurent Series

Theorem: Let gand G denote two positively oriented circles centred abint
Zo, Where @ is smaller than € if a function f is analytic on £&and C, and
throughout the annular domain between them, theact point Z is the domain

f(2)

is represented by the equation.

= =
Where
%_K%C4;%Si_( 0,12,.......
And

E—j—j e (Zf_(jjfﬂ (=120 )

The series hereis called a Laurent series
We let R,and R denote the radius dE, and C, respectively. ThusR,
and Randif f is analytic at every point inside and on
C,except at the poinZ, itself, the radiusR, may be taken
arbitrarily small, expansion (1) then valid when
0<|z-Z|<RIf f

Is analytic at all points inside and @), we need only write the integral in
expansion (3) af (z)(z-z,)"™  to see that it is analytic inside and Gp.

For n-1=0when nis a positive integer. So all the coefficient ba aero, and
because

1 f(z)dz _ ()
(e (z-z,)"

Expansion (1) includes to a Taylor series akoyt

4.0 CONCLUSION



MTH 305 COMPLEX ANALYSIS I

In this unit we have established condition for cengence of series in complex
variables. You are required to study this unit grbpto be able to understand

subsequent units.

50 SUMMARY
The following definition is hereby recalled, toests the importance of

convergence of series in complex variables

(1)An infinite sequence of complex numbetzs,z,,........ z,,.....has alimit Zif
for each positive numbegthere exists a positive integral number such that
lz,-7<¢ wheneven>n;.
If the limit exists, it is unique.
When the limitZ exists, the sequence is said to converge;tand
we write
lim
z,=2
n - oo

If the sequence has no limit, it diverges.
2. We have also stated theorems that can helpp®aiing convergence

of series.
3. The Taylor and Laurent series have been applig@ating convergence

of series.

6.0 TUTOR-MARKED ASSIGNMENT
1. Expand the following complex variable using Taderies about z%
(@)Tanz (b) Cosz
2 State the Laurent series for the above.

7.0 REFERENCES/FURTHER READINGS

Francis B. Hildebrand (1976) Advancediculus For Application 2
Edition
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UNIT 4 SOME IMPORTANT THEOREMS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1Special Tests for Convergence
3.2 Theorem on Power Series
3.3 Laurent Theorem
3.4  Classification of Singularities

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, we shall consider some related thesren complex variables.
We shall consider theorems on test of convergence of complex variables

We shall also learn about singularities and classifications or singularities.

OBJECTIVES
At the end of this unit, you should be able to:
. state the important theorems on convergences oksegs and series of
complex variables
. be able to classify singularities on complex vdaab
. work problems on complex variables.

3.0 MAIN CONTENT
Theorem 1L The limit of a sequence, if it exists, is unique.

Theorem 2 Let {a, }be a real sequence with the property that

6€
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(i) a,;, =2a,ora, <a,
i) |a)<M(ay)

Then {a, } converges.

That is, every bounded monotonic (increasing or decreasing) sequence has a
limit.

Theorem 3 A necessary and sufficient conditions tfidt } converges is that
given & > 0,we can find a number N such tt}Ldtn —Uq| < efor all

© >N, q>N.This is called Cauchy’s convergence criterion.

3.1  Special Tests for Convergence

Theorem 1: (comparison tests)
@)If > V,|converges an@J, | <V,|, then > U converges absolutely
(b)If Y|V, |diverges andU | =V, |, then> U, | diverges bufd U, may or
may not converge.
Theorem 2 (Ratio Test)
U ntl

lim
=L, then Zun converges (absolutely)

— 00

(a)lf
n n

(b)If L <landdivergesifL >1.If L — 1, the test fails.

Theorem 3  (nth Root Test)

lim
(a)lf - oo,n/|Un| =L, then) U, converges (absolutely)
(b)if L< 1 and diverges if L > 1. If L = 1, thegt fails
Theorem 4  (Integral Test)
: lim
(@)If f(x)=0for x=a,then_ f(x)converges or diverges if
m — oo

M .
L f (x)dx converge diverges.
Theorem5  (Raabe’s Test)

@i M n(l—

n - o

Y
u

] =L,then ZU , converges (absolutely)

n

(b)If L > 1 and diverges or converges conditiondllL < 1.
(c)If L = 1, the test fails.
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Theorem 6 (Gauss’ Test)

U ntl

L
@1f |5

C
=1-—+—>where|C,|< M for all n> N,then > U converges
n n

n

(absolutely) if L > 1 and diverges or converges cooohlly if L <1.

3.2 Theorems on Power Series

Note that a series of the form
a,+a,(z-z)+a,(z-2)+.cornnn. =>a,(z-2z)" is called a power series
n=0
in z-z,

Theorem I A power series converges uniformly and absolutelyany
region which lies entirely inside its circle of a@ngence.

Theorem 2 (Abel’'s Theorem)
Let Zanz" have radius of convergen¢éand suppose tha,is a point on the

circle of convergence such thﬁ a,z, converges.

lim - .
Then > a,z" =) a,z;where z - z,from within the circle of
z-z,

convergence.
Theorem 3 If Zanz“ converges to zero for all Z such that< Rwhere
R>0, thena, = Q Equivalently. If > a,z" =) b, z"for all Z such that
|7 <Rthena, =h,.

3.3 Laurent Series

If a function f fails to be analytic at a poird,, we cannot apply Taylor’s

theorem at that point. If is often possible, howet find a series
representation forf (z) involving both positive and negative powerszf z,.

Theorem (Laurent Theorem): Let, and C, denote two positively
oriented circles centred at a pazgt whereC, is smaller tha,. If a
function f is analytic atC,andC,, and throughout the annular
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domain between them, then at each paiit that domainf (z) is
represented by the expansion.

”ﬂzg%@‘%y+§cfiv .............................................. (1)
Where

%:f%LG%%%I@‘OiZ ........... ) e, )
And

bnzé%ﬁgé%%£25<nzlg ......... ) e, ?3)

The serieshereis called a Laurent series.
Since the

f (Z) ntl and f (Z)—ntl
(Z - Zo) (Z - Zo)
analytic throughout the annular doma®y|z - z,| < R, and in its boundary,
any simple closed contour C around the

two integrands in expressions (2) and (3) are

domain in the

positive direction can be used as a path of integranstead of the circular paths
C,and C,. Thus the Laurent series (1) can be written as

00

f(2)=Y.C.(z-2)" (R, <|z-2z|<R)

n=-0
Where
_ 1 f (z)dz
"o20c(z-z)™
(hn=0+1L +2..c......... )

Particular cases, of course, some of the coefficient may be zero.
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0

Example: The expansion

3.4 Classification of Singularities
1. Poles: If f(z) has the form
a-1 a-2

f(z)=a,+a(z-2)+a,(z-2) +.....+ +(z—z)2

- In which the
z-z,

principal part has only a finite number of termegegi by

s EPR = S &
-4 (Z_Zo)2 (Z_Zo)n
pole of order n.

Ifn=1,itis called a simple pole.

Wherea_, # 0, thenz = z,is called a

If f(z)has a pole az = z,, then ] “mz f(z)= .
- %

2. Removable Singularities If a single valued functiorf (z) IS not
_ lim , .
defined atz = z, but f (z)exist, thenz = z,is a removable
YA A

singularities. In such case, we defifi¢z) at z = z,as equal to

lim
-2, f(2).

7C
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Example: Iff (z) = 3nz , thenz = Ois a removable singularities
z
, : : lim
since f (0)is not defined but Snz_,
z-0 z
] 2 5 7 2 4 6
Note thatm -1 7-L 2 42l 2 22y
Z Z 3 5 7 3 5 7
3. Essential Singularities If f(z) is single valued, then any

singularity which is not a pole or removable siragity is called an essential
singularity. If z = a uan essential singularity dh‘(z), the principal part of the
Laurent expansion has infinitely many terms

Example: Sincee” —1+dy 12 NEPE
z 2z 3

z =0is an essential singularity.

4. Branch Points. A point z = z;is called a branch point of the
multiple-valued functionf (z)  if the branches off (z)are interchanged
when Z describes a closed path almuSince each of the branches of a
multiple-valued function is analytic, all the thears for analytic functions, in
particular Taylor’s theorem apply.

Example: The branch of (z) = z”2which has the value 1 far=1, has a
Taylor series of the form

a, +a,(2-1)+a,(z-1)* +.....With radius of convergenck =1[the
distance from Z=1 to the nearest singularity, ngrtte branch point z=0].
5. Singularities at Infinity: By letting = ¥,in f(z) we obtain the
functionf (%) = f (w). Then the nature of the singularity at « [the point
at infinity] is defined to be the same as thatfdiv) atw = 0.

Example: If f(z) = z*has a pole of order 3 at o, since
f(w)= f(¥%)= ¥. has a pole of order 3wt=0.

Similarly, f(z) = e?has an essential singularityzat « , since
f (w) = f(¥,) = e*has an essential singularitywat 0.

40 CONCLUSION
This unit is a very important unit which must bedséd properly and
understood before proceeding to other units.

5.0 SUMMARY
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Recall that in this unit we discussed very impdrtaeorems in the solution of
complex variables. We also discussed singularitiagrent series and
application, we discussed branch. These are tmdatkling any exercises on
complex variables.

6.0 TUTOR-MARKED ASSIGNMENT
1. State all the Convergent Tests listed in this u

2. 1f f(2)= Sinz determine the removable singularity and carrytbet
z

expansion.

3. Define the essential singularity and determimeegssential singularity for
1

f(z) = e?
7.0 REFERENCES/FURTHER READINGS

Francis B. Hildebrand (1976) Advanc€dlculus For Application 2"
Edition
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MODULE 2

Unit 1 Some Examples on Taylor and Laurent Series

Unit 2 Analytic Functions

Unit 3 Principles of Analytic Continuation

Unit 4 Complex Integration

UNIT 1 SOME EXAMPLES ON TAYLOR AND LAURENT
SERIES

CONTENTS

8.0 Introduction

9.0 Objectives

10.0 Main Content

3.1 Some examples on Taylor and Laurent Series

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Readings

1.0 INTRODUCTION

This unit considers examples on Taylor and Laussries of complex

variables.

The aim is to expose the students to more workekxdenples on complex

variables.

2.0

OBJECTIVES

The students will be able to:

Solve problems successfully on complex variablaagu3aylor's
Series and Laurent Series.



MTH 305 COMPLEX ANALYSIS I

3.0 MAIN CONTENT

3.1 Examples on Taylor and Laurent Series

Example:  Expand f(z)=Coszin Taylor series aboutz :g and
determine its region of convergence

Solution:

By Taylor series.

((2)= f(z)+ £(z,)z-2)+ 1(2) B2 s
f(z)=Cosz f'(z)=-Snz, f"(z)=-Cosz, f"'(a)=Snz

f(’-’j=f%,f"(’—7j=—%, f"(’ﬂ? 2 f"'(l—T =2

4 4

f(Z):%J%(Z_IZT)_%(Z_ZT+%(Z_Zj +f%(z_:j4_

PR A o e B i

For the region of convergence, using ratio test
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Letu :(_1)n-1(z_;r]2”'1 u +1—(_1)2(Z_ZT“

" (2n-2) " 2nl

Also
o 2n-1 2n+1
SR (-7
Let 4 =V,,V,, = 4
(2n-1) (2n+1)
| | )n[ -”}
lim |U,,|_ lim 4),  (2n-2)
n - oo Un n - oo 2n ( 1)n_1(z_n'jzn_2
4
_lim (z IZT)Z” ‘
iy - n-2
n-e 2n(2n—1)(z—”]
lim 1 ‘ nr
= - 7Z——
n-o 2n(2n-1)|" 4
2
m [
_lim 4 _
n - o —(2n(2n-1))
T 2n+l
- lim |V lim = (Z_4j (2n-1) ‘
Similarly —mll = + -
noo/V, | nool (2n+1) M
rfe
4
2
lim Z_Z‘
=" - =0

no o 2n(2n +1) -

This shows that the singularity @losznearest teg— is at infinity. Hence the

series converges for all values oife. |7 < «

Example: Expandf (z) :isis a Laurent series valid for
Z —
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@ |a<3
(b) [4>3
Solution
For|Z<3

1 1 1 1 4

— — — 1—
(z-3) -3+z -31-%) —3( %)
_ i,z 2,2 1z 7 2
37 3 9 27777 3 9 27 81
For|Z4>3
1

1 __ 1 1(1-§] =z{1+§+92+23+ ...... }

z-3 2(1_3 z zl z 7% z
Z

1 3. 9 27
Sl

z 2° 72 2
Example: Expand NZ)zWiz—Z) in Laurent series valid fdg<|
Solution

z 1 2

(z—l)(z—2) - z—1+2—z

S
z-1 ](1—2)
=-1-z2-2°-2°-2"-

=—[1+ z+22+ 22+ 2+

For |z|<|

and

2 -2 ):1(1_72)_1

2-z 21-%
=1+ %+ L+ 2R+ Dt e,

7€
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Adding, we have

z 1, 3, 7/,5_15 -
(Z—]_)(Z—Z) 22 4Z 82 %62 ..........

Example: Find the Laurent series for the functibfz)=(z-23) S’n%2
z

aboutz=-2. Also state that type of singularity and the ragiof
convergence for the series.

Solution:
1
(z-3)Sn——; z=-2.Letz+2=u or z=u-2.
z2+2

Then
(2-3) Sn—L :(u-s)s-n%:(u-a{l- S S, }

z+2 u 3u® 5lu
_ 5 1 5 1
e
u 3u 3u® SHu
_ 5 1 5 1
=1- + +

z+2 6(z+12f 6(z+12° 120z+2)*

z=-2is an essential singularity. The series convergesafi values of
z2+-2.

4.0 CONCLUSION
In this unit we discussed Laurent eerand Taylor series. We

applied them to solve some problems .You are taltas unit very well .
You may wish to attempt the Tutor- Marked Assignimen
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5.0 SUMMARY

Recall in this unit that while Taylor series can bseful to analyze
functions , Laurent Series gives clearer and &myays of handling
functions of complex variables. These were cleadynonstrated in the
examples we considered in this unit. Answer theoif Marked Assignment
at the end of this unit, for more understandinghefconcept.

6.0 TUTOR-MARKED ASSIGNMENT

1. Expand the function in each of the followiragiss:
(a) a Taylor series of powers of for |7<1

(b) a Laurent series of powers of for |7>1
(c) a Taylor series of power af+1 for |4 <1

7.0 REFERENCES/FURTHER READINGS

Francis B Hildebrand (1976): Advanced Calculus for Application
2" Edition.
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UNIT 2 ANALYTIC FUNCTIONS
CONTENTS

1.0 Introduction
2.0 Obijectives
3.0 Main Content
3.1 Derivatives
3.2 Differentiation Formula
3.3 Cauchy-Riemann Equations
3.4  Sufficient Conditions
3.5 Polar Form
3.6  Summarizing Analytic Function
3.7  Harmonic Function
3.8 Solved Problems
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit we shall study analytic functions a@ingplex variables. We shall
establish the condition for functions to be analyti

All related theorems on analytic function will bensidered.
2.0 OBJECTIVES

At the end of this unit, you should be to havernéabout:

. derivatives of complex variables
. Cauchy — Riemann equations
. polar form of complex variables

. harmonic functions.
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3.0 MAIN CONTENT
3.1 Derivatives

Definition: Let Fbe a ..... whose domain of definition contains a nbd o
point Z,. The derivative off at Z,, written asf*(z,), is defined as

()= Iimz f(zz):;(z") .(3.1.1)

Provided this limit exists. The functiofis said to be differentiable &,
when its derivative at, exists.

Note that (3.1.1) is equivalent to
lim  f(z, +Az)- f(z,)
f(z,)= 2 £ .. (3.1.2
(=)= - (3.1.2)
WhereAz=z-z,

Which is also the same as

dw_ Im Aw
dz Az - 0Az
dw

Where fl(z):a, Aw = f(z, +Az)- f(z,) write z-z,

Example: Suppose that

f(z) = 22
At any point z
im Aw lim (z+Az)2 -7° lim
-~ — = (2z+402)=22
Az ~.0Az Az -0 Az Az - 0

Hence,i‘l—W =2z or f}(z)=2z
V4

Example: For the functiori (z) = |z|2

Aw _ |z+Az|2 —|z|2 _ (z+Az)(E+AE)—zz
Az Az Az

=" +az+ 222
Az

8C
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. — lim .
When z =0, this reduces toAlv =Az. Henced—W = = 0. at the origin
Az dz Az-0
=0

If the limit of aw, exists whem # 0, this limit may be found by letting the
variable Az=Ax+1Ayapproach 0 in any manner. In particular, when

Azapproaches Othrough the real valtes Az +i0, we may Write\Z = AZ .
Hence if the limit ofay,, exists, its value must ke z.

However, whemAzZ approaches 0 through the pure imaginary

Value, so thahZ =-AZ, the limit if found to b& -Z. Since a limit is
unique,

it follows thatz +z =Z -7, orZ =0, if %, exists. ButZ # 0,and we may
conclude from this contradiction thelv/ dzexists only at the origin.

From example above, it follows that:

(1) A function can be differentiable at a certaminp but nowhere else
in any nbd of that point.

(2)  Since the real and imaging partsfd) =|2” are u(n,y)=n? +y?
andv(n,y)=0.
Respectively, it also shows that the real and imeyi components
of a function of a complex variable can have cardus partial
derivatives of all orders at a point and yet thaction many not
even be differentiable there.

(3)  The function f(z)=|Z"is its at each point in the plane since its
components functions are continuous at each pdothe continuity
of a function at a point does not imply the existeeiof a derivative
there.

It is, however, true that the existence of the\adgive of a function at a

point implies the continuity of the function at thpint.

3.2 Differentiation Formulae

Definition: Let Fbe a ..... whose domain of definition contains a nbd o
point Z,. The derivative off at Z,, written asf*(z,), is defined as

fl(zo):z"j”Z f(zz):;(ZO)(Bll)
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Provided this limit exists. The functiofis said to be differentiable &,
when its derivative at, exists.

Note that (3.1.1)(is equi)vale(nt )to
1oy lim  flz, +Az)- f(z,
f (ZO)_Azqo ™ e a0 (3.1.2)
WhereAz=z-z,
Which is also the same as
dw _ lim Aw
dz 0z 0Az

Where fl(z):c;—\;\',

Aw = f(z, +Az)- f(z,) write z-z,

Example: Suppose that
f(z)= 22
At any point z,
lim Aw _ lim (z+Az)2 -7 lim

—_ A~ 7 = (22+Az):22
Az 0Nz Az 0 Az Az - 0

Hence,Z—W =2z or f%(z)=2z
Z

Example: For the functiori (z) =|7’

Aw _ |z+Az|2 —|Z|2 _ (z+A2)(E+AE)—zE
Az Az _ NZ

=Z+a7+22%

JAVA

) — lim .
When z=0, this reduces te—szAZ. Henced—wz ! = 0. at the origin
Az dz Az-0

d\N -—
dz_o

If the limit of aw, exists whem # 0, this limit may be found by letting the
variable Az=Ax+1Ayapproach 0 in any manner. In particular, when
AZ approaches 0 through the real validsAn+i0, we may
write AZ = AZ . Hence if the limit oftw,, exists, its value must e+ Z .

However, when AZ approaches 0 through the pure imaginary value
AZ =0+iAy, so thatAz = -AZ, the limit if found to bez -z . Since a limit
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is unique, it follows thax+z=Z-z, or z=0, if &/, exists. But
Z # 0,and we may conclude from this contradiction that dzexists only
at the origin.

From example above, it follows that:

(1) A function can be differentiable at a certaminp but nowhere else
in any nbd of that point.

(2)  Since the real and imaging partsfd) =|4° areu(x,y) = x* + y?
and v(x,y)=0.
Respectively, it also shows that the real and imeyi components
of a function of a complex variable can have cardus partial

derivatives of all orders at a point and yet thaction many not
even be differentiable there.

(3)  The function f(z)=|Z"is its at each point in the plane since its

components functions are continuous at each pdothe continuity
of a function at a point does not imply the existeeiof a derivative
there.

It is, however, true that the existence of the\adgive of a function at a
point implies the continuity of the function at thpint.

3.3 Cauchy-Riemann Equations

Suppose that

f(z) =u(xy)+iv(x,y) and that f*(z,) exists at a pointz, = x, +iy,. Then
the first order partial derivatives of u and v wtand y must exist at
(u,,Y,), and they must satisfy.

U, (%oYo) = Vy(Xo, ¥o) @andUy(x,, v5) = -V, (%, ¥,) at that point. ... (1)
Also '(z,) is given in terms of the partial derivas by either

fl(Zo) = Ux(xo’ YO)+ iV(XOyO)
or fl(zo) =Vy(X01 yo)_Uy(Xw yo)

Equation (1)... is referred to as Cauchy Riemann tgua

Example: the derivative of the functioi(z) = zZ2exists everywhere.
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To verify that the Cauchy-Riemann equations atisfsad everywhere, we
note that

f(z)=z% =x® - y? +i2xy so that

U(x y)=x* -y? andV,(xiy) = 2x

U, (xy)=2x, V,(xiy)=2y

Uy(x,y) =2y Vy(x, y) = 2x

So that

U, (ny)=wlny)=2x

Uy(x,y) = -V, (x y) = -2y
Also

f1(z) =U (%, y,)+iV(x,y) = 2x+i2y = 2z

3.4 Sufficient Conditions

Satisfaction of the Cauchy — Riemann equations @oiat z, = (x,,y,) is
not sufficient to ensure the existence of the deiie of a functionf (z) at
that point. The following theorem gives sufficieanditions.

Theorem: (Sufficiency Theorem) :
Let the function f (z)=u(x, y)+iv(x,y) be defined throughout sonze nbd

of a point z, = x, —iy,suppose that the first-order partial derivativeshef

functions U and V with respect to n and y existrgwdere in that nbd they
are continuous #t,,y,). Then if these partial derivatives satisfy the

Cauchy-Riemann equations.

U, =V,,and,U, = -Vx
At (x,,Y,), the derivativef(z,) exists.

Proof: We shall leave the proof as exercise.

Example: suppose that
f(z)=e* 9Cos y +i SinYy)

Where vy is to be taken in radius when Cos y andySire evaluated then

U(x,y)=€e*Cosy and V(x,y)=e¢e*Sny
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Since U, =V, and Uy =-Vx everywhere and since those derivatives are

everywhere continuous, the conditions in the theoere satisfied at all
points in the complex plane. Thus!(z) exists everywhere and

f'(2) =U,(xy) =iV, (X, y) =e*(cosx+isiny)
Note that f*(z) = f(2)

Example: for the function

f(2)=7"=U(xy)=x*+y?> and V(xy)=0 So that U,(xy)=2x and

V, (x,y) =0while Uy(x,y):xy andv, (x,y) =0. Since U, (xy)#V,(x,y)
unless x=y=0Cauchy-Riemann equations are not satisfied unless
x =y = 0the derivativef'(z) cannot exist ifz# 0and besides, the existence
of f'(0) is not guaranteed unless conditions of theorend-{3- are
satisfied.

If follows from the theorem (3.4.1) that the funthe
f(2) =|2” = (x* + y*) +10 has derivative a¢ = 0; in fact, f'(0)=0+0=0.

3.5 Polar Form

Cauchy-Riemann equations can be written in polarmfo For
z=n+iyor z=r(Cosf+iSnb), we have
n=rcosd, y=rsing, r=yn? +y% @=tan'¥

Then,

or 00 X -y
Ur=Ur—+Uf0— =Ur| ——— [+Ufg ——
or 0X [/X2+y2} 6(X2+y2j
So that
Uy =Ur Sin9+%UHCosH.....................................................(2)

VX :Vrﬂ +V0Q =Vr CosH—EVH Sné
1) X r

So that
Vn=Vr CosH:FlVH SNG o2 (3)

y:Vrﬂ+V6'% =Vr Sneé V& Cos @

ay oy r
So that
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vy:Vr9n9+%v9me““_“”__“_____“__”_“_“_“___(4)

From the Cauchy-Riemann equatioon=Vy, equating (1) and (4), we
have

(Ur _%ng CosH—(Vr +%U9j SNA=0....ccceevvvviiiiiiiiieieeeenenn(5)

From the Cauchy-Riemann equatiddy = -Vn, equating (2) and (3), we
have

(Ur—?lvg) Sin6'+[Vr +%U9j (000 S O (<)

Multiplying (5) by coséd, (6) by Sirg and adding given
1

Also, multiplying (5) by-siné, (6) by Cosé and adding given
Vr:—%UH_“_“”__“__“_“__“__“___“_“”__“_“”__“(&
Equations (7) and (8) are the Cauchy-Riemann empustn polar form.

Theorem: Let the function
f(z)=U(r,0)+iv(r,6)

Be defined throughout sone neighborhood of a no zero point
f(z)=r,(Cos 8, +i Sing,).

Suppose that the first order partial derivativeshef functions U and V wrt
r and @ exist everywhere on that neighborhood and that &ne continuous
at(r,,8,). Then if those partial derivatives satisfy polamfis (7) and (8) of
the Cauchy-Riemann equationgrats, ), the derivativesf (z,) exists.

The derivativef(z,) is given as

£1(z) =€ Ur(ry, 8) +ivr (2.6, )

Example: Consider the function
f)=1=L
r

8€
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and V(r,8) = _S:ng and the condition of the theorem are

U (r,H) — Cosé

satisfied at any nonzero poiat= re'’in the plane. Hence the derivative of
f exists there: and according to (9)

fl(z):e_lg(_CosﬁHS'nHj:_ 1 _ 1

r2 r2 (reig)z 72

3.6  Analytic Functions

Definition: A function f of the complex variablegis analytic at a point
z,if its derivative exists not only at, but also at each poinzin some
neighborhood of,. A function f is said to be analytic in a regidgif it is

analytic at each point in. The term halomorphic is also used in literature
to denote analyticity.

If f(z)=2?, then f is analytic everywhere. But the functidi{z) =|7 is not

analytic at any point since its derivative existBywat z=0 and not
throughout any nbd.

An entire function is a function that is analyticeach point in the entire
plane. E.g. polynomial functions.

If a function f fails to be analytic at a poinf, buy is analytic at some
point in every nbd df,, then z,is called a singular point or singularity of
f. For example, the functioi(z)=,, where derivative isf(z)=- ¥.is

analytic at every point except=0hence it is not even defined. Therefore
the pointz =0is a singular point.

If two functions are analytic in domain D, theimswand their product are
both analytic in D. similarly, their quotient is awtic in D provided the
function in the denominator does not vanish at@wint in D.

3.7 Harmonic Functions

A real-valued functionhof two real variablesxand yis said to be
harmonic in a given domain in thg plane if throughout that domain it has

continuous partial derivatives of first and secander and satisfies the
partial differential equation.
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P (% Y)+ N, (X Y) =0 (BU70D)
Known as Laplace’s equation

If a function

f(2)=u(X y)+iv(Xy) ek (3.7.2)

Is analytic in a domain D, then its component fiord U and V are
harmonic in D. to show this,

Since f is analytic in D, the first order partial derivagss of its component
functions satisfy the Cauchy-Riemann equationsutinout D.

Differentiating both sides of these equating webkpect tox, we have
UXY=VWY  UYY = VXY i e e nenen e (3.7.4)

The continuity of the partial derivatives ensurdmttUyx=Uxy and
Wx=Vxy. It then follows from (3.7.4) and (3.7.5) that
Uxx(n, y) +Uyy(x, y) =0 andVxx(x, y) +Vyy(x, y) = 0.

Thus, if a function f(z)=U(x,y)+iV(x,y) is analytic in a domain D, its
component functions U and V are harmonic in D.

3.8 Solved Problems

1. Verify that the real and imaginary parts of tHanction
f(z)= 22 +5i z+3=i satisfy Cauchy-Riemann equation and deduce
the analyticity of the function.

Solution
f(z)= 22 +5i z+3-1

=Hx+iy)? +5i (x+iy)+3=1

=x? - y? -5y +3+i (2xy +5x ~1)
So that
U(xy)=x*-y*-5y+3  V(xy)=2xy+5x-1
Ux(x,y) = 2x, Uy(x,y)=-2y-5=—(2y+5)
Wx(x y)=2y+5  Vy(xy)=2x
And sinceUx(x, y) = Vy(x, y) = 2x
And Uy(x,y) = -Vx=—(2y +5)
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The function satisfies Cauchy Riemann equationoAlnce the partial
derivatives are polynomial functions which are owmbus, then the
function is analytic.

2. (@ Prove that the functian = 2x(1- y) is harmonic
(b)  Find a functionV such thatf(z)=u+ivand expressf(z) in
terms ofz.

Solutions

(@ U=2x1-y).
The function is harmonic ixx+Uyy =0
Ux=21-y), Ux=0
Uy = -2x Uyy=0
Uxx+Uyy =0+0=0. Hence the function is harmonic

(b) By Cauchy-Riemann equation

Example 2: show that the functian(x, y) = y* -3x2y is harmonic and find
its harmonic conjugate.

Solution

U(xy)=y* -3y

Ux = -6xy, Uxx=-6y
Uy=3y*-3x> Uyy=6y
And since

Uxx+Uyy =-6y+6y=0

The function
U(x y) = y*3x2y is harmonic

To find the harmonic conjugate,

From
Ux(x, y) = —6xy, since Ux=Vy,
Wy(x,y) = -6xy

Find x, and integrate both sides with respect to y,

V(xy)=-3xy" + ¢{x)
And sinceUy = -Vx must hold, it follows from(x)and (xr)that
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3y’ -3x* =3y* +¢ (x)

So that

@(x) =3x*and ¢(x) = 6x+C
V(x,y)=-3xy? +6x+C.

Is the harmonic conjugate aff x, y)

The corresponding analytic function u
f(2)=(y* ~3xy)+i [ ~3x7 +C)
Which is equivalent to

f(z)= i(z3 +1)

SELF ASSESSMENT EXERCISES

1. Verify that the real and imaginary parts of tb#bowing functions
satisfy the Cauchy-Riemann equations and thus eedine
analyticity of each function
(@) f(z)=22+5iz+3=1
(b) f(2)=2z"

(c) f(z)=9n2z

2. (@) Prove that the functian = 2x(1- y) is harmonic
(b)  Find a functiorv <.t f(z)=u+ivis analytic
(c)  Expressf(z) in terms of z

3. Verify that C — R equation are satisfied for thiections
(@ e
(b) Cos2z
(c) Snh4z
4, Determine which of the following functions ararimonic and find

their conjugates.

(@) 3x’y+2x*-y®-2y?
(b)  2xy+3xy* -2y’

(c)  xe*cosy-ye*Sny
(d) e®sn(x*-y?)

5. (@ Prove thatz/J:In[(x—ljz)+(y—2j2)J is harmonic in every

region which does not include the point (1, 2)
(b)  Find a functiorgy s t ¢ +iw.1lanalytic

9C
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(c) Expressyxiy as a function of Z

6. If U and V are harmonic in a region R, prove tha
Uy -vx)+i (Ux+Vy) is analytic in R.

4.0 CONCLUSION

This unit had been devoted to treatmédrgpecial class of function
usually dealt with both in real and complex funooYou are required to
master these functions so that you can be ablelte problems associated
with them.

5.0 SUMMARY

Recall that in this unit we considered derivativesomplex variables, we
derived the Cauchy Riemann equations for determimimalytic functions
in complex variables, we also studied harmonic fioms etc. Examples
were given to illustrate each of these functions.

6.0 TUTOR-MARKED ASSIGNMENT

1. (a) Prove that the functidm = 2x(1-y) is harmonic
(b)  Find a functiorv s.t f(z)=u+ivis analytic
(c)  Expressf(z) in terms of z

2. Verify that C — R equation are satisfied for thections
(@ e
(b) Cos2z
(c) Snh4z
3. Determine which of the following functions ararmonic and find

their conjugates.
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(@)
(b)
(€)

(d)

4, (@)
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3x%y +2x% —y® - 2y?
2xy +3xy” -2y’
xe* cosy - ye*Sny

e?YSn (x2 - yz)

Prove thaty=In|(x-1j2)+(y-2j2) is harmonic in every

region which does not include the point (1, 2)

(b)  Find a functiorg s t ¢ +iw.lanalytic
(c) Expressyxiy as a function of Z
5. If U and V are harmonic in a region R, prove tha

Uy -vx)+i (Ux+Vy) is analytic in R

7.0 REFERENCES/FURTHER READINGS

Francis B. Hildebrand (1976), Advanced Calculus Application 2¢

Edition.
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UNIT 3 PRINCIPLES OF ANALYTIC CONTINUATION
CONTENTS

1.0 Introduction

2.0 Obijectives

3.0 Main Content
3.1 Residues and Residues Theorem
3.2 Calculation of Residues
3.3 Residues Theorem

11.0 Conclusion

12.0 Summary

13.0 Tutor-Marked Assignment

14.0 References/Further Readings

1.0 INTRODUCTION

We shall examine in this unit principle of analyttontinuation and
establish conditions under which functions of coempVariables will be
analytic in some regions.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define residues and residues theorem
. do calculations of residues
. answer questions on residues.
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3.0 MAIN CONTENT

Suppose that inside some circle of convergedcwith centre at af(z) is
represented by a Taylor series expansion defined by

f(2)=a,+a(z-a)+a,(z-a)* +......0)

If the value of f(z) is not known, choosing a point b instle we can find
the value of f(z) and its derivatives at b. from (1) and thus arave new
series

b +b,(z=b)+b,(z=b) + oo F e T 7'
Having circle of convergen@g If C, extends beyom’ﬂ1 then the values

of and its durations can be obtained in this ex¢engortion. In this case,
we say thatf (z) has been extended analytically beyafydand the process

is called analytic continuation or analytic extemsi This process can be
repeated indefinitely.

Definition: Let F,(z) be a function of z which is analytic in a regRn

Suppose that we can find a functi®g(z) which is analytic in a region R
and which is such thak,(z) = F,(z) in the region common to,;Rand R.

Then we say thaF,(z) is an analytic continuation &f(z).

3.1 Residues and Residues Theorems

Recall that a point, is called a singular point of the functianif f fails
to be analytic atz, but is analytic at some point in every neighborchob
z,. A singular pointz, is said to be isolated if in addition, there isngo
nbd of z,throughout whichf is analytic except at the point itself.

When z, is an isolated singular point of a functidn there is a positive
number R, such that is analytic at each point z for whidh<|z-z|<R,
consequently the function is represented by aserie

f(g)= T anle-2) + b,

17 (Z_Zo)2
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Where the coefficientas and by have certain integral representations. In
particular

b =i_jﬂ (n=1 2....) 2)(

When C is any positively oriented simple closedtoan around £ and
lying in the domain<|z-z,[<R

Whenz =1, this expression fob, can be Written_[ f(2)dz = 27i b, ...(3)

The complex numbeb, which is the coefficient ofﬁ in expansion
4
(1) called the residue off at the isolated singular poimf

Equation (3) provides a powerful method for conahgctcertain integral
around simple closed ......

Example

Consider the integral

—Z

_L(Ze_—l)zdz

Is analytic within and on C except at the isolatadyular point z =1. Thus,
according to equation (3), the value of integrali¢4...... times the ..... of
fat z = 1. To determine this residue, we recall thaclaurin series

expansion.

=32 (<)

n=o nl

From which it follows that
e? _ele®W & (-1)(z-1)"?
= = O<|z-1<ow
(Z—l)z (Z—l)z ; n i e ( |Z :q )

9¢
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In this Laurent series expansion, which can betevritn the form (1), the
coefficient ofi1 is %. that is, the residue of at z = 1 is¥. Hence
2_

ei—Z B )n(
J.C(z—l)zOIZ e

3.2 Calculation of Residues

If z=2z,is a pole of order K, there is a formula fgrgiven as
im 1 d"
b, = —-2,) (2] 5
e P AL )
If =1 (simple pole), the result is given as

b= (2-2,)1(2)

z- z

Z - z,

Which is a special casef (5) with 7 =1 if one defineg!=1.

Example
For each of the following functions, determine gudes and the residues at
the poles.

@ 21 o (Z—lj

22-2-2 z-1
Solution
2z+1 _ 2z+1

22-z-2 (z+1)(z-2)
z =2 both of under 1.

...... the function has two poles at= -1 and

(@)

Residue atz = -1,
lim (z+1)f(2)= lim (z+1)(2z+1)
z--1 z - -1(z+1)(z-2)
_lim 2z+1 1

z.-12-2 3

Residue at z = 2,

9€
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lim (z-2)(2z+1) _ lim 2z+1_5

z2=2 (z+1)(z-2) z-2z+1 3

(b) z=1isapole of order 2.
Residueatz=1is

lim l{(z_1)2(2+1)2 /(z—1)2}

z -1dz
lim d 2 _ lim _
. qla(z+1) = q12(2+1)_4'

3.3 Residue Theorem

Theorem: Let C be a positively oriented simple etbsontour within and
on which a function f is analytic except for a feninumber of singular
points z, %,... , Z interior to C. If B, B,,...,B, denote the residues dfat

these points respectively, then
[f(2)dz =270 (B, +B, +.ccce#B ) oo (D)

Proof

Let the singular pointsz (j =12,...n) be centers of positively oriented
circles Cj which are interior to C and are so small thatwo o¢f the circles
have points in common.

% o
OCz Cea

The circlesCj together the simple closed contanirform the boundary of
a closed region throughout whichis analytic and whose interior is a

multiply connected domain. Hence, according to é&xtension of the
Cauchy-Goursat theorem to such regions.

Lf (z)dz = L f(z)dz - LZ f(z)dz—.......... - J'C f(z)dz=0
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This reduces to equation (1) because
L f(z)dz =278 (12......... n)

And the proof is complete.

Example: Let us use the theorem to evaluate

5z-2
-[cz(z—l) az

WhereCis the circl¢z| =2, described counterclockwise. The integrated has

the two singularitiesz=0 and z =1, both of which are interior t@¢. We
can find the residues, at z=0 and B, at z=1 with the aid of the

maclurin series.

We first write the Laurent expansion
52-2 (51j( -1j:(5_2j (1-2-2.....)
z(z—l) z 1-z z

Of the integrand and conclude thit= 2. Next, we observe that

Eh ] L+(i—1)}
:(5+ij (1-(z-2)+(z-2).......

z-1

When0<|z—]j <1. The coefficient of}(,_, in the Laurent expansion which
is valid for 0<|z-1 <1 is therefore 3

ThusB, =3, and
Lﬂdzzzﬁ(s1 +B,) =107 .

z(z - 1)

An alternative and simple way of solving the problés to write the
integrand as the sum of its partial fractions. Then

jsz—_zdz = Edz + idz =4mi +6/ri =10

cz(z—l) ¢z cz-1
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4,0 CONCLUSION
The residue method learnt in this units allowsaubdndle integration with
ease. You are required to master this method velly w

5.0 SUMMARY

Recall that we started this unit by defining theidae theorem which is
now recalled for your understanding:

Let C be a positively oriented simple closed contsithin and on which a

function f is analytic except for a finite numbdrsingular points g z,...,
z, interior to C. If B, B,,...,B, denote the residues of at these points

respectively, then
[[f(2)dz=27i (B, +B, +.......+B,).

This theorem form the basis for solves complexgragon. You may wish
to answer the following tutor-marked assignmentstjoa.

6.0 TUTOR-MARKED ASSIGNMENT

1. Evaluate the integral

dz

7z-5
-[C z-1

2. Evaluate
J' z+2

P aR———
2°-52+6

5z-2
d
3.-[ 2’(z-0) ‘
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7.0 REFERENCES/FURTHER READING
Francis B. Hildebrand (1976), Advanced Calculus Agpplication 2
Edition.
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UNIT 4 COMPLEX INTEGRATION
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2.0 INTRODUCTION

This unit will examine complex integration. The dhem on line integral,
such as greens theorem will also be examined.

3.0 OBJECTIVES

At the end of this unit, you should be able to:

. define integration on complex variables

. define the complex form of green’s Theorem

. learn about Cauchy-Goursat theorem

. learn about Cauchy integral

. solve related problems on complex integrations.

3.0 MAIN CONTENT
3.1 Curves

If ¢t) and ¢(t) are real functions of the real variabte assumed
continuous int, <t<t,, the parametric equations

Z=x+iy=gt)+igt)=2(t) t<t<t,
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Define a continuous curve or arc in the Z-planaijaj pointsa = Z(t,) and
b=Z2(t,) as shown below

Ya b

O X

If t,¥t, whilez(t,)=2Z(t,), i.e. a=b, the end point is coincide and the
curve is said to be closed. A close curve whichsdoet intersect itself
anywhere is called a simple closed curve.

If ¢t) andy(t) have its derivations im <t<t,, the curve is often called a

smooth curve or arc. A curve which is composed dinge number of
smooth arcs is called a piecewise or sectionallgatimcurve or sometimes
a contour. For example, the boundary of a squara piecewise smooth
curve or contour.

3.2 Simply and Multiply Connected Regions

A region R is called simply connected if any simglesed curve which lies
in R can be shrunk to a point without leaving Rre§jion R which is not
simply connected is called multiply-connected &g<2. |4|7 <2.

3.3 Complex Line Integrals
Suppose that the equation

z=2(t) (@<T<D) i (101)
Represents a contod; extending from a pointz =za) to a

pointz, = z(b). Let the function f(z)=g(x,y)+iv(x,y)be piecewise
continuous o€ . If z(t) =u(t)+iy(t) the function

102



MTH 305 COMPLEX ANALYSIS I

f[z(t)] = gx(t), y(t)]+iv[x(t), y(t)] is piecewise continuous on the interval
a<t<h. We define the line integral or contour integrdi, foalong Cas
follows:

Lf(z)dz= _[:[z(t)] ZNE)At . (4.1.2)

Note that sinceCis a contour,z(t) is also piecewise continuous on the
integrala<t<b, and so the existence of integral (4.1.2) is estbur

The integral on the right-hand side in equatiod.@).is the product of the
complex-valued functions.

Hx(t). y(t)] +i v [nt). (O, n'(t)+y'().

Of the real variable. Thus
Lf(z)dz= .[:(,w(l—vylht +i j:(vn1+uy1)jt et (4.1.3)

In terms of line integrals of real-valued functiafdwo real variables, then
[f(zdz = [pox=vdy +i [vdu+udy...ocoooiiiiiiiiin. (4.1.4)

Example: Find the value of the integral
I, = Lzzdz
WhereC, is the line segment from=0 to z=2+i

Proof
Points of C, lie on the liney =% or x=2y. If the coordinateyis used as

the parameter, a parametric equation@piu
z=2y+iy (OSysl)

Also, in C, the integralz® becomes
2% = (2y+iy)® = 3y? +idy?

Therefore,
l, :j;(?,yz +i4y2) (2+i) dy
= (3+4i) (2+i) [ y*dy =2+
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Example: Let C, denote the contowWAB shown below

y B2+1
C
0 A H
Evaluate
|, =|Z%dz
Solution

I, = Lzzdz = LA z°dz +.|'Aszdz

The parametric equation for path 0Ads n+i0(l<

AB one can writ& = 2+iy(0< y<1).

Hence
|, = _[02 x2dx + _[:(2+ iy)idy.

= J.OZ x%dx + 2“;(4— yz)dy+ 4i ijdy}

Green’s Theorem in the plane

x < 2) and for the path

Let P(x,y) andQ(x,y) be its and have its partial derivatives in a ragio
and on its boundingC. Green’s theorem states that

§cde+Qdy = IRJ(QX - Py)jndy

The theorem is valid for both simple and multiptecected regions.
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3.4 Complex Form of Green’s Theorem

Let F(z,E) be its and have its derivations in a regi®and on its bounding

C, where z=x+iy, z=x-iy are complex conjugate coordinates. The
Green'’s theorem can be written in the complex faam

§F(z, E)jz = 2i “Z—E dA wheredArepresents the element of ardraly
¢ z

Proof

LetF(z z) = P(x) +i Q(x,y). Then using Green’s theorem, we have
f§ (ziz)jz § P+|Q (%, y)dz =§6Pdn—,Qdy+i£an+ Pdy

0Q oP (0P 9Q
=-¢| —=+— |dndy+i¢p| — —— | dxd
ﬁ(aR 6yj g ﬁ(ax ayj d

R

Example: Evaluate the integral

| = J'Edz

Where

) The path of integratiorCis the upper half of the circle =1from
z=-11t0 z=1.

(i)  Same points but along the lower semi cicle

105



MTH 305 COMPLEX ANALYSIS I

Solution

() The parametric representationz=€* (0<O<i) and since
dle” )rd D=ie”

| = J'cEdz = —_T et e”d0 = -ri
0

y

N
NV

@ 1 :_[Edz:EDe'lQi e dp=mi

Example: Evaluatq'idzfrom z=0to z=4+2ialong the curveCgiven by

(@) z=t*+it (b) the line fromz = 0and z = 2i and then the line fronz = 2i
toz=4+2

Solution

(@) The given integral equal,
j(n iy)(dn +idy) = jndk+ ydy +i I ndy — ydn

The parametric equations Gfaren=t* y=tfromt=0tot=2
Then the line integral equal

Lo( 7 )(2tdt) + (t)(ct +|j (t2)(att) - (t)(ctt - cit)

= [ +tht+i [ (-2 = 10—%

(b) L(x —iy)(dx +idy) = Lxdx + ydy +i Lndy - ydx
The line fromZ =0to Z = 2i is the same a§0,0) to (02) for which
x =0, dn=0 and the line integral equals.

Q0+ yay+i [ (O~ y(0)= | yey=2.
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The line fromz=2i to z=4+2i is the same as the line fro(n2)
to (42) for which y=2dy=0 and the line integral equals
— 2xdx

8i

=8-8i

[ xt+ 2+ 0+if_ne0-2dn= [ xax+i [

Then the requires value 2+ (8-8i) = 10.

3.4 Cauchy-Goursat Theorem

Suppose that two real-valued functidt{n,y) and Q(n,y) together with

their partial derivatives of the first order, arentinuous throughout a
closed regionRconsisting of points interior to and on a simplesed
contourC in the ny plane. By Green’s theorem, for line integrals,

_[cPdn +Qdy = I IR (qox -P, )jndy.

Consider a function

f(2)=u(x y)+iv(xy)

Which is analytic throughout such a regi®in the ny, or zZ, plane, the
line integral of f along C can be written

_[cf(z)dz=_[cndn—vdy+i _Lvdx+udy.......................................(1)

Since f is its inR, the functionsuand v are also its theorem and if the
derivative f* of fis its in R, so are the first order partial derivativeswof
andv. By Green’s theorem, (1) could be written as

Lf (2)dz = ”R (— v, — uy)jndy +i ”R (uX -V, )jndy ............................ (2)

But in view of the Cauchy-Goursat equations
U,=V,,U, =-V,
The integrals of these two double integral are geroughouR. So

Theorem: If f is analytic inRand f* is continuous thenJ:Cf (zdz=0.
This is known as Cauchy theorem.

Goursat proved that the condition of continuity ©ofin the above Cauchy
theorem can be omitted.

Theorem: (Cauchy-Goursat theorem)
If a function f is analytic at all points interior to and in a pie closed

contourC, then
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Lf(z)dz=0.

Cauchy-Goursat theorem can also be modified for. the B of a multiply
connected domain.

Theorem: LetCbe a simple closed contour and Igt (j=12,...n)be a

finite number of simple closed contours insidesuch that the regions
interior to eachCj have no points in common. L&be the closed region

consisting of all points within and o@ except for points interior to each
Cj. Let Band all the contours oriented boundaryRxdonsisting ofC and

all the contour€j, described in a direction such that the interiomfs of
Rlie to the left oB. Then, if f is analytic throughour, .

As a consequence of Cauchy’s theorem, we haveotioeving

Theorem: If f(z) is analytic in a simply-connected regi®then I: f (z)dz
is independent of the path Rjoining any two points a and b in R.
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Proof

Consider the figure below

y
C1 B
A D b
a
C
»X
By Cauchy’s theorem
J'f(z)dz:O
ADBCA
Or Jf(z)dz+ jf(z)dz =0
ADB BEA
Hence
If(z)dz:— If(z)dz: If(z)dz
ADB BEA AEB
Thus

-[q f(z)dz = Lz f(z)dz = .[: f (2)dz

This yields the required result.

Example: If Cis the curvey =x® -3x* + 4x-1joining the points (1, 1) and
(2, 3), show that
jc(lzz2 —4iz)dz is independent of the path joining (1, 1) and3(2,

Solution:
A(1,1) - B((2,1)- C(2,3)
Along A (1,1)to B(2,1),y =1, dy =0. So that x4i anddz=dx. Then

f{12(x4i }? - 4i(x+i)ix = 20 + 30

x-1
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Along B (2, 1) to C (2, 3)x=2, dx=0 so thatz=2+iy anddz=idy. Then

i_ iAo +iy) -di(2+iy)dy = -176+8

y=1

So that
jc(lzz2 ~417)dz = 20+30i —176+8i = —156+ 38

The given integral equals
“M1222 — dizdz = (422 - 2i22)[”” = -156+38
o € Joz = )I

i 1+i

Morera’'s Theorem

Let f(z) be continuous in a simply connected regidand suppose that
if Yz)z=0

Around every simple closed cun@ in R. Then f(z) is analytic inR.

This theorem is called the converse of Cauchy'orém and it can be
extended to multiply-connected regions.

Indefinite Integrals (Anti-derivatives)

Let f(z) be a function which is continuous throughout a dmD, and
suppose that there is an analytic functiesuch thatF!(z) = f(z) at each
point inD. The function Fis said to be an anti derivative df in the
domainD.

Cauchy Integral Formula

Theorem: Let f be analytic everywhere within and in a simple ctbse
contourC taken in the positive sense.4f is any point interior tcC, then

(o) = 5 10

This formula is called the Cauchy integral formulasays that that if a
function f is to be analytic within and on a simple closedtoarC, then

the values off interior to Care completely determined by the values of
fin C.
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When the Cauchy integral formula is written as

fla)dz _ =
.[CZ(%)Z()Z:ZM F(Zy) eeeerneee e n(4)

It can be used to evaluate certain integrals along.

Simple closed contours

Example: LetC be the positively oriented circl|tz| = since the function
f(z)=? /(9-z?) is analytic within and inCand the pointz, = iis interior
to C, then by Cauchy Integral formula

'[C(9 - zzzd)fz +i) - LZZ/(?(__ZI;) = 273[;—(;} =z

o

Proof

Since f is its atZ,, there corresponds to any positive numberhowever
small, a positive numbef such that

11(2)- f(z,) <& whenevenz—zy|=p......ccccevviiiiiiiiiinin(1)

Observe that the function@,_,, is analytic at all points within and in

Cexcept at the poi. Hence, by Cauchy-Goursat theorem for multiply

connected domain, it's integral around the orieriiedndary of the region
betweenC and C, has value zero.

.L f (z)dz B J-CO fz (f)gz _o

Z-12,

Ya

That is
,[ f (z)dz _ ,[ f (z)dz
<Z-2Z, %Z-Z,
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This allows us to write

f(z)dz dz _; f(z)-1(z)

ch—zo f(Zo)_[COZ_ZO—ICO S g, S (2)
d

ICoz—zz =2

And so equation (Z) becomes

jC;(_L);:—zﬂ f(%ﬁL()%dz.....................................(3)

By (1) and noting that the length &f is 200, by properties of integrals

[ 12)-1z), <£omp=2m
© Z-Z, P

In view of (3) then

jﬂ—Zﬂ f(zo)(<27z:~:.
cZ-7,

Since the left hand side of this inequality is a megative constant which
is less than an arbitrary small positive numbemitst be equal to zero.
Hence, equation for it valid and the theorem isrptb

Cauchy’s integral formula can also be extended toudiply connected

region. With the understanding that(\zl) denotesf(z) and that 0! = 1, we

can use mathematical induction to verify that
! f (z)dz
0)(z) == [ —2%2 _(h=v,12
(2)= [ o ya0=va2)
When n = 0, this is just the Cauchy integral foranstiated earlier.
¢« ~ 6
Example: Find the value df Sn—723dz
“(z-%)

WhereCis a circle|7 =1
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Solution:

d
z-%) ’ 21

_6x§n| [SS'n“ 7 Cos® 7% —9n® %]
2175 /;

Other Important Theorems

sn°z 27 f%(Sn°x)
.[c( a

1. Cauchy'’s inequality:
If (z) is analytic inside and on a circteof radiusr and centre at

z¢a,then|f(”)(a)|s M-nn! n=01 2.
r

Where M is a constant such tﬂa(z)| <M onC, i.e. M is an upper
bound of|f(z} on C.

2. Lowville’s Theorem:
Suppose that for all Z in the entire complex pla(ig, f(z) is

analytic and (ii) f (z) is bounded, i.€/.f (z) < M for some constant M,
then f(z) must be a constant

3. Furdamental Theorem of Algebra:
Every polynomial P(z)=a,+a,z+a,z>+ a,Z"=0with degree
n=1 anda, #0 has at least one root.

4. Maximum Modulus Theorem:
If f(z) is analytic inside and on a simple closed cudand is not

identically equal to a constant, then the maximuatues of|f (z)
occurs onC.

SELF ASSESSMENT EXERCISES

1. Evaluatej((oz’;) (3x+ y)dx + (xy - x)dy along

(@) thecurvey=x*+1
(b)  the straight line joining (0, 1) and (2, 5)
(c) the straight line from (0, 1) to (0, 5) anénh(0, 5) to (2, 5)
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2. Evaluate| (x2 ~iy? bz

(@) along the parabola... y=4n* from (1,4) to (2, 16)
(b)  straight line from (1, 1) to (1, 8) and thearh (1, 8) to (2, 8).

27 5
3. Evaluatef_2+i (3xy+|y )12
(@) alongthecurve=2t-2i-y=1+t-t*
(b)  along the straight line joining=-2+i andz=2-i

4. Evaluate
Sin7Z? +CosiZ*?
@ f

(z-1)z-2)

(b) §C(Ze+—1)4dz whereCis the circle|z|=3

dz, whereCis the circle|z| = 3.

Sn3z
Z+7

5. Evaluatef dz if Cis the circlelz| =5

4.0 CONCLUSION

The materials in this unit must be learnt propedgause they will keep on
re occurring as progress in the study of mathematitigher level.

50 SUMMARY
We recap what we have learnt in this unit as fodow

You learnt about Cauchy-Goursat equations, Moréhesorem and applied
it to indefinite integrals. We also consider Cauattggral Formula

We considered some solved examples to illustrat¢ht@ory we have learnt

in this unit. You may which to answer the followingitor-marked
assignment
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6.0 TUTOR-MARKED ASSIGNMENT

1. Evaluatef; (3xy +iy? iz

(a) along the curve
(b)  along the straight line joining=-2+i andz=2-i

2, Evaluate
. 2 2
(a) fﬁ; S?Zl;(chzgz dz, whereCis the circléz =3.
2z
(b) §C(Zi—1)4dz whereCis the circle|4=3
Sn3z,_ .. .. : 3
3.  Evaluatef Z+7T/dz if Cis the circle|=5
2
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