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1.0. Introduction: A large class of ordinary diffatial equations possesses
solution expressible, over a certain interval,a@nrts of power series. In this
unit we are going to investigate methods of obmajrsuch solutions.

2.0. Objectives: At the end of this unit you sholbidable to
- determine radius of convergence of series
- apply series solution method to solvinifedential equation
- determine ordinary point, and singulaingoof the differential
equation



3.0 MAIN CONTENT

3.1.Series Solution of Ordinary Differential Equation
An expression of the form

A+ AX=X) + AKX+ =3 AKX+ ®

is called the power series.

To determine for what values wfthe series (1) converges we use ratio
test

e | A (= X)™H e AT
2= limFt=—=2 = [im =2 = Lx-
M= o | ~lim 77 = e
Where L =|im % )

The series is convergent wher1, divergent whenp>1 . The test

failsif p=1. p :% is called the radius of convergence
The series converges when
|x— x0| <% =R (radius of convergence)
diverges when

1
— ~— =R
[}=x >

(i) If L is zero, the series converges for all Values of
(i) If L isinfinite, the series converges only at the paina x,

(i) If L is finite, then the series converges, when
|x— x0| <% =R (radius of convergence) and diverges if
x>

L

If ian(x—xy)” and ibn(x—xy)n

Converge to f(x) and g(x) respectively, for |x-x|<p (radius of
convergencep, >0, then the following are true fox- x| < p,.
(DTwo series can be added and subtracted term ek



f(0£g09= (@ +0)X-X)"
(i) The series can be multiplied and
F(x)a(x) = Z a,(x=x,)" Z b, (X =) Z Ca(X=%,)"

WhereC, =apb, +ap,,+ab,,+..+ah
If g(x,) # 0, the series

) _
20 g d,(x=x,)"

although formula ford, is complicated if f(x) =i a,(x—x,)" ,then f(x) is

n=0

continuous
has derivates of all orders fpr-x| < p,. and ', f", " ... can be computed
by differentiating the series. Thus
fn o f
a = %) (Xo) or f(=Y r(]xo)(x ) (3)

n=0

3)is caIIed the Taylor series for functignat x = x,
A functlon f that has Taylor series expansion aboutx,

F(x) = Z 108) - X,)"

With a radlus of convergenge> 0 is said to be analytic at= x,.

The polynomial is analytic at every point, shgsums, differences,
products, quotients (excepts at the zeroes of teeominator) of
polynomials are analytic at every point.

()  Determine the radius of convergence of the poweese

N .. = (2x+1)" 2" _1
@M 3 2x (i) 1= B i) p=|im|2q =2
n=0 n=0 n N— e 2 2
i =h A" :1 =h 2_n(n+1)2 =i 1[ ljz :1
Me=limp’1=z  Weslimie e =impt ) =3

3.2.Determining the Radius of Conver gence

If we obtain the Taylor series of a functidiix) about a pointx,, then the
radius of convergence of the series is equal todibance of the poink,
from the nearest singularity.




Remark about a change in the index of summation

(@) g a,x" :g a,. X" =§ a,, X"

(b) i n(n-1a x"? = i (n+2)(n+Da_,x"
n=2 P

(c) ni) ax""? :g a, X"

3.30rdinary Pointsand Singular Points of the Differential Equations
We consider the differential equation

P(x)% +Q(X)% +R(Yy =0 (4)

(we assume thar(x), Q(x)and R(x) are polynomials)

(@) if P(x,) 20 ,thenx, is an ordinary point of the equation (1), or
p-Q®  o_RX
R(x) P(x)
y, P, Q are analytic at the poink = x,, then x, is the ordinary point of
the equation.
(b) If the functions P(x), Q(x)and R(x) are polynomials having no
common factors, the singular points of equationaf¥) the points

for which
P(x) =0 (5)
) Q%) o
(c) If Um(x XO)P(X) Is finite

and |im (x—xo)Z% is finite

Then the pointx=x, is called the REGULAR SINGULAR POINT of
equation (3)



(d) Any singular point of equation (3) that is megular singular point is
called an_irregular singular point

3.3.1 Solution Near An Ordinary Point

Let us consider the equation
P()Y' +Q(x)y +R(X)y =0 (6)
Where P(x), Q(x)and R(x) are polynomialsx, is the ordinary point of the
equation (6).
Assuming thaty = ¢(x) is a solution of (6) and(x) has a Taylor Series

oo

y=@x) =D, a,(x—x)" (7)

n=0

Now we know that

_¢'(¥
%—T (8)

We can write (1)
y'+P(X)y +q(x)y=0

where P= Q) , - RK)
R(X) P(x)
0 y'=-Py-ay 9)
or
y"=-py' -Py-qy-ay (10)

(It is natural to assume that=y(x), y=y(x) at x=x, and y0)=a,

¥ (0) = a,, we can easily calculate the coefficienga, provided that we could
compute infinitely many derivatives g and q existing atx, . Thus p
and g must have some condition for line calculationf It has been
proved that.

= M = @ 1 .
i R | TP analytic ak,  then the general solution of (6)

s y=3 a,(x-%)" = 3y, +ay,(X)

n=0

Where a,and a are arbitraryy,and y, are linearly independent series
solutions which are analytic ajf.



We shall illustrate the method by examples.
Example 1. Solve the equation

y'+4y =0

near the ordinary point=0

Solution: we assume the solution as

v=3 ax (1)

y'=Y n(n-Dax"? (2)

Sub;:t(i)tuting these values in the equation yields

i n(n-1)a x"? + 45: ax"=0 (3)

= e

or i n(n-1)a x"? +4i a_x"?%=0 4)
"o =

or i [ n(n-1)a, +4Zw: a, x"2=0 5)
n=0 n=2

Because the first two terms of the first sum ing#d zero.

We now use the fact that for a power seigeganish identically over
any interval, each coefficient in the series méskzéro
Recurrence relation :

— —4a,_,
n(n-1Ya +4 =0 Ora,. =—"= , n=2
(n-Da, +4a,_, &= ey "
Now we calculate in coefficients
_—4a _—4a _—4a, _—4a
- ) - ] a - ] - _
%=1 %=732 “T 3 *7 52
-4a,, _ -4da,, _
a2k — 2k -2 a2k 1

= ) Ay =
2k (2k -1) (2k +1)(2K)
From above we have
_ (-
T TR

_ (_1)k4k _ (_1)k4k
L iy

Hence we can write in solution

&



y= Z a X' =a,+ Y a,x* +ax+ Z Ay X

n=0 k=1 k=1

:ao+i (Zkl a1X+z ( ) 2k+1

— ( ) 2k - (_) 2k+1
—ao[1+§ (29 ]+ a 2k + gm(zx) ]

= a,Cos2x + > a18i n2x

Example 2: Solve the equation
A-x*)y" —-6xy -4y =0

near the ordinary point=0
Solution: we assume the solution

y=>Y ax (1)
n=0
The only singular points of the equation in thaté plane arex=1 and

x=-1. Hence we show that the solution is validpinc1 with a, and a,
arbitrary coefficients

00 00

Z n(in-)a x"?->» n(n-Yax" —i 6na, X" —i 48 X" =0
n=0 n=0

n=0 n=0

or i n(n-1)a x"* - i (n* +5n+4)a x"
n=0 n=0

or 3 n(n-Dax2-3 (n+)(n+4)ax’

Let us shift the index the second series.

Z n(n-1ax"* -Z (n-(n+2)a,,x"*=0 (2)

In equation (2), the coefficient of each powerxaimust the zero.
n+2

a, = a_, , for n>2 (3)

(3)_is called recurrence relatioA recurrence relation is a special kind of
difference equation.

n= 2456,... and n= 357...
_ 4 _ 5
%—E%, %—5%
%:E% %:Z%
4 5



k 2k 2k -2 k+1 2k+1 2k -1
k=1
&y = (k+Da,
Similarly, k=1
2k +3

2k+1 T
3

Hence the solutiory = i a,x"
n=0
y=2a, +Z azkxzk taX+ z Ay X

2k+1

= ay| 1+Z (k+Dx* |+a x+i K 3 x* ]

&% & a (3x—x°)
1-x>) 3@1-x%?2

Example 3. Solve the equation

y' +(x-1)?y -4(x-1)y =0

about the ordinary point=1
Solution: we assume the solution

y=2 a(x-1" (1)
n=0
We first translate the axes, putting
Xx=-1=u, ﬂ% = ﬂ
du dx dx
ﬂi:ﬂ The equation becomes
du dx
d?y . .dy
—+u"—-4uy =0
du® du Y
Then we assume the solution
y=D au
n=0

00

> n(n-Dau"?*+ i na,u"*t - i 4a.u™ =0
n=0 n=0

n=0

Collecting the terms

00

> n(n-1)au"> +i (n-4au™t =
n=0

n=0

Shifting the index frorm to n-3in the second series



00

D n(n-Nau"?+ i (n-7a,_u"*=0
n=3

n=0

Thereforea, and a are arbitrary and for remainder, we have

2a,=0
n=3
* n(n—l)a”'3
a, arbitrary a, arbitrary 8, =0

"3 =5 22, -0
* 732" “T s % =8

_1 O

= - v -0 _ %

65 ¥ 0™ 3 = ()a
_2 _3

= _ 9 -0 o

AT %" 1097 c
k-7
a3k=3<(3k—1)a3k_3 a3k+1:O,k22 a2k+2:0,k21
K[ (—a)(— _
k21: a, = (VLEAD-2.67) ]
[ 369...3k) ]| 25.8..3k-1) ]
o D (AED2.6k=7) ] 1,

= 1 1

v=a) +; [369..30 ]| 258.@-1) | +a(u+ U

Now substituteu = x-1

_ = D (-4)(-1..2..6k-7) ]
v=al 1+; [ 369..3k) | 25.8..3k-1) ]

U™ +a(u +;11u“)

4.0 Conclusion: In this unit we have attempted the series satutn@thod to

Ordinary Differential Equations. In the subsequanit we are going to
discuss more about this method in greater detsital are supposed to
master this unit properly to be well equipped far hext unit.

5.0Summary: Recall that in this unit we discuss power segied radius of
convergence for the series. We also applied thess&r solve differential
equations. We derived the singular and ordinarptsdor each of the series
solutions. Study this unit properly before goindhe next unit.



6.0. Tutor Marked Assignments
1. Determine a lower bound for the radius of cogeace of series solution
about each given poing for each of the following differential equations.

(1) (X*=2x-3)y"+xy +4y=0 , x,=4,%x =-4and x,=0
(i) @+x®)y' +4xy +y=0 , x,=0,and x,=2

2. Determine whether each of the pointg0 and1 is an ordinary point, or
regular singular point or irregular singular poifidr the following
differential equation,

() 2x*A-x°)y" +2xy'+3x°y =0

(i) (x+3)y"'—-2xy' +(1-x*)y=0
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1.0 Introduction: In this unit we deal with a classdifferential equation
normally refer to as Euler Equation. This type gligtion usually possesses
solutions that are classified as regular singulaings of the differential
equations. Series solution of this class of egnatust be attempted with
different approach. We shall see this in our treasimof this system of
equation in this unit.
2.0 Objective: At the end of this unit you shobklable to

- differentiate Euler equations from others.

- use series solution approach to solve thesgoaes of equations

- solve problems relating to Euler equation

3.0. MAIN CONTENT

3.1. Euler Equation
2
Ly =Y s gy=0 ) (1
adx dx
Is known as Euler equation.
It is easy to see that=0 is a_regular singular point of (1)
In any interval not including the origin, (1) hasganeral solution of the
form.
y=oyi(X) +cy,(x)
y, andy, are linear, independent solution.
Here we assume that (1) has a solution of the form

y=x




L(X*) = x*(x%)" + ax(x*)' + Bx* = X°F (r)

Where

FO)=r(r-D+ar+p (2)
If rris a root of the equation

i :—(a—1)+1/(a—1)2—u,8 3)

2
A Gt -J(@-1)*-uB
’ 2

OF@)=(-r)(r-r)

Case | (a¢-1)%-44>0, then the roots are real and unequal anrgl, x2) is
non-vanishing for, #r,) andx>0. Thus the general solution is

y = X" +C,X"? x>0

(4)

case ll(@-1?-48=0 , thenr, =r, = _(@-1)

and we have only one solution

Yi(X) = X"

of the differential equation. We can obtain theosel solution by the
method of reduction. We consider a different apphoto obtain the
solution.

L(x") = X"F(r)

If r=r, then

L(x*) =x"F(r) =0

Now F(r) =(r -r)? , if we differentiate

F(r) i.eOF'(r)=2(r -r,) and then setr =r,, if given F'(r) = 0,it suggest that
0

r _i r
EL(X )= o [X'F(r)]

L(x"logx) = X" logxF (r) +r(r —r)x'
We setr =r,, thus

L(x"logx) =0

Oy, =x*logx x>0
Is the second solution of (1)

Thus the general solution is
Y, = (¢, +¢, logx)x*, x>0

Case lll(a-1)* -48<0), in this case, the root are complex, say
r=A+iy, r=A+iu



Thus the general solution is
yz = (Clx)lw + szj_)xrﬂy
= x'[e,X* +¢,x ]
- XA[Clei,qugx + Cze-iﬂlogx]
= x"[c, cos(ulogXx) +c, sin(ulog ]
It is always possible to obtain a real valued sofubf Euler equation (1) in
the interval, by making the following changes
d_.d d?> _ d?
o Veae T ag
in the equation, we have
,d’u _ _,du P )
{dgz_{ d—g+ﬁU—0,<‘ ¢°>0
It is obtained as above. Since
| x |x forx>0

-x=¢ forx>0

It follows that we read one, to replaieex by | x | in the above solution to

obtain real valued solution valid in any intervat gontaining the origin
To solve the Euler equation (1)

X2y"+xayl+w:0

in any interval not containing the origin subs#tut=x" and compute the
root rtandr?of the equation

F(ry=r?+(@-Jr+pB=0
If the roots are real and unequal
y=c] x §

"+, X

If the roots are real and equal
y=(c,+c,log x X x |"

If the roots are complex
y=| x |”(cl cos(ulog x |+c,sin(ulog X |

For an Euler equation of the form



(X_Xo)zy" +a(X=x,)y' +p/y=0
Change the independent variable by
t=x-x0)"

or suppose the solution

y =(Xx—x0)"

Note: The situation for a general second order diffea¢rquation with a
regular singular point is similar to that for anl&uwequation.

2. Another method of obtaining the solution of Euleu&tion
Xy +axy' +fy=0

Solution: We make the change of variaklee” or z=logx and x> 0.

dy _dydz_1dy

dx dzdx xdz

d’y _1d’ydz 1 _dy

dx* x dz dx x> dz

Substituting there value in the equation
d’y
dx?

+<a—1)$+/3y:o

This is an equation with constants coefficients
The auxiliary equation is
r’+@-Hr+py=0
(i) If r,andr, are real and unequal =ce™ +c,e™ =c,x" +c,x"?
(i)  If the roots are equal iRy =(c, +c,2)e”.
=(c, +c,logx)a”
(i)  If the roots are complex
y = e (c, cosuz + ¢, sinhz)
= x" (¢, cos +logx) + ¢, sin(ilog x)
3.2 Seriessolution near aregular singular point

Consider the equation
P(X)Y"+Q(x)y +R(X)y =0 1)



XQ(X) _

Assume thak = 0is a regular singular point of (1) means tRegx) = P03

2
and x*q(x) =%()X)have finite limits asx - oand are analytics at = x, for
X

some interval about the origin

()  can be written
x2y" +x{xp(x)]y" +[x*q(x)]y =0

Butxp(x)=i P x"
n=0
X*q(x) =2 g, x"
n=0
X2y +X(P, + P X F P XY [ F X F +0 X"+, ly=0(2)

If all the coefficient use zeros, excepb and qg,, then (2) reduces to

Euler equation, which was discussed previously.
If some of theP, and gq,. n> will not be zero. However the essential

character of the solution remains the same. hatiral to seek the
solution of the form of “Euler Solution” the powseries.

y=x'y ax 3)
n=0

As part of our problem we have to determine

(1) The values ofr for which equation (1) has a solution of
the form (3)

(2) The recurrence relation for the

(3) The radius of convergence of the se@Sanx“

n=0

We shall illustrate the method by example

Example I: Find the series solution of the equmatio
2xy" + L+ x)y -2y=0 (1)

Solution: x=0is the regular singular point of the equation.

We assume line solution



y=2, ax" 2)

Direct substitution ofy in (2) given

> 2n+r)(n+r=Dax™ +> (n+nax™t+> (n+r)a,x"*-2> ax™ =0
n=0 n=0 n=0 n=0
Now we shift the index of the second series in (B)e get

i (n+r)@2n+2r -a x""" +i (n+r-2)ax™ =0  (3)

n=0 n=0
Once more we reason that the total coefficienta@hepower ofx in the left
member of (4) must vanish. The second summatioes dstart the
contribution, untiln=1. Hence the equation determinantsand an are
given by

n=0r(2r-Ya, =0, buta, #0 (5)
Or@r-1)=0 (6)

(6) is called thendicial equation.
Dr1=%,r2:0 n=1

n+r)@2n+2r-a, +(v+r-3)a,, =0
Recurrence relation

Da,=-— 123, (7)
" (n+r)@n+2r-1) "
() Taker =%

_(-3)a,
EPY
a, = (-Da
45
— (_1)3-2
% 6.7
__(@n-9a,,
" 2n(2n+1

Q= (=D"[(=3N(-DD)...2n -5)]a,
" [246.......QN)[ 357.....2n +1)]




Omitting the constant,, we may write the particular solution as
1
2 (-D)"3x " 2
XY +
N Z;‘ 2"n1(2n-3)(2n-1)(2n +1)
Next task is to find the solution correspondingtte rootc, =0.

(8)

The recurrence relation beconmesL.

n2n-1)b, +(n-3)b,_, =0

Or b, = (-9 h1 =
n2n-1
- (_Z)bo
h =
b2 — (_1)b1
2.3
b2 - (_1)b2
35
bn = %
n2n-1
Dbn =0 if bn :—m
n2n-1)
Ob,=01if n>3

1, _1
Ob, =b,, Ob, =€b1 =€bo
The solution is
Y =b[L+ 2x+2 ]
The general solution is
y = Ay, +By,

Note: The roots of indicial equation are unequal and atodiffer by integer
3.3 ndicial equation with equal roots

Example 2. Solve the equation

x2y"+3xy' + (1-2x)y =0 (1)
Solution: x=o0is regular singular point of (i)

We assume the solution

y=> ax"" (2)
n=0



Substituting this value in

0

(2), we

Y (n+r)(n+r=Na x" +3> (n+r)x"™ +> ax™ -2) ax""t=0
n=0 n=0 n=0

n=0

Shifting the index
i [(n+ r)2 + 2(n+ r) +1]anxn+r _Zi an_lxn+r =0
=1

n=0
The indicial equation
r’+2r+1=0
Or=-1
The recurrence relation is
— 2a,,
" (n+r+1)2
n=1,
In which

nzla,= 2"3 5
[(r+2)(2+3)........ @+n+1)]

0O y(x,r) = x* +i a,(r)x™",

n=1
in which
on
[(r+2)(2+3)........ ¢ +n+1)]°
Let as write
L(y) = x?y" +3xy" + (1= 2x)y

nx1a,(r)=

3)

(4)

(5)
(6)

(7)

have

The y of equation (6) has been so determined that fat yhthe Eight

member of (8) reduced to a single termrth®.
Thus

L(y) = x?y" +3xy' + (1~ 2X)y

(8)

A solution of the original differential equation & function y for which

L(y)=0. Now takingr =-1 makesL[y(x,-1)] =0

Now differentiate each member of (9) with respect t

0 _ 0 > 2
E[Y(X,r)]—a[(r"‘l) X]

I[% y(x, )] =2(r +)x* +(r +1)*x* log x

(10)



From (9) and 10, it can be seen early that thedwlation of the equation
L(y)=0 are

Y, =[y(x )] y=[y(x-1 (11)
andy, = [% y(% 0=y (12)

y(x,r)=x"+> a (r)x™
n=1

%y(x.r)] =x*logx+ > a (Nx™ +3 a,(2)x"" logx

n=1 n=1

=y (x,r)logx+> a (r)x"™

n=1

O=y,logx+> a,(-)x""

n=1

O=y,x"+2 a (-Dx"

2n
[(r +2)r +3)...2+n+1)?)
loga, (r) =log2" + 2log(r +2) +.....log(2+n+r)]

a,(r)

1 1 1
a'(rn=2a (r)[—+—+........
(1) a( )[r+2 43 r+r]+1]
r = -1, we obtain
a ()= 2
(n1)
Da(-p=-2-2_p+2+te 4
(nD) 2 3 n
We write
Ho=i14...1
2 n

The solutions are

~ 0 2n Xn—l
=y X"+ Z

= (n)?
0 2n+lHan—1
—ylelogx-; -

The general solution, valid for all finitez 0is y = Ay, + By, .



3.3: Indicial Equation with difference of Roots a Positive Integer, non
L ogarithmic case

Solve line equation
X' = (@4+x)y' +2y=0 (1)

Solution: We assume the solution

y= i a"x"™ )
OL(y)= i (n+r)(n+r- 6)an><”+r_li (n+r-3)a,_x""* (3)

n=0 n=1

The Indicial equation is

c(c-5=0

Uc, =0, c, =5

s=5-0=5

We reason that we hope for two power series saisitione starting with an
x’and term, one with ar°term.

If we use the longer roat=5, then thex® term would never enter. Thus
we use the smaller roots-0, then the trial solution of the form.

y = Z anxn (4)
n=0

has a chance of picking up both solutions becaus@a +5 n=sterm does
contain x®

00

OL(y)=>» n(n-5ax"* —i (n-3a,_,x""L(y)=0

n=0 n=1

L(y)=0
n(n-5)a, =(n-3a,, )
1
n=1 -4a +2a,=0 Daizza0
1
n=2 -6a,+a =0 a,=-—a
2 al 2 12 0
n=3 —6a3+0a1:O a3:0
n=4 —4a4+a3:O a4:0
n=>5 0a;,+2a,=0 a,=0
n=6



%61
NS
1.2

. - (-3(@,.)

" n(n-5)
Q= 345....(n-3)a,
" [678....n](n-5)1
34.5a,

& = = 2)(n-Dn(n- 51
Therefore, witha, and a® arbitrary, the general solution may be written

1 1
=g, L+ =x+—X%°
Y =8 (Lo x+ox)

- 60x"
a[x +nZ::; (n=-51In(n-1_(n-2)

ao=(1+%><+x2)

s o 60Xn+5
%= ) T A

Example 2 Solve the equation
Xy"+(4+3x)y +3y=0 1)
Solution x =o0is the regular singular point of (1).

We assume the solution
y=> ax™ ()
n=0

OL(y) =Y (n+r)(n+r-Da,x™

00

4y a x™ T +3>" (n+r)(a, +r-1a x""

n=0 n=0

+ Bi a,x""

n=0

LY a,(n+r)(a, +r +3Ix"

n=0

+> 3a,(n+r+1)x™ (3)

n=0



n=0, we get the indicial equation
r(r+3)=0
r=0,-3

L(y)Y | a,(n+r)(@+r+3)x™™
n=0
+> 3, (n+r)x™
=1
Using the smaller root = -3

LYY, a,(n-9n"

Recurrence relation is
a,(n-3n=-3(n-3)a,_,

n=1 a,(-2)@) = (-3)(-2)a,
n=2 a,(-D) = (-3(-Da,
n=3 3, (0)3) = (-3)(0)a,
-3
n>4 a,=—a,
n
\ o3
4=, %
= _—3a
as 5
an = __an—l
n
_(=3
U a, = 7633

-1

y = (ayxta,x? +a,x

) —_1\n-3n-3
ao(x'3—3x2+a2+gx'1)+6a32 D X
2 = nl

This is the required solution
4.0. Conclusion
We have looked at various problems involving Ewquations in this unit

their various form of indicial equations. In thexhenit we shall consider
indicial equation of positive integer and logaritbroase.



5.0 Summary

You will recall in this unit that a general form Bliler equation was given.
We also consider various form of Euler equationsu Yare required to
master this unit very well before proceeding toeotimits.

6.0. Tutor Marked Assignment:

(1). Solve the equation

x?y"+3xy' + 1-2x)y =0

(2).Solve the equation
Xy' = (4+X)y +2y=0

7.0 REFERENCES/FURTHER READINGS

1. EARL. A. CODDINGTON: An Introduction to Ordinarpifferential
Equations. Prentice-Hall of India

2. FRANCIS B. HILDEBRAND: Advanced Calculus for Alnations,
Prentice-Hall, New Jersey

3. EINAR HILLE: Lectures on Ordinary Differentialgdations, Addison —
Wesley Publishing Company, London.



UNIT3: INDICIAL EQUATION WITH DIFFERENCE OF ROOTS A
POSITIVE INTEGER, LOGARITHMIC CASE

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1. Indicial Equation with difference of rootppsitive integer and
logarithmic case
3.2 Fourier Series
3.3 Orthogonality of a set of series and cosines
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References/ Further Readings

1.0. Introduction

In unit 2 we have considered indicial equations neHegarithm case is not
considered. We shall undertake to consider theipesand logarithm cases
in this unit.

2.0 Objectives

At the end of this unit you should be able to

- to solve differential equation whose indicial atjon has a positive integer
- to solve differential equation whose indicial ajan has roots with
logarithmic case.

3.0. MAIN CONTENT

_ 3.1. Indicial Equation with Difference of roots positive integer,
logarithmic case.

We illustrate this method by an example
Solve the equation

X2y +x(1L-X)y - 1+3x)y=0

Solution: We assume the solution

OL(Y)Y. On+r+)(n+r-Da x™ => (n+r+2)a, x""
n=0 n=1



The indicial equation is

(r+D(r-1=0 (Puttingn = 0) (2)
r=1-1
n =1, the recurrence relation
a = (r+n+2)a, @)
(r+2)[r(r+1....r +n-1)]
O y:aox'i (r+n+ Zax™

= (r+2)[r(r+1)....2+n-1)]

It follows that

O L(y)(r +D)(r —Da,x’

Forr =1, only one solution can be obtained.

Note: for =-1, since there is no power series with skilling', we suspect
the presence = -1.

Choose, =r +1, we have

_ FLN (r+2r +n+2)x™
) =(r+Dx" +
YO =+ DX ) oD e n ]
We can obtain two solutions with respect to
For which

OL[y(xr)=(r +2)?(r —-)x°

We use the same argument as that of equal roots

Putting
Y = y(x,-1)

Y
Yz —[aIr (xn)]-

(r +D(r +3)x™ N (r +4) (12
r(r+2) (r+2),

+i (r +n+2)x™"
~ (1 +2)[(r +2)....2+n-1)]

y=yxr)=(r+)+

Differentiate with respect to.
(r +D(r +3)x™
r(r+2)
}_|_(r+4)x2+2 1 1
r(r +2) r«u r+2

0 ‘
— =y(r,x)logx+x" +
or

{1+1 1

r+1 r+3_r+2

_1
2



(2+n+2)x™" r 1 —1—i+i+ ..... 1
2+n+2 r+2 r r+2 r+3 r+n-1

(r+2)[(r +2)(r +3)........ @+n-1

+
M

=
1
w

Puttinge= -1, get

) . ® (n +1)Xn_1
y, =0x+0.x° -3x+ n:z_s -D)[R2..n-2)]

- (n+1)x“‘1{nil—1+1—(1+;+ ..... + }

1 n-2
y, =y, logx+x' —2x° -3x{= -1+1} +
2 3 23 (-)2..n-2)]

3 0 (n+1)xn—l
-3x+
h 2 -2

) . [L1-(n+DH _,]x""
Y, = Y logx+x*t-2-x- n
T ; (n-2)]

Problem: Find line general series solution ofthie

2
4xd—z + 6Q +y=0
dx dx
and show that it can be expressed in line form

) . ® (n+D)x"™*
y, = 0.X+0.X° —3x+ 23 (- D[L2..(n-2)]

Solution: x=0is a regular singular point of D.E. Assuming tbkigson

Substituting in the D.E

y=2, ax™
n=0
Changing the index
D 2(n+r)@n+2r +Da x" T +) a x™ ™t =0.

n=0 n=1
The indicial equation is
2r(2r+1) =0, r=0, %

The recurrence relation is



a, = @) a
n n-1?
2(n+2)(2n+2r +1
0] r =0, then

n=1

o D

" @@n+1)
_ - (D
"L AT e
_ ()
%" e ™

Thus

_ (-1

a, = a,
(2n +1)!)(3)

Hence the solution is

. (DX
yl_ao; (2n+1)!
1
. (_1)n(xi)2n+l
_ % 2 _ % o
- \/;nzz(; (2n +1)! Jx Simx

(ii) r:—%,then
G
" (2n-1(2n)
_(-Da,
0E
, (02
3@

2,

n=1, a

_A$ (DX _a
NP I Ty R it

Hence the general solution is
y= 1 ( ACosv/x + BSnvx)
X

Ix



3.2. Fourier series
1. Orthogonality: A set of function {s$,(x), f (x),....f, (x),.....} said to be

an orthogonal set with respect to the weight fuomciiv(x) over the
interval a< x < bif
[0 Woo t (0 f,(x)dx =0 for m# n
z0 form=n
Orthogonality is a property widely encountered in certain brasch

of mathematics. Much use is made of the repreSentaof
functions in series of the form

2 Cfa(®)

n=0

In which the ¢, are numerical coefficients angf (x)} is an
orthogonal set is

3.3 Orthogonality of a set of seriesand cosines:
We shall consider the set of function

S’n(%), N=123....
Cos(nTm), n= 0123........
or
sn®), sn®®), Sl sy
C (o C (o
1, Cos(™®), cos?®),  cosC2Y). o Cos(M )
C C C C

Is orthogonal with respect to the weight fuotiv(x) =1 over the
interval -c<x<c

l.e
jc Sinn—nxCosk—mdx:O, wherek # n.
- C C

. Before we prove the result, we give some dedinito shorten the proof.

(a) Even function: A functiony=g(x) is said to be eveny
9(=x) = 9(x)
For all x.

(b) Odd function: A function y = h(x) is odd ify = h(x) = —-h(-x)
For all x.



Example: Snxis an odd function
Cosx is an even function
(c) Most function are neither even or odd example «ir(ione function
f(x)=0
(d) If g(x)is an_everfunction then as well as even)

J'_CC g(x)dx = 2.[: g(x)dx
Consider the integral.

|, = Snn—mCosk—mdx:O for all k andn.
A c

Follows at once from the facts that the integrandn odd function of. It
does not dependent upon one fact and k and n texgens
I2=.|'S'nn—m8'nk—mdx, kK#n

Cc c

Take
ﬁ:z’dngdlg
C m

Z[" Cos(n-k)B-Cos(n+k)BldB < " sinnasinkads
271 9-An J1 AT

—i[ S’n(n—k)ﬁ_Sn(n+k),6’ ]~

2n n-k n+k
Since n-kandn+kare +ve integers.
=0
Finally we consider the integral
Wheren=0, 1,.......... nz0,
:i[ Sn(n-k)B Sn(n+k)p ] .
2n n-k n+Kk o
=0
L= 9 Xax=[" an”Xax
4 J.—c C J.—C C

let f(x) the continuous and differentiable at eveagint in an interval
-c< x<cexcept for a most finite number of points and arengoints, let
f(x)and f'(x) have right and left-hand limits

Note:



The notation f(c+0)is used to denote line right-hand limit of - cas
f (x) from alone, i.e.
f(c+0) and:”m f(X)

Similarly
f(c-0)= =mfw

Denotes, the limit of f(x) as approaches c.

Since Fourier series forf (x)ymay not converge to the valué(x)every
where. It is customary to replace the equals sigequation (8) by the
symbol ~which may be read “has for its Fourier &rive write
f(x)~£a0 +i (ancos%+bnsinﬂ,

2 = C c

Where a andb are given by (a) and (10)

Example: Construct the Fourier series, over therval -2< x< 0, for the

function defined by
f(x)=2, -2<x<0,
XxX=2 O<x<?2

Solution: NOWf(x)~%a0 +3 (a, cos%ﬂon sin%)

n=1

In which

Ua, :EJ'O cos% dx+£.|'2 xcos%dx €))
272 2 27 2
If n#z0 , then

Oa, = E[sinn—m L +1[§ xsinn—m+(z)2 cos" %2,
n 2 2'n 2 n 2

_ —2(@-cosnn)
- n’n®



Forn=0, from (a), we get
a, =3
Ob, =1
2
Thus we write

f(x) ~ 22 [1 (1) X 1 . nx

0S —sin—].
Example 2 Obtaln the Fourier series over the iatlersnto nfor the function

2nn 2
2

X

Sol ution' We know

—aO +Z [a, cos™+b, sinnx] for —n<x<n, where
n=1
a, :—j x* cosnxdx; n=12,....
n v/
b, =1J‘” x* sinnxdx; n=212,....
n -

x? IS an even functiosinnx is an odd function, thus?sinnx IS an odd
function Hence.
b, =0. for everyn.

e )
:g[J- X S|nnx+2xcgsx_ 25|r31nx],,0f(,)r n%0
n n n
From which
2 2ncosnn, 4(-1
__[ 1= (2), n=12,........
n’ n
2 2cosm, 4(-1D7
anz_[ ]: ( 2) n=l2, ........
7l n n
for n=0
2007 g 2m
= — X ____2_
% n[-[o n 3 3

Therefore in the intervak n<x<n
+4z (- 1) COSNXx

Indeed because of condition of line function imeal, we write

+4Z —( 1)” cosnx for —n<x<n.



2. Fourier Sine Series: Sometimes it is desirablexigand the function
f(x) in a series involving Sine function only.
In order to get a Sine series fo(x) we introduced a functioq(x) defined as

follows
g(x) = f(x) 0<x<c
=-f(-x) -c<x<0

Thus g(x)is an odd function over the intervat < x<0.
Hence

(x)~2a0 +Z (a, cos—dx 0, n=01.....

n=1

It follows that

a, 1 J'c (x)cosn—mdx:O n=041......
Co Cc

(Note integrand is an odd function) and that

b, :1j° g(x)sinﬂdx

——j f (x)sm—

Thus

F()~+3 bnsinnTm o<x<c

f (x Whereb, =2 [© fe0sin™ N=12 .
Co° ¢ C

Example: Expandf(x)==x*= in a Fourier Sine Series over the interval

O<x<1
Solution: At once we write, fon<x<10

x? ~>" b, sinnx
In which

C .
b, = _[ x* sinn7xdx
—C

1, COSN7X = 2Xsinn7x = 2cosnzx
=2[ " x + +
0

n7 (nm)® (n7)®



CON/1 N 2COSTX N 2CONTK
nJT n37° n®n®

:2[—

Hence the Fourier Sine Series, 0verx <1 for is x?
cosnit 2(-1)" 2

=2~ + (3 )3 3,3

nr7 n~7i- N7

3. Fourier Cosine Series: In order to expand thetfancf (x) in a series

involving cosine function only, such series is edllFourier Cosine
Series. We define

h(x) = f (X) 0<x<c

= f(-x) -c<x<0

It follows thath(x) is an even function of.

1 - n7x . N7X
h(X) ~=a, +>_ (a,cos— +b, sin—
2 = C C
anljc h(x)cosn—nxdng.[C f(x)cosn—mdx
cJ—<c C c-0 C
O<x<c

Butb, = = [° h(x)sin "% dx =0
cJ-¢ C

Thus we have
1 c n7x
f (x) -5 +j0 (f(x)cosde

in which
an:EJ'c f(x)cosn—nxdx
coc C

Example:

Solution: At once we have

f (x) ~%a0 +i a, cos™ in which
n=1 C

in which

2 (c n7x
an—j cos—dx
c o C



2_C. n7x
= =[(—=)* cosnr-——1,°
cC nn C

-2
=—— @-cosnm), n#0

n-r7
The coefficienta, is readily obtained
2
anZ ) xdx:ZC—:c
c e c 2

Thus the Fourier Cosine Series over the intergalx <cthe function
f(x)=x IS
1 ucg 1-(-) n7x
f(x)~=c—— coSs
) 2 nsz:; n? c
4.0. Conclusion: You have learnt about indicial atpns where the roots
are positive and logarithmic. You have also leattut Fourier series and

odd functions.
5.0 Summary: You are required to study materialshis unit very well

before proceeding to the next units.

6.0 Tutor Marked Assignments:

(1). Find the general series solution of the D.E
d?y , .dy
4x—+6

=2 4+ y= 0
dx*>  dx
(2).Construct the Fourier series, over the intervak x < 0, for the function
defined by
f(x)=2, -2<x<0,
xX=2 O<x<2

7.0 REFERENCES/FURTHER READINGS

1. EARL. A. CODDINGTON: An Introduction to Ordinarpifferential
Equations. Prentice-Hall of India

2. FRANCIS B. HILDEBRAND: Advanced Calculus for Alngations,
Prentice-Hall, New Jersey

3. EINAR HILLE: Lectures on Ordinary Differentialgdations, Addison —
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1.0 Introduction

In this unit, we will discuss some of the propestief boundary valve
problems for linear second order equation. Thissslaf differential

equations is very useful for practical applicatiodge shall devote some
time in studying them in this unit.

2.0 Objectives: At the end of this unit you shobidable to
- classify second order differential equations intumlbgeneous and
non-homogeneous.
- differentiate between eigen values and eigen fansti
- solve related eigen value problems

3.0 MAIN CONTENT
3.1 Boundary Value Problems
The linear differential equation

P()Y" +Q(X)Y +R(¥)Y = g(x) (1)
was classified homogeneousgifx) = 0, and non-homogeneous otherwise.

Similarly, a linear boundary condition
ay(0)+a,y'(0)=c (2)

A boundary value problem is homogeneous if bothdifferential equation
and in boundary conditions are homogeneous. If then it is non-
homogeneous.



A typical linear homogeneous second order boungatye problem is of
the form.

P(X)Y"+Q(X)y' +R(X)y=0 )
O0<x<1,

a,y(0)+a,y"(0)=0 (4)
b y(l)+b,y'(0) =0 (5)

Most of the problems, we will discuss are of therfgiven by (3) to (5).

3.2. Eigen Values and Eigen Functions

Consider the differential equation

y' +p(x,A)y +a(x,A)y=0 0<x<1 (1)
The boundary conditions
ay(0) +a,y'(0)=0 (2)
by(l) +b,y'(0) =0 3)

Where A is arbitrary parameter.

Clearly the solution of (1) depends @rand 4 and can be written as

y =Cy, (%) +¢,(x,4), (4)
Wherey, andy, are a fundamental solution of (1). Substitutiogy, in the
boundary condition (2) and (3), yield.

cilay; (0.4) +a,y' (0, A)] +cylay,(x )] =0 (5)
by, (i,4) + b,y (i, A)] + ¢,[b,y,(i, A)] = 0 (6)

A set of two linear homogeneous algebraic equationthe constant. Such
a set has solutions (other than=c, =0 if and only if the determinant of
coefficientsD(A) vanishes i.e.



cla,y; (0,4) +a,y'(0,4)] a,Y,(0,4) +a,y,(0,4)
D(1) by, (i,4) +b,y'(i, A)] by, (i,4) +b,y; (,4)]=0

Values satisfying this determinant equation are éigenvalues of the
boundary- value problems (1), (2) and (3)

Corresponding toeach Eigen value is at least one non- trivial sofut An
Eigen function

Note: We will consider problems namely only real eigatue
Example | consider the equation

y'+Ay=0 (1)
y(), yd =0 2)
Solution: y"+ Ay =0, the solution is
y = ¢, cosvx +¢, sinvx, (3)
By the boundary conditions
¢, =0s
c, sinvA =0

c, # 0, otherwisey =0 is the solution
sinVA =0=+A=nm,n=12,..ccccc........
or A =ni’ Anrr (4)

(4) gives the eigen values of (1). If we consider=1

Oy =c,cosx+c,sinx

0=c, by (2)
Oy=c,sinl =0=¢, =0
0= G by (2)

Oy=0 Hencel =1 is the eigen -function

The eigen function are
Oy,=c¢,sinnx )

n=12,....... Counrrnnnnnn ¢, is an arbitrary constant



Example 2: Find the real eigen values eigen -fanatf the boundary value

problem

y'+Ady=0

y() =0 y'()=0
.The solution is

y" + Ay — O

0y =c, cosvAx (1)
y(0) =0, given

c,=0.Also

y' = ¢, cosyA cosyAx

But y' =(1) =0, yields

c, =JAcosyAl =0=

C, = JAcod =0
s én=-hn n=12
o MEL2
(2) gives eigen value
y, = sin[2" _le)m] , N=120 o,

(3) gives eigen functions

Examplesy” + ly =0
y=0)=0 y=(@1)=0
Solution: The solution is
y' = ¢, cosyAx +c,csiny Ax

y' = —¢, sinvVAx+c,/x cosy Ax

c,+tc,u=0
1
H -0
cosy cosy

(@)

(1)

(2)

Thus the eigen value are given by the equation

M =tar u.
Y =—Cold + [4,C, SIN X

If u isthe root of (3), then eigen function is

Yy, =sinu, — [, COSU, X

3)

(4)



If A =0 , then the solution is

y=-C, *tC,y
y'=¢
Uc +c,=0

Hence the solution is

y= Cl(x_l)
thus A =0 is also an eigen value

Ju =tanu

Example 5.
y'+Ay=0
y=0, yd+y'(©)=0

Solution
y = ¢, cosVA sinVAx+c, ++/A cosyAx
c, =0,

OVA =cotA
The eigen values are given by equation (3). Therefunction are
y. =JA.xWhere the root of is A, is the root of the equation

JA =cotA
JA =X, y = col X

ﬁn=(n—1)ﬂ n=23.....
A.=(n-1)?m* forlarge n

Example 6.

Consider the problem

y'+Ay=0

y=(0), y'(0)=0

Show that ifg, ,and ¢, are eigen function corresponding to the eigenevalu
A,and A, Respectively, then



[} @.(0ex)dx=0

Provided that1,, # A, .

Solution:
¢]’n’1 +Am¢’m =0
¢]r'1’ +Am¢’m =0
@+ =0
Gt + A, =0 1)
G+ Al =0 )
' I
.[0 (dng(X)(dn'(X)dX+ AmJ‘o wmgﬂnd)( =0 (3)
[, deax+ [ gaix=0 @

_[; @, ()¢ (x) - I; @, ()@, (X)dx + Amj'(') @.¢.0x=0

%)) - 2,006 ©) - @ ~[A (A ) - [, A(IAMDI+A, [ ¢ (I (x)dx
or

By boundary value conditions

[} 2(9A(ex+ A, [ @, (9 (k=0 (5)
Subtract (4) from (5), we have

=A@, (08, (=0

If A, #24,,then

[} 2.0 (dx=0
Example 14.

Hyperbolic function
X A~ X e _e_

COSX sinh

d (cosh)=sinh(x)
dx

i(sinx) = coshh(x)
dx



(@) Solution of the problem is
r‘-1=0, TakeA = u*
r4 _ﬂ4 - O

The solution is
Y = C, COSUX +C,SiN LX + C,14° COSLX +C,Sinhix (1)

The boundary condition

c,+c, =0

c,—¢c;,=0

=c¢, =0 andc, = 0

Oy=c,sinu+c,sing =0-c,singd +c,sinhyd =0

Oy=c,sinu+c,sing =0-c,sing +c,sinhzd =0

Oy=c,siny+c,sing =0-c,sing +c,sinhzd =0
Oy=c,sinu+c,singd =0-c,sing +c,sinhgd =0

Osingd =0sinhgl =0 N=212,............
Osingd =nn
Oy, :sinnl—nx N=12,.....c......

Is the eigen-function
4.0 Conclusion

We have been able to study some eigen-value prgbienthis unit. This
unit must be mastered properly before moving tanad unit.

5.0 Summary
Recall that the linear differential equation
PO)Y" +Q(X)y' + R(X)y = g(x) (1)

was classified homogeneousgifx) =0, and non-homogeneous otherwise.

Similarly, a linear boundary condition



a,y(0)+a,y"'(0)=c 2)

A boundary value problem is homogeneous if bothdifferential equation

and in boundary conditions are homogeneous. If then it is non-

homogeneous. We also classified some equationseigen value problem
depending upon whether the determinant of the ergére of the problem is
zero or not. Read carefully and re work all exexgiand problems in this
unit for better understanding.

6.0 Tutor Marked Assignment:

1. Consider the problem

y'+ly=0

y=(0), y'(©0)=0

Show that ifg, ,and ¢ are eigen function corresponding to the eigenevalu
A,and A, Respectively, then

[} 2.(9pxax =0

Provided that_# A .

2. Find the real eigen- values and eigen -functbithe boundary value
problem

y'+ly=0

y(©)=0 y'(1)=0

7.0 REFERENCES/FURTHER READINGS
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1.0. Introduction

We solved some partial differential equations ey rtiethod of separation of
variables. In the last step we expanded a ceitaiction in a Fourier series,
l.e. as the sum of an infinite series of sine aadire functions. It is of

fundamental importance that the eigen functiona afore general class of
boundary values problems can be used as a basisefms expansions,
which have properties similar to Fourier Series.

Such eigen- functions series are useful in extenttia method of separation
of values to a larger class of problems in paditiérential equation.

The class of boundary value problem we will disagsassociated with the
names of Sturm and Liouville.

2.0 Objectives:

After studying this unit you should be able

- to solve patrtial differential equation using $tuaind Liouville methods

- solve correctly the associated Tutor Marked Assignts

3.0 MAIN CONTENT

3.1. Sturm and Liouville Problem

We introduce the operator
Lyl =-1p(X)yT+a(x)y (1)

Lyl =Ar(x)y (2)



[POX)YT —a(x)y+Ar(x)y =0 3)
on the interval0 < x <1, together with the boundary condition
ay(0) +a,y'(0)=0 4)
by(l) +b,y'() =0 )

We shall assume that gandr are continuous functions in the intenja{.
P(x) > 0,r(x) >0for all xin 0<x<1.

0] Lagrange’s identity: let u and v be functionaving continuous
second derivatives on the internvat x<1. Then

j; (UL[U] -UL[u])dx
= = p()[u' (x)u(x) —u(u'(x)] (6)

Solution 1:
Iol UL[U]dXLl {~u[ p(x)u'q( X u} dx

= —u(py) +Up(IU() + || {~u(pu’) +uquidx
0 [} (ulfu] ~UL[UT) dx = ~(p9[u’ (x)u(x) ~u(x)u'(x)

This is known as Lagrange’s identityufand u satisfy (5) and (4)

RHS=-p@u@u@-u@u®]
+ pO)[U Qu(0) - uQ)U'(O)]
- p(l)[—%u(l)u ) +%u(1)u(1)1

2 2

¥ p(O)[—%u(O)u(O) +%u(0)u(0)]
=0
Thus we have

_E{L[u]—uL[u]dx=0

(i) Show that all the eigen value of the Sturm-Liowvproblem



L(y) =Ar(x)y A
With boundary conditions

a,y(0) +a,y'(0)=0 B
b y(l)+b,y'(®) =0
are real.

Proof: let us suppose there exists a complex ergirei = g +iv will v#0
and corresponding to this value is the eigen fonct(x)=U (x)+1V(x)
Where at least one of them is not identically zero.

Now Q satisfies the differential equation

L[Q) = ArQ
L[Q] = 7RQ
or
u=Q andu=Q

[ {QL@-QL@iax=[ (A1-4)
r()QMIQ(¥)dx =0
orzurjo1 FOOVZ() +V2(dX=0 e, (1)

Sincer(x)>0forallxin0<x<1(1) =>v=0

This contradicts the original hypothesis. Hence ¢igen value of Sturm-
Liouville problem are real.

(iit) If Q@ andqQ, are eigenvalues of the Sturm-Liouville problem (A)

and (B), corresponding to eigen valvess and 4,, respectively ,
and A, +1,, then

[} r0Q(9Q (X)Jax=0

[r(x)is called the weight function and it is an orthogloproperty of
eigenfunction]

Proof: - L[QIArQ,



L[Q,]A,rQ,
If we let =u =Q, and U =Q,then

[} {uu1-ULU]dx

A=, f r(0Q(0Q,(x)dx =0
Hence the result

(iv) Let us now consider a more general boundatye problem for
the differential equation
Lyl =AMLy, O<x<1

Where L and M are linear homogeneous differentorations of orders
n and n respectively.

Lyl = po (Y™ + p()y™™ +.ccot P (Y + P, (X)Y
MYl =1,(Qy™ +1,()y™ +. ot 2 ()Y + 1, (XY
Wheren > m.

In addition to the differential equation a set olimear homogeneous
boundary conditions at=0, x=1is also prescribed. If the relations

j; (uLlu] - ufu]dx = 0
j; (UM[u] - uM[u]dx = 0

are line for every pair of functions and u, which are n-lines
continuously differentiable om,| and which satisfy un given boundary
conditions, then the given boundary valve problenmsaid to be self
adjoint.

Problem I. Show that th&turm-Liouville problems
L(y) —-[P(X)y]+a(X)y
M(y) =Ar(x)y

(1) J': [UM[u] —uM[u]dx

I: [UAr (X)u = uAr(x)u]dx
=0
For every pair of u, u



[} U -utfujax =0
as shown previously. Hence it is self-adjoint

Problem
(a) y'+y' +2y=0 y=0, y=(1)=0

Solution L(y)=y"+y' +2y

. 1
() [ U +u+2u)-u(u" +u’+2u)dx
:—2j: u'udx, are true for every pair of function u and u, whaske n-

times continuously differentiable oio,1] which satisfy un given
boundary value problem is said to be self-adjoint.

Solution: Sturm-Liouville problems
L(y) =-{p(X)yT+a(x)y
M(y) = Ar(x)y

0 j: [UM (U) - uM (u)]dx
j: [UAr (X) - udr (x)]dx

=0
as shown previouslyHence it is not self-adjoint.

Problem
yn+yv+2y:0 y=0, y:(|):0\
SolutionL(y) =y"+y' +2y y=0, y=(1)=0

J'Ol [U@u"+u' +2u)—u(u” +u'+2u)]dx

jj [UL(u) - uL(u)]dx =0
as shown previous. Hence it self-adjoint

Problem (a)

Problem

y'+y +2y=0 y=0, y=(I)=0\
SolutionL(y) = y"+y' +2y y=0, y=(1)=0

J'Ol [U@u"+u' +2u)—u(u” +u'+2u)]dx



1 . . ) L.
= —ZIO u'udx=0, u'andu’ are continuous in the interv@l< x<1. Hence it is

not zero.

Thus it is not self-adjoint.

Problem(b)
(x+x*)y"+2xy'+y=0 y'=0, y=@0)+2y'®) =0

L(y)=@+x*)U"+2xy"+y=0, y'=(0)=0y=(@)+2y'(1) =0,

L(y) = @+X*)y" +2xy' +y
M(y)=0

j; [U[(L+ x2)u'(U" +Uu’ +2u)]dx =0
It is Sturm-Liouville problem.
(€ Yy +y=dy, (y)=0-y'0)-y@®=0

y=0-y0-y@®=0
Solution

L(y) = @+ X°)y" +2xy' +y
M(y) =y

()

J, (UM () ~UM ()

J.: (uu—uu)dx=0

(i), (') -U )

= J': (uu” —u'u)dx
=uu' —ud’

=[u@Qu' @) —u@u'@)
~u@QuO) ~u@u©)]
= [u@u(©) ~u()u(©)

The right side is not zero. Hence it is not sejbad.

Problem 3 Consider the differential equation
y'+Ay+2y=0 \
With boundary conditions



y=0)-y(1)=0, y=0)-y@®=0

(a) Show that the problem is self-adjoint even thougk not a Sturm-
Liouville problem.

®) Find all eigenvalues and eigenfunctions of the igipmblem

Solution:  L(y)=y"
M(y) =~y
(i) [} UM -u(-udg =0

[} U(-u)-u-u]dx=0

(i) J': [u(uu” —uu"]dx

(uu) —J': (u'u'dx—-u'u +J'; u'u’dx
[@u'(1) —u'(Nu(1)]

=[(Qu’(0) -u'(O)u(0)]

~[(O)u’' () ~u'(Ou(0)]

~[(Ou'(0) ~u'(Qu()] =0
Hence it is self-adjoint

The solution of the equation is
y=clcos\/§+czsin\/7x
Applying the boundary conditions, we have

qﬁsinﬁ +czsin\/7(1—cos\/7 =0
c,(cosVA —1+c,sinyA =0

Thus

JAsinyA \/7(1—005\/7

cosvA -1 sinvA =0
Or

JA@-cosVA =0=

A=0 or A=(@2n-m)?, n=12,......
A =0 Po(x) =1



A =(@2n-m)?
0Q,(x)=cos2nrx, [Q,(x)=sin2n7x,

Yy, = COS2n7K, y, =sin2nsx,

Yy, = Cos2n7K, Y, = 2n7KCOS2n7K,
cos2n7x sin2n7x

W(y,Y, =

—2n/1Sinn7x  2n77cos2n

2n7KXCOS 2n7K + 2n77Sin® N7
2nnn#0 0~x

Betweeno< x<1

Thus the eigen functions are lining independent.

Problem 5:

Consider the Sturm-Liouville problems

—[P)YT+a(x)y=Ar(x)ya
a,y(0) +a,y'(0) = 0b,y(@®) +b,y'1) =0

Where p, g and z continuous function in the va€p< x<1.
(a) show that if A is an eigen-value ang a corresponding eigen

function, then

A} eQ7k=[! (pg* +a@ )+ 2 PP O -2 pOF )

Provided thata,#0 and b, #0

ifa,=00rb,=0

(b) Show that ifq(x) > 0and if %. and

2

eigen-valuei Is non negative

How this result be modified

“% are non-negative, then the

© Show that the eigen-valug is strictly 0<x<1 under q(x) = O for

each xin 0,x,1

Solution
Ar(x)Q* = [ p(x)QTQ +q(r)Q’

Thus



Al r9Q%dx = || (aQ* - p(¥Q)Qdx
Integrating by parts, we have
[} aQ?ax-QIp@]+[ pQ%)dx

From boundary condition, we have obtain the result

Q=20
QO =-2Q O
aZ

Putting these values on the right side and we olbte result
if or a, =0 orb, = 0, then the first boundary condition reduces to

y=0
=QW=0or= Q(0) =0

The result reduces to

1L, ) , & 5
Al rQ7dx= [ (aQ” + pQa - p(Q’(1)
or

AfL rQdx=[ (@Q? + pQ k- Q*(O)Q*(1)
0 0 a‘2

(b) In a Sturm Lioville problem, we always assumdatt

p(x) >0, r(x) >0,

By given conditionr(x) > 0for all x in 0< x<1Q? >0forall 0< x<1.

Now we impose condition, so that right side of dgation in (a) is+ve

The second and third term aree vy % and—2 are non-negatives

2 a2

Now

E qQ?dx is +ve in order that



(c) If g(x) =0 for all x 0< x<1then Ais strictly.

4.0 Conclusion

We have studied the Sturm Lioville problem in thrst . You are to master
this unit properly so that you will be able to sahlhe problems that follow.

5.0 Summary

Recall that Sturm Lioville problems are usually leans associated with
eigen values problems of partial differential equad which we have dealt
with in this unit. In our subsequent course in rmeathtics in this
Programme, we will have cause to deal with it agerticularly when will
shall study Partial Differential Equation.

6.0 Tutor Marked Assignment

Consider the problem

y' =2y +(1+A)u=0

Y(©0)=0y@=0
1) Show that this problem is not self-adjoint
2) Show that all eigenvalues are real
3) Show that the eigenfunctions are not orthogorgaiith respect to the
weight function arising from the coefficients of ..... in the differential
equation.
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