
 

 
 
 
 
 
 
 

NATIONAL OPEN UNIVERSITY OF NIGERIA 
 
 
 
 
 
 

SCHOOL OF SCIENCE AND TECHNOLOGY 
 
 
 
 
 
 
 

COURSE CODE: MTH 302-  
 
 
 
 
 
 
 

COURSE TITLE: ELEMENTARY DIFFERENTIAL EQUATIONS II 



MTH 302- ELEMENTARY DIFFERENTIAL EQUATIONS II 
 
Course Team:  Dr. O.J. Adeniran (Writer) – UNI. of Agric. Abeokuta 
                                  Dr. Bankole Abiola (Editor) – NOUN  
                                  Dr. Bankole Abiola (Programme Leader) – NOUN  

Dr S.O. Ajibola (Course Coordinator) – NOUN  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
NATIONAL OPEN UNIVERSITY OF NIGERIA  



CONTENT 
 
Module 1: Series Solution of Ordinary Differential Equation 
 
UNIT 1:  Series Solution of Differential Equation 
UNIT2:   Euler Equation 
UNIT3:  Indicial Equation with Difference of Roots- Positive   Integer and     
                Logarithmic case 
UNIT 4: Boundary Value Problems 
UNIT 5: Sturm and Liouville Problem 
 
ODULE 1: SERIES SOLUTION OF ORDINARY DIFFERENTIAL 
EQUATION 
 
UNIT 1:  SERIES SOLUTION OF DIFFERENTIAL EQUATIONS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 
   3.1. Series Solution of Differential Equation 
   3.2 Method of finding radius of Convergence 
   3.3 Ordinary points and Singular points of the Differential Equation 
      3.3.1 Solution near Ordinary Point 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/ Further Readings 
 
1.0. Introduction: A large class of ordinary differential equations possesses 
solution expressible, over a certain interval, in terms of power series. In this 
unit we are going to investigate methods of obtaining such solutions. 
 
2.0. Objectives: At the end of this unit you should be able to 
       - determine radius of convergence of series 
       - apply series solution method to solving differential equation 
       -  determine ordinary point, and singular points of the differential      
           equation   
 
 
 



3.0 MAIN CONTENT 
 
3.1. Series Solution of Ordinary Differential Equation 
 An expression of the form 
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is called the power series. 
      To determine for what values of x  the series (1) converges we use ratio    
test 

0
1

0

1
01 limlim )(

)(
xxL

T

T

xxA

xxA

n

n

n
n

n

n
n

n

−==
−
−= +

∞→

+
+

∞→
ρ                 

 

Where  
n

n

n A

A
L 1lim +

∞→
=                                                          (2) 

 
The series is convergent when1<ρ , divergent when  1>ρ  .  The test 

fails if  1=ρ .   
L

1=ρ   is called the radius of convergence 
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(i) If L  is zero, the series converges for all Values of x  
(ii)  If L  is infinite, the series converges only at the point 0xx =  
(iii)  If L  is finite, then the series converges, when 
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Converge to )(xf  and )(xg  respectively, for  10 ρ<− xx  (radius of 

convergence) 01 >ρ , then the following are true for 10 ρ<− xx . 

(i)Two series can be added and subtracted term wise, and 
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(ii) The series can be multiplied and  
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If 0)( 0 ≠xg , the series 
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continuous 
has derivates of all orders for 10 ρ<− xx . and  f ′ , f ′′ , f ′′′  … can be computed 

by differentiating the series.  Thus  
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(3) is called the Taylor series for  function f  at 0xx =  
A function f  that has Taylor series expansion about 0xx =  
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With a radius of convergence 0>ρ  is said to be analytic at 0xx = . 
     The polynomial is analytic at every point, thus sums, differences, 
products, quotients (excepts at the zeroes of the denominator) of 
polynomials are analytic at every point. 

(i) Determine the radius of convergence of the power series 
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3.2. Determining the Radius of Convergence 
 
If we obtain the Taylor series of a function )(xf  about a point 0x , then the 
radius of convergence of the series is equal to the distance of the point 0x  
from the nearest singularity. 
 



Remark  about a change in the index of summation 
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3.3 Ordinary Points and Singular Points of the Differential Equations 

We consider the differential equation 
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(we assume that )(xP , )(xQ and )(xR  are polynomials) 
 

(a) if 0)( 0 ≠xP  , then 0x  is an ordinary point of the equation (1), or 
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y , P , Q  are analytic at the point  0xx = , then  0x  is the ordinary point of 
the equation. 
(b) If the functions )(xP , )(xQ and )(xR  are polynomials having no 

common factors, the singular points of equation (1) are the points 
for which  
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Then the point 0xx =  is called the REGULAR SINGULAR POINT of 
equation (3) 
 



(d)  Any singular point of equation (3) that is not regular singular point is 
called an  irregular singular point. 

 
3.3.1  Solution Near An Ordinary Point  
  
     Let us consider the equation 

0)()()( =+′+′′ yxRyxQyxP                                                           (6) 
Where )(xP , )(xQ and )(xR  are polynomials. 0x  is the ordinary point of the 
equation (6). 
Assuming that )(xy φ=  is a solution of (6) and )(xφ  has a Taylor Series 
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Now we know that 
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We can write (1) 
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(It is natural to assume that )(xyy = , )(xyy ′=′   at  0xx =   and  1)0( ay = , 

2)0( ay =′ , we can easily calculate the coefficient na a, provided that we could 
compute infinitely many derivatives of p   and q  existing at 0x  .  Thus p   
and q  must have some condition for line calculation of na .  It has been 
proved  that. 

 
)(

)(

xR

xQ
P =    ,     

)(

)(

xP

xR
q =      are analytic at 0x ., then the general solution of (6) 

is  )()()( 21100
0

xyaxyaxxay n
n

n

+=−=∑
∞

=

 

Where na and 1a  are arbitrary 1y and 2y  are linearly independent series 
solutions which are analytic at 0x . 
    
 
 
 



We shall illustrate the method by examples. 
Example 1.  Solve the equation 

04 =+′′ yy  

near the ordinary point 0=x  
Solution:  we assume the solution as 

 n
n

n

xay ∑
∞

=

=
0

                                                                 (1) 

2

0

)1( −
∞

=

−=′′ ∑ n
n

n

xanny                                             (2) 

Substituting these values in the equation yields 
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Because the first two terms of the first sum in (4) are zero. 
       We now use the fact that for a power series to vanish identically over 
any interval, each coefficient in the series must be zero 
Recurrence relation :   
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Hence we can write in solution 
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Example 2:  Solve the equation 

046)1( 2 =−′−′′− yyxyx  
near the ordinary point 0=x  
Solution:  we assume the solution 
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The  only singular points of the equation in the finite plane are 1=x  and 
1−=x .  Hence we show that the solution is valid in 1<x   with 0a  and 1a  

arbitrary coefficients 
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Let us shift the index  the second series. 
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In equation (2), the coefficient of each power of x  must the zero. 

2

2
−

+
= nn a

n

n
a   ,                  for    2≥n                                   (3) 

(3)  is called recurrence relation. A recurrence relation is a special kind of      
difference equation. 
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Example 3.  Solve the equation 

0)1(4)1( 2 =−−′−+′′ yxyxy  
about the ordinary point 1=x  
Solution:  we assume the solution 
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4.0 Conclusion: In this unit we have attempted the series solution method to 
Ordinary Differential Equations. In the subsequent unit we are going to 
discuss more about this method in greater details. You are supposed to 
master this unit properly to be well equipped for the next unit. 
 
5.0 Summary:  Recall that in this unit we discuss power series and radius of 
convergence for the series. We also applied the series to solve differential 
equations. We derived the singular and ordinary points for each of the series 
solutions. Study this unit properly before going to the next unit.  
 
 
 



6.0.   Tutor Marked Assignments 
1. Determine a lower bound for the radius of convergence of series solution 
about each given point 0x  for each of the following differential equations. 
(i)      04)32( 2 =+′+′′−− yyxyxx    ,  40 =x  , 40 −=x  and  00 =x  
(ii) 04)1( 3 =+′+′′+ yyxyx    ,  00 =x  , and  20 =x  
 
2. Determine whether each of the points  0,1−  and 1 is an ordinary point, or 
regular singular point or irregular singular point for the following 
differential equation, 
(i)      032)1(2 224 =+′+′′− yxyxyxx     
(ii) 0)1(2)3( 2 =−+′−′′+ yxyxyx    
 
7.0  REFERENCES/FURTHER READINGS 
EARL. A. CODDINGTON: An Introduction to Ordinary Differential 
Equations. Prentice-Hall of India 
FRANCIS B. HILDEBRAND: Advanced Calculus for Applications, 
Prentice-Hall, New Jersey 
EINAR HILLE: Lectures on Ordinary Differential Equations, Addison – 
Wesley Publishing Company, London.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIT 2: EULER EQUATION. 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 
   3.1. Euler Equation 
   3.2 Series solution near a regular point 
   3.3 Indicial equation with equal roots 
   3.4 Indicial equation with difference of roots, a positive integer and         
         Non- Logarithmic case. 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/ Further Readings 
 
1.0 Introduction: In this unit we deal with a class of differential equation 
normally refer to as Euler Equation. This type of equation usually possesses 
solutions that are classified as regular singular points of the differential 
equations. Series solution of this class of equation must be attempted with 
different approach. We shall see this in our treatment of this system of 
equation in this unit.   
2.0 Objective:  At the end of this unit you should be able to 
  - differentiate Euler equations from others. 
  - use series solution approach to solve these categories of equations 
  - solve problems relating to Euler equation 
 
3.0. MAIN CONTENT 
 
3.1. Euler Equation 
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is known as Euler equation. 
It is easy to see that 0=x  is a regular singular point of (1) 
In any interval not including the origin, (1) has a general solution of the 
form. 
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1y  and 2y  are linear, independent solution. 
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It is always possible to obtain a real valued solution of Euler equation (1) in 
the interval, by making the following changes 
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It follows that we read one, to replace for x  by x  in the above solution to 

obtain real valued solution valid in any interval not containing the origin 
To solve the Euler equation (1)  
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in any interval not containing the origin substitute rxy =  and compute the 
root  1r and 2r of the equation 
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If the roots are real and equal 
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If the roots are complex 
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For an Euler equation of the form 
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Change the independent variable by   
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or suppose the solution 

rxoxy )( −=  
Note:  The situation for a general second order differential equation with a 
regular singular point is similar to that for an Euler equation. 
 
2. Another method of obtaining the solution of Euler Equation 

02 =+′+′′ yyxyx βα  
Solution:  We make the change of variable zex =  or xz log=  and 0>x . 
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Substituting there value in the equation 
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This is an equation with constants coefficients 
The auxiliary equation is  

0)1(2 =+−+ yrr βα  
(i) If  1r  and 2r  are real and unequal.  212
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1
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(ii)  If the roots are equal i.e zrezccy )( 21 +=∴ . 
1)log( 21
rxcc α+=  

(iii)  If the roots are complex 
)sinhcos( 21 zczcey z += µλ  

)logsin()logcos(( 21 xcxcx µµλ ++=  
3.2  Series solution near a regular singular point 
 
Consider the  equation 

0)()()( =+′+′′ yxRyxQyxP     (1) 



Assume that 0=x is a regular singular point of (1) means that 
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)(
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xxP = = 
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2
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xP

xRx
xqx = have finite limits as 0→x and are analytics at 0xx = for 

some interval  about the origin 
 

(i) can be written 
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If all the coefficient use zeros, except 0P  and nq , then (2) reduces to 
Euler equation, which was discussed previously. 
If some of the nP  and nq . ≥n  will not be zero.  However the essential 
character of the solution remains the same.  It is natural to seek the 
solution of the form of “Euler Solution” the power series. 
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As part of our problem we have to determine 
 

(1) The values of r  for which equation (1) has a solution of 
the form (3) 

(2) The recurrence relation for the na  

(3) The radius of convergence of the series n
n

n

xa∑
∞

=0

   

We shall illustrate the method by example 
 
Example I:  Find the series solution of the equation 

02)1(2 =−′++′′ yyxyx                                                (1) 
 
Solution:  0=x is the regular singular point of the equation. 
 
We assume line solution 
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Direct substitution of y  in (2) given 
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Now we shift the index of the second series in (3).  We get 
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Once more we reason that the total coefficient of each power of x  in the left 
member of (4) must vanish.  The second summation does start the 
contribution, until 1=n .  Hence the equation determinants c  and an are 
given by 
 

0=n  0)12( 0 =− arr  , but 00 ≠a                 (5) 
0)12( =−∴ rr         (6) 

           
(6) is called the indicial equation. 
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Omitting the constant 0a , we may write the particular solution as 
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Next task is to find the solution corresponding to the root 02 =c . 
 
The recurrence relation becomes1≥n . 
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The solution is  
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02 xxby ++=  

The general solution is  
21 ByAyy +=  

Note:  The roots of indicial equation are unequal and do not differ by integer 
3.3Indicial equation with equal roots 

 
Example 2.  Solve the equation 

0)21(32 =−+′+′′ yxyxyx        (1) 
Solution:  0=x is regular singular point of (i) 
We assume the solution  
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Substituting this value in (2), we have  
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The indicial equation 
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Let as write 
yxyxyxyL )21(3)( 2 −+′+′′=        

The y  of equation (6) has been so determined that for that y  the Eight 
member of (8) reduced to a single term the0=n .   
Thus  

yxyxyxyL )21(3)( 2 −+′+′′=        (8) 
       
A solution of the original differential equation is a function y for which 
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Now differentiate each member of (9) with respect to 
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From (9) and 10, it can be seen early that the two solution of the equation 
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The general solution, valid for all finite 0≠x is 21 ByAyy += . 
 
 
 



 3.3: Indicial Equation with difference of Roots a Positive Integer, non  
Logarithmic case 
 
Solve line equation 

02)4( =+′+−′′ yyxyx                (1) 
 

   Solution:  We assume the solution 
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The Indicial equation is 

0)5( =−cc  
02 =∴c ,  51 =c  

505 =−=∴ s  
We reason that we hope for two power series solutions, one starting with an 

0x and term, one with  an 5x term. 
 
If we use the longer  root 5=c , then the 0x  term would never enter.  Thus 
we use the smaller   roots 0=c , then the trial solution of the form. 
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has a chance of picking up both solutions because the 5=n  sn = term does 
contain 5x  
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Therefore, with  0a  and 5a  arbitrary, the general solution may be written 
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Example 2 Solve the equation 
  03)34( =+′++′′ yyxyx      (1) 
Solution  0=x is the regular singular point of (1). 
 
We assume the solution 
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0=n , we get the indicial equation 
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Recurrence relation is  

1)3(3)3( −−−=− nn annna  

1=n    oaa )2)(3()1)(2(1 −−=−  

2=n    12 )1)(3()2)(1( aa −−=−  

3=n    23 )0)(3()3)(0( aa −=  

4>n    1

3
−

−= nn a
n

a  

   34 4

3
aa

−=  

   45 5

3
aa

−=  

                                   ………………. 

   1

3
−

−= nn a
n

a  

   36
)3(

a
nl

an

−=∴  

1
2

2
1

3
0( −−− += xaxaxtay  

 

1

)1(
6)

2

9
3(

33

3
3

1
2

23
0 n

x
axaxxa

nn

n

−−∞

=

−− −+++− ∑  

This is the required solution 
 
4.0. Conclusion 
 
We have looked at various problems involving Euler equations in this unit 
their various form of indicial equations. In the next unit we shall consider 
indicial equation of positive integer and logarithmic case. 
 



5.0 Summary 
 
You will recall in this unit that a general form of Euler equation was given. 
We also consider various form of Euler equations. You are required to 
master this unit very well before proceeding to other units.   
6.0. Tutor Marked Assignment: 
 (1).  Solve the equation 

0)21(32 =−+′+′′ yxyxyx  
   

(2).Solve the equation 
02)4( =+′+−′′ yyxyx  
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UNIT3: INDICIAL EQUATION WITH DIFFERENCE OF ROOTS A 
POSITIVE INTEGER, LOGARITHMIC CASE 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 
   3.1. Indicial Equation with difference of roots, positive integer and 
logarithmic case 
   3.2 Fourier Series 
   3.3 Orthogonality of a set of series and cosines 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/ Further Readings 
 
1.0. Introduction 
 
In unit 2 we have considered indicial equations where logarithm case is not 
considered. We shall undertake to consider the positive and logarithm cases 
in this unit.  
 
2.0 Objectives 
 
At the end of this unit you should be able to  
- to solve differential equation whose indicial equation has a  positive integer 
- to solve differential equation whose indicial equation has roots with 
logarithmic case. 
 
3.0. MAIN CONTENT  
  

   3.1. Indicial Equation with Difference of roots a positive integer, 
logarithmic case. 

 
We illustrate this method by an example  
Solve the equation 

0)31()1(2 =+−′−+′′ yxyxxyx  

Solution:  We assume the solution 
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The indicial equation is 
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It follows that 
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For 1=r , only one solution can be obtained.   
Note:  for 1−=r , since there is no power series with skilling  1−x , we suspect 
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We use the same argument as that of equal roots 
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Differentiate with respect to r . 
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Problem:  Find line general series solution of the D.E 
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and show that it can be expressed in line form 
 
 

 
Solution:  0=x is a regular singular point of D.E.  Assuming the solution 
 
Substituting in the D.E 
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3.2.    Fourier series 
1. Orthogonality:  A set of function  is ),.....}(),....(),({ 0 xfxfxf n  said to be 

an orthogonal set with respect to the weight function )(xw over the 
interval bxa ≤≤ if  
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Orthogonality is a property widely encountered in certain branches 
of mathematics.  Much use is made of the representation of 
functions in series of the form 
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3.3     Orthogonality of a set of series and cosines:   

 We shall consider the set of function  
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Cos

π
…………….. 

 is orthogonal with respect to the weight    function 1)( =xw  over the 
interval cxc ≤≤−  

 i.e. 

 0=∫− dx
c

xk
Cos

c

xn
Sin

c

c

ππ
,  where nk ≠ . 

:  Before we prove the result, we give some definition to shorten the proof. 
 

(a) Even function:  A function )(xgy =  is said to be even y  
)()( xgxg =−  

For all x . 
 

(b) Odd function:  A function )(xhy =        is odd if )()( xhxhy −−==  
For all x. 
 



 
Example:  Sinx is an odd function 
                    Cosx  is an even function 

(c) Most function are neither even or odd example x. (is in one function 
0)( =xf  

(d) If )(xg is an even function  then as well as even) 

 dxxgdxxg
cc

c
)(2)(

0∫∫ =
−

 

  
Consider the integral. 
 

01 == ∫
−

dx
c

xk
Cos

c

xn
SinI

c

c

ππ    for all k  and n . 

Follows at once from the facts that the integrand is an odd function of x.  It 
does not dependent upon one fact and k and n are integers 

,2 dx
c

xk
Sin

c

xn
SinI

ππ
∫=  nk ≠  

Take 

β
π

πβ d
c

dx
c

x == ,  

βββ
π

π

λπ
dknCosknCos

c
])()(

2
+−−∫− βββ

π
π

λπ
dSinkSinn

c
∫−  

= 

[ ] π
π

ββ
π −+

+−
−

−=
kn

knSin

kn

knSinc )()(

2
 

Since kn − and kn + are ve+  integers. 
0=  

Finally we consider the integral 
Where 0=n , ..,.........1 0≠n ,  

[ ] π
π

ββ
π −+

+−
−
−=

kn

knSin

kn

knSinc )()(

2
 

0=  

dx
c

nx
Sindx

c

xn
SinI

c

c

c

c

22
4 ∫∫ −−

== π  

let f(x) the continuous and differentiable at every point in an interval 
cxc ≤≤− except for a most finite number of points and at more points, let 

)(xf and )(xf ′ have right and left-hand limits 
 
Note:   



The notation )0( +cf is used to denote line right-hand limit of cx → as 
)(xf from alone, i.e.  

)0( +cf  and )(lim xf
cn +→

=  

 
Similarly 

=− )0( cf )(lim xf
cn =→

=  

Denotes, the limit of f(x) as approaches c. 
 
Since Fourier series for )(xf may not converge to the value )(xf every 
where.  It is customary to replace the equals sign in equation (8) by the 
symbol ~which may be read “has for its Fourier Series” we write 

c

xn
b

c

xn
aaxf nn

n

ππ
sincos(

2

1
~)(

1
0 ++∑

∞

=

, 

Where  na and nb are given by (a) and (10) 
 
Example:  Construct the Fourier series, over the interval ,02 ≤≤− x for the 
function defined by 

2)( =xf ,   ,02 ≤≤− x  
2=x  ,   20 << x  

 

Solution:  Now )(xf ~ )
2

sin
2

cos(
2

1

1
0

xn
b

xn
aa nn

n

ππ ++∑
∞

=

 

 
 
In which 

;
2

cos)(
2

1 2

2
dx

xn
xfan

π
∫−=  2,......1,0=n  

and 

;
2

sin)(
2

1 2

2
dx

xn
xfbn

π
∫−= 2,......1,=n  

dx
xn

xdx
xn

an 2
cos

2

1

2
cos

2

1 2

0

0

2

ππ
∫∫ +=∴

−
   (a) 

If   0≠n            , then 

] 0
220

2 ]
2

cos)
2

(
2

sin
2

[
2

1

2
[sin

2 xnxn
x

xn
an

π
π

π
π

π
π

++=∴ −  

 

 

22

)cos1(2

π
π

n

n−−=



For 0=n ,  from (a), we get 

0a  =3 

2

1=∴ nb   

 
Thus we write 

]
2

sin
1

2
cos

)1(1
[2

2

3
~)(

22
1

xn

n

xn

n
xf

n

n

π
π

π
π

+−−− ∑
∞

=

. 

Example 2 Obtain the Fourier series over the interval π− toπ for the function 
2x  

 
Solution:  We know  

]sincos[
2

1
~

1
0

2 nxbaax n
nx

n
n

++∑
∞

=

  for ππ <<− x , where 

;cos
1 2 nxdxxan ∫−=

π

ππ
    ,.......2,1,=n  

  ;sin
1 2 nxdxxbn ∫−=

π

ππ
    ,.......2,1,=n  

2x  is an even function, nxsin  is an odd function, thus nxx sin2  is an odd 
function Hence. 

0=nb . for every n . 
 

032

2

]
sin2cos2sin

[
2 ππ

ππ n

nx

n

xx

n

nxx
an −+= ∫− for 0≠n  

From which 

22

)1(4
]

cos2
[

2

nn

n
an

−== ππ
π

,  ,........2,1=n  

   

2

)1(4
]

cos2
[

2

nn
an

ππ
π

−==   ,........2,1=n  

for 0=n  

3
2

3

2
[

2 23
2

00

ππ
ππ

π
=== ∫ dxxa  

Therefore, in the interval; ππ <<− x  

2
1

2
2 cos)1(

4
3

~
n

nx
x

n

n

−=+ ∑
∞

=

π  

Indeed, because of condition of line function involved, we write 

,
cos)1(

4
3

~
2

1

2
2

n

nx
x

n

n

−=+ ∑
∞

=

π
for ππ ≤≤− x . 



 
2. Fourier Sine Series:  Sometimes it is desirable to expand the function 

)(xf  in a series involving Sine function only. 
In order to get a Sine series for )(xf we introduced a function )(xg defined as 
follows 

)()( xfxg =    cx <<0  
)( xf −−=    0<<− xc  

 
Thus )(xg is an odd function over the interval 0<<− xc .    
Hence 

0cos(
2

1
~)(

1
0 =+∑

∞

=

dx
c

xn
aaxg n

n

π
,  ,......1,0=n  

 
 
It follows  that 

0cos)(
1

0

=∫− dx
c

xn
xg

c
a

c

cn

π
    ,......1,0=n  

(Note integrand is an odd function) and that 
 

dx
c

xn
xg

c
b

c

cn

π
sin)(

1
∫−=  

c

xn
xf

c

c

c

π
sin)(

2
∫−=  

Thus 

c

xn
bxf n

n

π
sin~)(

1
∑

∞

=

+     cxo <<  

)(xf Where dx
c

xn
xf

c
b

c

cn

π
sin)(

2

0
∫−=   ........,.........2,1=n  

 
Example:  Expand 2)( xxf == = in a Fourier Sine Series over the interval 

10 << x  
Solution:  At once we write, for 10 << x 0  

xnbx n
n

πsin~
1

2 ∑
∞

=

 

In which 

xdxnxb
c

cn πsin2
∫−=  

32
21

0 )(

cos2

)(

sin2cos
2

π
π

π
π

π
π

n

xn

n

xnx

n

xn
x ++= ∫  



3333

cos2cos2cos
[2

π
π

π
π

π
π

n

xn

n

x

n

n ++−=  

 
Hence the Fourier Sine Series, over 10 << x  for is 2x  

]
2)1(2cos

[2
3333 πππ

π
nnn

n n−+−=  

 
3. Fourier Cosine Series:  In order to expand the function )(xf in a series 

involving cosine function only, such series is called Fourier Cosine 
Series.  We define 

           )()( xfxh =   cx <<0  
             )( xf −=   0<<− xc  
 
It follows that )(xh is an even function of x . 

c

xn
b

c

xn
aaxh nn

n

ππ
sincos(

2

1
~)(

1
0 ++∑

∞

=
 

dx
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xn
xf
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c

xn
xh

c
a
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ππ
cos)(

2
cos)(

1
0∫∫ =
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cx <<0  

But 0sin)( == ∫− dx
c

xn
xh

c

i
b

c
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π  

 
Thus we have  

dx
c
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xfaxf

c π
cos)((

2

1
~)(

00 ∫+  

 
 in which  

dx
c

xn
xf

c
a

c
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π
cos)(
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∫−=  

Example:   
Solution:  At once we have 

c

xn
aaxf n

n

π
cos

2

1
~)(

1
0 ∑

∞

=

+ in which 

in which 

dx
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xn

c
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xn
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c 0
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2 ππ
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)cos1(
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π
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The coefficient 0a  is readily obtained 

c
c

c
xdx

c
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c

cn ==∫− 2

22 2

 

 
Thus the Fourier Cosine Series over the interval cx <<0 the function 

xxf =)(    is 

c

xn

n

uc
cxf

k

π
π

cos
)1(1

2

1
~)(

2
1

2

−−− ∑
∞

=

 

4.0. Conclusion: You have learnt about indicial equations where the roots 
are positive and logarithmic. You have also learnt about  Fourier series  and 
odd functions. 
5.0 Summary: You are required to study materials in this unit very well 
before proceeding to the next units. 
 
6.0 Tutor Marked Assignments: 
 
(1). Find the general series solution of the D.E 

064
2

2

=++ y
dx

dy

dx

yd
x  

(2).Construct the Fourier series, over the interval ,02 ≤≤− x for the function 
defined by 

2)( =xf ,   ,02 ≤≤− x  
2=x  ,   20 << x  
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UNIT 4: BOUNDARY VALUE PROBLEMS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 
   3.1. Boundary Value Problems 
   3.2 Eigen Values and Eigen Functions 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/ Further Readings 
 
1.0 Introduction 
 
In this unit, we will discuss some of the properties of boundary valve 
problems for linear second order equation. This class of differential 
equations is very useful for practical applications. We shall devote some 
time in studying them in this unit. 
 
2.0 Objectives: At the end of this unit you should be able to 

- classify second order differential equations into homogeneous and 
non-homogeneous. 

- differentiate between eigen values and eigen functions 
- solve related eigen value problems  

 
3.0 MAIN CONTENT 
 
3.1 Boundary Value Problems 
  
The linear differential equation 
 )()()()( xgyxRyxQyxP =+′+′′          (1)  
was classified homogeneous if, 0)( =xg , and non-homogeneous otherwise. 
 
Similarly, a linear boundary condition 

cyaya =′′+ )0()0( 21   (2) 
 
A boundary value problem is homogeneous if both its differential equation 
and in boundary conditions are homogeneous.  If not then it is non- 
homogeneous. 



A typical linear homogeneous second order boundary value problem is of 
the form. 

0)()()( =+′+′′ yxRyxQyxP    (3) 
10 << x , 

0)0()0( 21 =′′+ yaya     (4) 

0)0()( 21 =′+ ybIyb     (5) 
 
 

Most of the problems, we will discuss are of the form given by (3) to (5). 
 
 
 

3.2. Eigen Values and Eigen Functions 
 
             Consider the differential equation   
              0),(),( =+′+′′ yxqyxpy λλ   10 << x  (1)  
The boundary conditions 

0)0()0( 21 =′+ yaya        (2) 
0)0()( 21 =′+ ybIyb        (3) 

 
Where  λ  is arbitrary parameter. 
 
Clearly the solution of (1) depends on x  and λ  and can be written as  
 

),(),( 211 λλ xcxycy += ,                (4) 
Where 1y  and 1y  are a fundamental solution of (1).  Substituting for 1y  in the 
boundary condition (2) and (3), yield. 
 

0)],([)],(),([ 2122111 =′+′+ λλλ xyacoyaoyac    (5) 

0)],([)],(),([ 2222111 =′+′+ λλλ iybciybiybc     (6) 
 
A set of two linear homogeneous algebraic equations for the constant.  Such 
a set has solutions (other than 021 == cc   if and only if the determinant of 
coefficients )(λD vanishes i.e. 
 
 
 
 
 



 
            )],(),([ 2111 λλ oyaoyac ′+              ),(),( 2221 λλ oyaoya ′+   

 =)(λD         )],(),( 211 λλ iybiyb ′+     )],(),( 2221 λλ iybiyb ′+ =0  
 
 
Values  satisfying this determinant equation are the eigenvalues of the 
boundary- value problems (1), (2) and (3) 
 
Corresponding to each Eigen value is at least one non- trivial solution.  An 
Eigen function 
 
Note:  We will consider problems namely  only real eigen value 
Example I consider the equation 

  0=+′′ yy λ     (1) 
  ),0(y   0)1( =y   (2) 
Solution:  0=+′′ yy λ , the solution is  
     xcxcy sincos 11 += ,   (3)     
      
By the boundary conditions 

01 =c s 

0sin2 =λc  

02 ≠c , otherwise 0=y  is the solution 
πλλ n=⇒= 0sin , .......,.........2,1=n  

or  22 4, ππλ nn=                   (4) 
 
(4) gives the eigen values of (1).  If we consider    1=λ  
 

xcxcy sincos 21 +=∴   

10 c=       by (2) 
00sin 22 =⇒==∴ cIcy  

0 = c1  by  ( 2) 

 
   0=∴ y    Hence 1=λ  is the eigen -function 
 
The eigen function are  

xncyn πsin2=∴     …………….   (5) 

2.,.........2,1 cn = ………. c1   is an arbitrary constant 
 



Example 2:  Find the real eigen values eigen -function of the boundary value 
problem 

0=+′′ yy λ  
0)0( =y    0)( =′ ly  

.The solution is  
0=+′′ yy λ  

xcy λcos1=∴     (1) 
0)0( =y , given 

01 =c . Also 
xcy λλ coscos2=′  

But 0)( ==′ ly , yields 
⇒== 0cos2 lc λλ  

0cos2 == lc λ  

l

n
l

2

)12( πλ −
 ,  ........,.........2,1=n  

(2) gives eigen value 

]
2

)12
sin[

l

xn
yn

π−= ,  ........,.........2,1=n   (2) 

(3) gives eigen functions 
 
Examples 0=+′′ yy λ  
 0)0( ==′y    0)1( ==′y  
Solution:  The solution is  
     xccxcy λλ sincos 21 +=′    (1) 
 
   xxcxcy λλ cossin 21 +−=′    (2) 

  021 =+ µcc  
 

 
µcos

1
  µ

µ
cos

 =0 

 
Thus the eigen value are given by the equation 
 
 µµ tan= .       (3) 

xccy n µµµ sin22 +−=  
If  nµ  is the root of (3), then eigen function is 

xy nnnn µµµ cossin −=      (4) 
 



If 0=λ  , then the solution is  

22 ccy +−= y 

1cy =′  

021 =+∴ cc  

 
Hence the solution is  
   

)1(1 −= xcy  

thus 0=λ  is also an eigen value 
µµ tan=  

,49.4~1λ   
2

)12(
~

πλ +n
N  

 
Example 5. 
 0=+′′ yy λ        
 0=y ,  0)0()1( =′+ yy  

 
Solution 
  xcxcy λλλλ cossincos 21 ++=  

  02 =c , 

  λλ cot=∴  

The eigen values are given by equation (3).  The eigen function are 
xy nn λ= Where the root of is     nλ  is the root of the equation 

λλ cot=  

x=λ ,  xy cot=  
 
 

πλ )1( −= nn     ..,.........3,2≥n  
22)1( πλ −= nn   for large n 

 
Example 6. 
 
Consider the problem 
 

0=+′′ yy λ  
)0(=y ,  0)0( =′y  

Show that if mφ ,and nφ  are eigen function corresponding to the eigen value  

mλ and nλ  Respectively, then 



0)()(
0

=∫ dxxxm

l
φφ  

 
Provided that nm λλ ≠ . 
 
Solution: 
 0=+′′ mmm φλφ  
 0=+′′ mmn φλφ  
 0=+′′ nmn φλφ  

0=+′′ nmmnm φφλφφ       (1) 

0=+′′ nnnmn φφλφφ       (2) 
 

0)()(
00

=+′′′′ ∫∫ dxdxxx nm

l

mnm

l
φφλφφ     (3) 

0
00

=+′′′′ ∫∫ dxdx mn

l

nmn

l
φφλφφ      (4) 

0)()()()(
000

=+′−′′′ ∫∫∫ dxdxxxxx nm

l

mnm

l

nm

l
φφλφφφφ  

dxxxdxxxxxoll nm

l

omnm

l

nmnmnm )()(])()()()([)0()()()(
0

φφλφφφφφφφφφ ′′′+′′′−′′−′−′′−′′′ ∫∫  

or 
 
 
By boundary value conditions 

0)()()()(
00

=+′′ ∫∫ dxxxdxxx nm

l

mnm

l
φφλφφ      (5) 

Subtract (4) from (5), we have 

0)()((
0

=− ∫ dxxx nm

l

mn φφλλ  

If mn λλ ≠ , then 

0)()(
0

=′′∫ dxxx nm

l
φφ  

 
Example 14. 
 
Hyperbolic function 

2
cos

xxee
x

−

,   
2

sinh
xx ee −−  

)sinh((cosh) x
dx

d =  

)(cosh)(sin xhx
dx

d =  



 
(a) Solution of the problem is 

04 =− λr ,   Take 4µλ =  

044 =− µr  
 
The solution is 

xcxcxcxcy µµµµµ sinhcossincos 2
2

321 +++=      (1) 
 
The boundary condition 
 

031 =+ cc  

031 =− cc  

01 =⇒ c   and 03 =c  

 
0sinhsin0sinsin 4242 =+−=+=∴ lclclccy µµµµ  

 
0sinhsin0sinsin 4242 =+−=+=∴ lclclccy µµµµ  

 
0sinhsin0sinsin 4242 =+−=+=∴ lclclccy µµµµ  

0sinhsin0sinsin 4242 =+−=+=∴ lclclccy µµµµ  
0sinh0sin ==∴ ll µµ   ....,.........2,1=n  

πµ nl =∴sin  

x
l

n
yn

π
sin=∴    ....,.........2,1=n  

 
Is the eigen-function 
 
4.0 Conclusion 
 
We have been able to study some eigen-value problems in this unit. This 
unit must be mastered properly before moving to the next unit. 
 
5.0 Summary 
 
Recall that the linear differential equation 
 )()()()( xgyxRyxQyxP =+′+′′          (1)  
was classified homogeneous if, 0)( =xg , and non-homogeneous otherwise. 
 
Similarly, a linear boundary condition 



cyaya =′′+ )0()0( 21   (2) 
 
A boundary value problem is homogeneous if both its differential equation 
and in boundary conditions are homogeneous.  If not then it is non- 
homogeneous. We also classified some equations into eigen value problem 
depending upon whether the determinant of the eigen value of the problem is 
zero or not. Read carefully and re work all exercises and problems in this 
unit for better understanding. 
 
6.0 Tutor Marked Assignment: 
 
1.  Consider the problem 

0=+′′ yy λ  
)0(=y ,  0)0( =′y  

Show that if mφ  ,and nφ  are eigen function corresponding to the eigen value  

mλ and nλ  Respectively, then 

0)()(
0

=∫ dxxxm

l
φφ  

Provided that nm λλ ≠ . 
2. Find the real eigen- values and  eigen -function of the boundary value 
problem 

0=+′′ yy λ  
0)0( =y    0)( =′ ly  

 
7.0 REFERENCES/FURTHER READINGS 
 
1.  EARL. A. CODDINGTON: An Introduction to Ordinary Differential 

Equations. Prentice-Hall of India 
2.  FRANCIS B. HILDEBRAND: Advanced Calculus for Applications, 

Prentice-Hall, New Jersey 
3.  EINAR HILLE: Lectures on Ordinary Differential Equations, 
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Module 2: Sturm Liouville Boundary Value Problems and Special Functions 
 
UNIT1: Sturm and Liouville Problem 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 
   3.1. Sturm and Lioville Problems 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/ Further Readings 
 
1.0. Introduction 
 
We solved some partial differential equations by the method of separation of 
variables.  In the last step we expanded a certain function in a Fourier series, 
i.e. as the sum of an infinite series of sine and cosine functions. It is of 
fundamental importance that the eigen functions of a more general class of 
boundary values problems can be used as a basis for series expansions, 
which have properties similar to Fourier Series. 
 
Such eigen- functions series are useful in extending the method of separation 
of values to a larger class of problems in partial differential equation. 
The class of boundary value problem we will discuss is associated with the 
names of Sturm and Liouville. 
 
2.0 Objectives: 
 
After studying this unit you should be able  
- to solve partial differential equation using Sturm and Liouville methods 
- solve correctly the associated Tutor Marked Assignments 
 
3.0 MAIN CONTENT 
 
3.1. Sturm and Liouville Problem 
 
We introduce the operator 

yxqyxpyL )(])([][ +′−=     (1) 
 

yxryL )(][ λ=      (2) 



0)()(])([ =+−′′ yxryxqyxP λ    (3) 
on the interval 10 << x , together with the boundary condition 

0)0()0( 21 =′+ yaya      (4) 
0)1()( 21 =′+ ybIyb      (5) 

 
We shall assume that qp, and r are continuous functions in the interval ].1,0[  

0)(,0)( >> xrxP for all x in 10 ≤≤ x . 

 
(i) Lagrange’s identity:  let u and v be functions having continuous 
second derivatives on the interval 10 ≤≤ x .  Then    
 

dxuULUUL ])[][(
1

0
−∫  

)]()()()()[( xuxuxuxuxp ′−′−=    (6) 
 
Solution 1: 

dxuxquxpudxUUL })()([{][
1

0

1

0
′−∫∫  

 

dxuquupuxuxpuypu })({)()()(
1

0
+′−+′+′−= ∫  

)()()()()[(])[][(
1

0
xuxuxuxupxdxUULuuL ′−′−=−∴ ∫  

 
This is known as Lagrange’s identity if u and u satisfy (5) and (4) 
 
R.H.S =    )]1()1()1()1()[1( uuuup ′−′−  
     )]0()0()0()0()[0( uuuup ′−′+  

      )]1()1()1()1()[1(
2

1

2

1 uu
b

b
uu

b

b
p +−−  

  )]0()0()0()0()[0(
2

1

2

1 uu
a

a
uu

a

a
p +−+  

  0=  
Thus we have 

0][][{
1

0
=−∫ dxuuLuu  

 
 

(ii)  Show that all the eigen value of the Sturm-Liouville problem 
 
 



yxryL )()( λ=     A       
With  boundary conditions 
 

0)0()0( 21 =′+ yaya     B     
0)1()( 21 =′+ ybIyb       

            
are real. 
 
Proof:  let us suppose there exists a complex eigen value iv+= µλ  will 0≠v  
and corresponding to this value is the eigen function )()()( xIVxUxQ +=   
Where at least one of them is not identically zero. 
 
Now Q  satisfies the differential equation 
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Since 0)( >xr  for all x in 10 ≤≤ x (1) 0=⇒ v  
 
 
This contradicts the original hypothesis.  Hence the eigen value of Sturm-
Liouville problem are real. 
 
(iii)  If  1Q   and 2Q   are eigenvalues of the Sturm-Liouville problem (A) 

and (B), corresponding to eigen  valves  1λ  and 2λ , respectively , 
and 21 λλ + , then 

   ( ) 0)()( 21

1
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)([ xr is called the weight function and it is an orthogonal property of 

eigenfunction] 
 
Proof: -  111][ rQQL λ  
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Hence the result 
 
(iv)   Let us now consider a more general boundary value problem for 

the differential equation 
                   ][][ yMyL λ= ,    10 << x     

 
Where L and M are linear homogeneous differential operations of orders 
n and n respectively. 
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Where mn > . 
 
In addition to the differential equation a set of n linear homogeneous 
boundary conditions at 0=x , 1=x is also prescribed.  If the relations 
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 are line for every pair of functions u  and u , which are −n lines 
continuously differentiable on l,0 and which satisfy un given boundary 
conditions, then the given boundary valve problem is said to be self 
adjoint. 
 
Problem I.  Show that the Sturm-Liouville problems 
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as shown previously.  Hence it is self-adjoint  
 
Problem 

(a) 02 =+′+′′ yyy      0=y ,  0)( == Iy  

 
Solution  yyyyL 2)( +′+′′=  
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udxu′−= ∫  are true for every pair of function u and u, which are n-

times continuously differentiable on ],[ lo  which satisfy un given 
boundary value problem is said to be self-adjoint. 
 
Solution: Sturm-Liouville problems 
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as shown previously.  Hence it is not self-adjoint. 
 
Problem 

02 =+′+′′ yyy      0=y ,  0)( == Iy \ 
Solution yyyyL 2)( +′+′′=      0=y ,  0)( == Iy  
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as shown previous. Hence it self-adjoint 
 
Problem (a) 
Problem 

02 =+′+′′ yyy      0=y ,  0)( == Iy \ 
Solution yyyyL 2)( +′+′′=      0=y ,  0)( == Iy  

dxuuuuuuuU )]2()2([
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02
1

0
=′−= ∫ udxu , u′ and u′  are continuous in the interval 10 ≤≤ x .  Hence it is 

not zero. 
 
Thus it is not self-adjoint. 
 
 
Problem(b) 
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It is Sturm-Liouville problem. 
 
(c) ,yyy λ=+′′      0)1()0(0)( =′−′−= yyy  
       0)1()0(0 =′−′−=′ yyy  
Solution 
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The right side is not zero. Hence it is not self-adjoint.   
 
Problem 3 Consider the differential equation 

02 =++′′ yyy λ        \ 

With boundary conditions 



 0)()0( =−= Iyy ,  0)1()0( =′−=′ yy  

(a) Show that the problem is self-adjoint even though it is not a Sturm-
Liouville problem. 

(b) Find all eigenvalues and eigenfunctions of the given problem 
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Hence it is self-adjoint 
 
The solution of the equation is  

xcxcy λsincos 21 +=  
Applying the boundary conditions, we have 
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Between 10 ≤≤ x  
 
Thus the eigen functions are lining independent. 
 
Problem 5: 

Consider the Sturm-Liouville problems 
yxryxqyxp )()(])([ λ=+′− a1   
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Where   p, q and z continuous function in the interval 10 ≤≤ x . 
(a) show that if λ  is an eigen-value and ϕ  a corresponding eigen 

function, then 

 )0()0()1()1()( 2

2

12

2

1221

0

21

0
φφφφλ p

a

a
p

b

b
dxqpdxeQ −++′= ∫∫  

 
 Provided that 02 ≠a  and 02 ≠b   How this result be modified   
if 02 =a  or 02 =b  

(b) Show that if 0)( ≥xq and if 
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b
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 are non-negative, then the 

eigen-value λ  Is non negative 
(c) Show that the eigen-value λ  is strictly  10 ≤≤ x  under q(x) = 0 for 

each x in 0,x,1 
 
Solution 
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Thus  
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Integrating by parts, we have 
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From boundary condition, we have obtain the result 
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Putting these values on the right side and we obtain the result 
if or 02 =a   or 02 =b , then the first boundary condition reduces to  
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The result reduces to  
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(b) In a Sturm Lioville problem, we always assume that 

,0)( >xp ,0)( >xr  

 
By given condition 0)( >xr for all x in 10 ≤≤ x 02 >Q for all 10 ≤≤ x . 
 
Now we impose condition, so that right side of the equation in (a) is ve+    

The second and third term are ve+  y
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Now 
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(c) If 0)( =xq  for all x 10 ≤≤ x then λ is strictly. 
 
4.0  Conclusion 
 
We have studied the Sturm Lioville problem in this unit . You are to master 
this unit properly so that you will be able to solve the problems that follow. 

 
5.0  Summary 
 
Recall that Sturm Lioville problems are usually problems associated with 
eigen values problems of partial differential equations which we have dealt 
with in this unit. In our subsequent course in mathematics in this 
Programme, we will have cause to deal with it again particularly when will 
shall study Partial Differential Equation. 
 
6.0 Tutor Marked Assignment 

 
 Consider the problem 

0)1(2 =++′−′′ uyy λ  
0)1(,0)0( == yY  

1) Show that this problem is not self-adjoint 
2) Show that all eigenvalues are real 
3) Show that the eigenfunctions are not orthogonal.  (with respect to the       
weight function arising from the coefficients of …….. in the differential 
equation. 
 

7.0  REFERENCES/FURTHER READINGS 
1.  EARL. A. CODDINGTON: An Introduction to Ordinary Differential 

Equations. Prentice-Hall of India 
2.  FRANCIS B. HILDEBRAND: Advanced Calculus for Applications, 

Prentice-Hall, New Jersey 
3.  EINAR HILLE: Lectures on Ordinary Differential Equations, 

Addison – Wesley Publishing Company, London. 
 
 


