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1.0INTRODUCTION

The notion of vector has proved to be of greatakte in physics and mathematics. It
is one of the most important concepts that wouldtidied in this course. It will be
found to recur in a great variety of applicatioAsfull appreciation of the value of
vectors can come only after considerable experigvittethem. Two aspect of their
usefulness worth emphasizing are the following:

(1) Vectors enable one to reason about problemspace without use of co-

ordinates axes. This is particularly true becabseftindamental laws of physics do
not depend on the particular position of co-ordisatxes in space. For example the
Newton’s second law, that has the form:

F=ma
Where F is the force vector arad is the acceleration vector of a moving patrticle of
mass m. does not necessarily depend on co-orcirate

(2) Vector provides an economical “Short hand” tmmplicated formulas. For
example the condition that point8, P,, P,,and, P, lie in a plane can be written in the

concise form as:
a.bxc =0

Where a, b and ¢ are vectors represented by the directed segﬁi@pt,

P;P3 and P;P4 respectively. The significant of the dot (.) ardss (%) will be
explained later in this course. The concisenesgctior formulae makes vector useful

both for manipulation and understanding.

2.0 OBJECTIVES

At the end of this unit you should be able to:

(1) define vectors and gives example

(2) define unit vectors, rectangular vectors, gggblve vectors into components
(3) perform algebraic functions on vectors.

(4) solve related problems on vectors.



3.0 MAIN CONTENT

3.1 VECTOR ALGEBRA

3.1.1 Definition 1: A vector in space is a conathion of a magnitude (positive real
number) and a direction.

A vector can be represented by a directed line eegl?fQ in space. Itis convenient
to represent vectors by bold letters suchaa®, c..

Definition 2: Two vectors are said to be equah#it magnitude and directions are the
same.

Definition 3: A zero vector is a vector whose magde is zero. We can represent

zero vectors by a degenerated line segmelﬁP

3.1.2.Addition and Subtraction of Vectors

Given two vectorsa, b, then we can obtain a third vectar=a + b and if we write
b = ¢ — awe have defined the operation of subtraction.

Addition and Subtraction of Vectors obey the foliog/laws:

(1) a+b = b+ a[Commutative law of addition]

(2) a+ (b +c)=(a+b)+c Associative law]

(3 a+tb=ciff b=c—-a

(4 a+0=a

(5) a—a=0

Definition 4: If h is a number and is vector then the expressiorha is defined as
vector whose magnitude i .

Thus rd =

Two vectors ab, are said to collinear ( or linearly dependenthédre are scalars
h,,h,, not both zero, such that

ha+ h,b =0



This is equivalent to asserting tleaénd b are represented by parallel line segments.
Definition5: Three vectora, b, ¢ are said to be coplanar (or linearly dependent) if
there are scalar k;,k,,k, not all 0 such that:

k,a+ k,b +k,c =0
In this case ab, ccan be represented by segments in the same platea and b be

no collinear. Then every vectarcoplanar witha and b can be represented in the
form

c=ka+k,b

For one and only one, choice ok, ,k, .

3.1.3Unit Vector: Unit vectors are vectors having unit length. &bt any vector
a

d

with length|a| > 0 then — is a unit vector denoted by having the same direction

asa
Then a=aa
3.1.4 Rectangular Unit Vectors:

The rectangular unit vectors.j,and,k are unit vectors having the direction of the
positive X,y,and,z axes of a rectangular co-ordinates system. ¥éeright-handed
rectangular co-ordinate system unless otherwiseifsgu:

3.1.5.The Component of a Vector

Any vector in 3- dimensions can be represented waitial point at the origin O of
rectangular co-ordinates systems.

Let (A, A,,A;) be the rectangular co-ordinates of the terminaitpaf A with initial
point at 0. The vectorsAji, A,j and Ak are called the rectangular component
vectors.

The sumof Ai , Aj and Ak i.e

A=Aji+ A j+ Ak is avector. The magnitude of A is
A=A +A+A

In particular, if

r=xi+yj+zk
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then

r|=x* +y*+2%.

SELF ASSESSMENT EXERCISE

1. Prove that for every four vectors, y,z,and,w in space, scalarg,k,,k;,and,k,
Not all 0, can be found such that

kx+ky+kz+k,w=0

2. Let O, A, B be points of space. Show that thd-point M of the segmenP?B is
located by the VectoOM = %(6A+ (58)

3. Prove that the medians of a triangle intergeet point which is a trisection point of
each median.

4.0 CONCLUSION

In this unit you have learnt about vectors, veetdition and subtraction. In addition
we also consider component of vectors and unitoveas a special kind of vectors.
You are to read carefully and master every bithef tnaterial in this unit for you to
follow the material in the next unit

5.0 SUMMARY

Recall that in this unit we defined a vector asmjii@s having magnitude and
directions. Two vectors are said to be equal ifdinections and magnitudes are equal.
Also we defined a unit vector as having magnitugieéa¢to one. Finally any vector in
3-dimension can be represented with initial pointh@ origin O of a rectangular co-

ordinates systems. Thus (A, A,, A, represent the rectangular co-ordinates of the
terminal point of A then:

A=Ai+Aj+ Ak isa vector.

Magnitude of this vector A is defined

|A=A>+A+A] in particular if
r =xi+yj+zk then

r|={x*+y?+2°
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You may wish to answer the following Tutor -Mark&sgsignment Questions.

6.0 TUTOR -MARKED ASSIGNMENT

1. Show that addition of vectors is commutative.

2. A car travels 3km due north, then 5 km northelBspresent these displacements
graphically and determine the resultant displaceéngn(1l) graphical method (2)
Analytical method.

3. If A,B,and,C are non-coplanar vectors agéd+ y,B+ zC = x,A+y,B+2z,C,
prove that it is necessary that = X,,y, = Y,,2 =z,

4. Find the unit vector in the direction of theuksnt of vectors A=2i — j +k
B=i+j+2k C=3-2j+ 4.
7.0REFERENCES /FURTHER READING

1) Wilfred Kaplan (1959). : Advanced Calculus. dddsson —Wesley Publishing
Company, Inc, Reading Massachusetts, U.S.A.

2) Murray R. Spiegel (1974) Theory and Problems Amfvanced Calculus,
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1.0INTRODUCTION

In this unit you will learn about product of vectoWe shall differentiate between
scalar product and vector product. These two cdecape very useful in vector
analysis because many physical phenomena can berexgin terms of either scalar
product or vector products. For example, work doae be calculated as a scalar
product of displacement and the applied force. Thiglies that if we leF represent
force andd represent the displacement then work daig ¢an be defined as

W=F.d

Other physical interpretation of vector producli Wwe discussed in this unit. You are
advised to read this unit very carefully.

2.00BJECTIVES

At the end of this unit you should be to:

1. define scalar product of vectors and give exaspl

2. define vector product and give examples

3. solve accurately all related exercises in this. u

3.0MAIN CONTENT

Two types of vector products are recognised, namely
1) Scalar Product

2) Vector Product

In what now follows, we shall define and explaialac product of vectors.



3.1Scalar Product

Let a andb be vectors then the scalar produca@ndb is defined as

6 is the angle between them. The quantitjcosé which appears in (1) can be
interpreted as the componentoin the direction oh. We can write it as

COME Z0COSH ..ot e e e e (2)

This component is a scalar which measures theHewfgthe projection ob on a line
parallel toa.

The notion of component is basic for application vefctors in mechanics. For

example, the velocity vector or force vector cardbscribed by giving its component
in three mutually perpendicular directions. If @nstant force F acts on an object

moving from A to B along the segmeﬁB, the only component of F along AB does
work. The work done is precisely the product ofstkomponent by the distance
moved, thus:

Work= (force component in the directmfmmotion). (distance)

Hence
Work = B0SA|AB = FJAB...........cccoiiiiiiii e (3)

Scalar product obeys the following laws:

(1) a.b =b.a (commutative)

(2) a.(b+c)=ab+ac (Distributive law)

(3) a.(kb) =(ka).b =k(ab) where k is a scalar.

We make the following inference from the scalardwmat of vectors.

(i) If ab=0 then ais perpendicular to b.
(ii) Itis not permitted to cancel in an equatmithe form
a.b=a.c and conclude that b=c.

For equation a.b=a.c it implies only that a,b=a.(b-c)=0 that is a is perpendicular
to b-c

We note that:
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ii=1j.j=and,kk=1and i.j=0, jk=0,and,ki= 0 ..(4)
Given that:

a=aj+a,]+ak,and,b=Dbji+b,j+bk (5)
Then:
ab=(aji +a,j +a;k).(b)i +b,j + bk)

=ab +a,b, +ab, ....(6)

SELF ASSESSMENT EXERCISE

1. Show that:

(Ad + Ay j+ AK).(Bji +B, | +B;k) = AB, + A,B, + A;B,

3.1.1Direction Cosines

Recall from unitl that if a is a vector of length 1 i.e.|aj =1 thena will be termed a
unit vector. In this case denote:

a=aji+aj+ak

Then
a, =al=11cosa =cosa. where a is the angle betweena,andi , .This is the

angle betweera and the positivex direction. In a similar manner

a, =cosp,a, =cosy where B,and,y are the angles betwearandthe y,and z,
directions respectively.

From
a.b=d|b/coss then

a,b, +ab, +ab,

cos = (7)
Jaz +a2 +a2[b? +b? +b?
SELF ASSESSMENT EXERCISE
1. Given that u=i—-j+kv=i+j+2kw=3-k evaluate (a)

u+v+w,(b),2u-v,(c),uv

11



3.2.The Vector Product

The vector product of a and b in that order is @me

c=axb which is 0 ifa andb are collinear and otherwise is such that:

c = absiné

The vector product satisfies the following laws:
(1)axb=-(bxa) (Anti- commutative law)

(2) ax(b+c)=axb+axc (Distributive law)

(3) ax(kb) =k(axb)

(4) axa=0

(B) ixj=k,jxk=ikxi=j

(6) ixi=0,jxj=0kxk=0

a=a,+a,j+ak
(@) Let o X T HITR
b=b,i+b, j+bk

Then,

axb=la, a, a

(@b, —ab))i+(ab, —ab,)j+(ab, —ab,)k.
Also you should note that:
laxb = area of parallelogram with sidasindb

SELF ASSESSMENT EXERCISE

12
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Giventhe vectorsa=2 - j, b=i+j+k c=-2i+k
Evaluate the following

(i) axb (i) cxb (iii) (axb)yxc (iv) a(axb) (v) ax(axb)
3.3 Triple Product

In this section, we shall consider (1) The Scalapl@ Product (2) The Vector Triple
Product.

3.3.1The Scalar Triple Product

The scalarax bc is known as the scalar triple product a, b, ¢hat order. We need
to remark here that parentheses are not needed s@s (bc) would have no

meaning.
The scalar triple product satisfies the followiagvk:
(1) axbc=0 ifand only if a,b,c, are coplanar

(2) axbc = volume of parallelepiped with edges a, b,and c

(3) axbc=abxc.

a, a, a,
(4) axbc=b, b, b,
c, C ¢,

(5) axbc=-bxac=-baxc

SELF ASSESSMENT EXERCISE

Evaluate the following:
(1) () i.jxk () (+j)k+]

(2) Given the vectors

u=i-2j+k
v=3i+k
w= |-k

Evaluate, (a)uvxw (b) wxvu (c) (U+V).(v+w)xw

13



3.4The Vector Triple Products.
The expression(axb)xc and ax(bxc )are known as vector triple products.

Note that the parentheses are necessary becawsafaple;
(ixi)xj=0 while ix(ixj)=ixk=—]j
The following identities are to be noted
(1) ax(bxc)=(acb-(ab)c
(2) (axb)xc=(ca)b-(cb)a
We can prove the identity stated in (1) i.e.
ax(bxc)=(ac)hb-(ab)c
a=a,j+a,j+ak
Proof: Letb=b,i+b j+bk

c=c,i+c,j+ck
Taking component , then

0
Lax(bxc)=| a, a, a,
b, b, |b, b| b, b,
C. G| [c, ¢l [c C

Cc z z X X y

= ay(bxcy - bycx) - az(bzcx - bxcz)
:bx(axcx + aycy + asz) - Cx (axbx + ayby + azbz)
A.[(acb- &b ] --(9)

We can similarly prove the above for y and z congmis.

3.4 Axiomatic Approach to Vector Analysis Recall from our previous section (unit
1 section 3.1.5) that we can represent a vector:
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r =xi+yj+zk is determined when its componentyx, y,z) relative to some
coordinate system are known. In adopting an aximnagiproach it is natural for us to
make the following:

Definition. A 3 dimensional vector is an ordereglet of real numbergA,A,, A, ).
With the above definition, we can define equalitgctor addition and subtraction,
e.t.c.

Let A=(A,A,,A) and B=(B,,B,,B; )then

1. A=Bifandonlyif A =B,,A =B,,A, =B,

2. A+B= (A +B,A, +B,, A, +B,)

3.A-B=(A-B,A -B, A -B,)

4. 0=(0,0,0)

5. mA=m(A, Ay, A)) = (MA, MA, mA)

6. AB= A.B +A.B,+A.B,

7. Length or magnitude of A& =VAA = \|A? + A7 + A}

From these we obtain other properties of vectarshes A+B=B+ A ,
(A+B)+C=A+(B+C),A(B+C)=AB+ AC. By defining the unit vectors:

i=(@100) j= (010 k= (001

We can show that

A=Ai+Aj+AKk

In like manner we can define 8 = (A,B;, - A,B,, A,B, - AB;,AB, - AB))

After this axiomatic approach has been developed cae interpret the result
geometrically or physically. For example we canvghioat A.B=ABcosf

and |Ax B = ABsind

4.0 CONCLUSION: In this unit we have learnt about scalar multigtion and cross
multiplications of vectors .We have also considekatttor triple products .The
application of these concepts will be apparent apreceed further in this course.
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5.0 SUMMARY::
In summary we recap the following about vectordpicis, namely:

1) Given that A and B are vectors then the scaladlyct of A and B is defined as,

A.B=|A|B|coss

2. fA=Ai+A,j+Ak,and B=B,i+B,j + B,k then
A.B= AB, + AB, + AB;

3. If A.B=0 and A and B are not null vector, thitrmnd B are perpendicular.

4. Also AxB=

> —
S~

]
A
1 BZ

o
0

3

(62

. |Ax B| =the area of parallelogram with sides A and B.
6.1f AxB =0 and A and B are not null vectors, then A and Bpamallel.
7. AxB=-Bx A

We also note the following about triple products wdctors. Dot and cross
multiplication of three vectors A , B and C may ¢woe meaningful products of the
form (A.B) C, A.(BxC) and Ax(BxC )The following laws are valid:

(&) (A.B)C# A(B.C) in general

(b) Ax(BxC)# (AxB)xC

(c) Ax(BxC)=(AC)B-(AB)C

(d) (AxB)xC =(AC)B-(BC)A

6.0 TUTOR- MARKED ASSIGNMENT

1. Prove A(B+C)=AB+AC
2. Evaluate(A+B).(A-B)| if A=2i-3j+5k and B=3i + j -2k

3. Find the unit vector perpendicular to the plahthe vectors A=3i-2j+4k and
B= i+j-2k

16



4. Given that A=2i+j-3k, B=i-2j+k, C=-i+j-4k, thefind (i) A. (BxC) (i) C.
(AxB)
7.0REFERENCES/FURTHER READING

Stephenson. (1977Mathematical Methods for Science Studehtsxdon: Longman
Group Limited.

Murray, R. Spiegel (1974Advanced Calculus. Schaum’s Outline SerMsGraw-
Hill Book Company.
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1.0INTRODUCTION

In this unit you shall learn about vector functioi®u will also learn limit and
continuity of vector functions. You will also finderivatives of vectors and this will
allows you to determine vector velocity. Finally sleall give geometric interpretation
of vector derivatives.

2.00BJECTIVES
At the end of this unit you should be able to:

define limit and continuity of vector funatis

- find the derivatives of vector functions

- give a geometric interpretation to vector derivasivand be able to determine
vector velocity.

- solve correctly all related problems on vector tiorcs.

3.0 MAIN CONTENT
3.1Vector Function of One Variable

Given an interval <t <t,, suppose we assign a vectorin space, them is said to
be given a vector function af over that interval.

For example

u=t%+t*j +sintk
Wherei, j,k form a triple of mutually perpendicular unitcters. If a co-ordinate
system is chosen in space then the vegtoan always be expressed in the form

u=u,d+u, j+uk

Where u,,u,,and u,, are the corresponding components. These compongih
themselves depend on t.

18



Suppose the axes are fixed independent of t, tleecanw write
u,=ft), u =g(t) andu, =h(t), t <t<t,

Thus a vector functions df determines three scalar functionstof conversely, if
f(t),g(t) and h () are three scalar function ofdefined on the intervalt, <t <t,
then the vector

u=f(@)i+g()j+h(t)k isavectorfunction oft.

3.2Limit and Continuity of Vector Function

The vector function u=u t( )is said to have a limiv ast approaches. This
implies that limu(t) =v if |u(t) -Vv| <& whenever [t -t,|<d.

t-t,

The implication of this is that the difference beem u {) and v can be made
arbitrarily small for t sufficiently close td,

Continuity: The function u =u 1 )is said to be continuous at the valug if one
has

limu(t) = u(t,)

tot,

We can establish by prove thatt {s)continuous at a valug, , if and only if its
component u,,u ,and,u, are all continuous. Also given two vectors

u, (t),and,u,(t) such that they are both continuous functions fpgt <t, then the
functions:

u,(t) +u,(t), ut)u,(t) and u,(t)xu,(t) are continuous functions df over the
defined interval.

3.3 Derivative of a Vector Function

1. Velocity Vector: The derivative of the vectamttion u=u ) is defined as a
limit.

du_ . u(t+At)-u(t) _,. Au
— =lim = lim —
dt At -0 At At-0 At

We can define the above in terms of component lasifs:

u(t +At) —u(t) =[f(t+At) - f(t)]i +[g(t +At) —g(t)]j +[h(t + At) — h(t)]k
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Hence on dividing byAt and lettingAt - O one finds

= i+ g0+ (0K
dt
_ duXideUy j+duZk
dt dt dt

Therefore to differentiate a vector function, ondéfedentiates each component
separately.

3.4 Geometric Interpretation

Let S be the distance traversed by P frars t, up to time t, then

=T +g O +1 ()

_ dx\,  dy, ,dz,
= \/(a) "‘(a) "'(a)

Let u=OP the position vector of the moving point P, thea Wector

v:(d/dt)dP Is the tangent to the curve traced by P and lsseach point a
magnitude

=+ g0 +h ()

M=

du
dt

The conclusion drawn from above is that is precisely the velocity vector of the
moving point P forv is the tangent to the path and has magnitudeds/ dt (speed)
and clearly points in the direction of motion.

We then have the following rule:
%dP =velocity of P, where 0 is a fixed reference point.

Finally we consider the following differentials:iv@n that

AlX, ¥, 2) = A (X, Y, 2)i + A, (X Y,2) ] + A (X Y, 2K
Then

dA= Z—Adx+a—Ady+a—Adz, is the differential of A.
X

ay 0z
20



Remarks: Derivatives of products obey rules simitathose for scalar functions.
However when cross product are involved the ordewy rbe important. Some
examples are:

()—(qu)— dA j“
X
0B O0A
(b) —(AB) AT+ B
aB GA

3.3.1Solved Problems

1. Supposeu =r cosfwt)i +rsin(wt)j where r and w are constants. Let the point
P moves according to the equatioxs r cosfwt  y)=r sin(wt) which represent the

circle x®>+y?=r? in the xy-plane. The polar angled of P at timet is 8 = wt.
Find the angular velocity, the vector velocity ahd speed of the movement.

Solution: The angular velocity of P

2. Vector velocity:

dv _ dx. dy

V=—=—1i+—] = —rwsin(wt)i + rwcoswt) |
i dJ (wt) W) |

3. Speed is

—:\/rzwzsinz(wt)i+r2w2 cos(wt) = rw,w=0

dr d?r
m , (€) ——

Problem 2: If r = (t* + 2)i —3e™ j + 2sin5tk ,Find (a)% e

,at t=0 and give a possible physical significance.

t2

Solution:

21



d, ., . d oy d )
a) —(t°+2)i +—(—3e +— (2sin5t)k
(@ Olt( ) Olt( )] OIt( )

= 3t* +2)i +6e™ j +10cos5tk

Att=0 dr/dt=2i+6j+10k
(b) From (a)|dr/dt=+/(2)? +(6)? + (L0)? =+/140=24/35 at t=0.

d’r _d dr, _d ., . o e et .
(C) W —a a) —a{(st + 2)| +6e | +10C0$5tk) =6ti-12e" ] —50sin5tk

At t=0 d?r/dt* =-12j
(d) From (c) ‘dzr/dtz‘:lz at t=0.

If t represents time, these represent respeygtitted velocity, magnitude of the
velocity, acceleration and magnitude of the acedilen at t=0 of a particle moving

along the space curve=t*+2t y=-3e?, z= 2sin5t

4.0 CONCLUSION: In this unit you have learnt about vector fuantilimit and
continuity of vector functions derivatives of vexid@nd geometrical interpretations of
vector derivatives. In the next unit we are goiongeixtend these derivatives into
partial derivatives and apply the results in thtd@gonal curvilinear co-ordinates.

5.0 SUMMARY: We now recap what you have learnt in this unifiodlsws:
(1) Given an interva] <t <t,, a vector functioru can be assigned such that

u=u { )For exampleu(t) =t +sintj + cos’ tk is a vector function of t.
(2) We can define a limit of the vector functias:

limu)=v if |u(t)-V|<e whenever |t—t,|<d. This implies that the
difference betweenu t ( )Jand v an be made arbitrarily small for t sufficientlyosé
to t,

(3) We define continuity ofu t ( as:

limu(t) = u(t,)

t-t,

If u(t) =u,t)i+u,t)j+u,()k then we can prove thatt (i3 continuous if and
only if all the components af t (gre continuous.

(4) We define derivatives of vectors as follows:

22



If u(t) =u,(t)i +u,t)j+u,(Dk then

du(t) _ de(t)i N du, . L du, "
dt dt dt dt

We also give a geometric interpretation of the\dsives of vectors.

6.0 TUTOR -MARKED ASSIGNMENT

1. Prove thadtd—(AB) = A? +3—A..B where A and B are differentiable functions of
u u du

u.
2. If A= x*sinyi+ z? cosyj — xy’k, find dA

3. A particle moves along a space curver t \here t, is the time measured from
some initial time. If v=|dr/dt| =ds/dt is the magnitude of the velocity of the

particle (s is the arc length along the space curve measupedthe initial position) ,
prove that the acceleration a of the particlavemby:

2
a= M7 VN
dt

P
Where T and N are unit tangent and normal vectotkd space curve and

ar [ [(axx P (dry)? (d22)]
= + y +
ds? (dszj (dszj (dszj
4. Prove that grafi(r) = f (r)r, where r ={x*+y*+z°> and f'(r)=df /dr is
r

assumed.

7.0 REFERENCES/FURTHER READINGS
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MODULE TWO —-DIFFERENTIAL OPERATORS
Unit 1- THE OPERATOR DEL ( O)

1.0 Introduction
2.0 Objectives
3.0 Main Body
3.1 Operator Dell()

3.2 Gradientofg X(y z )
3.3 Interpretation of Gradient gfx (y z , )

3.4 lllustrative Examples.
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 References / Further Readings

1.0 INTRODUCTION. In this unit you will learn about certain differel
operations which can be performed on scalar antbwéelds. These operations have
wide-ranging applications in the physical scienddse most important operations are
those of finding the gradient of a scalar field d@he divergence and curl of a vector
field. Central to all these differential operasois the vector operatdrl which is
called Del (or sometimes, nabla) which e shall dath in this unit.

2.0 OBJECTIVES
At the end of this unit you should be able to:

-define the Operator DelJ( )

- apply the Operator in finding gradient of ¢tion ¢ (x,y,z)
-give physical interpretation to gradient @{x, y, z)

- solve correctly exercises involving the o$gradient of

3.0 MAIN CONTENT

3.1 Operator Dell( )
Consider the operatori(del defined by:

D:ii+ij+ik (1)
ox o0y o0z

Equation (1) is called operator Del. It has a lbtpbysical application in vector
analysis as we shall see shortly.

Now if ¢(x,y,z2) and A &,y z) have continuous first partial derivatives in aioag
we can define the gradientaf x ¢/ z , )

(1) Gradient: The gradientaf x (y z, is defined by:
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04(x.y.2); , 9% ¥2) | , 04(%,y2)

radp=Og@=
grade=-9 0x oy 0z

3.2Interpretation : One interesting application ofgradg can be view as follows:
Let ¢(x,y,2)=c . (2)

Be equation of a surface theig is normal to this surface. To see this letx y(z, , )
b a scalar field.

Consider the differential defined by:

dr = dxi+dyj +dzk ... (3)

The corresponding differential ig x (y,z, i3

o¢ .. 0¢  0¢
dp=—Tdx+——dy+—-dz .. (4
¢ 0x oy Y 0z @)

= [gdr ... (®)

Now if ¢ =c then d¢ = Otherefore

Ogdr=0 .. (6)
Hencell¢ is normal to the surface given by the equatipfx, y,z) =c

lllustrative Examples: (1) Find the gradient of #ualar fieldp = xy*z°
Solution: O@=y?z% +2xyZ j + 3xy*Z°k
Example 2: Given the functiom(x, y,z) = X’y + yz at the point (1, 2,-1) find it's

rate of change with distance in the directiom=i+2j+ k 3At this same point,

what is the greatest possible rate of change wétace and in which direction does
it occur?

Solution: Gradient ok is given by
Op=0(x*y+y2) = 2xyi+ (x* +2) j + yk

Now at the point (1, 2,-1),0¢ =4i + 2k
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The unit vector in the direction of a &= i(i +2]j + 3K), so the rate of change of

14

¢ with distance s in this direction is

d¢ ~_ 1 10
% —ppa=—= (@a+6)=—
as P m

From the above discussion, at the point (1, 2d§)yds will be greatest in the
direction of O¢ = 4i + 2k and has the valugd¢ =+/20 in this direction.

The gradient obeys the following laws:

grad(f +g) = gradf + gradg

grad( fg) = fgradg+ ggradf

In addition to these, we note that the gradientafpmn also obey the chain rule as in
ordinary differential calculus, i.e. if ¢ and ¢ are scalar fields in some region R
then

TAP)] =§—;D¢ (D)

4.0 CONCLUSION: In this unit you have learnt about gradienvettor and scalar
fields. In the next unit we are going to learn abdivergence of a vector field still
relying on the operator Del. It is very importaot fyou to learn this operator very
well before you make any meaningful progress beybisdpoint.

5.0 SUMMARY : Recall that you have learnt in this unit thedaling:
1) The operation Dell{) is defined as

] :i| +i] +ik
ox oy o0z

2) If ¢(x,y,z) is a scalar field then the gradient gfx ¥ z js)defined as

%j+%k

0¢.
radp=—i +
gradp ox oy 0z

3. The corresponding differential gf x (y z ,i9 given as

dp= %dx+%dy+a—¢dz
0x ay 0z
=[g¢.dr
Where
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dr = dxi+dyj +dzk

5.If ¢(x,y,2) =c then d¢ = Othis implies that
Ogdr =0, hencelg is normal to the surface given lgyx, y,z) =c
6.0 TUTOR- MARKED ASSIGNMENT

1. If @=x?yZ’ and A=xzi—y?j+2x*yk find (i) O¢ (i) O.A

2. Prove thatll¢ is a vector perpendicular to the surfapf, y,z) =c where c is a
constant.

3. If ¢p=2x*y—-xZ° find O¢ andd’gp
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UNIT 2 DIVERGENCE OF A VECTOR FIELD

1.0 Introduction
2.0 Objectives
3.0 Main Body
3.1 The Divergence of a vector field
3.1.1 The Laplacian
3.2 lllustrative Examples
4.0 Conclusion
5.0 Summary
6.0 Tutor- Marked Assignments
7.0 References /Further Reading

1.0INTRODUCTION

In this unit you will learn about the divergencevector field. Divergence can be
considered as a quantitative measure of how muweti@ar field diverges (spread out)
or converges at any given point. For example ifcaesider the vector field( x v, z)

describing the local velocity at any point in adlathen the divergence is equal to the
net rate of outflow of fluid per unit volume, evated at a point. We will be exposed
to mathematical exposition of this very importandncept in this unit. The
prerequisite to our learning this unit is the thagb understanding of the unit on
Differential operators. (Module 2- unit 1)

2.0 OBJECTIVES
At the end of this you should have understood whateant by

1) divergence of a vector field

2) the Laplacian

3) be able to solve correctly the exercises aetiteof this unit.
3.0MAIN CONTENT

3.1 The divergence of a vector field Suppose we are given a vector fiedx (z , )
in the domain D of space, given three scalar fonsti v,,v,,v,. suppose these
functions possess partial derivatives in D thendiergence is defined as:

ov
divw= M o )
ox oy o0z

Formula (1) can be written in the symbolic form:

divv=0.v which implies
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ov
D.v=(£i +ij +ik).(vxi +V,j+v,k)= v, + +6VZ _____ (2)
ox o0y 0z ox oy o0z

The divergence defined above has a physical sogmée. In fluid dynamics it
appears as a measure of the rate of decreasesfydaina point. More precisely
Let u=u(xy,zt) denote the velocity vector of a fluid motion and

letp = p(xY,z,t) denote the density.

Then v = pu is a vector whose divergence satisfies the equatio
. 0p
divw=—-——"— ... (3
ot (3)

Equation (3) is called continuity equation of fluishechanics. If fluid is
incompressible, this reduce to the simpler equation

divu=0 e (4)
2. The divergence also plays an important noléhe theory of electromagnetic
fields. To see this we note that the divergencthefelectric force vector E satisfies
the equation defined by:

divE =47 ... (B)

Where p is the charge density. Thus where there is nogehaquation (5) reduces
to

dvE=0 (6)

The divergence has the following basic properties
(1) div (u+v) =div u+div v

(2) div(fu) = fdivu+ gradf.u . (1)

3.1.1.The Laplacian

Let w=f (x ¥,z) then the Laplacian ok is defined as

, _0°w d°w 0°w
Ow= 2 + 2 + 2
ox° ody° o0z

The origin of theO? lies in the interpretation ofd as a vector differential operator
defined before as
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0., 0 0

O=—i+—j+—Kk .. (9
0X ayJ 0z ®)
Symbolically
2 2 2
p=p0=2_+2 .9 (10)

+ +
ox> oy* 0z°

If z=f(xy) and has second derivatives in the domain D and
0%z=0 o (12)

In D, then z is said to be harmonic in D. We alsedithe same term for a function of
three variables which has continuous second déresain a domain D in space and
whose Laplacian is 0 in D. The two equations font@nic functions:

0°z 0°z __0°w d°w  0°w _
+ + + =

=0, .. (12
x> oy? x> oy* 0z° (12)
are known as the Laplacian equations in two anektdimensions respectively.
Remark: In the theory of elasticity we have the follogiaquation:
4 4 4
0 Z, 0z 0%z _ (13)

ox*  oxlay’ oyt

The combination which appears above can be exmresgerms of the Laplacian as
follows:

0%z 0z 0z
+

0%(0%2) = +
0°2) ox*  oxPay® oy*

(14)

The expression in (14) is called biharmonic expogssvhose solutions are termed
biharmonic functions. Harmonic functions arise he ttheory of electromagnetic
fields, in fluid dynamics, in the theory of heatndoction, and many other parts of
physics.

3.2 lllustrative Examples:
1) Given that A=zi— y®j +2x*yk find the divergence of A.

Solution: The divergence of A is defined as
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(ii +ij +ik).(xzi— y?j +2x%yK)
0. A= ox o0y~ 0z

:ai(xz) —( y)+ (2X y)=z-2y
X

2) Prove thatl.(¢A) = (O¢).A+¢(0.A)

Solution: [.(¢A) =0.(GAT +¢A, | + @Ak )

i(m)i(w%)im)

¢ 0A | A, L O0A
A3+(o(x ay az)

Ai+ A2+

o k)(A1|+AZJ+Agk>+<a(—u+iy1+—k)(A1|+A21+Agk)

= (O¢).A+¢(.A)

3). Given that ¢=2x’y-xZ° find 0%

Solution: O*@=Laplacian ofg=00¢= 9 (4xy - x%) +i (2x%) +i(—3x22)
ox ay 0z
2y —-6xz

4.0CONCLUSION: In this unit you have learnt about divergenceeadtor field, we
have also learnt about Laplacian and discussedusapplications of these concepts
to physical phenomenal. You are advised to reasl @it properly and carefully,
before moving to other unit.

5.0 SUMMARY: The following should be noted: That divergenceisneasure of
how much a vector field spread out or converges.

If (X Yy 2 isavector field then its divergence is defined a

0z

We may derive from the definition of divergence wan also define Laplacian as
follows

ov
D.\(xy,z):avx+ y+av2:divv
ox oy

0°f 9°f o0°*f
H-(gradf) = Py ay? e
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We also considered other physical application sashapplication of biharmonic
functions of the form

4 4 4
0%(0%2) = g 4Z+ 2626 022 + g f in the theory of elasticity.
X xd’y oy

6.0 TUTOR -MARKED ASSIGNMENT

1. Given that the vector field = 2xi + yj —3zk, verify that the divergence of v (div v)
is zero.

2. Evaluate (xi - vyj).0](x% - y?j + 2°k )
3. Given thatp= x*yZ® and A=xzi— y*j + 2x*yk . Evaluatediv(¢A )
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1.0 INTRODUCTION
In this unit we will learn about curl of vectoefd. This concept has a wide range of
application in physical phenomenal such as eleampratic theory. The concepts we
learnt, earlier such as gradient of vector field alivergence theory will be applied
later in the theory of orthogonal curvilinear caoates systems.
2.0 OBJECTIVES
At the end of this unit you should be able to

- define Curl of vector field correctly

- interpret the physical implication of Curl of vecteeld

- solve correctly all the associated mathematicablgras involving the curl of
vector fields

3.0 MAIN CONTENT
3.1 The Curl of a Vector Field
We can define the Curl of a vector field as follows

Let WX Y,2) be avector field then the curl of vector x ¥ z |is)

[ j kK
CurIv:va:i 9 9 .. (1)
X 0y 0z
v, VoV,
Expression (1) can be expressed as
ov ov
Curl v= (avz_ y)i+(avx—a\/2)j+( y—avx)k .. (2)
dy 0z 0z 0x ox oy
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This vector field has a meaning independent oftiwce of axes. We shall see this in
the treatment of orthogonal curvilinear coordinatesbe considered in the next
module.

The curl of vector field is important in the anaty®f the velocity field of fluid
dynamics and in the analysis of electromagneticedields. For example, curl can be
interpreted as measuring angular motion of a fund the condition is:

Cur0 )3

For a velocity field v characterizes what are tetrmeotational flows. The analogous
eqguation is given as:

ICH=0 .. (4)
For the electric force vector E it holds when oeligctrostatic forces are present.

Recall that if0xV =0 in a region, we say that the flow is irrotatiomakhat region.
The implication of this is that the circulation arml a closed curve in a simple region
where the flow is irrotational is zero. If the fluis incompressible and there is no
distribution of sources or sink in the region, wavé also [V = 0.since the
condition OxV = Oimplies the existence of a potentigalsuch that

V=0¢ .. (5
We see that if alsddV = €hen it follows that 0.0¢ =0°¢ = OThat is, in the flow

of an incompressible irrotational fluid without ttibuted sources or sinks the velocity
vector is the gradient of a potentialwhich satisfies the equation

SRR R

oX oz

Equation (6) is known as Laplace’s equation alredidgussed in (unit 2, Module 2)
Generally, in any continuously differentiable vectield F with zero divergence and
curl in a simple region, the vector F is the gratigf a solution of Laplace’s equation.
Solutions of this equation are called harmonic fioms.

3.2 lllustrative Examples
1) If A= xZ% - 2x?yzj+2yZ*'k . Find Ox A (or curl A) at the point (1,-1, 1)
Solution:

OxA= (ii +i ' +ik)><(xz3i - 2x%yzj+ 2yZ'K)
ox o0y o0z
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ox a_y 0z
Xz -2x’yz 2yz'

— 9 _9 oy +1 2 (x) - 2 i +19 (—oxtyz-2
—[a—y(ZyZA) PR yZ)]I+[aZ(X23) a)((23124)]J+[0X( 2x°yz ay(><23)]k

= (22" + 2x7y)i +3xZ* j —4xyzk=3j + 4k at point (1,-1, 1)

2) If A=x?yi-2xzj+2yzk find CurlCurlA

Solution curlcurlA=0x (0% A)

i | k
0 0 0 .
= —  — —|=0x[(2x+22)i - (x*+22k
x oy oz [( )i=( 2K]
X’y =-2xz 2y
i j K
i i i :(2X+2)]
0Xx oy 0z
2x+2z 0 -x*-2

3) Prove thatlx((¢g) = 0O

Solution Ox (g = DX(%i—+%j +%k)
0X oy = 0z

SR~

ox o9y o0z

0 0¢)_ 0 dgyi 13 d¢)_ 0 dgy 0 ¢ 2 ¢
[(a—y( )a(ay)]l+[ ) —— G0N+ (y) a(a )k

0z 9z ox’ oOx 0z ox @
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9° °p,. ,0° ’p,. ,0° 9°
o R i R COR O SV
0z oJzy 020X 0X0z oxdy 0yox

This is only true whemg is continuously differentiable hence the orderhaf t
differentiation is immaterial.

Conclusion In this unit you have learnt about Curl and was applications of Curl
to physical situations. You need to read this garefully before moving to the next
unit of this course.

Summary: We recall that in this unit we defined a Curl ofextor field, as

[ j kK

Curl = i i i
ox ody o0z

vV, VoV,

You are required to master this formula properlgause of its physical application as
we proceed in studying this course.

6.0 TUTOR-MARKED ASSIGNMENT

1. Obtain the Curls of the following vectors:
() xi,(b),r,(c),(xi —yj)/(x+y),(d),isiny + jx(1+cosy)

2. If curlA=0 where A=(xy2™(x"i +y"j + 2"k )show that either m=0 or n=-1

3. If v=r (a.r) where a is a constant vector shioat

Curlv=alr (ii)curl (aCr)=2a
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MODULE THREE: ORTHOGONAL CURVILINEAR CO-ORDINATES
UNIT 1- JACOBIANS

1.0 Introduction
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3.1.2. Properties of Jacobian
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4.0 Conclusion
5.0 Summary
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1.0 Introduction: A useful tool for the operation on orthogonalnalinear
coordinate systems is the Jacobian. Since moghefco-ordinate systems are
different from the Cartesian co-ordinate some df@mations are usually required
which will necessitate the need to find the scaledrs of these transformation , in
doing this we may need to find the Jacobian oftthesformation before we can able
to find the required scale factors.

2.00Dbjectives At the end of this unit you should be able tomief

- Jacobian and use it.
- Solve correctly, exercises involving the use obbéan.

3.0MAIN BODY
3.1Jacobian Defined

The Jacobian ofx and y for two independent variablesm and n is the
determinant

16)4 16)4
(—) (%)

()()

Where x= f (mn) andy= f,(mn). The customary notation is

0X 0X
a(xy) _|Gm" (%) . (D)
omn %y ()

Itis obvious from (1) that
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oxy) _ 0x
3(mn) (am) (a) ( )( ) - (2)

3.1.2Properties of Jacobians
Jacobians have the following basic properties.

(&) We note from (1) that
ay ay
0y _|Gmde G

omn) (a"’—;)n &,

.(3)

And, therefore
s (%) -(2) (&),
a(mn) (am) \an on ) _{am

If we compare (2) and (3) we see that

o(y,x) __0(xy)

a(m,n) o(m,n) ®)
(b) Similarly according to (1)
9y (Q
o(y,2) _|\ox), \0z),
d(x2) |0z [% - ©
ox), \0z),
oy [ay
0(y.2) _| == -
R @ AL (7
3(x2) 63 , ai ) (7)
We see that
0(v2) :(Qj ®)
a(x2) \ox), o

From (8) it is obvious that all partial derivativesn be represented by Jacobians.

(c) Itis easy to see that



a(y,x) d(ab) _ 3(y,X)
d(a,b) d(mn) d(m,n)

. (9)

(d) From (1) it follows that

omn) _,  9(xX)
omn) ~ a(mn)

=0 and if k is constant, then

da(k,x) _
a(m,n)

... (10)

It is possible using equations (8), (9) and (10)transform partial derivatives.

To see this, consider the quantity defined by:

oT .
a_pj , Wwhich we can express as
a_T] _ (.9 .. (1)
op) 9(ps)
While
o(sT) _ 0(sT),0(ps) 12)
o(ps) 9(p.T) a(p.T)
This is in conformity with equation (11) we notath
9(sT) _ (%j .3
o(p,T) \0pJ;

Notationaly we may write Jacobian as follows:

To find the Jacobian of the functian(x y.z), M\ X Y,z),w(X Y, Z) we express it as

u u ou
ox 0y o0z
d(u,v,w) -] u,v,w): oV ov ov
2(xV,2) XV, Z ox 0y o0z
ow ow ow

&ayE

.. (14)

We should also note that in general:
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O(X, Xy yeeeen X)) .a(ul,uz, ...... u,)
o(uy, U,,...... u,). (X, %X, X,)

=1 (15)

Self Assessment Exercise
1. Consider the two functions defined as

u, =ax+by+c
u, =dx+ey+ f

Investigate weather they are functionally dependent

2. If u andv are functions ofr and s also r and s are functions okand v,
prove that :

o(u,v) a(r,s) _9(uVv)
o(r,s) a(xy) (%)

3.2. Jacobian and Curvilinear Coordinates: Cham§oables in Integrals. .

Given the equations:
X = X(Uy;, Uy, Ug), Y = Y(Uy,Uy,Ug), Z= Z(Uy, Uy, Ug) (16)

which defines curvilinear coordinatas,,u,,and u, in space.
Suppose we write :

, . oy 0z
U, =i + +k k=1, 2, 3), 17
i e R ¢ ) (17)

Then for u,,u,,u, the volume element in the new coordinate is gaen
dr =U,,U,,U,)dudu,du, (18)

If the coordinates are so ordered that the riglaindhmember is positive. Now we
define

ox o9y o0z
ou, Ou, Odu,
ox oy 0z|_ 0(xV,2
ou, du, Odu, - o(u,,u,u,)
ox o9y o0z
Oou, Ou, Odu,

U,U,xU, =

(19)
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Now since the determinant is unchanged if the rad @lumn are interchanged
then we may write

dr =‘M du,du,du, (20)

0(Uy,U,,Us)

We now present the change of variable formula as

0(% ¥,2)

J'”Rw(x Y, z)dxdydz:J'”R*W(ul,uz,ug TR

du,du,du, (21)

Where

W(u,,u,,u;) =w{x(u,,u,,u,), y(u,,u,,u;), zZ(u,,u,,u,)], and R" is the u,,u,,u,
region into which we transform the y, z, region R.

The Jacobiand(x v,2z)/d(u,,u,,u, Js continuous and nonzero iR’
If we are given equations in two dimensions such as
X=X, Uy), Y= Y(Ug,uy) (22)

Note that (22) can be interpreted as definingviinear coordinates in the
Xy — plane

The vectors:
Ujsi——+j—> , U,=i—+j—> (23)
u

are the tangent to the coordinate curves, withethgths ds /du, and
ds,/du,

The vector element of plane are is then given by

[ i k
ox oy
dA= (U, xU,)dydu, =|— —— 0duydu
1 2 2 ou, ou, 2
o oy
ou, adu,

This relation gives the result



_iqa = | 9(xY)
dA=|dA = ‘—a(ul, o) du,du, (24)
Hence
] w(x, y)ydxdy= [[ Wiy, u,) 9% Y) | qudu (25)
D o o, uy)

4.0 Conclusion: In this unit we have defined Jaanbias a preparatory for us to
study curvilinear coordinate systems.

5.0 Summary : Re call that we studied Jacobian aseéul tool for determining
transformation from one space to another . Youtareead and understand this
unit carefully so that you be able to understardcibntent of the next unit.

6.0 Tutor Marked Assignment

(2). The transformation from rectangular to cytiodl coordinates is defined by
the transformation;

X=pCcos¢,y=psing,z=z
Find the Jacobian of the transformation.

(2) If u andv are functions ofr ands also r and s are functions ofand vy,
prove that :

a(u,v) a(r,s) _ a(u,v)
a(r,9) a(xy) 9(xY)
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1.0 INTRODUCTION: In our elementary mathematics, Vearnt about co-
ordinate system name{y Y, z), in the rectangular co-ordinates. In this ung w

will show that it is possible to work in other cedmate system apart from the
rectangular co-ordinate if we make the appropriedasformation. This is what
we set to achieve in this unit.

2.0 OBJECTIVES
At the end of this unit you should be able to :

- define the orthogonal curvilinear co-ordinates

- determine the scale factors of transformation

- determine the elemental volume

- be able to solve problems in other co-ordinate esyst such as circular
cylindrical and spherical co-ordinates.

3.0 MAIN CONTENT

3.1. Transformation of Co-ordinates

Given the rectangular coordinates y,z we can define a new coordinate system
by the following equations expressible as

X=X(Uy,Up,Ug), Y= YU, Uy, L), 2= Z(Uy, Uy, Up) ..-(1)
Conversely the relations as defined in (1) camberted to express

u,,u,,u, in terms of x,y,z, whenever x,y,z, and are suitably restricted

Thus at least in some region any point with the rdioates & yz ) has
corresponding co-ordinat@sg,u,,u, . We shall assume that the correspondence is
unique
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Suppose a particle moves from point P in such ythat only u, is allowed to
vary while u,,u, are held constant, then it would generate a cuwrgpace which
is called u, —curve . Other curvesl,,and,u, are similarly generated.

3.1.1. Orthogonal Curvilinear co-ordinates:

If one co-ordinate is held constant, we can deteensuccessively three surfaces
passing a point of space, these surfaces intemgeati the coordinate curves.

When we chose a new coordinate in such a way kteatoordinate curves are
mutually perpendicular at each point in we call rswoordinates Orthogonal

Curvilinear coordinates.

3.1.2. The Scale Factors

Let

r=xi+yj+zk ... (2
Represent the position vector of a point P in spdben a tangent vector to the
u, —curve at P is given by

Uu=—=—-"2= (3)

Where s arc length along the, curve. Sincea%sl IS a unit vector. We now

write
U1 = hlul e (4)

Whereu,, is the unit vector tangent to the, curve in the direction of increasing

arc length andh, =ds/du, is the length df,. If we consider the other
coordinate curves similarly, we thus write

Ulzhlul, U2:h2u2 ! U3:h3u3 (5)

Where u, (k = 123)is the unit vector tangent to thg curve, and

or

_ds _|or
"= ou,

du,

(6)

Putting these equations in the differential form& wave the following
expressions:

ds = hdu, ds, = hduy,, ds, = hdy, (7)
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h,,h,,and,h, are called the scale factors.

The coordinates curves are said to be orthogbnal i
U,U,=U,U,=U,U,=0 (8)
3.1.3 The Elemental Volume

The elemental volume is defined as

dr = hjh, hdu,du,du, 9)

Example: The transformation from rectangular toindrical coordinates is
defined by the transformations

X= pCos¢, Yy = psing,z=z
(a) Prove that the system is orthogonal

(b) Find ds* and the scale factors

(c) Find the Jacobian of the transformation ardvblume element.

Solution: Let e=(g,e,,e;) be a unit vector in the cylindrical coordinates

We have

or or or
dr =—dp+—dg+—dz
0p P 0@ ¢ 0z

= hdpe, + hdee, +h,dze
But
or > (or * lor ? or or or or

drdr.=|| —dp| +| —dg@| +| —dz| |+2—.—dodp+2—.—dodz+

((appJ (awwj (az j] o000 2509,
or dr
2— . —dgz
Jp dz w

= h?(dp)® +h,’(d@)* +hi(d2)* + 2hh,dodgee, + 2hhdgz e, €,
+2hhdgdze.e,
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Consider

r = pcosg + psing + zk

or .
— =cos¢ +sing
op

or =-psing@ + pcosj
0p

ﬂ:k
0z

Now

or or . .
—.— =—pcosgsing + pcosgsing =0
0p 0@

Also.

From (a) part we have ,

dr.dr =ds? = h?(dp)? + h?(dg)? + h?(d2)*

or or or
=|—|,h, =|—|,h, =|—
n dp| * a«l * oz
h=1h=p, h=1

ds’ =(dp)” + p*(d@)” + (d2)*

(c) The Jacobian of the transformation is

ox % Ox
Jp d@ 0z
LY
0p 0@ 0z
0z 0z 0z

%64/}5

‘a(x Y, 2)
9(0,9,2)




Thus the volume elemendV is given as

dv = ‘a(xyz) dodgrz= pdpdgiz

2(0.9.2)

3.2. Gradient, Divergence, Curl and Laplacian inth@gonal Curvilinear
Coordinates

If ¢ is a scalar function and

A= Ag + AL T+ AL

is a vector function of orthogonal curvilinear comates
u,,Uu,,u, then we have the following results:

19¢,,10¢, ,10¢

(1) Gradient: O¢g = gradqozaa—ljlel + h, ou, e+ h, au, e
(2) Divergence of A: O.A=divA =
1
h,h, h, +— h,
hlhzhs( (hh,A) + (h1 A) (h1 As)j
he, he, he
@) curla= —+ |9 9 9
hhh|du, ou, du,
hA  hA A

(4) O°p=Laplacian of ¢

1 0 h,h, aqo 0 hlhsaqo+a hh, 0@
hlhh h du, au2 h, du, ) ou,\ h, du,
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3.2.1. Special Orthogonal Coordinate Systems

In this section we shall mention some special @timal coordinate systems we
usually come across in mathematics.

1. Cylindrical Coordinatesd,¢, z) . Here our transformation is the form
X=pCcos¢g y=psing,z=z
Where p=> 0, 0<¢<271, —0<z<oo

h,=1 h,=p, h =1

2. Spherical Coordinates @ ¢, Here the transformation is of the form
X=rsindcosg, y=rsindsing z=rcosd, wherer = 0,

O0<¢<2n, 0<s¢<nm

h.=Lh, =r,h,=rsind

3. Parabolic Cylindrical Coordinatesi{v z , )

x:%(uz—vz),y:uv,zzz, where —oo <u<oo, v20,

—0<z<o, h =h, =4u*+v?, h,=1 Incylindrical coordinates,

4. Paraboloidal Coordinates { ¢ ,: Here the transformations are given by

X = UVCOSy, Y = uvsing, =%(u2 -v?),u=0,v=00< ¢ <27
h, =h, =vu®+v?,h, =uv

Other special coordinates exist which include, pgilli Cylindrical Coordinates,
Prolate Spheroidal Coordinates, Bipolar Coordinatelipsoidal Coordinates e.t.c.

Consideration of the details of these coordinatée left as exercise.

4.0. Conclusion: We have studied orthogonal coatgi systems in this unit , we
have also identify some special coordinates sysit@tare orthogonal. Study this unit
carefully before proceeding to the next unit ostbourse

5.0. Summary: Recall that, If one co-ordinate i$dhsonstant, we can determine

successively three surfaces passing a point okesplaese surfaces intersecting in the
coordinate curves. When we chose a new coordinatadh a way that the coordinate
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curves are mutually perpendicular at each pointwa call such coordinates
Orthogonal Curvilinear coordinates. We have alsasatered various types of these
Orthogonal systems particularly those for practi@pplications .You are to study
them properly for better understanding.

6.0. Tutor Marked Assignment:

(1) Prove that a cylindrical coordinate systemriba@gonal

(2) Express the velocity v and acceleration of iigla in cylindrical coordinates

(3) Find the square of the element of arc lengthcytindrical coordinates and
determine the corresponding scale factors

7.0. REFERENCES/FURTHER READINGS
1. G Stephenson (1977): Mathematical MethodStence Students12Edition)

2. P D S Verma (1994): Engineering Mathematic&a¥iPublishing House PVT Ltd
New Delhi.

3. Wilfred Kaplan (1959) Advanced Calculus Addisatesley Publishing Company,
Inc U.S.A.

4. Murray R. Spiegel (1974) Advanced Calculus, @ech's Outline Series,
McGRAW-HILL BOOK COMPANY New-York
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Unit3- The nth root of Unity

Unit 1- COMPLEX NUMBERS
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3.0 Main Content
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3.2 Operations with Complex Numbers
3.3 Modulus and argument of Complex Numbers
4.0 Conclusion.
5.0 Summary
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1.0 INTRODUCTION

The solution to the equation® +1=0 has no real roots because there is no real
number whose square root is -1. In order to solveblpm such as this
mathematicians evolves a way out of this logjamalsguming that there exist a
numbei =+/—1. With this we can conclude that the roots of thaation x> +1= 0

arex =+i. Similarly we find that the roots of the equatiotf —2x+5=0 are
Xx=1+2i

2.0 OBJECTIVES: At the end of this unit you shob&lable to

define complex numbers

perform mathematical operations with complex nureber
find modulus and argument of complex numbers

solve exercises correctly on complex numbers

3.0 MAIN CONTENTS

3.1. Definition of Complex Numbers

Given thata and b are real numbers then the numigera+ib is called a complex
number.a and b are known as the real and imaginary parts of tmeptex number

respectively. Whera= @he complex number is purely imaginary and when 0
then the complex number is real. The conjugatéefcomplex numbec is denoted

by

c=a-ib

Self Assessment Exercise
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Find the conjugate of the following expressions:

(a) 3-3i (b) 2i (c) -3+4i (d) 3-4i

3.2 Operations with Complex Numbers

In this section we consider some mathematical djp@saon complex numbers.
(1) Note that in complex number,

(a+ib)+(c+id) =(a+c)+i(b+d)

(2) (a+ib)=(c+id)=(a-c)+i(b—-d)

(3) (a+ib)(a—ib)=a’+b*since i*=-1

(4)If a+ib=c+id then a=c andb=d

a+ib _(a+ib) (c-id) _ (a+ib)(c-id)

) — e 2, 2
c+id (c+id) (c—id) c’+d

(a

(@]

+bd) + i(bc— ad)
c?+d?

Self Assessment Exercises

(1) Find the real and imaginary parts of

, - Axi)R+i)
(3-1)

2) Letz, =3-6i and

Find (a) 22, (0)2,(0)2
z, 'z

3) Simplify
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(@ B6-9)-(2-6i)+(3—4)
(b) (4+7)(2+15)

(4) Multiply (4-3) by an appropriate factor to give a product thagnsrely real.
What is the result?

Modulus and Argument of a Complex Number

Let r be the length of OP , suppose the <XGR=then r =x*+y* and

tan6?=i, r is called the modulus ofz and Written|z|,9 is called the
X

argument or amplitude of and written@agz or amz .

Example: Find the modulus and argument of the cempumber

(3-1)
Solution: z=A+DE@+i) _2+2i+i-1_1+3

3-i) 3-] 3-i

Therefore z:1+?_’I (3+f) = (3+9i +i _3:£
3-i (3+1i) 10 10

Hence z=i therefore|4=1 and argz=72z

. +i
2. If x+|y:a+% where a and b are real constant ang,t, are real
=i

variables show that the locus of the poi(% y) as t, varies as a circle.

b(L+it)
1-it)

Solution: Let x+iy =a+

L ba+it) @+it)
L-it) ~(L+it)
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b(l-t%) 2bit
a+ +
1+t% 1+t?

Equating the real parts and the imaginary parteaich side of the equation we
have

_b@-t%) 2bt

X Y=
1+t? y 1+t2

Thus (x-a)® +y* =b?

Hence the locus of the pointx, y) is a circle centre (a,0) and radius b.

We may represent complex numbers in the polar srfollows:
Z=X+iy =rcosd +ir sind
Compare coefficients then

X=rcosd,y=rsinf
We refer to this as the polar representation @& ciimplex numbers.

4.0 Conclusion: We have shown the way to handleptexnnumbers in what now
follows we shall deal with some problems into datacomplex variables.

5.0Summary: Recall that with clearly defined namatyou can handle complex
number as we handle real numbers ordinarily inkakyeYou should real carefully
before moving to the next unit.

Tutor Marked Assignment:

(1) Establish the following results:
(a) Re z; +z,) =Re(z)) +Re(z,),but,Re(zz,) # Re(z,) Re(z,) in general
(b) Im(z, + z,) =Im(z,Im(z,),but,Im(zz,) # Im(z,) Im(z,) in general

o |7 = ezl sz 2 a2

(2) Express the following quantities in tloerh a+ib where a and b are real

@a+® ) () sin(; +2)

(3) Prove the following

(@) z+Z=2Re(z) (b) z-z=2Im(2) (c) Re@<|7
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Unit 2: POLAR OPERATIONS WITH COMPLEX NUMBERS

1.0 Introduction

2.0 Objective

3.0 Main Contents

3.1 Multiplications and Division of Complex Numbers
3.2 Demoivre’s Theorem

3.3 Roots and Fractional Powers of a Complex Number
3.4 The nth Root of Unity

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 References/Further Readings

1.0 Introduction: In this unit we shall examine quex numbers in polar forms.
The polar form of complex numbers, present intargstesults which will be

examined in this unit.

2.0 Objectives: At the end of this unit you shobé&able
- to express complex numbers in polar form
- to carry out multiplication and divisioh@mplex nhumbers
-to recall the Demoivre’s Theorem and appappropriately

-to find roots and work with fractional possef complex numbers

- to solve correctly the exerciseg thhows after the unit

3.0 MAIN CONTENT
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3.1 Multiplication and Division of Complex Numbers

Let z, =r,(cosf, +ising,)  z, =r,(cosb, +ising,) then
zz, =r,1,(cosd, +ising,)(cosl, +ising,)

=r,r,(cosg, cosf, —sing, sing,) +i(sing, cosd, + cosy, sinb,)
= rr,[cos@, +6,)+isin@, +6,)]

From the above we see that

22| =|2/{z|

We also note that

arg(zz,) =argz, +argz,, and that



z, _ 1,(Cosp, +iSinG,)
z, r,(Cosf,+iSing,)

i [(Coss, +iSing,)(Cosd, -iSing,)]

2

_ :_1[005(31 -8,)+iSin(, - 6,)]

2

Therefore
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2|

and arg(zl) argz, —argz,

3.2 Demoivre’'s Theorem

Recall that
(Cosf, +iSing,)(Cosl, +iSing,) =Cogq 4, +6,) +iSin(g, +6,)
Note that
(Cosf, +iSing,)(Cosf, +iSing)) = Cos26, +iSin26,
This is equivalence to saying that
(Cosg, +iSing,)* = Co26, +iSin26,
Also
(Cosg, +iSing))* = Cos34, +iSin36,
If we continue in this way we find that

Cogf, +iSing,)" = Cosrg, +iSinng,

This is known as the Demoivre’s theorem for positivinteger index.
It can be shown that the theorem is true for dibreal values of n.

Now suppose n is a negative integer and we let nsgre m is a positive integer

then



1
(Cosd +iSing)"

(Cosf+iSing)™ =
= Coq—-md) +iSin(-md) = Cognd) +iSin(nH)

We can also prove for fractions. Recall that by Dame’s theorem

(cosP6+isinP §)7 = Cospd+iSinpd = (Cosd +iSing)?
g q

It follows that CosP@+iSin @ isa qth root of (Cosd+iSing)”
g g

Demoivre’s theorem has been proved for all ratioadlies of n.

P
We need to find other values ¢fCosf +iSing) ¢ .

To do this, suppose that:

p

(Cosf+iSind) ® = p(Cosp+iSing) then
(cosf +isinf)? = pY(cosp+ising)? = cospd +isinpl = p(cosge+isingbH)
Equating the real and imaginary parts we have
cospéd = p° cosge;sin pd =sinqe
Squaring and adding , we obtain
0% =1 and since p, the modulus of a complex number is +we=1 therefore
COspg¢ =cosq¢;sinpg =singg , and these equation are satisfied by
g¢ = pé+2km;k =0 or any integer. Therefore

0+ 2k
(0:—p
q

3.3 Roots and Fractional Power of a Complex Number

When n is a positive integer the nth roots of a jglem number are by definition
the value ot. which satisfy the equation

=Z
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If «=p(cosg+ising) and z=r(cosd+isind )then
p"(cos' p+isin" @) =r(cosf+isind) where

p"=r and ng=6+2kn kis an integer or zero. By definition,and,r are +ve, so
G+ 2kn

that ,0=\/? also, ¢=

Taking in succession the values of k=0, 1, 2, 3.wefind that

cosd + 2kn T sin@ + 2kn

n n
roots of z given by the formula

has n distinct values,. Hence there are nndistith

@, =Q/F[C089;27k+i S|n6r-]+27k

], k=0,1,2,3,.,n1

In a situation where n is a rational number say:B, p,and,q are integers and q is
q

+ve, the value ofz" are the values ok which satisfy the equation

P
Hence if z=r(cosd +isind )then there q values ot given by the formula

0, = 3/r—{cost9+ 2mr . sing+ 2mﬂ} where
q q

VrP is the unique positive gth root of ?

Example: Find the fifth roots of -1

Solution: Recall that

-1=cosn+isinn

Now if

75 = -1=[cos@r+ 2km) +isin(T+ 2km)|, k=0,1,2,3,...,

Therefore
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;= cos(@ + 2kn) ‘i sin(n + 2kn)

k = 01,234, hence the solution are:

n .. 7
Z=C0S—+isin—
5 5
3n . . 3n
Z=CO0S— +iSin—
5 5
5n . . b5n
Z=C0S— +isin—
5 5
n . . TIn
Z=CO0S— +isin—
5 5

O9n . . 9nm
Z=C0S— +isin—
5 5
3.4. The nth Roots of Unity
We recall thatcos0+isin0 =1 this implies that

1=cos27k +isin27k, k=0, 1, 2, 3...

If « denotes the root cos%ﬂsin%, k=0, 1, 2, 3..., then nth root of unity
n n

may be written in the form

Lw, o, o?,... . 00"

We see that they form a geometric progression whose 11_—wn is equalto 0
-w

We also note that the nth root of unity are repreess in the Argand diagram by
points which are vertices of a regular polygon sides inscribed in the circle.

Example: Solve the equatiom® + z° +z* + 2 + 2 + z+1=  dhd deduce that

271 47 671 1
COS— +C0S— +C0S— = ——
7 7 7 2



60

Solution: We know that

7

z'-1 . .
2+ + 2+ + 27 +z+1= T hence we consider the equation
Z —

z'-1=0 We also note that

1=coD+isin0=cos27k +isin27k , hence

L sin@,k = 0123456

Equation z’ —1= 0is satisfied by

cos27k 4 sin27k

z=1and,by,z= , therefore the given equation is satisfied by

z= co&ﬁﬂsini%,k = 12345,....
7 7
The sum of these roots is
21T 4T 6rr
2 0037 + 0057 + 0057

But from the given equation the sum of the roo&l$® -1. Therefore

271 47 671 1
COS— +C0S— +C0S— = ——
7 7 7 2

4.0.Conclusion: In this unit we have studied soimeotems and determine the
roots of equation using complex variables. You @guired to study this unit
properly before attempting to answer questions utiaetutor marked assignment
5.0 Summary : You recall that you learnt about Deme’s theorem, both for
integer quantity and fractional quantity, also yearnt about roots of unity among
others. You are to study them properly in ordebéowell equipped for the next
course in mathematical methods.

6.0 Tutor Marked Assignment:

1.0btain the roots of the equation

3z° - (2+11)z+3-5 =0 in the form a+ib where a and b are real.

2. Expresscos’ @sin® @ as a sum of cosines of multipleéf



3. Prove thatos6d = 32cos’ - 48cos' 8+18cos 6 -1 By putting

X = cos dor otherwise, show that the roots of the equation

64x° —96x*> +36x-3=0 are cos (%} ,cosz(S—HJ cos (%} and deduce that

se&(ﬂj +sed (5—”) +sec (7—ﬂj =12
18 18 18
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