

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE CODE :MBA 859

COURSE TITLE:
DATABASE MANAGEMENT APPLICATION SYSTEM

COURSE
GUIDE

MBA 859
DATABASE MANAGEMENT APPLICATION SYSTEM

Course Writer Gerald C. Okereke
Eco Communications Inc.
Lagos Ikeja

Course Editor Mr. E. Eseyin

National Open University of Nigeria

Programme Leader Dr. O. J. Onwe
National Open University of Nigeria

Course Coordinator Bimbola, E.U. Adegbola

National Open University of Nigeria

NATIONAL OPEN UNIVERSITY OF NIGERIA

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office
5, Dar es Salaam Street
Off Aminu Kano Crescent
Wuse II, Abuja
Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published by

National Open University of Nigeria

Printed 2009

ISBN: 978-058-331-9

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CONTENTS PAGE

Introduction………………………………………………………… 1
Course Aim………………………………………………………… 1
Course Objectives………………………………………………….. 2
Course Materials………………………………………………….. 2
Study Units……………………………………………….………… 2
Assignment File ………………………………………………….. 3
Assessment………………………………………………………… 4
Credit Units ……………………………………………………….. 4
Presentation Schedule ………………………………………………. 4
Course Overview ………………………………………………….. 4

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Introduction

This course, Database Management System (DBMS), is a course
designed in the pursuit of a degree in Masters Degrees in business,
finance, marketing and related fields of study. It is also a course that
can be studied by Postgraduate Diploma students in business, sciences
and education.

This course is relevant to students studying business because
information/data form the foundation of any business enterprise. Thus a
thorough understanding of how to manipulate, design and manage
databases.

This course is primarily to be studied by students who are already
graduates or post graduates in any field of study. Students who had not
had exposure to computer science in their first degrees need to put in
extra effort to grasp this course properly.

This course guide takes you through the nature of the course, the
materials you are going to use and how you are to use materials to your
maximum benefit. It is expected that at least two hours should be
devoted to the study of each course unit. For each unit

tahsesreessments in the form of tutor-marked assignment. You are advised
carry out the exercises immediately after studying the unit.

There will be tutorial lectures to organized for this course. This serves
as an avenue to interact with course instructors who will communicate
more clearly with you regarding the course. You are advised to attend
the tutorial lectures because it will enhance your understanding of the
course. Note that it is also through these tutorial lectures that you will
submit your tutor-marked assignment and be assessed accordingly.

Course Aim

Behind the development and design of this course is to know how to
design, manipulate and manage databases. The course participants are
exposed to the various forms, types and models of database systems to
enable them make viable choices. Supportive and complimentary
concepts of managing data and documents are thoroughly examined to
give a wholesome view of data/information management. The ultimate
aim is to encourage the usage of database management systems for
effective data management.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Course Objectives

The following are the major objectives of this course:

• define a DATABASE MANAGEMENT

APPLICATION S• YgiSvTe EaMdescription of the Database

Management structure
• define a Database

• define basic foundational terms of Database

• understand the applications of Databases

• know the advantages and disadvantages of the different models

• compare relational model with the Structured Query Language
(SQL)

• know the constraints and controversies associated with relational
database model.

• know the rules guiding transaction ACID

• identify the major types of relational management systems
• compare and contrast the types of RDBMS based on several criteria

• understand the concept of data planning and Database design

• know the steps in the development of Databases

• trace the history and development process of SQL

• know the scope and extension of SQL

• differentiate Discretionary and. Mandatory Access Control Policies

• know the Proposed OODBMS Security Models

• identify the various functions of Database Administrator

• trace the history and development process of datawarehouse

• list various benefits of datawarehouse

• compare and contrast document management system and content
management systems

• know the basic components of document management systems

Course Materials

1. Course Guide
2. Study Units
3. Textbooks
4. Assignment File
5. Tutorials

Study Units

This course consists of thirteen (13) units, divided into 3 modules. Each
module deals with major aspect of the course.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Module 1

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Unit 1 Overview
Unit 2 Database
Unit 3 Database Concepts
Unit 4 Database Models 1
Unit 5 Database Models: Relational Model
Unit 6 Basic Components of DBMS

Module 2

Unit 1 Development and Design-Of Database
Unit 2 Structured Query Languages (SQL)
Unit 3 Database and Information Systems Security
Unit 4 Database Administrator and Administration

Module 3

Unit 1 Relational DATABASE MANAGEMENT

APPLICATION SUYniStT2EDMatsawarehouse
Unit 3 Document Management System

In studying the units, a minimum of 2 hours is expected of you. Start by

going through the unit objectives for you to know what you need to
learn and know in the course of studying the unit. At the end of the
study of the unit, evaluate yourself to know if you have achieved the
objectives of the unit. If not, you need to go through the unit again.

To help you ascertain how well you understood the course, there will be
exercises mainly in the form of tutor-marked assignments at the end of
each unit. At first attempt, try to answer the questions without
necessarily having to go through the unit. However, if you cannot
proffer solutions offhand, then go through the unit to answer the
questions.

Assignment File

For each unit, you will find one (1) or two (2) tutor-marked assignments.
These assignments serve two purposes:

1. Self Evaluation: The tutor-marked assignment will assists

you to thoroughly go through each unit, because you are advised
to attempt to answer the questions immediately after studying
each unit. The questions are designed in such a way that at least
one question must prompt a typical self assessment test.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

2. Obtain Valuable Marks: The tutor-marked assignment is also a
valid means to obtain marks that will form part of your total score
in this course. It constitutes 30% of total marks obtainable in this
course.

You are advised to go through the units thoroughly or you to be able to
proffer correct solution to the tutor-marked assignment

Assessment

You will be assessed and graded in this course through tutor-marked
assignment and formal written examination. The allocation of marks is
as indicated below.

• Assignments = 30 %

• Examination = 70%

Final examination and grading

The final examination will consist of two (2) sections:

1. Section 1: This is compulsory and weighs 40 marks
2. Section 2: This consists of six (6) questions out of which you

are to answer (4) questions. It weights 60 marks.

The duration of the examination will be 3 hours.

Credit Units

This course attracts 3 credit units only.

Presentation Schedule

This constitutes the scheduled dates and venue for tutorial classes, as
well as how and when to submit the tutorials. All this wil
bcoemmunicated to you in due course.

Course Overview

This indicates the units/topic, issues to be studied each week. It also
includes the duration of the course, revision week and
ewxeaemk.inaTtihoendetails are as provided below:

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Unit Title of Work Week’s Assessment
Activity (end of unit)

Course Guide

Module 1
1 Overview 1 TMA
2 Database 2 TMA

3 Database Concepts 3 TMA
4 Database Models 1 4 TMA

5 Database Models: Relational Model 5 TMA
6 Basic Components of DBMS 6 TMA

Module 2
1 Development and Design-Of 7 TMA

Database

2 Structured Query Languages (SQL) 8 TMA
3 Database and Information Systems 9 TMA

Security
4 Database Administrator and 10 TMA

Administration

Module 3
1 Relational Database Management 11 TMA

Systems

2 Datawarehouse 12 TMA
3 Document Management System 13 TMA

Revision and Examination 14

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Course Code MBA 859

Course Title DATABASE MANAGEMENT APPLICATION

SYSTEM
Course Writer Gerald C. Okereke

Eco Communications Inc.
Lagos Ikeja

Course Editor Mr. E. Eseyin

National Open University of Nigeria

Programme Leader Dr. O. J. Onwe
National Open University of Nigeria

Course Coordinator Bimbola, E.U. Adegbola

National Open University of Nigeria

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

NATIONAL OPEN UNIVERSITY OF NIGERIA

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office
5, Dar es Salaam Street
Off Aminu Kano Crescent
Wuse II, Abuja
Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published by

National Open University of Nigeria

Printed 2009

ISBN: 978-058-331-9

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

CONTENTS PAGE

Module 1 …………………………………………………….. 1

Unit 1 Overview………………………………….………. 1
Unit 2 Database……………………………………..…….. 11
Unit 3 Database Concepts………………………..……….. 23
Unit 4 Database Models 1……………………….….…….. 36
Unit 5 Database Models: Relational Model……………….. 52
Unit 6 Basic Components of DBMS ……………………… 64

Module 2 ………………………..…………………………….. 75

Unit 1 Development and Design-Of Database ……………… 75
Unit 2 Structured Query Languages (SQL)…………………. 88
Unit 3 Database and Information Systems Security ………... 101
Unit 4 Database Administrator and Administration ……….. 115

Module 3 ………………………………………………..…….. 124

Unit 1 Relational DATABASE MANAGEMENT APPLICATION SYSTEMs …….…

1U2n4it 2 Data Warehouse……….………………….…..…… 135
Unit 3 Document Management System…………………….. 147

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

MODULE 1

Unit 1 Overview
Unit 2 Database
Unit 3 Database Concepts
Unit 4 Database Models 1
Unit 5 Database Models: Relational Model
Unit 6 Basic Components of DBMS

UNIT 1 OVERVIEW

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Description
3.2 DBMS Benefits
3.3 Features and capabilities of DBMS
3.4 Uses of DBMS
3.5 List of DATABASE MANAGEMENT APPLICATION SYSTEMs

4.0 CSonocftlwusairoen
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

A Database Management System (DBMS) is computer software
designed for the purpose of managing databases based on a variety of
data models.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• define a DATABASE MANAGEMENT

APPLICATION S• YgiSvTe EaMdescription of the Database

Management Structure
• numerate the benefits of DATABASE MANAGEMENT APPLICATION
S• YdeSsTcrEibMe the features and capabilities of a typical DBMS
• identify and differentiate the different types and models of

DBMS.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

3.0 MAIN CONTENT

3.1 Description

A DBMS is a complex set of software programs that controls

tohreganization, storage, management, and retrieval of data in a database.
DBMS are categorized according to their data structures or

tsyopmees,time DBMS is also known as Data base Manager. It is a set of
prewritten programs that are used to store, update and retrieve

aDatabase. A DBMS includes:

A modeling language to define the schema of each database hosted in
the DBMS, according to the DBMS data model.

•The four most common types of organizations are the hierarchical,
network, relational and object models. Inverted lists and other methods
are also used. A given DATABASE MANAGEMENT APPLICATION SYSTEM
maoyreprovf itdheee ofonueromr odels. The optimal structure depends on the natural
organization of the application's data, and on the application's
requirements (which include transaction rate (speed), reliability,
maintainability, scalability, and cost).

•The dominant model in use today is the ad hoc one embedded in SQL,

despite the objections of purists who believe this model is a corruption
of the relational model, since it violates several of its
fpurnindcaimplens tfaolr the sake of practicality and performance. Many DBMSs
also support the Open Database Connectivity API that supports

astandard way for programmers to access the DBMS.

Data structures (fields, records, files and objects) optimized to deal with
very large amounts of data stored on a permanent data storage device
(which implies relatively slow access compared to volatile main
memory).

A database query language and report writer to allow users to
interactively interrogate the database, analyze its data and update

iatccording to the users privileges on data.

•It also controls the security of the database.

•Data security prevents unauthorized users from viewing or updating the

database. Using passwords, users are allowed access to

 the ednatiarbease or subsets of it called subschemas. For example, an

employee
database can contain all the data about an individual employee, but one
group of users may be authorized to view only payroll data, while others
are allowed access to only work history and medical data.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

•If the DBMS provides a way to interactively enter and update the
database, as well as interrogate it, this capability allows for managing
personal databases. However, it may not leave an audit trail of actions or
provide the kinds of controls necessary in a multi-user organization.
These controls are only available when a set of application programs are
customized for each data entry and updating function.

A transaction mechanism, that ideally would guarantee the ACID
properties, in order to ensure data integrity, despite concurrent user
accesses (concurrency control), and faults (fault tolerance).

•It also maintains the integrity of the data in the database.

•The DBMS can maintain the integrity of the database by not allowing
more than one user to update the same record at the same time. The
DBMS can help prevent duplicate records via unique index constraints;
for example, no two customers with the same customer numbers (key
fields) can be entered into the database.

•The DBMS accepts requests for data from the application program and
instructs the operating system to transfer the appropriate data.

When a DBMS is used, information systems can be changed much more
easily as the organization's information requirements change. New
categories of data can be added to the database without disruption to the
existing system.

Organizations may use one kind of DBMS for daily transaction
processing and then move the detail onto another computer that uses
another DBMS better suited for random inquiries and analysis. Overall
systems design decisions are performed by data administrators and
systems analysts. Detailed database design is performed by database
administrators.

Database servers are specially designed computers that hold the actual
databases and run only the DBMS and related software. Database
servers are usually multiprocessor computers, with RAID disk arrays
used for stable storage. Connected to one or more servers via a high-
speed channel, hardware database accelerators are also used in large
volume transaction processing environments.
DBMSs are found at the heart of most database applications. Sometimes
DBMSs are built around a private multitasking kernel with built-in
networking support although nowadays these functions are left to the
operating system.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

3.2 DBMS Benefits

•Improved strategic use of corporate data

•Reduced complexity of the organization‘s information systems
environment

•Reduced data redundancy and inconsistency

•Enhanced data integrity

•Application-data independence

•Improved security

•Reduced application development and maintenance costs
•Improved flexibility of information systems

•Increased access and availability of data and information

•Logical & Physical data independence

•Concurrent access anomalies.

•Facilitate atomicity problem.

•Provides central control on the system through DBA.

Figure 1: An example of a database management approach

 in abanking information system.

Note how the savings, checking, and installment loan programs use a
database management system to share a customer database. Note also
that the DBMS allows a user to make a direct, ad hoc interrogation of
the database without using application programs.

3.3 Features and Capabilities of DBMS

A DBMS can be characterized as an "attribute management system"
where attributes are small chunks of information that describe
something. For example, "colour" is an attribute of a car. The value of
the attribute may be a color such as "red", "blue" or "silver".

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Alternatively, and especially in connection with the relational model of
database management, the relation between attributes drawn from a
specified set of domains can be seen as being primary. For instance, the
database might indicate that a car that was originally "red" might fade to
"pink" in time, provided it was of some particular "make" with an
inferior paint job. Such higher arity relationships provide information on
all of the underlying domains at the same time, with none of them being
privileged above the others.

Throughout recent history specialized databases have existed for
scientific, geospatial, imaging, and document storage and likeuses.
Functionality drawn from such applications has lately begun appearing
in mainstream DBMSs as well. However, the main focus there, at least
when aimed at the commercial data processing market, is still on
descriptive attributes on repetitive record structures.

Thus, the DBMSs of today roll together frequently-needed services or
features of attribute management. By externalizing such functionality to
the DBMS, applications effectively share code with each other and are
relieved of much internal complexity. Features commonly offered by
DATABASE MANAGEMENT APPLICATION

SYSTEMs include:
Query Ability

Querying is the process of requesting attribute information from various
perspectives and combinations of factors. Example: "How many 2-door
cars in Texas are green?"

A database query language and report writer allow users to interactively
interrogate the database, analyze its data and update it according to the
users privileges on data. It also controls the security of the database.

Data security prevents unauthorized users from viewing or updating the
database. Using passwords, users are allowed access to the entire
database or subsets of it called subschemas. For example, an employee
database can contain all the data about an individual employee, but one
group of users may be authorized to view only payroll data, while others
are allowed access to only work history and medical data.

If the DBMS provides a way to interactively enter and update the
database, as well as interrogate it, this capability allows for managing
personal databases. However it may not leave an audit trail of actions or
provide the kinds of controls necessary in a multi-user organization.
These controls are only available when a set of application programs are
customized for each data entry and updating function.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Backup and Replication

Copies of attributes need to be made regularly in case primary disks or
other equipment fails. A periodic copy of attributes may also be created
for a distant organization that cannot readily access the original. DBMS
usually provide utilities to facilitate the process of

 extracting adnisdseminating attribute sets.

When data is replicated between database servers, so that the
information remains consistent throughout the database system and
users cannot tell or even know which server in the DBMS
 they aurseing, the system is said to exhibit replication transparency.

Rule Enforcement

Often one wants to apply rules to attributes so that the attributes are
clean and reliable. For example, we may have a rule that says each car
can have only one engine associated with it (identified by
ENnugminbeee r). If somebody tries to associate a second engine with a given
car, we want the DBMS to deny such a request and display an error
message. However, with changes in the model specification such as, in
this example, hybrid gas-electric cars, rules may need to change. Ideally
such rules should be able to be added and removed as needed without
significant data layout redesign.

Security

Often it is desirable to limit who can see or change a given attributes or
groups of attributes. This may be managed directly by individual, or by
the assignment of individuals and privileges to groups, or (in the most
elaborate models) through the assignment of individuals and groups to
roles which are then granted entitlements.

Computation

There are common computations requested on attributes such as
counting, summing, averaging, sorting, grouping, cross-referencing, etc.
Rather than have each computer application implement these from
scratch, they can rely on the DBMS to supply such calculations. All
arithmetical work to perform by computer is called a computation.

Change and Access Logging

Often one wants to know who accessed what attributes,
wha wchaasnged, and when it was changed. Logging services allow
this bkyeeping a record of access occurrences and changes.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Automated Optimization

If there are frequently occurring usage patterns or requests, some DBMS
can adjust themselves to improve the speed of those interactions. In
some cases the DBMS will merely provide tools to monitor
performance, allowing a human expert to make the necessary
adjustments after reviewing the statistics collected.

3.4 Uses Of DATABASE MANAGEMENT APPLICATION

SYSTEMs
The four major uses of DATABASE MANAGEMENT APPLICATION
SYSTEMs are:
1. Database Development
2. Database Interrogation
3. Database Maintenance
4. Application Development

Database Development

Database packages like Microsoft Access, Lotus Approach allow end
users to develop the database they need. However, large organizations
with client/server or mainframe-based system usually place control of
enterprise-wide database development in the hands of database
administrators and other database specialists. This improves the integrity
and security of organizational database. Database developers use the
data definition languages (DDL) in database management systems like
oracle 9i or IBM‘s BD2 to develop and specify the data contents,
relationships and structure each databases, and to modify these database
specifications called a data dictionary.

Figure 2: The Four Major Uses of DBMS

Operating
Database System

Uses Database

Database
Management
Systems

-Database Development

-DDaatatbaabseasIneteIrnrotegratriongationApplication

Data

Dictionary

-Database Maintenance Programs

-ATphpelicatDionatDabevaesleopmienntterrogation capability is a major use of Database
management system. End users can interrogate a database management
system by asking for information from a database using a query
language or a report generator. They can receive an immediate

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

response in the form of video displays or printed reports. No difficult
programming ideas are required.

Database Maintenance

The databases of organizations need to be updated continually to reflect
new business transactions and other events. Other miscellaneous
changes must also be made to ensure accuracy of the data
idnatabtahsee. This database maintenance process is accomplished by
transaction processing programs and other end-user application
packages within the support of the DATABASE
 MANAGEMENT AusPePrsLICaAnTd IONinfSoYrmSaTtEioMn . Esnpde-cialists can
 also employ various utilities provided by a DBMS for database
maintenance.

Application Development

DATABASE MANAGEMENT APPLICATION SYSTEM packages play
 major rdoelveesloinpmapepnlti.catiEo nd-users, systems analystsand other
 application developers can use the fourth generational
 languages (4GL) programming languages and built-in
 software development tools provided by many DBMS
packages to develop custom application programs. For example you can use a
 DBMS to easily develop the data
entry screens, forms, reports, or web pages by a business application. A
database management system also makes the job of application
programmers easier, since they do not have to develop
 detailed dhantadling procedures using a conventional programming
language every
time they write a program.

3.5 Models

The various models of DATABASE MANAGEMENT APPLICATION

SYSTEMs are:
1. Hierarchical
2. Network
3. Object-oriented
4. Associative
5. Column-Oriented
6. Navigational
7. Distributed
8. Real Time Relational
9. SQL

These models will be discussed in details in subsequent units of this
course.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

3.6 List of DATABASE MANAGEMENT APPLICATION SYSTEM

Software
Examples of DBMSs include

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

•Oracle

•DB2

•Sybase Adaptive Server Enterprise

•FileMaker

•Firebird

•Ingres

•Informix

•Microsoft Access

•Microsoft SQL Server

•Microsoft Visual FoxPro

•MySQL

•PostgreSQL
•Progress

•SQLite

•Teradata

•CSQL

•OpenLink Virtuoso

4.0 CONCLUSION

DATABASE MANAGEMENT APPLICATION SYSTEMs has continue to make data
anrrdansgtoermageen ttt o be much easier than it used to be. With the emergence of
relational model of database management systems much of the big
challenge in handling large database has been reduced. More database
management products will be available on the market as there will be
improvement in the already existing once.

5.0 SUMMARY

• A Database Management System (DBMS) is computer software

designed for the purpose of managing databases based on a variety

of data models.
• A DBMS is a complex set of software programs that controls the

organization, storage, management, and retrieval of data in a
database

• When a DBMS is used, information systems can be changed much
more easily as the organization's information requirements change.
New categories of data can be added to the database without
disruption to the existing system.

• Often it is desirable to limit who can see or change which attributes
or groups of attributes. This may be managed directly by individual,
or by the assignment of individuals and privileges to groups, or (in
the most elaborate models) through the assignment of individuals
and groups to roles which are then granted entitlements.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

• A DBMS can be characterized as an "attribute management system"
where attributes are small chunks of information that describe
something. For example, "colour" is an attribute of a car. The value
of the attribute may be a color such as "red", "blue" or "silver".

• Querying is the process of requesting attribute information from
various perspectives and combinations of factors. Example: "How
many 2-door cars in Texas are green?"

• As computers grew in capability, this trade-off became increasingly

unnecessary and a number of general-purpose database systems
emerged; by the mid-1960s there were a number of such systems in
commercial use. Interest in a standard began to grow, and Charles
Bachman, author of one such product, IDS, founded the Database
Task Group within CODASYL

6.0 TUTOR-MARKED ASSIGNMENT

1. Mention 10 DATABASE MANAGEMENT APPLICATION SYSTEMs

s2o. fDtwesacrreibe briefly the backup and replication ability of database
management systems.

7.0 REFERENCES/FURTHER READINGS

Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data
Banks". Communications of the ACM 13 (6): 377–387.

O‘Brien, James A. 2003, Introduction to Information Systems, McGraw-

Hill, 11th Edition

UNIT 2 DATABASE

CONTENTS

1.0 Introduction
2.0 Objectives

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

3.0 Main Content
3.1 Foundations of Database Terms
3.2 History
3.3 Database Types
3.4 Database Storage Structures
3.5 Database Servers
3.6 Database Replication
3.7 Relational Database

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

A Database is a structured collection of data that is managed to meet the
needs of a community of users. The structure is achieved by organizing
the data according to a database model. The model in most common use
today is the relational model. Other models such as the hierarchical
model and the network model use a more explicit representation of
relationships (see below for explanation of the various database models).

A computer database relies upon software to organize the storage of
data. This software is known as a database management system
(DBMS). Databases management systems are categorized according to
the database model that they support. The model tends to determine the
query languages that are available to access the database. A great deal of
the internal engineering of a DBMS, however, is independent of the data
model, and is concerned with managing factors such as performance,
concurrency, integrity, and recovery from hardware failures. In these
areas there are large differences between products.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• define a database

• define basic foundational terms of database
• know a little bit of the history of the development of database

• know and differentiate the different types of database

• answer the question of the structure of database.

3.0 MAIN CONTENT

3.1 Foundations of Database Terms

File

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

A file is an ordered arrangement of records in which each record

isstored in a unique identifiable location. The sequence of the record is
then the means by which the record will be located. In most computer
systems, the sequence of records is either alphabetic or numeric based
on field common to all records such as name or number.

Records

A record or tuple is a complete set of related fields. For example, the
Table 1 below shows a set of related fields, which is a record. In other
words, if this were to be a part of a table then we would call it a row of
data. Therefore, a row of data is also a record.

Table 1

Sr No Ic ode Ord No O rd Date Pqt y

1 RKSK- T 0083/99 3/3/ 2008 120

Field

A field is a property or a characteristic that holds

 some piniefocrematoiof n about an entity. Also, it is a category of information within
a set of records. For example, the first names, or address or

pnhuomnbeers of people listed in address book.

Relations

In the relational data model, the data in a database is

orerlgaatnioinzes.d Ainrelation is synonymous with a‘table‘. A table consists of
columns and rows, which are referred as field and records in DBMS
terms, and attributes and tuples in Relational DBMS terms.

Attributes

An attribute is a property or characteristics that hold some information
about an entity. A ‗Customer‘ for example, has attributes such as

aname, and an address.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Table 2: DBMS and Relational DBMS Terms in Comparison

Common Term DB MS Terminology RDBM S
Terminology

Database Table Database

Table Table Relation

Column Field Attribute

Row Record Tuple

3.2 History

The earliest known use of the term database was in November 1963,
when the System Development Corporation sponsored a symposium
under the title Development and Management of a Computer-centered
Data Base. Database as a single word became common in Europe in the
early 1970s and by the end of the decade it was being used in major
American newspapers. (The abbreviation DB, however, survives.)

The first DATABASE MANAGEMENT APPLICATION SYSTEMs were developed in the

1p9io6n0ese.rAin the field was Charles Bachman. Bachman's early papers show
that his aim was to make more effective use of the new direct access
storage devices becoming available: until then, data processing had been
based on punched cards and magnetic tape, so that serial processing was
the dominant activity. Two key data models arose at this time:
CODASYL developed the network model based on Bachman's ideas,
and (apparently independently) the hierarchical model was used in a
system developed by North American Rockwell later adopted by IBM as
the cornerstone of their IMS product. While IMS along with the
CODASYL IDMS were the big, high visibility databases developed in
the 1960s, several others were also born in that decade, some of which
have a significant installed base today. The relational model was
proposed by E. F. Codd in 1970. He criticized existing models for
confusing the abstract description of information structure with
descriptions of physical access mechanisms. For a long while, however,
the relational model remained of academic interest only. While
CODASYL products (IDMS) and network model products (IMS) were
conceived as practical engineering solutions taking account of the
technology as it existed at the time, the relational model took a much
more theoretical perspective, arguing (correctly) that hardware and
software technology would catch up in time. Among the first
implementations were Michael Stonebraker's Ingres at Berkeley, and the
System R project at IBM. Both of these were research prototypes,
announced during 1976. The first commercial products, Oracle and
DB2, did not appear until around 1980.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

During the 1980s, research activity focused on distributed database
systems and database machines. Another important theoretical idea was
the Functional Data Model, but apart from some specialized applications
in genetics, molecular biology, and fraud investigation, the world took
little notice.

In the 1990s, attention shifted to object-oriented databases. These had
some success in fields where it was necessary to handle more complex
data than relational systems could easily cope with, such as

sdpaatatibaalses, engineering data (including software repositories), and
multimedia data.

In the 2000s, the fashionable area for innovation is the XML database.
As with object databases, this has spawned a new collection of start-up
companies, but at the same time the key ideas are being integrated into
the established relational products.

3.3 Database Types

Considering development in information technology and business
applications, these have resulted in the evolution of several major types
of databases. Figure 1 illustrates several major conceptual categories of
databases that may be found in many organizations.

Operational Database

These databases store detailed data needed to support
 the bpuroscineessses and operations of the e-business enterprise.
 They are also called subject area databases (SDDB),
 transaction database and production databases. Examples are
 a customer database, human resources databases, inventory
databases, and other databases containing
data generated by business operations. This includes databases on
Internet and e-commerce activity such as click stream data, describing
the online behaviour of customers or visitors to a company website.

Distributed Databases

Many organizations replicate and distribute copies or parts of databases
to network servers at a variety of sites. They can also reside in network
servers at a variety of sites. These distributed databases can reside on
network servers on the World Wide Web, on corporate
 intranets oexr tranets or on any other company networks. Distributed
databases may
be copies of operational or analytic databases, hypermedia or discussion
databases, or any other type of database. Replication and distribution of
databases is done to improve database performance and security.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Ensuring that all of the data in an organization‘s distributed databases

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

are consistently and currently updated is a major challenge of distributed
database management.

Figure 1: Examples of the major types of databases used by
organizations and end users.

Distributed
Databases on

Client PC or NC

Network
Server

External
Database
on the Internet
and online
services

On Intranets Operational
and other Databases of
Networks the Org

End User

Databases

Data Data

Warehouse Marts

External Databases

Access to wealth of information from external databases is available for
a fee from conventional online services, and with or without charges
from many sources on the Internet, especially the world wide web.
Websites provide an endless variety of hyperlinked pages of multimedia
documents in hypermedia databases for you to access. Data are
available in the form of statistics in economics and demographic activity
from statistical data banks. Or you can view or download abstracts or
complete copies of newspapers, magazines, newsletters, research papers,
and other published materials and other periodicals from bibliographic
and full text databases.

3.4 Database Storage Structures

Database tables/indexes are typically stored in memory or on hard disk in
one of many forms, ordered/unordered Flat files, ISAM, Heaps, Hash
buckets or B+ Trees. These have various advantages and disadvantages
discussed in this topic. The most commonly used are B+trees and
ISAM.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Methods

Flat Files

A flat file database describes any of various means to encode a data
model (most commonly a table) as a plain text file.

A flat file is a file that contains records, and in which each record is
specified in a single line. Fields from each record may simply have a
fixed width with padding, or may be delimited by whitespace

tcaobms,mas (CSV) or other characters. Extra formatting may be needed to
avoid delimiter collision. There are no structural relationships. The data
are "flat" as in a sheet of paper, in contrast to more complex models
such as a relational database.

The classic example of a flat file database is a basic name-and-address
list, where the database consists of a small, fixed number
 of fNiealmdse:, Address, and Phone Number. Another example is
 a simple HTML table, consisting of rows and columns. This type of
database is
routinely encountered, although often not expressly recognized

 as adatabase.

Implementation: It is possible to write out by hand, on a sheet of paper,
a list of names, addresses, and phone numbers; this is a flat file database.
This can also be done with any typewriter or word processor. But many
pieces of computer software are designed to implement flat file
databases.

Unordered storage typically stores the records in the order

they ainrseerted, while having good insertion efficiency, it may seem
tha iwt ould have inefficient retrieval times, but this is usually never the case
as most databases use indexes on the primary keys, resulting in efficient
retrieval times.

Ordered or Linked list storage typically stores the records in order and
may have to rearrange or increase the file size in the case a record is
inserted, this is very inefficient. However is better for retrieval as the
records are pre-sorted (Complexity O(log(n))).

Structured files

• simplest and most basic method

- insert efficient, records added at end of file – ‗chronological‘ order
- retrieval inefficient as searching has to be linear

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

- deletion – deleted records marked

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

- requires periodic reorganization if file is very volatile

• advantages

- good for bulk loading data
- good for relatively small relations as indexing overheads are

avoided
- good when retrievals involve large proportion of records

• disadvantages

- not efficient for selective retrieval using key values, especially if
large

- sorting may be time-consuming

• not suitable for ‗volatile‘ tables

Hash Buckets

• Hash functions calculate the address of the page in which the record

is to be stored based on one or more fields in the record

- Hashing functions chosen to ensure that addresses are spread
evenly across the address space

- ‗occupancy‘ is generally 40% – 60% of total file size
- unique address not guaranteed so collision detection and collision

resolution mechanisms are required

• open addressing

• chained/unchained overflow

• pros and cons

- efficient for exact matches on key field
- not suitable for range retrieval, which requires sequential storage
- calculates where the record is stored based on fields in the record
- hash functions ensure even spread of data
- collisions are possible, so collision detection and restoration is

required

B+ Trees

These are the most used in practice.

• the time taken to access any tuple is the same because same number
of nodes searched

• index is a full index so data file does not have to be ordered

• Pros and cons

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

- versatile data structure – sequential as well as random access
- access is fast
- supports exact, range, part key and pattern matches efficiently
- ‗volatile‘ files are handled efficiently because index is dynamic –

expands and contracts as table grows and shrinks

Less well suited to relatively stable files – in this case, ISAM is more
efficient.

3.5 Database Servers

A database server is a computer program that provides database
services to other computer programs or computers, as defined by the
client-server model. The term may also refer to a computer dedicated to
running such a program. Database management systems frequently
provide database server functionality, and some DBMS's (e.g., MySQL)
rely exclusively on the client-server model for database access.

In a master-slave model, database master servers are central and primary
locations of data while database slave servers are synchronized backups
of the master acting as proxies.

3.6 Database Replication

Database replication can be used on many database management
systems, usually with a master/slave relationship between the original
and the copies. The master logs the updates, which then ripple through
to the slaves. The slave outputs a message stating that it has received the
update successfully, thus allowing the sending (and potentially re-
sending until successfully applied) of subsequent updates.

Multi-master replication, where updates can be submitted to any
database node, and then ripple through to other servers, is often desired,
but introduces substantially increased costs and complexity which may
make it impractical in some situations. The most common challenge that
exists in multi-master replication is transactional conflict prevention or
resolution. Most synchronous or eager replication solutions do conflict
prevention, while asynchronous solutions have to do conflict resolution.
For instance, if a record is changed on two nodes simultaneously, an
eager replication system would detect the conflict before confirming the
commit and abort one of the transactions. A lazy replication

swyosuteldm allow both transactions to commit and run a conflict resolution
during resynchronization.

Database replication becomes difficult when it scales up. Usually, the

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

scale up goes with two dimensions, horizontal and vertical: horizontal
scale up has more data replicas, vertical scale up has data replicas
located further away in distance. Problems raised by horizontal scale up
can be alleviated by a multi-layer multi-view access protocol. Vertical
scale up runs into less trouble when the Internet reliability and
performance are improving.

3.7 Relational Database

A relational database is a database that conforms to the relational
model, and refers to a database's data and schema (the database's
structure of how those data are arranged). The term "relational database"
is sometimes informally used to refer to a relational database
management system, which is the software that is used to create and use
a relational database.

The term relational database was originally defined and coined by
Edgar Codd at IBM Almaden Research Center in 1970Contents

Strictly, a relational database is a collection of relations (frequently
called tables). Other items are frequently considered part of the
database, as they help to organize and structure the data, in addition to
forcing the database to conform to a set of requirements.

Terminology

Relational database terminology.

Relational database theory uses a different set of mathematical-based
terms, which are equivalent, or roughly equivalent, to SQL database
terminology. The table below summarizes some of the most important
relational database terms and their SQL database equivalents.

Relational term S QL equivalent

relation, base relvar table

derived relvar view, query result, result set

tuple row

attribute column

Relations or Tables

A relation is defined as a set of tuples that have the same attributes A
tuple usually represents an object and information about that object.
Objects are typically physical objects or concepts. A relation is usually

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

described as a table, which is organized into rows and columns. All the
data referenced by an attribute are in the same domain and conform to
the same constraints.

The relational model specifies that the tuples of a relation
have nspoecific order and that the tuples, in turn,
 impose no order oatntributht eees. Applications access data by
 specifying queries, which use operations such as select to
identify tuples, project to identify attributes,
and join to combine relations. Relations can be modified using
tihnesert, delete, and update operators. New tuples can supply explicit
values or be derived from a query. Similarly, queries identify tuples for

updating or deleting.

Base and Derived Relations

In arelational database, all data are stored and accessed via relations.
Relations that store data are called "base relations", and in
implementations are called "tables". Other relations do not store data,
but are computed by applying relational operations to other relations.
These relations are sometimes called "derived relations". In
implementations these are called "views" or "queries". Derived relations
are convenient in that though they may grab information from several
relations, they act as a single relation. Also, derived relations can be
used as an abstraction layer.

Keys

A unique key is a kind of constraint that ensures that

 an ocrbijtei cccat,l inofrormation about the object, occurs in at most one tuple

 in a
given relation. For example, a school might want each student to have a
separate locker. To ensure this, the database designer creates a key on
the locker attribute of the student relation. Keys can include more than
one attribute, for example, a nation may impose a restriction that no
province can have two cities with the same name. The

key winocululde province and city name. This would still allow two

 different provinces to have a town called Springfield because their
 province is different. A key over more than one attribute is called a compound
key.

Foreign Keys

A foreign key is a reference to a key in another relation, meaning that
the referencing tuple has, as one of its attributes, the values of a key in
the referenced tuple. Foreign keys need not have unique values in the

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

referencing relation. Foreign keys effectively use the values of attributes
in the referenced relation to restrict the domain of one or more attributes
in the referencing relation.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

A foreign key could be described formally as: "For all tuples in the
referencing relation projected over the referencing attributes, there must
exist a tuple in the referenced relation projected over those same
attributes such that the values in each of the referencing attributes match
the corresponding values in the referenced attributes."

4.0 CONCLUSION

Database applications are used to store and manipulate data. A database
application can be used in many business functions including sales and
inventory tracking, accounting, employee benefits, payroll, production
and more. Database programs for personal computers come in various
shape and sizes. A database remains fundamental for the implementation
of any DATABASE MANAGEMENT
APPLICATION SYSTEM.

5.0 SUMMARY

• A Database is a structured collection of data that is managed to meet
the needs of a community of users. The structure is achieved by
organizing the data according to a database model

• The earliest known use of the term database was in November 1963,

when the System Development Corporation sponsored a symposium
under the title Development and Management of a Computer-
centered Data Base.

• Considering development in information technology and business
applications have resulted in the evolution of several major types of
databases.

• Database tables/indexes are typically stored in memory or on hard
disk in one of many forms, ordered/unordered Flat files, ISAM,
Heaps, Hash buckets or B+ Trees

• A database server is a computer program that provides database

services to other computer programs or computers, as defined by the
client-server model

• Database replication can be used on many database management
systems, usually with a master/slave relationship between the
original and the copies

• A relational database is a database that conforms to the relational

model, and refers to a database's data and schema

6.0 TUTOR-MARKED ASSIGNMENT

1. Define the terms: Field, Records, Field Relation and Attribute

2. Briefly describe a flat file

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

7.0 REFERENCES/FURTHER READINGS

Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data
Banks". Communications of the ACM 13 (6): 377–387. doi:
10.1145/362384.362685.

O‘Brien, James A. (2003). (11th Edition) Introduction to Information

Systems. McGraw-Hill.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

UNIT 3 DATABASE CONCEPTS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Create, Read, Update and Delete
3.2 ACID
3.3 Keys

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

There are basic and standard concepts associated with all databases, and
these are what we will discuss in much detail in this unit. These include
the concept of Creating, Reading, Updating and Deleting (CRUD) data,
ACID (Atomicity, Consistency, Isolation, Durability), and Keys of
different kinds.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• know the meaning of the acronymn CRUD

• understand the applications of databases

• know the meaning of the acronymn ACID and how each members of
the ACID differ from each other

• understand the structure of a database
• know the types of keys associated with databases.

3.0 MAIN CONTENT

3.1 Create, Read, Update and Delete

Create, read, update and delete (CRUD) are the four basic functions of
persistent storage a major part of nearly all computer software.
Sometimes CRUD is expanded with the words retrieve instead of read
or destroys instead of delete. It is also sometimes used to describe user
interface conventions that facilitate viewing, searching, and changing
information; often using computer-based forms and reports.

Alternate terms for CRUD (one initialism and three acronyms):

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

•ABCD: add, browse, change, delete

•ACID: add, change, inquire, delete — though this can be confused with
the transactional use of the acronym ACID.

•BREAD: browse, read, edit, add, delete
•VADE(R): view, add, delete, edit (and restore, for systems supporting

transaction processing)

Database Applications

The acronym CRUD refers to all of the major functions that need to be
implemented in a relational database application to consider it complete.
Each letter in the acronym can be mapped to a standard SQL statement:

Operation SQL
Create INSERT
Read (Retrieve) SELECT
Update UPDATE
Delete (Destroy) DELETE

Although a relational database is a common persistence layer in
software applications, there are numerous others. CRUD can be
implemented with an object database, an XML database, flat text files,
custom file formats, tape, or card, for example.

Google Scholar lists the first reference to create-read-update-delete as by
Kilov in 1990. The concept seems to be also described in more detail in
Kilov's 1998 book.

User Interface

CRUD is also relevant at the user interface level of most applications.
For example, in address book software, the basic storage unit is

ainndividual contact entry. As a bare minimum, the software must allow
the user to:

•Create or add new entries

•Read, retrieve, search, or view existing entries

•Update or edit existing entries

•Delete existing entries

Without at least these four operations, the software cannot be considered
complete. Because these operations are so fundamental, they are often
documented and described under one comprehensive heading, such as
"contact management" or "contact maintenance" (or "document
management" in general, depending on the basic storage unit for

tphaerticular application).

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

3.2 ACID

In computer science, ACID (Atomicity, Consistency, Isolation,
Durability) is a set of properties that guarantee that database transactions
are processed reliably. In the context of databases, a single logical
operation on the data is called a transaction.

An example of a transaction is a transfer of funds from one account to
another, even though it might consist of multiple individual operations
(such as debiting one account and crediting another).

Atomicity

Atomicity refers to the ability of the DBMS to guarantee that either all
of the tasks of a transaction are performed or none of them are. For
example, the transfer of funds can be completed or it can fail for a
multitude of reasons, but atomicity guarantees that one account won't be
debited if the other is not credited. Atomicity states that database
modifications must follow an ―all or nothing‖ rule. Each transaction is
said to be ―atomic.‖ If one part of the transaction fails, the
etrnatnirseaction fails. It is critical that the database management system
maintain the atomic nature of transactions in spite of any DBMS,
operating system or hardware failure.

Consistency

Consistency property ensures that the database remains in a consistent
state before the start of the transaction and after the transaction is over
(whether successful or not).

Consistency states that only valid data will be written to the database. If,
for some reason, a transaction is executed that violates the database‘s
consistency rules, the entire transaction will be rolled back and the
database will be restored to a state consistent with those rules. On the
other hand, if a transaction successfully executes, it will take the
database from one state that is consistent with the rules to another state
that is also consistent with the rules.

Durability

Durability refers to the guarantee that once the user has been notified of
success, the transaction will persist, and not be undone. This means it
will survive system failure, and that the database system has checked the

integrity constraints and won't need to abort the transaction. Many
databases implement durability by writing all transactions into a log that
can be played back to recreate the system state right before the failure. A
transaction can only be deemed committed after it is safely in the log.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Implementation

Implementing the ACID properties correctly is not simple. Processing a
transaction often requires a number of small changes to be

minacdlued, ing updating indices that are used by the system to
 speed useparches. This sequence of operations is subject to failure for a
number
of reasons; for instance, the system may have no room left on its disk
drives, or it may have used up its allocated CPU time.

ACID suggests that the database be able to perform all of
tohpeesreations at once. In fact this is difficult to arrange. There are

tpwoopular families of techniques: write ahead logging and shadow paging.
In both cases, locks must be acquired on all information that is updated,
and depending on the implementation, on all data that is being read. In
write ahead logging, atomicity is guaranteed by ensuring that
information about all changes is written to a log before it is written to
the database. That allows the database to return to a consistent state in
the event of a crash. In shadowing, updates are applied to a copy of the
database, and the new copy is activated when the transaction commits.
The copy refers to unchanged parts of the old version of the database,
rather than being an entire duplicate.

Until recently almost all databases relied upon locking to provide ACID
capabilities. This means that a lock must always be acquired

bperofocreessing data in a database, even on read operations. Maintaining a
large number of locks, however, results in substantial overhead as well
as hurting concurrency. If user A is running a transaction that has read a
row of data that user B wants to modify, for example, user B must wait
until user A's transaction is finished.

An alternative to locking is multiversion concurrency control in which
the database maintains separate copies of any data that is modified. This
allows users to read data without acquiring any locks. Going back to the
example of user A and user B, when user A's transaction gets to data
that user B has modified, the database is able to retrieve

 the evxerasciton of that data that existed when user A started their
 transaction.
This ensures that user A gets a consistent view of the database even if
other users are changing data that user A needs to read. A

nimatpulreaml entation of this idea results in a relaxation of the

ipsroolpaetirotyn, namely snapshot isolation.

It is difficult to guarantee ACID properties in a network environment.
Network connections might fail, or two users might want to use the
same part of the database at the same time.

Two-phase commit is typically applied in distributed transactions to

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

ensure that each participant in the transaction agrees on whether
thraensaction should be committed or not.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Care must be taken when running transactions in parallel. Two phase
locking is typically applied to guarantee full isolation.

3.3 Keys

3.3.1 Foreign Key

In the context of relational databases, a foreign key is a referential
constraint between two tables. The foreign key identifies a column or a
set of columns in one (referencing) table that refers to a column or set of
columns in another (referenced) table. The columns in the referencing
table must be the primary key or other candidate key in the referenced
table. The values in one row of the referencing columns must occur in a
single row in the referenced table. Thus, a row in the referencing table
cannot contain values that don't exist in the referenced table (except
potentially NULL). This way references can be made to link information
together and it is an essential part of database normalization. Multiple
rows in the referencing table may refer to the same row in the referenced
table. Most of the time, it reflects the one (master table, or referenced
table) to many (child table, or referencing table) relationship.

The referencing and referenced table may be the same table, i.e. the
foreign key refers back to the same table. Such a foreign key is known
in SQL:2003 as self-referencing or recursive foreign key.

A table may have multiple foreign keys, and each foreign key can have a
different referenced table. Each foreign key is enforced independently
by the database system. Therefore, cascading relationships between
tables can be established using foreign keys.
Improper foreign key/primary key relationships or not enforcing those
relationships are often the source of many database and data modeling
problems.

Referential Actions

Because the DBMS enforces referential constraints, it must ensure data
integrity if rows in a referenced table are to be deleted (or updated). If
dependent rows in referencing tables still exist, those references have to
be considered. SQL: 2003 specifies 5 different referential actions that
shall take place in such occurrences:

•CASCADE

•RESTRICT

•NO ACTION

•SET NULL

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

•SET DEFAULT

CASCADE

Whenever rows in the master (referenced) table are deleted, the
respective rows of the child (referencing) table with a matching foreign
key column will get deleted as well. A foreign key with a cascade delete
means that if a record in the parent table is deleted, then

tchoerresponding records in the child table will automatically be deleted.
This is called a cascade delete.

Example Tables: Customer(customer_id,cname,caddress)and
Order(customer_id,products,payment)

Customer is the master table and Order is the child
 table w'cuhsetroemer_id' is the foreign key in Order and
 represents the customer
who placed the order. When a row of Customer is deleted, any Order
row matching the deleted Customer's customer_id will also be deleted.
the values are deleted in the row like if we delete one row in the parent
table then the same row in the child table will be automatically deleted.

RESTRICT

A row in the referenced table cannot be updated or deleted if dependent
rows still exist. In that case, no data change is even

ashttoeumldptneodt beanadllowed.

NO ACTION

The UPDATE or DELETE SQL statement is executed on the referenced
table. The DBMS verifies at the end of the statement execution if none
of the referential relationships is violated. The major difference
tRoESTRICT is that triggers or the statement semantics itself may give a
result in which no foreign key relationships is violated. Then

tshtaetement can be executed successfully.

SET NULL

The foreign key values in the referencing row are set to NULL when the
referenced row is updated or deleted. This is only possible if

trheespective columns in the referencing table are nullable. Due to

tsheemantics of NULL, a referencing row with NULLs in the foreign key
columns does not require a referenced row.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

SET DEFAULT

Similarly to SET NULL, the foreign key values in the referencing row
are set to the column default when the referenced row is updated or
deleted.

3.3.2 Candidate Key

In the relational model, a candidate key of a relvar (relation variable) is
a set of attributes of that relvar such that at all times it holds in the
relation assigned to that variable that there are no two distinct turples
with the same values for these attributes and there is not a proper subset
of this set of attributes for which (1) holds.

Since a superkey is defined as a set of attributes for which (1) holds, we
can also define a candidate key as a minimal superkey, i.e. a superkey of
which no proper subset is also a superkey.

The importance of candidate keys is that they tell us how

 we cidaenntify individual tuples in a relation. As such they are one of the most
important types of database constraint that should be specified when
designing a database schema. Since a relation is a set (no duplicate
elements), it holds that every relation will have at least one candidate key
 (because the entire heading is always a superkey). Since in some
RDBMSs tables may also represent multisets (which strictly means
these DBMSs are not relational), it is an important design rule to specify

explicitly at least one candidate key for each relation. For practical
reasons RDBMSs usually require that for each relation one of its

candidate keys is declared as the primary key, which means that it is

considered as the preferred way to identify individual tuples. Foreign
keys, for example, are usually required to reference such a primary key
and not any of the other candidate keys.

Determining Candidate Keys

The previous example only illustrates the definition of candidate key
and not how these are in practice determined. Since most relations have
a large number or even infinitely many instances it would be impossible
to determine all the sets of attributes with the uniqueness property for
each instance. Instead it is easier to consider the sets of real-world
entities that are represented by the relation and determine which
attributes of the entities uniquely identify them. For example a relation
Employee(Name, Address, Dept) probably represents employees and
these are likely to be uniquely identified by a combination of Name and
Address which is therefore a superkey, and unless the same holds for
only Name or only Address, then this combination is also a candidate
key.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

In order to determine correctly the candidate keys it is

idmetpeormrtainet atlol superkeys, which is especially difficult if the relation
represents a set of relationships rather than a set of entities

3.3.3 Unique key

In relational database design, a unique key or primary key is a
candidate key to uniquely identify each row in a table. A unique key or
primary key comprises a single column or set of columns. No
tdwisotinct rows in a table can have the same value (or
 combination ovaf lues) in those columns. Depending on its
 design, a table may have arbitrarily many unique keys but at most
one primary key.

A unique key must uniquely identify all possible rows that exist in a
table and not only the currently existing rows. Examples of unique keys
are Social Security numbers (associated with a specific person)
oISrBNs (associated with a specific book). Telephone books and
dictionaries cannot use names or words or Dewey Decima

snyusmtebmers as candidate keys because they do not uniquely

itdeleenpthifoyne numbers or words.

A primary key is a special case of unique keys. The major difference is
that for unique keys the implicit NOT NULL constraint is not
automatically enforced, while for primary keys it is. Thus, the values in
a unique key column may or may not be NULL. Another difference is
that primary keys must be defined using another syntax.

The relational model, as expressed through relational calculus and
relational algebra, does not distinguish between primary keys and other
kinds of keys. Primary keys were added to the SQL standard mainly as a
convenience to the application programmer.

Unique keys as well as primary keys can be referenced by form

3.3.4 Superkey

A superkey is defined in the relational model of database organization
as a set of attributes of a relation variable (relvar) for which it holds that
in all relations assigned to that variable there are no two distinct tuples
(rows) that have the same values for the attributes in this

sEeqt.uivalently a superkey can also be defined as a set of attributes of a
relvar upon which all attributes of the relvar are functionally dependent.
Note that if attribute set K is a superkey of relvar R, then at all times it is
the case that the projection of R over K has the same cardinality as R
itself.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Informally, a superkey is a set of columns within a table whose values
can be used to uniquely identify a row. A candidate key is a minimal set
of columns necessary to identify a row, this is also called a minimal
superkey. For example, given an employee table, consisting of the
columns employeeID, name, job, and departmentID, we could use the
employeeID in combination with any or all other columns of this table
to uniquely identify a row in the table. Examples of superkeys in this
table would be {employeeID, Name}, {employeeID, Name, job}, and
{employeeID, Name, job, departmentID}.

In a real database we don't need values for all of those columns to
identify a row. We only need, per our example, the set {employeeID}.
This is a minimal superkey – that is, a minimal set of columns that can
be used to identify a single row. So, employeeID is a candidate key.

Example

English Monarchs

Monarch Name Monarch Number Royal House
Edward II Plantagenet
Edward III Plantagenet
Richard II Plantagenet
Henry IV Lancaster

In this example, the possible superkeys are:

•{Monarch Name, Monarch Number}

•{Monarch Name, Monarch Number, Royal House}

3.3.4 Surrogate key

A surrogate key in a database is a unique identifier for either an entity
in the modeled world or an object in the database. The surrogate key is
not derived from application data.

Definition

There appear to be two definitions of a surrogate in the literature. We
shall call these surrogate (1) and surrogate (2):

Surrogate (1)

This definition is based on that given by Hall, Owlett and Todd (1976).
Here a surrogate represents an entity in the outside world. The surrogate
is internally generated by the system but is nevertheless visible by the
user or application.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Surrogate (2)

This definition is based on that given by Wieringa and de Jung (1991).
Here a surrogate represents an object in the database itself. The
surrogate is internally generated by the system and is invisible to the
user or application.

We shall adopt the surrogate (1) definition throughout this article
largely because it is more data model rather than storage model oriented.
See Date (1998).

An important distinction exists between a surrogate and a primary key,
depending on whether the database is a current database or a temporal
database. A current database stores only currently valid data, therefore
there is a one-to-one correspondence between a surrogate in the
modelled world and the primary key of some object in the database; in
this case the surrogate may be used as a primary key, resulting in the
term surrogate key. However, in a temporal database there is a many-to-
one relationship between primary keys and the surrogate. Since there
may be several objects in the database corresponding to a
suinrgrolegate, we cannot use the surrogate as a primary key
anttoritbhuetre is required, in addition to the surrogate, to uniquely identify
each object.

Although Hall et alia (1976) say nothing about this, other authors have
argued that a surrogate should have the following constraints:

•the value is unique system-wide, hence never reused;

•the value is system generated;

•the value is not manipulable by the user or application;

•the value contains no semantic meaning;

•the value is not visible to the user or application;

•the value is not composed of several values from different domains.

Surrogates in Practice

In a current database, the surrogate key can be the
primary kgeyn,erated by the DATABASE MANAGEMENT APPLICATION SYSTEM
and no daperpilviceadtiforonmdaatnay in the database. The only significance of the surrogate
key is to act as the primary key. It is also possible that the surrogate key
exists in addition to the database-generated uuid, e.g. a HR number for
each employee besides the UUID of each employee.

A surrogate key is frequently a sequential number (e.g. a Sybase or SQL
Server "identity column", a PostgreSQL serial, an Oracle SEQUENCE
or a column defined with AUTO_INCREMENT in MySQL) but doesn't

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

have to be. Having the key independent of all other columns insulates
the database relationships from changes in data values or database
design (making the database more agile) and guarantees uniqueness.

In a temporal database, it is necessary to distinguish between the
surrogate key and the primary key. Typically, every row would have
both a primary key and a surrogate key. The primary key identifies the
unique row in the database, the surrogate key identifies the unique entity
in the modelled world; these two keys are not the same. For example,

table
was

Staff may contain two rows for "John Smith", one row when
employed between 1990 and 1999, another row when

he
he

was

employed between 2001 and 2006. The surrogate key is identical (non-
unique) in both rows however the primary key will be unique.

Some database designers use surrogate keys religiously regardless of the
suitability of other candidate keys, while others will use a key already
present in the data, if there is one.
A surrogate may also be called a

•surrogate key,

•entity identifier,

•system-generated key,

•database sequence number,

•synthetic key,

•technical key, or

•arbitrary unique identifier.

Some of these terms describe the way of generating new surrogate
values rather than the nature of the surrogate concept.

4.0 CONCLUSION

The fundamental concepts that guide the operation of a database, that is,
CRUD and ACID remains the same irrespective of the types and models
of databases that emerge by the day. However, one cannot rule out the
possibilities of other concepts emerging with time in the near future.

5.0 SUMMARY

• Create, read, update and delete (CRUD) are the four basic functions

of persistent storage a major part of nearly all computer software.
• In computer science, ACID (Atomicity, Consistency, Isolation,

Durability) is a set of properties that guarantee that database
transactions are processed reliably. In the context of databases, a
single logical operation on the data is called a transaction.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

• In the context of relational databases a foreign key is a referential
constraint between two tables

• In the relational model, a candidate key of a relvar (relation

variable) is a set of attributes of that relvar such that at all times it
holds in the relation assigned to that variable that there are no two
distinct tuples with the same values for these attributes

• In relational database design, a unique key or primary key is a

candidate key to uniquely identify each row in a table
• Superkey: A superkey is defined in the relational model of database

organization as a set of attributes of a relation variable (relvar) for
which it holds that in all relations assigned to that variable there are
no two distinct tuples (rows) that have the same values for

tahtteributes in this set
• A surrogate key in a database is a unique identifier for either an

entity in the modeled world or an object in the database.

6.0 TUTOR-MARKED ASSIGNMENT

1. What are the meaning of the acronyms CRUD and ACID
2. What are the constraints associated with surrogate keys

7.0 REFERENCES/FURTHER READINGS

Nijssen, G.M. (1976). Modelling in Data Base Management Systems.
North-Holland Pub. Co. ISBN 0-7204-0459-2.

Engles, R.W.: (1972). A Tutorial on Data-Base Organization, Annual
Review in Automatic Programming, Vol.7, Part 1, Pergamon
Press, Oxford, pp. 1–64.

Langefors, B: (1968). Elementary Files and Elementary File Records,
Proceedings of File 68, an IFIP/IAG International Seminar on
File Organisation, Amsterdam, November, pp. 89–96.

The Identification of Objects and Roles: Object Identifiers Revisited by
Wieringa and de Jung (1991).

Relational Database Writings 1994–1997 by C.J. Date (1998), Chapters
11 and 12.

Carter, Breck. "Intelligent Versus Surrogate Keys". Retrieved on
2006-12-03.

Richardson, Lee. "Create Data Disaster: Avoid Unique Indexes –
(Mistake 3 of 10)".

Berkus, Josh. "Database Soup: Primary Keyvil, Part I".

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Gray, Jim (September 1981). "The Transaction Concept: Virtues and
Limitations". Proceedings of the 7th International Conference on
Very Large Data Bases: pages 144–154, 19333 Vallco Parkway,
Cupertino CA 95014: Tandem Computers.

Jim Gray & Andreas Reuter, Distributed Transaction Processing:
Concepts and Techniques, Morgan Kaufman 1993. ISBN
1558601902.

Date, Christopher (2003). "5: Integrity", An Introduction to Database

Systems. Addison-Wesley, pp. 268-276. ISBN 978-0321189561.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

UNIT 4 DATABASE MODELS 1

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Hierarchical Model
3.2 Network Model
3.3 Object-Relational Database
3.4 Object Database
3.5 Associative Model of Data
3.6 Column-Oriented DBMS
3.7 Navigational Database
3.8 Distributed Database
3.9 Real Time Database

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Several models have evolved in the course of development of databases
and DATABASE MANAGEMENT APPLICATION SYSTEM. This has resulted in
smeovderealsl fdoerpmlosyoefd by users depending on their needs and understanding.
In this unit we set the pace to X-ray these models and

csuobnsceluqduent uinnn it.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• know and define the different types of database models

• differentiate the database models from each other

• sketch the framework of hierarchical and network models

• understand the concepts and model behind the models
• know the advantages and disadvantages of the different models.

3.0 MAIN CONTENT

3.1 Hierarchical Model

In a hierarchical model, data is organized into an inverted

tsrterue-cltiukree, implying a multiple downward link in each node to describe
the nesting, and a sort field to keep the records in a particular order in

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

each same-level list. This structure arranges the various data elements in
a hierarchy and helps to establish logical relationships among data
elements of multiple files. Each unit in the model is a record which is
also known as a node. In such a model, each record on one level can be
related to multiple records on the next lower level. A record that has
subsidiary records is called a parent and the subsidiary records are called
children. Data elements in this model are well suited for one-to-many
relationships with other data elements in the database.

Figure 1: A Hierarchical Structure

Department
Data Element

Project A Data Project B Data
Element

Employee 1 Employee B
Data Element Data Element

Element

This model is advantageous when the data elements are inherently
hierarchical. The disadvantage is that in order to prepare the database it
becomes necessary to identify the requisite groups of files that are to be
logically integrated. Hence, a hierarchical data model may not always be
flexible enough to accommodate the dynamic needs of an organization.

Example

An example of a hierarchical data model would be if an organization
had records of employees in a table (entity type) called "Employees". In
the table there would be attributes/columns such as First Name, Last
Name, Job Name and Wage. The company also has data about the
employee‘s children in a separate table called "Children" with attributes
such as First Name, Last Name, and date of birth. The Employee table
represents a parent segment and the Children table represents a Child
segment. These two segments form a hierarchy where an employee may
have many children, but each child may only have one parent.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Consider the following structure:

EmpNo Designation Re portsTo

10 Direc tor

20 Seni or Manager 10

30 Typi st 20

40 Progr ammer 20

In this, the "child" is the same type as the "parent". The hierarchy stating
EmpNo 10 is boss of 20, and 30 and 40 each report to 20 is represented
by the "ReportsTo" column. In Relational database terms, the ReportsTo
column is a foreign key referencing the EmpNo column. If the "child"
data type were different, it would be in a different table, but there would
still be a foreign key referencing the EmpNo column of the employees
table.

This simple model is commonly known as the adjacency list model, and
was introduced by Dr. Edgar F. Codd after initial criticisms surfaced
that the relational model could not model hierarchical data.

3.2 Network Model

In the network model, records can participate in any number of named
relationships. Each relationship associates a record of one type (called
the owner) with multiple records of another type (called the member).
These relationships (somewhat confusingly) are called sets. For example
a student might be a member of one set whose owner is the course they
are studying, and a member of another set whose owner is the college
they belong to. At the same time the student might be the owner of a set
of email addresses, and owner of another set containing phone numbers.
The main difference between the network model and hierarchical model
is that in a network model, a child can have a number of parents whereas
in a hierarchical model, a child can have only one parent

Thiheerarchical model is therefore a subset of the network model.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Figure 3: Network Structure

Department A Department B

Student A Student B

Project A Project B

Student C

Programmatic access to network databases is traditionally by means of a
navigational data manipulation language, in which programmers
navigate from a current record to other related records using verbs such
as find owner, find next, and find prior. The most common example of
such an interface is the COBOL-based Data Manipulation Language
defined by CODASYL.

Network databases are traditionally implemented by using chains of
pointers between related records. These pointers can be node numbers or
disk addresses.

The network model became popular because it provided considerable
flexibility in modelling complexdata relationships, and also offered high
 performance by virtue of the fact that the access verbs used by
programmers mapped directly to pointer-following in the
implementation.

The network model provides greater advantage than the hierarchical
model in that it promotes greater flexibility and data accessibility, since
records at a lower level can be accessed without accessing the records
above them. This model is more efficient than hierarchical model, easier
to understand and can be applied to many real world problems that
require routine transactions. The disadvantages are that: It is a complex process to
design and develop a network database; It has to be refined frequently; It
 requires that the relationships among all the records be
defined before development starts, and changes often demand major

programming efforts; Operation and maintenance of the network model
is expensive and time consuming.

Examples of database engines that have network model capabilities are
RDM Embedded and RDM Server.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

However, the model had several disadvantages. Networkl programming
proved error-prone as data models became more complex, and small
changes to the data structure could require changes to many programs.
Also, because of the use of physical pointers, operations such

adsatabase loading and restructuring could be very time-consuming.

Concept and History: The network model is a

database mcoondceilved as a flexible way of representing objects and
 their relationships. Its original inventor was Charles
Bachman, and it was developed into a standard specification published
 in 1969 by the CODASYL Consortium. Where the
hierarchical model structures data
as a tree of records, with each record having one parent record and many
children, the network model allows each record to have multiple parent
and child records, forming a lattice structure.

The chief argument in favour of the network model, in comparison to
the hierarchic model, was that it allowed a more natural modeling of
relationships between entities. Although the model was widely
implemented and used, it failed to become dominant for

 two mreasinons. Firstly, IBM chose to stick to the hierarchical model with

semi-
network extensions in their established products such as IMS and DL/I.
Secondly, it was eventually displaced by the relational model, which
offered a higher-level, more declarative interface. Until the early 1980s
the performance benefits of the low-level navigational interfaces offered
by hierarchical and network databases were persuasive for many large-
scale applications, but as hardware became faster, the extra productivity
and flexibility of the relational model led to the gradual obsolescence of
the network model in corporate enterprise usage.

3.3 Object-Relational Database

An object-relational database (ORD) or object-relational database
management system (ORDBMS) is a database management system
(DBMS) similar to a relational database, but with

 an odbatjaebcat-soeriemntoedel: objects, classes and inheritance are directly supported
in database schemas and in the query language. In addition, it supports
extension of the data model with custom data-types and methods.

One aim for this type of system is to bridge the gap between conceptual
data modeling techniques such as Entity-relationship diagram (ERD)
and object-relational mapping (ORM), which often use classes and
inheritance, and relational databases, which do not directly support
them.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Another, related, aim is to bridge the gap between relational databases
and the object-oriented modeling techniques used in programming

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

languages such as Java, C++ or C# However, a more popular alternative
for achieving such a bridge is to use a standard relational database
systems with some form of ORM software.

Whereas traditional RDBMS or SQL-DBMS products focused on the
efficient management of data drawn from a limited set of data-types
(defined by the relevant language standards), an object-relational DBMS
allows software-developers to integrate their own types and the methods
that apply to them into the DBMS. ORDBMS technology aims to allow
developers to raise the level of abstraction at which they view the
problem domain. This goal is not universally shared; proponents of
relational databases often argue that object-oriented specification lowers
the abstraction level.

An object-relational database can be said to provide a middle ground
between relational databases and object-oriented databases
(OODBMS). In object-relational databases, the approach is essentially
that of relational databases: the data resides in the database and is
manipulated collectively with queries in a query language; at the other
extreme are OODBMSes in which the database is essentially a persistent
object store for software written in an object-oriented programming
language, with a programming API for storing and retrieving objects,
and little or no specific support for querying.

Many SQL ORDBMSs on the market today are extensible with user-
defined types (UDT) and custom-written functions (e.g. stored
procedures. Some (e.g. SQL Server) allow such functions to be written
in object-oriented programming languages, but this by itself doesn't
make them object-oriented databases; in an object-oriented database,
object orientation is a feature of the data model.

3.4 Object Database

In an object database (also object oriented database), information is represented
 in the form of objects as used in object-oriented
programming. When database capabilities are combined with object
programming language capabilities, the result is an object database
management system (ODBMS). An ODBMS makes database objects
appear as programming language objects in one or more object
programming languages. An ODBMS extends the programming
language with transparently persistent data, concurrency control, data
recovery, associative queries, and other capabilities.

Some object-oriented databases are designed to work well with object-
oriented programming languages such as Python, Java, C#, Visual Basic
.NET, C++, Objective-C and Smalltalk. Others have their own

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

programming languages. An ODBMSs use exactly the same model as
object-oriented programming languages.

Object databases are generally recommended when there is a business
need for high performance processing on complex data.

Adoption of Object Databases

Object databases based on persistent programming acquired a niche in
application areas such as engineering and spatial databases,
telecommunications, and scientific areas such as high energy physics
and molecular biology. They have made little impact

 on mcoaminmsterrecaimal data processing, though there is some usage in
 specialized
areas of financial service]. It is also worth noting that object databases

held the record for the World's largest database (being first to hold over
1000 Terabytes at Stanford Linear Accelerator Center "Lessons Learned
From Managing A Petabyte") and the highest ingest rate ever recorded
for a commercial database at over one Terabyte per hour.

Another group of object databases focuses on embedded use in devices,
packaged software, and realtime systems.

Advantages and Disadvantages

Benchmarks between ODBMSs and RDBMSs have shown that an
ODBMS can be clearly superior for certain kinds of tasks. The main
reason for this is that many operations are performed using navigational
rather than declarative interfaces, and navigational access to data

iussually implemented very efficiently by following pointers.

Critics of navigational database-based technologies like ODBMS
suggest that pointer-based techniques are optimized for very specific
"search routes" or viewpoints. However, for general-purpose queries on
the same information, pointer-based techniques will tend to be slower
and more difficult to formulate than relational. Thus, navigation appears
to simplify specific known uses at the expense of general, unforeseen,
and varied future uses. However, with suitable language support, direct
object references may be maintained in addition to normalised, indexed
aggregations, allowing both kinds of access; furthermore, a persistent
language may index aggregations on whatever is returned by

saorbmiterary object access method, rather than only on

 attribute vwahluiceh, can simplify some queries.

Other things that work against an ODBMS seem to be the

lianctekropeorfability with a great number of tools/features that are taken for

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

granted in the SQL world including but not limited to industry standard

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

connectivity, reporting tools, OLAP tools, and backup and recovery
standards. Additionally, object databases lack a formal mathematical
foundation, unlike the relational model, and this in turn leads to
weaknesses in their query support. However, this objection is offset by
the fact that some ODBMSs fully support SQL in addition to
navigational access, e.g. Objectivity/SQL++, Matisse, and InterSystems
CACHÉ. Effective use may require compromises to keep both
paradigms in sync.

In fact there is an intrinsic tension between the notion of encapsulation,
which hides data and makes it available only through a published set of
interface methods, and the assumption underlying much database
technology, which is that data should be accessible to queries based on
data content rather than predefined access paths. Database-centric
thinking tends to view the world through a declarative and attribute-
driven viewpoint, while OOP tends to view the world through a
behavioral viewpoint, maintaining entity-identity independently of

changing attributes. This is one of the many impedance mismatch issues
surrounding OOP and databases.

Although some commentators have written off object database
technology as a failure, the essential arguments in its favor remain valid,
and attempts to integrate database functionality more closely into object
programming languages continue in both the research and the industrial
communities.

3.5 Associative Model of Data

The associative model of data is an alternative data model for database
systems. Other data models, such as the relational model and the object
data model, are record-based. These models involve encompassing
attributes about a thing, such as a car, in a record structure.
Satutrcihbutes might be registration, colour, make, model, etc. In the
associative model, everything which has ―discrete independent
existence‖ is modeled as an entity, and relationships between them are
modeled as associations. The granularity at which data is represented is
similar to schemes presented by Chen (Entity-relationship model);
Bracchi, Paolini and Pelagatti (Binary Relations); and Senko (The Entity
Set Model).

3.6 Column-Oriented DBMS

A column-oriented DBMS is a DATABASE MANAGEMENT APPLICATION
SYSTEM (wDhBicMh S) stores its content by column rather than by row. This
 has advantages for databases such as data warehouses
 and library

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

catalogues, where aggregates are computed over large numbers of
similar data items.

Benefits

Comparisons between row-oriented and column-oriented systems are
typically concerned with the efficiency of hard-disk access for a given
workload, as seek time is incredibly long compared to the other delays
in computers. Further, because seek time is improving at a slow rate
relative to cpu power (see Moore's Law), this focus will likely continue
on systems reliant on hard-disks for storage. Following is a set of over-
simplified observations which attempt to paint a picture of the trade-offs
between column and row oriented organizations.

1. Column-oriented systems are more efficient when an aggregate

needs to be computed over many rows but only for a notably smaller
subset of all columns of data, because reading that smaller subset of
data can be faster than reading all data.

2. Column-oriented systems are more efficient when new values of a
column are supplied for all rows at once, because that column data
can be written efficiently and replace old column data

wtoiuthchoiuntg any other columns for the rows.

3. Row-oriented systems are more efficient when many columns of a
single row are required at the same time, and when
roelwat-isviezley smisall, as the entire row can be retrieved with a single disk
seek.

4. Row-oriented systems are more efficient when writing a new row if
all of the column data is supplied at the same time, as the entire row
can be written with a single disk seek.

In practice, row oriented architectures are well-suited for OLTP-like
workloads which are more heavily loaded with interactive transactions.
Column stores are well-suited for OLAP-like workloads (e.g., data
warehouses) which typically involve a smaller number of highly
complex queries over all data (possibly terabytes).

Storage Efficiency vs. Random Access

Column data is of uniform type; therefore, there are some opportunities
for storage size optimizations available in column oriented data that are
not available in row oriented data. For example, many popular modern
compression schemes, such as LZW, make use of the

 similarity oadf jacent data to compress. While the same techniques may

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

be used on

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

row-oriented data, a typical implementation will achieve less effective
results. Further, this behavior becomes more dramatic when a large
percentage of adjacent column data is either the same or not-present,
such as in a sparse column (similar to a sparse matrix). The opposing
tradeoff is Random Access. Retrieving all data from a single row is
more efficient when that data is located in a single location, such as in a
row-oriented architecture. Further, the greater adjacent compression
achieved, the more difficult random-access may become, as data might
need to be uncompressed to be read.

Implementations

For many years, only the Sybase IQ product was commonly available in
the column-oriented DBMS class. However, that has changed rapidly in
the last few years with many open source and commercial
implementations.

3.7 Navigational Database

Navigational databases are characterized by the fact that objects in the
database are found primarily by following references from other objects.
Traditionally navigational interfaces are procedural, though one could
characterize some modern systems like XPath as being simultaneously
navigational and declarative.

Navigational access is traditionally associated with the network model
and hierarchical model of database interfaces and have evolved into Set-
oriented systems. Navigational techniques use "pointers" and "paths" to
navigate among data records (also known as "nodes"). This is in contrast
to the relational model (implemented in relational databases), which
strives to use "declarative" or logic programming techniques in which
you ask the system for what you want instead of how to navigate to it.

For example, to give directions to a house, the navigational approach
would resemble something like, "Get on highway 25 for 8 miles, turn
onto Horse Road, left at the red barn, then stop at the 3rd house down
the road". Whereas, the declarative approach would resemble, "Visit the
green house(s) within the following coordinates...."

Hierarchical models are also considered navigational because one
"goes" up (to parent), down (to leaves), and there are "paths", such as
the familiar file/folder paths in hierarchical file systems. In general,
navigational systems will use combinations of paths and prepositions
such as "next", "previous", "first", "last", "up", "down", etc.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Some also suggest that navigational database engines are easier to build
and take up less memory (RAM) than relational equivalents. However,
the existence of relational or relational-based products of the late 1980s
that possessed small engines (by today's standards) because they did not
use SQL suggest this is not necessarily the case. Whatever the reason,
navigational techniques are still the preferred way to handle smaller-
scale structures.

A current example of navigational structuring can be found in

tDhoecument Object Model (DOM) often used in web browsers and closely
associated with JavaScript. The DOM "engine" is essentially a light-
weight navigational database. The World Wide Web itself and
Wikipedia could even be considered forms of navigational databases.
(On a large scale, the Web is a network model and on smaller or local
scales, such as domain and URL partitioning, it uses hierarchies.)

3.8 Distributed Database

A distributed database is a database that is under the control

 of acentral database management system (DBMS) in which storage devices
are not all attached to a common CPU. It may be stored in
mcoumltpipulteee rs located in the same physical location, or may be dispersed
over a network of interconnected computers.

Collections of data (e.g. in a database) can be distributed across multiple
physical locations. A distributed database is distributed into separate
partitions/fragments. Each partition/fragment of a distributed database
may be replicated (i.e. redundant fail-overs, RAID like).

Besides distributed database replication and fragmentation, there are
many other distributed database design technologies. For example, local
autonomy, synchronous and asynchronous distributed database
technologies. These technologies' implementation can and does depend
on the needs of the business and the sensitivity/confidentiality of the
data to be stored in the database, and hence the price the business is
willing to spend on ensuring data security, consistency and integrity.

Important considerations

Care with a distributed database must be taken to ensure the following:

• The distribution is transparent — users must be able to interact with
the system as if it were one logical system. This applies to

tshyestem's performance, and methods of access amongst other things.
• Transactions are transparent — each transaction must maintain

database integrity across multiple databases. Transactions must also

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

be divided into subtransactions, each subtransaction affecting one
database system.

Advantages of Distributed Databases

• Reflects organizational structure — database fragments are
located in the departments they relate to.

• Local autonomy — a department can control the data about them
(as they are the ones familiar with it.)

• Improved availability — a fault in one database system will only
affect one fragment, instead of the entire database.

• Improved performance — data is located near the site of greatest
demand, and the database systems themselves are parallelized,
allowing load on the databases to be balanced among servers. (A
high load on one module of the database won't affect other
modules of the database in a distributed database.)

• Economics — it costs less to create a network of smaller
computers with the power of a single large computer.

• Modularity — systems can be modified, added and removed from
the distributed database without affecting other modules
(systems).

Disadvantages of Distributed Databases

• Complexity — extra work must be done by the DBAs to ensure
that the distributed nature of the system is transparent. Extra work
must also be done to maintain multiple disparate systems, instead
of one big one. Extra database design work must also be done to
account for the disconnected nature of the database — for
example, joins become prohibitively expensive when performed
across multiple systems.

• Economics — increased complexity and a more extensive
infrastructure means extra labour costs.

• Security — remote database fragments must be secured, and they
are not centralized so the remote sites must be secured as well.
The infrastructure must also be secured (e.g., by encrypting the
network links between remote sites).

• Difficult to maintain integrity — in a distributed database,
enforcing integrity over a network may require too much of the
network's resources to be feasible.

• Inexperience — distributed databases are difficult to work with,
and as a young field there is not much readily available
experience on proper practice.

• Lack of standards – there are no tools or methodologies yet to
help users convert a centralized DBMS into a distributed DBMS.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

• Database design more complex – besides of the normal
difficulties, the design of a distributed database has to consider
fragmentation of data, allocation of fragments to specific sites
and data replication.

3.9 Real Time Database

A real-time database is a processing system designed to handle
workloads whose state is constantly changing (Buchmann). This differs
from traditional databases containing persistent data, mostly unaffected
by time. For example, a stock market changes very rapidly

adnydnamiiisc. The graphs of the different markets appear to be very unstable
and yet a database has to keep track of current values for all of

tmhaerkets of the New York Stock Exchange (Kanitkar). Real-time
processing means that a transaction is processed fast enough for the
result to come back and be acted on right away (Capron). Real-time
databases are useful for accounting, banking, law, medical records,
multi-media, process control, reservation systems, and scientific data
analysis (Snodgrass). As computers increase in power and can

smt ooorrreee data, they are integrating themselves into our society and

aermeployed in many applications.

Overview

Real-time databases are traditional databases that use an extension to
give the additional power to yield reliable responses. They use timing
constraints that represent a certain range of values for which the data are
valid. This range is called temporal validity. A conventional database
cannot work under these circumstances because the inconsistencies
between the real world objects and the data that represents them are too
severe for simple modifications. An effective system needs to be able to
handle time-sensitive queries, return only temporally valid data, and
support priority scheduling. To enter the data in the records, often
asensor or an input device monitors the state of the physical system and
updates the database with new information to reflect the physical system
more accurately (Abbot). When designing a real-time database system,
one should consider how to represent valid time, how facts
arsesociated with real-time system. Also, consider how to represent

attribute values in the database so that process transactions and data
consistency have no violations (Abbot).

When designing a system, it is important to consider what the system
should do when deadlines are not met. For example, an

acoirn- traoflfic system constantly monitors hundreds of aircraft and makes
decisions about incoming flight paths and determines the order in which
aircraft should land based on data such as fuel, altitude, and speed. If

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

any of this information is late, the result could be devastating
(Sivasankaran). To address issues of obsolete data, the timestamp can
support transactions by providing clear time references (Sivasankaran).

SQL DBMS

IBM started working on a prototype system loosely based on Codd's
concepts as System R in the early 1970s — unfortunately, System R
was conceived as a way of proving Codd's ideas unimplementable, and
thus the project was delivered to a group of programmers who were not
under Codd's supervision, never understood his ideas fully and ended up
violating several fundamentals of the relational model. The first
"quickie" version was ready in 1974/5, and work then started on multi-
table systems in which the data could be broken down so that all of the
data for a record (much of which is often optional) did not have to be
stored in a single large "chunk". Subsequent multi-user versions were
tested by customers in 1978 and 1979, by which time a standardized
query language, SQL, had been added. Codd's ideas were establishing
themselves as both workable and superior to Codasyl, pushing IBM to
develop a true production version of System R, known as SQL/DS, and,
later, Database 2 (DB2).

Many of the people involved with INGRES became convinced of the

future commercial success of such systems, and formed their own
companies to commercialize the work but with an SQL interface.
Sybase, Informix, NonStop SQL and eventually Ingres itself were all
being sold as offshoots to the original INGRES product in the 1980s.
Even Microsoft SQL Server is actually a re-built version of Sybase, and
thus, INGRES. Only Larry Ellison‘s Oracle started from a different
chain, based on IBM's papers on System R, and beat IBM to market
when the first version was released in 1978.

Stonebraker went on to apply the lessons from INGRES to develop a new
 database, Postgres, which is now known as PostgreSQL.
PostgreSQL is primarily used for global mission critical applications
(the .org and .info domain name registries use it as their primary data
store, as do many large companies and financial institutions).

In Sweden, Codd's paper was also read and Mimer SQL was developed
from the mid-70s at Uppsala University. In 1984, this project was
consolidated into an independent enterprise. In the early 1980s, Mimer
introduced transaction handling for high robustness in applications, an
idea that was subsequently implemented on most other DBMS.

4.0 CONCLUSION

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

The evolution of database models is continuous until a time an ideal
model will emerge that will meet all the requirements of end users. This
sound impossible because there can never be a system that is completely
fault-free. Thus we will yet see more of models of database. The flat
and hierarchical models had set the tune for emerging models.

5.0 SUMMARY

• In a hierarchical model, data is organized into an inverted tree-
like structure, implying a multiple downward link in each node to
describe the nesting, and a sort field to keep the records in a
particular order in each same-level list.

• In the network model, records can participate in any number of

named relationships. Each relationship associates a record of one
type (called the owner) with multiple records of another type (called
the member).

• An object-relational database (ORD) or object-relational database
management system (ORDBMS) is a database management system
(DBMS) similar to a relational database, but with an object-oriented
database model: objects, classes and inheritance are directly
supported in database schemas and in the query language.

• In an object database (also object oriented database), information

is represented in the form of objects as used

 in opbrojegcrta-mormieinnntge.d
• The associative model of data is an alternative data model for

database systems. Other data models, such as the relational model
and the object data model, are record-based.

• A column-oriented DBMS is a database management system

(DBMS) which stores its content by column rather than by row. This
has advantages for databases such as data warehouses and library
catalogues, where aggregates are computed over large numbers of
similar data items

• Navigational databases are characterized by the fact that objects in

the database are found primarily by following references from other
objects.

• A distributed database is a database that is under the control of a

central database management system (DBMS) in which storage
devices are not all attached to a common CPU

• A real-time database is a processing system designed to handle
workloads whose state is constantly changing (Buchmann). This
differs from traditional databases containing persistent data, mostly
unaffected by time

6.0 TUTOR-MARKED ASSIGNMENT

1. Mention 5 models of databases

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

2. Briefly discuss the advantages and disadvantages of distributed
databases

7.0 REFERENCES/FURTHER READINGS

Charles W. Bachman, The Programmer as Navigator. ACM Turing
Award Lecture, Communications of the ACM, Volume 16, Issue
11, 1973, pp. 653-658, ISSN 0001-0782, doi:
10.1145/355611.362534.

Stonebraker, Michael with Moore, Dorothy. Object-Relational DBMSs:

The Next Great Wave. Morgan Kaufmann Publishers, 1996.
ISBN 1-55860-397-2.

There was, at the Time, Some Dispute Whether the Term was coined by

Michael Stonebraker of Illustra or Won Kim of UniSQL.

Kim, Won. Introduction to Object-Oriented Databases. The MIT Press,

1990. ISBN 0-262-11124-1.

Bancilhon, Francois; Delobel, Claude; and Kanellakis, Paris. Building

an Object-Oriented Database System: The Story of O2. Morgan

Kaufmann Publishers, 1992. ISBN 1-55860-169-4.

C-Store: A column-oriented DBMS, Stonebraker et al, Proceedings of

the 31st VLDB Conference, Trondheim, Norway, 2005

Blazewicz, Jacek; Królikowski, Zbyszko; Morzy, Tadeusz (2003).
Handbook on Data Management in Information Systems.
Springer, pp. 18. ISBN 3540438939.

M. T. Ozsu and P. Valduriez, Principles of Distributed Databases (2nd

edition), Prentice-Hall, ISBN 0-13-659707-6 Federal Standard
1037C.

Elmasri and Navathe, Fundamentals of Database Systems (3rd edition),

Addison-Wesley Longman, ISBN 0-201-54263-3.

Abbot, Robert K., and Hector Garcia-Molina. Scheduling Real-Time

Transactions: a Performance Evaluation. Stanford University and
Digital Equipment Corp. ACM, 1992. 13 Dec. 2006 .

Buchmann, A. "Real Time Database Systems." Encyclopedia of

Database Technologies and Applications. Ed. Laura C. Rivero,
Jorge H. Doorn, and Viviana E. Ferraggine. Idea Group, 2005.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Stankovic, John A., Marco Spuri, Krithi Ramamritham, and Giorgio C.
Buttazzo. Deadline Scheduling for Real-Time Systems: EDF and
Related Algorithms. Springer, 1998.

UNIT 5 DATABASE MODELS: RELATIONAL MODEL

CONTENTS

1.0 Introduction
2.0 Objectives

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

3.0 Main Content
3.1 The Model
3.2 Interpretation
3.3 Application to Databases
3.4 Alternatives to the Relational Model
3.5 History
3.6 SQL and the Relational Model
3.7 Implementation
3.8 Controversies
3.9 Design
3.10 Set-Theoretic Formulation
3.11 Key Constraints and Functional Dependencies

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

The relational model for database management is a database model
based on first-order predicate logic, first formulated and proposed in
1969 by Edgar Codd

Its core idea is to describe a database as a collection of predicates over a
finite set of predicate variables, describing constraints on the possible
values and combinations of values. The content of the database at any
given time is a finite model (logic) of the database, i.e. a set

oreflations, one per predicate variable, such that all
 predicates asarteisfied. A request for information from the database (a database
query)
is also a predicate.

The purpose of the relational model is to provide a declarative method
for specifying data and queries: we directly state what information the
database contains and what information we want from it, and let the
database management system software take care of describing data
structures for storing the data and retrieval procedures for getting
queries answered.

IBM implemented Codd's ideas with the DB2 database management
system; it introduced the SQL data definition and query language. Other
relational database management systems followed, most of them using
SQL as well. A table in an SQL database schema corresponds to a
predicate variable; the contents of a table to a relation; key constraints,
other constraints, and SQL queries correspond to predicates. However, it
must be noted that SQL databases, including DB2, deviate from the
relational model in many details; Codd fiercely argued against

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

deviations that compromise the original principles.]

2.0 OBJECTIVES

At the end of this unit, the you should be able to:

• define relational model of database

• understand and explain the concept behind relational models

• answer the question of how to interpret a relational database model

• know the various applications of relational database

• compare relational model with the structured query language (SQL)

• know the constraints and controversies associated with relational
database model.

Figure 1: Relational Structure

Department Table

Deptno Dname Dlo c Dmgr

Dept A

Dept B

Dept C

Employee Table

Empno Ena me Etitle Esal ary Deptno

Emp 1 Dept A

Emp 2 Dept B

Emp 3 Dept C

Emp 4 Dept D

Emp 5 Dept E

Emp 6 Dept F

3.0 MAIN CONTENT

3.1 The Model

The fundamental assumption of the relational model is that all data is
represented as mathematical n-ary relations, an n-ary relation being a
subset of the Cartesian product of n domains. In the
maotdheelm, raetaiscoanl ing about such data is done in two-valued predicate logic,
meaning there are two possible evaluations for each proposition: either

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

true or false (and in particular no third value such as unknown, or not
applicable, either of which are often associated with the concept of
NULL). Some think two-valued logic is an important part of the
relational model, where others think a system that uses a form of three-
valued logic can still be considered relational]

Data are operated upon by means of a relational calculus or relational
algebra, these being equivalent in expressive power.

The relational model of data permits the database designer to create a
consistent, logical representation of information. Consistency is
achieved by including declared constraints in the database design,
which is usually referred to as the logical schema. The theory includes a
process of database normalization whereby a design with certain
desirable properties can be selected from a set of logically equivalent
alternatives. The access plans and other implementation and operation
details are handled by the DBMS engine, and are not reflected in the
logical model. This contrasts with common practice for SQL DBMSs in
which performance tuning often requires changes to the logical model.
The basic relational building block is the domain or data type, usually
abbreviated nowadays to type. A tuple is an unordered set of attribute
values. An attribute is an ordered pair of attribute name and type name.
An attribute value is a specific valid value for the type of the attribute.
This can be either a scalar value or a more complex type.

A relation consists of a heading and a body. A heading is a set of
attributes. A body (of an n-ary relation) is a set of n-tuples. The heading
of the relation is also the heading of each of its tuples.

A relation is defined as a set of n-tuples. In both mathematics and the
relational database model, a set is an unordered collection of items,
although some DBMSs impose an order to their data. In mathematics, a
tuple has an order, and allows for duplication. E.F. Codd originally
defined tuples using this mathematical definition. Later, it was one of
E.F. Codd‘s great insights that using attribute names instead of an
ordering would be so much more convenient (in general) in a computer
language based on relations. This insight is still being used today.
Though the concept has changed, the name "tuple" has not. An
immediate and important consequence of this distinguishing feature is
that in the relational model the Cartesian product becomes commutative.
A table is an accepted visual representation of a relation; a tuple is
similar to the concept of row, but note that in the database language
SQL the columns and the rows of a table are ordered.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

A relvar is a named variable of some specific relation type, to which at
all times some relation of that type is assigned, though the relation may
contain zero tuples.

The basic principle of the relational model is the Information Principle:
all information is represented by data values in relations. In accordance
with this Principle, a relational database is a set of relvars and the result

of every query is presented as a relation.

The consistency of a relational database is enforced, not by rules built
into the applications that use it, but rather by constraints, declared as
part of the logical schema and enforced by the DBMS for
apllplications. In general, constraints are expressed using relational
comparison operators, of which just one, "is subset of" (), is
theoretically sufficient. In practice, several useful shorthands are
expected to be available, of which the most important are candidate key
(really, superkey) and foreign key constraints.

3.2 Interpretation

To fully appreciate the relational model of data it is essentia

tuonderstand the intended interpretation of a relation.

The body of a relation is sometimes called its extension. This is because
it is to be interpreted as a representation of the extension of

sporemdeicate, this being the set of true propositions that can be formed by
replacing each free variable in that predicate by a name (a term that
designates something).

There is a one-to-one correspondence between the free variables of the
predicate and the attribute names of the relation heading. Each tuple of
the relation body provides attribute values to instantiate the predicate by
substituting each of its free variables. The result is a proposition that is
deemed, on account of the appearance of the tuple in the relation body,
to be true. Contrariwise, every tuple whose heading conforms to that of
the relation but which does not appear in the body is deemed to be false.
This assumption is known as the closed world assumption

For a formal exposition of these ideas, see the section Se

TFhoeromryulation, below.

3.3 Application to Databases

A type as used in a typical relational database might be the

 se oinftegers, the set of character strings, the set of dates, or the two boolean
values true and false, and so on. The corresponding type names for

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

these types might be the strings "int", "char", "date", "boolean", etc. It is
important to understand, though, that relational theory does not dictate
what types are to be supported; indeed, nowadays provisions are
expected to be available for user-defined types in addition to the built-in
ones provided by the system.

Attribute is the term used in the theory for what is commonly referred
to as a column. Similarly, table is commonly used in place of the
theoretical term relation (though in SQL the term is by no means
synonymous with relation). A table data structure is specified as a list of
column definitions, each of which specifies a unique column name and
the type of the values that are permitted for that column. An attribute
value is the entry in a specific column and row, such as "John Doe" or
"35".

A tuple is basically the same thing as a row, except in an SQL DBMS,
where the column values in a row are ordered. (Tuples are not ordered;
instead, each attribute value is identified solely by the attribute name
and never by its ordinal position within the tuple.) An attribute name
might be "name" or "age".

A relation is a table structure definition (a set of column definitions)
along with the data appearing in that structure. The structure definition
is the heading and the data appearing in it is the body, a set of rows. A
database relvar (relation variable) is commonly known as a base table.
The heading of its assigned value at any time is as specified in the table
declaration and its body is that most recently assigned to it by invoking
some update operator (typically, INSERT, UPDATE, or DELETE).
The heading and body of the table resulting from evaluation of some
query are determined by the definitions of the operators used in the
expression of that query. (Note that in SQL the heading is not always a
set of column definitions as described above, because it is possible for a
column to have no name and also for two or more columns to have the
same name. Also, the body is not always a set of rows because in SQL it
is possible for the same row to appear more than once in the same
body.)

3.4 Alternatives to the Relational Model

Other models are the hierarchical model and network model. Some
systems using these older architectures are still in use today in data
centers with high data volume needs or where existing systems are so
complex and abstract it would be cost prohibitive to migrate to systems
employing the relational model; also of note are newer object-oriented

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

rterlamtisonaol r concepts. However, it is possible to create a database

conforming to the relational model using SQL if one does no

databases, even though many of them are DBMS-construction kits,
rather than proper DBMSs.

A recent development is the Object-Relation type-Object model, which
is based on the assumption that any fact can be expressed in the form of
one or more binary relationships. The model is used in Objec
RMooldeeling (ORM), RDF/Notation 3 (N3) and in Gellish English.

The relational model was the first formal database model. After it was
defined, informal models were made to describe hierarchical databases
(the hierarchical model) and network databases (the network model).
Hierarchical and network databases existed before relational databases,
but were only described as models after the relational

 mode wdeafsined, in order to establish a basis for comparison.

3.5 History

The relational model was invented by E.F. (Ted) Codd as a

gmeondeeral l of data, and subsequently maintained and developed by Chris
Date and Hugh Darwen among others. In The Third Manifesto (first
published in 1995) Date and Darwen show how the relational model can
accommodate certain desired object-oriented features.

3.6 SQL and the Relational Model

SQL, initially pushed as the standard language for relational databases,
deviates from the relational model in several places. The current ISO
SQL standard doesn't mention the relational model or use

ucesretain SQL features.

The following deviations from the relational model have been noted in
SQL. Note that few database servers implement the entire SQL standard
and in particular do not allow some of these deviations. Whereas NULL

is nearly ubiquitous, for example, allowing duplicate column names
within a table or anonymous columns is uncommon.

Duplicate Rows

The same row can appear more than once in an SQL table. The same
tuple cannot appear more than once in a relation.

Anonymous Columns

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

A column in an SQL table can be unnamed and thus unable to be
referenced in expressions. The relational model requires every attribute
to be named and referenceable.

Duplicate Column Names

Two or more columns of the same SQL table can have the same name
and therefore cannot be referenced, on account of the obvious
ambiguity. The relational model requires every attribute to be
referenceable.

Column Order Significance

The order of columns in an SQL table is defined and significant, one
consequence being that SQL's implementations of Cartesian product and
union are both noncommutative. The relational model requires that there
should be of no significance to any ordering of the attributes

 of arelation.

Views without CHECK OPTION

Updates to a view defined without CHECK OPTION can be accepted
but the resulting update to the database does not necessarily have the
expressed effect on its target. For example, an invocation of INSERT
can be accepted but the inserted rows might not all appear in the view, or
an invocation of UPDATE can result in rows disappearing from the
view. The relational model requires updates to a view to have the same
effect as if the view were a base relvar.

Columnless Tables Unrecognized

SQL requires every table to have at least one column, but there are two
relations of degree zero (of cardinality one and zero) and they are
needed to represent extensions of predicates that contain no free
variables.

NULL

This special mark can appear instead of a value wherever a value can
appear in SQL, in particular in place of a column value in some row.
The deviation from the relational model arises from the fact that the
implementation of this ad hoc concept in SQL involves the use of three-
valued logic, under which the comparison of NULL with itself does not
yield true but instead yields the third truth value, unknown; similarly the
comparison NULL with something other than itself does not yield false
but instead yields unknown. It is because of this behaviour in
comparisons that NULL is described as a mark rather than a value. The

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

relational model depends on the law of excluded middle under which
anything that is not true is false and anything that is not false is true; it
also requires every tuple in a relation body to have a value for every
attribute of that relation. This particular deviation is disputed by some if
only because E.F. Codd himself eventually advocated the use of special
marks and a 4-valued logic, but this was based on his observation that
there are two distinct reasons why one might want to use a special mark
in place of a value, which led opponents of the use of such logics to
discover more distinct reasons and at least as many as 19 have been
noted, which would require a 21-valued logic. SQL itself uses NULL for
several purposes other than to represent "value unknown". For example,
the sum of the empty set is NULL, meaning zero, the average of the
empty set is NULL, meaning undefined, and NULL appearing in the
result of a LEFT JOIN can mean "no value because there is no matching
row in the right-hand operand".

Concepts

SQL uses concepts "table", "column", "row" instead of "relvar",
"attribute", "tuple". These are not merely differences in terminology. For
example, a "table" may contain duplicate rows, whereas the same tuple
cannot appear more than once in a relation.

3.7 Implementation

There have been several attempts to produce a true implementation of
the relational database model as originally defined by Codd and
explained by Date, Darwen and others, but none have been popular
successes so far. Rel is one of the more recent attempts to do this.

3.8 Controversies

Codd himself, some years after publication of his 1970 model, proposed
a three-valued logic (True, False, Missing or NULL) version of it in
order to deal with missing information, and in his The Relational Model
for Database Management Version 2 (1990) he went a step further with
a four-valued logic (True, False, Missing but Applicable, Missing but
Inapplicable) version. But these have never been implemented,
presumably because of attending complexity. SQL's NULL construct
was intended to be part of a three-valued logic system, but fell short of
that due to logical errors in the standard and in its implementations.

3.9 Design

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Database normalization is usually performed when designing a
relational database, to improve the logical consistency of the database
design. This trades off transactional performance for space efficiency.

There are two commonly used systems of diagramming to aid in the
visual representation of the relational model: the entity-relationship
diagram (ERD), and the related IDEF diagram used in the IDEF1X
method created by the U.S. Air Force based on ERDs.

The tree structure of data may enforce hierarchical model organization,
with parent-child relationship table.

3.10 Set-Theoretic Formulation

Basic notions in the relational model are relation names and attribute
names. We will represent these as strings such as "Person" and "name"
and we will usually use the variables and a,b,c to range over them.
Another basic notion is the set of atomic values that contains values
such as numbers and strings.

Our first definition concerns the notion of tuple, which formalizes the
notion of row or record in a table:

Tuple

A tuple is a partial function from attribute names to atomic values.
Header

A header is a finite set of attribute names.
Projection

The projection of a tuple t on a finite set of attributes A is.

The next definition defines relation which formalizes the contents of a
table as it is defined in the relational model.

Relation

A relation is a tuple (H,B) with H, the header, and B, the body, a set of
tuples that all have the domain H.

Such a relation closely corresponds to what is usually called the
extension of a predicate in first-order logic except that here we identify
the places in the predicate with attribute names. Usually in the relational
model a database schema is said to consist of a set of relation names, the

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

headers that are associated with these names and the constraints that
should hold for every instance of the database schema.

3.11 Key Constraints and Functional Dependencies

One of the simplest and most important types of relation constraints is
the key constraint. It tells us that in every instance of a certain relational
schema the tuples can be identified by their values for certain attributes.

4.0 CONCLUSION

The evolution of the relational model of database and database
management systems is significant in the history and development of
database and DATABASE MANAGEMENT APPLICATION SYSTEMs.
This cEodngcaerpCt opdiodnbereoreudghbtyan entirely and much efficient way of storing and
retrieving data, especially for a large database. This concept emphasized
the use of tables and then linking the tables through commands. Most of
today‘s DATABASE MANAGEMENT APPLICATION SYSTEMs implements the
relational model
5.0 SUMMARY

• The relational model for database management is a database model
based on first-order predicate logic, first formulated and proposed in
1969 by Edgar Codd

• The fundamental assumption of the relational model is that all data is

represented as mathematical n-ary relations, an n-ary relation being
a subset of the Cartesian product of n domains.

• To fully appreciate the relational model of data it is essential to

understand the intended interpretation of a relation.
• A type as used in a typical relational database might be the set of

integers, the set of character strings, the set of dates, or the

tbwoolean values true and false, and so on
• Other models are the hierarchical model and network model. Some

systems using these older architectures are still in use today in data
centers

• The relational model was invented by E.F. (Ted) Codd as a general
model of data, and subsequently maintained and developed by Chris
Date and Hugh Darwen among others.

• SQL, initially pushed as the standard language for relational
databases, deviates from the relational model in several places.

• There have been several attempts to produce a true implementation
of the relational database model as originally defined by Codd and
explained by Date, Darwen and others, but none have been popular
successes so far

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

• Database normalization is usually performed when designing a
relational database, to improve the logical consistency of the
database design

• Basic notions in the relational model are relation names and

attribute names.
• One of the simplest and most important types of relation constraints

is the key constraint.

6.0 TUTOR-MARKED ASSIGNMENT

1. Briefly discuss Interpretation in Relational Model.
2. Mention 5 ways in which relational model differs from an SQL

7.0 REFERENCES/FURTHER READINGS

"Derivability, Redundancy, and Consistency of Relations Stored in
Large Data Banks", E.F. Codd, IBM Research Report, 1969.

"A Relational Model of Data for Large Shared Data Banks", in

Communications of the ACM, 1970.

White, Colin. In the Beginning: An RDBMS History. Teradata Magazine

Online. September 2004 edition. URL:
http://www.teradata.com/t/page/127057.

Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data
Banks". Communications of the ACM 13 (6): 377–387. doi:
10.1145/362384.362685.

Date, C. J., Darwen, H. (2000). Foundation for Future Database

Systems: The Third Manifesto, 2nd edition, Addison-Wesley
Professional. ISBN 0-201-70928-7.

Date, C. J. (2003). Introduction to Database Systems. 8th edition,
Addison-Wesley. ISBN 0-321-19784-4.

UNIT 6 BASIC COMPONENTS OF DBMS

CONTENTS

http://www.teradata.com/t/page/127057
http://www.teradata.com/t/page/127057

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Concurrency Controls
3.2 Java Database Connectivity
3.3 Query Optimizer
3.4 Open Database Connectivity
3.5 Data Dictionary

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

To be discussed in these units are the basic components of any database.
These components ensure proper control of data, access of data, query
for data as well as methods of accessing DATABASE MANAGEMENT
APPLICATION SYSTEMs.
2.0 OBJECTIVES

At the end of this unit, you should be able to:

• know the rules guiding transaction ACID

• know what is concurrency control in databases

• mention the different methods of concurrency control

• define and interpret the acronymn JDBC

• answer the question of the types and drivers of JDBC

• define query optimizer, and its applications and cost estimation

3.0 MAIN CONTENT

3.1 Concurrency Controls

In databases, concurrency control ensures that correct results for
concurrent operations are generated, while getting those results as
quickly as possible.

Concurrency Control in Databases

Concurrency control in DATABASE MANAGEMENT APPLICATION SYSTEMs

(thDaBt MSd)ateanbsausrees transactions are performed concurrently without the
concurrency violating the data integrity of a database. Executed
transactions should follow the ACID rules, as described below. The
DBMS must guarantee that only serializable (unless Serializability is
intentionally relaxed), recoverable schedules are generated. It also

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

guarantees that no effect of committed transactions is lost, and no effect
of aborted (rolled back) transactions remains in the related database.

Transaction ACID Rules

•Atomicity - Either the effects of all or none of its operations remain
when a transaction is completed - in other words, to the outside world
the transaction appears to be indivisible, atomic.

•Consistency - Every transaction must leave the database in a consistent
state.

•Isolation - Transactions cannot interfere with each other. Providing
isolation is the main goal of concurrency control.

•Durability - Successful transactions must persist through crashes.

Concurrency Control Mechanism

The main categories of concurrency control mechanisms are:

•Optimistic - Delay the synchronization for a transaction until it is end

without blocking (read, write) operations, and then abort transactions
that violate desired synchronization rules.
•Pessimistic - Block operations of transaction that would cause

violation of synchronization rules.

There are several methods for concurrency control. Among them:

•Two-phase locking

•Strict two-phase locking

•Conservative two-phase locking

•Index locking
•Multiple granularity locking

A Lock is a database system object associated with a database object
(typically a data item) that prevents undesired (typically synchronization
rule violating) operations of other transactions by blocking them.
Database system operations check for lock existence, and halt when
noticing a lock type that is intended to block them.

There are also non-lock concurrency control methods, among them:

•Conflict (serializability, precedence) graph checking

•Timestamp ordering

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

•commitment ordering

•Also Optimistic concurrency control methods typically do not use
locks.

Almost all currently implemented lock-based and non-lock-based
concurrency control mechanisms guarantee schedules that are conflict
serializable (unless relaxed forms of serializability are needed).
However, there are many research texts encouraging view serializable
schedules for possible gains in performance, especially when not too many
 conflicts exist (and not too many aborts of completely executed
transactions occur), due to reducing the considerable overhead of
blocking mechanisms.

Concurrency Control in Operating Systems

Operating systems, especially real-time operating systems, need to
maintain the illusion that many tasks are all running at the same time.
Such multitasking is fairly simple when all tasks are independent from
each other. However, when several tasks try to use the same resource, or
when tasks try to share information, it can lead to confusion
ainncdonsistency. The task of concurrent computing is to solve that
problem. Some solutions involve "locks" similar to the locks used in
databases, but they risk causing problems of their own such as deadlock.

Other solutions are lock-free and wait-free algorithms.

3.2 Java Database Connectivity

Java Database Connectivity (JDBC) is an API for the Java
programming language that defines how a client may access a database.
It provides methods for querying and updating data in a database. JDBC
is oriented towards relational databases.

Overview

JDBC has been part of the Java Standard Edition since the release of
JDK 1.1. The JDBC classes are contained in the Java package java.sql.
Starting with version 3.0, JDBC has been developed under the Java
Community Process. JSR 54 specifies JDBC 3.0 (included in J2SE 1.4),
JSR 114 specifies the JDBC Rowset additions, and JSR 221 is

tshpeee cification of JDBC 4.0 (included in Java SE 6).

JDBC allows multiple implementations to exist and be used by the same
application. The API provides a mechanism for dynamically loading the
correct Java packages and registering them with the JDBC

DMrainvaegr er. The Driver Manager is used as a connection factory

for

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

creating JDBC connections.

JDBC connections support creating and executing statements. These
may be update statements such as SQL's CREATE, INSERT, UPDATE
and DELETE, or they may be query statements such as SELECT.
Additionally, stored procedures may be invoked through a JDBC
connection. JDBC represents statements using one of the following
classes:

•Statement – the statement is sent to the database server each and every
time.

•PreparedStatement – the statement is cached and then the execution
path is pre determined on the database server allowing it to be executed
multiple times in an efficient manner.
•CallableStatement – used for executing stored procedures on the
database.

Update statements such as INSERT, UPDATE and DELETE return an
update count that indicates how many rows were affected in the
database. These statements do not return any other information.

Query statements return a JDBC row result set. The row result set is
used to walk over the result set. Individual columns in a row

arerterieved either by name or by column number. There may be any
number of rows in the result set. The row result set has metadata that
describes the names of the columns and their types.

There is an extension to the basic JDBC API in the javax.sql package
that allows for scrollable result sets and cursor support among other
things.

JDBC Drivers

JDBC Drivers are client-side adaptors (they are installed on the client
machine, not on the server) that convert requests from Java programs to
a protocol that the DBMS can understand.

Types: There are commercial and free drivers available for most
relational database servers. These drivers fall into one of the following
types:

•Type 1,the JDBC-ODBC bridge

•Type 2, the Native-API driver

•Type 3, the network-protocol driver

•Type 4 the native-protocol drivers

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Internal JDBC driver, driver embedded with JRE in Java-enabled SQL
databases. Used for Java stored procedures. This does not belong to the
above classification, although it would likely be either a type 2 or type 4
driver (depending on whether the database itself is implemented in Java
or not). An example of this is the KPRB driver supplied with Oracle
RDBMS. "jdbc:default:connection" is a relatively standard way of
referring making such a connection (at least Oracle and Apache Derby
support it). The distinction here is that the JDBC client
 is arucntunainllgy as part of the database being accessed, so access can be

 made
directly rather than through network protocols.

Sources

•SQLSummit.com publishes list of drivers, including JDBC drivers and
vendors
•Sun Mpriocvroidsyessstaemlisst of some JDBC drivers and vendors

•Simba Technologies ships an SDK for building custom JDBC Drivers
for any custom/proprietary relational data source

•DataDirect Technologies provides a comprehensive suite of fast Type 4
JDBC drivers for all major database

•IDS Software provides a Type 3 JDBC driver for concurrent access to
all major databases. Supported features include resultset caching, SSL
encryption, custom data source, dbShield.

•i-net software provides fast Type 4 JDBC drivers for

 al mdaatjaobrases
•OpenLink Software ships JDBC Drivers for a variety of databases,
including Bridges to other data access mechanisms (e.g., ODBC, JDBC)
which can provide more functionality than the targeted mechanism
•JDBaccess is a Java persistence library for MySQL and Oracle which
defines major database access operations in an easy usable API above
JDBC

•JNetDirect provides a suite of fully Sun J2EE certified high
performance JDBC drivers.
•HSQLis a RDBMS with a JDBC driver and is available under a BSD
license.

3.3 Query Optimizer

The query optimizer is the component of a database management
system that attempts to determine the most efficient way to execute a
query. The optimizer considers the possible query plans for a
ginipvuent query, and attempts to determine which of those plans will be the
most efficient. Cost-based query optimizers assign an estimated "cost"

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

to each possible query plan, and choose the plan with the smallest cost.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Costs are used to estimate the runtime cost of evaluating the query, in
terms of the number of I/O operations required, the CPU requirements,
and other factors determined from the data dictionary. The set of query
plans examined is formed by examining the possible access paths (e.g.
index scan, sequential scan) and join algorithms (e.g. sort-merge join,
hash join, nested loops). The search space can become quite large
depending on the complexity of the SQL query.

The query optimizer cannot be accessed directly by users. Instead, once
queries are submitted to database server, and parsed by the parser, they
are then passed to the query optimizer where optimization occurs.

Implementation

Most query optimizers represent query plans as a tree of "plan nodes". A
plan node encapsulates a single operation that is required to execute the
query. The nodes are arranged as a tree, in which intermediate results
flow from the bottom of the tree to the top. Each node has zero or more
child nodes -- those are nodes whose output is fed as input to the parent
node. For example, a join node will have two child nodes, which
represent the two join operands, whereas a sort node would have a
single child node (the input to be sorted). The leaves of the tree are
nodes which produce results by scanning the disk, for example by
performing an index scan or a sequential scan.

Cost Estimation

One of the hardest problems in query optimization is to accurately
estimate the costs of alternative query plans. Optimizers cost query
plans using a mathematical model of query execution costs that relies
heavily on estimates of the cardinality, or number of tuples, flowing
through each edge in a query plan. Cardinality estimation in turn
depends on estimates of the selection factor of predicates in the query.
Traditionally, database systems estimate selectivities through fairly
detailed statistics on the distribution of values in each column, such as
histograms This technique works well for estimation of selectivities of
individual predicates. However many queries have conjunctions of
predicates such as select count (*) from R where R.make='Honda' and
R.model='Accord'. Query predicates are often highly correlated (for
example, model='Accord' implies make='Honda'), and it is very hard to
estimate the selectivity of the conjunct in general. Poor cardinality
estimates and uncaught correlation are one of the main reasons why
query optimizers pick poor query plans. This is one reason why a DBA
should regularly update the database statistics, especially after major
data loads/unloads.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

3.4 Open Database Connectivity

In computing, Open Database Connectivity (ODBC) provides a
standard software API method for using DATABASE MANAGEMENT

A(DPBPMLISC)A. TTIOheN SdYeSsiTgEnMer sss of ODBC aimed to make it independent of
programming languages, database systems, and operating systems.

Overview

The PRATAP specification offers a procedural API for using

SquQeLries to access data. An implementation of ODBC will contain one or
more applications, a core ODBC "Driver Manager" library, and one or
more "database drivers". The Driver Manager, independent of the
applications and DBMS, acts as an "interpreter" between the
applications and the database drivers, whereas the database drivers
contain the DBMS-specific details. Thus a programmer can write
applications that use standard types and features without concern for the
specifics of each DBMS that the applications may encounter. Likewise,
database driver implementors need only know how to attach to the core
library. This makes ODBC modular.

To write ODBC code that exploits DBMS-specific features requires
more advanced programming: an application must use introspection,
calling ODBC metadata functions that return information about
supported features, available types, syntax, limits, isolation levels, driver
capabilities and more. Even when programmers use adaptive techniques,
however, ODBC may not provide some advanced DBMS features. The
ODBC 3.x API operates well with traditional SQL applications such as
OLTP, but it has not evolved to support richer types introduced by SQL:
1999 and SQL:2003

ODBC provides the standard of ubiquitous data access because
hundreds of ODBC drivers exist for a large variety of data sources
ODBC operates with a variety of operating systems and drivers exist for
non-relational data such as spreadsheets, text and XML files. Because
ODBC dates back to 1992, it offers connectivity to a wider variety of
data sources than other data-access APIs. More drivers exist for ODBC
than drivers or providers exist for newer APIs such as OLE DB, JDBC,
and ADO.NET.
Despite the benefits of ubiquitous connectivity and platform-
independence, systems designers may perceive ODBC as having certain
drawbacks. Administering a large number of client machines can
involve a diversity of drivers and DLLs. This complexity can increase
system-administration overhead. Large organizations with thousands of
PCs have often turned to ODBC server technology (also known

a"Ms ulti-Tier ODBC Drivers") to simplify the administration problems.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Differences between drivers and driver maturity can also raise important
issues. Newer ODBC drivers do not always have the stability of drivers
already deployed for years. Years of testing and deployment mean a
driver may contain fewer bugs.

Developers needing features or types not accessible with ODBC can use
other SQL APIs. When not aiming for platform-independence,
developers can use proprietary APIs, whether DBMS-specific (such as
TransactSQL) or language-specific (for example: JDBC for Java
applications).

Bridging configurations

JDBC-ODBC Bridges

A JDBC-ODBC bridge consists of a JDBC driver which employs an
ODBC driver to connect to a target database. This driver translates
JDBC method calls into ODBC function calls. Programmers usually use
such a bridge when a particular database lacks a JDBC driver. Sun
Microsystems included one such bridge in the JVM, but viewed it as a
stop-gap measure while few JDBC drivers existed. Sun never intended
its bridge for production environments, and generally recommends
against its use. Independent data-access vendors now deliver JDBC-
ODBC bridges which support current standards for both mechanisms,
and which far outperform the JVM built-in.

ODBC-JDBC Bridges

An ODBC-JDBC bridge consists of an ODBC driver which uses the
services of a JDBC driver to connect to a database. This driver translates
ODBC function calls into JDBC method calls. Programmers usually use
such a bridge when they lack an ODBC driver for a particular database
but have access to a JDBC driver.

Implementations

ODBC implementations run on many operating systems, including
Microsoft Windows, Unix, Linux, OS/2, OS/400, IBM i5/OS, and Mac
OS X. Hundreds of ODBC drivers exist, including drivers for Oracle,
DB2, Microsoft SQL Server, Sybase, Pervasive SQL, IBM Lotus
Domino, MySQL, PostgreSQL, and desktop database products such as
FileMaker, and Microsoft Access.

3.5 Data Dictionary

A data dictionary, as defined in the IBM Dictionary of Computing is a

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

"centralized repository of information about data such as meaning,
relationships to other data, origin, usage, and format. The term may have
one of several closely related meanings pertaining to
 databases aDnAdTABASE MANAGEMENT APPLICATION
SYSTEMs (DBMS):
•a document describing a database or collection of databases

•an integral component of a DBMS that is required to determine its
structure

•a piece of middleware that extends or supplants the native
daictationary of a DBMS

Data Dictionary Documentation

Database users and application developers can benefit from an
authoritative data dictionary document that catalogs the organization,
contents, and conventions of one or more databases This
tiynpcliucadlelsy the names and descriptions of various tables and fields in each
database, plus additional details, like the type and length of each data
element. There is no universal standard as to the level of detail in such a document,
 but it is primarily a distillation of metadata about database
structure, not the data itself. A data dictionary document
 also minacylude further information describing how data elements are
encoded.
One of the advantages of well-designed data dictionary documentation
is that it helps to establish consistency throughout a complex database,
or across a large collection of federated databases

Data Dictionary Middleware

In the construction of database applications, it can be useful to introduce
an additional layer of data dictionary software, i.e. middleware, which
communicates with the underlying DBMS data dictionary. Such a "high-
level" data dictionary may offer additional features and a degree
oflfexibility that goes beyond the limitations of the native "low-level" data
dictionary, whose primary purpose is to support the basic functions of
the DBMS, not the requirements of a typical application. For example, a
high-level data dictionary can provide alternative entity-relationship
models tailored to suit different applications that share

 a cdoamtabmaosen. Extensions to the data dictionary

 also can assist in qoupetirmyization against distributed databases
Software frameworks aimed at rapid application development
sometimes include high-level data dictionary facilities, which can
substantially reduce the amount of programming required to build
menus, forms, reports, and other components of a database application,
including the database itself. For example, PHPLens includes a PHP
class library to automate the creation of tables, indexes, and foreign key
constraints portably for multiple databases. Another PHP-based data
dictionary, part of the RADICORE toolkit, automatically generates

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

program objects, scripts, and SQL code for menus and forms with data
validation and complex JOINs For the ASP.NET environment, Base
One's data dictionary provides cross-DBMS facilities for automated
database creation, data validation, performance enhancement (caching
and index utilization), application security, and extended data types.

4.0 CONCLUSION

The basic components of any database management system serve to
ensure the availability of data as well as the efficiency in accessing the
data. They include mainly, a data dictionary, query optimizers, and Java
database connectivity.

5.0 SUMMARY

• In databases, concurrency control ensures that correct results for

concurrent operations are generated, while getting those results as

quickly as possible.
• Java Database Connectivity (JDBC) is an API for the Java

programming language that defines how a client may access a
database. It provides methods for querying and updating data in a
database. JDBC is oriented towards relational databases.

• The query optimizer is the component of a database management

system that attempts to determine the most efficient way to execute a
query. The optimizer considers the possible query plans for a given
input query, and attempts to determine which of those plans will be
the most efficient.

• In computing, Open Database Connectivity (ODBC) provides a

standard software API method for using database management

systems (DBMS). The designers of ODBC aimed to make it
independent of programming languages, database systems, and
operating systems.

• A data dictionary, as defined in the IBM Dictionary of Computing

is a "centralized repository of information about data such as
meaning, relationships to other data, origin, usage, and format

• In the construction of database applications, it can be useful to
introduce an additional layer of data dictionary software, i.e.
middleware, which communicates with the underlying DBMS data
dictionary

6.0 TUTOR-MARKED ASSIGNMENT

1. Define the Transaction ACID rules.
2. List and define types of JDBC Driver.

7.0 REFERENCES/FURTHER READINGS

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

ACM, IBM Dictionary of Computing, 10th edition, 1993

TechTarget, SearchSOA, What is a Data Dictionary?

AHIMA Practice Brief, Guidelines for Developing a Data Dictionary,
Journal of AHIMA 77, no.2 (February 2006): 64A-D.

U.S. Patent 4774661, Database management system with active data
dictionary, 11/19/1985, AT&T

U.S. Patent 4769772, Automated Query Optimization Method using
both Global and Parallel Local Optimizations for Materialization
access Planning for Distributed Databases, 02/28/1985,
Honeywell Bull.

PHPLens, ADOdb Data Dictionary Library for PHP

RADICORE, what is a Data Dictionary?

Base One International Corp., Base One Data Dictionary

Chaudhuri, Surajit (1998). "An Overview of Query Optimization

in Relational Systems‖. Proceedings of the ACM Symposium on

 Principles of Database Systems: pages 34–43. doi:
10.1145/275487.275492.

Ioannidis, Yannis (March 1996). "Query optimization". ACM
Computing Surveys 28 (1): 121–123. doi:
10.1145/234313.234367.

Selinger, Patricia, et al. (1979). "Access Path Selection in a Relational Database
 Management System". Proceedings of the 1979 ACM
SIGMOD International Conference on Management of Data:
23-34. doi:10.1145/582095.582099.

Parkes, Clara H. (April 1996). "Power to the People", DBMS Magazine,
Miller Freeman, Inc.

MODULE 2

Unit 1 Development and Design-Of Database
Unit 2 Structured Query Languages (SQL)
Unit 3 Database and Information Relational Systems
Unit 4 Database Administrator and Administration

UNIT 1 DEVELOPMENT AND DESIGN-OF DATABASE

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Database Development
3.1.1 Data Planning and Database Design

3.2 Design of Database
3.2.1 Database Normalization
3.2.2 History

3.3 Normal Forms
3.4 Denormalization
3.5 Non-first normal form (NF² or N1NF)

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Database design is the process of deciding how to organize data into
recordstypes and how the record types and how the record types and
howthe record types will relate to each other. The DBMS mirror‘s the
organization‘s data structure and process transactions efficiently.

Developing small, personal databases is relatively easy using
microcomputer DBMS packages or wizards. However, developing a
large database of complex of complex data types can be a complex task.
In many companies, developing and managing large corporate databases
are the primary responsibility of the database administrator and database
design analysts. They work with end users and systems analyst to model
business processes and the data required. Then they determine:

1. What data definitions should be included in the databases
2. What structures or relationships should exist among the data

elements?

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• understand the concept of data planning and database design

• know the steps in the development of databases

• identify the functions of each step of the design process

• define database normalization

• know the problems addressed by normalizations

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

• define normal forms from 1st to 6th forms

• define and understand the term denormalization

3.0 MAIN CONTENT

3.1 Database Development

3.1.1 Data Planning and Database Design

As figure 1 illustrates, database development may start with a top-down
data planning process. Database administrators and designers
woitrhk corporate and end user management to develop an enterprise
model that defines the basic business process of the enterprise. Then
they define the information needs of end-users in a business process
such as the purchasing/ receiving process that all business has.

Next, end users must identify the key data elements that are needed to
perform the specific business activities. This frequently involves
developing entity relationships among the diagrams (ERDs) that model
the relationships among the many entities involved in
 the bpuroscineessses. End users and database designers could use ERD available to
identify what suppliers and product data are required to activate their
purchasing/receiving and other business processes using enterprise
resource planning (ERP) or supply chain management (SCM) software.

Such users‘ views are a major part of a data modeling process where
the relationships between data elements are identified. Each data model
defines the logical relationships among the data elements needed
tsoupport a basic business process. For example, can a supplier provide
more than the type of product to use? Can a customer have more than
one type of product to use? Can a customer have more than one type of
account with us? Can an employee have several pay rates or be assigned
to several projects or workgroup?

Answering such questions will identify data relationships that have to be
represented in a data model that supports a business process. These data
models then serves as logical frameworks (called schemas and
suchbemas) on which to base the physical design of databases and

tdheevelopment of application programs to support business processes of
the organization. A schema is an overall logical view of the relationship
among the data elements in a database, while the sub schema is a logical
view of the data relationships needed to support specific end

uapseprlication programs that will access that database.

Remember that data models represent logical views of data and
relationships of the database. Physical database design takes a physical

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

view of the data (also called internal view) that describes how data are to

be physically stored and accessed on the storage devices of a computer
system. For example, figure 2 illustrates these different views and the

software interface of a bank database processing system. In this

example, checking, saving and installment lending are the business
process where data models are part of a banking services data model that
serves as a logical data framework for all bank services.

3.2 Design of Database

3.2.1 Database Normalization

Sometimes referred to as canonical synthesis, is a technique for
designing relational database tables to minimize duplication of
information and, in so doing, to safeguard the database against certain
types of logical or structural problems, namely data anomalies. For
example, when multiple instances of a given piece of information occur
in a table, the possibility exists that these instances will not be kept
consistent when the data within the table is updated, leading to a loss of

data 1in. tDegartaityP.laAnntaibnlge that is sufficiently norPmhaylsiizceadl DisatlaesMs ovduelns erable to

problDeemvselopos fa mtohdiesl okfind, because isttsoragsetrruecptruersentatrieofnlects the basic

assum
bu

p
s
t
i
i
n
o
e
n
s
s
s

f
p
o
ro
r
c
w
es
h
s
en multiple instances of

a
t
n
h
d
e
a
s
c
a
c
m
es

e
s

i
m
n

e
fo
th
r
o
m
d
a
s
tion should

be represented by a single instance only.

Higher degrees of normalization typically involve more tables and create

the Enneteedrpfroisre maoladreglserof number of joins, w5h. Pichhysiccaanl Dreesdigunce performance.

AccoBrdusiningelsys, promceosrsewit highly normalizeDdetertmabinles theardeata typically used in
databSatsoerageadpopcluicmaetinotnatsion involving mansytructiusroelsataendd prtorcaensssactions (e.g. an
Automated teller machine), while less normmaelitzheoddstables tend to be used
in database applications that need to map complex relationships between
data entities and data attributes (e.g. a reporting application, or a full-
te

2
x
.
t
R
s
eq
ar

u
c
i
h
re

a
m
p
e
p
n
li
t
c
S
at
p
i
e
o
c
n
i
)
f
.
ication

Define information needs of end Logical Data Models

DUatsaebs ainseatbhuesoirnyesdsepsrcorcibeess a table's degreee.go.frenloartimonaalilz, anteitownoirnk terms of

normal forms of successively higher hdiergarrecehsicoafl, msturlitcidtnimesesn.sioAnal table in

Third Normal Form (3NF), for exOamr opbljee,ct-oirsienctoednsmeqoduelnstly in Second

Normal Form (2NF) as well; but the reverse is not necessarily the case.

FDigeusrcreip1t:ioDnaotfaubsaesrenDeeedvselopment Structure
May be represented in natural
Language or using the tools of 4. Logical Design
Particular design methodology Translates the conceptual

models into the data model
of a DBMS

3. Conceptual Design

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Expresses all information

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Note: Database development involves data planning and
deastiagbnaascetivities. Data models that support business process are used to
develop databases that meet the information needs of users.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Figure 2: Examples of the logical and physical database views and
the software interface of a banking service information system.

Installment

Checking Savings Loan
Application

Logical user View
Checking and Installment Data elements and relations
Savings Loan (the sub schemas) needed for

Data Model Data Model checking, savings, or installment
loan processing

Banking Service Data Model

Data element and relationships
(the schema) needed for support
all banking services

Software Interface

DATABASE MANATGhEe MDBEMNSTprovides access to

APPLICATION SYSTEM
the banks databases

Bank
Databases

Physical Data Views

organization and location of
Data on the storage media.

Although the normal forms are often defined informally in terms of the
characteristics of tables, rigorous definitions of the normal forms are
concerned with the characteristics of mathematical constructs known as
relations. Whenever information is represented relationally, it is
meaningful to consider the extent to which the representation is
normalized.

Problems addressed by normalization

An Update Anomaly. Employee 519 is shown as having different
addresses on different records.

An Insertion Anomaly. Until the new faculty member is assigned to
teach at least one course, his details cannot be recorded.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

A Deletion Anomaly. All information about Dr. Giddens is lost when
he temporarily ceases to be assigned to any courses.

A table that is not sufficiently normalized can suffer from
liongcoicnaslistencies of various types, and from anomalies involving data
operations. In such a table:

• The same information can be expressed on multiple records;

therefore updates to the table may result in logical

inconsistencies. For example, each record in an "Employees'

Skills" table might contain an Employee ID, Employee Address,
and Skill; thus a change of address for a particular employee will
potentially need to be applied to multiple records (one for each of
his skills). If the update is not carried through successfully—if,
that is, the employee's address is updated on some records but not
others—then the table is left in an inconsistent state. Specifically,
the table provides conflicting answers to the question of what this
particular employee's address is. This phenomenon is known as
an update anomaly.

• There are circumstances in which certain facts cannot be recorded

at all. For example, each record in a "Faculty and Their Courses"
table might contain a Faculty ID, Faculty Name, Faculty Hire
Date, and Course Code—thus we can record the details of any
faculty member who teaches at least one course, but we cannot
record the details of a newly-hired faculty member who has not
yet been assigned to teach any courses. This phenomenon

iksnown as an insertion anomaly.

• There are circumstances in which the deletion of data representing

 certain facts necessitates the deletion of data

representing completely different facts. The "Faculty and Their

Courses" table described in the previous example suffers from
this type of anomaly, for if a faculty member temporarily ceases
to be assigned to any courses, we must delete the last of

trheecords on which that faculty member appears. This phenomenon
is known as a deletion anomaly.

Ideally, a relational database table should be designed in such a way as
to exclude the possibility of update, insertion, and deletion anomalies.
The normal forms of relational database theory provide guidelines for
deciding whether a particular design will be vulnerable to such
anomalies. It is possible to correct an unnormalized design so as to make
it adhere to the demands of the normal forms: this is

cnaolrlmedalization. Removal of redundancies of the tables will lead

tsoeveral tables, with referential integrity restrictions between them.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Normalization typically involves decomposing an unnormalized table
into two or more tables that, were they to be combined (joined), would
convey exactly the same information as the original table.

Background to normalization: definitions

• Functional Dependency: Attribute B has a functional

dependency on attribute A i.e. A B if, for each value of
attribute A, there is exactly one value of attribute B. If value of A
is repeating in tuples then value of B will also repeat. In our
example, Employee Address has a functional dependency on
Employee ID, because a particular Employee ID value
corresponds to one and only one Employee Address value. (Note
that the reverse need not be true: several employees could live at
the same address and therefore one Employee Address value
could correspond to more than one Employee ID. Employee ID is
therefore not functionally dependent on Employee Address.) An
attribute may be functionally dependent either on a single
attribute or on a combination of attributes. It is not possible to
determine the extent to which a design is normalized without
understanding what functional dependencies apply to the
attributes within its tables; understanding this, in turn, requires
knowledge of the problem domain. For example, an Employer
may require certain employees to split their time between two
locations, such as New York City and London, and therefore
want to allow Employees to have more than one Employee
Address. In this case, Employee Address would no longer be
functionally dependent on Employee ID.

• Trivial Functional Dependency: A trivial functional

dependency is a functional dependency of an attribute on a
superset of itself. {Employee ID, Employee Address}
{Employee Address} is trivial, as is {Employee Address}
{Employee Address}.

• Full Functional Dependency: An attribute is fully functionally

dependent on a set of attributes X if it is

- functionally dependent on X, and
- not functionally dependent on any proper subset of X. {Employee

Address} has a functional dependency on {Employee ID, Skill},
but not a full functional dependency, because is also dependent
on {Employee ID}.

• Transitive Dependency: A transitive dependency is an indirect

functional dependency, one in which X Z only by virtue of
X Y and Y Z.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

• Multivalued Dependency: A multivalued dependency is a

constraint according to which the presence of certain rows in a
table implies the presence of certain other rows: see the
Multivalued Dependency article for a rigorous definition.

• Join Dependency: A table T is subject to a join dependency if T

can always be recreated by joining multiple tables each having a
subset of the attributes of T.

• SuperKey: A superkey is an attribute or set of attributes that

uniquely identifies rows within a table; in other words

tdwisotinct rows are always guaranteed to have distinct superkeys.
{Employee ID, Employee Address, Skill} would be a superkey
for the "Employees' Skills" table; {Employee ID, Skill} would
also be a superkey.

• Candidate Key: A candidate key is a minimal superkey, that is, a

superkey for which we can say that no proper subset of it is also a
superkey. {Employee Id, Skill} would be a candidate key for the
"Employees' Skills" table.

• Non-Prime Attribute: A non-prime attribute is an attribute that

does not occur in any candidate key. Employee Address would be
a non-prime attribute in the "Employees' Skills" table.

• Primary Key: Most DBMSs require a table to be defined as

having a single unique key, rather than a number

 of puonsiqsiubelekeys. A primary key is a key which the database designer
has designated for this purpose.

3.2.2 History

Edgar F. Codd first proposed the process of normalization and what
came to be known as the 1st normal form:

There is, in fact, a very simple elimination procedure which we shall call
normalization. Through decomposition non-simple domains are replaced
by "domains whose elements are atomic (non-decomposable) values."
—Edgar F. Codd, A Relational Model of Data for Large Shared Data
Banks

In his paper, Edgar F. Codd used the term "non-simple" domains to
describe a heterogeneous data structure, but later researchers would refer
to such a structure as an abstract data type.

3.3 Normal Forms

The normal forms (abbrev. NF) of relational database theory provide
criteria for determining a table's degree of vulnerability to

liongcoicnaslistencies and anomalies. The higher the normal form applicable to
a table, the less vulnerable it is to inconsistencies and anomalies. Each

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

table has a "highest normal form" (HNF): by definition, a table always
meets the requirements of its HNF and of all normal forms lower than
its HNF; also by definition, a table fails to meet the requirements of any
normal form higher than its HNF.

First normal form: A table is in first normal form (1NF) if and only if
it represents a relation. Given that database tables embody a relation-like
form, the defining characteristic of one in first normal form is that it
does not allow duplicate rows or nulls. Simply put, a table with a unique
key (which, by definition, prevents duplicate rows) and without any
nullable columns is in 1NF.

Second normal form: The criteria for second normal form (2NF) are:

• The table must be in 1NF.

• None of the non-prime attributes of the table are functionally
dependent on a part (proper subset) of a candidate key; in other
words, all functional dependencies of non-prime attributes on
candidate keys are full functional dependencies. For example,
consider an "Employees' Skills" table whose attributes are
Employee ID, Employee Name, and Skill; and suppose that the
combination of Employee ID and Skill uniquely identifies
records within the table. Given that Employee Name depends on
only one of those attributes – namely, Employee ID – the table is
not in 2NF.

• In simple, a table is 2NF if it is in 1NF and all

fields deaprendant on the whole of the primary key, or a relation is in
2NF if it is in 1NF and every non-key attribute is fully dependent
on each candidate key of the relation.

• Note that if none of a 1NF table's candidate keys are composite –

i.e. every candidate key consists of just one attribute – then we
can say immediately that the table is in 2NF.

• All columns must be a fact about the entire key, and not a subset
of the key.

Third Normal Form: The criteria for third normal form (3NF) are:

• The table must be in 2NF.

• Transitive dependencies must be eliminated. All attributes must
rely only on the primary key. So, if a database has a table with
columns Student ID, Student, Company, and Company Phone
Number, it is not in 3NF. This is because the Phone number relies
on the Company. So, for it to be in 3NF, there must be a second
table with Company and Company Phone Number columns; the
Phone Number column in the first table would be removed.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Fourth normal form: A table is in fourth normal form (4NF)

 if aonldy if, for every one of its non-trivial multivalued dependencies

X Y,
X is a superkey—that is, X is either a candidate key or a superset thereof.

• For example, if you can have two phone numbers values and two
email address values, then you should not have them in the same
table.

Fifth normal form: The criteria for fifth normal form (5NF and also
PJ/NF) are:

• The table must be in 4NF.

• There must be no non-trivial join dependencies that do not follow
from the key constraints. A 4NF table is said to be in the 5NF if
and only if every join dependency in it is implied by

tchaendidate keys.

Domain/key Normal Form (or DKNF) requires that a table

not bsuebject to any constraints other than domain constraints and
key constraints.

Sixth Normal Form: According to the definition by Christopher J. Date
and others, who extended database theory to take account of temporal
and other interval data, a table is in sixth normal form (6NF) if and only
if it satisfies no non-trivial (in the formal sense) join dependencies at all,
, meaning that the fifth normal form is also satisfied. When referring to
"join" in this context it should be noted that Date et al. additionally use
generalized definitions of relational operators that also take account of
interval data (e.g. from-date to-date) by conceptually breaking them
down ("unpacking" them) into atomic units (e.g. individual days), with
defined rules for joining interval data, for instance.

3.4 Denormalization

Databases intended for Online Transaction Processing (OLTP) are
typically more normalized than databases intended for Online Analytical
Processing (OLAP). OLTP Applications are characterized by

 a hvoiglhume of small transactions such as updating a sales

record at a super
market checkout counter. The expectation is that each transaction will
leave the database in a consistent state. By contrast, databases intended
for OLAP operations are primarily "read mostly" databases. OLAP
applications tend to extract historical data that has accumulated over a
long period of time. For such databases, redundant or "denormalized"
data may facilitate Business Intelligence applications. Specifically,
dimensional tables in a star schema often contain denormalized data.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

The denormalized or redundant data must be carefully controlled during

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

ETL processing, and users should not be permitted to see the data until it
is in a consistent state. The normalized alternative to the star schema is
the snowflake schema. It has never been proven that this
denormalization itself provides any increase in performance,or if the
concurrent removal of data constraints is what increases the
performance. In many cases, the need for denormalization has waned as
computers and RDBMS software have become more powerful, but since
data volumes have generally increased along with hardware and
software performance, OLAP databases often still use denormalized
schemas.

Denormalization is also used to improve performance on smaller
computers as in computerized cash-registers and mobile devices, since
these may use the data for look-up only (e.g. price lookups).
Denormalization may also be used when no RDBMS exists for a
platform (such as Palm), or no changes are to be made to the data and a
swift response is crucial.

3.5 Non-first normal form (NF² or N1NF)

In recognition that denormalization can be deliberate and useful, the
non-first normal form is a definition of database designs which do not
conform to the first normal form, by allowing "sets and sets of sets to be
attribute domains" (Schek 1982). This extension is a (non-optimal) way
of implementing hierarchies in relations. Some academics have dubbed
this practitioner developed method, "First Ab-normal Form", Codd
defined a relational database as using relations, so any table not in 1NF
could not be considered to be relational.

Consider the following table:

Non-First Normal Form

Person Favorite Colors

Bob blue, red

Jane green, yellow, red

Assume a person has several favorite colors. Obviously, favorite colors
consist of a set of colors modeled by the given table.

To transform this NF² table into a 1NF an "unnest" operator is required
which extends the relational algebra of the higher normal forms. The
reverse operator is called "nest" which is not always the mathematical
inverse of "unnest", although "unnest" is the mathematical inverse to
"nest". Another constraint required is for the operators to be bijective,
which is covered by the Partitioned Normal Form (PNF).

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

4.0 CONCLUSION

In the design and development of database management systems,
organizations may use one kind of DBMS for daily transactions, and
then move the detail unto another computer that uses another DBMS
better suited for inquiries and analysis. Overall systems design decisions
are performed by database administrators. The three most common
organizations are hierarchical, network and relational models. A DBMS
may provide one, two or all three models in

 designing dmaatnabagaseement systems.

5.0 SUMMARY

• Database design is the process of deciding how to organize data

into records types and how the record types will relate to each
other

• Database development may start with a top-down data planning
process. Database administrators and designers work with
corporate and end user management to develop
 an emnotedreplrtihseat defines the basic business process of the enterprise

• Database normalization, sometimes referred to as canonical

synthesis, is a technique for designing relational database tables
to minimize duplication of information and, in so doing

tsoafeguard the database against certain types of logical or
structural problems, namely data anomalies

• Edgar F. Codd first proposed the process of normalization and

what came to be known as the 1st normal form:
• The normal forms (abbrev. NF) of relational database theory

provide criteria for determining a table's degree of vulnerability
to logical inconsistencies and anomalies.

• Databases intended for Online Transaction Processing (OLTP)
are typically more normalized than databases intended for Online
Analytical Processing (OLAP). OLTP Applications are
characterized by a high volume of small transactions

 such auspdating a sales record at a super market checkout
counter.

• In recognition that denormalization can be deliberate and useful,
the non-first normal form is a definition of database

dwehs iiicghnsdo not conform to the first normal form, by allowing "sets
and sets of sets to be attribute domains"

6.0 TUTOR-MARKED ASSIGNMENT

1. Mention the 5 phases in the development of database.
2. Identify the criteria for the second normal form (2NF).

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

7.0 REFERENCES/FURTHER READINGS

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Codd, E.F. (June 1970). "A Relational Model of Data for Large Shared
Data Banks". Communications of the ACM 13 (6): 377–387.

Date, C.J. "What First Normal Form Really Means" in Date on

Database: Writings 2000-2006 (Springer-Verlag, 2006), p. 128.

Codd, E.F. "Is Your DBMS Really Relational?" Computerworld,
October 14, 1985.

Coles, M. Sic Semper Null. 2007. SQL Server Central. Redgate

Software.

Kent, William. "A Simple Guide to Five Normal Forms in Relational
Database Theory", Communications of the ACM 26 (2), Feb.
1983, pp. 120-125.

Codd, E.F. "Further Normalization of the Data Base Relational

Model." (Presented at Courant Computer Science Symposia
Series 6, "Data Base Systems," New York City, May 24th-25th,
1971.) IBM Research Report RJ909 (August 31st, 1971).
Republished in Randall J. Rustin (ed.), Data Base Systems:
Courant Computer Science Symposia Series 6. Prentice-Hall,
1972.

Codd, E. F. "Recent Investigations into Relational Data Base Systems."

IBM Research Report RJ1385 (April 23rd, 1974). Republished in
Proc. 1974 Congress (Stockholm, Sweden, 1974). New York,
N.Y.: North-Holland (1974).

Fagin, Ronald (September 1977). "Multivalued Dependencies and a
New Normal Form for Relational Databases". ACM Transactions
on Database Systems 2 (1): 267. doi:10.1145/320557.320571.

Date, Chris J.; Hugh Darwen, Nikos A. Lorentzos [January 2003].

"Chapter 10 Database Design, Section 10.4: Sixth Normal Form",
Temporal Data and the Relational Model: A Detailed
Investigation into the Application of Interval and Relation
Theory to the Problem of Temporal Database Management.
Oxford: Elsevier LTD, p176. ISBN 1558608559

O‘Brien A. James, (2003). (11th Edition). Introduction to Information

Systems, McGrw-Hill.

Zimyani, E. (June 2006). "Temporal Aggregates and Temporal
Universal Quantification in Standard SQL". ACM
SIGMOD Record, volume 35, number 2. ACM.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

UNIT 2 STRUCTURED QUERY LANGUAGE (SQL)

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 History
3.2 Standardization
3.3 Scope and Extensions
3.4 Language Elements
3.5 Criticisms of SQL
3.6 Alternatives to SQL

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

SQL (Structured Query Language) is a database computer language
designed for the retrieval and management of data in relational database
management systems (RDBMS), database schema creation and
modification, and database object access control management.

SQL is a standard interactive and programming language for querying
and modifying data and managing databases. Although SQL is both an
ANSI and an ISO standard, many database products support SQL with
proprietary extensions to the standard language. The core of SQL
ifsormed by a command language that allows the retrieval
iunpsdeartionng, and deletion of data, and performing management and
administrative functions. SQL also includes a Call Level Interface
(SQL/CLI) for accessing and managing data and databases remotely.

The first version of SQL was developed at IBM by
 Donald DCh. amberlin and Raymond F. Boyce in the early
 1970s. This version, initially called SEQUEL, was designed to manipulate and
retrieve data
stored in IBM's original relational database product, System R. The SQL
language was later formally standardized by the American
NStaaatniodnaradl s Institute (ANSI) in 1986. Subsequent versions of the SQL
standard have been released as International Organization for
Standardization (ISO) standards.

Originally designed as a declarative query and data manipulation
language, variations of SQL have been created by SQL database
management system (DBMS) vendors that add procedural constructs,

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

control-of-flow statements, user-defined data types, and various other
language extensions. With the release of the SQL: 1999 standard, many
such extensions were formally adopted as part of the SQL language via
the SQL Persistent Stored Modules (SQL/PSM) portion of the standard.

Common criticisms of SQL include a perceived lack of cross-platform
portability between vendors, inappropriate handling of missing data (see
Null (SQL), and unnecessarily complex and occasionally ambiguous
language grammar and semantics.

SQL

Paradigm Multi-paradigm

Appeared in 1974

Designed by Donald D. Chamberlin

and Raymond F. Boyce

Developer IBM

Latest release SQL:2006/ 2006

Typing discipline static, strong

Major Many

implementations

Dialects SQL-86, SQL-89,

SQL-92, SQL:1999,

SQL: 2003, SQL:2006

Influenced by Datalog

Influenced CQL, LINQ, Windows

PowerShell

OS Cross-platform

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• define structure query language (SQL)

• trace the history and development process of SQL

• know the scope and extension of SQL

• identify the vital indices of SQL

• know what are the language elements

• know some of the criticism of SQL

• answer the question of alternatives to SQL

3.0 MAIN CONTENT

3.1 History

During the 1970s, a group at IBM San Jose Research

Ldeavbeolroaptoedrythe System R relational database management system, based
on the model introduced by Edgar F. Codd in his influential paper, A
Relational Model of Data for Large Shared Data Banks. Donald D. Chamberlin
 and RaymondF. Boyce of IBM subsequently created the
Structured English Query Language (SEQUEL) to manipulate and
manage data stored in System R. The acronym SEQUEL was lcahtaenr
ged to SQL because "SEQUEL" was a trademark of the UK-based
Hawker Siddeley aircraft company.

The first non-commercial non-SQL RDBMS, Ingres, was developed in
1974 at the U.C. Berkeley. Ingres implemented a query language known
as QUEL, which was later supplanted in the marketplace by SQL.

In the late 1970s, Relational Software, Inc. (now Oracle Corporation)
saw the potential of the concepts described by Codd, Chamberlin, and
Boyce and developed their own SQL-based RDBMS with aspirations of
selling it to the U.S. Navy, CIA, and other government agencies. In the
summer of 1979, Relational Software, Inc. introduced the first
commercially available implementation of SQL, Oracle V2 (Version2)
for VAX computers. Oracle V2 beat IBM's release of the System/38
RDBMS to market by a few weeks.

After testing SQL at customer test sites to determine the usefulness and
practicality of the system, IBM began developing commercial products
based on their System R prototype including System/38, SQL/DS, and
DB2, which were commercially available in 1979, 1981, and

1re9s8p3e,ctively.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

3.2 Standardization

SQL was adopted as a standard by ANSI in 1986 and ISO in 1987. In
the original SQL standard, ANSI declared that the official pronunciation
for SQL is "es queue el". However, many English-speaking database
professionals still use the nonstandard pronunciation /'si kw l/ (like the
word "sequel"). SEQUEL was an earlier IBM database language, a
predecessor to the SQL language.

Until 1996, the National Institute of Standards and Technology (NIST)
data management standards program was tasked with certifying SQL
DBMS compliance with the SQL standard. In 1996, however, the NIST
data management standards program was dissolved, and vendors are
now relied upon to self-certify their products for compliance.

The SQL standard has gone through a number of revisions, as shown
below:

Year Name Alias Comments

1986 SQL-86 SQL-87 First published by ANSI. Ratified by ISO

in 1987.

1989 SQL-89 FIPS 127-1 Minor revision, adopted as FIPS 127-1.

1992 SQL-92 SQL2, FIPS Major revision (ISO 9075), Entry Level
127-2 SQL-92 adopted as FIPS 127-2.

1999 SQL:1999 SQL3 Added regular expression matching,

recursive queries, triggers, support for
procedural and control-of-flow statements,
non-scalar types, and some object-oriented
features.

2003 SQL:2003 Introduced XML-related features, window
functions, standardized sequences, and
columns with auto-generated values
(including identity- columns).

2006 SQL:2006 ISO/IEC 9075-14:2006 defines ways in
which SQL can be used in conjunction
with XML. It defines ways of importing and
storing XML data in an SQL database, manipulating
 it within the database and publishing
 both XML and conventional
SQL-data in XML form. In addition, it
provides facilities that permit applications
to integrate into their SQL code the use of
XQuery, the XML Query Language
published by the World Wide Web
Consortium (W3C), to concurrently access
ordinary SQL-data and XML documents.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

The SQL standard is not freely available. SQL: 2003 and SQL: 2006
may be purchased from ISO or ANSI. A late draft of SQL: 2003
ifsreely available as a zip archive, however, from Whitemarsh Information
Systems Corporation. The zip archive contains a number of PDF files
that define the parts of the SQL: 2003 specification.

3.3 Scope and Extensions

Procedural Extensions

SQL is designed for a specific purpose: to query data contained in a
relational database. SQL is a set-based, declarative query language, not
an imperative language such as C or BASIC. However, there

aexretensions to Standard SQL which add procedural programming
language functionality, such as control-of-flow constructs. These are:

Source Common
Name Full Name

ANSI/ISO
Standard SQL/PSM SQL/Persistent Stored Modules

IBM SQL PL SQL Procedural Language (implements SQL/PSM)

Microsoft/
Sybase T-SQL Transact-SQL

MySQL SQL/PSM SQL/Persistent Stored Module (as in ISO SQL:2003)

Oracle PL/SL Procedural Language/SQL (based on Ada)

PostgreSQL PL/pgSQL Procedural Language/PostgreSQL Structured Query
Language (based on Oracle PL/SQL)

PostgreSQL PL/PSM Procedural Language/Persistent Stored Modules
(implements SQL/PSM)

In addition to the standard SQL/PSM extensions and proprietary SQL
extensions, procedural and object-oriented programmability is available
on many SQL platforms via DBMS integration with other languages.
The SQL standard defines SQL/JRT extensions (SQL Routines
aTnydpes for the Java Programming Language) to support Java code

iSnQL databases. SQL Server 2005 uses the SQLCLR
(SQL SCeormvemr on Language Runtime) to host managed .NET assemblies in the
database, while prior versions of SQL Server were restricted to using
unmanaged extended stored procedures which were primarily written in
C. Other database platforms, like MySQL and Postgres, allow functions
to be written in a wide variety of languages including Perl, Python, Tcl,
and C.

Additional Extensions

SQL: 2003 also defines several additional extensions to the standard to
increase SQL functionality overall. These extensions include:

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

The SQL/CLI, or Call-Level Interface, extension is defined in ISO/IEC
9075-3:2003. This extension defines common interfacing components
(structures and procedures) that can be used to execute SQL statements
from applications written in other programming languages. The
SQL/CLI extension is defined in such a way that SQL statements and
SQL/CLI procedure calls are treated as separate from the calling
application's source code.

The SQL/MED, or Management of External Data, extension is
defined by ISO/IEC 9075-9:2003. SQL/MED provides extensions to
SQL that define foreign-data wrappers and datalink types to allow SQL
to manage external data. External data is data that is accessible to, but
not managed by, an SQL-based DBMS.

The SQL/OLB, or Object Language Bindings, extension is defined by
ISO/IEC 9075-10:2003. SQL/OLB defines the syntax and symantics of
SQLJ, which is SQL embedded in Java. The standard also describes
mechanisms to ensure binary portability of SQLJ applications, and
specifies various Java packages and their contained classes.
The SQL/Schemata, or Information and Definition Schemas,
extension is defined by ISO/IEC 9075-11:2003. SQL/Schemata defines
the Information Schema and Definition Schema, providing a common
set of tools to make SQL databases and objects self-describing. These
tools include the SQL object identifier, structure and integrity
constraints, security and authorization specifications, features and
packages of ISO/IEC 9075, support of features provided by SQL-based
DBMS implementations, SQL-based DBMS implementation
information and sizing items, and the values supported by the DBMS
implementations.

The SQL/JRT, or SQL Routines and Types for the Java

Programming Language, extension is defined by ISO/IEC
9075-13:2003. SQL/JRT specifies the ability to invoke static Java
methods as routines from within SQL applications. It also calls for the
ability to use Java classes as SQL structured user-defined types.

The SQL/XML, or XML-Related Specifications, extension is defined
by ISO/IEC 9075-14:2003. SQL/XML specifies SQL-based extensions
for using XML in conjunction with SQL. The XML data type is
introduced, as well as several routines, functions, and XML-to-SQL data
type mappings to support manipulation and storage of XML in an SQL
database.

The SQL/PSM, or Persistent Stored Modules, extension is defined by
ISO/IEC 9075-4:2003. SQL/PSM standardizes procedural extensions for
SQL, including flow of control, condition handling, statement condition

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

signals and resignals, cursors and local variables, and assignment of
expressions to variables and parameters. In addition, SQL/PSM formalizes
declaration and maintenance of persistent database language
routines (e.g., "stored procedures").

3.4 Language Elements

This chart shows several of the SQL language elements that compose a
single statement.

The SQL language is sub-divided into several language elements,
including:

• Statements which may have a persistent effect on schemas and

data, or which may control transactions, program flow,
connections, sessions, or diagnostics.

• Queries which retrieve data based on specific criteria.
• Expressions which can produce either scalar values or tables

consisting of columns and rows of data.
• Predicates which specify conditions that can be evaluated to SQL

three-valued logic (3VL) Boolean truth values and which are
used to limit the effects of statements and queries, or to change
program flow.

• Clauses, which are in some cases optional, constituent

components of statements and queries.

• Whitespace is generally ignored in SQL statements and queries,
making it easier to format SQL code for readability.

• SQL statements also include the semicolon (";") statement
terminator. Though not required on every platform, it is defined
as a standard part of the SQL grammar.

Queries

The most common operation in SQL databases is the query, which is
performed with the declarative SELECT keyword. SELECT retrieves
data from a specified table, or multiple related tables, in a database.
While often grouped with Data Manipulation Language (DML)
statements, the standard SELECT query isconsidered separate from SQL
 DML, as it has no persistent effects on the data stored

idnatabaase. Note that there are some platform-specific variations of
SELECT that can persist their effects in a database, such as the SELECT
INTO syntax that exists in some databases.

SQL queries allow the user to specify a description of the desired result
set, but it is left to the devices of the database managemen
s(DysBteMmS) to plan, optimize, and perform the physical operations

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

necessary to produce that result set in as efficient a manner as possible.
An SQL query includes a list of columns to be included in the final
result immediately following the SELECT keyword. An asterisk ("*")
can also be used as a "wildcard" indicator to specify that all available
columns of a table (or multiple tables) are to be returned. SELECT is the
most complex statement in SQL, with several optional keywords and
clauses, including:

• The FROM clause which indicates the source table or tables from

which the data is to be retrieved. The FROM clause can include
optional JOIN clauses to join related tables to one another based
on user-specified criteria.

• The WHERE clause includes a comparison predicate, which is

used to restrict the number of rows returned by the query. The
WHERE clause is applied before the GROUP BY clause. The
WHERE clause eliminates all rows from the result set where the
comparison predicate does not evaluate to True.

• The GROUP BY clause is used to combine, or group, rows with

related values into elements of a smaller set of rows. GROUP BY
is often used in conjunction with SQL aggregate functions or to
eliminate duplicate rows from a result set.

• The HAVING clause includes a comparison predicate used to

eliminate rows after the GROUP BY clause is applied to the
result set. Because it acts on the results of the GROUP BY
clause, aggregate functions can be used in the HAVING clause
predicate.

• The ORDER BY clause is used to identify which columns are used

to sort the resulting data, and in which order they should be sorted

(options are ascending or descending). The order of rows

returned by an SQL query is never guaranteed unless an ORDER
BY clause is specified.

Data Definition

The second group of keywords is the Data Definition Language (DDL). DDL
allows the user to define new tables and associated elements. Most commercial
 SQL databases have proprietary extensions in their DDL,
which allow control over nonstandard features of the database system.
The most basic items of DDL are the CREATE, ALTER, RENAME,
TRUNCATE and DROP statements:

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

• CREATE causes an object (a table, for example) to be created

within the database.
• DROP causes an existing object within the database to be

deleted, usually irretrievably.
• TRUNCATE deletes all data from a table (non-standard, but

common SQL statement).
• ALTER statement permits the user to modify an existing object

in various ways -- for example, adding a column to an existing
table.

Data Control

The third group of SQL keywords is the Data Control Language (DCL).
DCL handles the authorization aspects of data and permits the user to
control who has access to see or manipulate data within the database. Its
two main keywords are:

• GRANT authorizes one or more users to perform an operation or

a set of operations on an object.
• REVOKE removes or restricts the capability of a user to perform

an operation or a set of operations.

3.5 Criticisms of SQL

Technically, SQL is a declarative computer language for use with "SQL
databases". Theorists and some practitioners note that many of
tohreiginal SQL features were inspired by, but violated,
 the rmeoladtieolnalfor database management and its tuple
 calculus realization. Recent extensions to SQL achieved
 relational completeness, but have worsened the violations, as
documented in The Third Manifesto.
In addition, there are also some criticisms about the practical
 use oSfQL:

• Implementations are inconsistent and, usually, incompatible
between vendors. In particular date and time syntax, string
concatenation, nulls, and comparison case sensitivity often vary
from vendor to vendor.

• The language makes it too easy to do a Cartesian join (joining all

possible combinations), which results in "run-away" result sets
when WHERE clauses are mistyped. Cartesian joins are so rarely
used in practice that requiring an explicit CARTESIAN keyword
may be warranted.

SQL 1992 introduced the CROSS JOIN keyword that allows the user to
make clear that a cartesian join is intended, but the shorthand "comma-

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

join" with no predicate is still acceptable syntax.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

• It is also possible to misconstruct a WHERE on an update or

delete, thereby affecting more rows in a table than desired.

• The grammar of SQL is perhaps unnecessarily complex,
borrowing a COBOL-like keyword approach, when a function-
influenced syntax could result in more re-use of fewer grammar
and syntax rules. This is perhaps due to IBM's early goal of
making the language more English-like so that it is more
approachable to those without a mathematical or programming
background. (Predecessors to SQL were more mathematical.)

Reasons for lack of portability

Popular implementations of SQL commonly omit support for basic
features of Standard SQL, such as the DATE or TIME data types,
preferring variations of their own. As a result, SQL code can rarely be
ported between database systems without modifications.

There are several reasons for this lack of portability between database
systems:

• The complexity and size of the SQL standard means that most
databases do not implement the entire standard.

• The standard does not specify database behavior in several
important areas (e.g. indexes, file storage...), leaving it up to
implementations of the database to decide how to behave.

• The SQL standard precisely specifies the syntax that a
conforming database system must implement. However, the
standard's specification of the semantics of language constructs is
less well-defined, leading to areas of ambiguity.

• Many database vendors have large existing customer bases;
where the SQL standard conflicts with the prior behavior of the
vendor's database, the vendor may be unwilling to break
backward compatibility.

3.6 Alternatives to SQL

A distinction should be made between alternatives to relational query
languages and alternatives to SQL. The lists below are proposed
alternatives to SQL, but are still (nominally) relational. See navigational
database for alternatives to relational:

• IBM Business System 12 (IBM BS12)

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

• Tutorial D

• Hibernate Query Language (HQL) - A Java-based tool that uses
modified SQL

• Quel introduced in 1974 by the U.C. Berkeley Ingres project.

• Object Query Language

• Datalog

• .QL - object-oriented Datalog

• LINQ

• QLC - Query Interface to Mnesia, ETS, Dets, etc (Erlang
programming language)

• 4D Query Language (4D QL)

• QBE (Query By Example) created by Moshè Zloof, IBM 1977

• Aldat Relational Algebra and Domain algebra

4.0 CONCLUSION

The structured query language (SQL) has become the official dominant
language for writing database management system. This language
differs from conventional methods of computer language writing,
because it is not necessarily procedural. An SQL statement is not really
a command to computer but it is rather a description of some of the
daatcotained in a database. SQL is not procedural because it does not give
 step-by-step commands to the computer or database. It describes
data and sometimes instructs the database to do something with the data.
Irrespective of this, SQL has it own criticism.

5.0 SUMMARY

• SQL (Structured Query Language) is a database computer language

 designed for the retrieval and management of data in relational

 database management systems (RDBMS), database

schema creation and modification, and database object access

control management.

• During the 1970s, a group at IBM San Jose Research Laboratory

developed the System R relational DATABASE MANAGEMENT

AbaPsPedLICAonTIOtNheSYmSToEdeMl , introduced by Edgar F. Codd in his
influential paper, A Relational Model of Data for Large
Shared Data Banks.

• SQL was adopted as a standard by ANSI in 1986 and ISO in

1987. In the original SQL standard, ANSI declared tha

tohfeficial pronunciation for SQL is "es queue el".

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

• SQL is designed for a specific purpose: to query data contained in
a relational database. SQL is a set-based, declarative query
language, not an imperative language such as C or BASIC.

• This chart shows several of the SQL language elements that

compose a single statement.

• Technically, SQL is a declarative computer language for use with
"SQL databases". Theorists and some practitioners note that
many of the original SQL features were inspired by, but violated,
the relational model for database management and its tuple
calculus realization.

• A distinction should be made between alternatives to relational

query languages and alternatives to SQL

6.0 TUTOR-MARKED ASSIGNMENT

List and discuss the sub-divisions of the language of structures query
language

7.0 REFERENCES/FURTHER READINGS

Chapple, Mike. "SQL Fundamentals (HTML). About.com: Databases.
About.com.

"Structured Query Language (SQL)" (HTML). International Business

Machines (October 27, 2006).

Codd, E.F. (June 1970). "A Relational Model of Data for Large Shared
Data Banks". Communications of the ACM 13 (No. 6): pp. 377–
387. Association for Computing Machinery. doi:
10.1145/362384.362685.

Chamberlin, Donald D.; Boyce, Raymond F. (1974). "SEQUEL: A

Structured English Query Language". Proceedings of the 1974

ACM SIGFIDET Workshop on Data Description, Access and
Control: pp. 249–264. Association for Computing Machinery.

a b Oppel, Andy (March 1, 2004). Databases Demystified. San Francisco,

CA: McGraw-Hill Osborne Media, pp. 90-91. ISBN
0-07-225364-9.

"History of IBM, 1978 (HTML). IBM Archives. IBM.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Chapple, Mike (?). "SQL Fundamentals" (HTML). About.com.
About.com, A New York Times Company. Retrieved on
2007-08-30.

Melton, Jim; Alan R Simon (1993). Understanding the New SQL: A
Complete Guide. Morgan Kaufmann, 536. ISBN:
1558602453. ―chapter 1.2 What is SQL? SQL (correctly
pronounced "ess cue ell," instead of the somewhat common
"sequel"), is a...‖

"Understand SQL". www.faqs.org/docs/.

Doll, Shelley (June 19, 2002). "Is SQL a Standard Anymore?" (HTML).
TechRepublic's Builder.com. TechRepublic. Retrieved on
2007-06-09.

ISO/IEC 9075-11:2003: Information and Definition Schemas
(SQL/Schemata), 2003, pp. p. 1.

ANSI/ISO/IEC International Standard (IS). Database Language SQL—

Part 2: Foundation (SQL/Foundation). 1999.

"INTO Clause (Transact-SQL)" (HTML). SQL Server 2005 Books
Online. Microsoft (2007). Retrieved on 2007-06-17.

M. Negri, G. Pelagatti, L. Sbattella (1989) Semantics and problems of

universal quantification in SQL.

Claudio Fratarcangeli (1991) Technique for universal quantification in
SQL.

Jalal Kawash Complex quantification in Structured Query Language
(SQL): a Tutorial Using Relational Calculus - Journal of
Computers in Mathematics and Science Teaching ISSN
0731-9258 Volume 23, Issue 2, 2004 AACE Norfolk, VA.

http://www.faqs.org/docs/

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

UNIT 3 DATABASE AND INFORMATION SYSTEMS
SECURITY

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Basic Principles
3.2 Database Security
3.3 Relational DBMS Security
3.4 Proposed OODBMS Security Models
3.5 Security Classification for Information
3.6 Cryptography
3.7 Disaster Recovery Planning

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Data security is the means of ensuring that data is kept

 safe fcroorrmuption and that access to it is suitably controlled. Thus data security
helps to ensure privacy. It also helps in protecting personal data.

Information security means protecting information and information
systems from unauthorized access, use, disclosure, disruption,
modification, or destruction. The terms information security, computer
security and information assurance are frequently used interchangeably.
These fields are interrelated and share the common goals of protecting
the confidentiality, integrity and availability of information; however,
there are some subtle differences between them. These differences lie
primarily in the approach to the subject, the methodologies used, and the
areas of concentration. Information security is concerned with the
confidentiality, integrity and availability of data regardless of the form
the data may take: electronic, print, or other forms.

Governments, military, financial institutions, hospitals, and private
businesses amass a great deal of confidential information about their
employees, customers, products, research, and financial status. Most of
this information is now collected, processed and stored on electronic
computers and transmitted across networks to other computers. Should
confidential information about a businesses customers or finances or
new product line fall into the hands of a competitor, such a breach of
security could lead to lost business, law suits or even bankruptcy of the

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

business. Protecting confidential information is a business requirement,
and in many cases also an ethical and legal requirement. For

tihnedividual, information security has a significant effect on privacy,
which is viewed very differently in different cultures.

The field of information security has grown and evolved significantly in
recent years. As a career choice there are many ways of gaining entry
into the field. It offers many areas for specialization including
Information Systems Auditing, Business Continuity Planning and
Digital Forensics Science, to name a few.

2.0 OBJECTIVES

At the end of the unit, you should be able to:

• understand the concepts of the CIA Trade in respect of information

systems security
• know the components of the Donn Parker model for the classic Triad

• identify the different types of information access control and how
they differ from each other

• differentiate Discretionary and Mandatory Access Control Policies

• know the Proposed OODBMS Security Models
• differentiate between the OODBMS models

• defining appropriate procedures and protection requirements for
information security

• define cryptography and know its applications in data security.

3.0 MAIN CONTENT

3.1 Basic Principles

3.1.1 Key Concepts

For over twenty years information security has held that confidentiality,
integrity and availability (known as the CIA Triad) are the
cporirneciples of information system security.

Confidentiality

Confidentiality is the property of preventing disclosure of information to unauthorized
 individuals or systems. For example, a credit card
transaction on the Internet requires the credit card number
 to btreansmitted from the buyer to the merchant and from the
 merchant to a
transaction processing network. The system attempts to enforce
confidentiality by encrypting the card number during transmission, by
limiting the places where it might appear (in databases, log

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

files,

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

backups, printed receipts, and so on), and by restricting access to the
places where it is stored. If an unauthorized party obtains the card
number in any way, a breach of confidentiality has occurred.

Breaches of confidentiality take many forms. Permitting someone to
look over your shoulder at your computer screen while you have
confidential data displayed on it could be a breach of confidentiality. If a
laptop computer containing sensitive information about a company's
employees is stolen or sold, it could result in a breach of confidentiality.
Giving out confidential information over the telephone is a breach of
confidentiality if the caller is not authorized to have the information.

Confidentiality is necessary (but not sufficient) for maintaining the
privacy of the people whose personal information a system holds.

Integrity

In information security, integrity means that data cannot be modified
without authorization. (This is not the same thing as referential integrity
in databases.) Integrity is violated when an employee (accidentally or
with malicious intent) deletes important data files, when a computer
virus infects a computer, when an employee is able to modify his own
salary in a payroll database, when an unauthorized user vandalizes a
web site, when someone is able to cast a very large number of votes in
an online poll, and so on.

Availability

For any information system to serve its purpose, the information must be
available when it is needed. This means that the computing systems used
to store and process the information, the security controls used to protect
it, and the communication channels used to access it must be functioning
correctly. High availability systems aim to remain available at all times,
preventing service disruptions due to power outages, hardware failures,
and system upgrades. Ensuring availability also involves preventing
denial-of-service attacks.

In 2002, Donn Parker proposed an alternative model for the classic CIA
triad that he called the six atomic elements of information. The elements
are confidentiality, possession, integrity, authenticity, availability, and
utility. The merits of the Parkerian hexad are a subject of debate
amongst security professionals.

3.1.2 Authenticity

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

In computing, e-Business and information security it is necessary
teonsure that the data, transactions, communications or documents
(electronic or physical) are genuine (i.e. they have not been forged or
fabricated.)

3.1.3 Non-Repudiation

In law, non-repudiation implies ones intention to fulfill their obligations
to a contract. It also implies that one party of a transaction can not deny
having received a transaction nor can the other party deny having sent a
transaction.

Electronic commerce uses technology such as digital signatures and
encryption to establish authenticity and non-repudiation.

3.1.4 Risk Management

Security is everyone‘s responsibility. Security awareness poster. U.S.
Department of Commerce/Office of Security.

A comprehensive treatment of the topic of risk management is beyond
the scope of this article. We will however, provide a useful definition of
risk management, outline a commonly used process for risk
management, and define some basic terminology.

The CISA Review Manual 2006 provides the following definition of
risk management: "Risk management is the process of identifying

vulnerabilities and threats to the information resources used by
aonrganization in achieving business objectives, and deciding what
countermeasures, if any, to take in reducing risk to an acceptable level,
based on the value of the information resource to the organization."

There are two things in this definition that may need some clarification.
First, the process of risk management is an ongoing iterative process. It
must be repeated indefinitely. The business environment is constantly
changing and new threats and vulnerabilities emerge every day. Second,
the choice of countermeasures (controls) used to manage risks must
strike a balance between productivity, cost, effectiveness of the
countermeasure, and the value of the informational asset being
protected.

Risk is the likelihood that something bad will happen that causes harm
to an informational asset (or the loss of the asset). A vulnerability is a
weakness that could be used to endanger or cause harm to
ainnformational asset. A threat is anything (man made or act of nature)
that has the potential to cause harm.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

The likelihood that a threat will use a vulnerability to cause harm creates
a risk. When a threat does use a vulnerability to inflict harm, it has an
impact. In the context of information security, the impact is a loss of
availability, integrity, and confidentiality, and possibly other losses (lost
income, loss of life, loss of real property). It should be pointed out that it
is not possible to identify all risks, nor is it possible to eliminate all risk.
The remaining risk is called residual risk.

A risk assessment is carried out by a team of people

 who hkanvoewledge of specific areas of the business. Membership of

 the team
may vary over time as different parts of the business are assessed. The
assessment may use a subjective qualitative analysis based on informed
opinion, or where reliable dollar figures and historical information is
available, the analysis may use quantitative analysis.

3.1.5 Controls

When Management chooses to mitigate a risk, they will do so by
implementing one or more of three different types of controls.

Administrative

Administrative controls (also called procedural controls) consist of
approved written policies, procedures, standards and guidelines.
Administrative controls form the framework for running the business
and managing people. They inform people on how the business is to be
run and how day to day operations are to be conducted. Laws and
regulations created by government bodies are also a type of
administrative control because they inform the business. Some industry
sectors have policies, procedures, standards and guidelines that must be
followed - the Payment Card Industry (PCI) Data Security Standard
required by Visa and Master Card is such an example. Other examples
of administrative controls include the corporate security policy,
password policy, hiring policies, and disciplinary policies.

Administrative controls form the basis for the selection and
implementation of logical and physical controls. Logical and physical
controls are manifestations of administrative controls. Administrative
controls are of paramount importance.

Logical

Logical controls (also called technical controls) use software and data to monitor
and control access to information and computing systems. For example:
 passwords, network and host based firewalls, network
intrusion detection systems, access control lists, and data encryption are

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

logical controls.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

An important logical control that is frequently overlooked is the

principle of least privilege. The principle of least privilege requires that
an individual, program or system process is not granted any more access
privileges than are necessary to perform the task. A blatant example of
the failure to adhere to the principle of least privilege is logging into
Windows as user Administrator to read Email and surf

 the WVieobla. tions of this principle can also occur when an individual

 collects
additional access privileges over time. This happens when employees'
job duties change, or they are promoted to a new position, or
thraenysfer to another department. The access privileges required by their
new duties are frequently added onto their already existing

apcricveislseges which may no longer be necessary or appropriate.

Physical

Physical controls monitor and control the environment of the work place
and computing facilities. They also monitor and control access to and
from such facilities. For example: doors, locks, heating and air
conditioning, smoke and fire alarms, fire suppression systems, cameras,
barricades, fencing, security guards, cable locks, etc. Separating

tnheetwork and work place into functional areas are also physical controls.

An important physical control that is frequently overlooked is

tsheeparation of duties. Separation of duties ensures that an individual can
not complete a critical task by himself. For example: an employee who
submits a request for reimbursement should not also be able to authorize
payment or print the check. An applications programmer should not also
be the server administrator or the database administrator - these roles
and responsibilities must be separated from one another.

3.2 Database Security

Database security is primarily concerned with the secrecy

 of dSaetcar.ecy means protecting a database from unauthorized access by

users
and software applications.

Secrecy, in the context of data base security, includes a variety of threats
incurred through unauthorized access. These threats range from

tihnetentional theft or destruction of data to the acquisition of information
through more subtle measures, such as inference. There are

tgherne eeerally accepted categories of secrecy-related problems in data base
systems:

1. The improper release of information from reading data that
was intentionally or accidentally accessed by unauthorized

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

users. Securing data bases from unauthorized access is
more

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

difficult than controlling access to filesmanaged by operating
systems. This problem arises from the finer granularity that is
used by databases when handling files, attributes, and values.
This type of problem also includes the violations to secrecy that
result from the problem of inference, which is the deduction of
unauthorized information from the observation of authorized
information. Inference is one of the most difficult factors to
control in any attempts to secure data. Because the information in
a database is semantically related, it is possible to determine the
value of an attribute without accessing it directly. Inference
problems are most serious in statistical databases where users can
trace back information on individual entities from the statistical
aggregated data.

2. The Improper Modification of Data. This threat includes

violations of the security of data through mishandling and

modifications by unauthorized users. These violations can result
from errors, viruses, sabotage, or failures in the data that arise
from access by unauthorized users.

3. Denial-Of-Service Threats. Actions that could prevent users
from using system resources or accessing data are among the
most serious. This threat has been demonstrated to a significant
degree recently with the SYN flooding attacks against network
service providers.

Discretionary vs. Mandatory Access Control Policies
Both traditional relational data base management system (RDBMS)
security models and OO data base models make use of two general types
of access control policies to protect the information in multilevel
systems. The first of these policies is the discretionary policy. In the
discretionary access control (DAC) policy, access is restricted based on
the authorizations granted to the user.

The mandatory access control (MAC) policy secures information by
assigning sensitivity levels, or labels, to data entities. MAC policies are
generally more secure than DAC policies and they are used in systems
in which security is critical, such as military applications. However, the
price that is usually paid for this tightened security is reduced
performance of the data base management system. Most MAC policies
also incorporate DAC measures as well.

3.3 Relational DBMS Security

The principal methods of security in traditional RDBMSs are through
the appropriate use and manipulation of views and the structured query

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

language (SQL) GRANT and REVOKE statements. These measures are
reasonably effective because of their mathematical foundation in
relational algebra and relational calculus.

3.3.1 View-Based Access Control

Views allow the database to be conceptually divided into pieces in ways
that allow sensitive data to be hidden from unauthorized users. In the
relational model, views provide a powerful mechanism for specifying
data-dependent authorizations for data retrieval.

Although the individual user who creates a view is the owner and is
entitled to drop the view, he or she may not be authorized to execute all
privileges on it. The authorizations that the owner may exercise depend
on the view semantics and on the authorizations that

 the oalwlonwered tois implement on the tables directly accessed by the view. For
the owner to exercise a specific authorization on a view that he or she
creates, the owner must possess the same authorization on all tables that
the view uses. The privileges the owner possesses on the view

adreetermined at the time of view definition. Each privilege the owner
possesses on the tables is defined for the view. If, later on, the owner
receives additional privileges on the tables used by the view

tahdedsietional privileges will not be passed onto the view. In order to use the
new privileges within a view, the owner will need to create a new view.

The biggest problem with view-based mandatory access controls is that
it is impractical to verify that the software performs the view
interpretation and processing. If the correct authorizations are to
basesured, the system must contain some type of mechanism to verify the
classification of the sensitivity of the information in the database. The
classification must be done automatically, and the software that handles
the classification must be trusted. However, any trusted software for the
automatic classification process would be extremely complex.
Furthermore, attempting to use a query language such as SQL to specify
classifications quickly become convoluted and complex. Even when the
complexity of the classification scheme is overcome, the view can do
nothing more than limit what the user sees — it

 canno roepsetriacttiontshethat may be performed on the views.

3.4 Proposed OODBMS Security Models

Currently only a few models use discretionary access control measures
in secure object-oriented data base management systems.
Explicit Authorizations

The ORION authorization model permits access to data on the basis of
explicit authorizations provided to each group of users. These

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

authorizations are classified as positive authorizations because they
specifically allow a user access to an object. Similarly, a negative
authorization is used to specifically deny a user access to an object.

The placement of an individual into one or more groups is based on the

role that the individual plays in the organization. In addition to the

positive authorizations that are provided to users within each group,
there are a variety of implicit authorizations that may be granted based
on the relationships between subjects and access modes.

Data-Hiding Model

A similar discretionary access control secure model is the data-hiding
model proposed by Dr. Elisa Bertino of the Universita‘ di Genova. This
model distinguishes between public methods and private methods.

The data-hiding model is based on authorizations for users to execute
methods on objects. The authorizations specify which methods the user
is authorized to invoke. Authorizations can only be granted to users on
public methods. However, the fact that a user can access a method does
not automatically mean that the user can execute all actions associated
with the method. As a result, several access controls may need to be
performed during the execution, and all of the authorizations for the
different accesses must exist if the user is to complete the processing.

Similar to the use of GRANT statements in traditional relational data
base management systems, the creator of an object is able to grant
authorizations to the object to different users. The ―creator‖ is also able to revoke
the authorizations from users in a manner similar to REVOKE statements.
 However, unlike traditional RDBMS GRANT statements,
the data-hiding model includes the notion of protection mode. When
authorizations are provided to users in the protection mode, the
authorizations actually checked by the system are those of the creator
and not the individual executing the method. As a result, the creator is
able to grant a user access to a method without granting the user the
authorizations for the methods called by the original method. In other
words, the creator can provide a user access to specific data without
being forced to give the user complete access to all related information
in the object.

3.5 Security Classification for Information

An important aspect of information security and risk management is
recognizing the value of information and defining appropriate

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

organization, how old the information is and whether or no

tihneformation has become obsolete. Laws and other regulatory

procedures and protection requirements for the information.

 No ainllformation is equal and so not all information requires the same

degree
of protection. This requires information to be assigned a security
classification.

Some factors that influence which classification information should be
assigned include how much value that information has to the

requirements are also important considerations when classifying
information.

Common information security classification labels used by the business sector
 are: public, sensitive, private, confidential. Common
information security classification labels used by government are:
Unclassified, Sensitive But Unclassified, Restricted, Confidential,
Secret, Top Secret and their non-English equivalents.

All employees in the organization, as well as business partners, must be
trained on the classification schema and understand the required security
controls and handling procedures for each classification. The
classification a particular information asset has been assigned should be
reviewed periodically to ensure the classification is still appropriate for
the information and to ensure the security controls required by
tchlaessification are in place.

Access control:Access to protected information must be restricted to
people who are authorized to access the information. The computer
programs, and in many cases the computers that process the information,
must also be authorized. This requires that mechanisms be in place to
control the access to protected information. The sophistication of the
access control mechanisms should be in parity with the value of the
information being protected - the more sensitive or valuable the
information the stronger the control mechanisms need to be. The
foundation on which access control mechanisms are built start with
identification and authentication.

Identification is an assertion of who someone is or what something is.
If a person makes the statement "Hello, my name is John Doe." they are
making a claim of who they are. However, their claim may or may not
be true. Before John Doe can be granted access to protected information
it will be necessary to verify that the person claiming to be John Doe
really is John Doe.

Authentication is the act of verifying a claim of identity. When John
Doe goes into a bank to make a withdrawal, he tells the bank teller he is

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

John Doe (a claim of identity). The bank teller asks to see a photo ID, so

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

he hands the teller his drivers‘ license. The bank teller checks the license
to make sure it has John Doe printed on it and compares the photograph
on the license against the person claiming to be John Doe. If the photo
and name match the person, then the teller has authenticated that John
Doe is who he claimed to be.

On computer systems in use today, the Username is the most common
form of identification and the Password is the most common form of
authentication. Usernames and passwords have served their purpose but
in our modern world they are no longer adequate. Usernames and
passwords are slowly being replaced with more sophisticated
authentication mechanisms.

After a person, program or computer has successfully been identified
and authenticated then it must be determined what informational
resources they are permitted to access and what actions they will be
allowed to perform (run, view, create, delete, or change). This is called
authorization.

Authorization to access information and other computing services
begins with administrative policies and procedures. The polices
prescribe what information and computing services can be accessed, by
whom, and under what conditions. The access control mechanisms are
then configured to enforce these policies.

Different computing systems are equipped with different kinds of access
control mechanisms, some may offer a choice of different access control
mechanisms. The access control mechanism a system offers will be
based upon one of three approaches to access control or it may be
derived from a combination of the three approaches.

The non-discretionary approach consolidates all access control under a
centralized administration. The access to information and other
resources is usually based on the individuals function (role) in the
organization or the tasks the individual must perform. The discretionary
approach gives the creator or owner of the information resource the
ability to control access to those resources. In the Mandatory access
control approach, access is granted or denied bases upon the security
classification assigned to the information resource.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

3.6 Cryptography

Information security uses cryptography to transform usable information
into a form that renders it unusable by anyone other than an authorized
user; this process is called encryption. Information that has been
encrypted (rendered unusable) can be transformed back into its original
usable form by an authorized user, who possesses the cryptographic key,
through the process of decryption. Cryptography is used in information
security to protect information from unauthorized or accidental discloser
while the information is in transit (either electronically or physically)
and while information is in storage.

Cryptography provides information security with other useful
applications as well including improved authentication methods,
message digests, digital signatures, non-repudiation, and encrypted
network communications.

Cryptography can introduce security problems when it is not
implemented correctly. Cryptographic solutions need to be implemented
using industry accepted solutions that have undergone
 rigorous preeveirew by independent experts in cryptography. The length and
strength
of the encryption key is also an important consideration. A key that is
weak or too short will produce weak encryption. The keys used for
encryption and decryption must be protected with the same degree of
rigor as any other confidential information. They must be protected from
unauthorized disclosure and destruction and they must be available
when needed.

Process

The terms reasonable and prudent person, due care and due
diligence have been used in the fields of Finance, Securities, and Law
for many years. In recent years these terms have found their way into the
fields of computing and information security. U.S.A. Federal Sentencing
Guidelines now make it possible to hold corporate officers liable for
failing to exercise due care and due diligence in the management of their
information systems. In the business world, stockholders, customers,
business partners and governments have the expectation that corporate
officers will run the business in accordance with accepted
bpurascintiecsess and in compliance with laws and other regulatory
requirements. This is often described as the "reasonable and prudent
person" rule.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

3.7 Disaster Recovery Planning

• What is Disaster Recovery Planning

Disaster Recovery Planning is all about continuing an IT service.

You need 2 or more sites, one of them is primary, which is planned to be
recovered. The alternate site may be online...meaning production data is
simultaneously transferred to both sites (sometime called as HOT Sites),
may be offline...meaning data is tranferred after a certain delay through
other means, (sometimes called as a WARM site) or even may not be
transferred at all, but may have a replica IT system of the original site,
which will be started whenever the primary site faces a disaster
(sometimes called a COLD site).

• How are DRP and BCP different
Though DRP is part of the BCP process, DRP focusses on IT
systems recovery and BCP on the entire business.

• How are DRP and BCP related

DRP is one of the recovery activities during execution of a Business
Continuity Plan.

4.0 CONCLUSION

Data and information systems security is the ongoing process of
exercising due care and due diligence to protect information, and
information systems, from unauthorized access, use, disclosure,
destruction, modification, or disruption or distribution. The never
ending process of information security involves ongoing training,
assessment, protection, monitoring & detection, incident response &
repair, documentation, and review.

5.0 SUMMARY

This unit can be summarized as follows:

Data security is the means of ensuring that data is kept

 safe fcroorrmuption and that access to it is suitably controlled

• Information Security means protecting information and information

systems from unauthorized access, use, disclosure, disruption,
modification, or destruction. The terms information security,
computer security and information assurance are frequently used
interchangeably.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

• For over twenty years information security has held that
confidentiality, integrity and availability (known as the CIA Triad)
are the core principles of information system security.

• The principal methods of security in traditional RDBMSs are
through the appropriate use and manipulation of views and

tshtreuctured query language (SQL) GRANT and REVOKE statements.
• Authentication is the act of verifying a claim of identity.

• Currently only a few models use discretionary access control
measures in secure object-oriented data base management systems.

• An important aspect of information security and risk management is
recognizing the value of information and defining appropriate
procedures and protection requirements for the information.

• Information security uses cryptography to transform usable
information into a form that renders it unusable by anyone other than
an authorized user; this process is called encryption.

• Disaster Recovery Planning is all about continuing an IT service.
You need 2 or more sites, one of them is primary, which is planned
to be recovered.

6.0 TUTOR-MARKED ASSIGNMENT

1. List Donn Parker‘s 6 atomic elements of CIA Triad of
information security.

2. Briefly discuss Disaster Recovery Planning in the security of
DBMS.

7.0 REFERENCES/FURTHER READINGS

44 U.S.C § 3542 (b) (1) (2006)

Blackwell Encyclopedia of Management Information System, Vol. III,
Edited by Gordon B. Davis.

Harris, Shon (2003). All-in-one CISSP Certification Exam Guide, 2nd
Ed., /dmirror/http/en.wikipedia.org/w/Emeryville, CA: McGraw-
Hill/Osborne.

ISACA (2006). CISA Review Manual 2006. Information Systems Audit

and Control Association, p. 85. ISBN 1-933284-15-3.

Quist, Arvin S. (2002). "Security Classification of Information (HTML).
Volume 1. Introduction, History, and Adverse Impacts. Oak
Ridge Classification Associates, LLC. Retrieved on 2007-01-11.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

UNIT 4 DATABASE ADMINISTRATOR AND
ADMINISTRATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Duties of Database Administrator
3.2 Typical Work Activities
3.3 Database Administrations and Automation

3.3.1 Types of Database Administration
3.3.2 Nature of Database Administration
3.3.3 Database Administration Tools
3.3.4 The Impact of IT Automation on Database

Administration
3.3.5 Learning Database Administration

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

A database administrator (DBA) is a person who is responsible for the
environmental aspects of a database. In general, these include:

•Recoverability - Creating and testing Backups

•Integrity - Verifying or helping to verify data integrity

•Security - Defining and/or implementing access controls to the data

•Availability - Ensuring maximum uptime

•Performance - Ensuring maximum performance

•Development and testing support - Helping programmers and engineers
to efficiently utilize the database.

The role of a database administrator has changed according to the
technology of database management systems (DBMSs) as well as the
needs of the owners of the databases. For example, although logical and
physical database designs are traditionally the duties of a database
analyst or database designer, a DBA may be tasked to perform those
duties.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• answer the question of who is a database administrator

• identify the various functions of database administrator

• know the different types of database administration

• understand the nature of database administration
• know the tools used in database administration.

3.0 MAIN CONTENT

3.1 Duties of Database Administrator

The duties of a database administrator vary and depend on the

jdoebscription, corporate and Information Technology (IT) policies and the
technical features and capabilities of the DBMS being administered.
They nearly always include disaster recovery (backups and testing of
backups), performance analysis and tuning, data dictionary maintenance,
and some database design.

Some of the roles of the DBA may include:

•Installation of new software — It is primarily the job of the DBA to
install new versions of DBMS software, application software, and other
software related to DBMS administration. It is important that the DBA
or other IS staff members test this new software before it is moved into a
production environment.

•Configuration of hardware and software with the system administrator
— In many cases the system software can only be accessed by
tshyestem administrator. In this case, the DBA must work closely with the
system administrator to perform software installations, and to configure
hardware and software so that it functions optimally with the DBMS.

•Security administration — One of the main duties of the DBA is to
monitor and administer DBMS security. This involves adding and
removing users, administering quotas, auditing, and checking for
security problems.

•Data analysis — The DBA will frequently be called on to analyze the
data stored in the database and to make recommendations relating to
performance and efficiency of that data storage. This might relate to the
more effective use of indexes, enabling "Parallel Query" execution, or
other DBMS specific features.

•Database design (preliminary) — The DBA is often involved at the
preliminary database-design stages. Through the involvement of the
DBA, many problems that might occur can be eliminated. The DBA

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

knows the DBMS and system, can point out potential problems, and can
help the development team with special performance considerations.

•Data modeling and optimization — by modeling the data, it is possible
to optimize the system layout to take the most advantage of the I/O
subsystem.

•Responsible for the administration of existing enterprise databases and
the analysis, design, and creation of new databases.

- Data modeling, database optimization, understanding and
implementation of schemas, and the ability to interpret and write
complex SQL queries

- Proactively monitor systems for optimum performance and
capacity constraints

- Establish standards and best practices for SQL
- Interact with and coach developers in SQL scripting

Recoverability

Recoverability means that, if a data entry error, program bug or
hardware failure occurs, the DBA can bring the database backward in
time to its state at an instant of logical consistency before the damage
was done. Recoverability activities include making database backups
and storing them in ways that minimize the risk that they will
bdeamaged or lost, such as placing multiple copies on removable media
and storing them outside the affected area of an anticipated disaster.
Recoverability is the DBA‘s most important concern.

The backup of the database consists of data with timestamps combined
with database logs to change the data to be consistent to a particular
moment in time. It is possible to make a backup of

 the dcoantatbaiansieng only data without timestamps or logs, but the DBA must take
the database offline to do such a backup.

The recovery tests of the database consist of restoring the data, then
applying logs against that data to bring the database backup to
consistency at a particular point in time up to the last transaction in the
logs. Alternatively, an offline database backup can be restored simply by
placing the data in-place on another copy of the database.

If a DBA (or any administrator) attempts to implement a recoverability
plan without the recovery tests, there is no guarantee that the backups
are at all valid. In practice, in all but the most mature RDBMS packages,
backups rarely are valid without extensive testing to be sure that no bugs
or human error have corrupted the backups.

Security

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Security means that users‘ ability to access and change data conforms to
the policies of the business and the delegation decisions of its managers.
Like other metadata, a relational DBMS manages security information
in the form of tables. These tables are the ―keys to the kingdom‖ and so
it is important to protect them from intruders. so that is why the security
is more and more important for the databases.

Performance

Performance means that the database does not cause unreasonable
online response times, and it does not cause unattended programs to run
for an unworkable period of time. In complex client/server and three-tier systems,
the database is just one of many elements that determine the
performance that online users and unattended programs experience.
Performance is a major motivation for the DBA to become a generalist
and coordinate with specialists in other parts of the system outside of
traditional bureaucratic reporting lines.

Techniques for database performance tuning have changed as DBA's
have become more sophisticated in their understanding of what causes
performance problems and their ability to diagnose the problem.

In the 1990s, DBAs often focused on the database as a

 whole alonodked at database-wide statistics for clues that might help them find out
why the system was slow. Also, the actions DBAs took in their attempts
to solve performance problems were often at the global, database level,
such as changing the amount of computer memory available to

tdhaetabase, or changing the amount of memory available to any database
program that needed to sort data.

DBA's now understand that performance problems initially
 mus bdeiagnosed, and this is best done by examining individual SQL
statements, table process, and system architecture, not the database as a
whole. Various tools, some included with the database and some
available from third parties, provide a behind the scenes look at how the
database is handling the SQL statements, shedding light on what's taking
so long.

Having identified the problem, the individual SQL statement can be

Development/Testing Support

Development and testing support is typically what the database
administrator regards as his or her least important duty, while results-
oriented managers consider it the DBA‘s most importantduty. Support activities
include collecting sample production data for testing new and

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

changed programs and loading it into test databases; consulting with
programmers about performance tuning; and making table design
changes to provide new kinds of storage for new program functions.
Here are some IT roles that are related to the role of
dadamtabinaissetrator:

•Application programmer or software engineer

•System administrator

•Data administrator

•Data architect

3.2 Typical Work Activities

The work of database administrator (DBA) varies according to the
nature of the employing organization and level of responsibility
associated with post. The work may be pure maintenance or it may also
involve specializing in database development.

Typical responsibility includes some or all of the following:

• establishing the needs of the users and monitoring users access and

security

• monitoring performance and managing parameters to provide fast
query responses to ‗front end‘ users

• mapping out the conceptual design for a planned database in outline

• considering both back end organization of data and front end
accessibility for the end user

• refining the logical design so that it can translated into specific data
model

• further refining the physical design to meet systems storage
requirements

• installing and testing new versions of the database management
system

• maintaining data standards including adherence to the Data
Protection Act

• writing database documentation, including data standards,
procedures and definitions for the data dictionary (metadata)

• controlling access permissions and privileges

• developing, managing and testing backup recovery plans
• ensuring that storage , archiving, and backup procedures are

functioning properly
• capacity planning

• working closely with IT project manager, database programmers,
and web developers

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

• communicating regularly with technical applications and operational
staff to ensure database integrity and security

• commissioning and installing new applications

Because of the increasing level of hacking and the sensitive nature of
data stored, security and recoverability or disaster recovery has become
increasingly important aspects of the work.

3.3 Database Administrations and Automation

Database Administration is the function of managing and maintaining database
 management systems (DBMS) software. Mainstream DBMS
software such as Oracle, IBM DB2 and Microsoft SQL

 Server noenegdoing management. As such, corporations that use

 DBMS software
often hire specialized IT (Information Technology) personnel called
Database Administrators or DBAs.

3.3.1 Types of Database Administration

There are three types of DBAs:

1. Systems DBAs (sometimes also referred to as Physical DBAs,
Operations DBAs or Production Support DBAs)

2. Development DBAs
3. Application DBAs

Depending on the DBA type, their functions usually vary. Below is a
brief description of what different types of DBAs do:

• Systems DBAs usually focus on the physical aspects of database
administration such as DBMS installation, configuration,
patching, upgrades, backups, restores, refreshes, performance
optimization, maintenance and disaster recovery.

• Development DBAs usually focus on the logical and
development aspects of database administration such as data
model design and maintenance, DDL (data definition language)
generation, SQL writing and tuning, coding stored procedures,
collaborating with developers to help choose the most appropriate
DBMS feature/functionality and other pre-production activities.

• Application DBAs are usually found in organizations that have

purchased 3rd party application software such as ERP (enterprise
resource planning) and CRM (customer relationship
management) systems. Examples of such application software
include Oracle Applications, Siebel and PeopleSoft (both now
part of Oracle Corp.) and SAP. Application DBAs straddle the
fence between the DBMS and the application software and are

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

responsible for ensuring that the application is fully optimized for
the database and vice versa. They usually manage all the
application components that interact with the database and carry
out activities such as application installation and patching,
application upgrades, database cloning, building and running data
cleanup routines, data load process management, etc.

While individuals usually specialize in one type of database
administration, in smaller organizations, it is not uncommon to find a
single individual or group performing more than one type of database
administration.

3.3.2 Nature of Database Administration

The degree to which the administration of a database is automated
dictates the skills and personnel required to manage databases. On one
end of the spectrum, a system with minimal automation will require
significant experienced resources to manage; perhaps 5-10 databases per
DBA. Alternatively an organization might choose to automate a
significant amount of the work that could be done manually therefore
reducing the skills required to perform tasks. As automation increases,
the personnel needs of the organization splits into highly skilled workers
to create and manage the automation and a group of lower skilled "line"
DBAs who simply execute the automation.

Database administration work is complex, repetitive, time-consuming
and requires significant training. Since databases hold valuable and
mission-critical data, companies usually look for candidates with
multiple years of experience. Database administration often requires
DBAs to put in work during off-hours (for example, for planned after
hours downtime, in the event of a database-related outage or if
performance has been severely degraded). DBAs are commonly well
compensated for the long hours.

3.3.3 Database Administration Tools

Often, the DBMS software comes with certain tools to help DBAs
manage the DBMS. Such tools are called native tools. For example,
Microsoft SQL Server comes with SQL Server Enterprise Manager and
Oracle has tools such as SQL*Plus and Oracle Enterprise Manager/Grid
Control. In addition, 3rd parties such as BMC, Quest Software,
Embarcadero and SQL Maestro Group offer GUI tools to monitor the
DBMS and help DBAs carry out certain functions inside the database
more easily.
Another kind of database software exists to manage the provisioning of
new databases and the management of existing databases and their

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

related resources. The process of creating a new database can consist of
hundreds or thousands of unique steps from satisfying prerequisites to
configuring backups where each step must be successful before the next
can start. A human cannot be expected to complete this procedure in the
same exact way time after time - exactly the goal
 when mdautaltbipasl eee s exist. As the number of DBAs grows, without automation the
number of unique configurations frequently grows to be costly/difficult
to support. All of these complicated procedures can be modeled by the
best DBAs into database automation software and executed by
tshtaendard DBAs. Software has been created specifically to improve the
reliability and repeatability of these procedures such as Stratavia's Data
Palette and GridApp Systems Clarity.

3.3.4 The Impact of IT Automation on Database
Administration

Recently, automation has begun to impact this area significantly. Newer
technologies such as HP/Opsware's SAS (Server Automation System)
and Stratavia's Data Palette suite have begun to increase the automation
of servers and databases respectively causing the reduction of database
related tasks. However at best this only reduces the amount of mundane,
repetitive activities and does not eliminate the need for DBAs

Tinhtention of DBA automation is to enable DBAs to focus
 on mproraective activities around database architecture and deployment.

3.3.5 Learning Database Administration

There are several education institutes that offer professional courses,
including late-night programs, to allow candidates to learn database
administration. Also, DBMS vendors such as Oracle, Microsoft and
IBM offer certification programs to help companies to hire qualified
DBA practitioners.

4.0 CONCLUSION

Database management system (DBMS) is so important in an
organization that a special manager is often appointed to oversee its
activities. The database administrator is responsible for the installation
and coordination of DBMS. They are responsible for managing one of
the most valuable resources of any organization, its data. The database
administrator must have a sound knowledge of the structure of

tdhaetabase and of the DBMS. The DBA must be thoroughly conversant
with the organization, it‘s system and the information need of managers.

5.0 SUMMARY

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

• A Database administrator (DBA) is a person who is responsible for

the environmental aspects of a database

• The duties of a database administrator vary and depend on the job
description, corporate and Information Technology (IT) policies and
the technical features and capabilities of the DBMS being
administered. They nearly always include disaster recovery (backups
and testing of backups), performance analysis and tuning, data
dictionary maintenance, and some database design.

• Techniques for database performance tuning have changed as DBA's
have become more sophisticated in their understanding of what
causes performance problems and their ability to diagnose the
problem

• The work of database administrator (DBA) varies according to the
nature of the employing organization and level of responsibility
associated with post.

• Database Administration is the function of managing and

maintaining DATABASE MANAGEMENT APPLICATION SYSTEMs (DBMS)

• Thseofdtwegarreee. to which the administration of a database is automated
dictates the skills and personnel required to manage databases

6.0 TUTOR-MARKED ASSIGNMENT

1. Mention 5 roles of database administrator
2. Mention the types of database administrations

7.0 REFERENCES/FURTHER READINGS

Association for Computing Machinery SIGIR Forum archive Volume 7,

Issue 4.

The Origins of the Data Base Concept, Early DBMS Systems including
DS and IMS, the Data Base Task Group, and the Hierarchical,
Network and Relational Data Models are discussed in Thomas
Haigh, "'A Veritable Bucket of Facts:' Origins of the Data Base
Management System," ACM SIGMOD Record 35:2 (June 2006).

How Database Systems Share Storage.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

MODULE 3

Unit 1 Relational DATABASE MANAGEMENT

APPLICATION SUYniStT2EDMatsa Warehouse
Unit 3 Document Management System

UNIT 1 RELATIONAL DATABASE MANAGEMENT
SYSTEMS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 History of the Term
3.2 Market Structure
3.3 Features and Responsibilities of an RDBMS
3.4 Comparison of Relational DATABASE MANAGEMENT APPLICATION

SYSTE3M.4.s1 General Information
3.4.2 Operating System Support
3.4.3 Fundamental Features

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

A Relational database management system (RDBMS) is
 a dmaatnabagaseement system (DBMS) that is based on the relational
 model as introduced by E. F. Codd. Most popular commercial and
open source databases currently in use are based on the relational model.

A short definition of an RDBMS may be a DBMS in which data is
stored in the form of tables and the relationship among the data is also
stored in the form of tables.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• define relational DATABASE MANAGEMENT

APPLICATION S• YtraScTeEtMhe origin and development of RDBMS

• identify the market structure of RDBMS

• identify the major types of relational management systems

• compare and contrast the types of RDBMS based on several criteria

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

3.0 MAIN CONTENT

3.1 History of the Term

E. F. Codd introduced the term in his seminal paper "A Relational
Model of Data for Large Shared Data Banks", published in 1970. In this
paper and later papers he defined what he meant by relational. One
well-known definition of what constitutes a relational database system is
Codd's 12 rules. However, many of the early implementations of the
relational model did not conform to all of Codd's rules, so the term
gradually came to describe a broader class of database systems. At a
minimum, these systems:

• presented the data to the user as relations (a presentation in

tabular form, i.e. as a collection of tables with each table

consisting of a set of rows and columns, can satisfy this property)

• provided relational operators to manipulate the data in tabular
form

The first systems that were relatively faithful implementations of the
relational model were from the University of Michigan; Micro DBMS
(1969) and from IBM UK Scientific Centre at Peterlee; IS1 (1970–72)
and its followon PRTV (1973–79). The first system sold as an RDBMS
was Multics Relational Data Store, first sold in 1978. Others have been
Berkeley Ingres QUEL and IBM BS12.

The most popular definition of an RDBMS is a product that presents a
view of data as a collection of rows and columns, even if it is not based
strictly upon relational theory. By this definition, RDBMS products
typically implement some but not all of Codd's 12 rules.

A second, theory-based school of thought argues that if a database does
not implement all of Codd's rules (or the current understanding on the
relational model, as expressed by Christopher J Date, Hugh Darwen and
others), it is not relational. This view, shared by many theorists and
other strict adherents to Codd's principles, would disqualify most
DBMSs as not relational. For clarification, they often refer to some
RDBMSs as Truly-Relational Database Management Systems
(TRDBMS), naming others Pseudo-Relational Database Management
Systems (PRDBMS).

Almost all commercial relational DBMSs employ SQL as their query
language. Alternative query languages have been proposed and
implemented, but very few have become commercial products.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

3.2 Market Structure

Given below is a list of top RDBMS vendors in 2006 with figures in
millions of United States Dollars published in an IDC study.

Vendor Global Revenue

Oracle 7,912

IBM 3,483

Microsoft 3,052

Sybase 5240

Teradata 457

Others 1,624

Total 16,452

Low adoption costs associated with open-source RDBMS products such

as MySQL and PostgreSQL have begun influencing vendor pricing and
licensing strategies].

3.3 Features and Responsibilities of an RDBMS

As mentioned earlier, an RDBMS is software that is used for creating
and maintaining a database. Maintaining involves several tasks that an
RDBMS takes care of. These tasks are as follow:

Control Data Redundancy

Since data in an RDBMS is spread across several tables, repetition or
redundancy is reduced. Redundant data can be extracted and stored in
another table, along with a field that is common to both the tables. Data
can then be extracted from the two tables by using the common field.

Data Abstraction

This would imply that the RDBMS hides the actual way, in which data
is stored, while providing the user with a conceptual representation of
the data.

Support for Multiple Users

A true RDBMS allows effective sharing of data. That is, it ensures that
several users can concurrently access the data in the database without
affecting the speed of the data access.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

In a database application, which can be used by several users

concurrently, there is the possibility that two users may try to modify a

particular record at the same time. This could lead to one person‘s

changes being made while the others are overwritten. To avoid such
confusion, most RDBMSs provide a record-locking mechanism. This
mechanism ensures that no two users could modify a particular record at
the same time. A record is as it were ―locked‖ while one user makes
changes to it. Another user is therefore not allowed to modify it till the
changes are complete and the record is saved. The ―lock‖ is then
released, and the record available for editing again.

Multiple Ways of Interfering to the System

This would require the database to be able to be accessible through
different query languages as well as programming languages. It would
also mean that a variety of front-end tools should be able to use the
database as a back-end. For example data stored in Microsoft Access
can be displayed and manipulated using forms created in software such
as Visual Basic or Front Page 2000.

Restricting Unauthorized Access

An RDBMS provides a security mechanism that ensures that data in the
database is protected from unauthorized access and malicious use. The
security that is implemented in most RDBMSs is referred to as ‗User-
level security‘, wherein the various users of the database are assigned
usernames and passwords., only when the user enters the correct
username and password is he able to access the data in the database.

In addition to this, a particular user could be restricted to only view the
data, while another could have the rights to modify the data. A third user
could have right s to change the structure of some table itself, in addition
to the rights that the other two have.
When security is implemented properly, data is secure and cannot be
tampered with.

Enforcing Integrity Constraints

RDBMS provide a set of rules that ensure that data entered into a table
is valid. These rules must remain true for a database to preserve
integrity. ‗Integrity constraints‘ are specified at the time of creating the
database, and are enforced by the RDBMS.

For example in a ‗Marks ‗table, a constraint can be added to ensure that
the marks in each subject be between 0 and 100. Such a constraint is
called a ‗Check‘ constraint. It is a rule that can be set by the user to

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

license

ensure that only data that meets the criteria specified there is allowed to
enter the database. The given example ensures that only a

nbuetmwbeeeern 0 and 100 can be entered into the marks column.

Backup and Recovery

In spite of ensuring that the database is secure from unauthorized access/
user as well as invalid entries, there is always a danger that the data in
the database could get lost. They could happen due to some hardware
problems or system crash. It could therefore result in a loss of all data.
To guard the database from this, most RDBMSs have inbuilt backup and
recovery techniques that ensure that the database is protected from these
kinds of fatalities too.

3.4 Comparison of Relational Database Management
Systems

The following tables compare general and technical information for a
number of relational database management systems. Comparisons are
based on the stable versions without any add-ons, extensions or external
programs.

3.4.1 General information

First public Latest
Software

 Maintainer release stable

date version

4th Dimension 4D s.a.s 1984 v11 SQL Proprietary

ADABAS Software AG 1970 ? ?

Adaptive Server
Enterprise Sybase 1987 15.0 Proprietary

Advantage
Database Server Sybase 1992 8.1 Proprietary

Apache Derby Apache 2004 10.4.1.3 Apache
License

Datacom CA ? 11.2 Proprietary

DB2 IBM 1982 9.5 Proprietary

DBISAM Elevate
Software ? 4.25 Proprietary

Datawasp Significant Data
Systems April 2008 1.0.1 Proprietary

ElevateDB Elevate
Software ? 1.01 Proprietary

FileMaker FileMaker 1984 9 proprietary

Firebird Firebird project July 25, 2000 2.1.0 IPL and IDPL

Informix IBM 1985 11.10 Proprietary

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

HSQL

HSQLDB Development 2001 1.8.0 BSD
Group

H2 H2 Software 2005 1.0 EPL and
modified MPL

Ingres Ingres Corp. 1974 Ingres 2006

InterBase CodeGear 1985 2007 Proprietary

GPL and
r2 9.1.0 proprietary

MaxDB SAP AG ? 7.6 GPL or
proprietary

Microsoft Access Microsoft 1992 12 (2007) Proprietary

Microsoft Visual
Foxpro Microsoft ? 9 (2005) Proprietary

Microsoft SQL
Server Microsoft 1989 9.00.3042 (2005 SP2) Proprietary

The MonetDB MonetDB

MonetDB Developer 2004 4.16 (Feb. Public License

MySQL Sun

Team

November

2007)

v1.1

Microsystems 1996 5.0.67 GPL or proprietary

HP NonStop SQL Hewlett-
Packard 1987 SQL MX 2.0 Proprietary

4.3.1

Omnis Studio TigerLogic Inc July 1982 Release 1 Proprietary
(May 2008)

11g

Oracle Oracle
November Release 1

Corporation 1979 (September
2007)

Proprietary

Oracle Rdb Oracle
Corporation 1984 7.2 Proprietary

Progress

OpenEdge Software 1984 10.1C Proprietary
Corporation

OpenLink OpenLink
Virtuoso Software 1998

Pervasive PSQL PervaSsoivfteware ? 9 Proprietary

5.0.5
(January

2008)

GPL or
proprietary

Polyhedra DBMS ENEA AB 1993 8.0 (July
2008) Proprietary

PostgreSQL

PostgreSQL
 Global

June 1989 8.3.3 (12
Development June 2008) BSD

Group

Pyrrho DBMS University of
November

Paisley 2005 0.5 Proprietary

RBase RBase ? 7.6 Proprietary

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

RDM Embedded Birdstep
Technology 1984 8.1 Proprietary

RDM Server Birdstep
Technology 1990 8.0 Proprietary

ScimoreDB Scimore 2005 2.5 Freeware

SmallSQL SmallSQL April 16,
2005 0.19 LGPL

SQL Anywhere Sybase 1992 10.0 Proprietary

August 17
3.5.7 (17

SQLite D. Richard
 ,

arch Public domain

Hipp 2000

Teradata Teradata 1984 V12 Proprietary

M
2008)

Valentina Paradigma February

Software 1998 3.0.1 Proprietary

3.4.2 Operating system support

The operating systems the RDBMSes can run on.

Mac
Windows OS Linux BSD UNIX z/OS 1

X

4th Dimension Yes Yes No No No No

ADABAS Yes No Yes No Yes Yes

Adaptive Server

Enterprise Yes No Yes Yes Yes No

Advantage Database
Server Yes No Yes No No No

Apache Derby 2 Yes Yes Yes Yes Yes Yes

DataCom No No No No No Yes

Datawasp Yes No No No No No

DB2 5 Yes No Yes No Yes Yes

Firebird Yes Yes Yes Yes Yes Maybe

HSQLDB 2 Yes Yes Yes Yes Yes Yes

H2 2 Yes Yes Yes Yes Yes Maybe

FileMaker Yes Yes No No No No

Informix Yes Yes Yes Yes Yes No

Ingres Yes Yes Yes Yes Yes Partial

InterBase Yes Yes Yes No Yes

MaxDB Yes No Yes No Yes Maybe

Microsoft Access Yes No No No No No

Microsoft Visual

Foxpro Yes No No No No No

Microsoft SQL
Server Yes No No No No No

MonetDB Yes Yes Yes No Yes No

MySQL Yes Yes Yes Yes Yes Maybe

Omnis Studio Yes Yes Yes No No No

(Solaris) No

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Oracle Yes Yes Yes No Yes Yes

Oracle Rdb 3 No No No No No No

OpenEdge Yes No Yes No Yes No

OpenLink Virtuoso Yes Yes Yes Yes Yes Yes

Polyhedra DBMS Yes No Yes No Yes No

PostgreSQL Yes Yes Yes Yes Yes No

Pyrrho DBMS Yes (.NET) No Yes

RBase Yes No No No No No

(Mono) No No No

RDM Embedded Yes Yes Yes Yes Yes No

RDM Server Yes Yes Yes Yes Yes No

ScimoreDB Yes No No No No No

SmallSQL 2 Yes Yes Yes Yes Yes Yes

SQL Anywhere Yes Yes Yes No Yes No

SQLite Yes Yes Yes Yes Yes Maybe

Teradata Yes No Yes No Yes No

Valentina Yes Yes Yes No No No

Note (1): Open source databases listed as UNIX-compatible will likely
compile and run under z/OS's built-in UNIX System Services (USS)
subsystem. Most databases listed as Linux-compatible can run alongside
z/OS on the same server using Linux on zSeries.

Note (2: The database availability depends on Java Virtual Machine not
on the operatin system

Note (3): Oracle Rdb was originally developed by DEC, and runs on
OpenVMS

Note (4): Oracle database 11g also runs on OpenVMS, HP/UX and AIX.
10g also supported BS2000/OSD and z/OS (31-bit), but that support has
been discontinued in 11g. Earlier versions than 10g were available on a
wide variety of platforms.

Note (5): DB2 is also available for i5/OS, z/VM, z/VSE. Previous
versions were also available for OS/2.

3.4.3 Fundamental features

Information about what fundamental RDBMS features are implemented
natively.

ACID Referential
integrity Transactions Unicode Interface

4th
Dimension Yes Yes Yes Yes GUI & SQL

ADABAS ? ? ? ? ?

Adaptive
Server Yes Yes Yes Yes ?
Enterprise

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Advantage
Database Yes Yes Yes No API & SQL
Server

Apache
Derby Yes Yes Yes Yes SQL

Datawasp No Yes Yes Yes GUI

DB2 Yes Yes Yes Yes GUI & SQL

Firebird Yes Yes Yes Yes SQL

HSQLDB Yes Yes Yes Yes SQL

H2 Yes Yes Yes Yes SQL

Informix Yes Yes Yes Yes ?

Ingres Yes Yes Yes Yes SQL

InterBase Yes Yes Yes Yes SQL

MaxDB Yes Yes Yes Yes SQL

Microsoft
Access No Yes Yes Yes GUI & SQL

Microsoft
Visual Foxpro No Yes Yes No GUI & SQL

Microsoft
SQL Server Yes Yes Yes Yes SQL

MonetDB Yes Yes Yes Yes ?

MySQL Yes 6 Yes 6 Yes 6 Partial SQL

Oracle Yes Yes Yes Yes SQL

Oracle Rdb Yes Yes Yes Yes ?

OpenEdge Yes No 7 Yes Yes Progress 4GL

OpenLink
Virtuoso Yes Yes Yes Yes ?

Polyhedra
DBMS Yes Yes Yes Yes SQL

PostgreSQL Yes Yes Yes Yes SQL

Pyrrho

DBMS Yes Yes Yes Yes ?

RDM
Embedded Yes Yes Yes Yes SQL & API

RDM Server Yes Yes Yes Yes SQL & API

ScimoreDB Yes Yes Yes Partial SQL

SQL
Anywhere Yes Yes Yes Yes ?

SQLite Yes No 8 Basic 8 Yes SQL

Teradata Yes Yes Yes Yes SQL

Valentina No Yes No Yes ?

& SQL

Note (6): For transactions and referential integrity, the InnoDB table
type must be used; Windows installer sets this as default if support for
transactions is selected, on other operating systems the default table type
is MyISAM. However, even the InnoDB table type permits storage of
values that exceed the data range; some view this as violating
tIhnetegrity constraint of ACID.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Note (7): FOREIGN KEY constraints are parsed but are not enforced.
Triggers can be used instead. Nested transactions are not supported.
Note (8): Available via Triggers.

4.0 CONCLUSION

The most dominant model in use today is the relational database
management systems, usually used with the structured query language
SQL query language. Many DBMS also support the Open Database
Connectivitry that supports a standard way for programmers to access
the DATABASE MANAGEMENT
APPLICATION SYSTEMs.

5.0 SUMMARY

• A Relational database management system (RDBMS) is a database

management system (DBMS) that is based on the relational model as
introduced by E. F. Codd. Most popular commercial and open source
databases currently in use are based on the relational model.

• E. F. Codd introduced the term in his seminal paper "A Relational

Model of Data for Large Shared Data Banks", published in 1970. In
this paper and later papers he defined what he meant by relational.
One well-known definition of what constitutes a relational database
system is Codd's 12 rules

• The most popular definition of an RDBMS is a product that presents
a view of data as a collection of rows and columns, even if it is not
based strictly upon relational theory

• As mentioned earlier, an RDBMS is software that is used for
creating and maintaining a database. Maintaining involves several
tasks that an RDBMS takes care of

• Comparisons are based on the stable versions without any add-ons,
extensions or external programs.

6.0 TUTOR-MARKED ASSIGNMENT

1. List 5 features of Relational DATABASE MANAGEMENT

APPLICATION S2.YMSTenEtMions 5 criteria you can use to differentiate types of RDBMSs

7.0 REFERENCES/FURTHER READINGS

Comparison of different SQL implementations against SQL standards.
Includes Oracle, DB2, Microsoft SQL Server, MySQL and
PostgreSQL. (08/Jun/2007).

Comparison of Oracle 8/9i, MySQL 4.x and PostgreSQL 7.x DBMS
against SQL standards. (14/Mar/2005).

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Comparison of Oracle and SQL Server. (2004).

Comparison of geometrical data handling in PostgreSQL, MySQL and
DB2 (29/Sep/2003).

Open Source Database Software Comparison (Mar/2005).

PostgreSQL vs. MySQL vs. Commercial Databases: It's All About What
You Need (12/Apr/2004).

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

UNIT 2 DATA WAREHOUSE

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 History
3.2 Benefits of Data Warehousing
3.3 Data Warehouse Architecture
3.4 Normalized Versus Dimensional Approach to Storage

of Data
3.5 Conforming Information
36 Top-Down versus Bottom-Up Design Methodologies
3.7 Data Warehouses versus Operational Systems
3.8 Evolution in Organization Use of Data Warehouses
3.9 Disadvantages of Data Warehouses
3.10 Data Warehouse Appliance
3.11 The Future of Data Warehousing

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

A data warehouse is a repository of an organization's electronically
stored data. Data warehouses are designed to facilitate reporting and
analysis.

This classic definition of the data warehouse focuses on data storage.
However, the means to retrieve and analyze data, to extract, transform
and load data, and to manage the dictionary data are also considered
essential components of a data warehousing system. Many references to
data warehousing use this broader context. Thus, an expanded definition
for data warehousing includes business intelligence tools, tools to
extract, transform, and load data into the repository, and tools to manage
and retrieve metadata.

In contrast to data warehouses are operational systems which perform
day-to-day transaction processing.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• define data warehouse

• trace the history and development process of data warehouse

• list various benefits of data warehouse

• define the architecture of a data warehouse

• compare and contrast Data Warehouses and Operational Systems

• know what is a data warehouse appliance, and the disadvantages of

data warehouse
• have idea of what the future holds for data warehouse concept.

3.0 MAIN CONTENT

3.1 History

The concept of data warehousing dates back to the late-1980s

wIBhMen researchers Barry Devlin and Paul Murphy developed the
"business data warehouse". In essence, the data warehousing concept
was intended to provide an architectural model for the flow of data from
operational systems to decision support environments. The concept
attempted to address the various problems associated with this flow -
mainly, the high costs associated with it. In the absence of a
dwaatraehousing architecture, an enormous amount of redundancy of
information was required to support the multiple decision support
environment that usually existed. In larger corporations it was typical
for multiple decision support environments to operate independently.
Each environment served different users but often required much of the
same data. The process of gathering, cleaning and integrating data from
various sources, usually long existing operational systems (usually
referred to as legacy systems), was typically in part replicated for each
environment. Moreover, the operational systems were frequently
reexamined as new decision support requirements emerged. Often new
requirements necessitated gathering, cleaning and integrating new data
from the operational systems that were logically related to prior gathered
data.

Based on analogies with real-life warehouses, data warehouses were
intended as large-scale collection/storage/staging areas for corporate
data. Data could be retrieved from one central point or data could be
distributed to "retail stores" or "data marts" which were tailored for
ready access by users.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

3.2 Benefits of Data Warehousing

Some of the benefits that a data warehouse provides are as follows:

• A data warehouse provides a common data model for all data of

interest regardless of the data's source. This makes it easier to
report and analyze information than it would be if multiple data
models were used to retrieve information such as sales invoices,
order receipts, general ledger charges, etc.

• Prior to loading data into the data warehouse, inconsistencies are
identified and resolved. This greatly simplifies reporting and
analysis.

• Information in the data warehouse is under the control of data
warehouse users so that, even if the source system data is purged
over time, the information in the warehouse can be stored safely
for extended periods of time.

• Because they are separate from operational systems, data
warehouses provide retrieval of data without slowing down
operational systems.

• Data warehouses facilitate decision support system applications
such as trend reports (e.g., the items with the most sales in a
particular area within the last two years), exception reports, and
reports that show actual performance versus goals.

• Data warehouses can work in conjunction with and, hence,
enhance the value of operational business applications, notably
customer relationship management (CRM) systems.

3.3 Data Warehouse Architecture

Architecture, in the context of an organization's data warehousing
efforts, is a conceptualization of how the data warehouse is built. There
is no right or wrong architecture. The worthiness of the architecture can
be judged in how the conceptualization aids in the building,
maintenance, and usage of the data warehouse.

One possible simple conceptualization of a data warehouse architecture
consists of the following interconnected layers:

Operational Database Layer

The source data for the data warehouse - An organization's ERP systems
fall into this layer.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Informational Access Layer

The data accessed for reporting and analyzing and the tools for reporting
and analyzing data - Business intelligence tools fall into this layer. And
the Inmon-Kimball differences about design methodology, discussed
later in this article, have to do with this layer.

Data access Layer

The interface between the operational and informational access layer -
Tools to extract, transform, load data into the warehouse fall into this
layer.

Metadata Layer

The data directory - This is often usually more detailed
 than aonperational system data directory. There are dictionaries
 for the entire warehouse and sometimes dictionaries for the data
that can be accessed

by a particular reporting and analysis tool.

3.4 Normalized Versus Dimensional Approach to Storage of
Data

There are two leading approaches to storing data in a data warehouse -
the dimensional approach and the normalized approach.

In the dimensional approach, transaction data are partitioned into either
―facts‖, which are generally numeric transaction data, or "dimensions",
which are the reference information that gives context to the facts. For
example, a sales transaction can be broken up into facts such as

tnhuember of products ordered and the price paid for the products, and into
dimensions such as order date, customer name, product number, order
ship-to and bill-to locations, and salesperson responsible for receiving
the order. A key advantage of a dimensional approach is that the data
warehouse is easier for the user to understand and to use. Also

trheetrieval of data from the data warehouse tends to operate very quickly.
The main disadvantages of the dimensional approach are: 1) In order to
maintain the integrity of facts and dimensions, loading the data
warehouse with data from different operational systems is complicated,
and 2) It is difficult to modify the data warehouse structure
iofrganthizeation adopting the dimensional approach changes the way in
which it does business.

In the normalized approach, the data in the data warehouse are stored
following, to a degree, the Codd normalization rule. Tables are grouped
together by subject areas that reflect general data categories (e.g., data

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

on customers, products, finance, etc.) The main advantage of this
approach is that it is straightforward to add information into the
database. A disadvantage of this approach is that, because of the number
of tables involved, it can be difficult for users both to 1) join data from
different sources into meaningful information and then 2) access the
information without a precise understanding of the sources of data and
of the data structure of the data warehouse.

These approaches are not exact opposites of each other. Dimensional
approaches can involve normalizing data to a degree.

3.5 Conforming Information

Another important decision in designing a data warehouse is which data to
conform and how to conform the data. For example, one operational system
feeding data into the data warehouse may use "M" and "F" to
denote sex of an employee while another operational system may use "Male"
 and "Female". Though this is a simple example, much of the
work in implementing a data warehouse is devoted to making similar
meaning data consistent when they are stored in the data warehouse.
Typically, extract, transform, load tools are used in this work.

3.6 Top-Down versus Bottom-Up Design Methodologies

Bottom-Up Design

Ralph Kimball, a well-known author on data warehousing, is a
proponent of the bottom-up approach to data warehouse design. In the
bottom-up approach data marts are first created to provide reporting and
analytical capabilities for specific business processes. Data marts
contain atomic data and, if necessary, summarized data. These data
marts can eventually be unioned together to create a comprehensive data
warehouse. The combination of data marts is managed through the
implementation of what Kimball calls "a data warehouse bus
architecture".

Business value can be returned as quickly as the first data marts can be
created. Maintaining tight management over the data warehouse bus
architecture is fundamental to maintaining the integrity of the data
warehouse. The most important management task is making sure
dimensions among data marts are consistent. In Kimball words, this
means that the dimensions "conform".

Top-Down Design

Bill Inmon, one of the first authors on the subject of data warehousing,
has defined a data warehouse as a centralized repository for the entire

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

enterprise. Inmon is one of the leading proponents of the

taoppp-rdooawchn to data warehouse design, in which the data warehouse

idsesigned using a normalized enterprise data model. "Atomic" data, that
is, data at the lowest level of detail, are stored in the data warehouse.
Dimensional data marts containing data needed for specific business
processes or specific departments are created from the data warehouse.
In the Inmon vision the data warehouse is at the center of the "Corporate
Information Factory" (CIF), which provides a logical framework for
delivering business intelligence (BI) and business management
capabilities. The CIF is driven by data provided from business
operations

Inmon states that the data warehouse is:

Subject-Oriented

The data in the data warehouse is organized so that all the data elements
relating to the same real-world event or object are linked together.

Time-Variant

The changes to the data in the data warehouse are tracked and recorded
so that reports can be produced showing changes over time.

Non-Volatile

Data in the data warehouse is never over-written or deleted -

 oconmcemitted, the data is static, read-only, and retained for future reporting.

Integrated

The data warehouse contains data from most or all of an organization's
operational systems and this data is made consistent.

The top-down design methodology generates highly consistent
dimensional views of data across data marts since all data marts are
loaded from the centralized repository. Top-down design has also
proven to be robust against business changes. Generating new
dimensional data marts against the data stored in the data warehouse is a
relatively simple task. The main disadvantage to the top-down
methodology is that it represents a very large project with a very broad
scope. The up-front cost for implementing a data warehouse using the
top-down methodology is significant, and the duration of time from the
start of project to the point that end users experience initial benefits can
be substantial. In addition, the top-down methodology can be inflexible
and unresponsive to changing departmental needs during the
implementation phases.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Hybrid Design

Over time it has become apparent to proponents of bottom-up and top-
down data warehouse design that both methodologies have benefits and
risks. Hybrid methodologies have evolved to take advantage of the fast
turn-around time of bottom-up design and the enterprise-wide data
consistency of top-down design

3.7 Data Warehouses versus Operational Systems

Operational systems are optimized for preservation of data integrity and
speed of recording of business transactions through use of database
normalization and an entity-relationship model. Operational system
designers generally follow the Codd rules of data normalization in order
to ensure data integrity. Codd defined five increasingly stringent rules of normalization.
 Fully normalized database designs (that is, those satisfying
 all five Codd rules) often result in information from a
business transaction being stored in dozens to hundreds of tables.
Relational databases are efficient at managing the relationships between
these tables. The databases have very fast insert/update performance
because only a small amount of data in those tables is affected each time
a transaction is processed. Finally, in order to improve performance,
older data are usually periodically purged from operational systems.

Data warehouses are optimized for speed of data retrieval. Frequently
data in data warehouses are denormalised via a dimension-based model.
Also, to speed data retrieval, data warehouse data are often stored
multiple times - in their most granular form and in summarized forms
called aggregates. Data warehouse data are gathered from the
operational systems and held in the data warehouse even after the data
has been purged from the operational systems.

3.8 Evolution in Organization Use of Data Warehouses

Organizations generally start off with relatively simple use of data
warehousing. Over time, more sophisticated use of data warehousing
evolves. The following general stages of use of the data warehouse can
be distinguished:

Off line Operational Databases

Data warehouses in this initial stage are developed by simply copying
the data of an operational system to another server where the processing
load of reporting against the copied data does not impact the operational
system's performance.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Off line Data Warehouse

Data warehouses at this stage are updated from data in the operational
systems on a regular basis and the data warehouse data is stored in a
data structure designed to facilitate reporting.

Real Time Data Warehouse

Data warehouses at this stage are updated every time

 an osypsetreamtiopnearlforms a transaction (e.g., an order or a delivery or a booking.)

Integrated Data Warehouse

Data warehouses at this stage are updated every time
 an osypsetreamtionaplerforms a transaction. The data
 warehouses then generate transactions that are passed back into the
operational systems.

3.9 Disadvantages of Data Warehouses

There are also disadvantages to using a data warehouse. Some of them
are:

• Over their life, data warehouses can have high costs. The data
warehouse is usually not static. Maintenance costs are high.

• Data warehouses can get outdated relatively quickly. There is a
cost of delivering suboptimal information to the organization.

• There is often a fine line between data warehouses and
operational systems. Duplicate, expensive functionality may be
developed. Or, functionality may be developed in the data
warehouse that, in retrospect, should have been developed in the
operational systems and vice versa.

3.10 Data Warehouse Appliance

A data warehouse appliance is an integrated set of servers, storage,
OS, DBMS and software specifically pre-installed and pre-optimized for
data warehousing. Alternatively, the term is also used for similar
software-only systems that purportedly are very easy to
 instal ospnecific recommended hardware configurations. DW
appliances provide
solutions for the mid-to-large volume data warehouse market, offering
low-cost performance most commonly on data volumes in the terabyte
to petabyte range.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Technology Primer

Most DW appliance vendors use massively parallel processing (MPP)
architectures to provide high query performance and platform
scalability. MPP architectures consist of independent processors or
servers executing in parallel. Most MPP architectures implement a
―shared nothing architecture‖ where each server is self-sufficient and
controls its own memory and disk. Shared nothing architectures have a
proven record for high scalability and little contention. DW appliances
distribute data onto dedicated disk storage units connected to each server
in the appliance. This distribution allows DW appliances to resolve a
relational query by scanning data on each server in parallel. The divide-
and-conquer approach delivers high performance and scales linearly as
new servers are added into the architecture.

MPP database architectures are not new. Teradata, Tandem, Britton Lee, and
Sequent offered MPP SQL-based architectures in the 1980s. The re- emergence of
MPP data warehouses has been aided by open source and commodity
 components. Advances in technology have reduced costs
and improved performance in storage devices, multi-core CPUs and
networking components. Open source RDBMS products, such as Ingres and
PostgreSQL, reduce software license costs and allow DW appliance vendors to
 focus on optimization rather than providingbasic database
functionality. Open source Linux provides a stable, well-implemented
OS for DW appliances.

History

Many consider Teradata‘s initial product as the first DW appliance (or
Britton-Lee's, but Britton Lee—renamed ShareBase—was acquired by
Teradata in June, 1990). Some regard Teradata's current offerings as still
being other appliances, while others argue that they fall short in ease of
installation or administration. Interest in the data warehouse appliance
category is generally dated to the emergence of Netezza in the early
2000s.

More recently, a second generation of modern DW appliances has
emerged, marking the move to mainstream vendor integration. IBM
integrated its InfoSphere Warehouse (formerly DB2 Warehouse) with its
own servers and storage to create the IBM InfoSphere Balanced
Warehouse. Other DW appliance vendors have partnered with major
hardware vendors to help bring their appliances to market. DATAllegro
partners with EMC and Dell and implements open source Ingres on
Linux. Greenplum has a partnership with Sun Microsystems and
implements Bizgres (a form of PostgreSQL) on Solaris using the ZFS
file system. HP Neoview has a wholly-owned solution and uses HP
NonStop SQL.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Kognitio offers a row-based ―virtual‖ data warehouse appliance while
Vertica, and ParAccel offer column-based ―virtual‖ data warehouse
appliances. Like Greenplum, ParAccel partners with Sun Microsystems.
These solutions provide software-only solutions deployed on clusters of
commodity hardware. Kognitio‘s homegrown WX2 database runs on
several blade configurations. Other players in the DW appliance space
include Calpont and Dataupia.

Recently, the market has seen the emergence of data warehouse bundles
where vendors combine their hardware and database software together
as a data warehouse platform. The Oracle Optimized Warehouse
Initiative combines the Oracle Database with the industry‘s
lceoamdipnugter manufacturers Dell, EMC, HP, IBM, SGI and Sun
Microsystems. Oracle's Optimized Warehouses are pre-validated
configurations and the database software comes pre-installed, though
some analysts differ as to whether these should be regarded as
appliances.

Benefits

Reduction in Costs

The total cost of ownership (TCO) of a data warehouse consists of initial
entry costs, on-going maintenance costs and the cost of
icnacpraecaistiynags the data warehouse grows. DW appliances offer low entry
and maintenance costs. Initial costs range from $10,000 to $150,000 per
terabyte, depending on the size of the DW appliance installed.

The resource cost for monitoring and tuning the data warehouse makes
up a large part of the TCO, often as much as 80%. DW

arepdpulicaenceasdministration for day-to-day operations, setup and integration.
Many also offer low costs for expanding processing power and capacity.

With the increased focus on controlling costs combined with tight IT
Budgets, data warehouse managers need to reduce and manage expenses
while leveraging their technology as much as possible making
DapWpliances a natural solution.

Parallel Performance

DW appliances provide a compelling price/performance ratio. Many
support mixed-workloads where a broad range of ad-hoc queries and
reports run simultaneously with loading. DW appliance vendors use
several distribution and partitioning methods to provide parallel
performance. Some DW appliances scan data using partitioning and
sequential I/O instead of index usage. Other DW appliances use

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

standard database indexing.
With high performance on highly granular data, DW appliances are able
to address analytics that previously could not meet performance
requirements.

Reduced Administration

DW appliances provide a single vendor solution and take ownership for
optimizing the parts and software within the appliance. This eliminates
the customer‘s costs for integration and regression testing of the DBMS,
storage and OS on a terabyte scale and avoids some of the compatibility
issues that arise from multi-vendor solutions. A single support point also
provides a single source for problem resolution and a simplified upgrade
path for software and hardware.

The care and feeding of DW appliances is less than many alternate data
warehouse solutions. DW appliances reduce administration through
automated space allocation, reduced index maintenance and in most
cases, reduced tuning and performance analysis.

Built-in High Availability

DW appliance vendors provide built-in high availability through
redundancy on components within the appliance. Many offer warm-
standby servers, dual networks, dual power supplies, disk mirroring with
robust failover and solutions for server failure.

Scalability

DW appliances scale for both capacity and performance. Many DW
appliances implement a modular design that database administrators can
add to incrementally, eliminating up-front costs for over-provisioning.
In contrast, architectures that do not support incremental expansion
result in hours of production downtime, during which database
administrators export and re-load terabytes of data. In MPP
architectures, adding servers increases performance as well as capacity.
This is not always the case with alternate solutions.

Rapid Time-to-Value

Companies increasingly expect to use business analytics to improve the
current cycle. DW appliances provide fast implementations without the
need for regression and integration testing. Rapid prototyping is possible
because of reduced tuning and index creation, fast loading and reduced
needs for aggregation in some cases.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Application Uses

DW appliances provide solutions for many analytic application uses,
including:

•Enterprise data warehousing

•Super-sized sandboxes isolate power users with resource intensive
queries

•Pilot projects or projects requiring rapid prototyping and rapid time-to-
value
•Off-loading projects from the enterprise data warehouse; ie large
analytical query projects that affect the overall workload of the
enterprise data warehouse
•Applications with specific performance or loading requirements

•Data marts that have outgrown their present environment

•Turnkey data warehouses or data marts

•Solutions for applications with high data growth and high performance
requirements

•Applications requiring data warehouse encryption

Trends

The DW appliance market is shifting trends in many areas as

ietvolves:

•Vendors are moving toward using commodity technologies rather than
proprietary assembly of commodity components.

•Implemented applications show usage expansion from tactical and data
mart solutions to strategic and enterprise data warehouse use.

•Mainstream vendor participation is now apparent.
•With a lower total cost of ownership, reduced maintenance and high

performance to address business analytics on growing data volumes,
most analysts believe that DW appliances will gain market share.

3.11 The Future of Data Warehousing

Data warehousing, like any technology niche, has a history of
innovations that did not receive market acceptance.

A 2007 Gartner Group paper predicted the following technologies could
be disruptive to the business intelligence market.

• Service Oriented Architecture

• Search capabilities integrated into reporting and analysis
technology

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

• Software as a Service

• Analytic tools that work in memory

• Visualization

Another prediction is that data warehouse performance will continue to
be improved by use of data warehouse appliances, many of which
incorporate the developments in the aforementioned Gartner Group
report.

Finally, management consultant Thomas Davenport, among others,
predicts that more organizations will seek to differentiate themselves by
using analytics enabled by data warehouses.

4.0 CONCLUSION

Data warehouse is now emerging as very important in database
management systems. This is as a result the growth in the database of
large corporations. A data warehouse now makes it easier for the
holding of data while in use. However, there are challenges are
constraints in the acceptance and implementation of data warehouse,
which is a normal in the development of any concept. The future of data
warehouse is good as some organizations will opt for it.

5.0 SUMMARY

• A data warehouse is a repository of an organization's electronically

stored data. Data warehouses are designed to facilitate reporting and
analysis.

• The concept of data warehousing dates back to the late-1980s when
IBM researchers Barry Devlin and Paul Murphy developed the
"business data warehouse".

• Architecture, in the context of an organization's data warehousing
efforts, is a conceptualization of how the data warehouse is built.

• There are two leading approaches to storing data in a data warehouse
- the dimensional approach and the normalized approach.

• Another important decision in designing a data warehouse is which
data to conform and how to conform the data.

• Ralph Kimball, a well-known author on data warehousing, is a

proponent of the bottom-up approach to data warehouse design.

• Operational systems are optimized for preservation of data integrity
and speed of recording of business transactions through use of
database normalization and an entity-relationship model.

• Organizations generally start off with relatively simple use of data
warehousing. Over time, more sophisticated use of data warehousing
evolves.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

• A data warehouse appliance is an integrated set of servers, storage,

OS, DBMS and software specifically pre-installed and pre-optimized
for data warehousing

• Data warehousing, like any technology niche, has a history of
innovations that did not receive market acceptance.

6.0 Tutor-Marked Assignment

1. Discuss the benefits associated with the use of data warehouse..

2. Mention 5 applications of data warehouse appliances

7.0 REFERENCES/FURTHER READINGS

Inmon, W.H. Tech Topic: What is a Data Warehouse? Prism Solutions.
Volume 1. 1995.

Yang, Jun. WareHouse Information Prototype at Stanford (WHIPS).
Stanford University. July 7, 1998.

Caldeira, C. "Data Warehousing - Conceitos e Modelos". Edições
Sílabo. 2008. ISBN 978-972-618-479-9

Kimball, R. and Ross, M. "The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling". pp. 310. Wiley. 2nd Ed. 2002.
ISBN 0-471-20024-7.

Ericsson, R. "Building Business Intelligence Applications with .NET".
1st Ed. Charles River Media. February 2004. pp. 28-29.

Pendse, Nigel and Bange, Carsten "The Missing Next Big Things",

Schlegel, Kurt "Emerging Technologies Could Prove Disruptive to the
Business Intelligence Market", Gartner Group. July 6, 2007

Davenport, Thomas and Harris, Jeanne "Competing on Analytics: The

New Science of Winning". Harvard Business School Press. 2007.
ISBN 1-422-10332-3.

Queries from Hell blog » When is an appliance not an appliance?

DBMS2 — DataBase Management System Services»Blog Archive »
Data warehouse appliances – fact and fiction

Todd White (November 5 1990). "Teradata Corp. suffers first quarterly

Loss in four years". Los Angeles Business Journal.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

UNIT 3 DOCUMENT MANAGEMENT SYSTEM

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 History

3.2 Document Management and Content

Management
3.3 Components
3.4 Issues Addressed in Document Management
3.5 Using XML in Document and Information Management
3.6 Types of Document Management Systems

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

A document management system (DMS) is a computer system (or set
of computer programs) used to track and store electronic documents
and/or images of paper documents. The term has some overlap with the
concepts of Content Management Systems and is often viewed as a
component of Enterprise Content Management Systems and related to
Digital Asset Management, Document imaging, Workflow systems and
Records Management systems. Contract Management and Contract
Lifecycle Management (CLM) can be viewed as either components or
implementations of ECM.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• define document management system

• trace the history and development process of document management
system

• compare and contrast document management system and content
management systems

• know the basic components of document management systems

• answer the question of issues addressed by document management
systems

• know the types of document management systems available off the
shelf.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

3.0 MAIN CONTENT

3.1 History

Beginning in the 1980s, a number of vendors began developing systems
to manage paper-based documents. These systems managed paper
documents, which included not only printed and published documents,
but also photos, prints, etc.

Later, a second system was developed, to manage electronic documents,
i.e., all those documents, or files, created on computers, and often stored
on local user file systems. The earliest electronic document management
(EDM) systems were either developed to manage proprietary file types,
or a limited number of file formats. Many of these systems were later
referred to as document imaging systems, because the main capabilities
were capture, storage, indexing and retrieval of image file
fTohremseatsy. stems enabled an organization to capture faxes and forms, save
copies of the documents as images, and store the image files in the
repository for security and quick retrieval (retrieval was possible
because the system handled the extraction of the text from the document
as it was captured, and the text indexer provided text retrieval
capabilities).

EDM systems evolved to where the system was able to manage any type
of file format that could be stored on the network. The applications grew
to encompass electronic documents, collaboration tools, security, and
auditing capabilities.

3.2 Document Management and Content Management

There is considerable confusion in the market between document
management systems (DMS) and content management systems (CMS).
This has not been helped by the vendors, who are keen to market their
products as widely as possible.

These two types of systems are very different, and serve complementary
needs. While there is an ongoing move to merge the two together (a
positive step), it is important to understand when each system

iasppropriate.

Document Management Systems (DMS)

Document management is certainly the older discipline, born out of the
need to manage huge numbers of documents in organisations.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Mature and well-tested, document management systems can be
characterised as follows:

• focused on managing documents, in the traditional sense (like Word
files)

• each unit of information (document) is fairly large, and self-
contained

• there are few (if any) links between documents

• provides limited integration with repository (check-in, check-out,
etc)

• focused primarily on storage and archiving

• includes powerful workflow

• targeted at storing and presenting documents in their native format
• limited web publishing engine typically produces one page for each

document

Note that this is just a generalised description of a DMS, with most
systems offering a range of unique features and capabilities.
Nonetheless, this does provide a representative outline of common DMS
functionality.

A typical document management scenario:

A large legal firm purchases a DMS to track the huge number of advice
documents, contracts and briefs. It allows lawyers to easily retrieve
earlier advice, and to use 'precedent' templates to quickly create new
documents.

You can't build a website with just a DM system

Content Management Systems (CMS)

Content management is more recent, and is primarily designed to meet
the growing needs of the website and intranet markets.

A content management system can be summarised as follows:

• manages small, interconnected units of information (e.g. web

pages)

• each unit (page) is defined by its location on the site

• extensive cross-linking between pages

• focused primarily on page creation and editing

• provides tight integration between authoring and the repository
(metadata, etc)

• provides a very powerful publishing engine (templates, scripting,
etc)

A typical content management scenario:

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

A CMS is purchased to manage the 3000 page
 corporate wT eeembspiltae.te-based authoring allows business groups
 to easily create content, while the publishing system
 dynamically generates richly- formatted pages.

Content management and document management are complementary,
not competing technologies. You must choose an appropriate system if
business needs are to be met.

3.3 Components

Document management systems commonly provide storage, versioning,
metadata, security, as well as indexing and retrieval capabilities. Here is
a description of these components:

Metadata

Metadata is typically stored for each document. Metadata

 may feoxrample, include the date the document was stored and the

 identity of
the user storing it. The DMS may also extract metadata from
tdhoecument automatically or prompt the user to add
 metadata Ssyosmteems also use optical character recognition on
 scanned images, or perform text extraction on electronic documents.
The resulting extracted
text can be used to assist users in locating documents by identifying
probable keywords or providing for full text search capability, or can be
used on its own. Extracted text can also be stored as a component of
metadata, stored with the image, or separately as a source for searching
document collections.

Integration

Many document management systems attempt to integrate document
management directly into other applications, so that users may retrieve
existing documents directly from the document management system
repository, make changes, and save the changed document back to the
repository as a new version, all without leaving the application. Such
integration is commonly available for office suites and e-mail or
collaboration/groupware software.

Capture

Images of paper documents using scanners or multifunction printers.
Optical Character Recognition (OCR) software is often used, whether

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

integrated into the hardware or as stand-alone software, in order

tcoonvert digital images into machine readable text.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Indexing

Track electronic documents. Indexing may be as simple as keeping track of
unique document identifiers; but often it takes a more complex form,
providing classification through the documents' metadata or even
through word indexes extracted from the documents' contents. Indexing
exists mainly to support retrieval. One area of critical importance for
rapid retrieval is the creation of an index topology.

Storage

Store electronic documents. Storage of the documents often includes
management of those same documents; where they are stored, for how
long, migration of the documents from one storage media to another
(Hierarchical storage management) and eventual document destruction.

Retrieval

Retrieve the electronic documents from the storage. Although the notion
of retrieving a particular document is simple, retrieval in the electronic
context can be quite complex and powerful. Simple retrieval of
individual documents can be supported by allowing the user to specify
the unique document identifier, and having the system use the basic
index (or a non-indexed query on its data store) to retrieve the
document. More flexible retrieval allows the user to specify partial
search terms involving the document identifier and/or parts of the
expected metadata. This would typically return a list of documents
which match the user's search terms. Some systems provide the
capability to specify a Boolean expression containing multiple keywords
or example phrases expected to exist within the documents' contents.
The retrieval for this kind of query may be supported by previously-built
indexes, or may perform more time-consuming searches through the
documents' contents to return a list of the potentially relevant
documents. See also Document retrieval.

Distribution Security

Document security is vital in many document management applications.
Compliance requirements for certain documents can be quite complex
depending on the type of documents. For instance the Health Insurance
Portability and Accountability Act (HIPAA) requirements dictate that
medical documents have certain security requirements. Some document
management systems have a rights management module that allows an
administrator to give access to documents based on type to only certain
people or groups of people.
Workflow

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

Workflow is a complex problem and some document management
systems have a built in workflow module. There are different types of
workflow. Usage depends on the environment the EDMS is applied to.
Manual workflow requires a user to view the document and decide who
to send it to. Rules-based workflow allows an administrator to create a
rule that dictates the flow of the document through an organization: for
instance, an invoice passes through an approval process and then

irsouted to the accounts payable department. Dynamic rules
 allow fborranches to be created in a workflow process. A simple example
would
be to enter an invoice amount and if the amount is lower than a certain
set amount, it follows different routes through the organization.

Collaboration

Collaboration should be inherent in an EDMS. Documents should be
capable of being retrieved by an authorized user and worked on. Access
should be blocked to other users while work is being performed on the
document.

Versioning

Versioning is a process by which documents are checked in or out of the
document management system, allowing users to retrieve previous
versions and to continue work from a selected point. Versioning

iusseful for documents that change over time and require updating, but it
may be necessary to go back to a previous copy.

3.4 Issues Addressed in Document Management

There are several common issues that are involved in managing
documents, whether the system is an informal, ad-
hoc pmaeptehro-dbafsoerdone person or if it is a formal, structured, computer enhanced
system for many people across multiple offices. Most methods

fmoarnaging documents address the following areas:

Location

Where will documents be stored? Where will people need to go to
access documents? Physical journeys to filing cabinets and file
rooms are analogous to the onscreen navigation required to use

adocument management system.

How will documents be filed? What methods will be used

Filing

Retrieval

toorganize or index the documents to assist in later retrieval?
Document management systems will typically use a database to store
filing information.

How will documents be found? Typically, retrieval encompasses
both browsing through documents and searching for specific
information.

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

Security How will documents be kept secure? How will unauthorized

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

personnel be prevented from reading, modifying or destroying
documents?

Disaster How can documents be recovered in case of destruction from fires,
Recovery floods or natural disasters?

How long should documents be kept, i.e. retained? As organizations Retention
 grow and regulations increase, informal guidelines for keeping
period various types of documents give way to more formal Records

Management practices.

Archiving How can documents be preserved for future readability?

Distribution How can documents be available to the people that need them?

Workflow If documents need to pass from one person to another, what are the
rules for how their work should flow?

How are documents created? This question becomes important when
Creation multiple people need to collaborate, and the logistics of version

control and authoring arise.

Authentication Is there a way to vouch for the authenticity of a document?

3.5 Using XML in Document and Information Management

The attention paid to XML (Extensible Markup Language), whose 1.0
standard was published February 10, 1998, is impressive. XML has been
heralded as the next important internet technology, the next step
following HTML, and the natural and worthy companion to the Java
programming language itself. Enterprises of all stripes have rapturously
embraced XML. An important role for XML is in managing not only
documents but also the information components on which documents
are based.

Document Management: Organizing Files

Document management as a technology and a discipline has
traditionally augmented the capabilities of a computer's file system. By
enabling users to characterize their documents, which are usually stored
in files, document management systems enable users to store, retrieve,
and use their documents more easily and powerfully than they can do
within the file system itself.

Long before anyone thought of XML, document management systems were
 originally developed to help law offices maintain better control
over and access to the many documents that legal professionals
generate. The basic mechanisms of the first document management
systems performed, among others, these simple but powerful tasks:

•Add information about a document to the file that contains the
document

•Organize the user-supplied information in a database

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

•Create information about the relationships between different
documents

In essence, document management systems created libraries of
documents in a computer system or a network. The document library
contained a "card catalog" where the user-supplied information was
stored and through which users could find out about the documents and
access them. The card catalog was a database that captured information
about a document, such as these:

•Author: who wrote or contributed to the document

•Main topics: what subjects are covered in the document

•Origination date: when was it started

•Completion date: when was it finished

•Related documents: what other documents are relevant to this

document
•Associated applications: what programs are used to process the

document
•Case: to which legal case (or other business process) is the document

related

Armed with a database of such information about
documents ucoseurlsd find information in more sensible and intuitive
ways than scanning different directories' lists of contents, hoping that a file's name
might reveal what the file contained. Many people consider document
management systems' first achievement to have created "a file system
within the file system."

Soon, document management systems began to provide additional and
valuable functionality. By enriching the databases of information about
the documents (the metadata), these systems provided these capabilities:

•Version tracking: see how a document evolves over time
•Document sharing: see in what business processes the document is

used and re-used
•Electronic review: enable users to add their comments to a document

without actually changing the document itself
•Document security: refine the different types of access that different

users need to the document
•Publishing management: control the delivery of documents to

different publishing process queues
•Workflow integration: associate the different stages of a document's

life-cycle with people and projects with schedules
These critical capabilities (among others) of document management
systems have proven enormously successful, fueling a multi-billion
dollar business.

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

chapter in a document is not a chapter because it resides in a file called

chapter1.doc but because the chapter's content is contained in the

XML: Managing Document Components

XML and its parent technology, SGML (Standard Generalized Markup
Language), provide the foundation for managing not only documents but
also the information components of which the documents are composed.
This is due to some notable characteristics of XML data.

Documents vs. Files

In XML, documents can be seen independently of files. One document
can comprise many files, or one file can contain many documents. This
is the distinction between the physical and logical structure of
information. XML data is primarily described by its logical structure. In
a logical structure, principal interest is placed on what the pieces of
information are and how they relate to each other, and secondary interest
is placed on the physical items that constitute the information.

Rather than relying on file headers and other system-specific characteristics
 of a file as the primary means for understanding and
managing information, XML relies on the markup in the data itself. A

<chapter> and </chapter> element tags.

Because elements in XML can have attributes, the components of a
document can be extensively self-descriptive. For example, in XML you
can learn a lot about the chapter without actually reading it if
tchheapter's markup is rich in attributes, as in <chapter language="English"
subject="colonial economics" revision_date="19980623" author="Joan
X. Pringle" thesis_advisor="Ramona Winkelhoff">. When the elements
carry self-describing metadata with them, systems that understand XML
syntax can operate on those elements in useful ways, just like a
traditional document management system can. But there is a major
difference.

Information vs. Documents

XML markup provides metadata for all components of a document, not

merely the object that contains the document itself. This makes the
pieces of information that constitute a document just as manageable as
the fields of a record in a database. Because XML data follows syntactic
rules for well-formedness and proper containment of elements,
document management systems that can correctly read and parse XML
data can apply the functions of document management system, such as
those mentioned above, to any and all information components inside
the document.
The focus on information rather than documents from XML offers some

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

important capabilities:

•Reuse of Information

While standard document management systems do offer some measure
of information reuse through file sharing, information management
systems based on XML or SGML enable people to share
 pieces ocof mmon information without storing the piece of
 information in multiple places.

•Information Harvesting

By enabling people to focus on information components that make up
documents rather than on the documents themselves, these systems can
identify and capture useful information components that have ongoing
value "buried" inside documents whose value as documents is limited.
That is, a particular document may be useful only for a short time, but
chunks of information inside that document may be reusable and
valuable for a longer period.

•Fine-Granularity Text-Management Applications

Because the information components in XML documents are
identifiable, manipulatable, and manageable, XML information
management technology can support real economies in applications such
as translation of technical manuals.

Evaluating Product Offerings

While the general world of document management and

imnafonramgeamtioennn t is moving toward adoption of structured information and
use of XML and SGML, some product offerings distinguish themselves
by using underlying database management products with native support
for object-oriented data. Object-oriented data matches the structure of
XML data quite well and database systems that comprehend
obrijeenc ttte-d data adapt well to the tasks of managing XML information.

By contrast, other information management products that comprehend
XML or SGML data use relational database systems and provide their
own object-oriented extensions to those database systems in order to
comprehend object-oriented data such as XML or SGML

data arenldying on such implementations have also garnered success and respect
in the document management marketplace.

3.6 Types of Document Management Systems

• Alfresco (software) • Main//Pyrus DMS

• ColumbiaSoft • OpenKM

MBA 859

APPLICATION SYSTEM
DATABASE MANAGEMENT

• Computhink's ViewWise • O3spaces

• Didgah • Oracle's Stellent

• Documentum • Perceptive Software

• DocPoint • Questys Solutions

• Hummingbird DM • Redmap

• Interwoven's Worksite • Report2Web

• Infonic Document Manageme•nStharePoint
(UK) • Saperion

• ISIS Papyrus • SAP KM&C SAP Netweaver
• KnowledgeTree • TRIM Context
• Laserfiche • Xerox Docushare
• Livelink

4.0 CONCLUSION

Document management systems have added variety to the pool of
options available in datase managemnt in corp[orations. Many products
are of the shelf for end users to choose from. The use of document
management systems has encouraged the concept and drive for
paperless ofice and transactions. It is a concept that truly makes the
future bight as man tend toward greater efficiency by eliminating use of
papers and hard copies of data and information.

5.0 SUMMARY

• A document management system (DMS) is a computer system (or

set of computer programs) used to track and store electronic
documents and/or images of paper documents

• Beginning in the 1980s, a number of vendors began developing
systems to manage paper-based documents. These systems managed
paper documents, which included not only printed and published
documents, but also photos, prints, etc.

• There is considerable confusion in the market between document
management systems (DMS) and content management systems
(CMS).

• Document management systems commonly provide storage,
versioning, metadata, security, as well as indexing and retrieval
capabilities. Here is a description of these components:

• There are several common issues that are involved in managing
documents, whether the system is an informal, ad-hoc, paper-based
method for one person or if it is a formal, structured, computer
enhanced system for many people across multiple offices

• The attention paid to XML (Extensible Markup Language), whose
1.0 standard was published February 10, 1998, is impressive. XML
has been heralded as the next important Internet technology, the next

MBA 859

MANAGEMENT APPLICATION SYSTEM
DATABASE

step following HTML, and the natural and worthy companion to the
Java programming language itself. Enterprises of all stripes have
rapturously embraced XML.

6.0 TUTOR-MARKED ASSIGNMENT

1. List 5 characteristics of a document management system
2. Discuss briefly workflow in the context of it as a component of

document management system

7.0 REFERENCES/FURTHER READINGS

BBC -h2g2 guide Shoebox Storage.

James Robertson, Published on 14 February 2003.A

Miles L. Mathieu, Ernest A. Capozzoli (2002). "The Paperless Office:
Accepting Digitized data" (PDF). Troy State University.

Kevin Craine. "Excerpts from Designing a Document

Strategy" (HTML). Craine Communications Group.

