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INTRODUCTION

You are holding in your hand the course guide for FMT 312 (Linear Programming Il). The
purpose of the course guide is to relate to you the basic structure of the course material you
are expected to study. Like the name ‘course guide’ implies, it is to guide you on what to expect
from the course material and at the end of studying the course material.

COURSE CONTENT

Non —linear programming, quadratic programming Kuhntucker methods, optimality criteria
simple variable optimization. Multivariable techniques, Gradient methods.

COURSE AIM

The aim of the course is to bring to your cognizance the different methods of solving (Non-LPP)
thus Non-Linear programming models in Finance as mentioned in the course content to handle
Financial problems via the use of Statistics and calculations.

COURSE OBJECTIVES
At the end of studying the course material, among other objectives, you should be able to:

(1) Define continuous functions, differentiability and continuous differentiable function
in Rn.

(i) Define and use the concept of partial derivatives and directional derivatives.
(iii) Find Higher order Derivatives of a function defined on a subset S of Rn.
(iv) Define quadratic forms and Definiteness.

(v) Identify definiteness and semidefiniteness.

COURSE MATERIAL

The course material package is composed of:
The Course Guide

The study units

Self-Assessment Exercises

Tutor Marked Assignment
References/Further Reading

THE STUDY UNITS

There are two modules and four units in this course material.
These study units are as listed below:

MODULE |

CLASSICAL OPTIMIZATION THEORY IN RN



UNIT I

Basic Concepts of Rn

UNIT 2

Optimization in Rn

UNIT 3

MODULE 11

Unconstrained Optimization
UNIT 4

Constrained Optimization

TUTOR MARKED ASSIGNMENTS

The Tutor Marked Assignments (TMAs) at the end of each unit are designed to test your
knowledge and application of the concepts learned. Besides the preparatory TMAs in the
course material to test what has been learnt, it is important that you know that at the end of
the course, you must have done your examinable TMAs as they fall due, which are marked
electronically. They make up to 30 percent of the total score for the course.

SUMMARY

Having gone through this course, you now know

(1) A Typical Optimization Problem is

Minimize(or Maximize) f(x) Subject to: x € D

where f: D € R — R is called the objective function and D is called the constraint set.

(i) Optimization problems are of two types, namely Constrained and Unconstrained
Prob- lems. It is constrained if the constraint set D is made up of a set of inequalities
and/or equations

i (1 6 famaxieiR) esirb jéet fpoob ke D

that f is continuous and D is a bounded and closed subset ofRn, the there exist a solution
for the problem. This is the Weierstrass Existence theorem theorem. (iv) A real valued
function f: Rn — R is coercive if you have

lim kxk—+o0

f(X) = +oo.



(v) If fis continuous and coercive on a closed set D c R then there exist ~ x € D such
that f( x) < f(x) for all x € D.

(i) the existence theorems for solution of an optimization problem.

Good luck.



FMT 313
MATHEMATICAL PROGRAMMING II

Prof.U.A. OSISIOGU



CONTENTS

| CLASSICAL OPTIMIZATION THEORY IN RN 4
1 Basic Concepts of R" 5
1.1 Introduction. . . . . . . . . . 5
1.2 ODbjecCtives . . . . . . o e 5
1.3 Functions. . . . . . .. 6
1.3.1 Continuous Functions . . . . . .. ... ... ... .. .. 6
1.3.2 Differentiable and Continuously Differentiable Functions. . . ... .. 7
1.3.3 Partial Derivatives and Differentiability . . . . ... ... ....... 10
1.3.4 Directional Derivatives and Differentiability . . . . ... ... ... .. 12
1.3.5 Higher Order Derivatives . . . . . . ... ... ... ... ....... 13

1.4 Quadratic Forms: Definite and Semidefinite Matrices . . . ... ... ... .. 14
1.4.1 Quadratic Forms and Definiteness . . . . ... ... ... ... .... 14
1.4.2 Identifying Definiteness and Semidefiniteness . . . . .. ... ... .. 17

1.5 Somelmportant Results. . . . . . . . .. . ... ... 19
1.5.1 Separation Theorems . . . . . . . . . . . . i i 19
1.5.2 The Intermediate and Mean Value Theorems . . . .. ... ... ... 21
1.5.3 The Inverse and Implicit Function Theorems . . . . . ... ... ... 25

1.6 Conclusion . . . . . . . .. 27
1.7 Summary . . .. . e e e e 27
1.8 Tutor Marked Assignments . . . . . . . . . .. .. 27
Refarences . . . . . e 30



CONTENTS CONTENTS

2 Optimization in R" 32
2.1 Introduction. . . . . . . . . . .. 32
2.2 Objectives . . . . . . . 32
2.3 MainContent. . . . . . . . . . . . 32

2.3.1 Optimization problemsinR" . . . ... . ... ... ... ..... 32
2.3.2 Types of Optimization problem . . . . ... ... ... ........ 35
2.3.3 The Objectives of Optimization Theory . . . . . . ... ... ... .. 36
2.4 Existence of Solutions: The Weierstrass Theorem. . . . . . ... ... .... 36
2.4.1 The Weierstrass Theorem . . . . ... ... ... .. ... ...... 37
2.5 Conclusion . . . . . .. e 41
2.6 SUMMArY . . . . . . 42
2.7 Tutor Marked Assignments(TMAS) . . . . . . . . . i i i oo i oot 42
References . . . . . . . e 43

3 Unconstrained Optimization 44
3.1 Introduction. . . . . . . . . e 44
3.2 Objectives . . . . . . . e 44
3.3 MainContent. . . . . . . . e e 45

3.3.1 CGradientsandHessians . . . . . . . ... . 45
3.3.2 Local, Global and Strict Optima . . . . ... ... ........... 46
3.3.3 Optimality Conditions For Unconstrained Problems . . . . . . ... .. 46
3.3.4 Coercive functions and Global Minimizers . . ... .......... 53
3.4 Convex Setsand Convex Functions . . . . .. ... ... .. ... ...... 54
3.4.1 Convex SetS. . . . . . e 54
3.4.2 Convex Functions. . . . .. . . . 56
3.4.3 Convexity and Optimization . . . . .. ... ... ... ........ 57
3.5 Conclusion . . . . ... 63
3.6 SUMMArY . . . . . e e e 63
3.7 Tutor Marked Assignments (TMAS) . . . . . . . . . . .. 64
References . . . . . . . 66

4 Constrained Optimization 67
4.1 Introduction. . . . . . . . . e 67
4.2 Objectives . . . . . . . e 67




CONTENTS CONTENTS

4.3 Constrained Optimization Problem . . . . . ... .. ... ... .. ...... 67
4.4 Equality-Constraint . . . . . . . . . 69

441 Lagrangian. . . . . ..o 71

4.4.2 General Formulation. . . . . ... ... ... .. ... 73
4.5 Inequality ConstraintS . . . . . . . . . . 76
4.6 Conclusion . . . ... . 76
A7 SUMMAIY . . . o e e e e e e e e e e e e 77
4.8 Tutor Marked Assignments(TMAS) . . . . . . . . . . . . .. 77
References . . . . . . . e 78




Module |

CLASSICAL OPTIMIZATION THEORY
IN RN



UNIT 1

BASIC CONCEPTS OF RN

1.1 Introduction

In this unit and subsequent units, you shall be considering another aspect of optimization prob-
lems, different from the linear programming problem you have seen in previous units. The
theorems you shall develop here are more general to any given mathematical programming in
which the objective function ¥ : S ¢ R" — R defined on a subset S of R" is nonlinear. Also the
constraints may or may not be linear in the decision variables and the non-negativity condition
is also relaxed.

For a better understanding of optimization in R", you shall, in this unit, be introduced to
some basic concepts and notions of the space R" (also known as the real n-space). These no-
tions, can also be referred to as the topology of R". Thus, you shall be considering notions like,
Continuous functions, differentiability, partial derivatives, directional derivatives and higher or-
der derivatives. You will also consider quadratic forms: definite and semidefinite matrices and
also see some results.

1.2 Objectives

At the end of this unit, you should be able to

(i) Define continuous functions, differentiability and continuous differentiable function in
R".

(i) Define and use the concept of partial derivatives and directional derivatives.
(iif) Find Higher order Derivatives of a function defined on a subset S of R".

(iv) Define quadratic forms and Definiteness.
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(v) Identify definiteness and semidefiniteness.

1.3 Functions

Let S, T be subsets of R™ and R!, respectively. A function f from S to T denotedby f : S— T,

is a rule that associates with each element of S, one and only one element of T. The setS is
called the domain of the function f, and the set T is the range of the function f.

1.3.1 Continuous Functions

Definition 1.3.1 Letf : S— T, where S ¢ R"and T ¢ R'. Then, f is said to be continuous
atx € Sifforall > 0,there existsa ¢ > O such thaty € S andd(x,y) < 6implies that
d(f(x), f(y)) < . (Notethatd(x,y) is the distance between x and y in R", while d(f (x), f(y))
is the distance in R'.)

Another way you can define continuous function is by using sequences.

Definition 1.3.2 The function f : S — T is continuous at x € Sif for all sequences {x,} such
that x, € Sforall k, and lim x, = x, then lim f(x) = f(x).

k—o0 k—>oo

Intuitively, T is continuous at x if the value of f at any point y that is “close” to x is a good
approximation of the value of f at x.

Definition 1.3.3 (Discontinuous Function) f: S — T iscalled discontinous atx € Sifitis

not continuous at x.

Example 1.3.1 (Continuous function) The identity function f(xX) = x for all x € Ris contin-
uous ateachx € R

Example 1.3.2 The function f : R = R given by

0, x< 0
f(x) =
1, x>0
is continuous everywhere except at x = 0. At x = 0, every open ball B(x, d) with center x
and radius 6 > 0 contains at least one point y > 0. At all such points, f (y) = 1> 0= f (X),

and this approximation does not get better, no matter how close y gets to x (i.e., no matter how
small you take 6 to be).

Definition 1.3.4 A functionf : S — T is said to be continuous on S if it is continuous at each

point in S.
Observe that if f :c R"™ — R!, then f consists of | “component functions” (f%,..., "),
i.e., there are functions f' : S — R,i =1,...,l, such that for each x € S, you have f(x) =

F1x), ..., F'(X).
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Proposition 1.3.1 f is continuous atx € S (resp. f is continuous on S) if and only if each f!
is continuous at x (resp. if and only if each f' is continuous on S).

Theorem 1.3.1 A functionf : S ¢ R" — R!is continuous at a point x € S if and only if for
all open set V. c R' such that f (x) € V, there is an open set U ¢ R" such that x €
U,and f(z) € Vforallze Un S.

by ERRbicBRPORRAT (f% SRBHRURUAL X 8005Y 15 20nGP8PeseLlR (R SHARnNg £ Ofrs fRRpsE:

Un Ssuchthat f (y) € V.Letk € {1,2, 3,...}, let Uy be the open ball with center
x and radius 1/k. Let y, € U, n S be such that ¥ (yx) € V. The sequence {y, } is clearly
well defined, and since y, € Uy for all k, you have d(x, yx) < 1/k for each k, so yx = x ask
— oo, Since T is continuous at x by hypothesis, you also have T (yx) = f (X) ask — oco.

However f (yx) € V for any k, and since V is open, V °is closed, so f (x) = lim f (yx)
€ V¢ which

contradicts e

f(x) € V.

tainfrgESHRM tHRHPPAFS Balfabeagn PReN 5eh VSCORSAINNG dhdwintereiScaRPRISLSEALk. GO8E
exigts Oaﬂeogja\ﬁeget%ﬁ% Maiﬁn%e ﬁhgu%ﬂe{h ﬁa‘F w) Rle W.Gh f%erngrl {/(é) "iﬂ‘d A a%i.ulgiclmﬁg’ &hgr%

so that B(x, 6) € U. Then, by construction, it is true thaty € Sandd(x,y) < ¢ implies
f(y) € V,ie, thatd(f(x), f(y)) < .Since > Qisarbitrary, you have shown precisely that
T is continuous at x. ]

As an immediate corollary, you have the following statement, which is usually abbreviated
as: “a function is continuous if and onlyif the inverse image of every open setis open.”

Corollary 1.3.1 Afunction f : S ¢ R" = R! is continuous on S if and only if for each open
setV ¢ R!, there isan open setU ¢ R"suchthat f~1(V) =Un Swhere f~ (V) is
defined

by

f-Y(V)={xe SIf(X) € V}

In particular, if S is anopen set in R", f is continuous on S if and only if £~ (V) is an open
set in R for each open setV in R'.

Finally, some observation. Note that continuity of a function f ata point x is alocal prop-
erty, i.e., it relates to the behaviour of f near x. but tells you nothing about the behaviou of f
elsewhere. In particular, the continuity of £ at x has no implicatioin even for the continuity of
T at points “close” to x. Indeed, it is easy to construct functions that are continuous at a given
point X, but that are discontinous at every neighbourhood of x. It is also important to note that,
in general, functions need not be continuous at even a single pointin theirdomain. Consider
f: R, = R, given by f(X) = 1,if x isarational number, and f(x) = 0, otherwise. This
function is discontinuous everywhere on Rx..

1.3.2 Differentiable and Continuously Differentiable Functions

Throughout this subsection, S will denote an open setin R"
7
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Definition 1.3.5 (Differentiability) A function f : S — R™ is said to be differentiable at a
point x € S if there exists an m X n matrix A such that for all > 0, there is § > 0 such that
y€e Sand x— y <Jdimplies

f) — f(y) — Ax—y) <x-—y

Equivalently, T is differentiable atx € Sif

C \
im fly) - f - Ay - ¥ _

y—X y— X

0

(The notation “y — x” is shorthand for “ for all sequences {yx} such that yx — x.”)

The matrixA in this case is called derivative of f at x and is denoted Df(x). Figure 1.1
provides a graphical illustration of the derivative. In keeping with standard practice, you shall,
in the sequel, denote Df(x) by f/(x) whenever n = m = 1, i.e., whenever S ¢ R and
f:S—R.

g(y)=a+by f(y)

f(x)

\

Figure 1.1: The Derivative

Remark 1.3.1 The definition of the derivative Df may be motivated as follows. An affine func-
tion from R" to R™ is a function g is of the form

a(y) = Ay +b,
8
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where A is anm X n matrix,andb € R™. (When b = 0, the function g is called linear.)
Intuitively, the derivative of f ata point x € S is the best affine approximation to f at x, i.e.,

the best approximation of T around the point x by an affine function g. Here, “best” means that
the ratio

\
Ctiyy - o)

y — X
goes to zero as 'y — X. Since the values of f and g must coincide at x (otherwise g would

be hardly be a good approximation to f at x), youmust have g(x) = Ax +b = f(x), or
b=f(x)’— Ax. Thus, you may write this approximating function gas

gy) = Ay — Ax+1(x) =Aly — x) +f(x).
Given this value for g(y), the task of identifying the best affine approximation to f at x now
amounts to identifying a matrix A such that
Cryy— gy > CFO) - Ay — x) +F00
y — X B y — X
This is precisely the definition of the derivative you have given.
diffefehisbAI5He8 R AR B ot PrifkicR rsifeearieonSppheg T is

R™ " is a continuous function, then f is said to be continuously differentiable on S, and you
write £ is CL.

—>0asy X

The following observations are immediate fromthe definitions. A functionf : S c R" —
R™ is differentiable atx € Sif and onlyif each of the m componet functions f' : S — R of f
is differentiable at x, in which case you have Df(x) = (Df(X), ..., Df™(x)). Moreover, f is
C!on Sif and onlyif each f'isC*on S.

The difference between differentiability and continuous differentiability is non-trivial. The
following example shows that a function may be differentiable everywhere, but may still not be
continuously differentiable.

Example 1.3.3 Letf : R = R be given by

0, ifx=0
f(x) =
x?sin” 37 ifx=0.
For x = 0, you have \
Iy — - (1 \ 2 C
f'(X) =2xsin — — Zcos —
X2 X X2

Since |sin(*)| < 1and |cos(-)| £ 1,but(2/x) — o0 asx — 0, itis clear that the limit as x — 0
of f(x) is not well defined. However, f'(0) does exist! Indeed,
(f(x) f(O)\ C 1 \
f'(0) = lim ————~ =limxsin =

x—0 X— 0 x—0 NG
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Since |sin(1/x?)| < 1, you have |x sin(1/x?)| < x|, so x sin(1/x?) — 0 as x — 0. This means
f'(0) =0.Thus, fisnot ClonR.,.

This example notwithstanding, it is true that the derivative of everywhere differentiable
function ¥ must possess a minimal amount of continuity. This you shall see in the intermediate
value theorem later in this unit.

First (EIRhEPRan Rysection Witk na siatemenk Of IwgnmparantRGiie T Of-tas fepate:

function fromR" to R™ whose value atany x € R"is f(x) + g(x).

Theorem 1.3.1 If f: R" > R™ and g : R" = R™ are both differentiable ata point x € R",

sois (f + g) and, in fact,
D(f +9)(x) = Df(x) + Dg(x).

Proof. Obvious fromthe definition of differentiability. |

Next, given functions f : R™ = R™ and h : R* — R", define, their composition ¥ ° h to
be the function from R* to R™ whose value atany x € R is given by f(h(x)), thatis, by the

value of T evaluated at h(x).

Theorem 1.3.2 Letf : R" = RMand h : Rk = R". Letx € RX. If his differentiable at x,
and T is differintiable at h(x), the T ° h is itself differetiable at x, and its derivative may be

obtained throughout the “chain rule” as:
D(f ° h)(x) = Df(h(x))Dh(x).

Proof. See Rudin (1976, theorem 9.15, p.214). [ ]

Theorems 1.3.1 and 1.3.2 are only one-way implications. For instance, while the differen-
tiability of f and g at x implies the differentiability of (f + g) at x, (f + g) can be differentiable
everywhere (even C?1) without f and g being differentiable anywhere. For an example, let
f: R —> Rbegiven by f(x) = 1if x isrational, and f(x) = 0 otherwise, andletg: R > R
be given by g(x) = 0if x isrational, and g(x) = 1 otherwise. Then, f and g are discontinuous
everywhere, so are certainly not differentiable anywhere. However, (f +g)(x) = 1 for all x, so
(f +9)'(x) = 0atall x, meaning (f + g)is C*. Similarly, the differeintiability of f ° h has no
implications for the differentiability of f at h(x) or the differentiability of h at x.

1.3.3 Partial Derivatives and Differentiability

Definition 1.3.6 Let f : S = R, where S ¢ R" isan open set. Let e; denote the vector in R"
thathas a 1 in the j — th place and zeros elsewhere (j = 1,...,n). Then the j — th partial
derivative of  is said to exist at a point X if there is a number df (x)/0x; such that

Goxrte) — F0 ~ of
lim d =——(x)

t—0 t an

Among the more pleasant facts of life are the following:
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Theorem 1.3.3 Letf : S— R, where S ¢ R" is open.

1. If T is differentiable at x, then all partials 9f(x)/0x; exist atx, and
Df(x) = [0f(X)/0 Xy, ...,0F (X)/OXn]

2. If all the partials 0f (x)/0x; exist and are continuous at x, then Df(x) exists and
Df(x) = [0F(X)/0 X1, ...,0F (X)/OXy]

3. fisC'on Sif and only if all partial derivatives of f exist and are continuous on S.

Proof. See Rudin (1976, Theorem 9.21, p219). n

Thus, to check if f is C 1, you only need figure out if (a) the partial derivatives exist on S,
and (b) if they are all continuous on S. On the other hand, the requirement that the partials not
only exist but be continuous at x is very important for the coincidence of the vector of partials
with DT (x). In the absence of this condition, all partials could exist at some point without the
function itself being differentiable at that point. Consider the following example:

Example 1.3.4 Let f : R2 — R be given by f(0,0) = 0, and for (x, y) = (0, 0)
f
xy) = _ZQ/_Z'
X2 +y

You will show that f has all partial derivatives everywhere (including at (0, 0)), but that these
partials are not continuous at (0, 0). Then you have to show that f is differentiable at (0, 0).

= Solution. Since f(x, 0) = 0for any x = 0, it isimmediate that for all x = 0,

of 9 - f(x0) X
—(x,0) = lim —~ =lim-——
ay §—0 y 90 XZTFy?

Similarly, at all points of the form (0, y) for y = 0, you have f (0, y)/ox = 1. However, note

that of f f
25 (0:0) = lim %0 = T0.0_ ;,0=0_

x—0 X x>0 X
so df (0, 0)/0 x exists at (0, 0), but is not the limit of 6 (0, y)/d x asy — 0. Similarly, you also
have df(0,0)/o0y = 0=1= IL@Oaf(x, 0)/9y.

Suppose T were differentiable at (0, 0). Then, the derivatives Df (0, 0) must conicide with
the vector of partials at (0, 0) so you must have Df (0, 0) = (0, 0). However, from the definition
of the derivative, you must also have

i f(x,y) - 1(0,0) — Df(0,0)- (xy) _
()00 Xy = 0.0 B
but this is impossible if Df (0, 0) = 0. To see this, take any point (X, y) of the form (a, a) for
some a > 0, and note that every neighbourhood of (0, O) contains at least one such point. Since

f(0,0) =0,Df(0,0) = (0,0),and (x,y) = x2+y?, it follows that
f(a,a) - f(0,0)— Df(0,0)-(a,a) a2 1
(a,a) — (0,0) T 2a2 2

1
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so the limit of this fraction asa — 0 cannot be zero. v

Intuitively, the feature that drives this example is that in looking at the partial derivative of
T with respect to (say) x at a point (X, y), you are moving along only the line through (X, y)
parallel to the x-axis (see the line denoted |, in Figure 1.2). Similarly, the partial with derivative
with respect to y involves holding the x variable fixed, and moving only on the line through
(X, y) parallel to the y-axis (see the line denoted I, in Figure 1.2). On the other hand, in looking
at the derivative DT, both the x and y variables are allowed to vary simultaneously (for instance,
along the dotted curve in Figure 1.2).

Lastly, it is worth stressing that although a function must be continuous in order to be dif-
ferentiable (this is easy to see from the definitions), there is no implication in the other direction
whatsoever. Extreme examples exist of functions which are continuous on all of R, but fail to be
differentiable at even a single point. Such functions are by no means pathological; they play, for
instance, a central role in the study of Brownian motion in probability theory (with probability
one, a Brownian motion path is everywhere continuous and nowhere differentiable).

Y

Figure 1.2: Partial Derivatives and Differentiability

1.3.4 Directional Derivatives and Differentiability

Letf : S— R,where S ¢ R"isopen. Let x beany point in S, andlet h € R". The directional
derivative of f at x in the direction h is defined as \

: f(x+th) — f

im X Fth) (%)

t—=0+ t
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when this limit exists, and is denoted DT (x; h). (The notation t — O+ is shorthand for t > O,
t—0)
When the condition t — 0+ is replaced with t — 0, you obtain what is sometimes called

the “two-sided directional derivative.” Observe that partial derivatives are a special case of two-
sided directional derivatives: when h = g; for some i, the two-sided directional derivative at X
is precisely the partial derivative of (x)/9X;.

In the privious subsection, it was pointed out that the existence of all partial derivatives at
a point x is not sufficient to ensure that T is differentiable at x. It is actually true that no even
the existence of all two-sided directional derivatives at x implies that T is differentiable at x.
However, the following relationship in the reverse direction is easy to show.

Theorem 1.3.4 Suppose f is differentiable at x € S. Then, for any h € R", the (one-sided)
directional derivative Df(x; h) of f at x in the direction h exists, and, in fact, you have
Df(x; h) = Df(x) - h.

An immediate corollary is
Corollary 1.3.2 If DT (x) exists, then Df (x; h) = — Df (x; —
h).

Remark 1.3.2 What is the relationship between Df (x) and the two-sided directional deriva-
tive of f at x in an arbitrary direction h?

1.3.5 Higher Order Derivatives

Let f be a function from S ¢ R" to R, where S is an open set. Throughout this sub-
section, you will assume that f is differentiable on all of S, so that the derivatve Df =
[0F/0X4,...,0Fl0X,] itselfdefines a function fromS to R".

Suppose now that there is x € S such that the derivative DT is itself differentiable at x, i.e.,
such that for each i, the function df/ox; : S = R is differentiable at x. Denote the partial of
of /10 x; in the direction e; at x by 8f (x)/d x;0x;, if i = j, and 8*F (x)/d %, if i = j. Then,
you say that f is twice-differentiable at x, with second derivative D?f(x), where

of(x) ... 9*F(¥
aXlZ 3X13Xn
D?f(x) =
0%F (x) 02f(x)
0%, 0X1 ox2

Once again, you shall follow standard practice and denote D?f(x) by f"(x) whenever n = 1
(e, if S ¢ R).

If fistwice-differentiable at each x in S, you say that T is twice-differentiable on S.When
f is twice-differentiable on S, and for each i, j = 1,...,n the cross-partial 3*f/9x;dx; is a

1
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continuous function from S to R, you say that T is twice continuously differentiable on S, and
you write f is C2,

When f is C2, the second-derivative D2, which is also called the matrix of cross-partials
(or the hessian of T at x), has the following useful property:

Theorem 1.3.51f f : D — R" is a C? function, D*f is a symmetric matrix, i.e., you have

o°f o°f
aXian(X) - aXian (X)

foralli,j =1,...,nandforall x € D.

Proof. See Rudin (1976, Corollary to Theorem 9.41, p.236). ]

For an example where the symmetry of D?f fails because it fails to be continuous, seethe
Tutor Marked Assignemts(TMAS).

The condition that the partials should be continuous for D?f to be a symmetric matrix can
be weakened a little. In particular, for

o*f o*f
anan(y) - anan (y)
to hold, it suffices just that (a) the partials 6f /6 x; and df /0 x, exist everywhere on D and

(b) that one of the cross-partials 02f /9x; 9%, or 9°F /0%, Ox; exist everywhere on D and be
continuous aty.

Still higher derivatives (third, fourth, etc.) may be defined for a function f : R" = R.

The underlying idea is simple: for instance, a function is thrice-differentiable at a point x if
all the component functions of its second-derivative D?f (i.e., if all the cross-partial functions
0*f10x;0x;) are themselves differentiable at x; it is C2 if all these component functions are
continuously differentiable, etc. On the other hand, the notation becomes quite complex unless
n=1(.e, f:R—R),andyou do not have any use in this book for derivatives beyond the

second, so you will not attempt formal definitions here.

1.4 Quadratic Forms: Definite and Semidefinite Matrices

1.4.1 Quadratic Forms and Definiteness

Definition 1.4.1 A quadratic form on R" is afunction g, on R" of the form
n
ga(X) = x'Ax = aij XiX;
i,j=1
where A = (a;jj) is any symmetric n X n matrix.

Since the quadratic formga is completely specified by the matrix A, you henceforth refer to A
itself asthe quadratic form. your interestin quadratic forms arises from the fact that if f isa C?

1
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function, and z is a point in the domain of f, then the matrix of second partials D2 (z) defines
a quadratic form (this follows from Theorem 1.3.5 on the symmetry property of D?f for aC 2
function T).

Definition 1.4.2 A quadratic form A is said to be
1. positive definite if you have x'Ax > Ofor all x € R", x = 0.
2. positive semidefinite if you have xX*Ax = Oforallx € R",x =0.
3. negative definite if you have x*Ax < Oforallx € R",x =0.

4. negative semidefinite if you have x*Ax < Oforallx € R",x =0

The terms “non-negative definite” and “nonpositive definite” are often usedin place of “positive
semidefinite” and “negative semidefinite” respectively.

For instance, the quadratic formA defined by

is positive definite, since forany x = (xq, X») € R?,you have X'Ax = x2+x2, and this quantity
is positive whenever x = 0. On the other hand, consider the quadratic form

Forany x = (X1, X2) € R?, youhave x'Ax = >, so X Ax can be zero even if x = 0. (For
BTN 1360 aTy Ol hwayd R kTR A SR RSB AeDiFa SRR other hand, it is

Observe that there exist matrices A which are neither positive semidefinite nor negative
semidefinite, and that do not, therefore, fit into any of the four categories you have identified.
Such matrices are called indefinite quadratic forms. As an example of an indefinite quadratic
formA, consider

01
10
For x = (1, 1), x!Ax = 2> 0, so A is not negative semidefinite. Butfor x = (— 1, 1), x'*Ax =
— 2 < 0, so A is positive semidefinite
either.
Given a quadratic form A and any t € R, you have (tx)! A(tx) = t?x'Ax, so the quadratic

form has the same sign along lines through the origin. Thus, in particular, A is positive definite

resp. negative definite) if and only if it satisfies xX!tAx > 0 (resp. x!Ax < 0) for all x in
the unit sphere C = {u € R"| u = 1}. You will use this observation to show that if A is a

positive definite (or negative definite) n X n matrix, sois any other quadratic form B which is
sufficiently closeto A.

A=
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Theorem 1.4.1 Let A be a positive definite n X n matrix. Then there is y > 0 such that if B
is any symmetric n X n matrixwith |bjx — ajx| < y forall j,k € {1,...,n},then B is also
positive definite. A similar statement holds for negative definite matrices A.

Proof. You will make use of the Weierstrass Theorem, which will be proved later. The
Weierstrass Theorem states that if K ¢ R"is compact, and f : K — R is a continuous function,

then f has both maximum and minimum on K, i.e., there exist points k' and k* in K such that
f(k) > f(k) = f(k* )foralke K.

Now, the unit sphere C is clearly compact, and the quadratic form A is continuous on this
set. Therefore, by the Weierstrass Theorem, there is z € C such that for any x € C, you have

7'Az < x'Ax.

If A ispositive definite, then z't Az must be strictly positive, so there must exists > 0 such that
xtAx = >O0forallx € C.

Definey = /2n? > 0. Let B be any symmetric nXxn matrix, which is such that [bjx — ajk| <
yforall j,k =1,...,n. Thenforany x € C,

X'(B — A)x| = (bjx = &KX %

Jk=1

n
< i = ajucl ;||

Jk=1

L.
< v Tken Xl

< yn?= /2.
Therefore, for any x € C,
X'Bx =x'Ax+ x'(B—-— Ax > — /2=
/2
so B is positive definite, and the desired result is establised. ]

A particular implication of this result, which you will use in the study of unconstrained
optimization problems, is the following:

(arallaie detetsaiRduhndineion SHeh ek AR AR EOB (R #)Pastig Sefinie

a positive definite matrix. A similar statement holds if D?f(x) is instead, a negative definite
matrix.

Finally, it is important to point out that Theorem 1.4.1 is no longer true if “positive definite”
is replaced with “positive semidefinite.” Consider, as a counter example, the matrix A defined

by
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10
00

You have seen above that A is positive semidefinite (but not positive definite). Pick any y > O.
Then, for = y/2, the matrix

A =

satisfies |aij — bij| < y forall i, j. However, B is not positive semidefinite: for x = (x1, x2), you
have x'Bx = x% — %, and this quantity can be negative (for instance, if x, = O and x, = 0).
Thus, there is no neighbourhood of A such that all quadratic forms in that neighbourhood are
also positive semidefinite.

1.4.2 Identifying Definiteness and Semidefiniteness

From a practical standpoint, it is of interest to ask: what restrictions on the structure of A
are imposed by the requirement that A be a positive (or negative) definite quadratic from? The
answers to this questions is provided in this section. These results are, in fact, equivalence state-
ments; that is, quadratic forms possess the required definiteness or semidefiniteness property if
and only if they meet the condition outlined.

The first result deals with positive and negative definiteness. Given an n X n symmetric
matrix A, let A, denote the k X k submatrix of A that is obtained when only the first k rows and

columns are retained, i.e., let

di;p 't Agk
Ak =
Ak1 "' Akk

You will refer to A¢ asthe k-th natural ordered principal minor of A.

Theorem 1.4.2 An n X n symmetric matrix A is

1. negative definite if and only if (— 1)%|A¢| > Oforallk € {1,...,n}.

2. positive definite if and only if |A | > Oforallk € {1,...,n}.

Moreover, a positive semidefinite quadratic form A is positive definite if and only if |A| = 0,
while a negative semidefinite quadratic form is negative definite if and only if |A| = 0.

Proof. See Debreu (1952, Theorem 2, p.296). [ ]

A natural conjecture is that this theorem would continue to hold if the words “negative defi-
nite” and “positive definite” were replaced with “negative semidefinite” and “positive semidef-
inite,” respectively, provided the strict inequalities were replaced with weak ones. This conjec-
ture is false. Consider the following example.
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Example 1.4.1 Let
00 0O O

A= g 1 and B = 0 —1

Then, A and B are both symmetric matrices. Moreover, |A1| = |A;| = |B1| = |[By| = 0,
RO SLHUCEY Sop ey G BBHif AR R YOV RRTRING RS APTPesitike2 SRINGefinitenessy
it BX = — x,. Therefore, A is positive semidefinite butnot negative seimidefinite, whileB is
negative semidefinite, but not positive semidefinite.

Roughly speaking, the feature driving this counterexample is that, in both the matrices A
and B, the zero entries in all but the (2, 2)-place of the matrix make the determinants of order
1 and 2 both zero. In particular, no play is given to the sign of the entry in the (2, 2)-place,
which is positive in one case, and negative in the other. On the other hand, an examination
of the expression x' Ax and x'B x reveals that in both cases, the sign of the quadratic form is
determined precisely by the sign of the (2, 2)-entry.

This problem points to the need to expand the set of submatrices that you are considering, if
you are to obtain an analog of Theorem 1.4.2 for positive and negative semidefiniteness. Let an
n X n symmetric matrix A be given, and letm = (my, ..., 1m,) be a permutation of the integers
{1,...,n}. Denote by A™ the symmetric n X n matrix obtained by applying the permutation 77
to both the rows and columns of A :

Apm ' A,

Aram ' Qmnmn

Fork € {1,...,n}, let A7 denote the k X k symmetric submatrix of A” obtained by retaining
onlythe first k rows and columns:

Qrm 't Amm,
m —
T =
Amem ' Amemk
Finally, let I denote the set of all possible permutations of {1,...,n}

Theorem 1.4.3 A symmetric n X n matrix A is

1. positive semidefinite if and only if |A’L| > Oforallk € {1,...,n}andforall me I.

2. negative semidefinite if and only if (— 1)"\,6?("\ > Oforallk € {1,...,n}andfor all
me I

Proof. See Debreu (1952, Theorem 7, p298). |
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One final remark is important. The symmetry assumptions is crucial to the validity of these
results. If it fails, a matrix A might pass all the tests for (say) positive semidefiniteness without
actually being positive semidefinite. Here are two examples:

Example 1.4.2 Let
1 -3
0 1
Note that |A;|] = 1, and |A,| = (1)(1) — (— 3)(0) = 1, so A passes the test for positive

definiteness. Howevey, A is nota symmetric matrix, and is not, in fact, positive definite: you

have X'AX = X L+ x22 — 3xyxz which is negative for x = (1, 1)

A =

Example 1.4.3 Let
01
00

There are only two possible permutations of the set {1, 2}, namely, {1,2} itself, and {2, 1}.
This gives rise to four different submatrices, whose determinants you have to consider:

A =

adjp A and ;1 ap

a ) a 1 )
[a11], [a2] a1 A Ay, A

You can easily check that the determinants of all four of these are non-negative, so A passes the
test for positive semidefiniteness. However, A is not positive semidefinite: you have x' Ax =
X1 X2, Which could be positive or negative.

1.5 Some Important Results

This section brings together some results of importance for the study of optimization theory.
These are, the separation theorems for convex sets in R", consequences of assuming continu-
ity and/or differentiability of real-valued functions defined on R" and two fundamental results
known asthe Inverse Function Theorem and the Implicit Function Theorem.

1.5.1 Separation Theorems

Letp=0beavector inR", and leta € R. The set H defined by

H={xe R"p:x=a}

is called a hyperplane in R", and will be denoted H(p, a).

A hyperplane in R?, for example, is simply a straight line: if p € R2anda € R, the
hyperplane H (p, a) is simply the set of points (X1, X,) that satisfy p;x; + poX, = a. Similary, a
hyperplane in R® is a plane.

A set D in R" is said to be bounded by a hyperplane H (p, a) if D lies entirely on one side
of H(p, a), i.e., if either
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p-x< a, forall xe D

or
p-x= a, forall xe D

If D is bounded by H(p,a) and D n H(p,a) = @, then H(p, a) is said to bea
supporting hyperplane for D.

Example 1.5.1 LetD = {(x,y) € R?|xy = 1}. Letpbe the vector (1,1), and leta = 2. Then
the hyperplane ,
H(p.a) = {(x,y) € Rilx+y =2}

bounds D :if xy = 1and x,y = O,thenyoumust have (x +y) = (x +x 1) > 2.

In fact,
H(p, &) is asupporting hyperplane for D since H(p, a) and D have the point (x, y) = (1, 1) in
common.

Two sets D and E in R" are said to be separated by the hyperplane H(p,a) in R" if D and
E lie on opposite sides of H(p, a), i.e., if you have

pry< a, forallye D
p-z= a, foral ye D

If D and E are separated by H(p, a) and one of the sets (say, E) consists of just a single point X,
you will indulge in a slight abuse of terminology and say that H(p, a) separates the set D and
the point x.

a sefiinAl gefinioRiis RAWFSE PaLATGR YWY (RIRTE D DR ThESRHER QHiBHS siegHl Ubs G Ve

containing X, i.e., if
AX)={Yc R"|Xc Y}

then N
X = Y.
Ye A(X)
Intuitively, the closure of X is the “smallest” closed set that contains X . Since the arbitrary
intersection of closed sets is closed, X  is closed for any set X . Note that X " = X if and only
if X isitselfclosed.

The following results deal with the separation of convex sets by hyperplanes. They play a
significant role in the study of inequality-constrained optimization problems under convexity
restriction.

Theorem 1.5.1 Let D be anonempty convex setin R", and letx* be apoint in R" that is not in
D. Then, there is a hyperplane H(p, a) in R" with p = 0 which separates D and x* . You may, if
you desire choose ptoalso satisfy p = 1.

Proof. See Sundaram (1999, Theorem 1.67, p56) |
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Theorem 1.5.2 LetD and E be convex sets in R" such thatD n £ = @ . Then, there exists a
hyperplane H(p, @) in R" which separates D and E. You may, if you desire, choose p to also

satisfy p = 1.
Proof. LetF = D + (- E), where, in obvious notation, — E is the set
{ye R|— ye E
>

Since D and E are convex sets, F is also convex. You can claimthat 0 € F. Forif youhad

0 € F,thenthere would exist points x € D andy € E suchthat x — y = 0. But this implies
X=y,s0Xx € Dn E,which contradicts the assumption that D n E is empty. Therefore, 0 € F

By 1.5.1, there exists p € R" such that

p-0< p-z, z€e F.

This is the same thing as
pry< px, xe D, ye E

It followsthat supp 'y < ing p-x Ifae {sup.p-y, infiepp-x} the hyperplane H(p, a)
ye E Xe

separates D and E.
That p can also be chosen to satisfy p = 1 isestablished inthe same way asin1.5.1 m

1.5.2 Thelntermediate and Mean Value Theorems

The Intermediate Value Theorem asserts that a continuous real function on an interval assumes
all intermediate values on the interval. Figure 1.3 illustrates the result.

Fheogem a3 Angrmedten B NRORE) et 0y~ alR i BS2R I RhERRRRGHSL
f(a) < ¢ < f(b), then there exists x € (a, b) such that f(X) = c. A similar statement holds if
f(a) > f(b).

Proof. See Rudin (1976, Theorem 4.23, p.93). [ ]

Remark 1.5.1 It might appear at first glance that the intermediate value property actually char-

acterizes continuous functions is and only if for any two points x; < X, and for any real number
¢ lying between f(x1) and f(x.), there is x € (x1, X2) such that f(x) = c. The Intermediate
Value Theorem shows that the “only if ” part is true. You can show that the converse, namely

the “if part, is actually false.

You have seen in Example 1.3.3 that a function may be differentiable everywhere, but may
fail to be continuously differentiable. The following result (which may be regarded as an In-
termediate Value Theorem for the derivative) states, however, that the derivative must still have
some minimal continuity properties, viz., that the derivative must assume all intermediate val-
ues. In particular, it shows thatthe derivative f' of an everywhere differentiable function f

2
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cannot have jump discontinuities.
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f(c) /
f(b)

f(a)

Figure 1.3: The Intermediate Value Theorem

H'E"S e (131enRdha's HRUAoRGAD dfe BRaRBMe AERIIRLE on B RIPEEY DIPR!
and if ¢ is a real number such that f'(a) < ¢ < f'(b), then there is a point x € (a, b) such that
f'(x) = c. Asimilar statement holds if f/(a) > '(b).

Proof. See Rudin (1976, Theorem 5.12, p.108) [ ]

It is very important to emphasize that Theorem 1.5.4 does not assume that f isa C* func-
tion. Indeed, if £ were C?, the result would be a trivial consequence of the Intermediate Value
Theorem, since the derivative ' would then be a continuous function on D.

The next result, the Mean Value Theorem, provides another property that the derivative must
satisfy. A graphical representation of thisresult is provided in Figure 1.4. As with theorem
1.5.4, it isassumed only that T is everywhere differentiable on its domain D, and not that it is
chL

Theorem 1.5.5 (Mean Value Theorem) Let D = [a, b] beaninterval inR, andletf : D > R
be a continuous function. Suppose T is differentiable on (a, b). Then there exists x € (a, b) such
that

f(b) — f(a) = (b — a)f' (x).

Proof. See Rudin (1976, Theorem 5.10, p.108) |
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slope=f '(x)
L &

f(b)—f(a)
b—a

slope=

\J

Figure 1.4: The Mean Value Theorem

The following generalizatioin of the Mean Value Theorem is known as the Taylor’s Theo-
rem. It may be regarded as showing that a many-times differentiable function can be approx-
imated by a polynomial. The notation f ®(z) is used in the statement of Taylor’s Theorem
to denote the k-th derivative of f evaluated at the point z. When k = 0. f ®(x) should be
interpreted simply as f(x).

Theorem 1.5.6 Taylors Theorem Letf : D — R be a C™ function, where D is an open
interval in R, and m > 0 is a non-negative integer. Suppose also that  (M* (z) exists for every
point z € D. Then, forany x,y € D, thereisz € (X, y) such that

" (f(k)(x)(y — x)k\ F(m+)(Z)(y — x)n+1
f(y) = s + ,
. (m + 1)!
Proof. See Rudin (1976, Theorem 5.15, p.110) [ ]

Each of the results you have stated in this subsection, with the obvious exception of the
Intermediate Value Theorem for the Derivative, also has an n-dimensional version. These ver-
sions you will state here, deriving their proofs as consequences of the corresponding result in
R.

Theorem 1.5.7 (The Intermediate Value Theorem in R") Let D ¢ R" be a convex set, and let
f : D — R be continuous on D. Suppose that a and b are points in D such that f (@) < f (b).
Then for any c such that f(a) < ¢ < f(b), there isA e (0,1) suchthat f((1 — A)a + Ab) =cC.
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Proof. You could derive this result as a consequence of the intermediate Value Theorem in
R.Letg: [0,1] = R bedefined by g(A) = f((1 — A)a+A4Ab),A € [0, 1]. Since f is acontinuous
function, g is evidently continuuous on [0, 1]. Moreover, g(0) = f(a) and g(1) = f(b), so
g(0) < ¢ < g(1). By the Intermediate Value Theorem in R, there exists A€ (0,1) such that
g(A) = c. Since g(A) = f((1 — A)a + Ab), you are done with the proof. ]

An n-dimensional version of the Mean Value Theorem is similarly established:

Theorem 1.5.8 (The Mean Value Theorem in R") Let D c R" be open and convex, and let
f S — R be a function that is differentiable everywhere on D. Then, for any a, b € D, there
isA € (0,1) such that
f(b) — f(a) = DF((L — A)a+Ab)- (b —
a).

Proof. For notational ease, let z(A) = (1 — A)a + Ab. Define g : [0,1] = R by
g(A) = T (z(A)) for A € [0, 1]. Note that g(0) = f (a) and g(1) = f (b). Since T is every-
where differentiable by hypothesis, it follows that g is differentiable at all A € [0, 1], and in

fact, g'(A) = Df (z(A)) - (b — a). By the Mean Value Theorem for functions of one variable,
therefore, there is A' € (0, 1) such that

9(1) — 9(0) =g'(A)(L = 0)=g'(A).

Substituting for g in terms of f, this is precisely the statement that f
(b) — f(a) =DFf(z(A)) - (b — a).

You have proved the theorem. [ ]

Finally, is the Taylor's Theorem in R". A complete statement of this result requires some
new notation, and is also irrelevant for the remainder of this book. So you are confined to stating
two special cases that are useful for your purposes.

Theorem 1.5.9 (Taylors Theorem in R") Let f : D — R, where D is an open setin R". If f
isC!on D, then it is the case that for any x,y € D, you have

f(y) =f(x) + DF()(y — %) + Ru(x,y),

where the remainder term R1(X, y) has the property that

C \
y—=X X—Yy

=0.

If f is C?, this statement can be strengthened to

f(y) =f(x) + DF(X)(y — x) +12(y = XDy — X+ (X Y).
R,

where the remainder term Ry(X, y) has the property that
C lim

y—=Xx
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Proof. Fixany x € D, and define the function F(-) on D by

F(y) =f(x) +Df(x) - (y — x).
Let h(y) = f(y) — F(y). Since f and F are C1, so is h. Note that h(x) = Dh(x) = 0. The
first-part of the theorem will be proved if you show that
_hy) 0asYy—7X
y — X
or, equivalently, if you show that for any > 0, there is ¢ > 0O such that
y— x <90 implies |h(y)|< x— vy .

So let > Obe given. By the continuity of h and Dh, there isd > O such that
ly — x| <0 implies|h(y)| < and Dh(y) < .

Fix any y satisfying |y — x| < 0. Define afunction gon [0, 1] by

g(t) = h[(1 — t)x + ty].
Then g(0) = h(x) = 0. Moreover, gis C* with g'(t) = Dh[(1 — t)x + ty](y — X).

Now note that [(1 — t)x + ty — x| = t|j(y — x)| < dforallt € [0, 1], since |x — |
< 6. Therefore, Dh[(1 — t)x + ty] < forallt € [0, 1], and it follows that [g'(t)] < vy
— xforallt € [0,1].

By Taylor’s Theorem in R, there ist* € (0, 1) suchthat

g(1) =g(0)+g'(t )1 - 0) =¢'(t

*

).

Therefore, -
lh(W) =lg@[=1lg' @ ) =< ly— x|

Since y was an arbitrary point satisfying |y — x| < 9, the first part of the theorem is proved.
You can establish the second part analogously. ]

1.5.3 Thelnverse and Implicit Function Theorems

Here, you will state two results of much importance especially for “comparative statics” exer-
cises. The second of these results (The Implicit Function Theorem) also plays a central role in
proving Lagrange’s Theorem on the first-order conditions for equality-constrained optimization
problems. Some new terminology is, unfortunately, required first.

Given a function ¥ : A — B, you will say that the function f maps A onto B, if for every
b € B, thereis some a € A suchthatf (a) = b. You will say that f is a one-to-one function if
forany b € B, thereis atmostonea € A suchthatf (a) = b.If f : A — B is both one-to-one
and onto, then it is easy to see that there is a (unique) function g : B — A such that  (g(b)) = b
forallb € B. (Note that you also have g(f(a))Z: aforalla e A.) The function gis called the
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inverse function of f.
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Theorem 1.5.10 (Inverse Function Theorem) Let f : S — R" be a C! function, where S ¢
R" is open. Suppose there is a pointy € S such thatn x n matrix Df(y) is invertible. Let
x = f(y). Then:

1. There are open setsU and V in R" such thatx € U,y € V,f is one-to-one onV, and
f(v) =U.

2. The inverse function g : U — V of f isC? function on U, whose derivative at any point
X € U satisfies

Dg(x) = (Df(9))™*, where f(J) = X

Proof. See Rudin (1976, Theorem 9.24, p.221). ]

Turning to the Implicit Function Theorem, the question this result addresses may be moti-
vated by a'simple example. Let S = R? ,andletf : S — R be defined by f(x, y) = xy. Pick

any point(X,y) € S,and consider the “level set”
C(x,y)={(x,y) € SIf(xy)="F(x,y)}
If you now define the function h : R.+ = R byh(y) = f(X, y)/y, you have
f(h(y),y) = f(x,y)m y € Ri..

Thus, the values of the x-variable on the level set C (X, y) can be represented explicitly in terms
of the values of the y-variable on this set, through the function h.

In general, an exact form for the original function f may not be specified-for instance, you
may only know that f is an increasing C * function on R?-so you may not be able to solve for
h explicitly. The question arises whether at least an implicit representation of the function h
would exist in such a case.

sets ERAMIRIGAE FURGHATS Theokem gligies HlRiQDISTR 1908 GERETBhSRIIAG vl 'St ilolaks at

the variable in the domain can be represented in terms of the others, on a given level set. Under
very general conditions, it proves that at least a localrepresentatioin is possible.

The statement of the theorem requires a little more notation. Given integersm > 1 and
n > 1, let atypical pointin R™" be denoted by (x, y), where x € RM™andy € R". For
a
C* function F mapping some subset of R™" into R", let DFy (X, y) denote that portion of the
derivative matrix DF (X, y) corresponding to the last n variables. Note that DF, (X, y) is an
n X n matrix. DF«(X, y) is defined similarly.

Theorem 1.5.11 Implicit Function Theorem LetF : S ¢ R™" — R" be a C ! function,

where S is open. Let (X* , y* ) be a point in S such that DF%(X* , Y* ) is invertible,
and let F (x* , y* ) = c. Then, there is a neighbourhood U ¢ R™ of x* and a C ! function
U

g:
— R"such that (i) (x, g(x)) € Sforall x € U, (i) g(x* ) = y* , and (iii) F (X, g(x)) = ¢
for

all x € U. The derivative ofg atany x € U may be obtained from the chain rule:

Dg(x) = (DFy (x, ¥))™ *  DFx(X, ¥)

Proof. See Rudin (1976, Theorem 9.28, p.%24) [ ]
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1.6 Conclusion

In this unit, you have considered some basic concepts as regards to function in R", namely,
continuity, differentiable and continuous differentiable functions, Partial derivatives and Differ-
entiability, Directional Derivative and Differentiability and Higher Order Derivatives. You also
considered Quadratic forms, definite and semidefinite matrices ans some useful results, namely
Separation Theorems, The intermediate and Mean value theorem and the inverse and implicit
function theorems . All these are great tools which you will use in optimization theory in R".

1.7 Summary

Having read through this unit, you are able to

(i) Define Continuous functions, differentiable and continuous differentiable functions, Par-
tial derivatives and Differentiability, Directional derivatives and Differentiability and Higher
Order Derivatives.

(i) Define Quadratic forms and definiteness.
(i) Identity Definiteness and Semidefiniteness.

(iv) State and Use the Separation Theorems, the Intermediate and Mean Value Theorems, and
the Inverse and Implicit Function theorems.

1.8 Tutor Marked Assignments

Exercise 1.8.1

1. Letf : R" = R becontinuous ata pointp € R". Assume f(p) > 0. Which of the
following statements is correct?

(a) ForallopenballB ¢ R"suchthatp e B, andforall x € B, you have f(x) > 0.

(b) There is anopen ball B ¢ R" such thatp € B, and for all x € B, you have

f(x) > 0.

(c) Forall open ball B ¢ R" such thatp € B, and there exists x € B, for which
f(x) <O.

(d) There is anopen ball B ¢ R" such thatp € B, and for all x € B, you have
f(x) <O.

2. Suppose f : R" = Riscontinuous function. Then the set

{xe R"|f(x) =0}
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(a) aclosed set
(b) an open set
(c) both open and closed
(d) none of the above.
3. Letf : R = R be defined by

1 f0< x< 1
f(x) =
0 otherwise.

Find an open set O such that f~ 1(O) is not open and find a closed set C such that f = 1(C)
is not closed.

4. Give an example of afunction ¥ : R — R which is continuous at exactly two points (say,
at 0 and 1), or show that no such function can exists.

5. Show that it is possible for two function f : R = R and g : R = R to be continuous, but
for their product T - g to be continuous. What about their composition f ¢ g?

6. Letf : R = R be afunction which satisfies

f(x +y) = f(x)f(y) forall x,y € R.

Show thatif f is continuous at x = 0, then it is continuous at every point of R. Also show
that if ¥ vanishes at a single point of R, then f vanishes at every point of R.

7. Letf : Ry = R be defined by

f(x) =
xsin(1/x), x=0

Show that f is continuous at 0.
8. Let D be the unitsquare [0, 1] X [0, 1] in R2. For (s,t) € D, letf(s,t) be defined by

f(s,0) =0, forall s e [0,1],

and fort > 0,
2s t
= SE O,_2
(t
fst)= ,_25 se -t
t 2
0 se (t 1]
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10.

11.

12.

13.

(Drawing a picture of T for afixed t will help). Show that f is a separately continuous
function, i.e., for each fixed value of t, T is continuous as a function of s, and for each
fixed value of s, T is continuous in t. Show also that f is not jointly continuous in s and
t, i.e., show that there exists a point (s, t) € D and a sequence (s, t,) in D converging
to (s, t) such that lim,— f(sp, tn) = f(s, t).

. Letf : R = R be defined as

X If x isirrational
f(x) =
1— x if xisrational

At what point X € R is f continuous?

@x=0
by x=1
(©) x=13

(d) X=X, % € R

Letf : R" > Rand g : R = R be continuous functions. Define h : R = R by

h(x) = g[f (x)]. Show that h is continuous. Is it possible for h to be continuous even if f
and g are not?

Show that if afunction ¥ : R = R satisfies
[f(x) — f(y)| < M(|x -
y)?

E‘ﬁrljé%esgﬁ%dr@ﬂl R dn szt kthend is a constant function, i.e., f(x) isidentically
Letf : R2— R be defined by f(0,0) = 0, and for (x, y) = (0, 0),

fxy) = —F__

XZFy?
Show that the two-sided directional derivative of f evaluated at (x, y) = (0, 0) exists in
all directions h € R?, but that f is not differentiable at (0, 0).
Letf : R2— R be defined by f(0,0) = 0 and for (x, y) = (0, 0)

X2 _ 2
f(X’ y) :Xy)((Z + y2y ).

Show that the cross-partials 92F (x, y)/dxady and > (x, y)/dyax exist atall (x, y) € R?,
but that these partials are not continuous at (0, 0). Show also that

2f  of
axay(o' 0)= dyox
2

(0, 0).
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14. Show that an n X n symmetric matrix A is apositive definite matrix if and onlyif — Aisa
negative definite matrix. (— A referes to the matrix whose (i, j)-th entry is — a;j.)

15. Prove the foIIowmg statements or provide a counterexample to show it is false: If A isa
positive definite matrix, then A~ * Is a negative definite matrix.

16. Give an example of matrices A and B which are each negative semidefinite but not nega-
tive definite, and which are suchthat A + B is negative definite.

17. Is it possible for a symmetric matrix A to be simultaneously negative semidefinite and
positive semidefinite? If yes, give an example. If not, provide a proof.

18. Examine the definiteness or semidefiniteness of the following quadratic forms:

001 123
A= 010 A= 2 46
100 360
101 -1 2 -1
A= 010 A= 2 —4 2
101 -1 2 -1

19. Find the hessians D2f of each of the following functions. Evaluate the hessians at the
specified points, and examine if the hessian is positive definite, negative definite, positive
semidefinite, negative semidefinite, or indefinite.

(@) f:RZ7R, f(x) =x° + / %, at x = (1,1)

(b) F:R?—=R, f(X) = (Xyx)'/?, at an arbitrary point x € R2,

(c) f:R2—>R, f(X) = (X1%2)?, atan arbitrary point x € R? .
d)fFRSRF(X) =" %+ X +g X, AX=(2,2,2)
e)f:RE—=>R,f(x) = / Xp¥o¥s, at X = (2, 2, 2).

() F: R SR, f(X) = XX + XoX3 + XXy, at x = (1,1,1).

(@) f:R® =R, f(x) = ax,+bx,+cxs for some constants a, b,c € R, atx = (2,2,2).
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UNIT 2

OPTIMIZATION IN RN

2.1 Introduction

This unit constitutes the starting point of your investigation into optimization theory. You will
first be introduced to the notation that you will use to represent abstract optimization problems
and their solutions and afterwards, address the chief question of interest that will be examined
over the book.

2.2 Objectives

At the end of this unit, you should be able to;

(i) Define an optimization problem.

(i) Give the two types of optimization problems.
(i) identify a set of conditions on f and D under which the existence of solutions of opti-

mization problems is guaranteed.

2.3 Main Content

2.3.1 Optimization problemsin R"

RRER RN AuBso A HOSHYARHASREOPISM I fRar e YR AR 2R SH FANAR RIS Y 25088

set D ¢ R". The function f is called the objective function, and the set D the contraint set.
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Notationally, you will represent these problems by

Maximizef(x) subjectto x € D
and

Minimzef (x) subjectto x € D
respectively. Alternatively, and more compactly, you could also write

max{f(x)|x € D},
and

min{f(x)|x € D}.
Problems of the first sort are termed maximization problems and those of the second sort are
called minimization problems.

Definition 2.3.2 (Solution of an Optimization Problem) A solution to the problem max{f(x)|x €
D} is apoint x in D such that

f(x) > f(y) forall ye D
You will say that f attains a maximum on D at X, and also refer to x as a maximizer of f on D.

Similarly, a solution to the problem min{f (x)|x € D} isapoint z in D such that

f(z) < f(y) forall ye D.

You will say in this case that f attains a minimum on D at z, and also refer to z as a minimizer
of f on D.

Definition 2.3.3 (Set of Attainable Values) The set of attainable values of f on D, denoted
(D), is defined by

f(D) ={w € R] thereis x € D suchthat f(x) = w}.

You will also refer to f (D) as the image of D under . Observe that f attains a maximum on D
(at some x) if and only if the set of real numbers f (D) has a well defined maximum, while f
attains a minimum on D (at some z) if and only if f(D) has a well-defined minimum. (This is

simply arestatement of the definitions).

The following simple examples reveal two important points: first, that in a given maximiza-
tion problem, a solution may fail to exist (that is, the problem may have no solution at all),
and secondly, that even if a solution does exist, it need not necessarily be unique (that is, there
could exist more than one solution). Similar statements obviously also hold for minimization
problems.
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Example 2.3.1 LetD = R, and f(x) = xfor x € D. Then, f(D) = R, and sup f(D) =
+00, so the problem max{f(x)|x € D} hasno solution.

Example 2.3.2 Let D = [0,1] and let f (X) = x(1 — x) for x € D. Then, the problem of
maximizing ¥ on D hasexactly one solution, namely the point x = 1/2.

Example 2.3.3 LetD =[- 1,1]and f(x) = x? for x € D. The problem of maximizing f on

D now has two solutions: x = — 1 and x = 1.

Thus in the sequel, you will not talk of the solution of a given optimization problem, but
of a set of solutions of the problem, with the understanding that this set could, in general, be
empty. The set of all maximizers of f on D will be denoted arg max{f(x)|x € D} :

argmax{f(x)|x € D} ={xe€ D|f(x) = f(y) forall y
€
D}.

The set, arg min{f (x)|x € D} of minimizers of f on D is defined analogously. This section

shall be closed with two elementary, butimportant, observations, which is stated in form of
theorems for ease of future reference. The first shows that every maximization problem may be
represented as a minimzation problem, and vice versa. The second identifies a transformation
of the optimization problem under which the solution set remains unaffected.

Theorem 2.3.1 Let — T denote the function whose value at any x is — T (X). Then x is a maxi
mum of £ on D if and only if x is a minimum of — f on D and z is a minimizer of f on D if and
only if z is maximum of — f on D.

Proof. The point x maximizes f over D if and only if f (x) = f (y) forally € D, while
X minimizes — f overD if andonly if — f (X) < — f (y)forally € D.Sincef (x) > f
(y)isthe sameas — f (X) < — T (y), the first part of the theorem is proved. The second
part of the theorem follows fromthe first simply by noting that — (= f) = f. -

Theorem 2.3.2 Let ¢ : R = R be astrictly increasing function, that is, a function such that

x >y implies ¢(x) > ¢(y).

Then x isamaximum of f on D if and only if X is also a maximum of the composition ¢ « ¥ on
D; and z is a minimum of f on D, if and only if z is also a minimum of ¢ ¢ f on D.

Remarkiaant AstliDye pYdeRLIIMOIE Rkl itspylhces B¢ RsraaRtyictly incrgaghyo finc-

Z1 > 2Zo.

B4 dedu cRML&S, UPAUBR VSRS e (pRYENERLOMhaP P RIBM IS NGV MBRNO N PIPRET IS
Then f (X) = f (y), and since ¢ is strictly increasing, ¢(f (X)) = ¢(f (y)). Sincey € D
was arbitrary, this inequality holds for all y € D, which states precisely that x is a maximum of ¢
*fonD.

Now suppose that x maximizes ¢ * f on D, so ¢(f (X)) = ¢(f (y)) forally € D. If x did
34
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not also maximize £ on D, there would exist y* € D suchthat ¥ (y* ) > f (x). Since ¢
IS
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d
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strictly increasing function, it followsthat ¢(f(y* )) > ¢(f(x)), so x does not maximize ¢ « f
over D, a contradiction, completing the proof. ]

2.3.2 Types of Optimization problem

In general, There are two types of optimization problem, namely;

1. Unconstrained Optimization problem and

2. Constrained optimization problem.

Unconstrained Optimization problem.

An Optimization problem is called unconstrained if it is of the form

i 109
or
min(or max) f(x)
Subject to: xe D
where X = (X1,...,%) € R", f:D c R"—R,andD isanopen setin R"

Constrained Optimization Problem
An optimization problemis called constrained if it is of the form
min(or max) f(x)
Subject to: g(x)= 0 i=1,...,m
hix) =0, i=1,...,I

xe D

where f : D ¢ R" — Riscalled the Objective function, g,...,9m,h1,...,h: D c R"—>R
are the constraint functions.

Letg = (g1,...,9m) : R™ = R™ and h = (hy,...,h) : R" = R!, then you can rewrite
the constrained problem as follows
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min(or max) T(x)

Subject to: gx)= 0

h(x) = 0
xe D

A detail study of each of the above problems is seen in the next two units.

2.3.3 The Objectives of Optimization Theory

Optimization theory has two main objectives.

1. The first is to identify asetof conditions on T and D underwhich the existence of solutions
to optimization problems is guaranteed.

2. Second objective lies in obtaining a characterization of the set of optimal points. Broad
categories of questions of interest here include the following:

(a) Theidentification of conditions that every solution to an optimization problem must
satisfy, that is, of conditions that are necessary for an optimum point.

(b) The identification of conditions such that any point that meets these conditions is a
solution, that is, of conditions that are sufficient to identify a point as being optimal.

(c) The identification of conditions that ensure only a single solution exists to a given
optimization problem, that is, of condition that guarantee uniqueness of solutions.

2.4 Existence of Solutions; The Weierstrass Theorem

BB O ARSH Y RRLIIAAH IR R R D L GG BRI W B O
will always exist in optimization problems of the form max{f (x)|x € D} or min{f (x)|x €
D}? Equivalently, under what conditions on f and D is it the case that the set of attainable
values (D) contains it supremum and/or infimum?. The answer to these questions is given

in this section. You will be introduced to two main theorems that gaurantees the existence
of solution of an optimization problem. But before that, the following definitions are very
important.

Definition 2.4.1 Letf : D ¢ R" — R and let {x,} be a sequence of elements in D. {x,} is
called a minimizing sequence of f in D if

lim f(x,) = inf £(x)
n—+0o0 xe D
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Similarly {x,} would be called a maximizing sequence of f in D if
lim f(x,) = sup f(x).
n—-+00 xe D

Proposition 2.4.1 If D isanon-empty subset of R", then there exists a minimizing (resp. max-
imizing) sequence {x,} of f in D.

2.4.1 The Weierstrass Theorem

The following result, a powerful theorem credited to the mathematician Karl Weierstrass, is the
main result that answers the questions on existence.

Theorem 2.4.1 (The Weierstrass Theorem) Let D ¢ R" be compact (i.e., closed and bounded),
andlet f : D — R be a continuous function on D. Then f attains a maximum and a minimum
on D, i.e., there exists points z; and z, on D such that

f(z1) 2 f(x) = f(z), xe D
Or you can write;
f(z)) = rpéjnéf(x) and f(z) = rxrlian(x)
miz &R FrodiBf T i ALAVREIUSMMESTAN PrPRIeo FARARYS BIOPK forhe M-

mizing sequence of f in D. Since D is bounded, by Bolzano-Weierstrass theorem, {x,} has a

subsequence {Xn, } which converges to some point z; € R™. Since D is closed, you have that
z; € D. Using the continuity of f at z,, it follows that

kIim f(Xn,) = f(z1) (2.1)
On the other hand, since {f(xn, )} is asubsequence of {f(x,)}, you have
kﬂToof(X”k) = )I(Qfo(X) (2.2)

Using (2.1) and 2.2 and the uniqueness of limit, it follows that
f(z1) :XIQfo(X) = )I(‘QIBf(X)
So z; isaglobal minimum of finD. -

It is of the utmost importance to realize that the Weierstrass Theorem only provides sufficient
conditions for the existence of optima. The theorem has nothing to say about what happens if
these conditions are not met, and, indeed, in general, nothing can be said, as the following
examples illustrate.

Example 2.4.1 LetD = R, and f (x) = x®for all x € R. The f is continuous but D is
not compact (it is closed, but not bounded). Since f (D) = R, f evidently attains neither a
maximum nor a minimum on D.
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Example 2.4.2 LetD = (0,1) and f (x) = x for all x € (0, 1). Then f is continuous, but D
again noncompact (this time it is bounded, but not closed). The set f (D) is the open interval
(0, 1), so, once again, T attains neither a maximum nor a minimum on D.

Example 2.4.3 LetD = [- 1, 1], andlet f be given by

0, f x=—1lorx=1

f(x) = X, if —1l<x<1

Then D is compact but £ fails to be continuous at just the two points -1 and 1. In this case, f (D)
is the open interval (— 1, 1); consequently, f fails to attain either a maximum or a minimum on
D.

Example 2.4.4 LetD = R,,, andletf : D — R be defined by

1, if xisrational
f(x) = .
0, otherwise
Then D isnot compact (it is neither closed nor bounded), and f is discontinuous at every single

pointin R (it “chatters” back and forth between the values O and 1). Nonetheless, T attains a
maximum (at every rational number) and a minimum (at every irrational number).

To restate the point: if the conditions of the Weierstrass Theorem are met, a maximum and a
minimum are guaranteed to exist, On the other hand, if one or more of the theorem’s conditions
fails, maxima and minima may or may not exist, depending on the specific structure of the
problem in question.

Next is the second theorem of existence. But before that, here is an important definition and
some propostions that will help you to prove it.

Definition 2.4.2 Let f : R" — R be areal valued function. f is said to be coercive if

lim f(x) =+
I/xl/—>+ o0

Examples

(@) Letf(x,y) =x2 +y2= x 2.Then

2
lim f(x) = lim X =%
I/xl/—>c0 I/xl/—00
Thus f(x, y) is coercive
(b) Letf(x,y) = x* + x* — 3xy. Note that
\
fly)=0¢ +yh) 1- —2—
X4 + y4

If x islarge, then 3xy/(x* + y*) is very small. Hence
im fxy)= lim & *+y)(1— 0)=+co
(xy)l/—00 (xy)l/—00
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(c) Letf(x,y,z) = e + e’ + e — x100— y100_ 7100than hecause exponential growth is
much faster than the growth of any polynomial, it follows that

lim f(x,y,z) =o0
l(xy,z)l/— x.y.2)

Thus f(x, y, z) is coercive.
(d) Linear functions on R? ar never coercive. Such functions can be expressed as follows:
f(x,y) =ax+bhy+c

where eithera =0 orb = 0. To see that (X, y) is not coercive, simply observe f(x, y) is
constrantly equal to ¢ on the line
ax + by = 0.

Since this lineis unbounded on this line, the function (X, y) is not coercive.
(e) If f(x,y,2) =x*+y*+2z*— 3xyz — x> — y?— 7% then as

xX,y,2) = XxX2+yZ+2722—> ©

the higher degree terms dominate and force

lim f(x,y,2z) = oo.
//(x,y,Z)//ﬁoo( y )

Thus f(X, y, z) is coercive. The following example helps us avoid some misleadings.
(f) Letf(x,y) = x> — 2xy +y2. Then

(i) for eachfixed yo, you have |Iim f(xy) = .

X|—>00

(ii) for eachfixed xo, you have lim =

ly|—co

(i) but f(x, y) is not coercive.

Properties (i) and (ii) above are more or less clear because in each case the quadratic term
dominates. For example, in case (i), you have for a fixed yq.

f(x Yo) =X* = xyo+ ¥
This function of x is a parabola that opens upward. Therefore

lim f(X, yo) = oo.

|x|—>00
Toseethat f(X, y) is not coercive, factor to learn
f(xy) =x"— 2xy+y*=(x — y).

Therefore if (X, y) goesto o ontheline y = +x, you will seethat f(x, y) = (x— x)? =
0 and hence f(x, y) = 0on the unbounded liney = x. Therefore,

lim f(x,y) =
V(x.y)l/ = )

so (X, y) is not coercive.

41



2.4 Existence of Solutions: The Weierstrass Theorem UNIT 2. OPTIMIZATION IN RN
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path for which x becomes infinite.

The reason why coercive functions are important in optimization theory is seen in the next
theorem stated shortly.

Proposition 2.4.2 Let D be a nonempty close subset of R". If f is coercive and continuous on
some open set containing D, then

1. the function f is bounded below (resp. bounded above) on D.

2. any minimizing (resp. maximizing) sequence of f in D is bounded.

Proof. The proof is given for minimization problem.

1. Suppose that T is not bounded below on D. Thenfor all n € N, there exists x, € D such
that f(x,) < — n. So you get a sequence {x,} in D satisfying:

f(x,) <— n, forall ne N. (2.3)

This sequence must be bounded because of the coercivity of f, otherwise it has a subse-
quence {Xn, } such that
lim x, = +o.

k—>oo

Since T is coercive, you have

lim f(Xn) = +o0.

k—+ oo

But from (2.3), it follows that

lim f(x,) =— o

k—oo

and this is a contradiction by the uniqueness of limit. Therefore {x,} is bounded. So by
Bolzano-Weierstrass, there exists a subsequence {x,, } of {x,} that converges to some
point X € D. Using the continuity of f at X it follows that

lim f(xn,) = F().

From (2.3) you get
kIim f(Xp) =— o
Therefore, by uniqueness of the limit, it follows that
f(X) = — o,

a contradiction, so f is bounded below on D and this ends the proof of 1.
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2. Let {x,} be aminimizing sequence of f in D, thatis
lim f(x,) = inf f(x). (2.4)
n—oo xe D

You have to showthat {x,} is bounded. By contradiction assume that {x,} is not
bounded, then there exists a subsequence {x,, } of {x,} such that

. = (0.0]
lim Xne = .

k—o0

||| I = +00,
kll (Xnk)

Using (2.4), you have
kl@ f(Xn,) :Xlenfo(x).
and this leads to

X|en1z)f(x) = +00,

This is a contradiction because of the fact that f is bounded below on D.

Theorem 2.4.2 Let D be a nonempty closed subset of R" (not necessary bounded). Suppose f
is continuous on some open set containing D. Then T has a global minimum on D. That is there
exists at least one point X € D such that

f(x) = n;igf(x)

Proof. Let {x,} be a minimizing sequence of f in D. By 2.4.2, {x,} is bounded, so by
Bolzano-Weierstrass theorem {x, } has a subsequence  {x, } which converges to some
point x € R". Since D is closed you have X € D. Using the continuity of f at X, it follows that

Jim (xn,) = T(X). (2.5)

On the other hand since {f(x,, )} is asubsequence of {f(x,)}, you have

lim f(xn,) = inf £(x). (2.6)
k—+00 xe D

Using (2.5), (2.6) and the uniqueness of limit, it follows that
f(xX) = inf f(x)
xe D

So x isaglobal minimum of f in D. [ ]

2.5 Conclusion

In this unit you studied optimization in R". You looked at what a solution to an optimization
problem means and consider two main theorems that guaranteed existence of solution of an
optimization problem.
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2.6 Summary

Having gone through this unit, you now know

(i) A Typical Optimization Problem is

Minimize(or Maximize) f(x) Subjectto: x € D
where f : D ¢ R — Riscalled the objective function and D is called the constraint set.

(i) Optimization problems are of two types, namely Constrained and Unconstrained Prob-

lems. It is constrained if the constraint set D is made up of a set of inequalities and/or
equations

(iif) If for example in the problem

min( or max) f(x) subjectto x € D

that  is continuous and D is a bounded and closed subset of R", the there exist a solution
for the problem. This is the Weierstrass Existence theorem theorem.

(iv) A real valued function f : R" — R is coercive if you have

lim f(x) = +oo,
I/Xl/—+ 0

(v) If fiscontinuous and coercive on a closed set D ¢ R then there exist x € D such that
f(x) < f(x) forallx e D.

(ii) the existence theorems for solution of an optimization problem.

2.7 Tutor Marked Assignments(TMAS)

Exercise 2.7.1

1. Broy i det Quin ot AERSEA Ay PERIER) SEPHIEH XTI Tsrfrgontinuous function

2. Give an example of an optimization problem with aninfinite number of solutions.
3. Let D = [0, 1], Describe the set f (D) in each of the following cases, and identify

sup T (D) and inf f (D). In which cases does f attain its supremum? W hat about its
infimum?

(@) f(x) =1+xforallxe D

(b) f(x) =1,if x < 1/2, and f(x) = 2x otherwise.
(c) f(x) =x,if x<land f(1) = 2.
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(d) f(0) =1,f(1) =0, and f(x) =3xforx € (0,1).

4. Let D = [0, 1]. Suppose f : D — R isincreasing on D, i.e., for x,y € D if x >y, then
f(x) > f(y). [Note that f is assumed to be continuous on D.] If f (D) a compact set?
Prove your answer, or provide a counterexample.

5. Findafunction f : R = R and a collection setsSx ¢ R, k = 1,2,3,... such that f

1
attains a maximum on each Sy, but not on Sk.

n=1

6. Give an example of a function f : [0, 1] = R such that ([0, 1]) is an open set.

7. Give an example of aset D € R and a continuous function f : D — R suchthat f attains
its maximum, but not a minimum, on D.

8. LetD = [0, 1], Letf : D — R be anincreasing function on D, andletg: D = R bea
decreasing function on D. (That is, if X,y € D with x > y then f (x) > f (y) and g(x) <
g(y).) Then, f attains a minimum and a maximum on D (atO and 1, respectively), as

fgpesg (at 1 and 0, respectively). Does f + g necessarily attain a maximum and minimum

9. Identify the coercive function in the following list:

(a) On R3, let
fix,y,2) =x+y3+ 23— xy

b) On R3, let
(b) f(x,y,2) =x*+y*+ 22— 3xy— z.
(c) On R3, let

f(x,y,2) =x* +y*+ 22— Txyz*f
(d) On R3, let

(X y,2) =x*+y*— 2xy2

(e) On R3, let

f(x,y,2) = In(xX*y?z%) — x— y—
(f) OnR3, let 7

f(x,y,z) = ¥ +y?+ 2% — sin(xyz).
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UNIT 3

UNCONSTRAINED OPTIMIZATION

3.1 Introduction

In the last unit, you defined an unconstrained optimization problem asfollows

min(or max)f(x) xe€ D

where f : D ¢ R" — R iscalled the objective function. In this unit, you shall be dwelling in
this kind of problem in detail.

3.2 Objectives

At the end of this unit, you should be able to

(i) Give the definition of the Local, Global and Strict Optima of an optimization problem.

(i) State and proof and apply the firstorder optimality condition for unconstrained optimiza-
tion problems.

(i) State, and prove the second order necessary and sufficient condition for an optimization
problem. And also use it to solve optimization problems.

(iv) Define Convex sets.
(v) Give the definitions of a Convex function and a Concave function.

(vi) Apply convexity to optimization problems.
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3.3 Main Content

The notions, definitions and results you will be seeing hence forth is on the minimization prob-
lem.
minf(x) xe D (3.1)

Obvious modifications can be made to yield similar results for maximization problem. But
for the sake of simplicity, you will always limit your discussion to minimizers while the minor
task of interpreting the results for maximization problems by replacing f(x) by — f(x)

3.3.1 Gradients and Hessians

Letf : D > R, where D ¢ R" is open, f is differentiable atx € D if there exists a vector
VT (x) (called the gradient of f at X) such that for each x € D

fx) =FX) +VFX)'(x— X)+ x— XaX,x — X) (3.2)

and Iing a(x,y) = 0. f is differentiable on D if f is differentiable for all x € D. The gradient
y%

vector is the vector of partial derivatives:
C \¢
Vi) = of of 33
—axl(Y),---,—aXn(Y) (3.3)

Example 3.3.1 Letf(x) = 3x3%¢ + %*%>. Then
VF(x) = (6x1x32 IXZX5+ 2X%, 3xf><32\'t
The directional derivative of f at x in the direction d € R" is given by

jim TXCFAD = T _ ge gy (3.4)

A0 A

The function f istwice differentiable atx € D if there exists a vector Vf(x) and ann X n
symmetric matrix Hf(x) (called the Hessian of f at X) such that for each x € D

f(x) = f(x) + Vf()_()t(x - X) +—1(X _ )_()tHf(Y)(X - X)+ X ZG(Y, X— X), (3.5)

2%

and Iimoa(f, y) = 0. f istwice differentiable on D if and only if f istwice differentiable for all
y%
X € D. The Hessian is a matrix of second partial derivatives:
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0%f o°f o 0%f
OX2  9%10X%; 0X%10X%;,
o0*f 0*f o0*f
. .
Hf = 0X,0X, X5 0X20%n (3.6)
o°’f o°f o o°’f
0Xn0X1 0Xn0X2 O0%Xn 0Xn

Example 3.3.2 Continuing Example 1, you have
6x3 18x, X5 0
Hf(X) = 18xX%5 18x2X,+ 2% 6Xpx2

0 6Xy XS BX5X3

3.3.2 Local, Global and Strict Optima

Definition 3.3.1 Suppose that ¥ : D ¢ R" — R is areal-valued function defined on a subset
D of R". ApointX in D is:

(a) aglobal minimizer forf on D if f(x) < f(x) forallx € D;
(b) astrict global minimizer for f on D if f(x) < f(X) for all x € D suchthat x = X;

(c) alocal minimizer for ¥ on D if there is a positive number ¢ such that f(x) < f(x) for
all x € D forwhich x € B(X, 0);

(d) giptyict I@%pmig}{z)gref%&ifétyg% i3 appsitive number 6 such that f(x) < f(x) for

(e) acritical point for f if f is differentiable atx and
VE(x) =0.

3.3.3 Optimality Conditions For Unconstrained Problems

Before stating the first order optimality condition for the unconstrained problem, the following
definition and theorem is needful.

Definition 3.3.2 (Descent Direction) The direction dis called a descent direction of f at x = X
if _
f(x + d) < f(x) forall > 0and sufficiently small
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A necessary condition for local optimality is a statement of the form: “If x is alocal min-
imum of (3.1), then X must satisfy..” Such a condition will help you to identify all candidates
for local optima.

Theorem 3.3.1 Suppose that f is differentiable at X. If there is a vector d such that Vf(X)'d <
0, thenforall A > 0 and sufficiently small, f (x+Ad) < f(x), and hence d is a descent direction
of f atx.

Proof. Suppose there is avector d € R" such that Vf (X)'d < 0. Since f is differentiable

at X, you have
f(X +Ad) = f(X) + AVF(X)'d +A d a(x, Ad).

where a(x, Ad) = 0as A — 0. Rearranging, you have
f(x +Ad) — f(X)

=vf(x)'d+ d a(x, Ad).

A
Since VF(x)'d < 0 and a(Xx, Ad) > 0asA — 0, f(Xx+Ad)— f(x) < 0forallA > 0 sufficiently
small. Thus f(x + Ad) < f(x) for all A > 0 sufficiently small. |

Corollary 3.3.1 (First Order_necessary Optimality condition) Suppose f is differentiable at x.
If X is alocal minimum then Vf(x) =0

Proof. Suppose for contradiction that Vf(x) = 0,thend = — Vf(x) would be a descent
direction, whereby x would not be a local minimum. Hence, you must have Vf(x) =0 -

The above corollary is a first order neccessary optimality condition for an unconstrained
problem. The following theorem is second order necessary optimality condition.

Theorem 3.3.2 (Second Order necessary Optimality Condition) Suppose that f is twice con-
tinuously differentiable at x € D. Ifx is a local minimum, then Vf(x) = 0 and Hf(X) is
positive semidefinite.

Proof. From the first order necessary condition, VFf(x) = 0. Suppose Hf (x) is not positive
semidefinite. Then there exists d such that d*Hf(X)d < 0you have:

f(X +Ad) = F(X) + AVF(O)d +A2d HF(X)d + A2 d 2a(X, Ad)

= f(X) + 2AAHFE)A +A2 d 2a(X, Ad).

where a(x, Ad) = 0as A — 0. Rearranging, gives you

£(X +Ad) — F(X)_ 1 _
x+ AZ 0)_ SAHEGOd + d 2a(%, Ad).

Since d*Hf(X)d < Oand a(X,Ad) = O0asA — 0, f(X + Ad) — f(x) < OforallA >0
sufficiently small, yielding the desired condtradition. ]

Example 3.3.3 Let
f(x) = %le + X1 Xo + 2% — Ax — dx — X°.
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Then

X1+ Xo — 4

VE(x) =
X1 +4X, — 4 — 3%

and

1 1

Hf(x) =
1 4- 6X2

VT (x) = 0hasexactly two solutions: X = (4,0) and X = (3, 1). But

1 1
Hf(x) =
1 -2

isindefinite, therefore, the only possible candidate for alocal minimum isx = (4, 0).

A sufficient condition for local optimality is a statement of the form: “If x satisfies...,
then X is a local minimum of 3.1.” Such a condition allows you to automatically declare
that X is indeed alocal minimum.

Theorem 3.3.3 (Second Order Sufficient Conditon) Suppose that f is twice differentiable
at x. If VFf(x) = 0and Hf(x) is positive definite, then X Is a strict local minimum.

Proof. 1
f(x) =f(x) + E(X - X)'HFX)KX — X)+ x— X ?

Suppose that X is not a strict local minimum. Then there exists a sequence {X, } which x, — X

as k = oo such that x, = X and f(xx) < f(x) for all k. Define d 2%, then
. —

C \
f(x) = FX) + X — X 2 %d}(Hf(i)dk +aX, X — X)

and so B

foo) - ) _
Xk — X 2

Since d, = 1forevery k, there exists a subsequence of {d, } converging to some point d such

that d = 1. Assume without loss of generality that d, — d, then

lzdtka(Y)dk + G(i, Xk — i) =

.1 _ 1 _
0= kL'm Eolkaf(i)dk +alX, Xk — X) zzdtHf(x)d,
which is a contradiction of the positive definiteness of Hf (x). [ |
Remark 3.3.1 Note that

* If VF(X) = 0and Hf(x) is negative definite, then X is a local maximum.
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« If VF(X) = 0 andHTf(X) is positive semidefinite, you cannot be sure if X is a local
minimum.

Example 3.3.4 Continuing Example 3.3.3, by computing you have

11

HTG) =
14

is positive definite. To see this, note that for any d = (d;, d,), you have
d'Hf(X)d = d? + 2d;d, + 4d2 = (d; + dp)? +3d2>0 forall d=0

Therefore, X satifies the sufficient conditions to be a local minimum, and so X is a local mini-
mum.

Example 3.3.5 Let
f(x) = X+ X5

Then
3x7
VE(x) =
2X>
and
6x; O
Hf(x) =
0 2
At x = (0, 0), you have Vf(x) = 0and
00
Hf(x) =
0 2
is positive semi-definite, but X is not a local minimum, sincef(— ,0)=— 3<0=(0,0) =

f(x) forall > 0.

Example 3.3.6 Let
f(x) = x4+ X5

Then
4x3
VE(X) =
2X3
and
12x* 0
Hf(x) =
0O 2
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At x = (0,0), you have Vf(x) = 0and

00

Hf(x) =
0 2

is positive semidefinite. Futhermore, X is alocal minimum, since for all x you have f(x) = 0=
f(0,0) = f(X).

FURTHER EXAMPLES

The following examples apply to problems on global minimization whose results are stated in
the following theorem.

Theorem 3.3.4 Suppose that X is a critical point of f (i.e., Vf (x) = 0) is a critical point of

a function ¥ with continuous first and second partial derivatives on R" and that H f (X) is the
Hessian matrix of f. Then X is:

(a) global minimizer for T if Hf(X) is positive semidefinite on R"; (b)
a strict global minimizer of f if Hf(X) is positive definite on R"; (c) a
global maximizer for f if Hf(X) is negative semidefinite on R"; (d) a

strict global maximizer for  if Hf(X) is negative definite on R".
Here are four examples that summarizes the above result you now know.
Example 3.3.7
(a) Minimize the function f : R®* = R defined by
f(x) = xi + xg + xg — XiXp — XpXg — XXz, forall X = (X1, X, X3) € R®

= Solution. The critical points of T are the solutions of the system

2X1_ Xo — X3 0
VE(X) = — X +2x+x3 = 0
— X1+ Xo + 2X3 0

The one and only solution to the systemisx; = 0, X, = 0, X3 = 0 The Hessian of f(X) is
a constant marix

2 -1 -1
HF) = -1 2 1
-1 1 2
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Note that A; = 2, A, = 3, A3 = 4s0H T (X) is positive definite everywhere on every-
where on R3. It follows for Theorem 3.3.4 that the critical point (0, 0, 0) is a strict global
minimizer for f.

Since f is defined and has continuous first partial derivatives everywhere on R® and since

nfnPkis Biebyngytel point of f, it follows for Corollary 3.3.1 that f has no ofper

(b) Find the global minimizer of

f(x,y,z2) =Y+ X+ + 72
1y1

= Solution. Tothis end, compute

VIE(x,y,2z) = — XY gy
2z
and
7Y + eV X + 4x2eX + 28 — X V— @V X
0
Hf(x,y, z) = — Y = ¥ Y+ 0
0 0 2
Clearly, A; > Ofor all x,y, z because all the terms of it are positive. Also
Ay = (7Y +e X2+ (XY + eV X)(AxPE +2e%) — (XY + eV X)?
= (XY + eV~ X)(4x%e* + 2¢) > 0.

because both factors are always positive. Finally, A; = 2A, > 0. Hence H f (X, y, 2) is
positive definite at all points. Therefore by Theorem 3.3.4 T is strictly globally minimized
by any critical point (X, Y, z). Tofind (X, y, Z), solve

Y — VX + 2xé
0=Vf(x,y,z)= — Y+
2z

This leadstoz = 0, e~ Y = &/~ ¥, hence 2xe** = 0. Accordingly, X— ¥ =V X: thatis,

x =y and X = 0. Therefore (X, Yy, z) = (0, 0, 0) is the strict global minimizer of f. &
(c) Find the global minimizers of

f(x,y)53e" Y+ X
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= Solution. Tothis end, compute
eX— y ey— X
VE(x,y) =
—_ ex_ y + ey_ X
and eX— y + ey— X — eX— y ey— X
Hf(x,y) =
— ex_y_ ey_xeX_Y+ey_X

Since e*~ Y +eY™ X > 0 forall x,yand det Hf(x, y) = 0, then, by the Hessian Hf (X, y) is
positive semidefinite for all x, y. Therefore, by 3.3.4, (X, y) is minimized at any critical
point (X, y) of f(x, y). Tofind (X, y), solve

0=Vf(x,y)=
—_ ei_ )7 + ey_ X
This gives
o5~V = @i X

or _

X=y=y—X
that is,

2X = 2y.

This shows that all points of the liney = x are global minimizers of f(X, y). &

(d) Find the global minimizers of

f(xy) =Y+

= Solution. In this case,
e Y + e
VE(x,y) =

— XY 4 Y

eX— Y 4 @X*ty — @X—y 4 Xty
Hf(x y) =
— eXTY 4 Xty pXT Y 4 Xty
Since e*~ Y+e*™Y > 0 for all x, y and det Hf(x, y) > 0, then Hf (X, y) is positive definite
for all x, y. Therefore, by Theorem 3.3.4, f(X, y) is minimized at any critical point (X, y).
Tofind (X, y), write

ei— y + e>‘<+y

0= VF(Xy)=
ei— y + ei+>7
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Thus o
Y+ =0

and T4 =

Bute*~Y > O and e¥*Y > Ofor all X,y. Therefore the equality &~ Y + &**Y = Qisim-
possible. Thus f(x, y) hasno critical points and hence f(x, y) hasno global minimizers.
&

3.3.4 Coercive functions and Global Minimizers

You could remember that in the preceeding unit, you said that afunction f: R" — Ris coercive
if
lim f(x) =+
I/xl/—+ 0

ABAYAY PR RIACS 25N ERPOLIANERSHITPRsCX StRREe QA SRop! MiIZess 1o QORIClioGs

and coercive on some open set containing D, then there exists a global minimizer of f in D.

In addition to this theorem, is that if the first partial derivatives of f exist on all of R", then
these global minimizers can be found among the critical points of f. Here is an example to
illustrate this notion.

Example 3.3.8 Minimize .
f(xy) =x'— dxy +y*

on R2,

= Solution. Tothis end, compute

4x3 — 4y
VE(x,y) =
— 4x+
and 4y’
Hf(x,y) = 12x> -4
— 2
Note that 4 12y
(1 1\ 3 -4
AT %% =
-4 3
which is certainly not positive definite since det H (;2 ;2) = 9 — 16 < 0. Therefore the tests

fromthe last section are not applicable. Butall is not lost because f is coercive!
Toseethat f is coercive, note that

C \

4xy
— V4 4 _
f(X,y)—X +y 1 X4+y4
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As (x,y) = x2+y2— +oo, the term 4xy/(x* +y*) — 0. Hence
im fxy)= lim ' +y)@— 0)=+o,
(xy)l/— (x.y)l/—00

POuRsT SehRaCYe RCHrding, IR Reipm 24, 2fdhgsa gobah finipizer sat ons afsthe ciificap

This producesthree critical points

0,0),(1,1),(—1,— 1)

Now
f(0,0)=0, f(1,1)=— 2 f(—-1,-1)=
2
Therefore ( — 1, — 1) and (1, 1) are both global minimizers of f
&

3.4 Convex Setsand Convex Functions

It is necessary at this point that you study convexity briefly because of some of its important
considerations in optimization theory. Which include First, Convex functions occur frequently
and naturally in many optimization problems that arise in statistical, economical, or industrial
applications. Second, convexity often make it unnecessary to test the Hessians of functions for
positive definiteness, a test which can be difficult in practice as you have seen in the preceding
section.

You will be introduced to a very basic concept of Convexity and then state some important
results which will help you minimize afunction.

3.4.1 Convex Sets

Definition 3.4.1 Aset C in R" isconvex if for every X,y € C, the line segment joining x and y
remains inside C.

The line segment [X, y] joining x and y is defined by
X, y]={Ax+(@Q— Ay :0< A

<

1}.
Therefore, a subset C in R" is convex if and only if for every x and y in C and every A with
0 < A< 1, thevector AX + (1 — A)y is also
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C.

Examples of Convex Sets
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(a) Letx and v be vectors in R". The line L through x in the direction of v
L={x+Av,A € R}

is convex setin R".
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(b) Any linear subspace M of R" is a convex set since linear subspaces are closed under
addition and scalar multiplication.

(c) If x e R"and a € R, then the closed half-spaces
Ff={ye RP:Xx:y=2 a}F~ ={ye R":Xx:y<
af

determined by X and a are all convex sets.
(d) If x € R™and r > 0then the ball centered at x with radius r

B'(x,r) = {xe R": x— X <
r}
isaconvex setin R".
Theorem 3.4.1 Let C be a convex subset in R". Let X4, ..., Xm be points inC. If Ay, ..., An are
non-negative numbers whose sum is 1 then the conves combination

AX]_ + e +Ame
isalsoin C.

Proof. Assume that the nonempty set C is convex, you have to show that C contains all

its convex combinations. You can proceed by induction as follows. Define the property P, as
follows;

. n
P,: Aix; € Cforall X, ...,Xy € C, A A =1
>

i=1 Q, i=1

1. The property obviously hold forn = 1,i.e., (P1) is fulfilled.
2. Assume that properties (P4), ..., (P,) holds. Let Xq, ..., Xn, Xn+1 € C, A7 2 A5

\Y
=
>
]

>

O,An+l 2 OWIth

Of course, if Ap+1 = 1,then
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because A; = -+ = A, = 0in this case. And so

n

+1
Aix; € C.

i=1
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Assume that A+, = 1. This allows you to write

n+1 n
Aixi = AiXi + Api1 Xn+a
i=1 i=1
\ (3.7)
n A
= (1- A1) —IXi + An+1Xn+1.
i=1 1- An+1
You have
n n n+1
Ai . 1 _ 1 _ _ . _
e e = A = mn—ﬂ(l A+1) =1, since 3 Ai=1
and
A > o0andxy,...x, € C
1 - An

hence by induction assumption,

Ai
xX:= ——x€C
i1 17 A |

Sincey’:= Xn+1 € C by assumption you get that
(1 = Ani )X! + An+1y! € C (3-8)
because An+1 € [0, 1]. Combining (3.7) and (3.8) you can conclude that

n

+1
AiX; € C

i=1

This completes the proof. ]

The preceeding argument demonstrates that if C contains any convex combination of two of
its points, then it must also contain any convex combination of three of its points.

3.4.2 Convex Functions

Definition 3.4.2 LetC be a convex nonempty subset of R" and f a real-valued function from
CtoR. Then

(a) the function f is aconvex function if
TAX +(1— Ay) < AF(X) + (1 — AF(y)

forallx,y € C,andallAwith0< A < 1
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(b) the function f isastrictly convex function if
fTAX + (1= A)y) £ AF(X) + (1 — AF(y)

forallx,y € Cwithx=yandallAwith0<A <1.

(c) thefunction f isconcave function if
fTAX + (1= Ay) = AF(X) + (1 — AF(y)

forallx,y € CandforallAwith0< A < 1.

(d) the function f isastrictly concave function if
fTAX + (1= A)y) = AF(X) + (1 — AF(y)

forallx,y € Cwithx=yandallAwith0<A <1

Remark 3.4.1 Note that f is convex (resp. strictly convex) on a convex set C if and only if
— f isaconcave (resp. strictly concave) on C. Because of this close connection, all results are
formulated in terms of convex functions only. Corresponding results for concave functions will

be clear.

Example 3.4.1

1. Any linear function of n variables is both convex and concave on R".
2. The function f(x) = (a - x)? where aisafixed vector in R" is convex on R".

Theorem 3.4.2 Suppose that f is a convex function defined on a convex subset C of R". If
A1, ..., Ay are non-negative numbers with sum 1 and if x4, ..., X, are points of C, then
\

m m
f AXe < Akf(Xk) (39)
k=1 k=1

If f is strictly convex on C and if all the A s are positive then equality holds in (3.9) if and only
if all the xi s are equal.

3.4.3 Convexity and Optimization

The results proved in this section link convexity to optimization.

Theorem 3.4.3 Suppose C is a convex subset of R", f : C = R is a convex function and X is
a local minimum of f. Then X is also a global minimum of f in C. In addition, if f is a strictly
convex function, then X is a unique global minimum of f in C.
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Proof. Suppose that x isalocal minimizer of f in C. Then there exists a positive number r
such that
f(x) < f(x), for all xe Cn B(x,r)

Given x € C, you have to show that f(x) < f(x). Tothis end, select A, withO <A < 1and so
small that
X+AX — X)=Ax+(1— A)x e Cn

Then B(X,
r)
fX) < FX+AX — X)) =F(AX + (1 — A)X) < Af(X) + (1 —
AFf
(%)
RsausEIT 5 PRYBHIAIRG Sb¥Res TOOk Ry Bt cleianioh darapse RSing dbenalini AnAdlivide

Now suppose T is strictly convex. Let x; and X, be two different minimizers of f and let A
with 0 < A < 1. Because of the strict convexity of f and the fact that

F(x) = T(x2) = minf(x)

you have
foa) < Tl + (1= Ax) <AFGa) + (L= Af(x) = fx
)
which is a contradiction, therefore, x; = X,. .
Remark 3.4.2

« If ¥ is a concave function, then alocal maximum is a global maximum.

« If T isastrictly concave function, then a local maximum is a unique global maximum.
gﬁ‘%Bm&ﬁ'éhfgéﬁgiﬁﬁﬁgmtﬂgl@ﬁ%x§HPEQSPH@ﬁtf has continuous first partial derivatives

1. The function f is convex if and only if
fly) > f(x) + VE(X)'(y — x) forall x,ye C (3.10)

2. The function f is strictly convexif and only if
fly) > f(x) + VF(X)'(y — x) forall x,ye C (3.11)

Proof. The proof of no. 1is given here. Suppose that f is convex on C. Letx,y € Cand A
with0< A < 1.Then
f(x+Ay — X)) =F(Ay + (1 — AX) < Af(y) + (1 -
Af
(x)
63



3.4 Convex Setsand Convex Functions UNIT 3. UNCONSTRAINED OPTIMIZATION

so that o+ Ay — _ ot
(X + Ay . X)) (X)S fy) — F(0).

If you letA — 0, you obtain
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VEX) - (y — x) < f(y) -
f(x)
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Therefore
f(y) 2 f(x) + VF(X)'(y — X)

forallx,y € C.

Conversely, suppose that inequality (3.10) holds for all x,y € C. Letw and z be any two
points in C. LetA € [0, 1], and setx = Aw + (1 — A)z. Then

fw) = f(x) + VE(X)'(w — x) and f(2) = f(x) + VF(x)'(z

X)
Taking a convex combination of the above inequalities, you obtain
Af(w) +(1— Af(2) = f(x) + VFX)'(A(w — xX) + (21— A)(z
X))
= f(x) + VF(x)'0

= f(Aw + (1 — A)2),
which shows that f is convex. ]

The following striking resultis an immediate consequence of Theorem 3.4.4. It is the most
important and useful result in this chapter.

SotoHaifif A thetEri%e SAMEETUACHRY HHCAPHUHOUS R O L) Ay AR Rinfer YF§ OPen

Proof. Supposethat x € Cisacritical point of f. Letx € C.Then Vf(x) = 0and (3.10)

imply that
f(X) =f(x) + VF(X)'(x = X) < F(x).

Consequently, x isaglobal minimizer of f on C. [

Although the definitions of convex and strictly convex functions and the gradient inequal-
ities provide useful tools for deriving important information concerning their properties, they
are not very useful for recognizing convex and strictly convex functions in concrete examples.
For instance, the function f (xX) = x2is certainly convex (even strictly convex) function on R",
yet it is cumbersome to verify this fact by using definition or the gradient inequality of con-

vex function. The next two theorems will provide you with an effective means for recognizing
convex functions in specific examples.

IR fer FP IS RS SRS ot FOBER T R SHIRUNRSC 3P S9N BAPSR ISP\

is positive semidefinite for all x € C.

Proof. Suppose T is convex. Let x € C and d be any direction. Then for A > 0 sufficiently
small, x + Ad € C. You have:

f(X +Ad) = f(X) + VF(x)' (Ad) + —; Ad)HF(X)(Ad) + Ad 2a(X, Ad),

where a(x,y) = 0asy — 0. Usjng the gradiegtzinequality, you obtain
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¢ \
A2 =d'*HfX)d + d 2a(x,Ad) = 0.
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Dividing by A2 > 0 and lettingA — 0, you obtain d*Hf(X)d > 0, i.e., Hf(X) is positive
semidefinite. This completes the proof of this direction.

Conversely, suppose that Hf(z) is postive semidefinite for all z € C. Letx,y € C be
arbitrary. Invoking the second-order version of Taylor’s theorem, you have:

F) =09 + TF0y = ) + 2y = HE@Y - %)
for some z which is a convex combination of x and y (and hence z € C). Since Hf(2) is
positive semidefinite, this means that

fly) = f(x) + VEX)'(y — x).
Therefore the gradient inequality holds, and hence f is convex. [ ]
The following example illustrates how Theorem 3.4.5 can be applied to test convexity.
Example 3.4.2 Consider the function f defined on R by
F(X1, X2, X3) = 2X2 + % + X3 + 2XoX3.

The Hessian of T is

Hf(x) =

(@R @ RN
NN O
NN O

The principal minors of H f (x) are A; = 4, A, = 8, Az = 0, Which implies that H f (x)
is positive semidefinite, and so f is convex by Theorem 3.4.5. Since H f (X) is not positive
definite, it is not possible to conclude from Theorem 3.4.5 that  is strictly convex on R3. As a
matter of fact, since

(X1, X2, X3) = 2XZ + (X2 + X3)?,

you see that f(x) = O for all x onthe line where x; = 0 and X3 = — X, so T is notstrictly
CONVex.

The discussion above shows that many of the results of the preceeding section, are subsumed
under the general heading of convex functions. But you must note that verifying that the Hessian
is postive semidefinite is sometimes difficult. For instance, the function

f(x, y,z) = "2 — In(x +y) + 37

is convex on R3 but its Hessian is a mess. Fortunately, there are ways other then checking the
Hessian to show that a function is convex. The next group of results points in this direction.
The following theorem shows that convex functions can be combined in a variety of ways to
produce new convex functions.

Theorem 3.4.6
(a) If f,..., T, are convex functions on a convex set C in R", then

F(x) =F.00 +-- + T (x)

is convex. Moreover, if at least one f;(x) is strictly convex on C, then the sum f is strictly
convex.
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(b) If f is convex (resp. strictly convex) on a convex set C in R" and if a is a positive number,
then af is convex (resp. strictly convex) on C.

(c) If T is convex (resp. strictly convex) function defined on a convex set C in R", and if ¢ is

an increasing (resp. strictly increasing) convex function defined on the range of f in R,
then the composite function ¢ ° T is convex (resp. strictly convex).

Proof.

(a) To show that any finite sum of convex function on C is convex on C, it suffices to show
that the sum (f, + f,) of two convex functions f; and f, on C is again convex on C. If,

y,zbelongtoCand0< A £ 1,then
(F+R)Ay +(1 - Az) = fi(ly +(1 - A)2) + H,(Ay + (1 - A)2)

< AM(y) + (1 - Afu(2) + Af(y) + (11— Af(2)

= A(fL+)(y) + (1 — A)(f, + 1))

Hence, (f; + T,) is convex on C. Moreover, it is clear from this computation that if either

T, or T, is strictly convex, then (f, + f,) is strictly convex because strict convexity of
either function introduces a strict inequality at the rightplace.

(b) This resultfollows by an argument similar to that used in (a).
(c) If y,zbelongtoCand 0 < A < 1,then

fAy + (1 — A)z) < Af(y) + (1 — A)F
(2)
since T is convex on C. Consequently, since ¢ is an increasing, convex function on the

range of f, it follows that
p(f(Ay +(1 - ANz)) < ¢Af(y) +(1 - AF(2))

< Ag(f(y)) + (1 — Ae(f(2)).

Thus, the composite function ¢ ¢ f is convex on C. If f is strictly convex and ¢ is strictly

increasing, the firstinequality in the preceding computation is strictfory = zand 0 <
A <1,s0¢ © fisstrictly convex onC.

Examples
(a) The function f defined on R® by

2 2
f(X1, %o, X3) = 4024

IS strictly convex.
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(b)

At first glance, it might semm that the most direct path to verify that f is strictly convex
on R3would be to show that the Hessian H f (x) of f is positive definite on R3. However,
the Hessian turns out to be

(2 + 4x2)eX I35 4y X 1 F S Axq X025 T+
Hf(X) =  4dxyxpeXa¥xe?xs? (2 + 4XD)XTHETXE Ay K MRS
41 X %1% X% %32 4y X5 @XEHXETX3 (2 + 4x3)exHxirxs

Obviously, proving that the Hessian is positive definite for all x € R" will involve quite
tedious algebra. No matter there is much simpler way to handle the problem.

First note that
h(X1, X2, X3) = X5 + %2 + X5

IS strictly convex since its Hessian

2 00
Hh(xy, X2, x3) = 0 2 0

0 0 2

is obviously positive definite. Also, ¢(t) = (,a,t is strictly increasin% (since ¢'(t) = et > 0
for all t € R) and strictly convex (since ¢'(t) = e > 0 for all t € R). Therefore by
Theorem 3.4.6(c), f = ¢ ° hisstrictly convex on R3.

Suppose a®, ..., a™ are fixed vectors in R" and that ¢y, ..., c, are positive real num-
bers. Then the function f defined on R" by
m O]
fx) = ce* *

i=1
IS convex.
To prove this statement, first observe that the functions g; on R" defined by
gx)=a®-x, i=1,...,m

are linear and therefore convex on R". Since h(t) = €' isincreasing and convex on R, it
follows from theorem 3.4.6(c) that the functions

h(g, () = >, i=1,....m
are all convex on R". Since ¢y, ..., Cny, are positive real numbers, you can apply Theorem
3.4.6(a) and (b) to conclude that
f(x) = et X
i=1

is convex on R".
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(c) The function f defined on R? by
f(Xq, X2) = le— 4X1Xp + 5)&2 — InXyX;
is strictly convex on C = {x € R2:x; >0,%, > 0}.
In fact f(x) = g(x) + h(x) where
g(X1, X2) = X4 — 4X1 % +5%%, h(X1, Xo) = — In(X1X5)

so Theorem 3.4.6(a) will imply that f is strictly convex once you are able to show that
g and h are convex and at least one of these functions is strictly convex on C. But the
Hessian of g is

2 — 4
-4 10
UBRIRA LS 88 NISTHBHS A6 Ay 5 shofban: fid dSRIEICHN E0nygy on R Conse-
h(Xy, X)) = — Inx; — InXx,
and the function ¢(t) = — Int (t > 0) is strictly convex since ¢"(t) = 1/t?, so h is

convex on C by Theorem 3.4.6(c).

3.5 Conclusion

In this section, you looked at Unconstrained optimization problem. You learnt the first order
necessary optimality condition and the second order necessary and sufficient optimality con-
dition. You were also introduced to the notion of convex sets and convex functions. And you
proved some results in optimization problems defined on a convex set.

3.6 Summary

Having gone through this unit, you now know the following

() X isalocalminimizer of f in D if there exists r > 0 such that
f(x) < f(x) foral xe Dn B(x,r)
(ii) X isaglobal minimizer of f in D if

fx) < f(x) forall xe D

Reversing the inequalities in (i) and (ii) gives you the the definitions of local maximizer
and global maximizer respectively of . You also have the definition of strict optimas’ if
the inequalities are made to be strict.
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(iii) If X is alocal minimizer, then X is acritical point, (i.e., Vf(x) = 0). This is the first order
necessary optimality condition.

(iv) x is a local minimizer if and only if the hessian of f atx i.e., Hf(X) is semipositive
definite. This the second order necessary and sufficient optimality condition.

(v) If T is a convex function, then every local minimizeris also a global minimizer. In
addition if f isastrictly convex function, then X isa unique global minimizer

3.7 Tutor Marked Assignments (TMAS)

Exercise 3.7.1

1. Find the local and global minimizers and maximizers of the following functions
(@) f(x) = x® + 2x.
(b) F(x) = x2e™ *.
(c) F(X) = x* +4x3+ 6x% + 4x.
(d) f(x) = x +sinx.

2. Classify the following matrices according to whether they are positive or negative definite
or semidefinite orindefinite.

100
@ 0 30
005
-1 0 O
) 0 —3 0
0 0 -2
7 00
€ 0 —-80
0 05
312
d 15 3
2 37
-4 0 1
€) 0 —3 2
1 2 -5
2 —4 0
m -4 8 0
0 0 -3

3. Write the quadratic formQa(X) associated with each of the following matrices A
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C \
_ —12
(a)A—( 5 3 .
(b) A = 2 -3
1_
c) -1 -20
0 23
-3 1 2
(d) 1 2 -1
2 —1 4

4. Write the following quadratic forms in the form x™ Ax where A is an appropriate sym-
metric matrix.

(8) 3% — x1xp + 2%%.
(b) X3 + 2%3 — 3% + 2X1X2 — 4X1X3 + 6X2X3.
(C) 2 — 4%% + X1Xo — XpXs.
5. Suppose T is defined on R® by
F(X) = C1X5 + Cax5+ CaXx5+ CaXy X2 + CsX1X3 + CoXaXa.
Show that f isthe quadratic form associated with lZHf. Discuss generalizations to higher

dimensions.

6. Show that the principal minors of the matrix
(1 8 b

A= 1

are positive, but that there are x = 0in R? such that x" Ax < 0. What conclusion can you
draw fromthis?

7. Use the principal minor criteria to determine (if possible) the nature of the critical points
of the following functions:

(@) F(x1, X2) = x5 +x — 3x;— 12%+ 20.
(b) F(X1, X2, X3) = 3X3F + 2X5 + 2X5 + 2X1 X2 + 2XoX3 + 2X1X3.
(€) F(Xq, X2, X3) = X3 + X5 + X3 — 4x1Xo.
(d) F(x1, %) =x]+x3 — ¥ — X +1,
() F(x1, X2) = 12x3 — 36X1X, — 2X3+ 9x? — 72x; + 60x, + 5.
8. Show that the functions
f(x1, X2) = x5 + x5,
and
g(X1, X2) = X3 + X5.
both have a critical point at (0, 0), both have positive semidefinite Hessians at (0, 0), but
(0, 0) isalocal minimizer for g(xy, Xo) but not for f(x¢, X).
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9. Find the global maximizers and minimizers, if they exist, for the following functions:
(@) Flx, X) =5 — dxg +28°+ 7.
(b) F(xe, xp) = e~ Ca+%),
(€) F(x1,X2) =5 — 2xa%o +1x% — 4x.
(d) (X1, X2, X3) = (2X1 — X2)? + (X2 — X3)? + (X3 — 1)
(e) F(x1, x2) = x] + 16xX1%2+ %8,

10. Show that although (0, 0) is a critical point of f(xy, X2) = x>~ X;XS, it is neither a local
maximizer nor alocal minimizer of (xg, X,).

11. Define f(x, y) on R? by
2

f(x,y) =x*+y*— 32y

(a) Find a point in R? at which Hf isindefinite.
(b) Show that (X, y) is coercive.
(c) Minimize f(x, y) on R?.
12. Define f(x, y, z) on R® by
f(x,y,z) =€ +e/+e’+2e" X" V7 *

(a) Show that Hf(x, y, z) is positive definite atall points of R3.
(b) Show that (In 2/4,In 2/4,In 2/4) is the strict global minimizer of f(x, y, z) on R3.

13. (a) Show that no matter what values of ais chosen, the function
(X1, X2) = X3 — 3axyx, + %°

has no global maximizers.
(b) Determine the nature of the critical points of this function for all values of a.
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UNIT 4

CONSTRAINED OPTIMIZATION

4.1 Introduction

It is not often that optimization problems have unconstrained solutions. Typically, some or all
of the constraints will matter. Through out this unit, you will be concerned with examining
necessary conditions for optima in such a context.

4.2 Objectives

At the end of this unit, you should be able to

(i) Give the definition of a constrained optimization problem.
(i) Solve Equality constained problems.
(i) Apply the Lagrange’s theorem.
(iv) State and apply the first order necessary conditions.
(v) State and apply the second order necessary and sufficient conditions.

(vi) Solve Inequality constrained problems

4.3 Constrained Optimization Problem

Just as defined in unit 10, An optimization problem is called constrained if it is of the form
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min(or max) f(x)
Subject to: Bf@@ S Q ji=l,, . m 4.1)
x e U.
Where f : U = R, Uis an open setof R" is called the Objective function, gi,..., 0k, h1,...,h:
U c R" — arethe constraint functions.

If you define g = (g1,...,0«) : R® > R¥and h = (hy,...,h) : R" = R!, then you can
rewrite the constrained problem asfollows

min(or max) T(x)

Subject to: h(x) =0
J g(g())Z 0 (4.2)

X € U.

If you define in the sequel that the constraint set D as

D=Un {xe R":h(x) =0, g(x) > 0}, 4.3)
Then, Problem (4.2) reduces to

min(or) max) f(x)

Subject to: xe D (4.4)

Many problems in economic theory can be written in this form. For example you can readily
see that if f, g and h are linear functions, then the problem (4.2) becomes a linear programming
problem, to which, if solution exist, you can use the simplex method, discussed in previous
units, to solve. Nonnegativity constraints are easily handled: if aproblem requires that x € R",
this may be accomplished by defining the function h; : R" > R

0i(¥) = x;j, j=1,...,n,
and using the n inequality constraints
gj (X) >0

More generally, requirements of the form a(x) = a, B(X) < b, or w(x) = ¢ (where a,band ¢
are constants), can all be expressed in the desired form by simply writing them asa(X) — a = 0,
b— B(X) = 0,orc— w(x) =0.

Your study in this unit, is divided into two parts namely;

1. Equality-Constrained optimization problems.

2. Inequality-constrained optimization problems.

You will now take it one after the other and study them.
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4.4 Equality-Constraint

Coming back to the study of minimization with constraints. More specifically, you will tackle,
in this section, the following problem

Minimize f(x)
subjectto hy(x) =0

ha(x) =0 (4.5)
hn(X) =0
where x € D c R, and the function f, hy, h,,..., hy, are continuous, and usually assumed to

be in C2 (i.e., with continuous second partial derivatives).

Observe that when f and h;’s are linear, the problem is a linear programming one and can
be solved using the simplex algorithm. Hence you would like to focus on the case that these
functions are nonlinear.

In order to gain some intuition, you can consider the case where n = 2 and m = 1. The
problem becomes
minimize f(X,y)

subjectto h(x,y) =0, (xYy) € R2

The constraint h(x, y) = 0 defines a curve as shown below. Differentiate the equation with
respect to x :

dh dhdh
ox adydx
The tangent of the curve is T(x, y) = (1, ®). And the gradient of the curve is Vh = (21, 2h
. dx ) ox ay
So the above equation statesthat
T:-Vh=0;

namely, the tangent of the curve must be normal to the gradient at all the time. Suppose you are
at a point on the curve. To stay on the curve, any motion must be along the tangent T.

Figure 4.1:
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In order to increase or decrease f(x,y), motionalong the constraint curve must have a
component along the gradient of f, that is,

Vf-T =0.

Figure 4.2:

At an extremum of f, a differential motion should notyield a component of motion along
VT. Thus T isorthogonal to VT; in other words, the condition

VFf-T=0

must hold. Now T is orthogonal to bot gradients Vf and Vh atan extrema. This means that
VT and Vh must be parallel. Phrased differently, there exists some A € R such that

Vf +AVh = 0. (4.6)

f=q f=cf=g f=c, f=c,

Figure 4.3:
the figure above explains condition (4.6) by superposing the curve h(x,y) = 0 ontothe

family of level curves of (X, y), that is, the collection of curves f(x, y) = c, where cis any
real number in the range of f. In the figure, cs > c4 > c3 > ¢* > c1. The tangent of a level
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curve is always orthogonal to the gradient Vf. Otherwise moving along the curve would result
in an increase or decrease of the value of . Imagine a point moving on the curve h(x,y) =0

ARt 0 Eanefe iR ke, a8 B RN Ve oo PR c AP AR RRERINE SRdient

and smaller. When the moving point reaches (x* , y* ), the motion is orthogonal to the
gradient.

From that point on, the motion starts having a component along the gradient Vf so the value

f increases.  Thus at f achieves jts local minimum. The motion is in
che tangent fdlrectlon o(rxthe Xurve) h(x, y) = 0, which Is or'tﬂo onal to the gradient

Vh. Therefore at the point (x* , y* ) the two gradlents VT and Vh must be collinear. This is
what

equation (4.6) says. Let ¢* be the local minimum achieved at (x* , y* ). It is clear that
the two curves (X, y) = ¢* and h(x, y) = Oare tangent at (x* ,y* ).

Suppose you find the set S of points satisfying the equations

h(x,y) =0
Vf+AVh =0 forsome A

Then S contains the external points of ¥ to the constraints h(x, y) = 0. The above two equa-
tions constitute a nonlinear system in the variables x, y, A. It can be solved using numerical
techniques, for example, Newton’s method.

4.4.1 Lagrangian

It is convenient to introduce the Lagrangian associated with the constrained problem, defined
as
F(xy,A) =f(x,y) +Ah(x, y)

Note .
Jof A 6h

VF= % +A Zh = (VF +Ah, h).
h
Thus setting VF = Oyields the same system of nonlinear equations you derived earlier.
The value A is known as the Lagrange multiplier. The approach of constructing the La-
grangians and setting its gradient to zero is know as the method of Lagrange multipliers.

Example 4.4.1 Find the extremal values of f(X, y) = xy subject to the constraint

X2 2 _ =
hx y) =25 + 2.~ 150

2
< Solution. First construct the Lagrangian and find its gradient:
F(xy,A (X2 y° N
Y, A) =xy + A §+_2_ 1,
y+ 4>
VE(X y,A) = 2x+2Ay =0
EHL -1
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The above leads to three equations

L
y 4_ 1
X+ Ay =0,
x> +4y*>=8

combining (4.7) and (4.8) yields

4.7)

(4.8)
(4.9)

A =4 and A =+2

Thus x = £2y. Substituting this equation into (4.9) gives you
y==1 and x = £2.

So there are four extremal points of  subject to the constraint h : (2, 1), (- 2, — 1), (2, — 1), and

(— 2,— 1). The maximum value 2 is achieved at the first two points while the minimum value

— 2isachieved at the last two points.

=2

Figure 4.4:
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4.4.2 General Formulation

Now you would generalize to the case with multiple constraints. Leth = (hy,...,h,)T" be a
function fromR" to R™. Consider the constrained optimization problem below.

minimize f(x)
subjectto h(x) =0

E%@&HEEH?&”&&SWBPO@MA ﬁ(%d%ﬁn&a_a constraint hypersurface S in the space R". And

A curve on S is a family of points x(f) € Switha < t < Db. The curve is
i dx() ax
It "differentiable

—— exists, and twice differentiable if . exists. The curve passes through a point x* if
X" =x* (t) forsomet* ,a< t* <
b.

The tangent space at x* is the subspace of R" spanned by the tangents & (t* ) of all curves

X(t) on S such that x(t* % = X" . In other words, the tangent space is the s&t of the derivatives at
x*  of all surface curves through x* . Denote this subspace as T .

A point x satisfying h(x) = 0 is a regular point of the constraint if the gradient vectors
Vhi(x), ..., Vhn(x) arelinearly independent.

From your previous intuition, you would expect that Vf v = Oforallv € T atan
extremum. This implies that Vf lies in the orthogonal complement 7+ of T . Claim that VFf
can be composed from a linear combination of the Vh;’s. This is only valid provided that these
gradients span T+, which is true when the extremal point is regular.

Theorem 4.4.1 Ataregular point x of the surface S defined by h(x) = 0, the tangent space is
the same as

{y=|Vh(x)y =0}
where the matrix

Vhy
Vh= _
Vhm
The rows of the matrix V h(x) are the gradient vectors Vh;(x), j = 1,..., m. The theo-

rem says that the tangent space at x is equal to the nullspace of Vh(x). Thus its orthogonal
complement T+ must equal the rowspace of Vh(x). Hence the vectors Vh;(x) span T * .

Example 4.4.2 Suppose h(x1, Xx2) = X1. Then h(x) = 0 yields the x, axis. And Vh= (1, 0) at all
points. So every x € RZis regular. The tangent space is also the x» axis and has dimension 1. If instead
h(xy, X2) = xzj, then h(x) = O still defines the x, axis. On this Vh = (2x;1,0) = (0, 0). Thus no
pointis regular. The dimension of T, which is the x, axis, is still one, butthe dimension of the space
{y|Vh -y =0} is two.

Lemma 4.4.1 Let X* be alocal extremum of f subject to the constraints h(x) = 0. Then for all
y in the tangent space of the constraint surface at x* ,

VE(x" )y =0.
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The next theorem states that the Lagrange multiplier method as a necessary condition on an
extremum point.

Theorem 4.4.2 (First-Order Necessary Conditions) Let x* be a local extremum point of f
subject to the constraints h(x) = 0. Assume further that x* is a regular point of these con-
straints. ThenthereisaA € R" such that

VF(x* ) +ATVhx* ) =0.

The firstorder necessary conditions together with the constraints
h(x* ) =0
give atotal of n + m equations in n + m variables x* and A. Thus a unique solution can be
determined at least locally.

Example 4.4.3 You can construct a cardboard box of maximum volume, given a fixed area of card-
board.
Denoting the dimension of the box by x, y, z, the problem can be expressed a

maximize xyz
subjectto xy +yz+xz =3,

where ¢ > O is the given areaof cardboard. Consider the Lagrangian xyz +A(xy +yz+xz — 92). The
first-order necessary conditions are easily found to be

yz+Ay +2) =0, (4.10)
Xz +A(x +2) =0, (4.11)
Xy +A(x +y) =0. (4.12)

together with the original constraint. Before solving the equation above, note that their sum is
(xy +yz+xz) +2A(X +y +2) =0,
which, given the constraint, becomes
c/l2 +2A(x +y +2) =0.

Hence it is clear that A = 0. Neither of X, y, z can be zero since if either is zero, all must be so according
to (4.10)-(4.12).

To solve the equations (4.10)-(4.12), multiply (4.10) by x and (4.11) by y, and then subtract the two to
obtain

AX — y)z=0
Operate similarly on the second and third to obtain
Ay — 2)x =0.

Since no variables can be zero, it follows that

Cc
®

is the unique solution to the necessary conditions. The box must be a cube.

X=y=z=
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You can derive the second-order conditions for constrained problems, assuming f and h are
twice continuously differentiable.

Theorem 4.4.3 (Second-Order  Necessary Conditions) Suppose that x* is a local
minimum of f subject to h(x) = 0 and that x* is a regular point of these constraints.
Then there isa A € R™ such that

VF(x* ) +ATVh(x* ) = 0.

The matrix
m

L(X* ) =Hf(x" ) AiHh;(x) (4.13)
+ i=1
is positive semidefinite on the tangent space {y|Vh(x* )y = 0}.
Theorem 4.4.4 (Second-Order Sufficient Conditions) Suppose there is a point x* satisfying
h(x* ) =0,and aA such that
VE(X* ) +ATh(x* ) =
0.

Suppose also that the matrixL(x™ ) defined in (4.13) is positive definite on the tangent space
{y|Vh(x* )y =0}. Then x* is astrict local minimum of  subject to h(x) = 0.

Example 4.4.4 Consider the problem

minimize X;X, + XXz + X1 X3
subjectto X; + X, + X3 =3

The firstorder necessary conditions become

Xo+X3+A = 0
X1+X3+A = 0
X1+X2+A = 0.

You can solve these equations together with the one constraint equation and obtain
X1=X2=X3=1 and A=— 2

Thus x* =(1,1,1)".
Now you need to resort to the second-order sufficient conditions to determine if the problem
achieves alocal maximum and minimum at x; = X, = X3 = 1. You will find the matrix

L(X* ) = Hf(x" ) +AHh(X"
011
101
110

is neither positive nor negative definite. On the tangent space M = {yly; + vy, +ys; = 0},
however, you note that

YILY = yi(Y2+Ya) +Ya(y1 + Y3) +Ya(ys + Vz2)
= (R FY)
< 0, forall y=0.

Thus L is negative definite on M and the solution 3 you found is atleas a local maximum.
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4.5 Inequality Constraints

Finally, you will address the problems of the general form
Minimize  f(x)
subjectto h(x) =0

gx) = 0
where h = (hy,...,hy)" and g = (91,...,9p)".

thedPettHANARIRYPRAGITER tHat P4 e er B fERbaRTt R hesUARY AoHEwATIRSy, (36 reauy &8

said to be active at a feasible point x if gi(x) = O and inactive at x if g;(x) = 0. By convention
you refer to any equality constraint h;(x) = 0 as active at any feasible point. The constraints
active at a feasible point x restrict the domain of feasibility in neighbourhood of x. Therefore,
in studying the properties of a local minimum point, it is clear that attention can be restricted to
the active constraints. This is illustrated in the figure below where local properties satisfied by
the solution x* obviously do not depend on the inactive constraints g2 and gs.

Assume that the function f,h = (hy, ..., h)",9 = (01, ...,0,)" are twice continuousl
differentiable. Letx* be a point satis?yihg the cg]%str%lint.(g1 %) Y

h(x* ) =0 and g(x*)

<
0,

and let J = {j|gj (x* ) = 0}. Then x* is said to be a regular point of the above constraints if
the gradient vectors Vh; (x* ), Vg; (x* ), 1 < i < m, j € J are linearly independent.

Now suppose this regular point x* is also a relative minimum point for the original problem
(4.6). Then it is shown that there exists a vector A € R™ and a vector p € RP with u > 0 such
that

VE(X* ) +ATVh(x* )+ ' Vg(x* )=

0
Wog(x") = 0
Since p = 0 and g(x* ) < 0, the second constraint above is equivalent to the statement

that

a component of u may be nonzero only if the corresponding constraint is active. To find a
solu- tion, you can enumerate various combinations of active constraints, that is, constraints
where

equalities are attained at x* , and check the signs of the resulting Lagrangian multipliers.

There are a number of distinct theories concerning this problem, based on various regular-
ity conditions or constraint qualifications, which are directed toward obtaining definite general
statements of necessary and sufficient conditions. One can by no means pretend that all such re-
sults can be obtained as minor extensions of the theory for problems having equality constraints
only. To date, however, their use has been limited to small-scale programming problems of two
or three variables.
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4.6 Conclusion
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In this unit, you were introduced to constrained optimization problems, which could be equality,
inequality, or mixed constraints. You looked at the theorem of Lagrange for local optimum of a
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constrained problem.

4.7 Summary

Having gone through this unit, you now

(i) define equality and inequality constrained optimization problem.
(ii) state and use the lagrange theorem.
(i) State and apply the First-Order Necessary Conditions.

(iv) State and apply the second-order necessary and sufficient conditions.

4.8 Tutor Marked Assignments(TMAS)

Exercise 4.8.1

1. Findthe minimum and maximum of f(x,y) = x> — y? onthe unitcirclex? +y? = 1
using the Lagrange multipliers method. Using the substitution y2 = 1 — x?, solve the

same problem as a single variable unconstrained proble. Do you get the same results?
Why orWhy not?

2. Show that the problem of maximizing f(x,y) = x3 + y3 on the constraint set D =

{(x,y)|x +y = 1} has no solution. Show also that if the Lagrangian method were used
on this problem, the critical points of the Lagrangian have a unique solution. Is the point
identified by this solution either alocal maximum ora (local or global) minimum?

3. Find the maxima and minima of the following functions subject to the specified con-
straints:

(a) f(x,y) =xy subjectto x?+y?=2a2

(b) f(x,y) =1/x+1/ly subjectto (1/x)?+ (1ly)? = (1/a)?.

(c) f(x,y,2) =x+y+z subjectto (1/x) + (1ly) +(1/z) = 1.

(d) f(x,y,z) = xyz subjectto x+y+z=5andxy +xz+yz=28.
(e) f(x,y,2) =x+y for xy =16

(f) f(x,y,z) =x2+2y— z? subjectto 2x— y =0 and x + z = 6.

4. Maximize and minimize f(x, y) = x +y on the lemniscate (x> — y?)? = x® +y2.
5. Consider the problem
min x* +y? subjectto (x — 1)*— y*=0.

(a) Solve the problem geometrically.
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(b) Show that the method of Lagrange multipliers does not work in this case. Can you
explain why?

6. Consider the following problem where the objective function is quadratic and the con-
straints are linear

1 .
max ¢ x + —2xT Dx subjectto Ax =b
X

where cisagiven n-vector. D isagiven n X n symmetric, negative definite matrix, and
Aisagiven m X n matrix.

(a) Setup the Lagrangean and obtain the first-order condtions.
(b) Solve for the optimal vector x* asa function of A, b,cand D.

7. Solve the problem
max f(x) = x' Ax subjectto x-x =1

where A isagiven symmetric matrix.
8. Solve the following maximization problem:
Maximize Inx+Iny

Subjectto x? +y?=1
with X,y = 0.
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