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INTRODUCTION 

 
You are holding in your hand the course guide for FMT 312 (Linear Programming II). The 

purpose of the course guide is to relate to you the basic structure of the course material you 

are expected to study. Like the name ‘course guide’ implies, it is to guide you on what to expect 

from the course material and at the end of studying the course material. 
 

COURSE CONTENT 
 

Non – linear programming, quadratic programming Kuhntucker methods, optimality criteria 

simple variable optimization. Multivariable techniques, Gradient methods. 
 

COURSE AIM 
 

The aim of the course is to bring to your cognizance the different methods of solving (Non-LPP) 

thus Non-Linear programming models in Finance as mentioned in the course content to handle 

Financial problems via the use of Statistics and calculations. 
 

COURSE OBJECTIVES 
 

At the end of studying the course material, among other objectives, you should be able to: 
 
(i) Define continuous functions, differentiability and continuous differentiable function 

in Rn. 
 
(ii) Define and use the concept of partial derivatives and directional derivatives. 

 
(iii) Find Higher order Derivatives of a function defined on a subset S of Rn. 

(iv) Define quadratic forms and Definiteness. 

(v) Identify definiteness and semidefiniteness. 
 

COURSE MATERIAL 
 

 
 

The course material package is composed of: 

The Course Guide 

The study units 

Self-Assessment Exercises 

Tutor Marked Assignment 

References/Further Reading 
 

THE STUDY UNITS 
 

There are two modules and four  units in this course material. 

These study units are as listed below: 

MODULE I 
 

CLASSICAL OPTIMIZATION THEORY IN RN 



UNIT I 
 
Basic Concepts of Rn 

 
UNIT 2 

 

Optimization in Rn 
 
UNIT 3 

 
MODULE II 

 
Unconstrained Optimization 

 
UNIT 4 

 

Constrained Optimization 
 
TUTOR MARKED ASSIGNMENTS 

 

 
 
 

The Tutor Marked Assignments (TMAs) at the end of each unit are designed to test your 

knowledge and application of the concepts learned. Besides the preparatory TMAs in the 

course material to test what has been learnt, it is important that you know that at the end of 

the course, you must have done your examinable TMAs as they fall due, which are marked 

electronically. They make up to 30 percent of the total score for the course. 
 

SUMMARY 
 
Having gone through this course, you now know 

 
(i) A Typical Optimization Problem is 

Minimize(or Maximize) f(x) Subject to: x ∈ D
 

where f : D ⊂ R → R is called the objective function and D is called the constraint set.

 
(ii) Optimization problems are of two types, namely Constrained and Unconstrained 

Prob- lems. It is constrained if the constraint set D is made up of a set of inequalities 

and/or equations 
 
 (iii) If for example in the problem min( or max) f(x) subject to x ∈ D 
 
that f is continuous and D is a bounded and closed subset ofRn, the there exist a solution 

for the problem. This is the Weierstrass Existence theorem theorem. (iv) A real valued 

function f : Rn → R is coercive if you have 
 

lim kxk→+∞ 
 

f(x) = +∞. 



(v) If f is continuous and coercive on a closed set D ⊂ R then there exist ¯ x ∈ D such
 

that f(¯ x) ≤ f(x) for all x ∈ D.

 
(ii) the existence theorems for solution of an optimization problem. 

 
Good luck. 
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UNIT 1 
 

 

BASIC CONCEPTS OF RN 
 

 
 
 
 
 
 

1.1   Introduction 
 

 

In this unit and subsequent units, you shall be considering  another aspect of optimization prob- 

lems, different  from the linear programming problem you have  seen in previous units. The 

theorems you shall develop here are more general to any given mathematical programming in 

which the objective function f : S ⊂  Rn  → R defined on a subset S of Rn is nonlinear. Also the 
constraints may or may not be linear in the decision variables and the non-negativity  condition 
is also relaxed. 

 

For a better understanding  of optimization in Rn, you shall, in this unit, be introduced to 

some basic concepts and notions of the space Rn  (also known  as the real n-space).  These no- 

tions, can also be referred to as the topology  of Rn. Thus, you shall be considering notions like, 
Continuous functions,  differentiability,  partial derivatives, directional derivatives and higher or- 

der derivatives. You will also consider quadratic forms:  definite and semidefinite matrices and 
also see some results. 

 

 
 

1.2   Objectives 
 

 

At the end of this unit, you should be able to 
 

 

(i) Define continuous functions, differentiability and continuous differentiable  function  in 

Rn. 
 

(ii)  Define and use the concept of partial derivatives and directional derivatives. 

(iii)  Find Higher order Derivatives of a function  defined on a subset S of Rn. 

(iv) Define quadratic forms and Definiteness. 
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(v) Identify  definiteness and semidefiniteness. 
 

 
 

1.3   Functions 
 

Let S, T be subsets of Rn and Rl , respectively. A function f from S to T denoted by f : S → T , 

is a rule that associates with each element of S, one and only one element of T . The set S is 

called the domain of the function f, and the set T is the range of the function f . 
 

 
1.3.1  Continuous Functions 

 

Definition 1.3.1 Let f : S → T , where S ⊂  Rn and T ⊂  Rl . Then, f is said to be continuous 

at x ∈   S if for all    > 0, there exists a δ  > 0 such that y ∈   S and d(x, y) < δ implies  that 
d(f (x), f (y)) < . (Note that d(x, y) is the distance between x and y in Rn, while d(f (x), f (y)) 

is the distance in Rl .) 
 

Another way you can define continuous function is by using sequences. 
 

Definition 1.3.2 The function f : S → T is continuous at x ∈  S if for all sequences {xk } such 

that xk  ∈  S for all k, and lim xk  = x, then lim f (xk ) = f (x). 
k→∞  k→∞ 

 

Intuitively, f is continuous at x if the value of f at any point y that is “close” to x is a good 

approximation of the value of f at x. 

Definition 1.3.3 (Discontinuous Function)  f : S → T is called  discontinous at x ∈  S if it is 

not continuous at x. 
 

Example 1.3.1 (Continuous function) The identity  function  f (x) = x for all x ∈  R is contin- 

uous at each x ∈  R 

Example 1.3.2 The function f : R → R given by 

0, x ≤  0 

f (x) = 
 
 
1, x > 0 

 

is continuous everywhere except at x = 0. At x = 0, every open ball B(x, δ) with center x 

and radius δ > 0 contains at least one point y > 0. At all such points, f (y) = 1 > 0 = f (x), 

and this approximation  does not get better, no matter how close y gets to x (i.e., no matter how 

small you take δ to be). 

Definition 1.3.4 A function f : S → T is said to be continuous on S if it is continuous at each 

point in S. 
 

Observe that if f :⊂  Rn  → Rl , then f consists of l “component functions” (f 1 , . . . , f l ), 

i.e., there are functions f i : S → R, i = 1, . . . , l, such that for each x ∈  S, you have f (x) = 
(f 1(x), . . . , f l (x)). 
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Proposition 1.3.1 f is continuous at x ∈  S (resp. f is continuous on S) if and only if each f i 
is continuous at x (resp. if and only if each f i is continuous on S). 

 

Theorem 1.3.1 A function f : S ⊂  Rn  → Rl  is continuous at a point x ∈  S if and only if for 

all open set V ⊂  Rl   such that f (x) ∈   V, there is an open set U ⊂  Rn  such that x ∈   
U, and f (z) ∈  V for all z ∈  U ∩  S. 

 
 

Proof. Suppose f is continuous at x, and V is an open set in Rl  containing f (x). Suppose, 
by contradiction,  that the theorem was false, so for any open set U containing x, there is y ∈  
U ∩  S such that f (y)   ∈   V. Let k ∈  {1, 2, 3, . . . }, let Uk be the open ball with center 

x and radius 1/k. Let yk ∈  Uk ∩  S be such that f (yk )  ∈  V. The sequence {yk } is clearly 

well defined, and since yk ∈  Uk for all k, you have d(x, yk ) < 1/k for each k, so yk → x as k 

→ ∞. Since f is continuous at x by hypothesis, you also have f (yk ) → f (x) as k → ∞. 

However f (yk )  ∈  V for any k, and since V is open, V c is closed,  so f (x)  = lim f (yk ) 

∈  V c which 
contradicts 

f (x) ∈  V. 
k→∞ 

 Conversely,  suppose that for each open set V containing f (x), there is an open set U con- taining x such that f (y) ∈  V for all y ∈  U ∩  S. You will show that f is continuous at x. Let 
 

> 0 be given. Define V to be the open ball in Rl  with center f (x) and radius . Then, there 
exists an open set U  containing x such that f (y) ∈   V  for all y ∈   U ∩  S. Pick any δ > 0 

so that B(x, δ)  ∈   U . Then, by construction, it is true that y ∈   S and d(x, y) < δ implies 
f (y) ∈  V , i.e., that d(f (x), f (y)) <  . Since  > 0 is arbitrary, you have shown precisely that 
f is continuous at x. 

 

As an immediate corollary,  you have the following statement, which is usually abbreviated 

as: “a function is continuous if and only if the inverse image of every open set is open.” 
 

Corollary 1.3.1 A function f : S ⊂  Rn  → Rl  is continuous on S if and only if for each open 

set V ⊂  Rl , there is an open set U ⊂  Rn such that f −  1 (V ) = U ∩  S where f −  1 (V ) is 
defined 
by 

 

f −  1 (V ) = {x ∈  S|f (x) ∈  V } 

In particular, if S is an open set in Rn, f is continuous on S if and only if f −  1 (V ) is an open 

set in Rn for each open set V in Rl . 
 

Finally,  some observation. Note that continuity  of a function  f at a point  x is a local prop- 

erty, i.e., it relates to the behaviour of f near x. but tells you nothing about the behaviou of f 

elsewhere. In particular, the continuity of f at x has no implicatioin   even for the continuity of 

f at points “close” to x. Indeed, it is easy to construct functions  that are continuous at a given 

point x, but that are discontinous at every neighbourhood of x. It is also important to note that, 

in general, functions  need not be continuous at even a single  point in their domain.  Consider 

f : R+  → R+  given by f (x) = 1, if x is a rational  number,  and f (x) = 0, otherwise.  This 
function is discontinuous everywhere on R+ . 

 

 
1.3.2 Differentiable and Continuously Differentiable Functions 

 
Throughout this subsection, S will denote an open set in Rn
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Definition 1.3.5 (Differentiability) A function f : S → Rm  is said to be differentiable at a 

point x ∈  S if there exists an m × n matrix A such that for all   > 0, there is δ > 0 such that 

y ∈  S and x −  y  < δ implies 

f (x) −  f (y) −  A(x −  y)  < x −  y 

. 

Equivalently, f is differentiable at x ∈  S if 

 

( \ 
 

lim 
y→x 

f (y) −  f (x) −  A(y −  x) 
= 0 

y −  x 
 

 
(The notation “y → x” is shorthand for “ for all sequences {yk } such that yk → x.”) 

The matrix A in this case is called derivative of f at x and is denoted Df (x). Figure 1.1 

provides a graphical illustration  of the derivative.  In keeping with standard practice, you shall, 

in the sequel,  denote Df (x) by f !(x) whenever n  = m  = 1, i.e., whenever S ⊂   R and 
f : S → R. 

 
 
 
 
 
 
 
 
 
 

 
g ( y )=a +by f ( y) 

 

 
 
 
 

f ( x ) 

 
 
 
 
 
 
 
 
 
 
 

x 

 
 
 

Figure 1.1: The Derivative 
 
 

Remark 1.3.1 The definition of the derivative Df may be motivated as follows.  An affine func- 

tion from Rn to Rm is a function g is of the form 
 
 

g(y) = Ay + b, 
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 x2 

 

 
 

where A is an m × n matrix, and b  ∈   Rm. (When  b  = 0, the function  g is called linear.) 

Intuitively,  the derivative of f at a point x ∈  S is the best affine approximation  to f at x, i.e., 

the best approximation of f around the point x by an affine function g. Here, “best” means that 

the ratio 
 

( \ 
f (y) −  g(y) 

y −  x 

goes to zero as y → x. Since the values of f and g must coincide  at x (otherwise  g would 
be hardly be a good approximation  to f at x), you must have g(x)  = Ax + b  = f (x), or 
b = f (x) −  Ax. Thus, you may write this approximating  function g as 

 

g(y) = Ay −  Ax + f (x) = A(y −  x) + f (x). 
 

Given this value for g(y), the task of identifying  the best affine approximation  to f at x now 

amounts to identifying a matrix A such that 
 

( \ ( 
f (y) −  g(y)  

= 
y −  x 

 

f (y) −  (A(y −  x)) + f (x) 

y −  x 

 

\ 

→ 0 as  y → x. 

This is precisely the definition of the derivative you have given. 
 
 

If f is differentiable at all points in S, then f is said to be differentiable  on S. When f is 
differentiable on S, the derivative Df  itself forms a function  from S to Rm×n. If Df  : S → 

Rm×n  is a continuous function,  then f is said to be continuously differentiable  on S, and you 

write f is C 1. 

The following observations are immediate  from the definitions.  A function f : S ⊂  Rn  → 
Rm is differentiable  at x ∈  S if and only if each of the m componet functions f i : S → R of f 
is differentiable  at x, in which  case you have Df (x) = (Df 1(x), . . . , Df m(x)). Moreover, f is 

C 1 on S if and only if each f i is C 1 on S. 
 

The difference between differentiability  and continuous differentiability  is non-trivial. The 

following example shows that a function may be differentiable  everywhere, but may still not be 

continuously differentiable. 

Example 1.3.3 Let f : R → R be given by 
 
 

 

f (x) = 
0, if x = 0 

( ) 
x2 sin 1

 

 

if x = 0. 
 

For x = 0, you have 
 

( \ ( \ 

f ! (x) = 2x sin 
1 2 1 

x2 
−  

x 
cos

 x2 
.
 

Since | sin(·)| ≤  1 and | cos(·)| ≤  1, but (2/x) → ∞ as x → 0, it is clear that the limit as x → 0 

of f !(x) is not well defined. However, f !(0) does exist!  Indeed, 
( 

f !(0) = lim 
x→0 

\ 
f (x) −  f (0) 

x −  0 

( \ 
1 

= lim x sin . 
x→0  x2
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Since | sin(1/x2 )| ≤  1, you have |x sin(1/x2 )| ≤  |x|, so x sin(1/x2 ) → 0 as x → 0. This means 
f !(0) = 0. Thus, f is not C 1 on R+ . 

 
This example notwithstanding,  it is true that the derivative of everywhere differentiable 

function f must possess a minimal   amount  of continuity. This you shall see in the intermediate 

value theorem later in this unit. 

 You shall close this subsection with a statement of two important properties of the derivative. First, given two functions f : Rn → Rm and g : Rn  → Rm, define their sum (f + g) to be the 

function from Rn to Rm whose value at any x ∈  Rn is f (x) + g(x). 
 

Theorem 1.3.1 If f : Rn  → Rm and g : Rn  → Rm are both differentiable at a point x ∈  Rn, 

so is (f + g) and, in fact, 

D(f + g)(x) = Df (x) + Dg(x). 
 

Proof. Obvious from the definition of differentiability. 
 

Next, given functions f : Rn  → Rm  and h : Rk  → Rn, define, their composition f ◦ h to 

be the function  from Rk to Rm whose value at any x ∈  Rk is given by f (h(x)), that is, by the 

value of f evaluated at h(x). 
 

Theorem 1.3.2 Let f : Rn  → Rm  and h : Rk  → Rn. Let x ∈  Rk . If h is differentiable at x, 

and f is differintiable at h(x), the f ◦ h is itself differetiable at x, and its derivative  may be 

obtained throughout the “chain rule” as: 
 

D(f ◦ h)(x) = Df (h(x))Dh(x). 

 
Proof. See Rudin  (1976, theorem  9.15, p.214). 

 

Theorems 1.3.1 and 1.3.2 are only one-way implications.   For instance, while the differen- 
tiability of f and g at x implies the differentiability  of (f + g) at x, (f + g) can be differentiable 

everywhere  (even C 1) without f and g being differentiable  anywhere. For an example, let 

f : R → R be given by f (x) = 1 if x is rational, and f (x) = 0 otherwise, and let g : R → R 
be given by g(x) = 0 if x is rational, and g(x) = 1 otherwise. Then, f and g are discontinuous 
everywhere, so are certainly  not differentiable  anywhere. However, (f + g)(x) = 1 for all x, so 

(f + g)!(x) = 0 at all x, meaning (f + g) is C 1. Similarly, the differeintiability  of f ◦ h has no 
implications for the differentiability  of f at h(x) or the differentiability  of h at x. 

 

 
1.3.3 Partial Derivatives and Differentiability 

 

Definition 1.3.6 Let f : S → R, where S ⊂  Rn is an open set. Let ej  denote the vector in Rn
 

that has a 1 in the j −  th place and zeros elsewhere (j  = 1, . . . , n). Then the j −  th partial 
derivative of f is said to exist at a point x if there is a number ∂ f (x)/∂xj  such that 

( 

lim 
t→0 

\ 
f (x + tej ) −  f (x) 

t 

 

∂f 
= 

∂xj 

 

 

(x) 

 

Among the more pleasant facts of life are the following: 
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Theorem 1.3.3 Let f : S → R, where S ⊂  Rn is open. 
 

1. If f is differentiable at x, then all partials ∂ f (x)/∂ xj  exist at x, and 

Df (x) = [∂ f (x)/∂ x1 , . . . , ∂ f (x)/∂ xn] 
 

2. If all the partials ∂f (x)/∂ xj  exist and are continuous at x, then Df (x) exists and 

Df (x) = [∂ f (x)/∂ x1 , . . . , ∂ f (x)/∂ xn] 
 

3. f is C 1 on S if and only if all partial derivatives of f exist and are continuous on S. 
 

Proof. See Rudin  (1976, Theorem  9.21, p219). 
 

Thus, to check if f is C 1, you only need figure out if (a) the partial derivatives exist on S, 

and (b) if they are all continuous on S. On the other hand, the requirement that the partials not 

only exist but be continuous at x is very important for the coincidence of the vector of partials 

with Df (x). In the absence of this condition, all partials could exist at some point without the 

function itself being differentiable  at that point. Consider the following example: 

Example 1.3.4 Let f : R2 → R be given by f (0, 0) = 0, and for (x, y) = (0, 0) 

xy f 

(x, y) =    ψ   . 
x2 + y2 

 

You will show that f has all partial derivatives everywhere (including  at (0, 0)), but that these 

partials are not continuous at (0, 0). Then you have to show that f is differentiable  at (0, 0). 
 

☞ Solution.  Since f (x, 0) = 0 for any x = 0, it is immediate that for all x = 0, 
 

∂f 
(x, 0) = lim 

f (x, ŷ) −  f (x, 0) x 
= lim    = 1. 

∂y ŷ→0 ŷ  ŷ→0 x2 + y2 
 

Similarly, at all points of the form (0, y) for y = 0, you have ∂ f (0, y)/∂x  = 1. However, note 

that 
∂f 

(0, 0) = lim 
f (x, 0) −  f (0, 0) 

= lim 
0 −  0 

= 0, 
∂x  x→0  x x→0  x 

so ∂ f (0, 0)/∂ x exists at (0, 0), but is not the limit of ∂f (0, y)/∂ x as y → 0. Similarly, you also 
have ∂ f (0, 0)/∂y = 0 = 1 = lim ∂ f (x, 0)/∂y. 

x→0 

Suppose f were differentiable at (0, 0). Then, the derivatives  Df (0, 0) must conicide with 

the vector of partials at (0, 0) so you must have Df (0, 0) = (0, 0). However, from the definition 

of the derivative, you must also have 

 
 

lim 
(x,y)→(0,0) 

f (x, y) −  f (0, 0) −  Df (0, 0) · (x, y) 
= 0 (x, y) −  (0, 0) 

but this is impossible if Df (0, 0) = 0. To see this, take any point  (x, y) of the form (a, a) for 

some a > 0, and note that every neighbourhood of (0, 0) contains at least one such point. Since 

f (0, 0) = 0, Df (0, 0) = (0, 0), and (x, y)  =   x2 + y2, it follows that 

f (a, a) −  f (0, 0) −  Df (0, 0) · (a, a) a2 1 
= = 

(a, a) −  (0, 0) 2a2 2 
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so the limit of this fraction  as a → 0 cannot be zero. ✍  

Intuitively, the feature that drives this example is that in looking  at the partial derivative of 
f with respect to (say) x at a point (x, y), you are moving  along only the line through (x, y) 

parallel to the x-axis  (see the line denoted l1 in Figure 1.2). Similarly,  the partial with derivative 

with respect to y involves holding the x variable fixed, and moving  only on the line through 

(x, y) parallel  to the y-axis (see the line denoted l2 in Figure 1.2). On the other hand, in looking 

at the derivative Df , both the x and y variables are allowed to vary simultaneously  (for instance, 
along the dotted curve in Figure 1.2). 

 

Lastly, it is worth  stressing that although a function  must be continuous in order to be dif- 

ferentiable  (this is easy to see from  the definitions),   there is no implication  in the other direction 

whatsoever. Extreme examples exist of functions  which are continuous on all of R, but fail to be 

differentiable at even a single point.  Such functions  are by no means pathological; they play, for 

instance, a central role in the study of Brownian motion in probability theory (with probability 

one, a Brownian  motion path is everywhere continuous and nowhere differentiable). 
 
 
 

y 

 

 
 
 

l 2 

 

 
 
 
 
 
 
 
 
 

l  

1 
1

 

 
 
 
 
 
 
 

 
x 

 

 
 
 
 

Figure 1.2: Partial Derivatives and Differentiability 
 
 
 

1.3.4 Directional Derivatives and Differentiability 
 

Let f : S → R, where S ⊂  Rn is open. Let x be any point in S, and let h ∈  Rn. The directional 

derivative of f at x in the direction h is defined  as 
 

lim 

( \ 
f (x + th) −  f (x) 

t→0+ t 
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n 

 

 
 

when this limit exists, and is denoted Df (x; h). (The notation t → 0+ is shorthand for t > 0, 

t → 0.) 

When the condition  t → 0+ is replaced with t → 0, you obtain what is sometimes called 

the “two-sided directional derivative.” Observe that partial  derivatives  are a special case of two- 
sided directional derivatives: when h = ei  for some i, the two-sided directional  derivative at x 

is precisely the partial derivative ∂ f (x)/∂ xi. 
 

In the privious  subsection, it was pointed out that the existence of all partial derivatives at 

a point  x is not sufficient to ensure that f is differentiable at x. It is actually true that no even 

the existence of all two-sided directional derivatives at x implies that f is differentiable at x. 

However, the following relationship in the reverse direction is easy to show. 
 

Theorem 1.3.4 Suppose f is differentiable at x ∈   S. Then, for any h ∈   Rn, the (one-sided) 

directional derivative Df (x; h) of f at x in the direction h exists,  and, in fact, you have 
Df (x; h) = Df (x) · h. 

 

An immediate corollary is 

Corollary 1.3.2 If Df (x) exists, then Df (x; h) = −  Df (x; −  

h). 
 
Remark 1.3.2 What is the relationship  between Df (x) and the two-sided directional  deriva- 

tive of f at x in an arbitrary direction h? 
 

 
1.3.5  Higher Order Derivatives 

 

Let f be a  function from S  ⊂   Rn  to R, where S is an open set.  Throughout this sub- 

section, you will  assume  that f is differentiable on all of S, so that the derivative Df  = 

[∂ f /∂ x1 , . . . , ∂ f /∂ xn] itself defines a function  from S to Rn. 

Suppose now that there is x ∈  S such that the derivative  Df is itself differentiable at x, i.e., 

such that for each i, the function ∂ f /∂ xi  : S → R is differentiable at x. Denote the partial of 

∂f /∂ xi  in the direction ej  at x by ∂2 f (x)/∂ xj ∂xi, if i = j, and ∂2 f (x)/∂ x2 , if i = j. Then, 

you say that f is twice-differentiable  at x, with second derivative  D2 f (x), where 

 
∂2 f (x) 

∂x2
 

∂2 f (x) · · ·    
∂x1∂xn 

 

D2 f (x) = . 
. . . . 

 

∂2 f (x)  ∂2 f (x) 
 

∂xn∂x1 
· · · 

 

∂x2 

Once again, you shall follow standard practice and denote D2 f (x) by f !!(x) whenever n = 1 
(i.e., if S ⊂  R). 

 

If f is twice-differentiable at each x in S, you say that f is twice-differentiable  on S. When 

f is twice-differentiable on S, and for each i, j = 1, . . . , n the cross-partial ∂2 f /∂ xi∂ xj  is a 



1 

1.4 Quadratic Forms: Definite and Semidefinite MaUtrNicITes1.  BASIC CONCEPTS OF RN
  

 

 
 
 

continuous function from S to R, you say that f is twice continuously differentiable on S, and 

you write f is C 2. 
 

When f is C 2, the second-derivative D2 f , which is also called the matrix of cross-partials 

(or the hessian of f at x), has the following useful property: 

Theorem 1.3.5 If f : D → Rn is a C 2 function, D2 f is a symmetric matrix, i.e., you have 
 

∂2 f 

∂xi∂ xj 

for all i, j = 1, . . . , n and for all x ∈  D. 

 

(x) = 
∂2 f 

∂xi∂ xj 

 

(x) 

 
Proof. See Rudin (1976, Corollary to Theorem 9.41, p.236). 

 

For an example where the symmetry of D2 f fails because it fails to be continuous,  see the 

Tutor Marked Assignemts(TMAs). 
 

The condition  that the partials should be continuous for D2 f to be a symmetric  matrix  can 

be weakened a little. In particular, for 

 

∂2 f 

∂xj ∂ xk 

 

(y) = 
∂2 f 

∂xk ∂xj 

 

(y) 

to hold, it suffices just that (a) the partials ∂f /∂ xj  and ∂ f /∂ xk   exist everywhere on D and 

(b) that one of the cross-partials ∂2 f /∂xj ∂xk  or ∂2 f /∂xk ∂xj  exist everywhere on D and be 

continuous at y. 

Still higher derivatives (third, fourth, etc.) may be defined for a function   f : Rn   → R. 

The underlying  idea is simple: for instance, a function   is thrice-differentiable at a point x if 
all the component functions of its second-derivative D2 f (i.e., if all the cross-partial functions 

∂2 f /∂xi∂ xj ) are themselves differentiable  at x; it is C 3 if all these component functions  are 

continuously differentiable,  etc. On the other hand, the notation becomes quite complex unless 

n = 1 (i.e., f : R → R), and you do not have any use in this book for derivatives beyond the 
second, so you will not attempt formal definitions here. 

 

 
 

1.4   Quadratic  Forms: Definite and Semidefinite Matrices 
 
 

1.4.1  Quadratic  Forms and Definiteness 
 

Definition 1.4.1 A quadratic form on Rn is a function gA on Rn of the form 
 

n 

gA (x) = xt Ax =  aij xixj 

i,j=1 

 

where A = (aij ) is any symmetric n × n matrix. 
 

Since the quadratic form gA is completely specified by the matrix A, you henceforth refer to A 

itself  as the quadratic  form. your interest in quadratic forms arises from the fact that if f is a C 2 
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function, and z is a point in the domain of f, then the matrix of second partials D2 f (z) defines 

a quadratic  form (this follows from Theorem 1.3.5 on the symmetry property of D2 f for a C 2 

function f ). 
 

Definition 1.4.2 A quadratic form A is said to be 
 

1. positive definite if you have xt Ax > 0 for all x ∈  Rn, x = 0. 

2. positive semidefinite if you have xt Ax ≥  0 for all x ∈  Rn, x = 0. 

3. negative definite if you have xt Ax < 0 for all x ∈  Rn, x = 0. 

4. negative semidefinite if you have xt Ax ≤  0 for all x ∈  Rn, x = 0 
 

 

The terms “non-negative  definite”  and “nonpositive  definite”  are often used in place of “positive 

semidefinite” and “negative semidefinite” respectively. 
 

For instance, the quadratic form A defined by 
 

A = 
1 0 

0  1 
 

is positive definite, since for any x = (x1, x2) ∈  R2 , you have xt Ax = x2 + x2, and this quantity 
is positive whenever x = 0. On the other hand, consider the quadratic form 

 

A = 
1 0 

0  0 
 

2 t
 

For any x = (x1, x2) ∈   R2, you have xt Ax = x1 , so x Ax can be zero even if x = 0. (For 
 

example, xt Ax  = 0if x = (0, 1).) Thus, A is not positive definite. On the other hand, it is certainly true that you always have xt Ax ≥  0, so A is positive semidefinite. 
 

Observe that there exist matrices A which are neither positive  semidefinite  nor negative 

semidefinite,  and that do not, therefore, fit into any of the four categories you have identified. 

Such matrices are called indefinite quadratic  forms. As an example  of an indefinite  quadratic 

form A, consider 
 

 

A = 
0 1 

1  0 

For x = (1, 1), xtAx = 2 > 0, so A is not negative semidefinite. But for x = (−  1, 1), xt Ax = 

−  2  <  0,  so  A  is  positive semidefinite 
either. 

Given a quadratic form A and any t ∈  R, you have (tx)t A(tx) = t2 xtAx, so the quadratic 

form has the same sign along lines through  the origin. Thus, in particular, A is positive definite 
(resp. negative definite) if and only if it satisfies xt Ax  > 0 (resp. xtAx < 0) for all x in 
the unit sphere C = {u ∈  Rn |  u = 1}. You will use this observation to show that if A is a 
positive definite (or negative definite) n × n matrix,  so is any other quadratic form B which is 
sufficiently  close to A. 
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Theorem 1.4.1 Let A be a positive definite n × n matrix. Then there is γ > 0 such that if B 
is any symmetric n × n matrix with |bj k −  aj k | < γ for all j, k ∈  {1, . . . , n}, then B is also 
positive definite. A similar  statement holds for negative definite matrices A. 

 
Proof. You will make use of the Weierstrass Theorem,  which will be proved  later. The 

Weierstrass  Theorem  states that if K ⊂  Rn is compact, and f : K → R is a continuous function, 
then f has both maximum  and minimum  on K, i.e., there exist points k! and k∗   in K such that 
f (k!) ≥  f (k) ≥  f (k∗  ) for all k ∈  K. 

Now, the unit sphere C is clearly  compact, and the quadratic form A is continuous on this 

set. Therefore, by the Weierstrass Theorem, there is z ∈  C such that for any x ∈  C, you have 

 

ztAz ≤  xt Ax. 
 

If A is positive definite, then z t Az must be strictly  positive, so there must exists > 0 such that 

xt Ax ≥  > 0 for all x ∈  C . 

Define γ = /2n2  > 0. Let B be any symmetric  n×n matrix, which is such that |bj k −  aj k | < 
γ for all j, k = 1, . . . , n. Then for any x ∈  C , 

 

|xt (B −  A)x| = 
n 

(b −  aj k)x x
 

j k  j k 

j,k=1 

 
n 

≤  
j,k=1 

|bj k −  aj k ||xj ||xk | 

 

L.n 

<  γ  j,k=1 |xj ||xk | 
 

 

Therefore, for any x ∈  C , 

< γn2 = /2. 

 
 

xtB x = xtAx + xt (B −  A)x ≥   −   /2 = 

/2 

so B is positive definite, and the desired result is establised. 
 

A particular implication of this result, which you will use in the study of unconstrained 

optimization problems, is the following: 
 
 
Corollary 1.4.1 If f is a C 2 function such that at some point x, D2 f (x) is a positive definite 
matrix, then there is a neighbourhood B(x, r) of x such that for all y ∈  B(x, r), D2 f (y) is also 

a positive definite matrix. A similar statement holds if D2 f (x) is instead, a negative definite 

matrix. 

 
Finally, it is important to point out that Theorem 1.4.1 is no longer true if “positive definite” 

is replaced with “positive semidefinite.”  Consider, as a counter example, the matrix  A defined 

by 
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A = 
1  0 

. 
0  0 

 

You have seen above that A is positive semidefinite (but not positive definite). Pick any γ > 0. 

Then, for = γ/2, the matrix 
 

 

B = 
1 0 
0  −  

 

satisfies |aij −  bij | < γ for all i, j. However, B is not positive semidefinite: for x = (x1, x2), you 

have xtB x = x2 −   x2, and this quantity  can be negative (for instance, if x1 = 0 and x2  = 0). 

Thus, there is no neighbourhood of A such that all quadratic forms in that neighbourhood are 

also positive semidefinite. 
 

 

1.4.2  Identifying  Definiteness and Semidefiniteness 
 
From a practical   standpoint,  it is of interest to ask: what restrictions on the structure of A 

are imposed by the requirement that A be a positive  (or negative) definite quadratic from? The 

answers to this questions is provided in this section.  These results are, in fact, equivalence state- 

ments; that is, quadratic  forms  possess the required  definiteness  or semidefiniteness property if 

and only if they meet the condition  outlined. 

The first result deals with positive  and negative definiteness.  Given  an n × n symmetric 

matrix A, let Ak  denote the k × k submatrix of A that is obtained when only the first k rows and 

columns are retained, i.e., let 
 

a11   · · · a1k 

Ak  = . 
. . . . 

ak1    · · · akk 

You will refer to Ak  as the k-th natural ordered principal minor of A. 

Theorem 1.4.2 An n × n symmetric matrix A is 
 

1. negative definite if and only if (−  1)k |Ak | > 0 for all k ∈  {1, . . . , n}. 

2. positive definite if and only if |Ak | > 0 for all k ∈  {1, . . . , n}. 
 

 
Moreover, a positive semidefinite quadratic form A is positive definite if and only if |A| = 0, 

while a negative semidefinite quadratic form is negative definite if and only if |A| = 0. 

 
Proof. See Debreu (1952,  Theorem  2, p.296). 

 

A natural conjecture is that this theorem would continue to hold if the words “negative defi- 

nite” and “positive  definite”  were replaced with “negative semidefinite” and “positive  semidef- 

inite,” respectively, provided the strict inequalities were replaced with weak ones. This conjec- 

ture is false. Consider the following example. 
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k 

k 

 
 
 

Example 1.4.1 Let 
 

 

0  0 
A = 

0  1 
and B =

 

 

 

0 0 

0  −  1 

Then, A and B are both symmetric matrices.  Moreover, |A1 |  = |A2 |  = |B1 |  = |B2 |  = 0, 
 so if the conjecture were true, both A and B would  pass the test for positive semidefiniteness, as well as the test for negative semidefiniteness.  However,  for any x ∈   R2, xt Ax = x2  and 

xt  Bx = −  x2 2. Therefore, A is positive semidefinite but not negative seimidefinite,  while B is 
negative semidefinite, but not positive semidefinite. 

 
Roughly  speaking, the feature driving this counterexample is that, in both the matrices A 

and B, the zero entries in all but the (2, 2)-place of the matrix make the determinants of order 

1 and 2 both zero. In particular, no play is given to the sign of the entry in the (2, 2)-place, 
which is positive in one case, and negative  in the other. On the other hand, an examination 

of the expression xt Ax and xtB x reveals that in both cases, the sign of the quadratic form is 
determined precisely by the sign of the (2, 2)-entry. 

 

This problem  points to the need to expand the set of submatrices that you are considering, if 

you are to obtain an analog of Theorem 1.4.2 for positive and negative semidefiniteness. Let an 

n × n symmetric matrix A be given, and let π = (π1, . . . , πn) be a permutation of the integers 
{1, . . . , n}. Denote by Aπ the symmetric n × n matrix obtained by applying the permutation π 
to both the rows and columns of A : 

 

aπ1 π1 
· · · aπ1 πn 

 

Aπ = . 
. . . . 

 
aπn π1 · · · aπn πn 

π π
 

For k ∈  {1, . . . , n}, let Ak denote the k × k symmetric submatrix of A obtained by retaining 

only the first k rows and columns: 
 

 

aπ1 π1 
· · · aπ1 πn 

 

π . .
 

Ak  = .. . . . 

 

aπk π1 · · · aπk πk 

Finally, let Π denote the set of all possible permutations of {1, . . . , n} 

Theorem 1.4.3 A symmetric n × n matrix A is 
 

1. positive semidefinite if and only if |Aπ | ≥  0 for all k ∈  {1, . . . , n} and for all π ∈  Π. 

2. negative semidefinite  if and only if (−  1)k |Aπ |  ≥  0 for all k ∈   {1, . . . , n} and for all 

π ∈  Π. 
 

Proof. See Debreu (1952,  Theorem  7, p298). 
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One final remark is important.  The symmetry assumptions is crucial to the validity of these 

results. If it fails, a matrix A might  pass all the tests for (say) positive semidefiniteness without 

actually being positive semidefinite. Here are two examples: 
 

Example 1.4.2 Let  

A = 
1  −  3 
0 1 

Note that |A1 |  = 1, and |A2 |  = (1)(1) −  (−  3)(0) = 1, so A passes the test for positive 
 

definiteness.  However, A is not a symmetric  matrix,  and is not, in fact, positive definite: you 
have xt Ax = x2 + x2 −  3x1 x2 which is negative for x = (1, 1). 

 

Example 1.4.3 Let 

A = 
0  1 

. 
0  0 

There are only two possible permutations of the set {1, 2}, namely,  {1, 2} itself, and {2, 1}. 

This gives rise to four different submatrices, whose determinants you have to consider: 
 

a11    a12
 a11    a12

 

[a11],  [a22 ], a21    a22 
,  and

 
 

a21 

 

a22 

 

You can easily check that the determinants of all four of these are non-negative,  so A passes the 

test for positive semidefiniteness. However, A is not positive semidefinite: you have xt Ax = 

x1 x2, which could be positive or negative. 
 

 
 

1.5   Some Important  Results 
 

 

This section brings together some results of importance for the study of optimization theory. 

These are, the separation theorems for convex  sets in Rn, consequences of assuming continu- 

ity and/or differentiability  of real-valued functions defined on Rn  and two fundamental results 
known  as the Inverse Function  Theorem and the Implicit Function Theorem. 

 

 
 

1.5.1  Separation Theorems 

Let p = 0 be a vector in Rn, and let a ∈  R. The set H defined by 

 

H = {x ∈  Rn|p · x = a} 
 

is called a hyperplane  in Rn, and will be denoted H (p, a). 

A hyperplane in R2, for example, is simply a straight  line: if p ∈   R2 and a ∈   R, the 

hyperplane H (p, a) is simply the set of points (x1, x2) that satisfy p1 x1 + p2 x2 = a. Similary,  a 

hyperplane in R3 is a plane. 

A set D in Rn is said to be bounded by a hyperplane  H (p, a) if D lies entirely on one side 

of H (p, a), i.e., if either 
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p · x ≤  a,  for all  x ∈  D 

or 

p · x ≥  a,  for all  x ∈  D 

If D is bounded by H (p, a) and D ∩  H (p, a) = ∅  , then H (p, a) is said to be a 
supporting hyperplane for D. 

Example 1.5.1 Let D = {(x, y) ∈  R2 |xy ≥  1}. Let p be the vector (1, 1), and let a = 2. Then 

the hyperplane 
 

H (p, a) = {(x, y) ∈  R2 |x + y = 2} 

bounds D : if xy ≥  1 and x, y ≥  0, then you must have (x + y) ≥  (x + x−  1) ≥  2. 

In fact, 

H (p, a) is a supporting  hyperplane  for D since H (p, a) and D have the point (x, y) = (1, 1) in 
common. 

Two sets D and E in Rn are said to be separated by the hyperplane H (p, a) in Rn if D and 

E lie on opposite sides of H (p, a), i.e., if you have 

p · y ≤  a,  for all y ∈  D 

p · z ≥  a,  for all y ∈  D 

If D and E are separated by H (p, a) and one of the sets (say, E ) consists of just a single point x, 
you will indulge in a slight  abuse of terminology  and say that H (p, a) separates the set D and 

the point x. 
 

A final definition is required before you would state the main results of this section. Given a set X ⊂  Rn, the closure of X , denoted X ◦, is defined to be the intersection of all closed sets 

containing X , i.e., if 
 

 
then 

∆(X ) = {Y ⊂  Rn|X ⊂  Y } 
 

n 
X ◦  = Y . 

Y ∈  ∆(X ) 

Intuitively, the closure of X is the “smallest”  closed set that contains X . Since the arbitrary 

intersection of closed sets is closed, X ◦  is closed for any set X ◦ . Note that X ◦  = X if and only 

if X is itself closed. 
 

The following results deal with the separation of convex  sets by hyperplanes.  They play a 

significant role in the study of inequality-constrained  optimization   problems under convexity 

restriction. 
 

Theorem 1.5.1 Let D be a nonempty convex set in Rn, and let x∗   be a point in Rn that is not in 

D. Then, there is a hyperplane H (p, a) in Rn with p = 0 which separates D and x∗  . You may, if 
you desire choose p to also satisfy p  = 1. 

 
Proof. See Sundaram (1999, Theorem  1.67, p56) 
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Theorem 1.5.2 Let D and E be convex  sets in Rn  such that D ∩  E = ∅  . Then, there exists a 

hyperplane H (p, a) in Rn  which separates D and E . You may, if you desire, choose p to also 

satisfy p  = 1. 

Proof. Let F = D + (−  E ), where, in obvious notation, −  E is the set 

{y ∈  Rn | −  y ∈  E 

}. 

Since D and E are convex  sets, F is also convex.  You can claim that 0 ∈   F . For if you had 

0 ∈  F , then there would exist points x ∈  D and y ∈  E such that x −  y = 0. But this implies 
x = y, so x ∈  D ∩  E , which contradicts the assumption that D ∩  E is empty. Therefore, 0 ∈  F 

. 

By 1.5.1, there exists p ∈  Rn such that 

p · 0 ≤  p · z,  z ∈  F . 
 

This is the same thing  as 
 

p · y ≤  p · x,  x ∈  D,  y ∈  E 
 

It follows that sup p · y ≤  inf p · x. If a ∈  {supy ∈  E  p · y, inf x∈  D p · x}, the hyperplane H (p, a) 
y∈  E 

separates D and E . 

x∈  D 

That p can also be chosen to satisfy p  = 1 is established in the same way as in 1.5.1 
 

 
 

1.5.2 The Intermediate and Mean Value Theorems 
 

The Intermediate  Value Theorem asserts that a continuous  real function  on an interval  assumes 

all intermediate values on the interval.  Figure 1.3 illustrates the result. 
 
 Theorem 1.5.3 (Intermediate  Value Theorem) Let D  = [a, b] be an interval in R and let 
f : D  → R be continuous function. If f (a)  < f (b), and if c is a real number such that 

f (a) < c < f (b), then there exists x ∈  (a, b) such that f (x) = c. A similar statement holds if 
f (a) > f (b). 

 
Proof. See Rudin  (1976, Theorem  4.23, p.93). 

 
Remark 1.5.1 It might appear at first glance that the intermediate value property actually char- 

acterizes continuous functions is and only if for any two points x1 < x2 and for any real number 

c lying between f (x1) and f (x2), there is x ∈  (x1 , x2) such that f (x) = c. The Intermediate 
Value Theorem shows that the “only if ” part is true. You can show that the converse, namely 
the “if ” part, is actually false. 

 
You have seen in Example 1.3.3 that a function  may be differentiable   everywhere, but may 

fail to be continuously  differentiable.    The following result (which may  be regarded  as an In- 

termediate Value Theorem for the derivative)  states, however, that the derivative  must still have 

some minimal  continuity  properties, viz., that the derivative  must assume all intermediate val- 

ues.  In particular, it shows that the derivative f !  of an everywhere differentiable  function f 
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cannot have jump discontinuities. 
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a b c 

 

 
 
 

Figure 1.3: The Intermediate Value Theorem 
 
 
 Theorem 1.5.4 (Intermediate Value Theorem for the Derivative) Let D = [a, b] be an interval 
in R, and let f : D → R be a function that is differentiable  everywhere on D. If f !(a) < f !(b), 
and if c is a real number such that f !(a) < c < f !(b), then there is a point x ∈  (a, b) such that 

f ! (x) = c. A similar  statement holds if f ! (a) > f !(b). 
 

Proof. See Rudin  (1976, Theorem  5.12, p.108) 
 

It is very important to emphasize that Theorem  1.5.4 does not assume that f is a C 1 func- 

tion. Indeed, if f were C 1, the result would  be a trivial consequence of the Intermediate Value 

Theorem, since the derivative  f ! would  then be a continuous  function  on D. 
 

The next result, the Mean Value Theorem, provides another property that the derivative must 

satisfy. A graphical representation of this result is provided in Figure 1.4. As with theorem 

1.5.4, it is assumed only that f is everywhere differentiable  on its domain D, and not that it is 

C 1. 
 

Theorem 1.5.5 (Mean Value Theorem) Let D = [a, b] be an interval  in R, and let f : D → R 

be a continuous  function.  Suppose f is differentiable on (a, b). Then there exists x ∈  (a, b) such 
that 

f (b) −  f (a) = (b −  a)f ! (x). 
 

Proof. See Rudin  (1976, Theorem  5.10, p.108) 
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a x c 

 
 

 
Figure 1.4: The Mean Value Theorem 

 
 

The following generalizatioin of the Mean Value Theorem is known  as the Taylor’s Theo- 
rem. It may be regarded as showing that a many-times differentiable  function  can be approx- 

imated by a polynomial. The notation f (k)(z) is used in the statement of Taylor’s Theorem 

to denote the k-th derivative of f evaluated at the point z. When k = 0. f (k)(x)  should be 

interpreted  simply  as f (x). 
 

Theorem 1.5.6 Taylor’s  Theorem Let f : D  → R be a C m  function,  where D is an open 

interval in R, and m ≥  0 is a non-negative integer. Suppose also that f (m+1) (z ) exists for every 

point z ∈  D. Then, for any x, y ∈  D, there is z ∈  (x, y) such that 
 
 

m 

f (y) = 
( 
f (k) 

 

(x)(y 
\ 

−  x)k
 

 

f (m+1) 

+ 
(z)(y −  x) 

 
m+1 

. 
k 

k=0 
(m + 1)! 

 

Proof. See Rudin  (1976, Theorem  5.15, p.110) 
 

Each of the results you have stated in this subsection, with the obvious exception of the 

Intermediate Value Theorem for the Derivative,  also has an n-dimensional   version.  These ver- 

sions you will state here, deriving   their  proofs  as consequences of the corresponding result in 

R. 
 

Theorem 1.5.7 (The Intermediate Value Theorem in Rn) Let D ⊂  Rn be a convex set, and let 

f  : D → R be continuous on D. Suppose that a and b are points  in D such that f (a) < f (b). 

Then for any c such that f (a) < c < f (b), there is λ̂ ∈  (0, 1) such that f ((1 −  λ̂)a + λ̂b) = c. 



UNIT 1.  BASIC CONCEPTS OF RN
 1.5 Some Important   Results 

2 

 

 

 
 
 

Proof. You could derive this result as a consequence of the intermediate Value Theorem in 

R. Let g : [0, 1] → R be defined by g(λ) = f ((1 −  λ)a + λb), λ ∈  [0, 1]. Since f is a continuous 
function,  g is evidently  continuuous on [0, 1]. Moreover, g(0) = f (a) and g(1) = f (b), so 

g(0) < c < g(1). By the Intermediate Value Theorem in R, there exists λ̂ 

g(λ̂) = c. Since g(λ̂) = f ((1 −  λ̂)a + λ̂b), you are done with the proof. 

∈   (0, 1) such that 

 

An n-dimensional version of the Mean Value Theorem is similarly established: 
 

Theorem 1.5.8 (The Mean Value Theorem in Rn) Let D ⊂  Rn be open and convex, and let 

f : S → R be a function that is differentiable  everywhere on D. Then, for any a, b ∈  D, there 

is λ̂ ∈  (0, 1) such that 

f (b) −  f (a) = Df ((1 −  λ̂)a + λ̂b) · (b −  

a). 

 
Proof.     For notational   ease, let z(λ)  = (1 −  λ)a + λb. Define  g :  [0, 1] → R by 

g(λ)  = f (z(λ))  for λ ∈  [0, 1]. Note that g(0) = f (a) and g(1) = f (b). Since f is every- 

where differentiable by hypothesis, it follows that g is differentiable at all λ ∈  [0, 1], and in 

fact, g!(λ) = Df (z(λ)) · (b −  a). By the Mean Value Theorem for functions of one variable, 

therefore, there is λ! ∈  (0, 1) such that 

 

g(1) −  g(0) = g! (λ!)(1 −  0) = g!(λ!). 

 

Substituting for g in terms of f, this is precisely the statement that f 

(b) −  f (a) = Df (z(λ! )) · (b −  a). 

 

You have proved the theorem. 
 

Finally, is the Taylor’s Theorem in Rn. A complete statement of this result requires some 

new notation, and is also irrelevant for the remainder of this book.  So you are confined to stating 

two special cases that are useful  for your purposes. 
 

Theorem 1.5.9 (Taylor’s Theorem in Rn) Let f : D → R, where D is an open set in Rn. If f 

is C 1 on D, then it is the case that for any x, y ∈  D, you have 

f (y) = f (x) + Df (x)(y −  x) + R1(x, y), 

 

where the remainder term R1(x, y) has the property that 
 

 

lim 
( \ 

R1(x, y) 

 

 

= 0. 
y→x  x −  y 

 

If f is C 2, this statement can be strengthened to 
 

1 t 2
 

f (y) = f (x) + Df (x)(y −  x) + 
2 

(y −  x) D f (x)(y −  x) + 

R2
 

 

where the remainder term R2(x, y) has the property that 

 
 
 
 
 

(x, y). 

 

( lim 
y→x 
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\

 
R2(x, 
y) 

= 0 
x −  y 2 
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Proof. Fix any x ∈  D, and define the function F (·) on D by 

F (y) = f (x) + Df (x) · (y −  x). 

Let h(y) = f (y) −  F (y). Since f and F are C 1, so is h. Note that h(x) = Dh(x)  = 0. The 

first-part of the theorem will be proved if you show that 
 

h(y) 

y −  x  
→ 0

 
as  y → x, 

 

or, equivalently, if you show that for any > 0, there is δ > 0 such that 

y −  x  < δ  implies |h(y)| < x −  y . 

 

So let > 0 be given. By the continuity of h and Dh, there is δ > 0 such that 

|y −  x| < δ  implies|h(y)| < and Dh(y) < . 

Fix any y satisfying |y −  x| < δ. Define a function  g on [0, 1] by 

g(t) = h[(1 −  t)x + ty]. 

Then g(0) = h(x) = 0. Moreover,  g is C 1 with g!(t) = Dh[(1 −  t)x + ty](y −  x). 

Now note that |(1 −  t)x + ty −  x| = t|(y −  x)| < δ for all t ∈  [0, 1], since |x −  y| 
< δ. Therefore, Dh[(1 −  t)x + ty]   <  for all t ∈  [0, 1], and it follows that |g!(t)| ≤    y 

−  x for all t ∈  [0, 1]. 

By Taylor’s Theorem in R, there is t∗   ∈  (0, 1) such that 

g(1) = g(0) + g!(t∗  )(1 −  0) = g!(t

∗
 

). 
 

Therefore, 
 

|h(y)| = |g(1)| = |g! (t∗  )| ≤  |y −  x|. 
 

Since y was an arbitrary point satisfying |y −  x| < δ, the first part of the theorem is proved. 

You can establish the second part analogously. 
 

 
1.5.3  The Inverse and Implicit Function Theorems 

 
Here, you will state two results of much importance especially for “comparative statics” exer- 

cises. The second of these results (The Implicit Function Theorem) also plays a central role in 

proving Lagrange’s Theorem on the first-order conditions for equality-constrained optimization 

problems. Some new terminology  is, unfortunately, required first. 

Given a function  f : A → B, you will say that the function  f maps A onto B, if for every 

b ∈  B, there is some a ∈  A such that f (a) = b. You will say that f is a one-to-one function  if 

for any b ∈  B, there is at most one a ∈  A such that f (a) = b. If f : A → B is both one-to-one 

and onto, then it is easy to see that there is a (unique)  function   g : B → A such that f (g(b)) = b 

for all b ∈  B. (Note that you also have g(f (a)) = a for all a ∈  A.) The function  g is called the 
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inverse function of f . 
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Theorem 1.5.10 (Inverse Function Theorem) Let f : S → Rn be a C 1 function, where S ⊂  
Rn  is open. Suppose there is a point y ∈   S such that n × n matrix Df (y) is invertible. Let 
x = f (y). Then: 

1. There are open sets U and V in Rn  such that x ∈  U, y ∈  V, f is one-to-one on V, and 

f (V ) = U. 
 

2. The inverse function  g : U → V of f isC 1 function on U, whose derivative at any point 

x̂ ∈  U satisfies 
 

Dg(x̂) = (Df (ŷ))−  1 ,  where  f (ŷ) = x 
 

Proof. See Rudin  (1976, Theorem  9.24, p.221). 
 

Turning to the Implicit Function  Theorem,  the question  this result  addresses may be moti- 
vated by a simple example. Let S = R2    , and let f : S → R be defined by f (x, y) = xy. Pick 
any point (x̄ , ȳ ) ∈  S, and consider the “level set” 

C (x̄ , ȳ ) = {(x, y) ∈  S|f (x, y) = f (x̄, ȳ)}. 

If you now define the function h : R++  → R by h(y) = f (x̄, ȳ )/y, you have 

f (h(y), y) ≡  f (x̄, ȳ )m  y ∈  R++ . 
 

Thus, the values of the x-variable  on the level set C (x̄, ȳ ) can be represented explicitly in terms 

of the values of the y-variable on this set, through the function h. 
 

In general, an exact form for the original function f may not be specified-for  instance, you 

may only know that f is an increasing  C 1 function  on R2-so you may not be able to solve for 
h explicitly.   The question arises whether at least an implicit representation of the function h 

would exist in such a case. 

 The Implicit Function Theorem studies this problem in a general setting.  That is it looks at sets of functions f from S ⊂  Rm  to Rk , where m > k, and asks when the values of some of 

the variable in the domain can be represented in terms of the others, on a given level set. Under 

very general conditions, it proves that at least a local representatioin is possible. 

The statement of the theorem  requires  a little more notation. Given integers m ≥  1 and 

n ≥  1, let a typical point in Rm+n  be denoted by (x, y), where x ∈   Rm  and y ∈   Rn. For 

a 
C 1 function F mapping  some subset of Rm+n  into Rn, let DFy (x, y) denote that portion of the 
derivative matrix DF (x, y) corresponding to the last n variables.  Note that DFy (x, y) is an 
n × n matrix. DFx (x, y) is defined similarly. 

 

Theorem 1.5.11 Implicit Function Theorem Let F  : S ⊂  Rm+n   → Rn  be a C 1 function, 

where S is open. Let (x∗  , y∗  ) be a point in S such that DFy (x
∗  , y∗  ) is invertible, 

and let F (x∗  , y∗  ) = c. Then, there is a neighbourhood U ⊂  Rm of x∗   and a C 1 function 
g : U 
→ Rn such that (i) (x, g(x)) ∈  S for all x ∈  U, (ii) g(x∗  ) = y∗  , and (iii) F (x, g(x)) ≡  c 

for 
all x ∈  U. The derivative of g at any x ∈  U may be obtained from the chain rule: 

Dg(x) = (DFy (x, y))−  1 · DFx (x, y) 

 
Proof. See Rudin  (1976, Theorem  9.28, p.224) 
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1.6   Conclusion 
 

 

In this unit, you have considered  some basic concepts  as regards to function in Rn, namely, 

continuity,  differentiable  and continuous differentiable  functions, Partial derivatives and Differ- 

entiability, Directional Derivative and Differentiability  and Higher Order Derivatives. You also 

considered Quadratic  forms, definite  and semidefinite   matrices ans some useful results, namely 

Separation Theorems, The intermediate and Mean value theorem and the inverse and implicit 

function theorems . All these are great tools which  you will use in optimization theory in Rn . 
 

 
 

1.7   Summary 
 

 

Having read through this unit, you are able to 
 

 

(i) Define Continuous functions, differentiable  and continuous differentiable  functions, Par- 

tial derivatives and Differentiability,   Directional derivatives and Differentiability and Higher 

Order Derivatives. 
 

(ii)  Define Quadratic forms and definiteness. 

(iii)  Identity  Definiteness and Semidefiniteness. 

(iv) State and Use the Separation Theorems, the Intermediate and Mean Value Theorems, and 

the Inverse and Implicit Function theorems. 
 

 
 

1.8   Tutor Marked Assignments 
 

 

Exercise 1.8.1 
 

1. Let f : Rn  → R be continuous at a point p ∈   Rn. Assume f (p) > 0. Which of the 

following statements is correct? 

(a) For all open ball B ⊂  Rn such that p ∈  B, and for all x ∈  B, you have f (x) > 0. 

(b) There is an open ball B  ⊂  Rn  such that p ∈   B, and for all x ∈   B, you have 

f (x) > 0. 

(c) For all open ball B  ⊂  Rn  such that p ∈   B, and there exists x ∈   B, for which 
f (x) < 0. 

(d) There is an open ball B  ⊂  Rn  such that p ∈   B, and for all x ∈   B, you have 
f (x) < 0. 

2. Suppose f : Rn → R is continuous function.  Then the set 

{x ∈  Rn|f (x) = 0} 

 
is 
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(a) a closed set 
 

(b) an open set 
 

(c) both open and closed 
 

(d) none of the above. 

3. Let f : R → R be defined by 

 

 
 
 
 
 
 
 
 
 
 
 
 

f (x) = 

 
 
 
 
 
 
 
 
 
 

1 if  0 ≤  x ≤  1 

 
 

0 otherwise. 
 

Find an open set O such that f −  1(O) is not open and find a closed set C such that f −  1 (C ) 

is not closed. 

4. Give an example of a function  f : R → R which is continuous at exactly two points (say, 

at 0 and 1), or show that no such function can exists. 
 

5. Show that it is possible for two function f : R → R and g : R → R to be continuous, but 

for their product f · g to be continuous. What about their composition f ◦ g? 

6. Let f : R → R be a function which satisfies 

f (x + y) = f (x)f (y)  for all x, y ∈  R. 

 

Show that if f is continuous at x = 0, then it is continuous at every point of R. Also show 

that if f vanishes at a single point of R, then f vanishes at every point of R. 

7. Let f : R+  → R be defined by 

 
 

 

f (x) = 

0, x = 0 
 
 

x sin(1/x), x = 0 
 

Show that f is continuous at 0. 

8. Let D be the unit square [0, 1] × [0, 1] in R2. For (s, t) ∈  D, let f (s, t) be defined by 

f (s, 0) = 0,  for all s ∈  [0, 1], 

 

and for t > 0, 

 
2s s ∈  0, t 

t  2 

( 

f (s, t) =  
2 −  

2s 
t 

s ∈  , t 
t  2 

 

 

0 s ∈  (t, 1]. 
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(Drawing  a picture of f for a fixed t will help). Show that f is a separately continuous 

function, i.e., for each fixed value of t, f is continuous  as a function  of s, and for each 

fixed value of s, f is continuous in t. Show also that f is not jointly continuous in s and 

t, i.e., show that there exists a point (s, t) ∈  D and a sequence (sn, tn ) in D converging 
to (s, t) such that limn→ f (sn, tn ) = f (s, t). 

9. Let f : R → R be defined  as 

 
 
 

f (x) = 

x If x is irrational 

 

1 −  x if x is rational 

 

At what point x ∈  R is f continuous? 
 

(a) x = 0 

(b) x = 1 

1
 

(c) x = 
2 

(d) x = x0, x0 ∈  R 

10. Let f : Rn   → R and g  : R → R be continuous functions. Define h : Rn  → R by 

h(x) = g[f (x)]. Show that h is continuous. Is it possible for h to be continuous  even if f 
and g are not? 

11. Show that if a function  f : R → R satisfies 

|f (x) −  f (y)| ≤  M (|x −  

y|)a
 

 
 for some fixed M  > 0 and a > 1, then f is a constant function,  i.e., f (x) is identically equal to some real number b at all x ∈  R. 

12. Let f : R2 → R be defined by f (0, 0) = 0, and for (x, y) = (0, 0), 

xy 
f (x, y) =   . 

x2 + y2
 

 

Show that the two-sided directional derivative of f evaluated at (x, y) = (0, 0) exists in 

all directions h ∈  R2, but that f is not differentiable  at (0, 0). 

13. Let f : R2 → R be defined by f (0, 0) = 0 and for (x, y) = (0, 0) 
 

xy(x2 −  y2 ) 
f (x, y) = . 

x2 + y2 

 

Show that the cross-partials ∂2 f (x, y)/∂ x∂ y and ∂2 f (x, y)/∂ y∂x exist at all (x, y) ∈  R2, 
but that these partials  are not continuous  at (0, 0). Show also that 

 

∂2 f 

∂x∂ y 

 

(0, 0) = 
∂2 f 

∂y∂ x 

 

(0, 0). 
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1 

++ 

+ 

+ 

+ 

 

 
 

14. Show that an n × n symmetric matrix A is a positive definite matrix if and only if −  A is a 

negative definite matrix.  (−  A referes to the matrix whose (i, j)-th entry is −  aij .) 
 

 
15. Prove the following statements or provide  a counterexample  to show it is false: If A is a 

positive definite matrix, then A−  1 is a negative definite  matrix. 
 

16. Give an example of matrices A and B which are each negative semidefinite  but not nega- 

tive definite, and which are such that A + B is negative definite. 
 

17. Is it possible for a symmetric   matrix A to be simultaneously  negative semidefinite  and 

positive semidefinite? If yes, give an example. If not, provide a proof. 
 

18. Examine the definiteness or semidefiniteness of the following quadratic forms: 
 

 

0  0  1 1  2  3 

A = 0   1   0   A = 2   4   6  

1  0  0 3  6  0 
 
 
 

1  0  1 −  1 2  −  1 

A = 0  1  0 A = 
1  0  1 

2  −  4 2 
−  1 2  −  1 

 

19. Find the hessians D2 f of each of the following functions. Evaluate  the hessians at the 

specified points, and examine if the hessian is positive definite, negative definite, positive 

semidefinite, negative semidefinite, or indefinite. 
 

(a) f : R2
 

 

→ R, f (x) = x2 + √     
x2, at x = (1, 1) 

2
 

(b) f : R2 → R, f (x) = (x1 x2 )
1/2 , at an arbitrary point x ∈  R++ . 

(c) f : R2 → R, f (x) = (x1 x2)2, at an arbitrary point x ∈  R2    . 

(d) f : R3  → R, f (x) = 
√    

x1 + 
√   

x2 + 
  
√  
  

x3, at x = (2, 2, 2) 

(e) f : R3  → R, f (x) = 
3
 

√     
x1 x2 x3 , at x = (2, 2, 2). 

(f) f : R
+ → R, f (x) = x1 x2 + x2 x3 + x3 x1, at x = (1, 1, 1). 

(g) f : R3  → R, f (x) = ax1 + bx2 +cx3 for some constants a, b, c ∈  R, at x = (2, 2, 2). 
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UNIT 2 
 

 

OPTIMIZATION IN RN 
 

 
 
 
 
 
 

2.1   Introduction 
 

 

This unit constitutes the starting point of your investigation into optimization theory. You will 

first be introduced to the notation that you will use to represent abstract optimization   problems 

and their  solutions  and afterwards,  address the chief  question of interest that will be examined 

over the book. 
 

 
 

2.2   Objectives 

At the end of this unit, you should be able to; 

(i) Define an optimization  problem. 
 

(ii)  Give the two types of optimization problems. 

(iii)  identify a set of conditions on f and D under which the existence of solutions of opti- 

mization problems is guaranteed. 
 

 
 

2.3   Main Content 
 

 

2.3.1  Optimization problems in Rn
 

 
 

Definition 2.3.1 An optimization problem in Rn, or simply an optimization problem, is one 
when the values of a given function f : Rn  → R are to be maximized or minimized over a given 

set D ⊂  Rn. The function f is called  the objective function,  and the set D the contraint set. 
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Notationally, you will represent these problems by 
 
 
 
 
and 

Maximizef (x)  subject to x ∈  D 

 
 

Minimzef (x)  subject to x ∈  D 

respectively. Alternatively,  and more compactly, you could also write 
 
 
 
 
and 

max{f (x)|x ∈  D}, 

 
 

min{f (x)|x ∈  D}. 

Problems of the first sort are termed maximization  problems and those of the second sort are 

called minimization problems. 

Definition 2.3.2 (Solution of an Optimization Problem) A solution to the problem max{f (x)|x ∈  
D} is a point x in D such that 

 

f (x) ≥  f (y)  for all  y ∈  D 

You will say that f attains a maximum on D at x, and also refer to x as a maximizer of f on D. 

Similarly, a solution to the problem min{f (x)|x ∈  D} is a point z in D such that 
 

f (z) ≤  f (y)  for all  y ∈  D. 

You will say in this case that f attains a minimum on D at z, and also refer to z as a minimizer 
of f on D. 

 
Definition 2.3.3 (Set of Attainable  Values)  The set of attainable values of f on D, denoted 

f (D), is defined by 
 

f (D) = {w ∈  R| there is  x ∈  D such that  f (x) = w}. 

 
You will also refer to f (D) as the image of D under f . Observe that f attains a maximum  on D 
(at some x) if and only if the set of real numbers f (D) has a well defined maximum, while f 

attains a minimum  on D (at some z) if and only if f (D) has a well-defined  minimum.  (This is 

simply  a restatement of the definitions). 
 

The following simple examples reveal two important points: first, that in a given maximiza- 

tion problem,  a solution  may fail to exist (that is, the problem  may have no solution at all), 

and secondly, that even if a solution  does exist, it need not necessarily be unique (that is, there 

could exist more than one solution).  Similar statements obviously  also hold for minimization 

problems. 
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Example 2.3.1  Let D = R+  and f (x) = x for x ∈  D. Then, f (D) = R+  and sup f (D) = 
+∞, so the problem max{f (x)|x ∈  D} has no solution. 

 

Example 2.3.2 Let D = [0, 1] and let f (x)  = x(1 −  x) for x ∈   D. Then, the problem of 

maximizing f on D has exactly one solution, namely the point x = 1/2. 

Example 2.3.3 Let D = [−  1, 1] and f (x) = x2 for x ∈  D. The problem of maximizing f on 

D now has two solutions: x = −  1 and x = 1. 
 

Thus in the sequel, you will not talk of the solution of a given optimization   problem, but 

of a set of solutions of the problem, with the understanding that this set could, in general, be 

empty. The set of all maximizers of f on D will be denoted arg max{f (x)|x ∈  D} : 
 

arg max{f (x)|x ∈  D} = {x ∈  D|f (x) ≥  f (y)  for all y 

∈  

D}. 

The set, arg min{f (x)|x ∈  D} of minimizers of f on D is defined analogously.  This section 

shall be closed with two elementary, but important,  observations, which is stated in form of 
theorems for ease of future reference. The first shows that every maximization  problem may be 

represented as a minimzation  problem, and vice versa. The second identifies  a transformation 

of the optimization  problem under which the solution set remains unaffected. 
 

Theorem 2.3.1 Let −  f denote the function whose value at any x is −  f (x). Then x is a maxi- 

mum of f on D if and only if x is a minimum of −  f on D and z is a minimizer of f on D if and 

only if z is maximum of −  f on D. 

 
Proof.  The point x maximizes f over D if and only if f (x) ≥  f (y) for all y ∈  D, while 

x minimizes −  f over D if and only if −  f (x) ≤  −  f (y) for all y ∈  D. Since f (x) ≥  f 
(y) is the same as −  f (x)  ≤  −  f (y), the first part of the theorem is proved. The second 

part of the theorem follows from the first simply by noting that −  (−  f ) = f . 

Theorem 2.3.2 Let ϕ : R → R be a strictly increasing function, that is, a function such that 

 
 

x > y implies ϕ(x) > ϕ(y). 

Then x is a maximum of f on D if and only if x is also a maximum of the composition ϕ ◦ f on 
D; and z is a minimum of f on D, if and only if z is also a minimum of ϕ ◦ f on D. 

 

 Remark 2.3.1 As will be evident from the proof, it suffices that ϕ be a strictly increasing func- tion on just the set f (D), i.e., that ϕ only satisfy ϕ(z1)  > ϕ(z2) for all z1, z2  ∈   f (D) with 

z1 > z2 . 
 
 Proof.    You are dealing  with the maximization  problem here; the minimization  problem is 

easily deduced using Theorem 2.3.1. Suppose first that x maximizes f over D. Pick any y ∈  D. 
Then f (x) ≥  f (y), and since ϕ is strictly increasing, ϕ(f (x))  ≥  ϕ(f (y)). Since y ∈  D 
was arbitrary, this inequality holds for all y ∈  D, which  states precisely  that x is a maximum of ϕ 

◦ f on D. 
 

Now suppose that x maximizes ϕ ◦ f on D, so ϕ(f (x)) ≥  ϕ(f (y)) for all y ∈  D. If x did 
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not also maximize  f on D, there would exist y∗   ∈   D such that f (y∗  ) > f (x). Since ϕ 
is 
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strictly increasing function, it follows that ϕ(f (y∗  )) > ϕ(f (x)), so x does not maximize  ϕ ◦ f 
over D, a contradiction,  completing  the proof. 

 
 

2.3.2 Types of Optimization  problem 
 
In general, There are two types of optimization problem, namely; 

 
 

1. Unconstrained Optimization problem and 
 

2. Constrained optimization  problem. 
 

 
Unconstrained Optimization problem. 

 
An Optimization problem is called unconstrained if it is of the form 

 

min 
x∈  D 

 

or 

f (x) 

min(or max)  f (x) 
 

Subject to: x ∈  D 

where x = (x1, . . . , xn) ∈  Rn, f : D ⊂  Rn → R, and D is an open set in Rn
 

 
 

Constrained Optimization Problem 

 
An optimization problem is called constrained if it is of the form 

min(or max)  f (x) 

Subject to: gi(x) ≥  0  i = 1, . . . , m 

hi(x) = 0, i = 1, . . . , l 

x ∈  D 

where f : D ⊂  Rn  → R is called the Objective function, g1 , . . . , gm , h1 , . . . , hl  : D ⊂  Rn → R 
are the constraint functions. 

Let g = (g1 , . . . , gm ) : R
m  → Rm, and h = (h1, . . . , hl ) : R

n  → Rl , then you can rewrite 

the constrained problem  as follows 



38 

UNIT 2.  OPTIMIZATION IN RN
 2.4 Existence of Solutions: The Weierstrass Theorem  

 

 
 
 
 

min(or max)  f (x) 

Subject to: g(x) ≥  0 

 

h(x) = 0 
 

x ∈  D 

 
A detail study of each of the above problems is seen in the next two units. 

 

 
2.3.3  The Objectives of Optimization  Theory 

 
Optimization  theory has two main objectives. 

 

1. The first is to identify  a set of conditions on f and D underwhich  the existence of solutions 

to optimization problems is guaranteed. 
 

2. Second objective lies in obtaining a characterization  of the set of optimal points. Broad 

categories of questions of interest here include the following: 
 

(a) The identification of conditions that every solution to an optimization  problem must 

satisfy, that is, of conditions  that are necessary for an optimum  point. 
 

(b) The identification of conditions  such that any point that meets these conditions  is a 

solution, that is, of conditions that are sufficient to identify a point  as being optimal. 
 

(c) The identification  of conditions  that ensure only a single solution  exists to a given 

optimization problem, that is, of condition  that guarantee uniqueness of solutions. 
 

 
 

2.4   Existence of Solutions: The Weierstrass Theorem 
 

 
 You will begin the study of optimization with the fundamental question of existence: under what 

conditions on the objective function f and the constraint  set D are you guaranteed that solutions 
will always exist in optimization problems of the form max{f (x)|x ∈  D} or min{f (x)|x ∈  
D}? Equivalently,  under what conditions on f and D is it the case that the set of attainable 

values f (D) contains it supremum and/or infimum?. The answer to these questions is given 

in this section. You will be introduced to two main theorems that gaurantees the existence 

of solution of an optimization problem. But before that, the following definitions  are very 

important. 
 

Definition 2.4.1 Let f : D ⊂  Rn  → R and let {xn} be a sequence of elements in D. {xn} is 

called a minimizing  sequence of f in D if 
 

lim 
n→+∞ 

f (xn) = inf f (x) 
x∈  D 
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Similarly {xn } would be called a maximizing  sequence of f in D if 
 

lim 
n→+∞ 

f (xn) = sup f (x). 
x∈  D 

 

Proposition 2.4.1 If D is a non-empty subset of Rn, then there exists a minimizing (resp. max- 

imizing)  sequence {xn } of f in D. 
 

 
 

2.4.1  The Weierstrass Theorem 
 

The following result, a powerful  theorem credited to the mathematician Karl Weierstrass, is the 

main result that answers the questions on existence. 
 

Theorem 2.4.1 (The Weierstrass Theorem) Let D ⊂  Rn be compact (i.e., closed and bounded), 

and let f : D → R be a continuous function on D. Then f attains a maximum and a minimum 

on D, i.e., there exists points z1 and z2 on D such that 

f (z1) ≥  f (x) ≥  f (z2), x ∈  D 
 

Or you can write; 
 

 
 

f (z1) = max f (x) and f (z2) = min f (x) 
x∈  D x∈  D 

 
 Proof. The theorem is proved for minimization  problem, analogous proof for the maxi- 
mization problem is readily deduced using Theorem 2.3.1. To proceed, Let, {xn} be a mini- 

mizing  sequence of f in D. Since D is bounded, by Bolzano-Weierstrass theorem, {xn } has a 

subsequence {xnk } which  converges to some point z1 ∈  Rn. Since D is closed, you have that 
z1 ∈  D. Using the continuity of f at z1 , it follows that 

 

 

lim 
k→+∞ 

f (xnk 
) = f (z1) (2.1) 

On the other hand, since {f (xnk 
)} is a subsequence  of {f (xn)}, you have 

 

lim 
k→+∞ 

f (xnk 
) = inf f (x) (2.2) 

x∈  D 
 

Using (2.1) and 2.2 and the uniqueness of limit, it follows that 
 

f (z1) = inf f (x) = min f (x) 
x∈  D x∈  D 

So z1 is a global minimum  of f in D. 
 

It is of the utmost importance to realize that the Weierstrass Theorem only provides sufficient 

conditions for the existence of optima.  The theorem has nothing to say about what happens if 

these conditions   are not met, and, indeed, in general, nothing  can be said,  as the following 

examples illustrate. 
 

Example 2.4.1  Let D = R, and f (x)  = x3  for all x ∈   R. The f is continuous but D is 

not compact (it is closed, but not bounded).  Since f (D)  = R, f evidently  attains neither a 

maximum nor a minimum  on D. 
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Example 2.4.2 Let D = (0, 1) and f (x) = x for all x ∈  (0, 1). Then f is continuous, but D 
again noncompact (this time it is bounded, but not closed).  The set f (D) is the open interval 

(0, 1), so, once again, f attains neither a maximum  nor a minimum  on D. 

Example 2.4.3 Let D = [−  1, 1], and let f be given by 

( 
 

f (x) = 
0, if  x = −  1 or x = 1 
x, if  −  1 < x < 1 

 

Then D is compact but f fails to be continuous at just the two points -1 and 1. In this case, f (D) 

is the open interval (−  1, 1); consequently, f fails to attain either a maximum or a minimum  on 

D. 

Example 2.4.4 Let D = R++ , and let f : D → R be defined by 

( 
1, if x is rational 

f (x) =  

0, otherwise 
 

Then D is not compact (it is neither closed nor bounded), and f is discontinuous at every single 
point in R (it “chatters”  back and forth between the values 0 and 1). Nonetheless, f attains a 
maximum (at every rational number) and a minimum  (at every irrational  number). 

 
To restate the point: if the conditions of the Weierstrass Theorem are met, a maximum  and a 

minimum  are guaranteed to exist, On the other hand, if one or more of the theorem’s conditions 

fails, maxima  and minima may or may not exist, depending on the specific structure of the 

problem in question. 
 

Next is the second theorem of existence. But before that, here is an important definition and 

some propostions that will help you to prove it. 

Definition 2.4.2 Let f : Rn → R be a real valued function. f is said to be coercive if 
 

lim 
l/xl/→+∞ 

f (x) = +∞ 

 
 

Examples 
 

(a) Let f (x, y) = x2 + y2 =  x 2. Then 
 

 
 
 

Thus f (x, y) is coercive 

 

lim 
l/xl/→∞ 

 

f (x) = lim 
l/xl/→∞ 

x 2 = ∞ 

 

(b) Let f (x, y) = x4 + x4 −  3xy. Note that 
( \ 

 

f (x, y) = (x4 + y4) 1 −   
3xy 

. 
x4 + y4 

 

If x  is large, then 3xy/(x4 + y4) is very small. Hence 
 

lim 
l/(x,y)l/→∞ 

 

f (x, y) =  lim 
l/(x,y)l/→∞ 

(x4 + y4)(1 −  0) = +∞ 
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0 

 

 
 

(c) Let f (x, y, z) = ex2  
+ ey2 

+ ez 2  
−  x100 −  y100−  z100 then because exponential  growth  is 

much faster than the growth of any polynomial, it follows that 
 

 
 
 

Thus f (x, y, z) is coercive. 

lim 
l/(x,y ,z)l/→∞ 

f (x, y, z) = ∞ 

 

(d) Linear functions on R2 ar never coercive.  Such functions  can be expressed as follows: 
 

f (x, y) = ax + by + c 
 

where either a = 0 or b = 0. To see that f (x, y) is not coercive, simply  observe f (x, y) is 

constrantly equal to c on the line 

ax + by = 0. 
 

Since this line is unbounded on this line, the function f (x, y) is not coercive. 

(e) If f (x, y, z) = x4 + y4 + z4 −  3xyz −  x2 −  y2 −  z2 , then as 

(x, y, z)  = x2 + y2 + z2 → ∞ 
 

the higher degree terms dominate and force 
 

lim 
l/(x,y ,z)l/→∞ 

f (x, y, z) = ∞. 

Thus f (x, y, z) is coercive. The following example helps us avoid some misleadings. 

(f) Let f (x, y) = x2 −  2xy + y2. Then 
 

(i) for each fixed y0, you have lim 
|x|→∞ 

(ii)  for each fixed x0, you have lim 
|y|→∞ 

f (x, y) = ∞. 

= ∞; 

(iii)  but f (x, y) is not coercive. 
 

Properties (i) and (ii) above are more or less clear because in each case the quadratic  term 

dominates. For example, in case (i), you have for a fixed y0. 

f (x, y0) = x2 −  xy0 + y2 . 
 

This function of x is a parabola that opens upward.  Therefore 
 

lim 
|x|→∞ 

f (x, y0) = ∞. 

 

To see that f (x, y) is not coercive, factor to learn 

f (x, y) = x2 −  2xy + y2 = (x −  y)2 . 

Therefore if  (x, y)  goes to ∞ on the line y = +x, you will see that f (x, y) = (x−  x)2  = 

0 and hence f (x, y) = 0 on the unbounded line y = x. Therefore, 
 

 
 
 

so f (x, y) is not coercive. 

lim 
l/(x,y)l/→∞ 

f (x, y) = ∞ 



42 

UNIT 2.  OPTIMIZATION IN RN
 2.4 Existence of Solutions: The Weierstrass Theorem  

 

 
 
 
 The point of this last example is very important. For f (x) to be coercive, it is not sufficient that f (x) → ∞ as each coordinate  tends to ∞. Rather f (x) must become infinite along any 

path for which  x  becomes infinite. 
 

The reason why coercive functions are important in optimization theory is seen in the next 

theorem stated shortly. 
 

Proposition 2.4.2 Let D be a nonempty close subset of Rn. If f is coercive and continuous on 

some open set containing  D, then 
 

1. the function f is bounded below (resp. bounded above) on D. 

2. any minimizing  (resp. maximizing)  sequence of f in D is bounded. 

 

 
Proof. The proof is given for minimization problem. 

 
1. Suppose that f is not bounded below on D. Then for all n ∈  N, there exists xn  ∈  D such 

that f (xn) < −  n. So you get a sequence {xn } in D satisfying: 

 

f (xn) < −  n,  for all  n ∈  N. (2.3) 

This sequence must be bounded because of the coercivity of f, otherwise it has a subse- 

quence {xnk 
} such that 

 

 
Since f is coercive, you have 

 
 
 

 
But from (2.3), it follows that 

lim 
k→∞ 

 
 
 

lim 
k→+∞ 

xnk    
= +∞. 

 

 

f (xnk 
) = +∞. 

 

lim  f (xnk 
) = − ∞  

k→∞ 
 

and this is a contradiction  by the uniqueness of limit. Therefore {xn} is bounded. So by 

Bolzano-Weierstrass,   there exists a subsequence {xnk 
} of {xn } that converges to some 

point x̄ ∈  D. Using the continuity of f at x̄ it follows that 

 
 
 
 

From (2.3) you get 

lim f (xnk 
) = f (x̄). 

k→∞ 
 

 

lim  f (xnk 
) = − ∞  

k→∞ 

Therefore, by uniqueness of the limit, it follows that 

f (x̄) = −  ∞, 

a contradiction,  so f is bounded below on D and this ends the proof of 1. 
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2. Let {xn } be a minimizing   sequence of f in D, that is 
 

lim f (xn) = inf f (x). (2.4) 
n→∞  x∈  D 

You have to show that {xn } is bounded. By contradiction  assume that {xn } is not 

bounded, then there exists a subsequence {xnk 
} of {xn } such that 

 
 

 
Since f is coercive, you have 

 

lim 
k→∞ 

xnk     
= +∞. 

Using (2.4), you have 

and this leads to 

lim f (xnk 
) = +∞. 

k→∞ 

 
lim f (xnk 

) = inf f (x). 
k→∞  x∈  D 
 

inf f (x) = +∞. 
x∈  D 

This is a contradiction   because of the fact that f is bounded below on D. 
 
 

 
Theorem 2.4.2 Let D be a nonempty closed subset of Rn (not necessary bounded).  Suppose f 

is continuous on some open set containing  D. Then f has a global minimum on D. That is there 

exists at least one point x̄ ∈  D such that 
 

f (x̄) = min f (x) 
x∈  D 

 

 
 

Proof.  Let {xn} be a minimizing   sequence of f in D. By 2.4.2, {xn} is bounded,  so by 

Bolzano-Weierstrass theorem {xn } has a subsequence   {xnk 
} which converges to some 

point x̄ ∈  Rn. Since D is closed you have x̄ ∈  D. Using the continuity of f at x̄, it follows that 
 

lim 
k→+∞ 

f (xnk 
) = f (x̄). (2.5) 

On the other hand since {f (xnk 
)} is a subsequence  of {f (xn )}, you have 

 

lim 
k→+∞ 

 

f (xnk 
) = inf f (x). (2.6) 

x∈  D 

Using (2.5), (2.6) and the uniqueness of limit, it follows that 
 

f (x̄) = inf f (x) 
x∈  D 

So x̄ is a global minimum  of f in D. 
 

 

2.5   Conclusion 
 

 

In this unit you studied optimization  in Rn. You looked at what a solution  to an optimization 

problem  means and consider two main theorems that guaranteed existence  of solution of an 

optimization problem. 
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2.6 Summary 
 

 

Having gone through this unit, you now know 
 

 

(i) A Typical Optimization Problem is 

Minimize(or Maximize) f (x) Subject to: x ∈  D 

where f : D ⊂  R → R is called the objective function and D is called the constraint set. 

(ii)  Optimization  problems are of two types, namely Constrained and Unconstrained Prob- 

lems. It is constrained if the constraint  set D is made up of a set of inequalities and/or 
equations 

 

(iii)  If for example in the problem 

min( or max)  f (x)  subject to x ∈  D 

that f is continuous and D is a bounded and closed subset of Rn, the there exist a solution 

for the problem. This is the Weierstrass Existence theorem theorem. 

(iv) A real valued function f : Rn → R is coercive if you have 

 

lim 
l/xl/→+∞ 

f (x) = +∞. 

 
(v)  If f is continuous and coercive on a closed set D ⊂  R then there exist x̄ ∈  D such that 

f (x̄) ≤  f (x) for all x ∈  D. 
 

(ii)  the existence theorems for solution of an optimization  problem. 
 

 
 

2.7 Tutor Marked Assignments(TMAs) 
 

 

Exercise 2.7.1 
 

 
 1. Prove the following statement or provide a counter example. If f is a continuous function on a bounded (but not necessarily closed) set D, then sup f (D) is finite. 
 

2. Give an example of an optimization  problem with an infinite  number of solutions. 

3. Let D = [0, 1], Describe the set f (D) in each of the following cases,  and identify 

sup f (D) and inf f (D). In which cases does  f attain its supremum?   What about its 

infimum? 

(a) f (x) = 1 + x for all x ∈  D 
 

(b) f (x) = 1, if x < 1/2, and f (x) = 2x otherwise. 

(c) f (x) = x, if x < 1 and f (1) = 2. 
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(d) f (0) = 1, f (1) = 0, and f (x) = 3x for x ∈  (0, 1). 

4. Let D = [0, 1]. Suppose f : D → R is increasing on D, i.e., for x, y ∈  D if x > y, then 

f (x) > f (y). [Note that f is assumed to be continuous on D.] If f (D) a compact  set? 

Prove your answer, or provide  a counterexample. 

5. Find a function  f : R → R and a collection   sets Sk  ⊂  R, k = 1, 2, 3, . . . such that f 
n∞ 

attains a maximum  on each Sk , but not on 
 

 
n=1 

Sk . 

6. Give an example of a function  f : [0, 1] → R such that f ([0, 1]) is an open set. 

7. Give an example of a set D ⊂  R and a continuous function  f : D → R such that f attains 

its maximum, but not a minimum,  on D. 
 

8. Let D = [0, 1], Let f : D → R be an increasing function  on D, and let g : D → R be a 

decreasing function  on D. (That is, if x, y ∈  D with x > y then f (x) > f (y) and g(x) < 

g(y).) Then, f attains a minimum  and a maximum  on D (at 0 and 1, respectively),   as 
 does g (at 1 and 0, respectively).  Does f + g necessarily attain a maximum  and minimum on D? 

9. Identify the coercive function in the following list: 

(a) On R3, let 
 
 

(b) On R3, let 

(c) On R3, let 

(d) On R3, let 

(e) On R3, let 

(f) On R3, let 

f (x, y, z) = x3 + y3 + z3 −  xy 
 

f (x, y, z) = x4 + y4 + z2 −  3xy −  z. 

f (x, y, z) = x4 + y4 + z2 −  7xyz2 f 

(x, y, z) = x4 + y4 −  2xy2 . 

 

f (x, y, z) = ln(x2y2 z2 ) −  x −  y −  

z. 
 

f (x, y, z) = x2 + y2 + z2 −  sin(xyz). 
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UNIT 3 
 

 
 

UNCONSTRAINED OPTIMIZATION 
 

 
 
 
 
 
 

3.1 Introduction 
 

 

In the last unit,  you defined an unconstrained optimization  problem as follows 

min(or max)f (x) x ∈  D 

where f : D ⊂  Rn  → R is called the objective function.  In this unit, you shall be dwelling  in 

this kind of problem in detail. 
 

 
 

3.2 Objectives 
 

 

At the end of this unit, you should be able to 
 

 

(i) Give the definition of the Local, Global and Strict Optima of an optimization  problem. 
 

(ii)  State and proof and apply the first order optimality condition for unconstrained optimiza- 

tion problems. 
 

(iii)  State, and prove the second order necessary and sufficient  condition  for an optimization 

problem. And also use it to solve optimization problems. 
 

(iv) Define  Convex  sets. 
 

(v) Give the definitions of a Convex function  and a Concave function. 

(vi) Apply convexity to optimization problems. 
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2 1   2 3 1   3 

 

 
 

3.3 Main Content 
 

 

The notions, definitions and results you will be seeing hence forth is on the minimization  prob- 

lem. 

min f (x) x ∈  D (3.1) 
 

Obvious  modifications  can be made to yield similar results for maximization problem. But 

for the sake of simplicity, you will always limit your discussion to minimizers while the minor 

task of interpreting the results for maximization problems by replacing f (x) by −  f (x) 
 

 

3.3.1 Gradients and Hessians 

Let f : D → R, where D ⊂  Rn  is open, f is differentiable at x̄ ∈  D if there exists a vector 

∇f (x̄) (called the gradient of f at x̄) such that for each x ∈  D 
 

f (x) = f (x̄) + ∇f (x̄)t (x −  x̄) +  x −  x̄ α(x̄ , x −  x̄) (3.2) 

and lim α(x̄, y) = 0. f is differentiable on D if f is differentiable for all x̄ ∈  D. The gradient 
y →0 

vector is the vector of partial derivatives: 
 
 

∇f (x) = 
( 
∂ f 

(x̄), . . . , 
∂x1 

∂f 
\t 

(x̄)  (3.3) 
∂xn 

 

Example 3.3.1 Let f (x) = 3x2 x3 + x2 x3. Then 

( ) t
 

∇f (x) = 6x1 x
3 ,  9x2 x2 + 2x2 x

3,  3x2 x2
 

 

The directional derivative of f at x̄ in the direction d ∈  Rn is given by 
 

lim 
f (x̄ + λd) −  f (x̄) 

= ∇f (x̄)td (3.4) 
λ→0  λ 

The function f is twice differentiable at x̄ ∈  D if there exists a vector ∇f (x̄) and an n × n 
symmetric matrix H f (x̄) (called the Hessian of f at x̄) such that for each x ∈  D 

 

 

f (x̄) = f (x̄) + ∇f (x̄)t (x −  x̄) + 1(x −  x̄)t H f (x̄)(x −  x̄) +  x 

−  
2x̄ 

2α(x̄, x −  x̄), (3.5) 

 
and lim α(x̄, y) = 0. f is twice differentiable on D if and only if f is twice differentiable for all 

y→0 

x̄ ∈  D. The Hessian is a matrix of second partial derivatives: 
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1 

2 

2 2 

2 1 3 3 

3 2 

 
 
 
 

∂2 f 

∂x2
 

 

∂2 f 

∂2 f 

∂x1∂x2 

 

∂2 f 

· · · ∂2 f 

∂x1∂xn 

 

∂2 f 
 

∂x2 ∂x1 

H f = 
 

.. 

 
∂2 f 

∂xn ∂x1 

∂x2  · · ·
 

 

. · · · 

 

∂2 f 

∂xn∂x2 

· · ·
 

 

∂x2∂xn 

 

.. 

 
∂2 f 

∂xn ∂xn 

 
(3.6) 

 

Example 3.3.2 Continuing Example 1, you have 
 

 

6x3
 18x1 x

2 0 
 

H f (x̄) = 18x1 x
2 18x2 x2 + 2x3 6x2 x

2
 

 

0 6x2 x
2
 6x2 x3 

 
 

3.3.2 Local, Global and Strict Optima 
 

Definition 3.3.1 Suppose that f : D ⊂  Rn  → R is a real-valued function defined on a subset 

D of Rn. A point x̄ in D is: 

(a) a global minimizer for f on D if f (x̄) ≤  f (x) for all x ∈  D; 

(b) a strict global minimizer for f on D if f (x̄) < f (x) for all x ∈  D such that x = x̄; 

 

(c) a local minimizer for f on D if there is a positive  number δ such that f (x̄) ≤  f (x) for 

all x ∈  D for which x ∈  B(x̄, δ); 
 
 (d) a strict local minimizer for f if there is a positive  number  δ such that f (x̄) < f (x) for all x ∈  D for which x ∈  B(x̄, δ) and x = x̄; 
 

(e) a critical point for f if f is differentiable at x̄ and 

∇f (x̄) = 0. 

 

 
3.3.3 Optimality  Conditions For Unconstrained Problems 

 
Before stating the first order optimality condition for the unconstrained problem, the following 

definition  and theorem is needful. 
 

Definition 3.3.2 (Descent Direction)  The direction  d̄  is called a descent direction  of f at x = x̄ 

if 

f (x̄ + d̄) < f (x̄)  for all > 0 and sufficiently small 
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A necessary condition  for local optimality is a statement  of the form: “If x̄ is a local min- 

imum of (3.1), then x̄ must satisfy...”  Such a condition   will help you to identify all candidates 

for local optima. 

Theorem 3.3.1 Suppose that f is differentiable at x̄. If there is a vector d such that ∇f (x̄)td < 

0, then for all λ > 0 and sufficiently small, f (x̄ + λd) < f (x̄), and hence d is a descent direction 
of f at x̄. 

Proof. Suppose there is a vector  d ∈  Rn such that ∇f (x̄)td < 0. Since f is differentiable 

at x̄, you have 

f (x̄ + λd) = f (x̄) + λ∇f (x̄)td + λ  d α(x, λd). 

where α(x̄, λd) → 0 as λ → 0. Rearranging, you have 

f (x̄ + λd) −  f (x̄) 
= f (x̄)td +  d α(x̄, λd̄).

 

λ  
∇

 

Since ∇f (x̄)t d < 0 and α(x̄, λd) → 0 as λ → 0, f (x̄ + λd) −  f (x̄) < 0 for all λ > 0 sufficiently 

small. Thus f (x̄ + λd) < f (x̄) for all λ > 0 sufficiently small. 
 

 
Corollary 3.3.1 (First  Order necessary Optimality  condition) Suppose f is differentiable at x̄. 
If x̄ is a local minimum then ∇f (x̄) = 0 

 
Proof. Suppose for contradiction that ∇f (x̄) = 0, then d = −  ∇f (x̄) would  be a descent 

direction, whereby x̄ would not be a local minimum.  Hence, you must have ∇f (x̄) = 0 
 

The above corollary  is a first order neccessary optimality  condition for an unconstrained 

problem. The following theorem is second order necessary optimality condition. 
 

Theorem 3.3.2 (Second Order  necessary Optimality  Condition)  Suppose that  f is twice con- 

tinuously differentiable at x̄ 

positive semidefinite. 
∈   D. I f x̄ is a local minimum,  then ∇f (x̄) = 0 and H f (x̄) is 

 

Proof. From the first order necessary condition, ∇f (x̄) = 0. Suppose H f (x̄) is not positive 
semidefinite.  Then there exists d such that dt H f (x̄)d < 0 you have: 

f (x̄ + λd) = f (x̄) + λ∇f (x̄)td + 1 λ2 dt H f (x̄)d + λ2   d 2α(x̄, λd) 
2 

 

1    2  t 2 2
 

= f (x̄) + 
2 
λ d H f (x̄)d + λ 

where α(x̄, λd) → 0 as λ → 0. Rearranging, gives you 

d α(x̄, λd). 

 

 

f (x̄ + λd) −  f (x̄)  1     t 2
 

λ2 
= 

2 
d H f (x̄)d +  d α(x̄ , λd).

 

Since dt H f (x̄)d < 0 and α(x̄, λd) → 0 as λ → 0, f (x̄ + λd) −  f (x)  < 0 for all λ > 0 
sufficiently  small, yielding  the desired condtradition. 

 

Example 3.3.3 Let  

 

f (x̄) = 
1

x2 + x x
 

 

 

+ 2x2 −  4x
 

 

 

−  4x
 

 

 

−  x3 .
 

2  1 1  2 2
 

1 2 2 
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k 

 
 
 

Then  

∇f (x)  =  

 

x1 + x2 −  4 

 
2

 
 

 

and 

x1 + 4x2 −  4 −  3x2 

 
1 1 

H f (x̄) =                     

1  4 −  6x2 

∇f (x) = 0 has exactly two solutions: x̄ = (4, 0) and x̄ = (3, 1). But 
 
 

 

H f (x̄) = 

1 1 
 

1  −  2 
 

is indefinite, therefore, the only possible candidate for a local minimum  is x̄ = (4, 0). 

 
A sufficient condition for local optimality is a statement  of the form: “If x̄ satisfies..., 

then x̄ is a local minimum of 3.1.”  Such a condition  allows  you to automatically  declare 

that x̄ is indeed a local minimum. 
 

 
Theorem 3.3.3 (Second Order Sufficient Conditon) Suppose that f is twice differentiable 
at x̄. If ∇f (x̄) = 0 and H f (x̄) is positive definite, then x̄ is a strict local minimum. 

 

Proof.  

f (x) = f (x̄) + 
1

(x −  x̄)t H f (x̄)(x −  x̄) +  x −  x̄ 2 

2 

Suppose that x̄ is not a strict local minimum.   Then there exists a sequence {xk } which xk  → x̄ 

as k → ∞ such that x
  

= x̄ and f (x
 ) ≤  f (x̄) for all k. Define d  =

 xk −  x̄  

, then
 

k k k 

 

( 
1 

xk −  x̄ 

\ 
 
 

 
and so 

f (xk ) = f (x̄) +  xk −  x̄ 2    dt H f (x̄)dk  + α(x̄, xk −  x̄) . 
2 k

 

 

1 
dt f (xk ) −  f (x̄) 

2 k H f (x̄)dk + α(x̄, xk −  x̄) = 
x −  x̄ 2 

≤  0.
 

Since dk    = 1 for every k, there exists a subsequence of {dk } converging  to some point d such 

that  d  = 1. Assume without loss of generality that dk → d, then 

 

0 ≥  lim
 1 

dt H f (x̄)dk + α(x̄, xk −  x̄) = 1 
dt H f (x̄)d,

 

k→∞ 2 k 2 

which is a contradiction  of the positive definiteness of H f (x̄). 
 
Remark 3.3.1 Note that 

 

• If ∇f (x̄) = 0 and H f (x̄) is negative definite, then x̄ is a local maximum. 
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1 2 2 

1 

1 2 

1 

1 2 

2 

1 

 
 
 

• If ∇f (x̄)  = 0 and H f (x̄) is positive semidefinite, you cannot be sure if x̄ is a local 
minimum. 

 
Example 3.3.4 Continuing Example 3.3.3, by computing you have 

 

1  1 

H f (x̄) =          

1  4 
 

is positive definite. To see this, note that for any d = (d1 , d2), you have 
 

dt H f (x̄)d = d2 + 2d1 d2 + 4d2 = (d1 + d2)2 + 3d2 > 0 for all d = 0 
 

Therefore, x̄ satifies the sufficient  conditions to be a local minimum,  and so x̄ is a local mini- 

mum. 
 

Example 3.3.5 Let 
 
 
Then 

 
f (x) = x3 + x2 . 
 

 

3x2
 

 

 
 
 

and 

∇f (x) = 
 
 
 

 
H f (x) = 

 

 

2x2 
 

 

6x1 0 

 
0 2 

At x̄ = (0, 0), you have ∇f (x̄) = 0 and 
 

0  0 

H f (x̄) =          

0  2 
 

is positive semi-definite, but x̄ is not a local minimum, since f (−  , 0) = −  3 < 0 = f (0, 0) = 
f (x) for all > 0. 

 

Example 3.3.6 Let 
 
 
Then 

 

 

f (x) = x4 + x2 . 
 

 

4x3
 

 

 
 
 

and 

∇f (x) = 
 
 
 

 
H f (x) = 

 
2x2

 
 

 

12x2 0 

0 2 



52 

3.3 Main Content UNIT 3.  UNCONSTRAINED OPTIMIZATION  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
  
  
  
  
 

 
  
  
  
  
 

 
  
  
  
  
 

 
  
  
  
  
 

 
 

 
 

 
  
  
  
  
 

 
  
  
  
  
 

1 2 3 

 
 
 

At x̄ = (0, 0), you have ∇f (x) = 0 and 
 

0  0 

H f (x̄) =          

0  2 
 

is positive semidefinite. Futhermore, x̄ is a local minimum,  since for all x you have f (x) ≥  0 = 
f (0, 0) = f (x̄). 

 

 
FURTHER EXAMPLES 

 
The following examples apply to problems on global minimization  whose results are stated in 

the following theorem. 

Theorem 3.3.4 Suppose that x̄ is a critical point of f (i.e., ∇f (x) = 0) is a critical point of 

a function f with continuous first and second partial derivatives on Rn  and that H f (x) is the 
Hessian matrix of f . Then x̄ is: 

 

(a) global minimizer for f if H f (x) is positive semidefinite on Rn; (b) 

a strict global minimizer of f if H f (x) is positive definite on Rn; (c) a 

global maximizer for f if H f (x) is negative semidefinite on Rn; (d) a 

strict global maximizer for f if H f (x) is negative definite on Rn . 

 

Here are four examples that summarizes the above result you now know. 
 

Example 3.3.7 
 

(a) Minimize the function f : R3 → R defined by 

f (x) = x2 + x2 + x2 −  x1 x2 −  x2 x3 −  x1 x3, for all  x = (x1, x2, x3) ∈  R3
 

☞ Solution. The critical points of f are the solutions of the system 

2x1 −  x2 −  x3 0 

 

∇f (x) = −  x1 + 2x2 + x3  = 0 
 

−  x1 + x2 + 2x3 0 
 

The one and only solution to the system is x1 = 0, x2 = 0, x3 = 0 The Hessian of f (x) is 

a constant marix 
 

2  −  1  −  1 

 

H f (x) = −  1 2 1 
 

−  1 1 2 
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2 

2 

 
 
 

Note that ∆1  = 2, ∆2  = 3, ∆3  = 4 so H f (x) is positive definite everywhere on every- 

where on R3. It follows for Theorem 3.3.4 that the critical  point (0, 0, 0) is a strict global 
minimizer for f. 

Since f is defined and has continuous  first partial derivatives everywhere on R3 and since 
 (0, 0, 0) is the only critical point of f, it follows for Corollary  3.3.1 that f has no other minimizers or maximizers.                                                                                   ✍  
 

(b) Find the global minimizer of 

f (x, y, z) = ex−  y + ey −  x + ex2  

+ z2 . 
 

☞ Solution. To this end, compute 

 

ex−  y −  ey −  x + 2xex
 

 
∇f (x, y, z) = −  ex−  y + ey −  x

 

 
 
 

and 

2z 
 
 
 

ex−  y + ey −  x + 4x2 ex2 
+ 2ex2  

−  ex−  y−  ey −  x   

0 
 

H f (x, y, z) = −  ex−  y −  ey −  x  ex−  y + ey −  x  0 
 

0 0 2 
 

Clearly, ∆1  > 0 for all x, y, z because all the terms of it are positive.  Also 
 

2 2
 

∆2 = (ex−  y + ey −  x )2 + (ex−  y + ey −  x)(4x2 ex  + 2ex  ) −  (ex−  y + ey −  x )2
 

 

= (ex−  y + ey −  x)(4x2 ex2  
+ 2ex2 

) > 0. 
 

because both factors are always positive.  Finally, ∆3  = 2∆2  > 0. Hence H f (x, y, z) is 

positive definite at all points. Therefore by Theorem 3.3.4 f is strictly globally minimized 
by any critical point (x̄, ȳ , z̄). To find (x̄, ȳ , z̄), solve 

 

ex−  y −  ey −  x + 2xex 

 

0 = ∇f (x̄, ȳ , z̄) = −  ex−  y + ey −  x
 

 

2z 
 

This leads to z̄  = 0, ex̄−  ȳ  = eȳ−  x̄ , hence 2x̄ex̄2   

= 0. Accordingly, x̄ −  ȳ  = ȳ  

−  

 
 
 

x̄; that is, 

x̄ = ȳ  and x̄ = 0. Therefore (x̄, ȳ , z̄) = (0, 0, 0) is the strict global minimizer of f. ✍  
 

(c) Find the global minimizers of 
 

f (x, y) = ex−  y + ey −  x
 



54 

3.3 Main Content UNIT 3.  UNCONSTRAINED OPTIMIZATION  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

☞ Solution. To this end, compute 
 
 

∇f (x, y) = 

 
 

ex−  y −  ey −  x 

 

−  ex−  y + ey −  x
 

 

and 
 

 
 

H f (x, y) = 

 

ex−  y + ey −  x  −  ex−  y −  ey −  x 

 

−  ex−  y −  ey −  x ex−  y + ey −  x
 

Since ex−  y + ey −  x > 0 for all x, y and det H f (x, y) = 0, then, by the Hessian H f (x, y) is 

positive semidefinite for all x, y. Therefore, by 3.3.4, f (x, y) is minimized  at any critical 

point (x̄, ȳ ) of f (x, y). To find (x̄, ȳ ), solve 
 
 

 
 
 
 
 

This gives 

 

0 = ∇f (x̄, ȳ ) = 
ex̄−  ȳ  −  eȳ−  x̄

 
 

−  ex̄−  ȳ  + eȳ−  x̄ 

 
 

or 
 
 

that is, 

ex̄−  ȳ  = eȳ−  x̄
 

 

x̄ −  ȳ  = ȳ  −  x̄; 

 
 

2x̄ = 2ȳ. 

This shows that all points of the line y = x are global minimizers of f (x, y). ✍  
 

(d) Find the global minimizers of 
 

f (x, y) = ex−  y + ex+y
 

 

☞ Solution. In this case, 
 
 
 

∇f (x, y) = 

 
 

ex−  y + ex+y 

 

−  ex−  y + ex+y
 

 

 
 

 

H f (x, y) = 

ex−  y + ex+y    −  ex−  y + ex+y
 

                                                               . 

−  ex−  y + ex+y ex−  y + ex+y
 

Since ex−  y +ex+y  > 0 for all x, y and det H f (x, y) > 0, then H f (x, y) is positive definite 

for all x, y. Therefore, by Theorem 3.3.4, f (x, y) is minimized at any critical point (x̄, ȳ ). 

To find (x̄, ȳ ), write 

 
 

0 = ∇f (x̄, ȳ ) = 
ex̄−  ȳ  + ex̄+ȳ

 

 

ex̄−  ȳ  + ex̄+ȳ  



55 

3.3 Main Content UNIT 3.  UNCONSTRAINED OPTIMIZATION  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

  
 

 
 
 

Thus 
 
 

and 

 

ex̄−  ȳ  + ex̄+ȳ  = 0 

 

−  ex̄−  ȳ  + ex̄+ȳ   = 0 

But ex̄−  ȳ  > 0 and ex̄+ ȳ   > 0 for all x̄, ȳ . Therefore the equality ex̄−  ȳ  + ex̄+ȳ  = 0 is im- 

possible. Thus f (x, y) has no critical  points and hence f (x, y) has no global minimizers. 

✍  
 
 

3.3.4 Coercive functions and Global Minimizers 

You could remember that in the preceeding unit, you said that a function  f : Rn → R is coercive 

if 

lim 
l/xl/→+∞ 

f (x) = +∞ 

 and you also stated a very important result on existence of global minimizers for coercive func- tions in Theorem 2.4.2 which  says that if D is a closed  set and f : D ⊂  Rn  → R is continuous 

and coercive on some open set containing  D, then there exists a global minimizer  of f in D. 

In addition to this theorem, is that if the first partial derivatives of f exist on all of Rn, then 

these global minimizers  can be found among the critical points of f. Here is an example to 

illustrate this notion. 
 

Example 3.3.8 Minimize 
 
 

on R2. 

 

f (x, y) = x4 −  4xy + y4
 

 

☞ Solution. To this end, compute 
 

 

∇f (x, y) = 

 
 
and 

 
H f (x, y) = 

 
 

Note that 

 

 

4x3 −  4y 

 

−  4x + 

4y3
 

 

12x2 −  4 
 

−  4  12y2
 

( \ 
1  1 

H f , = 
3  −  4 

2  2 −  4 3 
 

which is certainly not positive definite since det H 
(  ) 

1 ,  1 = 9 −  16 < 0. Therefore  the tests 
2   2 

from the last section are not applicable. But all is not lost because f is coercive! 
 

To see that f is coercive, note that 

( \ 

f (x, y) = x4 + y4 1 −  
4xy

 
x4 + y4
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As  (x, y)  = x2 + y2 → +∞, the term 4xy/(x4 + y4) → 0. Hence 
 

lim 
l/(x,y)l/→∞ 

 

f (x, y) =  lim 
l/(x,y)l/→∞ 

(x4 + y4)(1 −  0) = +∞. 

 

 Thus f is coercive. According to Theorem 2.4.2 f has a global  minimizer  at one of the critical points. Setting ∇f (x, y) = 0, you get y = x3, and x = y3. Hence x = x9 and x(x8  −  1) = 0. 

This produces three critical  points 
 
 

 
 

Now 

(0, 0), (1, 1), (−  1, −  1) 
 
 
 

f (0, 0) = 0,  f (1, 1) = −  2  f (−  1, −  1) = 

−  

2 
 

Therefore  (  −   1,    −   1)    and     (1,    1)    are   both   global   minimizers  of    f 

. 

✍  
 

 
 

3.4   Convex Sets and Convex Functions 
 

 

It is necessary at this point that you study convexity briefly because of some of its important 

considerations in optimization  theory. Which include First, Convex functions occur frequently 

and naturally in many optimization problems that arise in statistical, economical, or industrial 

applications.  Second, convexity often make it unnecessary to test the Hessians of functions for 

positive definiteness, a test which can be difficult in practice  as you have seen in the preceding 

section. 
 

You will be introduced to a very basic concept of Convexity  and then state some important 

results which will help you minimize  a function. 
 

 
3.4.1  Convex Sets 

 
Definition 3.4.1 A set C in Rn is convex if for every x, y ∈  C, the line segment joining x and y 

remains inside C . 

 
The line segment [x, y] joining x and y is defined by 

[x, y] = {λx + (1 −  λ)y : 0 ≤  λ 

≤  

1}. 

Therefore,  a subset C in Rn  is convex if and only if for every x and y in C and every  λ with 

0 ≤  λ ≤  1, the vector λx + (1 −  λ)y is also 

in 
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C . 
 
 

Examples of Convex Sets 
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(a) Let x and v be vectors in Rn. The line L through x in the direction of v 

L = {x + λv, λ ∈  R} 
 

is convex set in Rn . 
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(b) Any linear subspace M  of Rn  is a convex  set since linear  subspaces are closed  under 
addition and scalar multiplication. 

(c) If x̄ ∈  Rn and α ∈  R, then the closed half-spaces 

F + = {y ∈  Rn : x̄ · y ≥  α}F −   = {y ∈  Rn : x̄ · y ≤  

α} 

 
determined by x̄ and α are all convex sets. 

(d) If x̄ ∈  Rn and r > 0 then the ball centered at x̄ with radius r 
 

B !(x, r) = {x ∈  Rn :  x −  x̄ ≤  

r} 
 

is a convex  set in Rn. 
 

Theorem 3.4.1 Let C be a convex subset in Rn. Let x1, . . . , xm be points in C . If λ1, . . . , λm  are 
non-negative  numbers whose sum is 1 then the conves combination 

λx1 + · · · + λm xm 

 

is also in C . 

Proof.   Assume  that the nonempty  set C is convex, you have to show that C contains all 

its convex combinations.  You can proceed by induction   as follows. Define the property Pn as 

follows; 
 

n 

Pn : 
λi xi  ∈  C for all x1, ..., xn  ∈  C, λi  

≥  

n 

λi  = 1 

i=1  0, i=1 

 

 

1. The property obviously hold for n = 1, i.e., (P1 ) is fulfilled. 

2. Assume that properties (P1), ..., (Pn) holds. Let x1, ..., xn, xn+1  ∈  C, λ1  ≥  , λ2 ≥  0, ..., λn  

≥  

0, λn+1  ≥  0with 
 

n+1 

 
 

i=1 

 
λi  = 1 

 

Of course, if λn+1 = 1, then 
 

n+1 

 
 

i=1 

λixi  = xn+1 ∈  C , 
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because λ1 = · · · = λn  = 0 in this case. And so 
 

n+1 

 
 

i=1 

λixi  ∈  C . 
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i 

λ 

 
 
 

Assume that λn+1 = 1. This allows you to write 
 

n+1 

 
 

i=1 

 
λixi = 

n 

 
 
i=1 

 
λi xi + λn+1 xn+1 
 

 

\ 
n 

 

 
 
 

(3.7) 

 
 
 
 

You have 
 

n 
λ

 

= (1 −  λ 
 
 
 

 

1 
n 

 

n+1 ) 
 

 
i=1 
 

 
 
 

1
 

λ i  
x 

1 −  λn+1 

 

+ λn+1 

 

xn+1. 

 

 
 
 
 
 
 
n+1 

 
 

i=1 

i  
= 

1 −  λn+1 
1 −  λn+1 

λi  = 
i=1 

1 −  λn+1 
(1 −  λn+1 ) = 1, since λi  = 1 

i=1 

 

and  

 
λi 

1 −  λn 

 

 

≥  0 and x1, ..., xn  
∈  C , 

 

hence by induction assumption, 
 

n 

x! := 

 
 
 

i 
xi  ∈  C 

 

i=1 
1 −  λn+1 

 

Since y! := xn+1  ∈  C by assumption you get that 

(1 −  λn+1 )x
! + λn+1y ! ∈  C (3.8) 

because λn+1  ∈  [0, 1]. Combining (3.7) and (3.8) you can conclude that 
 

n+1 

 
 

i=1 

λixi  ∈  C 

 
This completes the proof. 

The preceeding argument demonstrates that if C contains any convex combination  of two of 

its points, then it must also contain any convex combination  of three of its points. 
 

 
 

3.4.2 Convex Functions 

Definition 3.4.2 Let C be a convex  nonempty  subset of Rn  and f a real-valued function  from 

C to R. Then 
 

(a) the function f is a convex function  if 

f (λx + (1 −  λ)y) ≤  λf (x) + (1 −  λ)f (y) 

for all x, y ∈  C, and all λ with 0 ≤  λ ≤  1. 
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(b) the function f is a strictly convex function  if 

f (λx + (1 −  λ)y) ≤  λf (x) + (1 −  λ)f (y) 

for all x, y ∈  C with x = y and all λ with 0 < λ < 1. 

 

(c) the function f is concave function  if 

f (λx + (1 −  λ)y) ≥  λf (x) + (1 −  λ)f (y) 

for all x, y ∈  C and for all λ with 0 ≤  λ ≤  1. 

 

(d) the function f is a strictly concave function  if 

f (λx + (1 −  λ)y) ≥  λf (x) + (1 −  λ)f (y) 

for all x, y ∈  C with x = y and all λ with 0 < λ < 1 
 

Remark 3.4.1 Note that f is convex (resp. strictly convex) on a convex  set C if and only if 

−  f is a concave (resp. strictly concave) on C. Because of this close connection, all results are 
formulated in terms of convex functions only. Corresponding results for concave functions will 
be clear. 

 
Example 3.4.1 

 

 

1. Any linear function of n variables is both convex and concave on Rn . 

2. The function f (x) = (a · x)2  where a is a fixed vector in Rn is convex on Rn . 
 

Theorem 3.4.2 Suppose that f is a convex function  defined on a convex  subset  C of Rn. If 

λ1, . . . , λm  are non-negative numbers with sum 1 and if x1, . . . , xm  are points of C, then 
\ 

m 

f 

k=1 

λk xk ≤  
m 

 
 
k=1 

 

λk f (xk ) (3.9) 

 

If f is strictly  convex on C and if all the λk ’s are positive then equality holds in (3.9) if and only 
if all the xk ’s are equal. 

 

 
3.4.3  Convexity and Optimization 

 
The results proved in this section link convexity to optimization. 

 
Theorem 3.4.3 Suppose C is a convex subset of Rn, f : C → R is a convex function and x̄ is 

a local minimum of f. Then x̄ is also a global minimum of f in C . In addition, if f is a strictly 

convex function, then x̄ is a unique global minimum of f in C . 
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Proof. Suppose that x̄ is a local minimizer  of f in C . Then there exists a positive number r 
such that 

f (x̄) ≤  f (x), for all x ∈  C ∩  B(x̄, r) 

Given x ∈  C, you have to show that f (x̄) ≤  f (x). To this end, select λ, with 0 < λ < 1 and so 
small that 

 
 

Then 

x̄ + λ(x −  x̄) = λx + (1 −  λ)x̄ ∈  C ∩  

B(x̄, 

r) 

 
f (x̄) ≤  f (x̄ + λ(x −  x̄)) = f (λx + (1 −  λ)x̄) ≤  λf (x) + (1 −  

λ)f 

(x̄) 
 because f is convex. Now subtract f (x̄) from both sides of the preceeding inequality  and divide the result by λ to obtain 0 ≤  f (x) −  f (x̄). This establishes that x̄ is a global  minimum. 
 

Now suppose f is strictly convex. Let x1 and x2 be two different minimizers of f and let λ 

with 0 < λ < 1. Because of the strict convexity of f and the fact that 
 
 
 
 

you have 

f (x1) = f (x2) = min f (x) 
x∈  C 

 

f (x1) ≤  f (λx1  + (1 −  λ)x2) < λf (x1) + (1 −  λ)f (x2) = f (x1 

) 
 

which is a contradiction,  therefore, x1 = x2 . 
 

Remark 3.4.2 
 

• If f is a concave function, then a local maximum is a global maximum. 
 

• If f is a strictly  concave function, then a local maximum is a unique global maximum. 
 
 Theorem 3.4.4 (Gradient Inequality) Suppose that f has continuous first partial derivatives on some open set containing  the convex set C . Then 
 

 

1. The function f is convex if and only if 

f (y) ≥  f (x) + ∇f (x)t (y −  x) for all  x, y ∈  C (3.10) 
 

 

2. The function f is strictly  convex if and only if 

f (y) > f (x) + ∇f (x)t (y −  x) for all x, y ∈  C (3.11) 
 

Proof. The proof of no. 1 is given here. Suppose that f is convex on C . Let x, y ∈  C and λ 

with 0 < λ < 1. Then 

f (x + λ(y −  x)) = f (λy + (1 −  λ)x) ≤  λf (y) + (1 −  

λ)f 

(x) 
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so that 
 

f (x + λ(y −  x)) −  f (x) 

λ 
≤  f (y) −  f (x).

 

If you let λ → 0, you obtain 
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∇f (x) · (y −  x) ≤  f (y) −  

f (x) 
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Therefore 
 

for all x, y ∈  C . 

 

f (y) ≥  f (x) + ∇f (x)t (y −  x) 

 

Conversely,  suppose that inequality  (3.10) holds for all x, y ∈   C. Let w and z be any two 

points in C. Let λ ∈  [0, 1], and set x = λw + (1 −  λ)z. Then 

f (w) ≥  f (x) + ∇f (x)t (w −  x)  and f (z) ≥  f (x) + ∇f (x)t(z 

−  

x) 
 

Taking a convex combination  of the above inequalities, you obtain 

λf (w) + (1 −  λ)f (z) ≥  f (x) + ∇f (x)t (λ(w −  x) + (1 −  λ)(z 

−  

x)) 

=  f (x) + ∇f (x)t 0 

 
 

 
 

which shows that f is convex. 

= f (λw + (1 −  λ)z), 

 

The following striking result is an immediate  consequence of Theorem 3.4.4. It is the most 

important and useful result in this chapter. 
 

 Corollary 3.4.1 If f is a convex function with continuous first partial derivatives  on some open set containing  the convex set C , then any critical point of f in C is a global minimizer of f . 
 

Proof. Suppose that x̄ ∈  C is a critical point of f. Let x ∈  C. Then ∇f (x̄) = 0 and (3.10) 

imply that 

f (x̄) = f (x̄) + ∇f (x̄)t (x −  x̄) ≤  f (x). 

Consequently, x̄ is a global minimizer  of f on C . 

Although the definitions of convex and strictly convex functions  and the gradient inequal- 

ities provide useful tools for deriving important information  concerning their properties, they 

are not very useful for recognizing convex and strictly convex functions in concrete examples. 

For instance, the function f (x) = x2 is certainly convex (even strictly convex) function on Rn, 

yet it is cumbersome to verify this fact by using definition  or the gradient inequality  of con- 

vex function.  The next two theorems will provide you with an effective  means for recognizing 

convex functions in specific examples. 
 

 Theorem 3.4.5 Suppose that f has continuous  second partial derivatives  on some open convex 
set C in Rn. Let H f (x) be the Hessian matrix of f. then f is convex on C if and only if H f (x) 

is positive semidefinite for all x ∈  C . 
 

Proof. Suppose f is convex. Let x̄ ∈  C and d be any direction.  Then for λ > 0 sufficiently 

small, x̄ + λd ∈  C. You have: 

 

f (x̄ + λd) = f (x̄) + ∇f (x̄)t(λd) + 1 
(λd)t H f (x)(λd) +  λd 2α(x̄, λd), 

2 
where α(x̄, y) → 0 as y → 0. Using the gradient inequality, you obtain 
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( \ 
1 

λ2    dt H f (x̄)d +  d 2α(x̄, λd) ≥  0. 
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1 2 3 

 
 
 

Dividing by λ2  > 0 and letting λ → 0, you obtain dt H f (x̄)d ≥  0, i.e., H f (x̄) is positive 
semidefinite. This completes the proof of this direction. 

Conversely,  suppose that H f (z) is postive semidefinite for all z ∈   C. Let x, y ∈   C be 

arbitrary. Invoking  the second-order version of Taylor’s theorem, you have: 
 

f (y) = f (x) + ∇f (x)t (y −  x) + 1(y −  x)t H f (z)(y −  x) 
2 

for some z which is a convex  combination  of x and y (and hence z ∈   C).   Since H f (z) is 

positive  semidefinite,  this means that 

f (y) ≥  f (x) + ∇f (x)t (y −  x). 
 

Therefore the gradient inequality  holds, and hence f is convex. 
 

The following example illustrates how Theorem 3.4.5 can be applied to test convexity. 
 

Example 3.4.2 Consider the function f defined on R3 by 
 

f (x1, x2, x3) = 2x2 + x2 + x2 + 2x2 x3 . 
 

The Hessian of f is 
 
 

4  0  0 

H f (x) = 0  2  2 . 

0  2  2 
 

The principal minors of H f (x) are ∆1   = 4, ∆2   = 8, ∆3   = 0, Which implies that H f (x) 

is positive  semidefinite,  and so f is convex by Theorem 3.4.5. Since H f (x) is not positive 

definite, it is not possible to conclude from Theorem 3.4.5 that f is strictly convex on R3. As a 
matter of fact, since 

2 2
 

f (x1, x2, x3) = 2x1 + (x2 + x3 ) , 

you see that  f (x) = 0 for all x on the line where x1  = 0 and x3  = −  x2, so f is not strictly 
convex. 

 

The discussion above shows that many of the results of the preceeding section, are subsumed 

under the general heading of convex functions. But you must note that verifying  that the Hessian 

is postive semidefinite is sometimes difficult. For instance, the function 

f (x, y, z) = ex2 +y+z  −  ln(x + y) + 3z2

 

is convex on R3 but its Hessian is a mess. Fortunately,  there are ways other then checking  the 

Hessian to show that a function  is convex.  The next group of results points in this direction. 

The following theorem shows that convex functions  can be combined in a variety  of ways to 

produce new convex functions. 
 

Theorem 3.4.6 

(a) If f1 , . . . , fm  are convex functions on a convex set C in Rn, then 

f (x) = f1 (x) + · · · + fm (x) 

is convex. Moreover, if at least one fi(x) is strictly  convex on C , then the sum f is strictly 

convex. 



3.4 Convex Sets and Convex Functions UNIT 3.  UNCONSTRAINED OPTIMIZATION 

64 

 

 

2 2 2 

 

 
 

(b) If f is convex (resp. strictly  convex) on a convex set C in Rn and if α is a positive number, 

then αf is convex (resp. strictly  convex) on C . 

(c) If f is convex (resp. strictly convex) function defined on a convex set C in Rn, and if ϕ is 

an increasing (resp. strictly increasing) convex function defined on the range of f in R, 

then the composite function ϕ ◦ f is convex (resp. strictly  convex). 
 

Proof. 

 
(a) To show that any finite sum of convex function on C is convex on C , it suffices to show 

that the sum (f1  + f2 ) of two convex functions f1  and f2  on C is again convex on C. If, 

y, z belong to C and 0 ≤  λ ≤  1, then 

(f1 + f2 )(λy + (1 −  λ)z) =  f1 (λy + (1 −  λ)z) + f2 (λy + (1 −  λ)z) 
 

≤  λf1(y) + (1 −  λ)f1 (z) + λf2(y) + (1 −  λ)f2 (z) 
 

= λ(f1 + f2 )(y) + (1 −  λ)(f1 + f2 )(z). 

Hence, (f1 + f2 ) is convex on C . Moreover, it is clear from this computation that if either 

f1  or f2  is strictly convex, then (f1  + f2 ) is strictly convex  because strict convexity of 

either function introduces a strict inequality  at the right place. 
 

(b) This result follows by an argument similar to that used in (a). 

(c) If y, z belong to C and 0 ≤  λ ≤  1, then 

f (λy + (1 −  λ)z) ≤  λf (y) + (1 −  λ)f 

(z) 

since f is convex on C. Consequently,  since ϕ is an increasing, convex function  on the 

range of f, it follows that 

ϕ(f (λy + (1 −  λ)z)) ≤  ϕ(λf (y) + (1 −  λ)f (z)) 
 

≤  λϕ(f (y)) + (1 −  λ)ϕ(f (z)). 

Thus, the composite function ϕ ◦ f is convex on C . If f is strictly convex and ϕ is strictly 

increasing, the first inequality in the preceding computation is strict for y = z and 0 < 

λ < 1, so ϕ ◦ f is strictly convex on C . 
 
 
 
 
 

Examples 
 

(a) The function f defined on R3 by 
 

f (x1, x2, x3) = ex1 +x2 +x3 

 

is strictly convex. 



3.4 Convex Sets and Convex Functions UNIT 3.  UNCONSTRAINED OPTIMIZATION 

65 
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1 2 3 

i 

 
 
 

At first glance, it might semm that the most direct path to verify that f is strictly convex 

on R3 would be to show that the Hessian H f (x) of f is positive definite on R3. However, 

the Hessian turns out to be 
 

2 2 2
  

4x x e 
2 2 2

  

4x x e  
2 2 2

 

(2 + 4x2 )ex  1 +x2 +x3  x1 +x2 +x3 
x1 +x2 +x3 

 
2 2 2

 
2 2 2

 
2 2 2

 

H f (x) = 4x1 x2 e
x1 +x2 +x3  (2 + 4x2 )ex1 +x2 +x3  4x 2x 3e

x1 +x2 +x3 

 
2 2 2

 
2 2 2

 
2 x 2+x 2+x 2

 

4x1 x3 e
x

1 
+x

2 
+x

3  4x2 x3 e
x

1 
+x

2 
+x

3  (2 + 4x 3)e 1 2 3
 

Obviously,  proving that the Hessian is positive definite for all x ∈  Rn will involve quite 

tedious algebra. No matter there is much simpler way to handle the problem. 
 

First note that 

h(x1, x2, x3) = x2 + x2 + x2
 

 

is strictly convex since its Hessian 
 
 
 

2  0  0 
 

H h(x1, x2, x3) = 0  2  0 
 

0  0  2 
 

is obviously positive definite. Also, ϕ(t)  = et  is strictly increasing (since ϕ!(t) = et  > 0 
for all t ∈   R) and strictly convex (since ϕ!!(t)  = et   > 0 for all t ∈   R). Therefore by 
Theorem 3.4.6(c), f = ϕ ◦ h is strictly convex on R3. 

 

(b) Suppose a(1), . . . , a(m)  are fixed vectors in Rn and that c1, . . . , cm are positive real num- 

bers. Then the function  f defined on Rn by 
 
 
 
 

 
is convex. 

 
 

f (x) = 

 
m 

i=1 

 

 

ci e
a

 

 
(i) ·x 

To prove this statement, first observe that the functions gi  on Rn defined by 

gi(x) = a(i) · x, i = 1, . . . , m 

 

are linear and therefore convex on Rn. Since h(t) = et  is increasing and convex on R, it 
follows from theorem 3.4.6(c) that the functions 

h(g (x)) = ea(i) ·x , i = 1, . . . , m 
 

are all convex on Rn. Since c1, . . . , cm are positive real numbers, you can apply Theorem 

3.4.6(a) and (b) to conclude that 
 
 
 
 

 

is convex on Rn. 

 
 

f (x) = 

 
m 

i=1 

 

 

ci e
a

 

 
(i) ·x 
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1 2 

1 2 

 
 
 

(c) The function f defined on R2 by 

f (x1, x2) = x2 −  4x1 x2 + 5x2 −  ln x1 x2 

is strictly  convex on C = {x ∈  R2 : x1 > 0, x2 > 0}. 
 

In fact f (x) = g(x) + h(x) where 
 

g(x1 , x2) = x2 −  4x1 x2 + 5x2, h(x1, x2) = −  ln(x1 x2 ) 
 

so Theorem 3.4.6(a) will imply that f is strictly convex once you are able to show that 

g and h are convex  and at least one of these functions  is strictly convex on C . But the 
Hessian of g is 

2  −  4 
 

−  4  10 
 

principal minors of this matrix  are ∆1  = 2, ∆2  = 4, g is strictly convex on R2. Conse- quently, all that you need to do now is to show that h is convex on C . But 

h(x1, x2) = −  ln x1 −  ln x2 

 

and the function ϕ(t)  =  −  ln t (t >  0) is strictly convex since ϕ!!(t)  = 1/t2 , so h is 

convex on C by Theorem 3.4.6(c). 
 

 
 

3.5   Conclusion 
 

 

In this section, you looked at Unconstrained optimization problem. You learnt the first order 

necessary optimality  condition  and the second order necessary and sufficient optimality  con- 

dition. You were also introduced to the notion of convex sets and convex functions.   And you 

proved some results in optimization  problems defined on a convex set. 
 

 
 

3.6   Summary 
 

 

Having gone through this unit, you now know the following 
 

(i) 

(ii) 

x̄ is a local minimizer of f in D if there exists r > 0 such that 

f (x̄) ≤  f (x) for all x ∈  D ∩  B(x̄, r) 
 

x̄ is a global minimizer of f in D if 

f (x̄) ≤  f (x) for all x ∈  D 
 

 

Reversing the inequalities in (i) and (ii) gives you the the definitions  of local maximizer 

and global maximizer respectively of f . You also have the definition  of strict optimas’ if 

the inequalities  are made to be strict. 



67 

3.7 Tutor Marked Assignments (TMAs) UNIT 3.  UNCONSTRAINED OPTIMIZATION  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

(iii)  If x̄ is a local minimizer,  then x̄ is a critical  point, (i.e., ∇f (x̄) = 0). This is the first order 
necessary optimality condition. 

 

(iv) x̄ is a local minimizer if and only if the hessian of f at x̄ i.e., H f (x̄) is semipositive 

definite.  This the second order necessary and sufficient optimality condition. 
 

(v) If f is a convex  function, then every local minimizer is also  a global minimizer. In 

addition if f is a strictly  convex function,  then x̄ is a unique global minimizer 
 

 
 

3.7 Tutor Marked Assignments (TMAs) 
 

 

Exercise 3.7.1 
 
 

1. Find the local and global minimizers and maximizers of the following functions 
 

(a) f (x) = x2 + 2x. 

(b) f (x) = x2 e−  x2 
. 

(c) f (x) = x4 + 4x3 + 6x2 + 4x. 
 

(d) f (x) = x + sin x. 
 

2. Classify the following matrices according to whether they are positive or negative definite 

or semidefinite or indefinite. 
 

1  0  0 

(a) 0   3   0  

0  0  5 

−  1 0 0 

(b) 0   −  3 0  
0 0  −  2 

7 0  0 

(c) 

(d) 

0  −  8  0 
0 0  5 

 

3  1  2 

1   5   3  

2  3  7 

−  4 0 1 

(e) 0  −  3 2 
1 2  −  5 

2  −  4 0 

(f) −  4 8 0  
0 0  −  3 

 

3. Write the quadratic form QA(x) associated with each of the following matrices A : 
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1 2 

1 3 

1 2 3 

1 2 3 

2 

1 2 

1 2 3 

1 2 3 

1 2 2 

1 2 1 2 

1 2 

1 2 

 

 

( 

(a) A = 

( 

\ 
−  1  2 

2  3 
\ 

 

(b) A = 
2  −  3 
−  3 0 

1  −  1  0 

(c) −  1  −  2  0 
0 2  3 

−  3 1 2 

(d) 1 2   −  1  
2  −  1 4 

 

4. Write the following quadratic forms in the form xT Ax where A is an appropriate  sym- 
metric matrix. 

(a) 3x2 −  x1 x2 + 2x2. 

(b) x2 + 2x2 −  3x2 + 2x1 x2 −  4x1 x3 + 6x2 x3. 

(c) 2x2 −  4x2 + x1 x2 −  x2 x3 . 
 

5. Suppose f is defined on R3 by 
 

f (x) = c1 x
2 + c2 x

2 + c3 x
2 + c4 x1 x2 + c5 x1 x3 + c6 x2 x3 . 

 

Show that f is the quadratic form  associated with 1 H f . Discuss generalizations to higher 

dimensions. 
 

6. Show that the principal minors of the matrix 
( \ 

A = 
1  −  8 
1 1 

 

are positive, but that there are x = 0 in R2 such that xT Ax < 0. What conclusion can you 

draw from this? 
 

7. Use the principal minor criteria to determine (if possible) the nature of the critical points 

of the following functions: 

(a) f (x1, x2) = x3 + x3 −  3x1 −  12x2 + 20. 

(b) f (x1, x2, x3) = 3x2 + 2x2 + 2x2 + 2x1 x2 + 2x2 x3 + 2x1 x3. 

(c) f (x1, x2, x3) = x2 + x2 + x2 −  4x1 x2. 

(d) f (x1, x2) = x4 + x4 −  x2 −  x2 + 1. 

(e) f (x1, x2) = 12x3 −  36x1 x2 −  2x3 + 9x2 −  72x1 + 60x2 + 5. 
 

8. Show that the functions 
 
 

and 

f (x1, x2) = x2 + x3 , 
 

 

g(x1 , x2) = x2 + x4 . 

both have a critical point at (0, 0), both have positive semidefinite  Hessians at (0, 0), but 

(0, 0) is a local minimizer  for g(x1 , x2) but not for f (x1, x2 ). 
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1 2 
2 2 

1 2 

1 2 

1 3   2 

1 2 

 
 
 

9. Find the global maximizers and minimizers, if they exist, for the following functions: 

(a) f (x1, x2) = x2 −  4x1 + 2x2 + 7. 

(b) f (x1, x2) = e−  (x1 +x2 ) . 

(c) f (x1, x2) = x2 −  2x1 x2 + 1 x3 −  4x2. 

(d) f (x1, x2, x3) = (2x1 −  x2)2 + (x2 −  x3)2 + (x3 −  1)2. 

(e) f (x1, x2) = x4 + 16x1 x2 + x8 . 

10. Show that although (0, 0) is a critical  point of f (x1, x2) = x5 −  x1 x
6, it is neither  a local 

maximizer nor a local minimizer  of f (x1, x2 ). 
 

11. Define f (x, y) on R2 by 

f (x, y) = x4 + y4 −  32y2
 

 

(a) Find a point in R2 at which H f is indefinite. 

(b) Show that f (x, y) is coercive. 

(c) Minimize f (x, y) on R2. 
 

12. Define f (x, y, z) on R3 by 

f (x, y, z) = ex + ey + ez + 2e−  x−  y −  z
 

 

(a) Show that H f (x, y, z) is positive definite at all points of R3. 

(b) Show that (ln 2/4, ln 2/4, ln 2/4) is the strict global minimizer of f (x, y, z) on R3. 
 

13. (a) Show that no matter what values of a is chosen, the function 

f (x1, x2) = x3 −  3ax1 x2 + x3
 

 

has no global maximizers. 

(b) Determine the nature of the critical points of this function for all values of a. 
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UNIT 4 
 

 
 

CONSTRAINED OPTIMIZATION 
 

 
 
 
 
 
 

4.1   Introduction 
 

 

It is not often that optimization  problems have unconstrained solutions.  Typically,  some or all 

of the constraints will matter. Through out this unit, you will be concerned with examining 

necessary conditions  for optima in such a context. 
 

 
 

4.2   Objectives 
 

 

At the end of this unit, you should be able to 
 

 

(i) Give the definition of a constrained optimization  problem. 

(ii)  Solve Equality constained problems. 

(iii)  Apply the Lagrange’s theorem. 
 

(iv) State and apply the first order necessary conditions. 
 

(v) State and apply the second order necessary and sufficient  conditions. 

(vi) Solve Inequality  constrained problems 

 

 

4.3   Constrained Optimization Problem 
 

 

Just as defined  in unit 10, An optimization problem is called constrained if it is of the form 
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+ 

 
 
 
 

min(or  max)  f (x) 
 Subject to: hi(x) = 0, i = 1, . . . , m gi(x) ≥  0, i = 1, . . . , l 

x ∈  U. 

 

 
(4.1) 

 

Where f : U → R, U is an open set of Rn is called the Objective function, g1, . . . , gk , h1 , . . . , hl  : 
U ⊂  Rn → are the constraint  functions. 

If you define g = (g1 , . . . , gk ) : R
n  → Rk  and h = (h1, . . . , hl ) : R

n  → Rl , then you can 
rewrite  the constrained  problem  as follows 

 

 

min(or  max)  f (x) 

Subject to: h(x) = 0 
g(x) ≥  0 
x ∈  U. 

If you define in the sequel that the constraint  set D as 

 

 
(4.2) 

 
 

D = U ∩  {x ∈  Rn : h(x) = 0, g(x) ≥  0}, (4.3) 

Then, Problem (4.2) reduces to 
 

 

min(or)  max)  f (x) 

Subject to: x ∈  D 
(4.4)

 
 

Many problems in economic theory can be written in this form. For example you can readily 

see that if f, g and h are linear functions,  then the problem  (4.2) becomes a linear  programming 

problem, to which, if solution exist, you can use the simplex  method, discussed in previous 

units, to solve. Nonnegativity  constraints are easily handled: if a problem requires that x ∈  Rn , 
this may be accomplished by defining the function hj   : R

n → R 
 

 

gj (x) = xj , j = 1, . . . , n, 
 

and using the n inequality constraints 
 

gj (x) ≥  0 

More generally, requirements of the form α(x) ≥  a, β(x) ≤  b, or ψ(x) = c (where a, b and c 

are constants), can all be expressed in the desired form by simply writing them as α(x) −  a ≥  0, 

b −  β(x) ≥  0, or c −  ψ(x) = 0. 
 

Your study in this unit, is divided into two parts namely; 
 

 

1. Equality-Constrained optimization problems. 
 

2. Inequality-constrained optimization problems. 
 

 

You will now take it one after the other and study them. 
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4.4 Equality-Constraint 
 

 

Coming back to the study of minimization with constraints. More specifically, you will tackle, 

in this section, the following problem 
 

 

Minimize  f (x) 

subject to h1(x) = 0 

h2(x) = 0 

. 

hm(x) = 0 

 
 

 
(4.5) 

where x ∈  D ⊂  R, and the function  f, h1 , h2 , . . . , hm  are continuous,  and usually  assumed to 

be in C 2 (i.e., with continuous second partial derivatives). 
 

Observe that when f and hj ’s are linear, the problem is a linear programming  one and can 

be solved using the simplex algorithm. Hence you would like to focus on the case that these 
functions are nonlinear. 

 

In order to gain some intuition, you can consider  the case where n = 2 and m = 1. The 

problem becomes 
minimize  f (x, y) 

 

subject to  h(x, y) = 0, (x, y) ∈  R2. 
 

The constraint h(x, y) = 0 defines a curve  as shown  below. Differentiate  the equation with 

respect to x : 
∂h 

+ 
∂h dh 

= 0. 
∂x  ∂y dx 

The tangent of the curve is T (x, y) = (1, dy ). And the gradient of the curve is ∇h = ( ∂ h ,  ∂ h 

). 
 

So the above equation states that 
dx 

T · ∇h = 0; 

∂x    ∂ y 

 

namely, the tangent of the curve must be normal to the gradient at all the time.  Suppose you are 

at a point on the curve. To stay on the curve, any motion must be along the tangent T . 
 

 
 
 

 h 
 

 

T 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: 

 

 

h  x , y 0 
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3 4 

 
 
 

In order to increase or decrease f (x, y), motion along the constraint  curve  must  have a 

component along the gradient of f, that is, 

∇f · T = 0. 
 
 
 
 
 
 

 f 
h  x , y 0 

 

 
 
 

T 
 f 

 
 
 
 
 

Figure 4.2: 
 

At an extremum of f, a differential  motion should not yield a component  of motion along 

∇f. Thus T is orthogonal to ∇f ; in other words, the condition 

∇f · T = 0 

must hold. Now T is orthogonal to bot gradients ∇f and ∇h at an extrema.  This means that 

∇f and ∇h must be parallel.  Phrased differently,   there exists some λ ∈  R such that 
 

∇f + λ∇h = 0. (4.6) 
 

 
 x 2, y 2



h  x , y  0 

 


  f 

 x 
 

, y 
 



 h 

 
 

 
 x1,  y1 







f  c1    f  c
 

f  c f  c 

 

f  c5 

 

 

Figure 4.3: 

 
the figure above explains condition  (4.6) by superposing the curve h(x, y) = 0 onto the 

family of level curves of f (x, y), that is, the collection  of curves f (x, y) = c, where c is any 

real number in the range of f. In the figure, c5 > c4 > c3 > c∗    > c1. The tangent of a level 
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+ λ 

∂y ∂ y 

 
 
 

curve is always orthogonal to the gradient ∇f. Otherwise moving along the curve would result 
in an increase or decrease of the value of f. Imagine a point moving  on the curve h(x, y) = 0 

 
from (x1, y1) to (x2, y2). Initially, the motion has a component  along  the negative gradient 
direction −  ∇f, resulting in the decrease of the value of f. This component becomes smaller 

and  smaller.    When  the  moving    point  reaches  (x ∗  , y ∗  ), the motion  is orthogonal  to the 
gradient. 
From that point on, the motion  starts having a component along the gradient ∇f  so the value 
of f increases.  Thus  at  (x∗  , y ∗  ), f achieves  its local minimum. The motion is in 
the tangential direction  of the curve  h(x, y)  = 0, which is orthogonal  to the gradient  
∇h. Therefore at the point (x∗  , y∗  ) the two gradients ∇f and ∇h must be collinear.  This is 
what 
equation (4.6) says. Let c∗    be the local minimum  achieved at (x∗  , y∗  ). It is clear that 
the two curves f (x, y) = c∗   and h(x, y) = 0 are tangent at (x∗  , y∗  ). 

 

Suppose you find the set S of points satisfying the equations 
 

h(x, y) = 0 

∇f + λ∇h = 0  for some  λ 
 

Then S contains the external points of f to the constraints h(x, y) = 0. The above two equa- 

tions constitute  a nonlinear  system in the variables x, y, λ. It can be solved using numerical 

techniques, for example, Newton’s method. 
 

 
4.4.1  Lagrangian 

 
It is convenient to introduce the Lagrangian  associated with the constrained problem, defined 

as 
 
 

Note 

F (x, y, λ) = f (x, y) + λh(x, y) 
 

 
 ∂ f  ∂ h  T 

∂x ∂ x 

∇F = 
∂ f + λ    ∂ h  = (∇f + λh, h). 

h 

Thus setting ∇F = 0 yields the same system of nonlinear equations you derived earlier. 

The value λ is known  as the Lagrange multiplier. The approach of constructing the La- 

grangians and setting its gradient to zero is know  as the method of Lagrange multipliers. 
 

Example 4.4.1 Find the extremal values of f (x, y) = xy subject to the constraint 
 
 

h(x, y) = 
x2 y2 

+ 
8 2 

−  1 = 0 

☞ Solution.  First construct the Lagrangian and find its gradient: 

( 
2
 

F (x, y, λ) = xy + λ 
x y2 

\ 
+ −  1  , 

 
 
 

∇F (x, y, λ) = 

8 2 
 

y +  λ x 
             4 
x + λy  = 0 

x2 y 2
 

8  
+ 

2  
−  1 
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The above leads to three equations 
 

 
 

λx 
y + = 0, (4.7) 

4 
x + λy = 0, (4.8) 

x2 + 4y2 = 8. (4.9) 
 

combining (4.7) and (4.8) yields  
 

λ2 = 4  and  λ = ±2 

 

Thus x = ±2y. Substituting this equation into (4.9) gives you 

y = ±1  and  x = ±2. 

So there are four extremal points of f subject to the constraint h : (2, 1), (−  2, −  1), (2, −  1), and 

(−  2, −  1). The maximum  value 2 is achieved at the first two points while the minimum  value 
−  2 is achieved at the last two points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: 
 

 Graphically, the constraint h defines an ellipse. The constraint contours of f are the hyper- bolas xy = c, with |c| increasing  as the curves move out from the origin. ✍  
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if 

dt 

h(x1, x2) = x 
1 

 

 
 

4.4.2 General Formulation 
 
Now you would generalize to the case with multiple constraints. Let h = (h1, . . . , hm)T  be a 

function from Rn to Rm. Consider the constrained optimization  problem below. 
 

minimize  f (x) 

subject to  h(x) = 0 
 
 

Each constraint equation hj (x) = 0 defines a constraint  hypersurface  S in the space Rn. And 
this surface is smooth provided hj (x) ∈  C 1. 

A curve on S is a family of points x(t)  ∈   S with a ≤  t ≤  b. The curve is 
dx(t)  dx 

differentiable 

dt 
exists, and twice differentiable if 

x∗   = x∗  (t) for some t∗  , a ≤  t∗   ≤  
b. 

dt2    exists. The curve  passes through  a point x∗   if 

The tangent space at x∗   is the subspace of Rn spanned by the tangents  dx (t∗  ) of all curves 
x(t) on S such that x(t∗  ) = x∗  . In other words, the tangent space is the set of the derivatives at 
x∗   of all surface curves through x∗  . Denote this subspace as T . 

 

A point x satisfying h(x)  = 0 is a regular point of the constraint if the gradient vectors 

∇h1 (x), . . . , ∇hm (x) are linearly  independent. 

From your previous intuition, you would expect that ∇f  · v  = 0 for all v ∈   T at an 

extremum.  This implies that ∇f lies in the orthogonal complement T ⊥   of T . Claim that ∇f 

can be composed from a linear combination  of the ∇hi’s. This is only valid provided that these 

gradients span T ⊥  , which is true when the extremal point is regular. 

 
Theorem 4.4.1 At a regular point x of the surface S defined by h(x) = 0, the tangent space is 

the same as 
 
 

where the matrix 

{y = |∇h(x)y = 0} 
 

∇h1 

∇ h = . 

∇hm 

 

The rows of the matrix ∇h(x) are the gradient vectors ∇hj (x), j = 1, . . . , m. The theo- 

rem says that the tangent space at x is equal to the nullspace of ∇h(x). Thus its orthogonal 

complement  T ⊥  must equal the row space of ∇h(x). Hence the vectors ∇hj (x) span T ⊥  . 

 
Example 4.4.2 Suppose h(x1, x2) = x1. Then h(x)  = 0 yields the x2 axis. And ∇h = (1, 0) at all 

points. So every x ∈  R2 is regular.  The tangent space is also the x2 axis and has dimension 1. If instead 
2, then h(x)  = 0 still defines the x2  axis. On this ∇h = (2x1, 0) = (0, 0). Thus no 

point is regular.  The dimension of T , which is the x2 axis, is still one, but the dimension of the space 

{y|∇h · y = 0} is two. 
 

Lemma 4.4.1 Let x∗   be a local extremum of f subject to the constraints h(x) = 0. Then for all 
y in the tangent space of the constraint surface at x∗  , 

∇f (x∗  )y = 0. 
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The next theorem states that the Lagrange multiplier method  as a necessary condition   on an 

extremum point. 
 

Theorem 4.4.2 (First-Order Necessary Conditions)  Let x∗   be a local extremum point of f 
subject to the constraints h(x)  = 0. Assume further that x∗   is a regular point of these con- 
straints. Then there is a λ ∈  Rn such that 

∇f (x∗  ) + λT ∇h(x∗  ) = 0. 
 

 

The first order necessary conditions  together with the constraints 

h(x∗  ) = 0 

give  a total of n + m equations in n + m variables x∗   and λ. Thus a unique solution  can be 

determined at least locally. 
 

Example 4.4.3 You can construct  a cardboard  box of maximum  volume,  given a fixed area of card- 

board. 

Denoting the dimension of the box by x, y, z, the problem  can be expressed a 
 

maximize  xyz 
c
 

subject to xy + yz + xz = 
2 
, 

where c > 0 is the given area of cardboard. Consider the Lagrangian xyz + λ(xy + yz + xz −  c ). The 
2 

first-order  necessary conditions  are easily found to be 
 

yz + λ(y + z) = 0, (4.10) 

xz + λ(x + z) = 0, (4.11) 

xy + λ(x + y) = 0. (4.12) 
 

together with the original  constraint. Before solving the equation above, note that their sum is 
 

(xy + yz + xz) + 2λ(x + y + z) = 0, 
 

which, given the constraint, becomes 
 

c/2 + 2λ(x + y + z) = 0. 
 

Hence it is clear that λ = 0. Neither of x, y, z can be zero since if either is zero, all must be so according 

to (4.10)-(4.12). 

To solve the equations (4.10)-(4.12),  multiply (4.10) by x and (4.11) by y, and then subtract the two to 

obtain 

λ(x −  y)z = 0 

Operate similarly  on the second and third to obtain 

λ(y −  z)x = 0. 
 

Since no variables can be zero, it follows that 
 

x = y = z = c 
6 

 

is the unique solution to the necessary conditions.  The box must be a cube. 
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1 2 3 

 
 
 

You can derive the second-order conditions for constrained problems, assuming f and h are 

twice continuously differentiable. 
 

Theorem  4.4.3  (Second-Order     Necessary  Conditions)   Suppose  that  x ∗     is  a  local 
minimum of f subject to h(x)  = 0 and that x∗   is a regular point of these constraints.  
Then there is a λ ∈  Rm such that 

 
 

The matrix 

∇f (x∗  ) + λT ∇h(x∗  ) = 0. 
 

m 

L(x∗  ) = H f (x∗  ) 

+ i=1 

λiH hi (x)  (4.13) 

is positive semidefinite on the tangent space {y|∇h(x∗   )y = 0}. 

Theorem 4.4.4 (Second-Order   Sufficient  Conditions)  Suppose there is a point x∗   satisfying 

h(x∗  ) = 0, and a λ such that 

∇f (x∗  ) + λT h(x∗  ) = 

0. 

Suppose also that the matrix L(x∗  ) defined in (4.13) is positive definite on the tangent  space 

{y|∇h(x∗  )y = 0}. Then x∗   is a strict local minimum of f subject to h(x) = 0. 
 

Example 4.4.4 Consider the problem 
 

minimize  x1 x2 + x2 x3 + x1 x3 

subject to  x1 + x2 + x3 = 3 
 

The first order necessary conditions  become 
 

x2 + x3 + λ = 0 

x1 + x3 + λ = 0 

x1 + x2 + λ = 0. 

You can solve these equations together with the one constraint equation and obtain 

x1 = x2 = x3 = 1 and λ = −  2 

Thus x∗   = (1, 1, 1)T . 

Now you need to resort to the second-order sufficient  conditions to determine if the problem 

achieves a local maximum  and minimum  at x1 = x2 = x3 = 1. You will find the matrix 

L(x∗  ) = H f (x∗  ) + λH h(x∗  

) 

0  1  1 

= 1   0   1  

1  1  0 

is neither positive nor negative definite. On the tangent  space M  = {y|y1  + y2 + y3  = 0}, 

however, you note that 
 

yT Ly = y1(y2 + y3) + y2(y1 + y3) + y3(y1 + y2 ) 

= −  (y2 + y2 + y2) 

< 0, for all  y = 0. 
 

Thus L is negative definite on M and the solution 3 you found is atleas a local maximum. 
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4.5   Inequality Constraints 
 

 

Finally, you will address the problems  of the general form 
 

Minimize f (x) 

subject to  h(x) = 0 

g(x) ≥  0 

where h = (h1, . . . , hm)T  and g = (g1 , . . . , gp )
T . 

 A fundamental concept that provides a great deal of insight  as well as simplifies  the required theoretical development is that of an active constraint. An inequality constraint gi(x) ≤  0 is 

said to be active at a feasible point x if gi (x) = 0 and inactive at x if gi(x) = 0. By convention 

you refer to any equality constraint hi(x) = 0 as active  at any feasible point. The constraints 

active at a feasible point x restrict the domain of feasibility in neighbourhood of x. Therefore, 
in studying the properties of a local minimum  point, it is clear that attention can be restricted to 
the active constraints. This is illustrated in the figure below where local properties satisfied by 

the solution x∗   obviously  do not depend on the inactive constraints g2 and g3 . 
 

 
 

Assume that the function  f , h = (h1, . . . , hm)T , g = (g1 , . . . , gp)
T are twice continuously 

differentiable. Let x∗   be a point satisfying the constraint. 

h(x∗  ) = 0  and g(x∗  ) 

≤  

0, 

and let J = {j|gj (x
∗  ) = 0}. Then x∗   is said to be a regular point of the above constraints if 

the gradient vectors ∇hi (x
∗  ), ∇gj (x

∗  ), 1 ≤  i ≤  m, j ∈  J are linearly independent. 

Now suppose this regular point x∗   is also a relative minimum  point for the original problem 
(4.6). Then it is shown that there exists a vector λ ∈  Rm and a vector µ ∈  Rp with µ ≥  0 such 
that 

∇f (x∗  ) + λT ∇h(x∗  ) + µT ∇g(x∗  ) = 
 

0 

µT g(x∗  ) = 0 

Since µ ≥  0 and g(x∗  )  ≤  0, the second constraint  above is equivalent to the statement 

that 

a component  of µ may be nonzero only if the corresponding constraint is active. To find a 
solu- tion, you can enumerate various combinations  of active constraints, that is, constraints 
where 

equalities are attained at x∗  , and check the signs of the resulting Lagrangian multipliers. 
 

There are a number of distinct theories concerning this problem, based on various regular- 

ity conditions or constraint qualifications, which are directed toward obtaining definite general 

statements of necessary and sufficient  conditions.   One can by no means pretend that all such re- 

sults can be obtained  as minor  extensions  of the theory for problems having equality constraints 

only. To date, however, their use has been limited  to small-scale programming problems of two 

or three variables. 
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4.6   Conclusion 
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In this unit, you were introduced to constrained optimization  problems, which could be equality, 

inequality, or mixed constraints. You looked at the theorem of Lagrange for local optimum of a 
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constrained problem. 
 

 
 

4.7 Summary 
 

 

Having gone through this unit, you now 
 

 

(i) define equality and inequality  constrained optimization  problem. 

(ii)  state and use the lagrange theorem. 

(iii)  State and apply the First-Order  Necessary Conditions. 
 

(iv) State and apply the second-order necessary and sufficient  conditions. 
 

 
 

4.8 Tutor Marked Assignments(TMAs) 
 

 

Exercise 4.8.1 
 
 

1. Find the minimum  and maximum  of f (x, y) = x2 −  y2 on the unit circle x2 + y2  = 1 

using the Lagrange multipliers  method.  Using the substitution y2  = 1 −  x2, solve the 

same problem  as a single  variable  unconstrained  proble. Do you get the same results? 
Why or Why not? 

2. Show that the problem of maximizing f (x, y) = x3  + y3 on the constraint  set D = 

{(x, y)|x + y = 1} has no solution.  Show also that if the Lagrangian method were used 
on this problem, the critical points of the Lagrangian have a unique solution.  Is the point 
identified by this solution either a local maximum or a (local  or global) minimum? 

 

3. Find the maxima  and minima of the following functions  subject to the specified con- 

straints: 
 

(a) f (x, y) = xy  subject to  x2 + y2 = 2a2. 

(b) f (x, y) = 1/x + 1/y subject to  (1/x)2 + (1/y)2  = (1/a)2 . 
 

(c) f (x, y, z) = x + y + z  subject to (1/x) + (1/y) + (1/z) = 1. 
 

(d) f (x, y, z) = xyz  subject to x + y + z = 5 and xy + xz + yz = 8. 
 

(e) f (x, y, z) = x + y  for  xy = 16 

(f) f (x, y, z) = x2 + 2y −  z2    subject to 2x −  y = 0 and x + z = 6. 

4. Maximize and minimize f (x, y) = x + y on the lemniscate (x2 −  y2)2 = x2 + y2. 
 

5. Consider the problem  
 

min x2 + y2  subject to (x −  1)3 −  y2 = 0. 
 

(a) Solve the problem geometrically. 
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(b) Show that the method of Lagrange multipliers  does not work in this case. Can you 

explain why? 
 

6. Consider the following problem where the objective function  is quadratic and the con- 

straints are linear 

max cT x + 
1 

xT Dx subject to Ax = b 
x 2 

where c is a given n-vector.  D is a given n × n symmetric, negative definite matrix, and 
A is a given m × n matrix. 

(a) Set up the Lagrangean and obtain the first-order  condtions. 

(b) Solve for the optimal vector x∗   as a function  of A, b, c and D. 
 

7. Solve the problem 
 

max f (x) = xT Ax subject to  x · x = 1 
 

where A is a given symmetric  matrix. 
 

8. Solve the following maximization problem: 
 

Maximize  ln x + ln y 
 

Subject to  x2 + y2 = 1 
with x, y ≥  0. 
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