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Introduction 

 
Welcome to CIT478 Artificial Intelligence which is a two credit unit 

course offered in the fourth year to students of the undergraduate degree 

programme in Communication Technology and Computer Science. 

There are eleven study Units in this course. There are no prerequisites 

for studying this course. It has been developed with appropriate local 

and foreign examples suitable for audience. 

 
This course guide is for distance learners enrolled in the B.Sc. 

Communication Technology and Computer Science programmes of the 

National Open University of Nigeria. This guide is one of the several 

resource tools available to you to help you successfully complete this 

course and ultimately your programme. 

 
In this guide you will find very useful information about this course, 

aims and objectives, what the course is about, what course materials you 

will be used, available services to support your learning, information on 

assignments and examination. It also offers you guidelines on how to 

plan your time for study the amount of time you are likely to spend on 

each study unit as well as your tutor-marked assignments. 

 
I strongly recommend that you go through this course guide and 

complete the feedback form at the end before you begin studying the 

course. The feedback form must be submitted to your tutorial facilitator 

along with your first assignment. 

 
I wish you all the best in your learning experience and successful 

completion of this course. 

 
What You Will Learn in This Course 

 

The overall aim of this course, CIT478 is to introduce you to artificial 

Intelligence and the different faculties involved in it. It also examines 

different ways of approaching AI. It starts with the basics and then 

moves on to the more advanced concepts. The Search in artificial 

Intelligence - State Space Search, uninformed Search, informed Search 

Strategies and tree Search are also treated. You will also learn about 

Knowledge Representation and programming languages for AI. Finally, 
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you will be introduced to Artificial Intelligence and its applications – 

Expert System and Robotics. 

 

 

 

 

 
Course Aim 

 

This course aims at introducing you to Artificial Intelligent (AI), 

different types of intelligent agents (IA) and types of AI search. You are 

not expected to have experience in Artificial Intelligent before using this 

course material. It is hoped that the knowledge would help you solve 

some real world problems. 

 

Course Objectives 

 
In order to achieve this aim, the course has a set of objectives. Each unit 

has specific objectives which are included at the beginning of the unit. 

You are expected to read these objectives before you study the unit. You 

may wish to refer to them during your study to check on your progress. 

You should always look at the unit objectives after completion of each 

unit. By doing so, you would have followed the instructions in the unit. 

Below are the comprehensive objectives of the course as a whole. By 

meeting these objectives, you should have achieved the aim of the 

course. Therefore, after going through this course you should be able to: 

 
 State the definition of Artificial Intelligence 

 List the different faculties involved with intelligent behavior 

 Explain the different ways of approaching AI 

 Look at some example systems that use AI 

 Describe the history of AI 

 Explain what an agent is and how it interacts with the 
environment. 

 Identify the percepts available to the agent and the actions that 
the agent can execute, if given a problem situation 

 Measure the performance used to evaluate an agent 

 State based agents 

 Identify the characteristics of the environment 

 Describe the state space representation. 

 Describe Some algorithms 
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 Formulate, when given a problem description, the terms of a 
state space search problem

 Analyze the properties of Some algorithms

 Analyze a given problem and identify the most suitable search 
strategy for the problem.

 Solve Some Simple problems
 Explain Uninformed Search

 List two types of Uninformed Search

 Describe Depth First and Breadth First Search

 Solve simple problems on Uninformed Search

 Explain informed Search

 Mention other names of informed Search

 Describe Best-first Search

 Describe Greedy Search
 Solve simple problems on informed Search

 Describe a Game tree

 Describe Some Two-Player Games Search Algorithms

 Explain Intelligent Backtracking

 Solve Some Simple problems on tree search.
 Explain the meaning of Knowledge Representation

 Describe the history of History of knowledge representation 

and reasoning

 List some Characteristics of KR

 List 4 main features of KR language

 Describe the History of IPL

 Discuss the similarities between Lisp and Prolog Programming

 list the areas where Lisp can be used

 Describe the history of natural language processing

 List major tasks in NLP

 Mention different types of evaluation of NPL

 Explain an Expert System

Distinction between expert systems and traditional problem 

solving programs 

 Explain the term ―Knowledge Base‖

 Explain the word Robotics

 List 4 types of Robotics you know

 Describe the history of Robotics

 

Working through This Course 
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To complete this course, you are required to read each study unit, read 

the textbooks and read other materials which may be provided by the 

National Open University of Nigeria. 

 
Each unit contains tutor marked assignments and at certain points in the 

course you would be required to submit assignment for assessment 

purposes. At the end of the course there is a final examination. The 

course should take you about a total of eleven (11) weeks to complete. 

Below is the list of all the components of the course, what you have to 

do and how you should allocate your time to each unit in order to 

complete the course on time and successfully. 

 
This course entails that you spend a lot of time to read and practice. For 

easy understanding of this course, I will advise that you avail yourself 

the opportunity of attending the tutorials sessions where you would have 

the opportunity to compare your knowledge with that of other people, 

and also have your questions answered. 

 
The Course Material 

 
The main components of this course are: 

 
1. The Course Guide 

2. Study Units 

3. Further Reading/References 

4. Assignments 

5. Presentation Schedule 

 
Study Units 

 
There are 11 study units and 4 modules in this course. They are: 

 

Module 1 Introduction to AI 
 

Unit 1 What is Artificial Intelligent (AI)? 
Unit 2 Introduction to Intelligent Agent (IA) 

 
Module 2 Search in Artificial Intelligence 

 

Unit 1 Introduction to State Space Search 
Unit 2 Uninformed Search 



CIT478 ARTIFICIAL INTELLIGENCE 

v 

 

 

 

Unit 3 Informed Search Strategies 
Unit 4 Tree Search 

 
Module 3 Artificial Intelligence Techniques in 

Programming and Natural Languages 

 
Unit 1 Knowledge Representation 

Unit 2 Programming Languages for Artificial 

Intelligence 

Unit 3 Natural Language Processing 

 
Module 4 Artificial Intelligence and Its Applications 

 
Unit 1 Expert System 

Unit 2 Robotics 

 

 

 

 

 
Textbooks and References 

 

These texts will be of enormous benefit to you in learning this course: 
 

Adrian Walker; Michael McCord; John F. Sowa and Walter G. Wilson 

(1990). Knowledge Systems and Prolog (Second Edition). 

Addison-Wesley. 

 
Argumentation in Artificial Intelligence by Iyad Rahwan, Guillermo R. 

Simari 

 
Arthur B. Markman (1998). Knowledge Representation. Lawrence 

Erlbaum Associates. 

 
Asimov, Isaac (1996) [1995]. "The Robot Chronicles". Gold. London: 

Voyager. pp. 224–225. ISBN 0-00-648202-3. 

 
Bates, M. (1995). Models of Natural Language Understanding. 

Proceedings of the National Academy of Sciences of the United 

States of America, Vol. 92, No. 22 (Oct. 24, 1995), pp. 9977– 

9982. 
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http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521 

570638. 

 
Crevier, Daniel (1993). AI: The Tumultuous Search for Artificial 

Intelligence. New York, NY: Basic Books, ISBN 0-465-02997-3. 

 
Davis, R. Shrobe, H.E. Representing Structure and Behavior of Digital 

Hardware, IEEE Computer, Special Issue on Knowledge 

Representation, 16(10):75-82. 

 
Dechter, Rina; Judea Pearl (1985). "Generalized best-first search 
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Hermann Helbig: Knowledge Representation and the Semantics of 

Natural Language. Springer, Berlin, Heidelberg, New York 2006 

 
Jean-Luc Hainaut, Jean-Marc Hick, Vincent Englebert, Jean Henrard, 

Didier Roland: Understanding Implementations of IS-A 
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Assignment File 

 

The assignment file will be given to you in due course. In this file, you 
will find all the details of the work you must submit to your tutor for 
marking. The marks you obtain for these assignments will count 
towards the final mark for the course. Altogether, there are 11 tutor 
marked assignments for this course. 

http://foba.lakeheadu.ca/serenko/papers/AI_Society_Serenko_So
http://www.cse.buffalo.edu/~shapiro/Papers/ai.pdf
http://news.cnet.com/Getting-machines-to-think-like-us/2008-
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http://www.aaai.org/Library/ICAPS/2005/icaps05-010.php
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Presentation Schedule 
 

The presentation schedule included in this course guide provides you 
with important dates for completion of each tutor marked assignment. 
You should therefore endeavor to meet the deadlines. 

 

Assessment 
 

There are two aspects to the assessment of this course. First, there are 

tutor marked assignments; and second, the written examination. 

Therefore, you are expected to take note of the facts, information and 

problem solving gathered during the course. The tutor marked 

assignments must be submitted to your tutor for formal assessment, in 

accordance to the deadline given. The work submitted will count for 

40% of your total course mark. At the end of the course, you will need 

to sit for a final written examination. This examination will account for 

60% of your total score. 

 

Tutor-Marked Assignments (TMAs) 

 
There are 11 TMAs in this course. You need to submit all the TMAs. The 
best 4 will therefore be counted. When you have completed each 
assignment, send them to your tutor as soon as possible and make 
certain that it gets to your tutor on or before the stipulated deadline. If 
for any reason you cannot complete your assignment on time, contact 
your tutor before the assignment is due to discuss the possibility of 
extension. Extension will not be granted after the deadline, unless on 
extraordinary cases. 

 

Final Examination and Grading 
 

The final examination for CIT478 will be of last for a period of 2 hours 
and have a value of 60% of the total course grade. The examination will 
consist of questions which reflect the tutor marked assignments that 
you have previously encountered. Furthermore, all areas of the course 
will be examined. It would be better to use the time between finishing 
the last unit and sitting for the examination, to revise the entire course. 
You might find it useful to review your TMAs and comment on them 
before the examination. The final examination covers information from 
all parts of the course. 

 

Course Marking Scheme 
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The following table includes the course marking scheme 
 

Table 1: Course Marking Scheme 
Assessment Marks 

Assignments 1-11 11 assignments, 40% for   the 
best 4 Total = 10% X 4 = 40% 

Final Examination 60% of overall course marks 

Total 100% of Course Marks 

Course Overview 
 

This table indicates the units, the number of weeks required to 
complete them and the assignments. 

 

Table 2: Course Organizer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

How to Get the Best from This Course 

Unit Title of the work Weeks 

Activity 

Assessment 

(End of Unit) 

 Course Guide Week 1 

Module 1 Introduction to AI 

1 What Is AI? Week 1 Assessment 1 

2 Introduction to Agent Week 2 Assessment 2 

Module 2 Search in Artificial Intelligence 

1 Introduction to State Space Search Week 3 Assessment 3 

2 Uninformed Search Week 4 Assessment 4 

3 - Informed Search Strategies Week 5 Assessment 5 

4 Tree Search Week 6 Assessment 6 

Module 3 Knowledge Representation and Programming Languages for 

AI 

1 Knowledge Representation Week 7 Assessment 7 

2 Programming Languages for Artificial 

Intelligence 

Week 8 Assessment 8 

3 – Natural Language Processing Week 9 Assessment 9 

Module 4 Artificial Intelligence and the Future 

1 Expert System Week 10 Assessment 10 

2 Robotics Week 11 Assessment 11 
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In distance learning, the study units replace the university lecturer. This 

is one of the great advantages of distance learning; you can read and 

work through specially designed study materials at your own pace, and 

at a time and place that suit you best. Think of it as reading the lecture 

instead of listening to a lecturer. In the same way that a lecturer might 

set you some reading to do, the study units tell you when to read your 

set books or other material. Just as a lecturer might give you an in-class 

exercise, your study units provide exercises for you to do at appropriate 

points. 

 
Each of the study units follows a common format. The first item is an 

introduction to the subject matter of the unit and how a particular unit is 

integrated with the other units and the course as a whole. Next is a set of 

learning objectives. These objectives enable you know what you should 

be able to do by the time you have completed the unit. You should use 

these objectives to guide your study. When you have finished the units 

you must go back and check whether you have achieved the objectives. 

If you make a habit of doing this you will significantly improve your 

chances of passing the course. 

 
Remember that your tutor‘s job is to assist you. When you need help, 

don‘t hesitate to call and ask your tutor to provide it. 

 
 Read this Course Guide thoroughly.

 Organize a study schedule. Refer to the ‗Course Overview‘ for 

more details.

 
Note the time you are expected to spend on each unit and how the 

assignments relate to the units. Whatever method you chose to use, you 

should decide on it and write in your own dates for working on each 

unit. 

 
 Once you have created your own study schedule, do everything 

you can to stick to it. The major reason that students fail is that 

they lag behind in their course work.

 Turn to Unit 1 and read the introduction and the objectives for the 

unit.

 Assemble the study materials. Information about what you need 

for a unit is given in the ‗Overview‘ at the beginning of each unit. 

You will almost always need both the study unit you are working 

on and one of your set of books on your desk at the same time.
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 Work through the unit. The content of the unit itself has been 

arranged to provide a sequence for you to follow. As you work 

through the unit you will be instructed to read sections from your 

set books or other articles. Use the unit to guide your reading.

 Review the objectives for each study unit to confirm that you 

have achieved them. If you feel unsure about any of the 

objectives, review the study material or consult your tutor.

 When you are confident that you have achieved a unit‘s 

objectives, you can then start on the next unit. Proceed unit by 

unit through the course and try to pace your study so that you 

keep yourself on schedule.

 When you have submitted an assignment to your tutor for 

marking, do not wait for its return before starting on the next unit. 

Keep to your schedule. When the assignment is returned, pay 

particular attention to your tutor‘s comments on the tutor-marked 

assignment form. Consult your tutor as soon as possible if you 

have any questions or problems.

 After completing the last unit, review the course and prepare 

yourself for the final examination. Check that you have achieved 

the unit objectives (listed at the beginning of each unit) and the 

course objectives (listed in this Course Guide).

 

Facilitators/Tutors and Tutorials 

 
There are 11 hours of tutorials provided in support of this course. You 

will be notified of the dates, times and location of these tutorials, 

together with the name and phone number of your tutor, as soon as you 

are allocated a tutorial group. 

 
 Your tutor will mark and comment on your assignments, keep a 

close watch on your progress and on any difficulties you might 

encounter and provide assistance to you during the course. You 

must mail or submit your tutor-marked assignments to your tutor 

well before the due date (at least two working days are required). 

They will be marked by your tutor and returned to you as soon as 

possible.

 
 Do not hesitate to contact your tutor by telephone, or e-mail if 

you need help. The following might be circumstances in which 

you would find help necessary.

 
Contact your tutor if: 
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 You do not understand any part of the study units or the assigned 

readings

 
 You have a question or problem with an assignment, with your 

tutor‘s comments on an assignment or with the grading of an 

assignment.

 
You should try your best to attend the tutorials. This is the only chance 
to have face to face contact with your tutor and to ask questions which 
are answered instantly. You can raise any problem encountered in the 
course of your study. To gain the maximum benefit from course 
tutorials, prepare a question list before attending them. You will learn a 
lot from participating in discussions actively. GOODLUCK! 
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1.0 INTRODUCTION 
 

This unit introduces you to Artificial Intelligence and the different 

faculties involve in it. It also examines different ways of approaching 

AI. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 state the definition of Artificial Intelligence

 list the different faculties involved with intelligent behavior

 explain the different ways of approaching AI

 look at some example systems that use AI

 describe the history of AI.
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3.0 MAIN CONTENT 
 

3.1 Definition of AI 
 

What is AI? 

Artificial Intelligence is a branch of Science which deals with helping 

machines find solutions to complex problems in a more human-like 

fashion. This generally involves borrowing characteristics from human 

intelligence, and applying them as algorithms in a computer friendly 

way. A more or less flexible or efficient approach can be taken 

depending on the requirements established, which influences how 

artificial the intelligent behaviour appears. 

 

AI is generally associated with Computer Science, but it has many 

important links with other fields such as Mathematics, Psychology, 

Cognition, Biology and Philosophy, among many others. Our ability to 

combine knowledge from all these fields will ultimately benefit our 

progress in the quest of creating an intelligent artificial being 

It is also concerned with the design of intelligence in an artificial device. 

The term was coined by McCarthy in 1956. There are two ideas in the 

definition. 

 

1. Intelligence 
2. Artificial device 

What is intelligence? 

- Is it that which characterize humans? Or is there an absolute 

standard of judgment? 

- Accordingly there are two possibilities: 

- A system with intelligence is expected to behave as intelligently 

as a human 

- A system with intelligence is expected to behave in the best 

possible manner 

- Secondly what type of behavior are we talking about? 
- Are we looking at the thought process or reasoning ability of the 

system? 

- Or are we only interested in the final manifestations of the system 

in terms of its actions? 

 

Given this scenario different interpretations have been used by different 

researchers as defining the scope and view of Artificial Intelligence. 

 

1. One view is that artificial intelligence is about designing systems 

that are as intelligent as humans. This view involves trying to 
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understand human thought and an effort to build machines that 

emulate the human thought process. This view is the cognitive 

science approach to AI. 

2. The second approach is best embodied by the concept of the 

Turing Test. Turing held that in future computers can be 

programmed to acquire abilities rivaling human intelligence. As 

part of his argument Turing put forward the idea of an 'imitation 

game', in which a human being and a computer would be 

interrogated under conditions where the interrogator would not 

know which was which, the communication being entirely by 

textual messages. Turing argued that if the interrogator could not 

distinguish them by questioning, then it would be unreasonable 

not to call the computer intelligent. Turing's 'imitation game' is 

now usually called 'the Turing test' for intelligence. 
 

 

Figure 1: Turing Test 

 
 

Turing Test 

 

Consider the following setting. There are two rooms, A and B. One of 

the rooms contains a computer. The other contains a human. The 

interrogator is outside and does not know which one is a computer. He 

can ask questions through a teletype and receives answers from both A 
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and B. The interrogator needs to identify whether A or B are humans. 

To pass the Turing test, the machine has to fool the interrogator into 

believing that it is human. For more details on the Turing test visit the 

site http://cogsci.ucsd.edu/~asaygin/tt/ttest.html 

 

3. Logic and laws of thought deals with studies of ideal or rational 

thought process and inference. The emphasis in this case is on the 

inferencing mechanism, and its properties. That is how the 

system arrives at a conclusion, or the reasoning behind its 

selection of actions is very important in this point of view. The 

soundness and completeness of the inference mechanisms are 

important here. 

 

4. The fourth view of AI is that it is the study of rational agents. 

This view deals with building machines that act rationally. The 

focus is on how the system acts and performs, and not so much 

on the reasoning process. A rational agent is one that acts 

rationally, that is, is in the best possible manner. 

 

3.1.2 Typical AI problems 
 

While studying the typical range of tasks that we might expect an 

―intelligent entity‖ to perform, we need to consider both ―common- 

place‖ tasks as well as expert tasks. 

Examples of common-place tasks include 

 

- Recognizing people, objects. 

- Communicating (through natural language). 

- Navigating around obstacles on the streets 
 

These tasks are done matter of firstly and routinely by people and some 

other animals. 

 

Expert tasks include: 

 

• Medical diagnosis. 

• Mathematical problem solving 

• Playing games like chess 

 

These tasks cannot be done by all people, and can only be performed by 

skilled specialists. 

 

Now, which of these tasks are easy and which ones are hard? Clearly 

tasks of the first type are easy for humans to perform, and almost all are 

able to master them. The second range of tasks requires skill 

http://cogsci.ucsd.edu/~asaygin/tt/ttest.html


CIT478 ARTIFICIAL INTELLIGENCE 

5 

 

 

 

development and/or intelligence and only some specialists can perform 

them well. However, when we look at what computer systems have been 

able to achieve to date, we see that their achievements include 

performing sophisticated tasks like medical diagnosis, performing 

symbolic integration, proving theorems and playing chess. 

 

On the other hand it has proved to be very hard to make computer 

systems perform many routine tasks that all humans and a lot of animals 

can do. Examples of such tasks include navigating our way without 

running into things, catching prey and avoiding predators. Humans and 

animals are also capable of interpreting complex sensory information. 

We are able to recognize objects and people from the visual image that 

we receive. We are also able to perform complex social functions. 

 

Intelligent behaviour. This discussion brings us back to the question of 

what constitutes intelligent behaviour. Some of these tasks and 

applications are: 

 

 Perception involving image recognition and computer vision

 Reasoning

 Learning

 Understanding language involving natural language processing, 

speech processing

 Solving problems

 Robotics

 

3.1.3 Practical Impact of AI 
 

AI components are embedded in numerous devices e.g. in copy 

machines for automatic correction of operation for copy quality 

improvement. AI systems are in everyday use for identifying credit card 

fraud, for advising doctors, for recognizing speech and in helping 

complex planning tasks. Then there are intelligent tutoring systems that 

provide students with personalized attention 

 

Thus AI has increased understanding of the nature of intelligence and 

found many applications. It has helped in the understanding of human 

reasoning, and of the nature of intelligence. It will also help you 

understand the complexity of modeling human reasoning. 

 

You can now look at a few famous AI systems. 
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1. ALVINN 

 

Autonomous Land Vehicle in a Neural Network 

 

In 1989, Dean Pomerleau at CMU created ALVINN. This is a system 

which learns to control vehicles by watching a person drive. It contains 

a neural network whose input is a 30x32 unit two dimensional camera 

image. The output layer is a representation of the direction the vehicle 

should travel. 

 

The system drove a car from the East Coast of USA to the west coast, a 

total of about 2850 miles. Out of this about 50 miles were driven by a 

human being and the rest solely by the system. 

 

2. Deep Blue 

 

In 1997, the Deep Blue chess program created by IBM, beat the current 

world chess champion, Gary Kasparov. 

 

3. Machine translation 

 

A system capable of translations between people speaking different 

languages will be a remarkable achievement of enormous economic and 

cultural benefit. Machine translation is one of the important fields of 

endeavour in AI. While some translating systems have been developed, 

there is a lot of scope for improvement in translation quality. 

 

4. Autonomous agents 

 

In space exploration, robotic space probes autonomously monitor their 

surroundings, make decisions and act to achieve their goals. 

NASA's Mars rovers successfully completed their primary three-month 

missions in April, 2004. The Spirit rover had been exploring a range of 

Martian hills that took two months to reach. It is finding curiously 

eroded rocks that may be new pieces to the puzzle of the region's past. 

Spirit's twin, Opportunity, had been examining exposed rock layers 

inside a crater. 

 

5. Internet Agents 

 

The explosive growth of the internet has also led to growing interest in 

internet agents to monitor users' tasks, seek needed information, and to 

learn which information is most useful 
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3.1.4 Approaches to AI 
 

Strong AI aims to build machines that can truly reason and solve 

problems. These machines should be self aware and their overall 

intellectual ability needs to be indistinguishable from that of a human 

being. Excessive optimism in the 1950s and 1960s concerning strong AI 

has given way to an appreciation of the extreme difficulty of the 

problem. Strong AI maintains that suitably programmed machines are 

capable of cognitive mental states. 

 

Weak AI deals with the creation of some form of computer-based 

artificial intelligence that cannot truly reason and solve problems, but 

can act as if it were intelligent. Weak AI holds that suitably programmed 

machines can simulate human cognition. 

 

Applied AI aims to produce commercially viable "smart" systems such 

as, security system that is able to recognise the faces of people who are 

permitted to enter a particular building. Applied AI has already enjoyed 

considerable success. 

 

Cognitive AI: computers are used to test theories about how the human 

mind works--for example, theories about how we recognise faces and 

other objects, or about how we solve abstract problems. 

 

3.1.5 Limits of AI Today 
 

Today‘s successful AI systems operate in well-defined domains and 

employ narrow, specialized knowledge. Common sense knowledge is 

needed to function in complex, open-ended worlds. Such a system also 

needs to understand unconstrained natural language. However these 

capabilities are not yet fully present in today‘s intelligent systems. 

 

 What can AI systems do? 

 

Today‘s AI systems have been able to achieve limited success in some 

of these tasks. 

 

 In Computer vision, the systems are capable of face 

recognition 

 In Robotics, we have been able to make vehicles that are 

mostly autonomous 

 In Natural language processing, we have systems that are 

capable of simple machine translation 

 Today‘s Expert systems can carry out medical diagnosis in 

a narrow domain 
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 Speech understanding systems are capable of recognizing 

several thousand words continuous speech 

 Planning and scheduling systems had been employed in 

scheduling experiments with the Hubble Telescope 

 The Learning systems are capable of doing text 

categorization into about a 1000 topics 

 In Games, AI systems can play at the Grand Master level 

in chess (world champion), checkers, etc. 

 

 What can AI systems NOT do yet? 

 

 Understand natural language robustly (e.g., read and understand 

articles in a newspaper) 

 Surf the web 

 Interpret an arbitrary visual scene 

 Learn a natural language 

 Construct plans in dynamic real-time domains 

 Exhibit true autonomy and intelligence 

 

3.2 AI History 
 

Intellectual roots of AI date back to the early studies of the nature of 

knowledge and reasoning. The dream of making a computer imitate 

humans also has a very early history. 

 

The concept of intelligent machines is found in Greek mythology. There 
th 

is a story in the 8 century A.D about Pygmalion Olio, the legendary 
king of Cyprus. He fell in love with an ivory statue he made to represent 

his ideal woman. The king prayed to the goddess Aphrodite, and the 

goddess miraculously brought the statue to life. Other myths involve 

human-like artifacts. As a present from Zeus to Europa, Hephaestus 

created Talos, a huge robot. Talos was made of bronze and his duty was 

to patrol the beaches of Crete. 

 

Aristotle (384-322 BC) developed an informal system of syllogistic 

logic, which is the basis of the first formal deductive reasoning system. 
 

th 

Early in the 17 century, Descartes proposed that bodies of animals are 

nothing more than complex machines. 
 

Pascal in 1642 made the first mechanical digital calculating machine. 
 

In the 19
th 

century, George Boole developed a binary algebra 

representing (some) "laws of thought." 
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Charles Babbage & Ada Byron worked on programmable mechanical 

calculating machines. 

 

In the late 19th century and early 20th century, mathematical 

philosophers like Gottlob Frege, Bertram Russell, Alfred North 

Whitehead, and Kurt Gödel built on Boole's initial logic concepts to 

develop mathematical representations of logic problems. 

 

The advent of electronic computers provided a revolutionary advance in 

the ability to study intelligence. 

 

In 1943 McCulloch & Pitts developed a Boolean circuit model of brain. 

They wrote the paper ―A Logical Calculus of Ideas Immanent in 

Nervous Activity‖, which explained how it is possible for neural 

networks to compute. 

 

Marvin Minsky and Dean Edmonds built the SNARC in 1951, which is 

the first randomly wired neural network learning machine (SNARC 

stands for Stochastic Neural-Analog Reinforcement Computer).It was a 

neural network computer that used 3000 vacuum tubes and a network 

with 40 neurons. 

 

In 1950 Turing wrote an article on ―Computing Machinery and 

Intelligence‖ which articulated a complete vision of AI. For more on 

Alan Turing see the site http://www.turing.org.uk/turing/ . Turing‘s 

paper talked of many things, of solving problems by searching through 

the space of possible solutions, guided by heuristics. He illustrated his 

ideas on machine intelligence by reference to chess. He even 

propounded the possibility of letting the machine alter its own 

instructions so that machines can learn from experience. 

 

In 1956 a famous conference took place in Dartmouth. The conference 

brought together the founding fathers of artificial intelligence for the 

first time. In this meeting the term ―Artificial Intelligence‖ was adopted. 

 

Between 1952 and 1956, Samuel had developed several programs for 

playing checkers. In 1956, Newell & Simon‘s Logic Theorist was 

published. It is considered by many to be the first AI program. In 1959, 

Gelernter developed a Geometry Engine. In 1961 James Slagle (PhD 

dissertation, MIT) wrote a symbolic integration program SAINT. It was 

written in LISP and solved calculus problems at the college freshman 

level. In 1963, Thomas Evan's program Analogy was developed which 

could solve IQ test type analogy problems. 

http://www.turing.org.uk/turing/
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In 1963, Edward A. Feigenbaum & Julian Feldman published 

Computers and Thought, the first collection of articles about artificial 

intelligence. 

 

In 1965, J. Allen Robinson invented a mechanical proof procedure, the 

Resolution Method, which allowed programs to work efficiently with 

formal logic as a representation language. In 1967, the Dendral program 

(Feigenbaum, Lederberg, Buchanan, Sutherland at Stanford) was 

demonstrated which could interpret mass spectra on organic chemical 

compounds. This was the first successful knowledge-based program for 

scientific reasoning. In 1969 the SRI robot, Shakey, demonstrated 

combining locomotion, perception and problem solving. 

The years from 1969 to 1979 marked the early development of 

knowledge-based systems 

 

In 1974, MYCIN demonstrated the power of rule-based systems for 

knowledge representation and inference in medical diagnosis and 

therapy. Knowledge representation schemes were developed. These 

included frames developed by Minski. Logic based languages like 

Prolog and Planner were developed. 

 

We will now mention a few of the AI systems that were developed over 

the years. 

 

The Meta-Dendral learning program produced new results in chemistry 

(rules of mass spectrometry) 

 

In the 1980s, Lisp Machines developed and marketed. 

Around 1985, neural networks return to popularity. 

In 1988, there was a resurgence of probabilistic and decision-theoretic 

methods. 

 

The early AI systems used general systems, little knowledge. AI 

researchers realized that specialized knowledge is required for rich tasks 

to focus reasoning. 

 

The 1990's saw major advances in all areas of AI including the 

following: 

 

 Machine learning, data mining 

 Intelligent tutoring, 

 Case-based reasoning, 

 Multi-agent planning, scheduling, 
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 Uncertain reasoning,

 Natural language understanding and translation,

 Vision, virtual reality, games, and other topics.

 

Rod Brooks' COG Project at MIT, with numerous collaborators, made 

significant progress in building a humanoid robot. 

 

The first official Robo-Cup soccer match featuring table-top matches 

with 40 teams of interacting robots was held in 1997. For details, see the 

site http://murray.newcastle.edu.au/users/students/2002/c3012299/bg. 

html 
 

In the late 90s, Web crawlers and other AI-based information extraction 

programs become essential in widespread use of the world-wide-web. 

 

Interactive robot pets ("smart toys") become commercially available, 

realizing the vision of the 18th century novelty toy makers. 

 

In 2000, the Nomad robot explores remote regions of Antarctica looking 

for meteorite samples. 

 

AI in the news 

http://www.aaai.org/AITopics/html/current.html 
 

4.0 CONCLUSION 
 

Artificial intelligence (AI) is the intelligence of machines and the branch 

of computer science that aims to create it. AI textbooks define the field 

as "the study and design of intelligent agents" where an intelligent agent 

is a system that perceives its environment and takes actions that 

maximize its chances of success. John McCarthy, who coined the term 

in 1956, defines it as "the science and engineering of making intelligent 

machines." 

 

The field was founded on the claim that a central property of humans, 

intelligence—the sapience of Homo sapiens—can be so precisely 

described that it can be simulated by a machine. This raises 

philosophical issues about the nature of the mind and the ethics of 

creating artificial beings, issues which have been addressed by myth, 

fiction and philosophy since antiquity. Artificial intelligence has been 

the subject of optimism, but has also suffered setbacks and, today, has 

become an essential part of the technology industry, providing the heavy 

lifting for many of the most difficult problems in computer science. 

http://murray.newcastle.edu.au/users/students/2002/c3012299/bg
http://www.aaai.org/AITopics/html/current.html
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5.0 SUMMARY 

In this unit, you have learnt that: 

 Artificial Intelligence is a branch of Science which deals with 

helping machines find solutions to complex problems in a more 

human-like fashion 

 Typical AI problems 

 AI History 

 Limits of AI Today 

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Define intelligence. 

2. What are the different approaches in defining artificial 

intelligence? 

3. List five tasks that you will like a computer to be able to do 

within the next five years. 

4. List five tasks that computers are unlikely to be able to do in the 

next five years. 
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1.0 INTRODUCTION 
 

This unit introduces you to Intelligence Agents (IA), how it interacts 

with the environment and Agent architectures. IA is an autonomous 

entity which observes and acts upon an environment . It may use 

knowledge to achieve their goals. They may be very simple or very 

complex. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain  what   an   agent is   and how it interacts with the 

environment.
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 identify the percepts available to the agent and the actions that the 

agent can execute, if given a problem situation

 measure the performance used to evaluate an agent

 list based agents

 identify the characteristics of the environment.

 

3.0 MAIN CONTENT 

 

3.1 Introduction to Agent 
 

An agent perceives its environment through sensors. The complete set of 

inputs at a given time is called a percept. The current percept or a 

sequence of percepts can influence the actions of an agent. The agent 

can change the environment through actuators or effectors. An operation 

involving an Effector is called an action. Actions can be grouped into 

action sequences. The agent can have goals which it tries to achieve. 

 

Thus, an agent can be looked upon as a system that implements a 

mapping from percept sequences to actions. 

 

A performance measure has to be used in order to evaluate an agent. 

An autonomous agent decides autonomously which action to take in the 

current situation to maximize progress towards its goals. 

 

3.1.1 Agent Performance 
 

An agent function implements a mapping from perception history to 

action. The behaviour and performance of intelligent agents have to be 

evaluated in terms of the agent function. 

 

The ideal mapping specifies which actions an agent ought to take at any 

point in time. 

 

The performance measure is a subjective measure to characterize how 

successful an agent is. The success can be measured in various ways. It 

can be measured in terms of speed or efficiency of the agent. It can be 

measured by the accuracy or the quality of the solutions achieved by the 

agent. It can also be measured by power usage, money, etc. 

 

3.1.2 Examples of Agents 
 

1. Humans can be looked upon as agents. They have eyes, ears, 

skin, taste buds, etc. for sensors; and hands, fingers, legs, mouth 

for effectors. 



CIT478 ARTIFICIAL INTELLIGENCE 

15 

 

 

 

2. Robots are agents. Robots may have camera, sonar, infrared, 

bumper, etc. for sensors. They can have grippers, wheels, lights, 

speakers, etc. for actuators. Some examples of robots are Xavier 

from CMU, COG from MIT, etc. 
 

Figure 2: Xavier Robot (CMU) 

 
 

Then we have the AIBO entertainment robot from SONY. 
 

Figure 3: Aibo from SONY 

 

3. We also have software agents or softbots that have some 

functions as sensors and some functions as actuators. 

Askjeeves.com is an example of a softbot. 

4. Expert systems like the Cardiologist are an agent. 

5. Autonomous spacecrafts. 

6. Intelligent buildings. 
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3.1.3 Agent Faculties 
 

The fundamental faculties of intelligence are 

 

 Acting

 Sensing

 Understanding, reasoning, learning

 

Blind action is not a characterization of intelligence. In order to act 

intelligently, one must sense. Understanding is essential to interpret the 

sensory percepts and decide on an action. Many robotic agents stress 

sensing and acting, and do not have understanding. 

 

3.1.4 Intelligent Agents 
 

An Intelligent Agent must sense, must act, must be autonomous (to 

some extent). It also must be rational. 

 

AI is about building rational agents. An agent is something that 

perceives and acts. 

 

A rational agent always does the right thing. 

 

1. What are the functionalities (goals)? 

2. What are the components? 

3. How do we build them? 

 

3.1.5 Rationality 
 

Perfect Rationality assumes that the rational agent knows all and will 

take the action that maximizes her utility. Human beings do not satisfy 

this definition of rationality. 

 

Rational Action is the action that maximizes the expected value of the 

performance measure given the percept sequence to date. 

 

However, a rational agent is not omniscient. It does not know the actual 

outcome of its actions, and it may not know certain aspects of its 

environment. Therefore rationality must take into account the limitations 

of the agent. The agent has too select the best action to the best of its 

knowledge depending on its percept sequence, its background 

knowledge and its feasible actions. An agent also has to deal with the 

expected outcome of the actions where the action effects are not 

deterministic. 
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3.1.6 Bounded Rationality 
 

―Because of the limitations of the human mind, humans must use 

approximate methods to handle many tasks.‖ Herbert Simon, 1972 

Evolution did not give rise to optimal agents, but to agents which are in 

some senses locally optimal at best. In 1957, Simon proposed the notion 

of Bounded Rationality: that property of an agent that behaves in a 

manner that is nearly optimal with respect to its goals as its resources 

will allow. 

 

Under these promises an intelligent agent will be expected to act 

optimally to the best of its abilities and its resource constraints. 

 

3.2 Agent Environment 
 

Environments in which agents operate can be defined in different ways. 

It is helpful to view the following definitions as referring to the way the 

environment appears from the point of view of the agent itself. 

 

3.2.1 Observability 
 

In terms of observability, an environment can be characterized as fully 

observable or partially observable. 

 

In a fully observable environment, the entire environment relevant to the 

action being considered is observable. In such environments, the agent 

does not need to keep track of the changes in the environment. A chess 

playing system is an example of a system that operates in a fully 

observable environment. 

 

In a partially observable environment, the relevant features of the 

environment are only partially observable. A bridge playing program is 

an example of a system operating in a partially observable environment. 

 

3.2.2 Determinism 
 

In deterministic environments, the next state of the environment is 

completely described by the current state and the agent‘s action. Image 

analysis 

 

If an element of interference or uncertainty occurs then the environment 

is stochastic. Note that a deterministic yet partially observable 

environment will appear to be stochastic to the agent. Ludo 
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If the environment state is wholly determined by the preceding state and 

the actions of multiple agents, then the environment is said to be 

strategic. Example: Chess 

 

3.2.3 Episodicity 
 

An episodic environment means that subsequent episodes do not depend 

on what actions occurred in previous episodes. 

 

In a sequential environment, the agent engages in a series of connected 

episodes. 

 

3.2.4 Dynamism 
 

Static Environment: does not change from one state to the next while the 

agent is considering its course of action. The only changes to the 

environment are those caused by the agent itself. 

 

 A static environment does not change while the agent is thinking. 

 The passage of time as an agent deliberates is irrelevant. 

 The agent doesn‘t need to observe the world during deliberation. 

 

A Dynamic Environment changes over time independent of the actions 

of the agent -- and thus if an agent does not respond in a timely manner, 

this counts as a choice to do nothing 

 

3.2.5 Continuity 
 

If the number of distinct percepts and actions is limited, the environment 

is discrete, otherwise it is continuous. 

 

3.2.6 Presence of Other agents 
 

Single agent/ Multi-agent 

 

A multi-agent environment has other agents. If the environment contains 

other intelligent agents, the agent needs to be concerned about strategic, 

game-theoretic aspects of the environment (for either cooperative or 

competitive agents) 

 

Most engineering environments do not have multi-agent properties, 

whereas most social and economic systems get their complexity from 

the interactions of (more or less) rational agents. 
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3.3 Agent architectures 

 

3.3.1 Table Based Agent 
 

In table based agent the action is looked up from a table based on 

information about the agent‘s percepts. A table is simple way to specify 

a mapping from percepts to actions. The mapping is implicitly defined 

by a program. The mapping may be implemented by a rule based 

system, by a neural network or by a procedure. 

 

There are several disadvantages to a table based system. The tables may 

become very large. Learning a table may take a very long time, 

especially if the table is large. Such systems usually have little 

autonomy, as all actions are pre-determined. 

 

3.3.2 Percept based agent or reflex agent 
 

In percept based agents, 

 

1. information comes from sensors - percepts 

2. changes the agents current state of the world 

3. triggers actions through the effectors 

 

Such agents are called reactive agents or stimulus-response agents. 

Reactive agents have no notion of history. The current state is as the 

sensors see it right now. The action is based on the current percepts 

only. 

 

The following are some of the characteristics of percept-based agents. 

 

 Efficient

 No internal representation for reasoning, inference.

 No strategic planning, learning.

 Percept-based agents are not good for multiple, opposing, goals.

 

3.3.3 Subsumption Architecture 
 

We will now briefly describe the subsumption architecture (Rodney 

Brooks, 1986). This architecture is based on reactive systems. Brooks 

notes that in lower animals there is no deliberation and the actions are 

based on sensory inputs. But even lower animals are capable of many 

complex tasks. His argument is to follow the evolutionary path and build 

simple agents for complex worlds. 
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The main features of Brooks‘ architecture are. 

 

 There is no explicit knowledge representation 

 Behaviour is distributed, not centralized 

 Response to stimuli is reflexive 

 The design is bottom up, and complex behaviours are fashioned 

from the combination of simpler underlying ones. 

 Individual agents are simple 

 

The Subsumption Architecture built in layers. There are different layers 

of behaviour. The higher layers can override lower layers. Each activity 

is modeled by a finite state machine. 

 

The subsumption architecture can be illustrated by Brooks‘ Mobile 

Robot example. 
 

Figure 4: Subsumption Architecture 

The system is built in three layers. 

1. Layer 0: Avoid Obstacles 

2. Layer1: Wander behaviour 

3. Layer 2: Exploration behavior 

Layer 0 (Avoid Obstacles) has the following capabilities: 

 

 Sonar: generate sonar scan 

 Collide: send HALT message to forward 

 Feel force: signal sent to run-away, turn 
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Layer1 (Wander behaviour) 

 

 Generates a random heading

 Avoid reads repulsive force, generates new heading, feeds to turn 

and forward

 

Layer 2 (Exploration behaviour) 

 

 Whenlook notices idle time and looks for an interesting place.

 Pathplan sends new direction to avoid.

 Integrate monitors path and sends them to the path plan.

 

3.3.4 State-Based Agent or Model-Based Reflex Agent 
 

State based agents differ from percept based agents in that such agents 

maintain some sort of state based on the percept sequence received so 

far. The state is updated regularly based on what the agent senses, and 

the agent‘s actions. Keeping track of the state requires that the agent has 

knowledge about how the world evolves, and how the agent‘s actions 

affect the world. 

 

Thus a state based agent works as follows: 

 

 information comes from sensors – percepts

 based on this, the agent changes the current state of the world

 based on state of the world and knowledge (memory), it triggers 

actions through the effectors

 

3.3.5 Goal-based Agent 
 

The goal based agent has some goal which forms a basis of its actions. 

Such agents work as follows: 

 

 information comes from sensors - percepts

 changes the agents current state of the world

 based on state of the world and knowledge (memory) and 

goals/intentions, it chooses actions and does them through the 

effectors.

 

Goal formulation based on the current situation is a way of solving 

many problems and search is a universal problem solving mechanism in 

AI. The sequence of steps required to solve a problem is not known a 

priori and must be determined by a systematic exploration of the 

alternatives. 
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3.3.6 Utility-based Agent 
 

Utility based agents provide a more general agent framework. In case 

that the agent has multiple goals, this framework can accommodate 

different preferences for the different goals. 

Such systems are characterized by a utility function that maps a state or 

a sequence of states to a real valued utility. The agent acts so as to 

maximize expected utility. 

 

3.3.7 Learning Agent 
 

Learning allows an agent to operate in initially unknown environments. 

The learning element modifies the performance element. Learning is 

required for true autonomy 

 

4.0 CONCLUSION 
 

In conclusion, an intelligent agent (IA) is an autonomous entity which 

observes and acts upon an environment . Intelligent agents may also 

learn or use knowledge to achieve their goals. They may be very simple 

or very complex: a reflex machine such as a thermostat is an intelligent 

agent, as is a human being, as is a community of human beings working 

together towards a goal. 

 

5.0 SUMMARY 
 

In this unit, you have learnt that: 

 

 AI is a truly fascinating field. It deals with exciting but hard 

problems. A goal of AI is to build intelligent agents that act so as 

to optimize performance. 

 An agent perceives and acts in an environment that has 

architecture, and is implemented by an agent program. 

 An ideal agent always chooses the action which maximizes its 

expected performance, given its percept sequence so far. 

 An autonomous agent uses its own experience rather than built-in 

knowledge of the environment by the designer. 

 An agent program maps from percept to action and updates its 

internal state. 

 Reflex agents respond immediately to percepts. 

 Goal-based agents act in order to achieve their goal(s). 

 Utility-based agents maximize their own utility function. 

 Representing knowledge is important for successful agent design. 
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 The most challenging environments are partially observable, 

stochastic, sequential, dynamic, and continuous, and contain 

multiple intelligent agents.

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Define an agent. 

2. What is a rational agent? 

3. What is bounded rationality? 

4. What is an autonomous agent? 

5. Describe the salient features of an agent. 
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1.0 INTRODUCTION 
 

In computer science, a search algorithm, broadly speaking, is an 

algorithm for finding an item with specified properties among a 

collection of items. The items may be stored individually as records in a 

database; or may be elements of a search space defined by a 

mathematical formula or procedure, such as the roots of an equation 

with integer variables; or a combination of the two, such as the 

Hamiltonian circuits of a graph. 

 

Specifically, Searching falls under Artificial Intelligence (AI). A major 

goal of AI is to give computers the ability to think, or in other words, 

mimic human behavior. The problem is, unfortunately, computers don't 
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function in the same way our minds do. They require a series of well- 

reasoned out steps before finding a solution. Your goal, then, is to take a 

complicated task and convert it into simpler steps that your computer 

can handle. That conversion from something complex to something 

simple is what this unit is primarily about. Learning how to use two 

search algorithms is just a welcome side-effect. This unit will explain 

the background for AI search and some of the AI search techniques. 

 

2.0 OBJECTIVES 
 

After the end of this unit, you should be able to: 

 

 describe the state space representation

 describe some algorithms

 formulate, when given a problem description, the terms of a state 

space search problem

 analyse the properties of some algorithms

 analyse a given problem and identify the most suitable search 

strategy for the problem

 solve some simple problems.

 

3.0 MAIN CONTENT 
 

3.1 State Space Search 
 

Let us begin by introducing certain terms. 

 

An initial state is the description of the starting configuration of the 

agent. 

 

An action or an operator takes the agent from one state to another state 

which is called a successor state. A state can have a number of successor 

states. 

 

A plan is a sequence of actions. The cost of a plan is referred to as the 

path cost. The path cost is a positive number, and a common path cost 

may be the sum of the costs of the steps in the path. The goal state is the 

partial description of the solution 
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3.1.1 Goal Directed Agent 
 

Figure 1: Goal Directed Agent 

 
 

We have earlier discussed about an intelligent agent. In this unit we will 

study a type of intelligent agent which we will call a goal directed agent. 

A goal directed agent needs to achieve certain goals. Such an agent 

selects its actions based on the goal it has. Many problems can be 

represented as a set of states and a set of rules of how one state is 

transformed to another. Each state is an abstract representation of the 

agent's environment. It is an abstraction that denotes a configuration of 

the agent. 

 

Let us look at a few examples of goal directed agents. 

 

1. 15-puzzle: The goal of an agent working on a 15-puzzle problem 

may be to reach a configuration which satisfies the condition that 

the top row has the tiles 1, 2 and 3. The details of this problem 

will be described later. 

 

2. The goal of an agent may be to navigate a maze and reach the 

HOME position. 

 

The agent must choose a sequence of actions to achieve the desired goal. 

 

3.1.2 State Space Search Notations 
 

Now let us look at the concept of a search problem. 
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Problem formulation means choosing a relevant set of states to 

consider, and a feasible set of operators for moving from one state to 

another. 

 

Search is the process of considering various possible sequences of 

operators applied to the initial state, and finding out a sequence which 

culminates in a goal state. 

 

3.2 Problem Space 
 

What is problem space? 

 

A problem space is a set of states and a set of operators. The operators 

map from one state to another state. There will be one or more states 

that can be called initial states, one or more states which we need to 

reach what are known as goal states and there will be states in between 

initial states and goal states known as intermediate states. So what is the 

solution? The solution to the given problem is nothing but a sequence of 

operators that map an initial state to a goal state. This sequence forms a 

solution path. What is the best solution? Obviously the shortest path 

from the initial state to the goal state is the best one. Shortest path has 

only a few operations compared to all other possible solution paths. 

Solution path forms a tree structure where each node is a state. So 

searching is nothing but exploring the tree from the root node. 

 

3.2.1 Search Problem 
 

We are now ready to formally describe a search problem. 

A search problem consists of the following: 

 S: the full set of states

 
 s : the initial state

0 

 

 A:S→S is a set of operators

 

 G is the set of final states. Note that G ⊆S 

These are schematically depicted in Figure 2.
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The search problem is to find a sequence of actions which transforms 

the agent from the initial state to a goal state g∈G. A search problem is 

represented by a 4-tuple {S, s , A, G}. 
0 

 

S: set of states 
s ∈ S: initial state 

0 

A: S? S operators/ actions that transform one state to another state 

G: goal, a set of states. G ⊆ S 

 

This sequence of actions is called a solution plan. It is a path from the 

initial state to a goal state. A plan P is a sequence of actions. 

 
P = {a , a , a } which leads to traversing a number of states {s , s , 

0 1 N 0 1 

Sn+ ∈G}. A sequence of states is called a path. The cost of a path is a 
1 

positive number. In many cases the path cost is computed by taking the 

sum of the costs of each action. 
 

Representation of search problems 

A search problem is represented using a directed graph. 

 

 The states are represented as nodes.

 The allowed actions are represented as arcs.
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Do until a solution is found or the state space is exhausted. 
 

1. Check the current state 

 

2. Execute allowable actions to find the successor states. 

 

3. Pick one of the new states. 

 

4. Check if the new state is a solution state 

 

If it is not, the new state becomes the current state and the process is 

repeated 

 

Searching process 

 

The generic searching process can be very simply described in terms of 

the following steps: 
 

 

3.3 Examples 
 

3.3.1 Illustration of a search process 
 

We will now illustrate the searching process with the help of an 

example. Consider the problem depicted in Figure 3. 
 

 

s is the initial state. 
0 

The successor states are the adjacent states in the graph. 
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There are three goal states. 

 

The two successor states of the initial state are generated. 
 

The successors of these states are picked and their successors are 

generated. 
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Successors of all these states are generated. 

 

 
The successors are generated. 

 

 

A goal state has been found. 

 

The above example illustrates how we can start from a given state and 

follow the successors, and be able to find solution paths that lead to a 

goal state. The grey nodes define the search tree. Usually the search tree 

is extended one node at a time. The order in which the search tree is 

extended depends on the search strategy. 
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We will now illustrate state space search with one more example – the 

pegs and disks problem. We will illustrate a solution sequence which 

when applied to the initial state takes us to a goal state. 

 

3.3.2 Example problem: Pegs and Disks problem 
 

Consider the following problem. We have 3 pegs and 3 disks. 

 

Operators: one may move the topmost disk on any needle to the topmost 

position to any other needle. 

 

In the goal state all the pegs are in the needle B as shown in the figure 

below. 
 

 

The initial state is illustrated below. 
 
 

 

Now we will describe a sequence of actions that can be applied on the 

initial state. 

 

Step 1: Move A → C 
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Step 2: Move A → B 

 

 

Step 3: Move A → C 

 

 

Step 4: Move B→ A 
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Step 5: Move C → B 
 

 

Step 6: Move A → B 
 

 

Step 7: Move C→ B 
 

 
We will now look at another search problem – the 8-queens problem, 

which can be generalized to the N-queens problem. 

 

3.3.3 Queens Problem 
 

The problem is to place 8 queens on a chessboard so that no two queens 

are in the same row, column or diagonal. 

 

The picture below on the left shows a solution of the 8-queens problem. 

The picture on the right is not a correct solution, because some of the 

queens are attacking each other. 
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Figure 18:   Queens Problem 

 
 

How do we formulate this in terms of a state space search problem? The 

problem formulation involves deciding the representation of the states, 

selecting the initial state representation, the description of the operators, 

and the successor states. We will now show that we can formulate the 

search problem in several different ways for this problem. 

 

N queens problem formulation 1 

 

 States: Any arrangement of 0 to 8 queens on the board

 Initial state: 0 queens on the board

 Successor function: Add a queen in any square

 Goal test: 8 queens on the board, none are attacked

 

The initial state has 64 successors. Each of the states at the next level 

has 63 successors, and so on. We can restrict the search tree somewhat 

by considering only those successors where no queen is attacking each 

other. To do that, we have to check the new queen against all existing 

queens on the board. The solutions are found at a depth of 8. 
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N queens problem formulation 2 

 

 States: Any arrangement of 8 queens on the board

 Initial state: All queens are at column 1

 Successor function: Change the position of any one queen

 Goal test: 8 queens on the board, none are attacked
 

 

 

If we consider moving the queen at column 1, it may move to any of the 

seven remaining columns. 

 

N queens problem formulation 3 
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 States: Any arrangement of k queens in the first k rows such that 

none are attacked

 Initial state: 0 queens on the board

 Successor function: Add a queen to the (k+1) th row so that 

none are attacked.

 Goal test : 8 queens on the board, none are attacked
 

We will now take up yet another search problem, the 8 puzzle. 

 

 

3.3.4 Problem Definition - Example, 8 puzzle 
 

 

 

 

In the 8-puzzle problem we have a 3×3 square board and 8 numbered 

tiles. The board has one blank position. Bocks can be slid to adjacent 

blank positions. We can alternatively and equivalently look upon this as 

the movement of the blank position up, down, left or right. The 

objective of this puzzle is to move the tiles starting from an initial 

position and arrive at a given goal configuration. 
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The 15-puzzle problems is similar to the 8-puzzle. It has a 4×4 square 

board and 15 numbered tiles 

 

The state space representation for this problem is summarized below: 

States: A state is a description of each of the eight tiles in each location 

that it can occupy. 

 

Operators/Action: The blank moves left, right, up or down 

 

Goal Test: The current state matches a certain state (e.g. one of the ones 

shown on previous slide) 

 

Path Cost: Each move of the blank costs 1 

 

A small portion of the state space of 8-puzzle is shown below. Note that 

we do not need to generate all the states before the search begins. The 

states can be generated when required. 
 

8-puzzle partial state space 
 

3.4 Types of AI Search Techniques 
 

Solution can be found with less information or with more information. It 

all depends on the problem we need to solve. Usually when we have 

more information it will be easy to solve the problem. The following are 

the types of AI search namely: Uninformed Search, List search, Tree 

search , Graph search, SQL search, Tradeoff Based search, Informed 

search, Adversarial search. This module will only deal with uninformed 

search, informed search and Tree search. 
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4.0 CONCLUSION 
 

State space search is a process used in the field of computer science, 

including artificial intelligence (AI), in which successive configurations 

or states of an instance are considered, with the goal of finding a goal 

state with a desired property. 

 

Problems are often modelled as a state space, a set of states that a 

problem can be in. The set of states forms a graph where two states are 

connected if there is an operation that can be performed to transform the 

first state into the second. 

 

State space search often differs from traditional computer science search 

methods because the state space is implicit: the typical state space graph 

is much too large to generate and store in memory. Instead, nodes are 

generated as they are explored, and typically discarded thereafter. A 

solution to a combinatorial search instance may consist of the goal state 

itself, or of a path from some initial state to the goal state. 

 

5.0 SUMMARY 
 

In this unit, you have learnt that: 

 

 State space search is a process used in the field of computer 

science, including artificial intelligence (AI), in which successive 

configurations or states of an instance are considered, with the 

goal of finding a goal state with a desired property

 The search problem is to find a sequence of actions which 

transforms the agent from the initial state to a goal state g∈G. A 

search problem is represented by a 4-tuple {S, s , A, G}.
0 

 Solution can be found with less information or with more 

information. It all depends on the problem we need to solve
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6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Find a path from a boxed node to the goal node (p). 

 

2. Using the following AND/OR graph, where is fred? 

 

7.0 REFERENCES/FURTHER READING 
 

Dechter, R. & Judea, P. (1985). "Generalized Best-First Search 

Strategies and the Optimality of A*". Journal of the ACM 32 (3): 

505–536. doi:10.1145/3828.3830. 

 

Koenig, S.; Maxim, L.; Yaxin, L.; David, F. (2004). "Incremental 

Heuristic Search in AI". AI Magazine 25 (2): 99–112. 

http://portal.acm.org/citation.cfm?id=1017140. 

 

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto, 

California: Tioga Publishing Company. ISBN 0-935382-01-1. 

 

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer 

Problem Solving. Addison-Wesley Longman Publishing Co., Inc. 

ISBN 0-201-05594-5. 

http://portal.acm.org/citation.cfm?id=1017140


CIT478 ARTIFICIAL INTELLIGENCE 

41 

 

 

 

 

Russell, S. J. & Norvig, P. (2003). Artificial Intelligence. A Modern 

Approach. Upper Saddle River, N.J.: Prentice Hall. pp. 97–104. 

ISBN 0-13-790395-2. 



CIT478 ARTIFICIAL INTELLIGENCE 

42 

 

 

 

UNIT 2  UNINFORMED SEARCH OR BRUTE FORCE 

SEARCH 
 

CONTENTS 

 
1.0 Introduction  

2.0 Objectives     

3.0 Main Content 

3.1 Uninformed Search 
3.2 Depth First 

 
 

and 

 
 

Breadth 

 
 

First 

 
 

Search 

3.2.1 Depth First Search 

3.2.2 Breadth First Search 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

In computer science, uninform-cost search (UCS) is a tree search 

algorithm used for traversing or searching a weighted tree, tree structure, 

or graph. The search begins at the root node. The search continues by 

visiting the next node which has the least total cost from the root. Nodes 

are visited in this manner until a goal state is reached. 

 

Typically, the search algorithm involves expanding nodes by adding all 

unexpanded neighbouring nodes that are connected by directed paths to 

a priority queue. In the queue, each node is associated with its total path 

cost from the root, where the least-cost paths are given highest priority. 

The node at the head of the queue is subsequently expanded, adding the 

next set of connected nodes with the total path cost from the root to the 

respective node. The uniform-cost search is complete and optimal if the 

cost of each step exceeds some positive bound ε. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain uninformed search

 list two types of uninformed search

 describe depth first and breadth first search

 solve simple problems on uninformed search.
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3.0 MAIN CONTENT 

 

3.1 Uninformed Search 
 

Sometimes we may not get much relevant information to solve a 

problem. Suppose we lost our car key and we are not able to recall 

where we left, we have to search for the key with some information such 

as in which places we used to place it. It may be our pant pocket or may 

be the table drawer. If it is not there then we have to search the whole 

house to get it. The best solution would be to search in the places from 

the table to the wardrobe. Here we need to search blindly with fewer 

clues. This type of search is called uninformed search or blind search. 

There are two popular AI search techniques in this category: breadth 

first search and depth first search. 

 

3.2 Depth First and Breadth First Search 

 
If you want to go from Point A to Point B, you are employing some kind 

of search. For a direction finder, going from Point A to Point B literally 

means finding a path between where you are now and your intended 

destination. For a chess game, Point A to Point B might be two points 

between its current position and its position 5 moves from now. For a 

genome sequence, Points A and B could be a link between two DNA 

sequences. 

 

As you can tell, going from Point A to Point B is different for every 

situation. If there is a vast amount of interconnected data, and you are 

trying to find a relation between few such pieces of data, you would use 

search. In this unit, you will learn about two forms of searching, depth 

first and breadth first. 

 

Our Search Representation 

 

Lets you learn how we humans could solve a search problem. First, we 

need a representation of how our search problem will exist. The 

following is an example of our search tree. It is a series of 

interconnected nodes that we will be searching through: 
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In our above graph, the path connections are not two-way. All paths go 

only from top to bottom. In other words, A has a path to B and C, but B 

and C do not have a path to A. It is basically like a one-way street. 

 

Each lettered circle in our graph is a node. A node can be connected to 

other via our edge/path, and those nodes that are connected to be called 

neighbors. B and C are neighbors of A. E and D are neighbors of B, and 

B is not a neighbor of D or E because B cannot be reached using either 

D or E. 

 

Our search graph also contains depth: 

 

 

 
We now have a way of describing location in our graph. We know how 

the various nodes (the lettered circles) are related to each other 
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(neighbors), and we have a way of characterizing the depth each belongs 

in. Knowing this information isn't directly relevant in creating our 

search algorithm, but they do help us to better understand the problem. 

 

3.2.1 Depth First Search 

 
Depth first search works by taking a node, checking its neighbors, 

expanding the first node it finds among the neighbors, checking if that 

expanded node is our destination, and if not, continue exploring more 

nodes. 

 

The above explanation is probably confusing if this is your first 

exposure to depth first search. I hope the following demonstration will 

help you more. Using our same search tree, let's find a path between 

nodes A and F: 
 
 

 
 

 

Step 0 

 

let‘s start with our root/goal node: 

 

 

I will be using two lists to keep track of what we are doing - an Open list 

and a Closed List. An Open list keeps track of what you need to do, and 

the Closed List keeps track of what you have already done. Right now, 

we only have our starting point, node A. We haven't done anything to it 

yet, so let's add it to our Open list. 
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 Open List: A 

 Closed List: <empty> 
 

 

Step 1 

 

Now, let's explore the neighbors of our A node. To put another way, let's 

take the first item from our Open list and explore its neighbors: 

Node A's neighbors are the B and C nodes. Because we are now done 

with our A node, we can remove it from our Open list and add it to our 

Closed List. You aren't done with this step though. You now have two 

new nodes B and C that need exploring. Add those two nodes to our 

Open list. 

 

Our current Open and Closed Lists contain the following data: 

 

 Open List: B, C 

 Closed List: A 
 

 

Step 2 

 

Our Open list contains two items. For depth first search and breadth first 

search, you always explore the first item from our Open list. The first 

item in our Open list is the B node. B is not our destination, so let's 

explore its neighbors: 

Because I have now expanded B, I am going to remove it from the Open 

list and add it to the Closed List. Our new nodes are D and E, and we 

add these nodes to the beginning of our Open list: 

 

 Open List: D, E, C 

 Closed List: A, B 
 

Step 3 
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You should start to see a pattern forming. Because D is at the beginning 

of our Open List, we expand it. D isn't our destination, and it does not 

contain any neighbors. All you do in this step is remove D from our 

Open List and add it to our Closed List: 

 

 Open List: E, C

 Closed List: A, B, D
 

 

Step 4 

 

We now expand the E node from our Open list. E is not our destination, 

so we explore its neighbors and find out that it contains the neighbors F 

and G. Remember, F is our target, but we don't stop here though. 

Despite F being on our path, we only end when we are about to expand 

our target Node - F in this case: 
 

Our Open list will have the E node removed and the F and G nodes 

added. The removed E node will be added to our Closed List: 

 

 Open List: F, G, C

 Closed List: A, B, D, E
 

 

Step 5 

 

We now expand the F node. Since it is our intended destination, we 

stop: 
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We remove F from our Open list and add it to our Closed List. Since we 

are at our destination, there is no need to expand F in order to find its 

neighbors. Our final Open and Closed Lists contain the following data: 

 

 Open List: G, C

 Closed List: A, B, D, E, F
 

The final path taken by our depth first search method is what the final 

value of our Closed List is: A, B, D, E, F. Towards the end of this 

tutorial, I will analyze these results in greater detail so that you have a 

better understanding of this search method. 

 

3.2.2 Breadth First Search 
 

The reason I cover both depth and breadth first search methods in the 

same unit is because they are both similar. In depth first search, newly 

explored nodes were added to the beginning of your Open list. In 

breadth first search, newly explored nodes are added to the end of your 

Open list. 

 

Let's see how that change will affect our results. For reference, here is 

our original search tree: 
 
 

 

Let's try to find a path between nodes A and E. 
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Step 0 

 

let‘s start with our root/goal node: 

 

 

Like before, I will continue to employ the Open and Closed Lists to 

keep track of what needs to be done: 

 

 Open List: A

 Closed List: <empty>
 

Step 

1 

Now, let's explore the neighbours of our A node. So far, we are 

following in depth first's footsteps: 

 

 
We remove A from our Open list and add A to our Closed List. A's 

neighbours, the B and C nodes, are added to our Open list. They are 

added to the end of our Open list, but since our Open list was empty 

(after removing A), it's hard to show that in this step. 

 

Our current Open and Closed Lists contain the following data: 

 

 Open List: B, C

 Closed List: A
 

 

Step 2 

 

Here is where things start to diverge from our depth first search method. 

We take a look the B node because it appears first in our Open List. 

Because B isn't our intended destination, we explore its neighbours: 
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B is now moved to our Closed List, but the neighbours of B, nodes D 

and E are added to the end of our Open list: 

 

 Open List: C, D, E

 Closed List: A, B
 

Step 3 

 

We now expand our C node: 

Since C has no neighbours, all we do is remove C from our Closed List 

and move on: 

 

 Open List: D, E

 Closed List: A, B, C
 

Step 4 

 

Similar to Step 3, we expand node D. Since it isn't our destination, and it 

too does not have any neighbours, we simply remove D from our to 

Open list, add D to our Closed List, and continue on: 

 
 

 Open List: E

 Closed List: A, B, C, D
 

 

Step 5 

 

Because our Open list only has one item, we have no choice but to take 

a look at node E. Since node E is our destination, we can stop here: 
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Our final versions of the Open and Closed Lists contain the following 

data: 

 

 Open List: <empty>

 Closed List: A, B, C, D, E

 

Traveling from A to E takes you through B, C, and D using breadth first 

search 

 

4.0 CONCLUSION 
 

1. Uninformed search strategies -Also known as "blind search," 

uninformed search strategies use no information about the likely 

"direction" of the goal node(s). 

2. Uninformed search major methods are Breadth-first and depth- 

first 

 

5.0 SUMMARY 
 

In this unit, you learnt that: 

 

 Uninformed strategies use only the information available in the 

problem definition.

 Some such strategies considered :

 

- Breadth-first search 

- Tree Search 

- Depth-first search 

 

6.0 TUTOR -MARKED ASSIGNMENT 
 

Water Jug Problem 

 

i. Given a 5-gallon jug and a 2-gallon jug, with the 5-gallon jug 

initially full of water and the 2-gallon jug empty, the goal is to fill 

the 2-gallon jug with exactly one gallon of water. 

ii. 8-Puzzle 

Given an initial configuration of eight numbered tiles on a 3 x 3 
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board, move the tiles in such a way so as to produce a desired 

goal configuration of the tiles. 

iii. Missionaries and Cannibals 
There are three missionaries, three cannibals, and 1 boat that can 

carry up to two people on one side of a river. Goal: Move all the 

missionaries and cannibals across the river. 

iv. Remove five Sticks 
Given the following configuration of sticks; remove exactly five 

sticks in such a way that the remaining configuration forms 

exactly three squares. 
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1.0 INTRODUCTION 
 

We have seen that uninformed search methods that systematically 

explore the state space and find the goal. They are inefficient in most 

cases. Informed search methods use problem specific knowledge, and 

may be more efficient. Informed Search will be able to unravel the 

factoring an effective way if we now have relevant information, clues or 

hints. The clues that assist solve the factor constitute heuristic 

information. Informed search could also be known as heuristic search. 

 

According to George Polya heuristic is the study of the methods and 

rules of discovery and invention. In state space search, heuristic define 

the rules for choosing branches in a state space that are most likely to 

lead to an acceptable solution. There are two cases in AI searches when 

heuristics are needed: 
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 The problem has no exact solution. For example, in medical 

diagnosis doctors use heuristic to choose the most likely 

diagnoses given a set of symptoms.

 The problem has an exact solution but is too complex to allow for 

a brute force solution.

 

Key Point: Heuristics are fallible. Because they rely on limited 

information, they may lead to a suboptimal solution or to a dead end. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain informed search

 mention other names of informed search

 describe best-first search

 describe greedy search

 solve simple problems on informed search.

 

3.0 MAIN CONTENT 
 

3.1 What is Heuristic? 
 

Heuristic search methods explore the search space "intelligently". That 

is, evaluating possibilities without having to investigate every single 

possibility. 

 

Heuristic search is an AI search technique that employs heuristic for its 

moves. Heuristic is a rule of thumb that probably leads to a solution. 

Heuristic play a major role in search strategies because of exponential 

nature of the most problems. Heuristics help to reduce the number of 

alternatives from an exponential number to a polynomial number. In 

Artificial Intelligence, heuristic search has a general meaning, and a more 

specialized technical meaning. In a general sense, the term heuristic is 

used for any advice that is often effective, but is not guaranteed to work 

in every case. 

 

Heuristic means ―rule of thumb‖. To quote Judea Pearl, ―Heuristics are 

criteria, methods or principles for deciding which among several 

alternative courses of action promises to be the most effective in order to 

achieve some goal‖. In heuristic search or informed search, heuristics 

are used to identify the most promising search path. 
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3.1.1 Examples of Heuristic Function 
 

A heuristic function at a node n is an estimate of the optimum cost from 

the current node to a goal. It is denoted by h (n). 

H (n) = estimated cost of the cheapest path from node n to a goal node 

 

Example 1: We want a path from Kolkata to Guwahati Heuristic for 

Guwahati may be straight-line distance between Kolkata and Guwahati 

h(Kolkata) = euclideanDistance(Kolkata, Guwahati) 

 

Example 2: 8-puzzle: Misplaced Tiles Heuristics is the number of tiles 

out of place. 
 

 

The first picture shows the current state n, and the second picture the 

goal state. 

 

h(n) = 5 because the tiles 2, 8, 1, 6 and 7 are out of place. 

 

Manhattan Distance Heuristic: Another heuristic for 8-puzzle is the 

Manhattan distance heuristic. This heuristic sums the distance that the 

tiles are out of place. The distance of a tile is measured by the sum of 

the differences in the x-positions and the y-positions. 

 

For the above example, using the Manhattan distance heuristic, 

h(n) = 1 + 1 + 0 + 0 + 0 + 1 + 1 + 2 = 6 

 

We will now study a heuristic search algorithm best-first search. 

 

3.2 Best-First Search 
 

Best-first search is a search algorithm which explores a graph by 

expanding the most promising node chosen according to a specified 

rule. 
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Let fringe be a priority queue containing the initial state 

Loop if fringe is empty return failure Node ?□remove-first (fringe) 

if Node is a goal 

then return the path from initial state to Node 

else generate all successors of Node, and 

put the newly generated nodes into fringe 

according to their f values 

End Loop 

Best First Search 

 

Judea Pearl described best-first search as estimating the promise of node 

n by a "heuristic evaluation function f(n) which, in general, may depend 

on the description of n, the description of the goal, the information 

gathered by the search up to that point, and most important, on any extra 

knowledge about the problem domain. 

 

Uniform Cost Search is a special case of the best first search algorithm. 

The algorithm maintains a priority queue of nodes to be explored. A cost 

function f(n) is applied to each node. The nodes are put in OPEN in the 

order of their f values. Nodes with smaller f(n) values are expanded 

earlier. The generic best first search algorithm is outlined below. 
 

 

We will now consider different ways of defining the function f. This 

leads to different search algorithms. 

 

3.2.1 Greedy Search 
 

In greedy search, the idea is to expand the node with the smallest 

estimated cost to reach the goal. 

 

We use a heuristic function 

f(n) = h(n) 

h(n) estimates the distance remaining to a goal. 

 

A greedy algorithm is any algorithm that follows the problem solving 

heuristic of making the locally optimal choice at each stage with the 

hope of finding the global optimum. In general, greedy algorithms are 

used for optimization problems. 

 

Greedy algorithms often perform very well. They tend to find good 

solutions quickly, although not always optimal ones. 

 

The resulting algorithm is not optimal. The algorithm is also incomplete, 

and it may fail to find a solution even if one exists. This can be seen by 
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running greedy search on the following example. A good heuristic for 

the route-finding problem would be straight-line distance to the goal. 

 

S is the starting state, G is the goal state. 
 

 
Figure 2 is an example of a route finding problem. 

 

 

Figure 3 -The straight line distance heuristic estimates for the nodes. 

 

Let us run the greedy search algorithm for the graph given in Figure 2. 

The straight line distance heuristic estimates for the nodes are shown in 

Figure 3. 
 

Step 1: S is expanded. Its children are A and D. 
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Step 2: D has smaller cost and is expanded next. 
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3.3 Beam Search 
 

In computer science, beam search is a heuristic search algorithm that 

explores a graph by expanding the most promising node in a limited set. 

Beam search is an optimization of best-first search that reduces its 

memory requirements. Best-first search is a graph search which orders 

all partial solutions (states) according to some heuristic which attempts 

to predict how close a partial solution is to a complete solution (goal 

state). In beam search, only a predetermined number of best partial 

solutions are kept as candidates. 

 

Beam search uses breadth-first search to build its search tree. At each 

level of the tree, it generates all successors of the states at the current 

level, sorting them in increasing order of heuristic 

cost.http://en.wikipedia.org/wiki/Beam_search - cite_note-1 However, it 

only stores a predetermined number of states at each level (called the 

beam width). The greater the beam width, the fewer states are pruned. 

With an infinite beam width, no states are pruned and beam search is 

identical to breadth-first search. The beam width bounds the memory 

required to perform the search. Since a goal state could potentially be 

pruned, beam search sacrifices completeness (the guarantee that an 

http://en.wikipedia.org/wiki/Beam_search
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algorithm will terminate with a solution, if one exists) and optimality 

(the guarantee that it will find the best solution). 

 

The beam width can either be fixed or variable. One approach that uses 

a variable beam width starts with the width at a minimum. If no solution 

is found, the beam is widened and the procedure is repeated. 

 

3.3.1 Name and Uses 
 

The term "beam search" was coined by Raj Reddy, Carnegie Mellon 

University, 1976. 

 

A beam search is most often used to maintain tractability in large 

systems with insufficient amount of memory to store the entire search 

tree. For example, it is used in many machine translation systems. To 

select the best translation, each part is processed, and many different 

ways of translating the words appear. The top best translations 

according to their sentence structures are kept and the rest are discarded. 

The translator then evaluates the translations according to a given 

criteria, choosing the translation which best keeps the goals. The first 

use of a beam search was in the Harpy Speech Recognition System, 

CMU 1976. 

 

3.3.2 Extensions 
 

Beam search has been made complete by combining it with depth-first 

search, resulting in Beam Stack Search and Depth-First Beam Search, 

and limited discrepancy search, resulting in Beam Search Using Limited 

Discrepancy Backtrackinghttp://en.wikipedia.org/wiki/Beam_search - 

cite_note-furcy-3 (BULB). The resulting search algorithms are anytime 

algorithms that find good but likely sub-optimal solutions quickly, like 

beam search, then backtrack and continue to find improved solutions 

until convergence to an optimal solution. 

 

3.4 Hill climbing 
 

In computer science, hill climbing is a mathematical optimization 

technique which belongs to the family of local search. It is an iterative 

algorithm that starts with an arbitrary solution to a problem, then 

attempts to find a better solution by incrementally changing a single 

element of the solution. If the change produces a better solution, an 

incremental change is made to the new solution, repeating until no 

further improvements can be found. 

http://en.wikipedia.org/wiki/Beam_search
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For example, hill climbing can be applied to the travelling salesman 

problem. It is easy to find an initial solution that visits all the cities but 

will be very poor compared to the optimal solution. The algorithm starts 

with such a solution and makes small improvements to it, such as 

switching the order in which two cities are visited. Eventually, a much 

shorter route is likely to be obtained. 

 

Hill climbing is good for finding a local optimum (a solution that cannot 

be improved by considering a neighbouring configuration) but it is not 

guaranteed to find the best possible solution (the global optimum) out of 

all possible solutions (the search space). The characteristic that only 

local optima are guaranteed can be cured by using restarts (repeated 

local search), or more complex schemes based on iterations, like iterated 

local search, on memory, like reactive search optimization and tabu 

search, on memory-less stochastic modifications, like simulated 

annealing. 

 

The relative simplicity of the algorithm makes it a popular first choice 

amongst optimizing algorithms. It is used widely in artificial 

intelligence, for reaching a goal state from a starting node. Choice of 

next node and starting node can be varied to give a list of related 

algorithms. Although more advanced algorithms such as simulated 

annealing or tabu search may give better results, in some situations hill 

climbing works just as well. Hill climbing can often produce a better 

result than other algorithms when the amount of time available to 

perform a search is limited, such as with real-time systems. It is an 

anytime algorithm: it can return a valid solution even if it's interrupted at 

any time before it ends. 

 

3.4.1 Mathematical description 
 

Hill climbing attempts to maximize (or minimize) a target function 

, where is a vector of continuous and/or discrete values. At each 

iteration, hill climbing will adjust a single element in and determine 

whether the change improves the value of      . (Note that this differs 

from gradient descent methods, which adjust all of the values in     at 

each iteration according to the gradient of the hill.) With hill climbing, 

any change that improves is accepted, and the process continues 

until no change can be found to improve the value of          .     is then 

said to be "locally optimal". 

 

In discrete vector spaces, each possible value for    may be visualized as 

a vertex in a graph. Hill climbing will follow the graph from vertex to 
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vertex, always locally increasing (or decreasing) the value of         , until 

a local maximum (or local minimum) xm is reached. 

 

3.4.2 Variants 
 

In simple hill climbing, the first closer node is chosen, whereas in 

steepest ascent hill climbing all successors are compared and the closest 

to the solution is chosen. Both forms fail if there is no closer node, 

which may happen if there are local maxima in the search space which 

are not solutions. Steepest ascent hill climbing is similar to best-first 

search, which tries all possible extensions of the current path instead of 

only one. 

 

Stochastic hill climbing does not examine all neighbours before 

deciding how to move. Rather, it selects a neighbour at random, and 

decides (based on the amount of improvement in that neighbour) 

whether to move to that neighbour or to examine another. 

 

Random-restart hill climbing is a meta-algorithm built on top of the hill 

climbing algorithm. It is also known as Shotgun hill climbing. It 

iteratively does hill-climbing, each time with a random initial condition 

x0. The best xm is kept: if a new run of hill climbing produces a better xm 

than the stored state, it replaces the stored state. 

 

Random-restart hill climbing is a surprisingly effective algorithm in 

many cases. It turns out that it is often better to spend CPU time 

exploring the space, than carefully optimizing from an initial condition. 

 

4.0 CONCLUSION 
 

Informed search strategies -Also known as "heuristic search," informed 

search strategies use information about the domain to (try to) (usually) 

head in the general direction of the goal node(s) 

 

-Informed search methods: Hill climbing, best-first, greedy search, beam 

search, A, A* 



CIT478 ARTIFICIAL INTELLIGENCE 

70 

 

 

 

5.0 SUMMARY 
 

In this unit, you learnt that: 

 

 Heuristic search is an AI search technique that employs heuristic 

for its moves. 

 Best-first search is a search algorithm which explores a graph by 

expanding the most promising node chosen according to a 

specified rule. 

 A greedy algorithm is any algorithm that follows the problem 

solving heuristic of making the locally optimal choice at each 

stage with the hope of finding the global optimum 

 Beam search is a heuristic search algorithm that explores a graph 

by expanding the most promising node in a limited set 

 Hill climbing is a mathematical optimization technique which 

belongs to the family of local search. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

 
1. What is A* Search? 

2. Consider the following table 

 

 A B C D E F G H I J K L M 

A 36 61 
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B 31      

C 32  31    

D  52     

E       

F    122 112  

G       

H       

I    45   

J     36  

K      32 

L      102 

M            0 
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Using the A* algorithm work out a route from town A to town M. Use 

the following cost functions. 

 

1. G(n) = The cost of each move as the distance between each town 

(shown on map). 

2. H(n) = The Straight Line Distance between any town and town 

M. These distances are given in the table below. 
Provide the search tree for your solution and indicate the order in 

which you expanded the nodes. Finally, state the route you would 

take and the cost of that route. 
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1.0 INTRODUCTION 
 

Tree search algorithms are specialised versions of graph search 

algorithms, which take the properties of trees into account. An example 

of tree search is the game tree of multiple-player games, such as chess or 

backgammon, whose nodes consist of all possible game situations that 

could result from the current situation. The goal in these problems is to 

find the move that provides the best chance of a win, taking into account 

all possible moves of the opponent(s). Similar problems occur when 

humans or machines have to make successive decisions whose outcomes 

are not entirely under one's control, such as in robot guidance or in 

marketing, financial or military strategy planning. This kind of problems 

has been extensively studied in the context of artificial intelligence. 

Examples of algorithms for this class are the minimax algorithm, alpha- 

beta pruning, and the A* algorithm. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 describe a game tree 

 describe some two-player games search algorithms 

 explain intelligent backtracking 

 solve some simple problems on tree search. 
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3.0 MAIN CONTENT 
 

3.1 Game Tree 
 

A game tree is a directed graph whose nodes are positions in a game and 

whose edges are moves. The complete game tree for a game is the game 

tree starting at the initial position and containing all possible moves 

from each position; the complete tree is the same tree as that obtained 

from the extensive-form game representation. 
 

 

 

Figure 1: Game tree for tic-tac-toe 

 

The first two plies of the game tree for tic-tac-toe. 

 

The diagram shows the first two levels, or plies, in the game tree for tic- 

tac-toe. We consider all the rotations and reflections of positions as 

being equivalent, so the first player has three choices of move: in the 

center, at the edge, or in the corner. The second player has two choices 

for the reply if the first player played in the center,  otherwise five 

choices. And so on. 

 

The number of leaf nodes in the complete game tree is the number of 

possible different ways the game can be played. For example, the game 

tree for tic-tac-toe has 26,830 leaf nodes. 

 

Game trees are important in artificial intelligence because one way to 

pick the best move in a game is to search the game tree using the 

minimax algorithm or its variants. The game tree for tic-tac-toe is easily 

searchable, but the complete game trees for larger games like chess are 

much too large to search. Instead, a chess-playing program searches a 

partial game tree: typically as many plies from the current position as it 
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can search in the time available. Except for the case of "pathological" 

game trees (which seem to be quite rare in practice), increasing the 

search depth (i.e., the number of plies searched) generally improves the 

chance of picking the best move. 

 

Two-person games can also be represented as and-or trees. For the first 

player to win a game there must be a winning move for all moves of the 

second player. This is represented in the and-or tree by using disjunction 

to represent the first player's alternative moves and using conjunction to 

represent all of the second player's moves. 
 

3.2 Two-Player Games Search Algorithms 

The second major application of heuristic search algorithms in Artificial 

Intelligence is two-player games. One1 of the original challenges of AI, 

which in fact predates the term, Artificial Intelligence, was to build a 

program that could play chess at the level of the best human players, a 

goal recently achieved. 

 

Following are the algorithms meant to solve this problem. 

 

 Minimax Search 

 Alpha-Beta Pruning 

 Quiecence 

 Transposition Tables 

 Limited Discrepancy Search 

 Intelligent Backtracking 

 

3.2.1 Minimax Search Algorithm 
 

The standard algorithm for two-player perfect-information games such 

as chess, checkers or Othello is minimax search with heuristic static 

evaluation. The minimax search algorithm searches forward to a fixed 

depth in the game tree, limited by the amount of time available per 

move. At this search horizon, a heuristic function is applied to the 

frontier nodes. In this case, a heuristic evaluation is a function that takes 

a board position and returns a number that indicates how favourable that 

position is for one player relative to the other. For example, a very 

simple heuristic evaluator for chess would count the total number of 

pieces on the board for one player, appropriately weighted by their 

relative strength, and subtract the weighted sum of the opponent‘s 

places. Thus, large positive values would correspond to strange 

positions for one player called MAX, whereas large negative values 

would represent advantageous situation for the opponent called MIN. 
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Given the heuristic evaluations of the frontier nodes, minimax search 

algorithm recursively computes the values for the interior nodes in the 

tree according to the maximum rule. The value of a node where it is 

MAX‘s turn to move is the maximum of the values of its children, while 

the value of the node where MIN is to move is the minimum of the 

values of its children. Thus at alternative levels of the tree, the 

maximum values of the children are backed up. This continues until the 

values of the immediate children of the current position are computed at 

which point one move to the child with the maximum or minimum value 

is made depending on whose turn it is to move. 

 

3.2.2 Alpha-Beta Pruning 
 

One of the most elegant of all AI search algorithms is alpha-beta 

pruning. The idea, similar to branch-and-bound, is that the minimax 

value of the root of a game tree can be determined without examining all 

the nodes at the search frontier. 

 

Only the labeled nodes are generated by the algorithm, with the heavy 

black lines indicating pruning. At the square node MAX is to move, 

while at the circular nodes it MIN‘s turn. The search proceeds depth- 

first to minimize the memory required, and only evaluates a node when 

necessary. First node and f are statically evaluated at 4 and 5, 

respectively, and their minimum value, 4 is backed up to their parent 

node d. Node h is then evaluated at 3, and hence the value of its parent 

node g must be less than or equal to 3, since it is the minimum of 3 and 

the unknown value of its right child. Thus, we level node g as <=3. The 

value of node c must be 4 then, because it is the maximum of 4 and a 

value that is less than or equal to 3. Since we have determined the 

minimax value of node c, we do not need to evaluate or even generate 

the brother of node h. 

 

Similarly, after evaluating nodes k and l at 6 and 7 respectively, the 

backed up value of their parent node j is 6, the minimum of these values. 

This tells us that the minimax value of node I must be greater than or 

equal to 6 since it is the maximum of 6 and the unknown value of its 

right child. Since the value of node b is the minimum of 4 and a value 

that is greater than or equal to 6, it must be 4 and hence we achieve 

another cut off. 

 

The right half of the tree shows an example of deep pruning. After 

evaluating the left half of the tree, we know that the value of the root 

node a is greater than or equal to four, the minimax value of node b. 

Once node q is equated at 1, the value of its parent node nine must be 

less than or equal to 1. Since the value of the root is greater than or 
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equal to two. Moreover, since the value of node m is the minimum of 

the value of node n and its brother, and node n has a value less than or 

equal to two, the value of node m must also be less than or equal to two. 

This causes the brother of node n to be pruned, since the value of the 

root node a is greater than or equal to four. Thus, we computed the 

minimax value of the root of the tree to be four, by generating only 

seven of sixteen leaf nodes in this area. 

 

Since alpha-beta pruning performs a minimax search while pruning 

much of the tree, its effect is to allow a deeper search with the same 

amount of computation. This raises the question of how much does 

alpha-beta improve performance. The best way to characterize the 

efficiency of a pruning algorithm is in terms of its effective branching 

factor. The effective branching factor is the dth root of the frontier nodes 

that must be evaluated in a search to depth d, in the limit of large d. 

 

The efficiency of alpha-beta pruning depends upon the order in which 

nodes are encountered at the search frontier. For any set of frontier node 

values, there exists same ordering of the values such that alpha-beta will 

not perform any cut offs at all. In that case, the effective branching 

factor is reduced from b to b^1/2., the square root of the brute-force 

branching factor. Another way of viewing the perfect ordering case is 

that for the same amount of computation, one can search twice as deep 

as with alpha-beta pruning as without since the search tree grows 

exponentially with depth,  doubling the search horizon is a dramatic 

improvement. 

 

In between worst-possible ordering and perfect ordering is random 

ordering, which is the average case. Under random ordering of the 

frontier nodes, alpha-beta pruning reduces the effective branching factor 

approximately b3/4. This means that one can search 4/3 as deep with 

alpha-beta, yielding as 33% improvement in search depth. 

 

In practice, however, the effective branching factor of alpha-beta is 

closer to the best case of b1/2 due to node ordering. The idea of node 

ordering is that instead of generating the tree left to right, we can reorder 

the tree based on static evaluations of the interior nodes. In other words, 

the children of MAX nodes are expanded in decreasing order of their 

static values, while the children of MIN nodes are expanded in 

increasing order of their static values. 

 

3.2.3 Quiescence Search 
 

The idea of quiescence is that the static evaluator should not be applied to 

positions whose values are unstable, such as those occurring in the 
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middle of the piece trade. In those positions, a small secondary search is 

conducted until the static evaluation becomes more stable. In games 

such as chess or checkers, this can be achieved by always exploring any 

capture moves one level deeper. This extra search is called quiescence 

search. Applying quiescence search to capture moves quickly will resolve 

the uncertainties in the position. 

 

3.2.4 What is Transposition Table? 
 

A transposition table is a table of previously encountered game states, 

together with their backed-up minimax values. Whenever a new state is 

generated, if it is stored in the transposition table, its stored value is used 

instead of searching the tree below the node. Transposition table can be 

used very effectively so that reachable search depth in chess, for 

example, can be doubled. 

 

3.2.5 Limited Discrepancy Search (LDS) 
 

Limited Discrepancy Search (LDS) is a completely general tree-search 

algorithm, but is most useful in the context of constraint satisfaction 

problems in which the entire tree is too large to search exhaustively. In 

that case, we would like to search that subset of the tree that is most 

likely to yield a solution in the time available. Assume that we can 

heuristically order a binary tree so that at any node, the left branch is 

more likely to lead to a solution than the right branch. LDS then 

proceeds in a series of depth-first iterations. The first iteration explores 

just the left-most path in the tree. The second iteration explores those 

root-to-leaf paths with exactly one right branch, or discrepancy in them. 

In general, each iteration explores those paths with exactly k 

discrepancies, with k ranging from zero to the depth of the tree. The last 

iteration explores just the right most branch. Under certain assumptions, 

one can show that LDS is likely to find a solution sooner than a strict 

left-to-right depth-first search. 

 

3.2.6 What is Intelligent Backtracking? 
 

Performance of brute force backtracking can be improved by using a 

number of techniques such as variable ordering, value ordering, back 

jumping, and forward checking. 

 

The order in which variables are instantiated can have a large effect on 

the size of the search tree. The idea of variable ordering is to order the 

variables form most constrained to least constrained. For example, if a 

variable has only a single value remaining that is consistent with the 

previously instantiated variable, it should be assigned that value 
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immediately. In general, the variables should be instantiated in 

increasing order of the size of their remaining domains. This can either 

be done statically at the beginning of the search or dynamically, 

reordering the remaining variables each time a variable is assigned a 

new value. 

 

The order in which the value of a given variable is chosen determines 

the order in which the tree is searched. Since it does not affect the size 

of the tree, it makes no difference if all solutions are to be found. If only 

a single solution is required, however, value ordering can decrease the 

time required to find a solution. In general, one should order the values 

from least constraining to most constraining in order to minimize the 

time required to find a first solution. 

 

An important idea, originally called back jumping, is that when an 

impasse is reached, instead of simply undoing the last decision made, 

the decision that actually caused the failure should be modified. For 

example, consider the three-variable problem where the variables are 

instantiated in the order x,y,z. Assume that values have been chosen for 

both x and y, but that all possible values for z conflict with the value 

chosen for x. In chronological backtracking, the value chosen for y 

would be changed, and then all the possible values for z would be tested 

again, to no avail. A better strategy in this case is to go back to the 

source of the failure, and change the value of x before trying different 

values for y. 

 

When a variable is assigned a value, the idea of forward checking is to 

check each remaining uninstantiated variable to make sure that there is 

at least one assignment for each of them that is consistent with the 

previous assignments. If not, the original variable is assigned its next 

value. 

 

4.0 CONCLUSION 
 

In computer science, a search tree is a binary tree data structure in 

whose nodes data values are stored from some ordered set, in such a 

way that in-order traversal of the tree visits the nodes in ascending order 

of the stored values. This means that for any internal node containing a 

value v, the values x stored in its left sub tree satisfy x ≤ v, and the 

values y stored in its right sub tree satisfy v ≤ y. Each sub tree of a 

search tree is by itself again a search tree. 
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5.0 SUMMARY 
 

In this unit, you learnt that: 

 

 A game tree is a directed graph whose nodes are positions in a 

game and whose edges are moves

 The second major application of heuristic search algorithms in 

Artificial Intelligence is two-player games

 The standard algorithm for two-player perfect-information games 

such as chess, checkers or Othello is minimax search with 

heuristic static evaluation

 One of the most elegant of all AI search algorithms is alpha-beta 

pruning.

 The idea of quiescence is that the static evaluator should not be 

applied to positions whose values are unstable, such as those 

occurring in the middle of the piece trade.

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

Answer the following questions on informed search and heuristics: 

 

1. Which of the following are admissible, given admissible 

heuristics h1, h2? Which of the following are consistent, given 

consistent heuristics h1, h2? 

2. h(n) = min{h1(n), h2(n)} 

3. h(n) = wh1(n) + (1 −w)h2(n), where 0 w 1 

4. h(n) = max{h1(n), h2(n)} 

5. The heuristic path algorithm is a best-first search in which the 

objective function is ƒ (n) = (2 −w)g(n) + wh(n). For what values 

of w is this algorithm guaranteed to be optimal when h is 

admissible? What kind of search does this perform when w = 0? 

When w = 1? When w = 2? 

 

7.0 REFERENCES/FURTHER READING 

 
Christopher, D. Manning & Schutze, H. Foundations of Statistical 

Natural Language Processing. The MIT Press. 

 

Hu, Te Chiang. Shing, M. (2002). Combinatorial Algorithms. Courier 

Dover Publications. ISBN 0486419622. 

http://books.google.com/?id=BF5_bCN72EUC. Retrieved 2007- 

04-02. 

http://books.google.com/?id=BF5_bCN72EUC


CIT478 ARTIFICIAL INTELLIGENCE 

80 

 

 

 

Nau, D. (1982). "An investigation of the causes of pathology in games". 

Artificial Intelligence 19: 257–278. doi:10.1016/0004-3702(82) 

90002-9. 

 

Allis, V. (1994). Searching for Solutions in Games and Artificial 

Intelligence. Ph.D. Thesis, University of Limburg, Maastricht, 

The Netherlands. ISBN 9090074880. http://fragrieu.free.fr/ 

SearchingForSolutions.pdf. 

http://fragrieu.free.fr/


CIT478 ARTIFICIAL INTELLIGENCE 

81 

 

 

 

MODULE 3 ARTIFICIAL INTELLIGENCE 

TECHNIQUES IN PROGRAMMING AND 

NATURAL LANGUAGES 
 

Unit 1 Knowledge Representation 
Unit 2 Programming Languages for Artificial Intelligence 

Unit 3 Natural Language Processing 

 

UNIT 1 KNOWLEDGE REPRESENTATION 
 

CONTENTS 

 
1.0 Introduction  

2.0 Objectives  

3.0 Main Content 

3.1 Overview of Knowledge Representation 
3.1.1 Characteristics 

 

 3.1.2   History of Knowledge Representation and 

Reasoning 

3.2 Knowledge Representation Languages 

3.3 Domain Modeling 

3.4 Ontological Analysis 

3.5 Classic 

3.5.1 The Classic Language 

3.5.2 Enhancements to Classic 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Knowledge Representation (KR) has long been considered one of the 

principal elements of Artificial Intelligence, and a critical part of all 

problems solving [Newell, 1982]. The subfields of KR range from the 

purely philosophical aspects of epistemology to the more practical 

problems of handling huge amounts of data. This diversity is unified by 

the central problem of encoding human knowledge - in all its various 

forms - in such a way that the knowledge can be used. This goal is 

perhaps best summarized in the Knowledge Representation Hypothesis: 

 

Any mechanically embodied intelligent process will be 

comprised of structural ingredients that a) we as external 

observers naturally take to represent a propositional 
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account of the knowledge that the overall process exhibits, 

and b) independent of such external semantically 

attribution, play a formal but causal and essential role in 

engendering the behavior that manifests that knowledge 

[Smith, 1982]. 

 

A successful representation of some knowledge must, then, be in a form 

that is understandable by humans, and must cause the system using the 

knowledge to behave as if it knows it. The "structural ingredients" that 

accomplish these goals are typically found in the languages for KR, 

both implemented and theoretical, that have been developed over the 

years. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain the meaning of knowledge representation 

 describe the history of history of knowledge representation and 

reasoning 

 list some characteristics of kr 

 list 4 main features of kr language. 

 

3.0 MAIN CONTENT 

 

3.1 Overview of Knowledge Representation 
 

Knowledge Representation (KR) research involves analysis of how to 

accurately and effectively reason and how best to use a set of symbols to 

represent a set of facts within a knowledge domain. A symbol 

vocabulary and a system of logic are combined to enable inferences 

about elements in the KR to create new KR sentences. Logic is used to 

supply formal semantics of how reasoning functions should be applied 

to the symbols in the KR system. Logic is also used to define how 

operators can process and reshape the knowledge. Examples of 

operators and operations include negation, conjunction, adverbs, 

adjectives, quantifiers and modal operators. Interpretation theory is this 

logic. These elements--symbols, operators, and interpretation theory-- 

are what give sequences of symbols meaning within a KR. 

 

A key parameter in choosing or creating a KR is its expressivity. The 

more expressive a KR, the easier and more compact it is to express a 

fact or element of knowledge within the semantics and grammar of that 

KR. However, more expressive languages are likely to require more 

complex logic and algorithms to construct equivalent inferences. A 
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highly expressive KR is also less likely to be complete and consistent. 

Less expressive KRs may be both complete and consistent. Auto 

epistemic temporal modal logic is a highly expressive KR system, 

encompassing meaningful chunks of knowledge with brief, simple 

symbol sequences (sentences). Propositional logic is much less 

expressive but highly consistent and complete and can efficiently 

produce inferences with minimal algorithm complexity. Nonetheless, 

only the limitations of an underlying knowledge base affect the ease 

with which inferences may ultimately be made (once the appropriate KR 

has been found). This is because a knowledge set may be exported from 

a knowledge model or knowledge base system (KBS) into different 

KRs, with different degrees of expressiveness, completeness, and 

consistency. If a particular KR is inadequate in some way, that set of 

problematic KR elements may be transformed by importing them into a 

KBS, modified and operated on to eliminate the problematic elements or 

augmented with additional knowledge imported from other sources, and 

then exported into a different, more appropriate KR. 

 

In applying KR systems to practical problems, the complexity of the 

problem may exceed the resource constraints or the capabilities of the 

KR system. Recent developments in KR include the concept of the 

Semantic Web, and development of XML-based knowledge 

representation languages and standards, including Resource Description 

Framework (RDF), RDF Schema, Topic Maps, DARPA Agent Mark-up 

Language (DAML), Ontology Inference Layer (OIL), and Web 

Ontology Language (OWL). 

 

There are several KR techniques such as frames, rules, tagging, and 

semantic networks which originated in Cognitive Science. Since 

knowledge is used to achieve intelligent behaviour, the fundamental 

goal of knowledge representation is to facilitate reasoning, drawing 

conclusions. A good KR must be both declarative and procedural 

knowledge. What is knowledge representation can best be understood in 

terms of five distinct roles it plays, each crucial to the task at hand: 

 

 A knowledge representation (KR) is most fundamentally a 

surrogate, a substitute for the thing itself, used to enable an entity 

to determine consequences by thinking rather than acting, i.e., by 

reasoning about the world rather than taking action in it.

 It is a set of ontological commitments, i.e., an answer to the 

question: In what terms should I think about the world?

 It is a fragmentary theory of intelligent reasoning, expressed in 

terms of three components: (i) the representation's fundamental 

conception of intelligent reasoning; (ii) the set of inferences the
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representation sanctions; and (iii) the set of inferences it 

recommends. 

 It is a medium for pragmatically efficient computation, i.e., the 

computational environment in which thinking is accomplished. 

One contribution to this pragmatic efficiency is supplied by the 

guidance a representation provides for organizing information so 

as to facilitate making the recommended inferences.

 It is a medium of human expression, i.e., a language in which we 

say things about the world."

 

Some issues that arise in knowledge representation from an AI 

perspective are: 

 

 How do people represent knowledge?

 What is the nature of knowledge?

 Should a representation scheme deal with a particular domain or 

should it be general purpose?

 How expressive is a representation scheme or formal language?

 Should the scheme be declarative or procedural?

 

There has been very little top-down discussion of the knowledge 

representation (KR) issues and research in this area is a well aged 

quillwork. There are well known problems such as "spreading 

activation" (this is a problem in navigating a network of nodes), 

"subsumption" (this is concerned with selective inheritance; e.g. an ATV 

can be thought of as a specialization of a car but it inherits only 

particular characteristics) and "classification." For example a tomato 

could be classified both as a fruit and a vegetable. 

 

In the field of artificial intelligence, problem solving can be simplified 

by an appropriate choice of knowledge representation. Representing 

knowledge in some ways makes certain problems easier to solve. For 

example, it is easier to divide numbers represented in Hindu-Arabic 

numerals than numbers represented as Roman numerals. 

 

3.1.1 Characteristics 
 

A good knowledge representation covers six basic characteristics: 

 

 Coverage, which means the KR covers a breath and depth of 

information. Without a wide coverage, the KR cannot determine 

anything or resolve ambiguities. 

 Understandable by humans. KR is viewed as a natural language, 

so the logic should flow freely. It should support modularity and 

hierarchies of classes (Polar bears are bears, which are animals). 



CIT478 ARTIFICIAL INTELLIGENCE 

85 

 

 

 

It should also have simple primitives that combine in complex 

forms. 

 Consistency. If John closed the door, it can also be interpreted as 

the door was closed by John. By being consistent, the KR can 

eliminate redundant or conflicting knowledge. 

 Efficient 

 Easiness for modifying and updating. 

 Supports the intelligent activity which uses the knowledge base 

 

To gain a better understanding of why these characteristics represent a 

good knowledge representation, think about how an encyclopaedia (e.g. 

Wikipedia) is structured. There are millions of articles (coverage), and 

they are sorted into categories, content types, and similar topics 

(understandable). It redirects different titles but same content to the 

same article (consistency). It is efficient, easy to add new pages or 

update existing ones, and allows users on their mobile phones and 

desktops to view its knowledge base. 

 

3.1.2 History of Knowledge Representation and Reasoning 
 

In computer science, particularly artificial intelligence, a number of 

representations have been devised to structure information. 

 

KR is most commonly used to refer to representations intended for 

processing by modern computers, and in particular, for representations 

consisting of explicit objects (the class of all elephants, or Clyde a 

certain individual), and of assertions or claims about them ('Clyde is an 

elephant', or 'all elephants are grey'). Representing knowledge in such 

explicit form enables computers to draw conclusions from knowledge 

already stored ('Clyde is grey'). 

 

Many KR methods were tried in the 1970s and early 1980s, such as 

heuristic question-answering, neural networks, theorem proving, and 

expert systems, with varying success. Medical diagnosis (e.g., Mycin) 

was a major application area, as were games such as chess. 

 

In the 1980s formal computer knowledge representation languages and 

systems arose. Major projects attempted to encode wide bodies of 

general knowledge; for example the "Cyc" project (still ongoing) went 

through a large encyclopaedia, encoding not the information itself, but 

the information a reader would need in order to understand the 

encyclopaedia: naive physics; notions of time, causality, motivation; 

commonplace objects and classes of objects. 
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Through such work, the difficulty of KR came to be better appreciated. 

In computational linguistics, meanwhile, much larger databases of 

language information were being built, and these, along with great 

increases in computer speed and capacity, made deeper KR more 

feasible. 

 

Several programming languages have been developed that are oriented 

to KR. Prolog developed in 1972, but popularized much later, represents 

propositions and basic logic, and can derive conclusions from known 

premises. KL-ONE (1980s) is more specifically aimed at knowledge 

representation itself. In 1995, the Dublin Core standard of metadata was 

conceived. 

 

In the electronic document world, languages were being developed to 

represent the structure of documents, such as SGML (from which 

HTML descended) and later XML. These facilitated information 

retrieval and data mining efforts, which have in recent years begun to 

relate to knowledge representation. 

 

Development of the Semantic Web, has included development of XML- 

based knowledge representation languages and standards, including 

RDF, RDF Schema, Topic Maps, DARPA Agent Markup Language 

(DAML), Ontology Inference Layer (OIL), and Web Ontology 

Language (OWL). 
 

3.2 Knowledge Representation Languages 
 

William Woods defines the properties of a KR Language as follows: 

A KR language must unambiguously represent any interpretation of a 

sentence (logical adequacy), have a method for translating from natural 

language to that representation, and must be usable for reasoning 

[Woods, 1975]. 

 

Wood's definition is merely a simplification of the KR Hypothesis 

where "reasoning" is the only method of "engendering the behavior that 

manifests that knowledge." Reasoning is essential to KR, and especially 

to KR languages, yet even simple reasoning capabilities can lead to 

serious tractability problems [Brachman and Levesque, 1987], and thus 

must be well understood and used carefully. 

 

One of the most important developments in the application of KR in the 

past 20 years has been the proposal [Minsky, 1981], study [Woods, 

1975] [Brachman, 1977] [Brachman, 1979], and development 

[Brachman and Schmolze, 1985] [Fox, Wright, and Adam, 1985] 

[Bobrow and Winograd, 1985] of frame-based KR languages. While 
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frame-based KR languages differ in varying degrees from each other, 

the central tenet of these systems is a notation based on the specification 

of objects (concepts) and their relationships to each other. The main 

features of such a language are: 

 

1. Object-orientedness. All the information about a specific concept 

is stored with that concept, as opposed, for example, to rule- 

based systems where information about one concept may be 

scattered throughout the rule base. 

2. Generalization/Specialization. Long recognized as a key aspect 

of human cognition [Minsky, 1981], KR languages provide a 

natural way to group concepts in hierarchies in which higher 

level concepts represent more general, shared attributes of the 

concepts below. 

3. Reasoning. The ability to state in a formal way that the existence 

of some piece of knowledge implies the existence of some other, 

previously unknown piece of knowledge is important to KR. 

Each KR language provides a different approach to reasoning. 

4. Classification. Given an abstract description of a concept, most 

KR languages provide the ability to determine if a concept fits 

that description, this is actually a common special form of 

reasoning. 
 

 

 
Object orientation and generalization help to make the represented 

knowledge more understandable to humans; reasoning and classification 

help make a system behave as if it knows what is represented. Frame- 

based systems thus meet the goals of the KR Hypothesis. 

 

It is important to realize both the capabilities and limitations of frame- 

based representations, especially as compared to other formalisms. To 

begin with, all symbolic KR techniques are derived in one way or 
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another from First Order Logic (FOL), and as a result are suited for 

representing knowledge that doesn't change.(Figure one Simple database 

representation) . Different KR systems may be able to deal with non- 

monotonic changes in the knowledge being represented, but the basic 

assumption has been that change, if present, is the exception rather than 

the rule. 

 

Two other major declarative KR formalisms are production systems and 

database systems. Production systems allow for the simple and natural 

expression of if-then rules. However, these systems have been shown to 

be quite restrictive when applied to large problems, as there is no 

ordering of the rules, and inferences cannot be constrained away from 

those dealing only with the objects of interest. Production systems are 

subsumed by frame-based systems, which additionally provide natural 

inference capabilities like classification and inheritance, as well as 

knowledge-structuring techniques such as generalization and object 

orientation. 

 

Database systems provide only for the representation of simple 

assertions, without inference. Rules of inference are important pieces of 

knowledge about a domain. For example, consider the bibliographic 

database in Figure 1. If someone were interested in article-10 and 

wanted to know where it was, that person would have to be smart 

enough to realize that an article can be found in the location of the 

journal in which it is published. That sentence is a rule, it is knowledge. 

It is knowledge that cannot be expressed in a database system. The 

person doing the retrieval of the information in the database must have 

that knowledge in order to type the SQL statement that will get the 

proper location. In a frame-based system that knowledge can be 

expressed as a rule that will fire when article-10 is accessed, thus 

the user is not required to know it. 
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Frame-based systems are currently severely limited when dealing with 

procedural knowledge [Winograd, 1975]. An example of procedural 

knowledge would be Newton's Law of Gravitation - the attraction 

between two masses is inversely proportional to the square of their 

distances from each other. Given two frames representing the two 

bodies, with slots holding their positions and mass, the value of the 

gravitational attraction between them cannot be (Figure 2-A framework 

for Domain Modelling). 

 

Inferred declaratively using the standard reasoning mechanisms 

available in frame-based KR languages, though a function or procedure 

in a programming language could represent the mechanism for 

performing this "inference" quite well. Frame-based systems that can 

deal with this kind of knowledge do so by adding a procedural language 

to its representation. The knowledge is not being represented in a frame- 

based way, it is being represented as C or (more commonly) LISP code 

which is accessed through a slot in the frame [Bobrow and Winograd, 

1985]. This is an important distinction - there is knowledge being. 

 

Encoded in those LISP functions that is not fully accessible. The system 

can reason with that knowledge, but not about it; in other words we can 

use some attached procedure to compute (or infer) the value of one slot 

based on some others, but we cannot ask how that value was obtained. 

 

3.3 Domain Modeling 
 

Domain modeling is the field in which the application of KR to specific 

domains is studied and performed. Figure 2 shows a framework for 

discussing domain modeling that seems to map well onto most examples 

[Iscoe, Tam, and Liu, 1991]. 

 

The amorphous shape labelled Domain Knowledge refers to the 

knowledge possessed by the domain expert that must be encoded in 

some fashion. This knowledge is not well defined and is fairly difficult 

for others to access. The box labelled Meta-Model refers to the KR 

formalism, typically a KR language that will be used as the symbol level 

[Newell, 1982] for the machine representation of this knowledge. The 

box labelled instantiation refers to the process of taking the domain 

knowledge and physically representing it using the meta-model, this 

process is sometimes referred to as knowledge acquisition [Schoen, 

1991]. The box labelled domain model refers to the knowledge-base that 

results from the instantiation, and the operational goals are typically not 

represented formally, but refer to the reason the domain model was built 

and what it will be used for. 
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Specific examples of real-world domain modelling efforts and how they 

fit into this framework can be found in [Iscoe, 1991], and it has become 

clear that the most prevalent operational goal across modelling efforts 

today is understanding the domain of a large software system [Arango, 

1989]. One thing that seems to be universally lacking in efforts with this 

operational goal is the realization that a software system operating 

within a domain is a part of that domain, and deserves as much attention 

and detail in the model as any other part. The main reason for this 

oversight is that there is a historical reason for distinguishing procedural 

from declarative knowledge [Winograd, 1975], and as a result the two 

are typically represented differently: domain models are represented 

with frame based KR languages and programs are represented with 

programming languages. 

 

This traditional separation between programs and domain models causes 

problems during the instantiation of a domain model that includes not 

only knowledge of the objects and attributes, but knowledge of the 

procedural aspects of the processes associated with the domain as well. 

The problems stem from the fact that domain modelling is a discipline in 

which advances are made incrementally, by building upon previous 

systems [Simon, 1991]. Some of the most significant results are in the 

form of methodologies which help other domain modellers to avoid 

pitfalls and use techniques that work [Gruber, 1993]. 

 

The predominant methodologies for domain modelling clearly indicate 

that the instantiation of the model is the most time consuming part, and 

that the most important part of instantiation is ontological analysis 

[Alexander, Freiling, and Shulman, 1986] (which is more fully 

described in the next section). Ontologies for general taxonomies of 

objects are abundant, and there seem to be clear guidelines for 

developing new ones. 

 

The problem is that for the knowledge required to represent procedural 

knowledge and reason about it (not with it); there are few guidelines, 

especially when the procedures requiring representation are 

implemented as software. There is not much background to draw upon, 

other than software information systems, as far as ontologies and 

methodologies for modelling what software does. Ontological analysis 

ended up being a large part of the effort for this research, since it had 

never been done before. 

 

3.4 Ontological Analysis 
 

The word ontology means "the study of the state of being." Ontology 

describes the states of being of a particular set of things. This 
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description is usually made up of axioms that define each thing. In 

knowledge representation, ontology has become the defining term for 

the part of a domain model that excludes the instances, yet describes 

what they can be. Ontological analysis is the process of defining this 

part of the model. 

 

What makes up a specific domain ontology is restricted by the 

representational capabilities of the meta-model - the language used to 

construct the model. Each knowledge representation language differs in 

its manner and range of expression. In general, ontology consists of 

three parts: concept definitions, role definitions, and further inference 

definitions. 

 

The concept definitions set up all the types of objects in the domain. In 

object oriented terms this is called the class definitions, and in database 

terms these are the entities. There can be three parts to the concept 

definitions: 

 

 Concept taxonomy. The taxonomy is common to most 

knowledge representation languages, and through it is specified 

the nature of the categories in terms of generalization and 

specialization.

 Role defaults which specify for each concept what the default 

values are for any attributes.

 Role restrictions which specify for a concept any constraints on 

the values in a role, such as what types the values must be, how 

many values there can be, etc.

 

A role is an attribute of an object. In object-oriented terms it is a slot, in 

database terms (and even some KR languages) it is a relation. In the 

simplest case, a role for an object just has a value; the object mailbox-4 

might have a role number-of-messages, for example, that would have a 

value which is a number. Roles also express relationships between 

objects. The same object might have a role called owner which relates 

mailbox-4 to the object person-2. Roles which represent relationships 

are unidirectional. A role definition may have up to three parts as well: 

 

 The role taxonomy which specifies the 

generalization/specialization relationship between roles. For 

example, ontology for describing cars might include roles called 

has-engine, has-seats, and has-headlights, which relate objects 

that represent cars to objects that represent engines, seats, and 

headlights, resp. The role has-parts, then, could be expressed as 

the generalization of all these roles, and the result is that all the
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values of all the more specialized roles would also be values of 

the more general role. 

 Role inverses which provide a form of inference that allows the 

addition of a role in the opposite direction when the forward link 

is made. For example, if the inverse of has-engine was engine-of, 

then when the has-engine link between the object that represents 

the car and the object that represents the engine is made, the 

engine-of link will automatically be added between the engine 

object and the car object.

 Role restrictions. The role itself may be defined such that it can 

only appear between objects of certain types (domain/range 

restrictions), or can only appear a specified number of times 

(cardinality restriction). This is the same information specified in 

role restriction for concepts, some representation languages 

consider this information to be part of the role, and some consider 

it to be part of the concept.

 

The final part of ontology is the specification of additional inference that 

the language provides. Examples of this are forward and/or backward 

chaining rules, path grammars, subsumption and/or classification, 

demons, etc. An explanation of the inference mechanisms used in this 

research will be given in the next section. 

 

3.5 Classic 
 

Classic is a frame-based knowledge representation language that 

belongs to the family of description logics [Brachman, et al., 1991]. It is 

descended from KL-ONE [Brachman and Schmolze, 1985], and has 

been specifically designed to be mindful of the tractability of its own 

inferences [Brachman, et al., 1989]. 

 

Classic knowledge-bases are composed of four kinds of objects: 

concepts, roles, rules, and individuals. Ontology in Classic consists of 

concept taxonomy, role taxonomy, role inverses, role restrictions and 

defaults. The role restrictions and defaults are specified as part of the 

concept definitions. Classic rules are forward chaining rules. 

 

3.5.1 The Classic Language 
 

Throughout this document, it has been necessary to make explicit use of 

the notation and terminology of Classic to explain and describe some of 

the more detailed aspects of this research. This section contains a brief 

introduction to the language of Classic in order to make it clear precisely 

how one goes about describing objects. This introduction only presents 

the subset of Classic which was used in this research. The Classic 
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language is specifically designed to make it possible to describe objects 

in such a way that it is possible to determine automatically whether one 

object is subsumed by another. The peculiarities of the language arise 

from the goal of making this determination not only possible, but 

tractable. 

To begin with, a typical concept description looks like this: 

(defconcept information-filter 

(and kbeds-object 
(all information-filter-of valid-mail-recipient) 

(at-least one information-filter-of) 

(all has-filter-condition kbeds-mail-message) 

(at-least one has-filter-condition) 

(at-most one has-filter-condition) 
(all has-filter-action kbeds-filter-action) 

(at-least one has-filter-action)) 

:disjoint kbeds-thing) 

 

This says an information-filter is subsumed by (or is more 

specialized than, or is a subclass of) kbeds-object (and therefore is 

also described by that concept), and that all the fillers (in Classic a filler 

is the value of a particular role on a particular object) for its 

information-filter-of role must be individuals of valid- 

mail-recipient, and that there must be at least one filler for that 

role, and similarly for the role has-filter-condition except that 

there can also be at most one filler (in other words, there can be only one 

filler), and so on. The disjoint specification identifies this concept as a 

member of a disjoint set, which means that an individual cannot be 

subsumed by more than one concept in that set. The most obvious 

example of a disjoint set would be the gender set, containing the 

concepts "male person" and "female person." 
 

In the terminology of Classic, the description above is told information. 

Told information is precisely the information that is explicitly typed into 

the knowledge base. This is opposed to derived information, which is all 

the information that Classic derives or infers through its various 

mechanisms. (Figure 3 – A Simple taxonomy of primitive concepts). 

 

This description actually shows a primitive concept - one which Classic 

will not automatically try to classify. Classic will also not automatically 

try to find which individuals are subsumed by a primitive concept, this 

information must be told. This subtle notion may seem irrelevant, but it 

is the norm in most representation languages (when a concept is created 

the modeller explicitly names the parent concepts, and when an 
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individual is created, the modeller explicitly names the concept that the 

new individual is an instance of). It is important in Classic because there 

is another kind of concept, the defined concept, which Classic actually 

does automatically classify and find individuals of. For example, in 

figure 3 a simple taxonomy of primitive concepts is shown. Let us 

suppose we create a defined concept called vegetarian-mammal as 

follows: (and mammal (all 

food plant)). Next we create 

another defined concept called 

fruit-eating-person: (and 

person (all food fruit)). 

Classic will derive that 

vegetarian-mammal subsumes 

fruit-eating-person (why? 

because mammal subsumes person and plant subsumes fruit). If 

we created two individuals, joe and 

apple, and tell Classic that they are 

instances of person and fruit, 

resp., and further tell Classic that 

apple is a filler for joe's food 

role, Classic will derive that joe is 

an instance of fruit-eating- 

person (and      therefore      also 

vegetarian-mammal). Again, Classic will never derive that an 

individual is an instance of a primitive concept, it must always be told 
that. 

 

This automatic classification of individuals of defined concepts through 

subsumption is a simple, yet extremely powerful process. It is the key to 

several significant advances in software information systems described 

in later sections. 

 

Another important point about Classic is the Open World Assumption. 

Classic does not assume that the information it knows is all the 

information there is. Returning to the example above, we have the 

following told information about two individuals, joe: (and person 

(fills food apple)), and apple: fruit. Classic will then add 

all the derived information it can to these individuals, yielding joe: 

(and person mammal classic-thing (fills food 

apple)), and apple: (and fruit plant classic- 

thing). Where is the information about joe being a fruit- 

eating-person? The truth is that Classic cannot derive this yet. The 

definition of fruit-eating-person specifies that all the fillers for 
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the food role of an individual must be instances of fruit. Classic 

does not assume that because it knows one (or two, or zero, etc.) fillers 

for an individual's role, that it knows them all. In fact, Classic assumes 

the opposite: it assumes it does not know them all. 

 

There are two ways for Classic to figure out that it knows all the fillers 

for an individual's role. The first way is for it to be told, by closing the 

role. When a role is closed on an individual, it tells Classic that there can 

be no more filler. In the above example, the user would have to close the 

food role on joe in order for Classic to derive that joe is an instance 

of fruit-eating-person (Classic always tries to reclassify 

individuals when their roles are closed). The second way is for Classic 

to derive that a role is closed on an individual if there is an at-most 

restriction on the role. For example, if the concept person (or 

mammal) additionally had (at-most one food) in its description, 

then since joe is told to be an instance of person that restriction 

would apply to him, and since he already has one filler in his food role, 

and since he can have at most one filler in his food role, he can have 

no more and the role is derived to be closed. 

 

The final part of ontology in Classic is the rules. Classic rules come in 

two forms, description rules and filler rules. All classic rules have as 

their antecedent a named concept, and are fired on an individual when 

the individual is classified as an instance of the concept. 

 

The consequent of a classic description rule is a classic description 

which, when the rule fires on an individual, is merged into the 

description of the individual. For example, if we had a description rule 

like:  vegetarian-mammal --> (at-most 0 has-prey), the 

rule would fire on joe when he is classified as a fruit-eating- 

person and would add the at-most restriction to the description of 

joe. Classic would then also derive that joe's has-prey role is 

closed as well. 

 

The consequent of a classic filler rule is the name of a role and a LISP 

function that will be invoked when the rule fires. The function is passed 

the individual the rule fired on and the role named in the consequent, 

and returns a list of new fillers for that role and individual. One useful 

application for filler rules is to create inter-role dependencies. For 

example, the concept rectangle has three roles: length, width, 

and area. We could define a function for calculating the area in LISP 

as follows: 

 

(defun calculate-area (rect role) 
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(let ((length (car (cl-fillers rect @length))) 

(width (car (cl-fillers rect @width)))) 

(* length width))) 

 

And then define a filler rule: rectangle --> area calculate-area, the filler 

for the area role would automatically be generated based on the fillers in 

the length and width roles. 

3.5.2 Enhancements to Classic 
 

It was necessary to extend Classic in several ways in order to support 

this research. Each extension had a different motivation, which may not 

be entirely clear until that aspect of the research is discussed. These 

extensions are explained here, however, so that the sections involving 

the research do not need to sidetrack into explanations of the underlying 

support. 

 

The first extension to Classic was a facility for supporting what some 

other representation languages call path grammars or role transitivity 

[Fox, Wright, and Adam, 1985]. A very common form of inference in 

frame-based representations is one in which the fillers for one role in a 

class of individuals can always be found by following the same role 

path. For example, an individual representing an article in a journal 

might have a role called published-in which is filled with an 

individual representing a journal. Journal individuals could have a role 

called location which is filled with some string indicating the place 

where the journal is physically located. It makes sense that the article 

individual should also have a location that is the same as the location of 

the journal it is published in, and this can be represented as a path rule. 

A path rule, like all Classic rules, has for its antecedent a concept name, 

and for its consequent a role and a role path (an ordered list of roles). 

When a rule fires on an individual, classic follows the role path to the 

end, and fills the role specified in the rule with all the values it finds at 

the end of the path. In the journal article example, the path rule would 

be: article --> location (published-in location). 

An individual of article might be described: (and article 

(fills published-in journal-10)), and the journal 

individual journal-10: (and journal (fills location 

"Shelf 10")). Classic would fire the path rule on the individual of 

article and follow the path: the first part of the path is 

published-in, which gets us to article-10, and the next part of 

the path is location which gets us to the string "Shelf 10." This 

value is then derived to be the filler for the location role of the 

individual of article. If a particular path ends "early," that is, the 

path leads to an intermediate individual that has no fillers for the next 
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role in the path, no fillers are returned for that particular branch of the 

path. 

 

The path rule facility was further expanded to allow for the expression 

of specialization overrides. A specialization override is a type of 

inference in which a value that would normally be derived to fill a role 

is blocked if and only if there is already a value filling the role that is 

more specialized. The most common example of this is in object- 

oriented languages, a class inherits all the methods of its superclass, 

except the ones that are already defined by the class. 

The next enhancement to Classic was a facility for dumping individuals 

into a file; in essence there is no way to save the current state of a classic 

knowledge-base. While this may not sound like a significant extension, 

there is one aspect of dumping (or, more accurately, of loading) a 

knowledge-base that is very intricate: the order in which roles are 

closed. When a role is told to be closed on an individual, it means there 

can be no more filler for that role - told or derived. However, when 

derived role filler depends on filler or fillers in other individuals, the 

role cannot be closed until the fillers it depends on are closed. There is 

an implicit ordering of role closing based on all the ways Classic can 

derive information. 

 

The most significant enhancement to Classic was the addition of a 

facility for representing spanning objects [Welty and Ferrucci, 1994]. In 

reality, this enhancement is in the process of being made to Classic by 

its support team, and the spanning object facility used for this research 

was actually applied to the "dumped" knowledge-based - that is, the 

spanning functions worked by generating a text file containing Classic 

descriptions, then the knowledge-base was cleared and the text file 

could be loaded in. Until support for multiple universes of discourse is 

added to Classic (which will happen in the next major release), this was 

the only way to proceed. The only limitation this presented was an 

inability to change the first universe from the second. 

 

4.0 CONCLUSION 
 

Knowledge representation (KR) is an area of artificial intelligence 

research aimed at representing knowledge in symbols to facilitate 

inferencing from those knowledge elements, creating new elements of 

knowledge. The KR can be made to be independent of the underlying 

knowledge model or knowledge base system (KBS) such as a semantic 

network. 

 

5.0 SUMMARY 
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In this unit, you learnt that: 

 

 Knowledge Representation (KR) research involves analysis of 

how to accurately and effectively reason and how best to use a set 

of symbols to represent a set of facts within a knowledge domain. 

 A good knowledge representation covers six basic characteristics 

 In computer science, particularly artificial intelligence, a number 

of representations have been devised to structure information. 

 A KR language must unambiguously represent any interpretation 

of a sentence (logical adequacy), have a method for translating 

from natural language to that representation, and must be usable 

for reasoning [Woods, 1975]. 

 Classic is a frame-based knowledge representation language that 

belongs to the family of description logics [Brachman, et al., 

1991] 

 

6.0    TUTOR-MARKED ASSIGNMENT 

 
1. List four (4) Characteristics of Knowledge representation. 

2. Explain Knowledge representation. 

3. Explain Domain Modeling in KR. 
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1.0 INTRODUCTION 
 

Artificial intelligence researchers have developed several specialized 

programming languages for artificial intelligence: 

 

 IPL was the first language developed for artificial intelligence. It 

includes features intended to support programs that could 

perform general problem solving, including lists, associations, 

schemas (frames), dynamic memory allocation, data types, 

recursion, associative retrieval, functions as arguments, 

generators (streams), and cooperative multitasking. 

 Lisp is a practical mathematical notation for computer programs 

based on lambda calculus. Linked lists are one of Lisp languages' 
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major data structures, and Lisp source code is itself made up of 

lists. As a result, Lisp programs can manipulate source code as a 

data structure, giving rise to the macro systems that allow 

programmers to create new syntax or even new domain-specific 

programming languages embedded in Lisp. There are many 

dialects of Lisp in use today, among them are Common Lisp, 

Scheme, and Clojure. 

 Prolog is a declarative language where programs are expressed in 

terms of relations, and execution occurs by running queries over 

these relations. Prolog is particularly useful for symbolic 

reasoning, database and language parsing applications. Prolog is 

widely used in AI today.

 A STRIP is a language for expressing automated planning 

problem instances. It expresses an initial state, the goal states, 

and a set of actions. For each action preconditions (what must be 

established before the action is performed) and post conditions 

(what is established after the action is performed) are specified.

 Planner is a hybrid between procedural and logical languages. It 

gives a procedural interpretation to logical sentences where 

implications are interpreted with pattern-directed inference.

 

AI applications are also often written in standard languages like C++ 

and languages designed for mathematics, such as MATLAB and Lush. 

This unit will deal only on IPL, Lisp and Prolog. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 describe the history of IPL

 discuss the similarities between lisp and prolog programming

 list the areas where lisp can be used.

 

3.0 MAIN CONTENT 
 

3.1 IPL Programming Language 
 

Information Processing Language (IPL) is a programming language 

developed by Allen Newell, Cliff Shaw, and Herbert Simon at RAND 

Corporation and the Carnegie Institute of Technology from about 1956. 

Newell had the role of language specifier-application programmer, 

Shaw was the system programmer and Simon took the role of 

application programmer-user. 
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The language includes features intended to support programs that could 

perform general problem solving, including lists, associations, schemas 

(frames), dynamic memory allocation, data types, recursion, associative 

retrieval, functions as arguments, generators (streams), and cooperative 

multitasking. IPL pioneered the concept of list processing, albeit in an 

assembly-language style. 

 

3.1.1 A taste of IPL 
 

An IPL computer has: 

 

1. A set of symbols. All symbols are addresses, and name cells. 

Unlike symbols in later languages, symbols consist of a character 

followed by a number, and are written H1, A29, 9-7, 9-100. 

 

 Cell names beginning with a letter are regional, and are absolute 

addresses. 

 Cell names beginning with "9-" are local, and are meaningful 

within the context of a single list. One list's 9-1 is independent of 

another list's 9-1. 

 Other symbols (e.g., pure numbers) are internal. 

 

2. A set of cells. Lists are built from several cells holding mutual 

references. Cells have several fields: 

 

 P, a 3-bit field used for an operation code when the cell is used as 

an instruction and unused when the cell is data. 

 Q, a 3-valued field used for indirect reference when the cell is 

used as an instruction and unused when the cell is data. 

 SYMB, a symbol used as the value in the cell. 

 

3. A set of primitive processes, which would be termed primitive 

functions in modern languages. 

 

3.1.2 History of IPL 
 

The first application of IPL was to demonstrate that the theorems in 

Principia Mathematica which were laboriously proven by hand, by 

Bertrand Russell and Alfred North Whitehead, could in fact be proven 

by computation. According to Simon's autobiography Models of My 

Life, this first application was developed first by hand simulation, using 

his children as the computing elements, while writing on and holding up 

note cards as the registers which contained the state variables of the 

program. 
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IPL was used to implement several early artificial intelligence programs, 

also by the same authors: the Logic Theory Machine (1956), the General 

Problem Solver (1957), and their computer chess program NSS (1958). 

Several versions of IPL were created: IPL-I (never implemented), IPL-II 

(1957 for JOHNNIAC), IPL-III (existed briefly), IPL-IV, IPL-V (1958, 

for IBM 650, IBM 704, IBM 7090, many others. Widely used), IPL-VI. 

However the language was soon displaced by Lisp, which had far more 

powerful features, a simpler syntax, and the benefit of automatic 

garbage collection. 

 

3.2 Lisp Programming Language 
 

Lisp (or LISP) is a family of computer programming languages with a 

long history and a distinctive, fully parenthesized syntax. Originally 

specified in 1958, Lisp is the second-oldest high-level programming 

language in widespread use today; only FORTRAN is older (by one 

year). Like FORTRAN, Lisp has changed a great deal since its early 

days, and a number of dialects have existed over its history. Today, the 

most widely known general-purpose Lisp dialects are Common Lisp, 

Scheme, and Clojure. 

 

Lisp was originally created as a practical mathematical notation for 

computer programs, influenced by the notation of Alonzo Church's 

lambda calculus. It quickly became the favored programming language 

for artificial intelligence (AI) research. As one of the earliest 

programming languages, Lisp pioneered many ideas in computer 

science, including tree data structures, automatic storage management, 

dynamic typing, and the self-hosting compiler. 

 

The name LISP derives from "LISt Processing". Linked lists are one of 

Lisp languages' major data structures, and Lisp source code is itself 

made up of lists. As a result, Lisp programs can manipulate source code 

as a data structure, giving rise to the macro systems that allow 

programmers to create new syntax or even new domain-specific 

languages embedded in Lisp. 

 

The interchange ability of code and data also gives Lisp its instantly 

recognizable syntax. All program code is written as s-expressions, or 

parenthesized lists. A function call or syntactic form is written as a list 

with the function or operator's name first, and the arguments following; 

for instance, a function f that takes three arguments might be called 

using (f arg1 arg2 arg3). 
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3.2.1 History 
 

Interest in artificial intelligence first surfaced in the mid 1950. 

Linguistics, psychology, and mathematics were only some areas of 

application for AI. Linguists were concerned with natural language 

processing, while psychologists were interested in modelling human 

information and retrieval. Mathematicians were more interested in 

automating the theorem proving process. The common need among all 

of these applications was a method to allow computers to process 

symbolic data in lists. 

 

IBM was one of the first companies interested in AI in the 1950s. At the 

same time, the FORTRAN project was still going on. Because of the 

high cost associated with producing the first FORTRAN compiler, they 

decided to include the list processing functionality into FORTRAN. The 

FORTRAN List Processing Language (FLPL) was designed and 

implemented as an extension to FORTRAN. 

 

In 1958 John McCarthy took a summer position at the IBM Information 

Research Department. He was hired to create a set of requirements for 

doing symbolic computation. The first attempt at this was differentiation 

of algebraic expressions. This initial experiment produced a list of 

language requirements, most notably was recursion and conditional 

expressions. At the time, not even FORTRAN (the only high-level 

language in existence) had these functions. 

 

It was at the 1956 Dartmouth Summer Research Project on Artificial 

Intelligence that John McCarthy first developed the basics behind Lisp. 

His motivation was to develop a list processing language for Artificial 

Intelligence. By 1965 the primary dialect of Lisp was created (version 

1.5). By 1970 special-purpose computers known as Lisp Machines, were 

designed to run Lisp programs. 1980 was the year that object-oriented 

concepts were integrated into the language. By 1986, the X3J13 group 

formed to produce a draft for ANSI Common Lisp standard. Finally in 

1992, X3J13 group published the American National Standard for 

Common Lisp. 

 

Since 2000 

 

After having declined somewhat in the 1990s, Lisp has recently 

experienced a resurgence of interest. Most new activity is focused 

around open source implementations of Common Lisp, and includes the 

development of new portable libraries and applications. This interest can 

be measured partly by sales from the print version of Practical Common 

Lisp by Peter Seibel, a tutorial for new Lisp programmers published in 
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2004. It was briefly Amazon.com's second most popular programming 

book. It is available free online.http://en.wikipedia.org/wiki/Lisp_ 

(programming_language) - cite_note-15 

Many new Lisp programmers were inspired by writers such as Paul 

Graham and Eric S. Raymond to pursue a language others considered 

antiquated. New Lisp programmers often describe the language as an 

eye-opening experience and claim to be substantially more productive 

than in other languages. This increase in awareness may be contrasted to 

the "AI winter" and Lisp's brief gain in the mid-1990s. 

Dan Weinreb lists in his survey of Common Lisp implementations 

eleven actively maintained Common Lisp implementations. Scieneer 

Common Lisp is a new commercial implementation forked from 

CMUCL with a first release in 2002. 

The open source community has created new supporting infrastructure: 

Cliki is a wiki that collects Common Lisp related information, the 

Common Lisp directory lists resources, #lisp is a popular IRC channel 

(with support by a Lisp-written Bot), lisppaste supports the sharing and 

commenting of code snippets, Planet Lisp collects the contents of 

various Lisp-related Blogs, on LispForum user discuss Lisp topics, Lisp 

jobs is a service for announcing job offers and there is a new weekly 

news service (Weekly Lisp News). Common-lisp.net is a hosting site for 

open source Common Lisp projects. 

50 years of Lisp (1958–2008) has been celebrated at 

LISP50@OOPSLA. There are several regular local user meetings 

(Boston, Vancouver, Hamburg,), Lisp Meetings (European Common 

Lisp Meeting, European Lisp Symposium) and an International Lisp 

Conference. 

The Scheme community actively maintains over twenty 

implementations. Several significant new implementations (Chicken, 

Gambit, Gauche, Ikarus, Larceny, and Ypsilon) have been developed in 

the last few years. The Revised Report on the Algorithmic Language 

Scheme standard of Scheme was widely accepted in the Scheme 

community. The Scheme Requests for Implementation process has 

created a lot of quasi standard libraries and extensions for Scheme. User 

communities of individual Scheme implementations continue to grow. A 

new language standardization process was started in 2003 and led to the 

RRS Scheme standard in 2007. Academic use of Scheme for teaching 

computer science seems to have declined somewhat. Some universities 

are no longer using Scheme in their computer science introductory 

courses. 

There are several new dialects of Lisp: Arc, Nu, and Clojure. 

http://en.wikipedia.org/wiki/Lisp_
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3.2.2 Connection to artificial intelligence 
 

Since its inception, Lisp was closely connected with the artificial 

intelligence research community, especially on PDP-10http://en. 

wikipedia.org/wiki/Lisp_(programming_language)- cite_note-5 systems. 

Lisp was used as the implementation of the programming language 

Micro Planner which was used in the famous AI system SHRDLU. In 

the 1970s, as AI research spawned commercial offshoots, the 

performance of existing Lisp systems became a growing issue. 

 

3.2.3 Areas of Application 
 

Lisp totally dominated Artificial Intelligence applications for a quarter 

of a century, and is still the most widely used language for AI. In 

addition to its success in AI, Lisp pioneered the process of Functional 

Programming. Many programming language researchers believe that 

functional programming is a much better approach to software 

development, than the use of Imperative Languages (Pascal, C++, etc). 

 

Below is a short list of the areas where Lisp has been used: 

 

 Artificial Intelligence 

 

- AI Robots 

- Computer Games (Craps, Connect-4, BlackJack) 

- Pattern Recognition 

 

 Air Defense Systems 

 Implementation of Real-Time, embedded Knowledge-Based 

Systems 

 List Handling and Processing 

 Tree Traversal (Breath/Depth First Search) 

 Educational Purposes (Functional Style Programming) 

 

3.2.4 Syntax and semantics 
 

Symbolic expressions 

 

Lisp is an expression-oriented language. Unlike most other languages, 

no distinction is made between "expressions" and "statements"; all code 

and data are written as expressions. When an expression is evaluated, it 

produces a value (in Common Lisp, possibly multiple values), which 

then can be embedded into other expressions. Each value can be any 

data type. 

http://en/
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McCarthy's 1958 paper introduced two types of syntax: S-expressions 

(Symbolic expressions, also called "sexps"), which mirror the internal 

representation of code and data; and M-expressions (Meta Expressions), 

which express functions of S-expressions. M-expressions never found 

favour, and almost all Lisps today use S-expressions to manipulate both 

code and data. 

 

The use of parentheses is Lisp's most immediately obvious difference 

from other programming language families. As a result, students have 

long given Lisp nicknames such as Lost in Stupid Parentheses, or Lots 

of Irritating Superfluous Parentheses.
[23]

 However, the S-expression 

syntax is also responsible for much of Lisp's power: the syntax is 

extremely regular, which facilitates manipulation by computer. 

However, the syntax of Lisp is not limited to traditional parentheses 

notation. It can be extended to include alternative notations. XMLisp, 

for instance, is a Common Lisp extension that employs the metaobject- 

protocol to integrate S-expressions with the Extensible Markup 

Language (XML). 

 

The reliance on expressions gives the language great flexibility. Because 

Lisp functions are themselves written as lists, they can be processed 

exactly like data. This allows easy writing of programs which 

manipulate other programs (metaprogramming). Many Lisp dialects 

exploit this feature using macro systems, which enables extension of the 

language almost without limit. 

 

3.3 Prolog Programming Language 
 

Prolog is a general purpose logic programming language associated with 

artificial intelligence and computational linguistics. 

 

Prolog has its roots in first-order logic, a formal logic, and unlike many 

other programming languages, Prolog is declarative: the program logic 

is expressed in terms of relations, represented as facts and rules. A 

computation is initiated by running a query over these relations. 

 

The language was first conceived by a group around Alain Colmerauer 

in Marseille, France, in the early 1970s and the first Prolog system was 

developed in 1972 by Colmerauer with Philippe Roussel. 

 

Prolog was one of the first logic programming languages, and remains 

among the most popular such languages today, with many free and 

commercial implementations available. While initially aimed at natural 

language processing, the language has since then stretched far into other 

areas like theorem proving, expert systems, games, automated 
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answering systems, ontologies and sophisticated control systems. 

Modern Prolog environments support creating graphical user interfaces, 

as well as administrative and networked applications. 

 

3.3.1 History of Prolog 
 

The name Prolog was chosen by Philippe Roussel as an abbreviation for 

programmation en logique (French for programming in logic). It was 

created around 1972 by Alain Colmerauer with Philippe Roussel, based 

on Robert Kowalski's procedural interpretation of Horn clauses. It was 

motivated in part by the desire to reconcile the use of logic as a 

declarative knowledge representation language with the procedural 

representation of knowledge that was popular in North America in the 

late 1960s and early 1970s. According to Robert Kowalski, the first 

Prolog system was developed in 1972 by Alain Colmerauer and Phillipe 

Roussel. The first implementations of Prolog were interpreters; 

however, David H. D. Warren created the Warren Abstract Machine, an 

early and influential Prolog compiler which came to define the 

"Edinburgh Prolog" dialect which served as the basis for the syntax of 

most modern implementations. 

 

Much of the modern development of Prolog came from the impetus of 

the Fifth Generation Computer Systems project (FGCS), which 

developed a variant of Prolog named Kernel Language for its first 

operating system. 

 

Pure Prolog was originally restricted to the use of a resolution theorem 

prove with Horn clauses of the form: 

 

3.3.2 Prolog Syntax and Semantics 
 

In Prolog, program logic is expressed in terms of relations, and a 

computation is initiated by running a query over these relations. 

Relations and queries are constructed using Prolog's single data type, the 

term. Relations are defined by clauses. Given a query, the Prolog engine 

attempts to find a resolution refutation of the negated query. If the 

negated query can be refuted, i.e., an instantiation for all free variables is 

found that makes the union of clauses and the singleton set consisting of 

the negated query false, it follows that the original query, with the found 

instantiation applied, is a logical consequence of the program. This 

makes Prolog (and other logic programming languages) particularly 

useful for database, symbolic mathematics, and language parsing 

applications. Because Prolog allows impure predicates, checking the 

truth value of certain special predicates may have some deliberate side 

effect, such as printing a value to the screen. Because of this, the 
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programmer is permitted to use some amount of conventional 

imperative programming when the logical paradigm is inconvenient. It 

has a purely logical subset, called "pure Prolog", as well as a number of 

extra logical features. 

 

3.3.2.1 Data Types 
 

Prolog's single data type is the term. Terms are atoms, numbers, 

variables or compound terms. 

 

 An atom is a general-purpose name with no inherent meaning. 

Examples of atoms include x, blue, 'Taco', and 'some atom'.

 Numbers can be floats or integers.

 Variables are denoted by a string consisting of letters, numbers 

and underscore characters, and beginning with an upper-case 

letter or underscore. Variables closely resemble variables in logic 

in that they are placeholders for arbitrary terms.

 A compound term is composed of an atom called a "functor" and 

a number of "arguments", which are again terms. Compound 

terms are ordinarily written as a functor followed by a comma- 

separated list of argument terms, which is contained in 

parentheses. The number of arguments is called the term's arity. 

An atom can be regarded as a compound term with arity zero. 

Examples of compound terms are truck_year('Mazda', 1986) and 

'Person_Friends'(zelda,[tom,jim]).

 

Special cases of compound terms: 

 

 A List is an ordered collection of terms. It is denoted by square 

brackets with the terms separated by commas or in the case of the 

empty list, []. For example [1,2,3] or [red,green,blue].

 Strings: A sequence of characters surrounded by quotes is 

equivalent to a list of (numeric) character codes, generally in the 

local character encoding, or Unicode if the system supports 

Unicode. For example, "to be, or not to be".

 

3.3.2.2 Rules and Facts 
 

Prolog programs describe relations, defined by means of clauses. Pure 

Prolog is restricted to Horn clauses. There are two types of clauses: facts 

and rules. A rule is of the form 
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Head: - Body. 

 

and is read as "Head is true if Body is true". A rule's body consists of 

calls to predicates, which are called the rule's goals. The built-in 

predicate ,/2 (meaning a 2-arity operator with name ,) denotes 

conjunction of goals, and ;/2 denotes disjunction. Conjunctions and 

disjunctions can only appear in the body, not in the head of a rule. 

 

Clauses with empty bodies are called facts. An example of a fact is: 

cat(tom). 

which is equivalent to the rule? 

cat(tom) :- true. 

The built-in predicate true/0 is always true. 

Given the above fact, one can ask: 

is tom a cat? 

?- cat(tom). 

Yes 

what things are cats? 
?- cat(X). 

X = tom 

Clauses with bodies are called rules. An example of a rule is: 

animal(X):- cat(X). 

If we add that rule and ask what things are animals? 

?- animal(X). 

X = tom 

 

Due to the relational nature of many built-in predicates, they can 

typically be used in several directions. For example, length/2 can be 

used to determine the length of a list (length(List, L), given a list) as 

well as to generate a list skeleton of a given length (length(X, 5)), and 

also to generate both list skeletons and their lengths together (length(X, 

L)). Similarly, append/3 can be used both to append two lists 

(append(ListA, ListB, X) given lists ListA and ListB) as well as to split 

a given list into parts (append(X, Y, List), given a list List). For this 

reason, a comparatively small set of library predicates suffices for many 

Prolog programs. 

As a general purpose language, Prolog also provides various built-in 

predicates to perform routine activities like input/output, using graphics 

and otherwise communicating with the operating system. These 

predicates are not given a relational meaning and are only useful for the 

side-effects they exhibit on the system. For example, the predicate 

write/1 displays a term on the screen. 
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3.3.2.3 Evaluation 
 

Execution of a Prolog program is initiated by the user's posting of a 

single goal, called the query. Logically, the Prolog engine tries to find a 

resolution refutation of the negated query. The resolution method used 

by Prolog is called SLD resolution. If the negated query can be refuted, 

it follows that the query, with the appropriate variable bindings in place, 

is a logical consequence of the program. In that case, all generated 

variable bindings are reported to the user, and the query is said to have 

succeeded. Operationally, Prolog's execution strategy can be thought of 

as a generalization of function calls in other languages, one difference 

being that multiple clause heads can match a given call. In that case, the 

system creates a choice-point, unifies the goal with the clause head of 

the first alternative, and continues with the goals of that first alternative. 

If any goal fails in the course of executing the program, all variable 

bindings that were made since the most recent choice-point was created 

are undone, and execution continues with the next alternative of that 

choice-point. This execution strategy is called chronological 

backtracking. For example: 

 

mother_child(trude, sally). 

father_child(tom, sally). 

father_child(tom, erica). 

father_child(mike, tom). 

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y). 

parent_child(X, Y) :- father_child(X, Y). 

parent_child(X, Y) :- mother_child(X, Y). 
This results in the following query being evaluated as true: 
?- sibling(sally, erica). 

Yes 

 

This is obtained as follows: Initially, the only matching clause-head for 

the query sibling(sally, erica) is the first one, so proving the query is 

equivalent to proving the body of that clause with the appropriate 

variable bindings in place, i.e., the conjunction (parent_child(Z,sally), 

parent_child(Z,erica)). The next goal to be proved is the leftmost one of 

this conjunction, i.e., parent_child(Z, sally). Two clause heads match 

this goal. The system creates a choice-point and tries the first 

alternative, whose body is father_child(Z, sally). This goal can be 

proved using the fact father_child(tom, sally), so the binding Z = tom is 

generated, and the next goal to be proved is the second part of the above 

conjunction: parent_child(tom, erica). Again, this can be proved by the 

corresponding fact. Since all goals could be proved, the query succeeds. 
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Since the query contained no variables, no bindings are reported to the 

user. A query with variables, like: 

 

?- father_child(Father, Child). 

enumerates all valid answers on backtracking. 
Notice that with the code as stated above, the query?- sibling(sally, 

sally). Also succeeds. One would insert additional goals to describe the 

relevant restrictions, if desired. 

 

3.3.2.4 Loops and recursion 
 

Iterative algorithms can be implemented by means of recursive 

predicates. 

 

3.3.2.5 Negation 
 

The built-in Prolog predicate \+/1 provides negation as failure, which 

allows for non-monotonic reasoning. The goal \+ legal(X) in the rule 

illegal(X) :- \+ legal(X). 

 

is evaluated as follows: Prolog attempts to prove the legal(X). If a proof 

for that goal can be found, the original goal (i.e., \+ legal(X)) fails. If no 

proof can be found, the original goal succeeds. Therefore, the \+/1 prefix 

operator is called the "not provable" operator, since the query ?- \+ Goal. 

succeeds if Goal is not provable. This kind of negation is sound if its 

argument is "ground" (i.e. contains no variables). Soundness is lost if the 

argument contains variables and the proof procedure is complete. In 

particular, the query ?- illegal(X). can now not be used to enumerate all 

things that are illegal. 

 

3.3.2.6 Examples 
 

Here follow some example programs written in Prolog. 

Hello world 

An example of a query: 
?- write('Hello world!'), nl. 

Hello world! 

true. 

 

?- 

 

3.3.2.7 Criticism 
 

Although Prolog is widely used in research and education, Prolog and 

other logic programming languages have not had a significant impact on 
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the computer industry in general. Most applications are small by 

industrial standards, with few exceeding 100,000 lines of code. 

Programming in the large is considered to be complicated because not 

all Prolog compilers support modules, and there are compatibility 

problems between the module systems of the major Prolog compilers. 

Portability of Prolog code across implementations has also been a 

problem, but developments since 2007 have meant: "the portability 

within the family of Edinburgh/Quintus derived Prolog implementations 

is good enough to allow for maintaining portable real-world 

applications." 

 

Software developed in Prolog has been criticised for having a high 

performance penalty compared to conventional programming languages. 

However, advances in implementation methods have reduced the 

penalties to as little as 25%-50% for some applications. 

 

3.3.2.8 Types 
 

Prolog is an untyped language. Attempts to introduce types date back to 

the 1980s, and as of 2008 there are still attempts to extend Prolog with 

types. Type information is useful not only for type safety but also for 

reasoning about Prolog programs. 

 

4.0 CONCLUSION 
 

IPL, Lisp and Prolog considered in this unit are among other specialized 

programming languages for artificial intelligence. 

 

5.0 SUMMARY 
 

In this unit, you learnt that: 

 

 IPL is the pi1ered concept of list processing.

 Lisp is the second-oldest high-level programming language in 

widespread use today

 Prolog was 1 of the first logic programming languages, and 

remains among the most popular such languages today, with 

many free and commercial implementations available.

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Describe Prolog programming Language. 

2. Describe Lisp programming Language. 

3. List three (3) areas where Lisp can be used. 
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1.0 INTRODUCTION 
 

Natural language processing (NLP) is a field of computer science and 

linguistics concerned with the interactions between computers and 

human (natural) languages; it began as a branch of artificial intelligence. 

In theory, natural language processing is a very attractive method of 

human–computer interaction. Natural language understanding is 

sometimes referred to as an AI-complete problem because it seems to 

require extensive knowledge about the outside world and the ability to 

manipulate it. 

 

An automated online assistant providing customer service on a web page 

is an example of an application where natural language processing is a 

major comp1nt. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 describe the history of natural language processing

 list major tasks in NLP

 mention different types of evaluation of NPL.
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3.0 MAIN CONTENT 
 

3.1 History of natural language processing 
 

The history of NLP generally starts in the 1950s, although work can be 

found from earlier periods. In 1950, Alan Turing published his famous 

article "Computing Machinery and Intelligence" which proposed what is 

now called the Turing test as a criterion of intelligence. This criterion 

depends on the ability of a computer program to impersonate a human in 

a real-time written conversation with a human judge, sufficiently well 

that the judge is unable to distinguish reliably — on the basis of the 

conversational content alone — between the program and a real human. 

The Georgetown experiment in 1954 involved fully automatic 

translation of more than sixty Russian sentences into English. The 

authors claimed that within three or five years, machine translation 

would be a solved problem. However, real progress was much slower, 

and after the ALPAC report in 1966, which found that ten years long 

research had failed to fulfill the expectations, funding for machine 

translation was dramatically reduced. Little further research in machine 

translation was conducted until the late 1980s, when the first statistical 

machine translation systems were developed. 

 

Some notably successful NLP systems developed in the 1960s were 

SHRDLU, a natural language system working in restricted "blocks 

worlds" with restricted vocabularies, and ELIZA, a simulation of a 

Rogerian psychotherapist, written by Joseph Weizenbaum between 1964 

to 1966. Using almost no information about human thought or emotion, 

ELIZA sometimes provided a startlingly human-like interaction. When 

the "patient" exceeded the very small knowledge base, ELIZA might 

provide a generic response, for example, responding to "My head hurts" 

with "Why do you say your head hurts?‖ 

 

During the 70's many programmers began to write 'conceptual 

ontologies', which structured real-world information into computer- 

understandable data. Examples are MARGIE (Schank, 1975), SAM 

(Cullingford, 1978), PAM (Wilensky, 1978), TaleSpin (Meehan, 1976), 

QUALM (Lehnert, 1977), Politics (Carbonell, 1979), and Plot Units 

(Lehnert 1981). During this time, many chatterbots were written 

including PARRY, Racter, and Jabberwacky. 

 

Up to the 1980s, most NLP systems were based on complex sets of 

hand-written rules. Starting in the late 1980s, however, there was a 

revolution in NLP with the introduction of machine learning algorithms 

for language processing. This was due both to the steady increase in 

computational power resulting from Moore's Law and the gradual 
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lessening of the dominance of Chomskyan theories of linguistics (e.g. 

transformational grammar), whose theoretical underpinnings 

discouraged the sort of corpus linguistics that underlies the machine- 

learning approach to language processing. Some of the earliest-used 

machine learning algorithms, such as decision trees, produced systems 

of hard if-then rules similar to existing hand-written rules. Increasingly, 

however, research has focused on statistical models, which make soft, 

probabilistic decisions based on attaching real-valued weights to the 

features making up the input data. Such models are generally more 

robust when given unfamiliar input, especially input that contains errors 

(as is very common for real-world data), and produce more reliable 

results when integrated into a larger system comprising multiple 

subtasks. 

 

Many of the notable early successes occurred in the field of machine 

translation, due especially to work at IBM Research, where successively 

more complicated statistical models were developed. These systems 

were able to take advantage of existing multilingual textual corpora that 

had been produced by the Parliament of Canada and the European 

Union as a result of laws calling for the translation of all governmental 

proceedings into all official languages of the corresponding systems of 

government. However, most other systems depended on corpora 

specifically developed for the tasks implemented by these systems, 

which was (and often continues to be) a major limitation in the success 

of these systems. As a result, a great deal of research has gone into 

methods of more effectively learning from limited amounts of data. 

 

Recent research has increasingly focused on unsupervised and semi- 

supervised learning algorithms. Such algorithms are able to learn from 

data that has not been hand-annotated with the desired answers, or using 

a combination of annotated and non-annotated data. Generally, this task 

is much more difficult than supervised learning, and typically produces 

less accurate results for a given amount of input data. However, there is 

an enormous amount of non-annotated data available (including, among 

other things, the entire content of the World Wide Web), which can 

often make up for the inferior results. 

 

3.2 NLP Using Machine Learning 
 

As described above, modern approaches to natural language processing 

(NLP) are grounded in machine learning. The paradigm of machine 

learning is different from that of most prior attempts at language 

processing. Prior implementations of language-processing tasks 

typically involved the direct hand coding of large sets of rules. The 

machine-learning paradigm calls instead for using general learning 
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algorithms — often, although not always, grounded in statistical 

inference — to automatically learn such rules through the analysis of 

large corpora of typical real-world examples. A corpus (plural, 

"corpora") is a set of documents (or sometimes, individual sentences) 

that have been hand-annotated with the correct values to be learned. 

 

As an example, consider the task of part of speech tagging, i.e. 

determining the correct part of speech of each word in a given sentence, 

typically one that has never been seen before. A typical machine- 

learning-based implementation of a part of speech tagger proceeds in 

two steps, a training step and an evaluation step. The first step — the 

training step — makes use of a corpus of training data, which consists of 

a large number of sentences, each of which has the correct part of 

speech attached to each word. (An example of such a corpus in common 

use is the Penn Treebank. This includes (among other things) a set of 

500 texts from the Brown Corpus, containing examples of various 

genres of text, and 2500 articles from the Wall Street Journal.) This 

corpus is analyzed and a learning model is generated from it, consisting 

of automatically created rules for determining the part of speech for a 

word in a sentence, typically based on the nature of the word in 

question, the nature of surrounding words, and the most likely part of 

speech for those surrounding words. The model that is generated is 

typically the best model that can be found that simultaneously meets two 

conflicting objectives: To perform as well as possible on the training 

data, and to be as simple as possible (so that the model avoids over 

fitting the training data, i.e. so that it generalizes as well as possible to 

new data rather than only succeeding on sentences that have already 

been seen). In the second step (the evaluation step), the model that has 

been learned is used to process new sentences. An important part of the 

development of any learning algorithm is testing the model that has been 

learned on new, previously unseen data. It is critical that the data used 

for testing is not the same as the data used for training; otherwise, the 

testing accuracy will be unrealistically high. 

 

Many different classes of machine learning algorithms have been 

applied to NLP tasks. In common to all of these algorithms is that they 

take as input a large set of "features" that are generated from the input 

data. As an example, for a part-of-speech tagger, typical features might 

be the identity of the word being processed, the identity of the words 

immediately to the left and right, the part-of-speech tag of the word to 

the left, and whether the word being considered or its immediate 

neighbors are content words or function words. The algorithms differ, 

however, in the nature of the rules generated. Some of the earliest-used 

algorithms, such as decision trees, produced systems of hard if-then 

rules similar to the systems of hand-written rules that were then 
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common. Increasingly, however, research has focused on statistical 

models, which make soft, probabilistic decisions based on attaching real-

valued weights to each input feature. Such models have the advantage 

that they can express the relative certainty of many different possible 

answers rather than only one, producing more reliable results when such 

a model is included as a component of a larger system. In addition, 

models that make soft decisions are generally more robust when given 

unfamiliar input, especially input that contains errors (as is very 

common for real-world data). 

 

Systems based on machine-learning algorithms have many advantages 

over hand-produced rules: 

 

 The learning procedures used during machine learning 

automatically focus on the most common cases, whereas when 

writing rules by hand it is often not obvious at all where the effort 

should be directed.

 Automatic learning procedures can make use of statistical 

inference algorithms to produce models that are robust to 

unfamiliar input (e.g. containing words or structures that have not 

been seen before) and to erroneous input (e.g. with misspelled 

words or words accidentally omitted). Generally, handling such 

input gracefully with hand-written rules — or more generally, 

creating systems of hand-written rules that make soft decisions

— is extremely difficult and error-prone. 

 Systems based on automatically learning the rules can be made 

more accurate simply by supplying more input data. However, 

systems based on hand-written rules can only be made more 

accurate by increasing the complexity of the rules, which is a 

much more difficult task. In particular, there is a limit to the 

complexity of systems based on hand-crafted rules, beyond 

which the systems become more and more unmanageable. 

However, creating more data to input to machine-learning 

systems simply requires a corresponding increase in the number 

of man-hours worked, generally without significant increases in 

the complexity of the annotation process.

 

3.3 Major tasks in NLP 
 

The following is a list of some of the most commonly researched tasks 

in NLP. Note that some of these tasks have direct real-world 

applications, while others more commonly serve as subtasks that are 

used to aid in solving larger tasks. What distinguishes these tasks from 

other potential and actual NLP tasks is not only the volume of research 

devoted to them but the fact that for each one there is typically a well- 
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defined problem setting, a standard metric for evaluating the task, 

standard corpora on which the task can be evaluated, and competitions 

devoted to the specific task. 

 

 Automatic summarization: Produce a readable summary of a 

chunk of text. Often used to provide summaries of text of a 

known type, such as articles in the financial section of a 

newspaper.

 Co reference resolution: Given a sentence or larger chunk of 

text, determine which words ("mentions") refer to the same 

objects ("entities"). Anaphora resolution is a specific example of 

this task, and is specifically concerned with matching up 

pronouns with the nouns or names that they refer to. The more 

general task of co reference resolution also includes identify so- 

called "bridging relationships" involving referring expressions. 

For example, in a sentence such as "He entered John's house 

through the front door", "the front door" is a referring expression 

and the bridging relationship to be identified is the fact that the 

door being referred to is the front door of John's house (rather 

than of some other structure that might also be referred to).

 Discourse analysis: This rubric includes a number of related 

tasks. One task is identifying the discourse structure of connected 

text, i.e. the nature of the discourse relationships between 

sentences (e.g. elaboration, explanation, contrast). Another 

possible task is recognizing and classifying the speech acts in a 

chunk of text (e.g. yes-no question, content question, statement, 

assertion, etc.).

 Machine translation: Automatically translate text from one 

human language to another. This is one of the most difficult 

problems, and is a member of a class of problems colloquially 

termed "AI-complete", i.e. requiring all of the different types of 

knowledge that humans possess (grammar, semantics, facts about 

the real world, etc.) in order to solve properly.

 Morphological segmentation: Separate words into individual 

morphemes and identify the class of the morphemes. The 

difficulty of this task depends greatly on the complexity of the 

morphology (i.e. the structure of words) of the language being 

considered. English has fairly simple morphology, especially 

inflectional morphology, and thus it is often possible to ignore 

this task entirely and simply model all possible forms of a word 

(e.g. "open, opens, opened, and opening") as separate words. In 

languages such as Turkish, however, such an approach is not 

possible, as each dictionary entry has thousands of possible word 

forms.
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 Named entity recognition (NER): Given a stream of text, 

determine which items in the text map to proper names, such as 

people or places, and what the type of each such name is (e.g. 

person, location, organization). Note that, although capitalization 

can aid in recognizing named entities in languages such as 

English, this information cannot aid in determining the type of 

named entity, and in any case is often inaccurate or insufficient. 

For example, the first word of a sentence is also capitalized, and 

named entities often span several words, only some of which are 

capitalized. Furthermore, many other languages in non-Western 

scripts (e.g. Chinese or Arabic) do not have any capitalization at 

all, and even languages with capitalization may not consistently 

use it to distinguish names. For example, German capitalizes all 

nouns, regardless of whether they refer to names, and French and 

Spanish do not capitalize names that serve as adjectives.

 Natural language generation: Convert information from 

computer databases into readable human language.

 Natural language understanding: Convert chunks of text into 

more formal representations such as first-order logic structures 

that are easier for computer programs to manipulate. Natural 

language understanding involves the identification of the 

intended semantic from the multiple possible semantics which 

can be derived from a natural language expression which usually 

takes the form of organized notations of natural languages 

concepts. Introduction and creation of language metamodel and 

ontology are efficient however empirical solutions. An explicit 

formalization of natural languages semantics without confusions 

with implicit assumptions such as closed world assumption 

(CWA) vs. open world assumption, or subjective Yes/No vs. 

objective True/False is expected for the construction of a basis of 

semantics formalization.

 Optical character recognition (OCR): Given an image 

representing printed text, determine the corresponding text.

 Part-of-speech tagging: Given a sentence, determine the part of 

speech for each word. Many words, especially common ones, can 

serve as multiple parts of speech. For example, "book" can be a 

noun ("the book on the table") or verb ("to book a flight"); "set" 

can be a noun, verb or adjective; and "out" can be any of at least 

five different parts of speech. Note that some languages have 

more such ambiguity than others. Languages with little 

inflectional morphology, such as English are particularly prone to 

such ambiguity. Chinese is prone to such ambiguity because it is 

a tonal language during verbalization. Such inflection is not 

readily conveyed via the entities employed within the 

orthography to convey intended meaning.
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 Parsing: Determine the parse tree (grammatical analysis) of a 

given sentence. The grammar for natural languages is ambiguous 

and typical sentences have multiple possible analyses. In fact, 

perhaps surprisingly, for a typical sentence there may be 

thousands of potential parses (most of which will seem 

completely nonsensical to a human).

 Question answering: Given a human-language question, 

determine its answer. Typical questions have a specific right 

answer (such as "What is the capital of Canada?"), but sometimes 

open-ended questions are also considered (such as "What is the 

meaning of life?").

 Relationship extraction: Given a chunk of text, identify the 

relationships among named entities (e.g. who is the wife of 

whom).

 Sentence breaking (also known as sentence boundary 

disambiguation): Given a chunk of text, find the sentence 

boundaries. Sentence boundaries are often marked by periods or 

other punctuation marks, but these same characters can serve 

other purposes (e.g. marking abbreviations).

 Sentiment analysis: Extract subjective information usually from 

a set of documents, often using online reviews to determine 

"polarity" about specific objects. It is especially useful for 

identifying trends of public opinion in the social media, for the 

purpose of marketing.

 Speech recognition: Given a sound clip of a person or people 

speaking, determine the textual representation of the speech. This 

is the opposite of text to speech and is one of the extremely 

difficult problems colloquially termed "AI-complete" (see 

above). In natural speech there are hardly any pauses between 

successive words, and thus speech segmentation is a necessary 

subtask of speech recognition (see below). Note also that in most 

spoken languages, the sounds representing successive letters 

blend into each other in a process termed coarticulation, so the 

conversion of the analog signal to discrete characters can be a 

very difficult process.

 Speech segmentation: Given a sound clip of a person or people 

speaking, separate it into words. A subtask of speech recognition 

and typically grouped with it.

 Topic segmentation and recognition: Given a chunk of text, 

separate it into segments each of which is devoted to a topic, and 

identify the topic of the segment.

 Word segmentation: Separate a chunk of continuous text into 

separate words. For a language like English, this is fairly trivial, 

since words are usually separated by spaces. However, some 

written languages like Chinese, Japanese and Thai do not mark
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word boundaries in such a fashion, and in those languages text 

segmentation is a significant task requiring knowledge of the 

vocabulary and morphology of words in the language. 

 Word sense disambiguation: Many words have more than one 

meaning; we have to select the meaning which makes the most 

sense in context. For this problem, we are typically given a list of 

words and associated word senses, e.g. from a dictionary or from 

an online resource such as WordNet.

 

In some cases, sets of related tasks are grouped into subfields of NLP 

that are often considered separately from NLP as a whole. Examples 

include: 

 

 Information retrieval (IR): This is concerned with storing, 

searching and retrieving information. It is a separate field within 

computer science (closer to databases), but IR relies on some 

NLP methods (for example, stemming). Some current research 

and applications seek to bridge the gap between IR and NLP.

 Information extraction (IE): This is concerned in general with 

the extraction of semantic information from text. This covers 

tasks such as named entity recognition, coreference resolution, 

relationship extraction, etc.

 Speech processing: This covers speech recognition, text-to- 

speech and related tasks.

 

Other tasks include: 

 

 Stemming

 Text simplification

 Text-to-speech

 Text-proofing

 Natural language search

 Query expansion

 Truecasing

 

3.4 Statistical Natural Language Processing 
 

Statistical natural-language processing uses stochastic, probabilistic and 

statistical methods to resolve some of the difficulties discussed above, 

especially those which arise because longer sentences are highly 

ambiguous when processed with realistic grammars, yielding thousands 

or millions of possible analyses. Methods for disambiguation often 

involve the use of corpora and Markov models. Statistical NLP 

comprises all quantitative approaches to automated language processing, 
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including probabilistic modeling, information theory, and linear algebra. 

The technology for statistical NLP comes mainly from machine learning 

and data mining, both of which are fields of artificial intelligence that 

involve learning from data. 

 

3.5 Evaluation of natural language processing 
 

3.5.1 Objectives 
 

The goal of NLP evaluation is to measure one or more qualities of an 

algorithm or a system, in order to determine whether (or to what extent) 

the system answers the goals of its designers, or meets the needs of its 

users. Research in NLP evaluation has received considerable attention, 

because the definition of proper evaluation criteria is one way to specify 

precisely an NLP problem, going thus beyond the vagueness of tasks 

defined only as language understanding or language generation. A 

precise set of evaluation criteria, which includes mainly evaluation data 

and evaluation metrics, enables several teams to compare their solutions 

to a given NLP problem. 

 

3.5.2 Short history of evaluation in NLP 
 

The first evaluation campaign on written texts seems to be a campaign 

dedicated to message understanding in 1987 (Pallet 1998). Then, the 

Parseval/GEIG project compared phrase-structure grammars (Black 

1991). A series of campaigns within Tipster project were realized on 

tasks like summarization, translation and searching (Hirschman 1998). 

In 1994, in Germany, the Morpholympics compared German taggers. 

Then, the Senseval and Romanseval campaigns were conducted with the 

objectives of semantic disambiguation. In 1996, the Sparkle campaign 

compared syntactic parsers in four different languages (English, French, 

German and Italian). In France, the Grace project compared a set of 21 

taggers for French in 1997 (Adda 1999). In 2004, during the 

Technolangue/Easy project, 13 parsers for French were compared. 

Large-scale evaluation of dependency parsers were performed in the 

context of the CoNLL shared tasks in 2006 and 2007. In Italy, the 

EVALITA campaign was conducted in 2007 and 2009 to compare 

various NLP and speech tools for Italian; the 2011 campaign is in full 

progress - EVALITA web site. In France, within the ANR-Passage 

project (end of 2007), 10 parsers for French were compared - passage 

web site. 
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3.5.3 Different types of evaluation 
 

Depending on the evaluation procedures, a number of distinctions are 

traditionally made in NLP evaluation: 

 

 Intrinsic vs. extrinsic evaluation

 

Intrinsic evaluation considers an isolated NLP system and characterizes 

its performance mainly with respect to a gold standard result, pre- 

defined by the evaluators. Extrinsic evaluation, also called evaluation in 

use considers the NLP system in a more complex setting, either as an 

embedded system or serving a precise function for a human user. The 

extrinsic performance of the system is then characterized in terms of its 

utility with respect to the overall task of the complex system or the 

human user. For example, consider a syntactic parser that is based on the 

output of some new part of speech (POS) tagger. An intrinsic evaluation 

would run the POS tagger on some labelled data, and compare the 

system output of the POS tagger to the gold standard (correct) output. 

An extrinsic evaluation would run the parser with some other POS 

tagger, and then with the new POS tagger, and compare the parsing 

accuracy. 

 

 Black-box vs. glass-box evaluation

 

Black-box evaluation requires one to run an NLP system on a given data 

set and to measure a number of parameters related to the quality of the 

process (speed, reliability, resource consumption) and, most 

importantly, to the quality of the result (e.g. the accuracy of data 

annotation or the fidelity of a translation). Glass-box evaluation looks at 

the design of the system, the algorithms that are implemented, the 

linguistic resources it uses (e.g. vocabulary size), etc. Given the 

complexity of NLP problems, it is often difficult to predict performance 

only on the basis of glass-box evaluation, but this type of evaluation is 

more informative with respect to error analysis or future developments 

of a system. 

 

 Automatic vs. manual evaluation

 

In many cases, automatic procedures can be defined to evaluate an NLP 

system by comparing its output with the gold standard (or desired) one. 

Although the cost of producing the gold standard can be quite high, 

automatic evaluation can be repeated as often as needed without much 

additional costs (on the same input data). However, for many NLP 

problems, the definition of a gold standard is a complex task, and can 

prove impossible when inter-annotator agreement is insufficient. Manual 
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evaluation is performed by human judges, which are instructed to 

estimate the quality of a system, or most often of a sample of its output, 

based on a number of criteria. Although, thanks to their linguistic 

competence, human judges can be considered as the reference for a 

number of language processing tasks, there is also considerable variation 

across their ratings. This is why automatic evaluation is sometimes 

referred to as objective evaluation, while the human kind appears to be 

more subjective. 

 

3.5.4 Shared tasks (Campaigns) 

 

 BioCreative

 Message Understanding Conference

 Technolangue/Easy

 Text Retrieval Conference

 Evaluation exercises on Semantic Evaluation (SemEval)

 

4.0 CONCLUSION 
 

Systems based on machine-learning algorithms have many advantages 

over hand-produced rules. 

 

5.0 SUMMARY 
 

In this unit, you learnt: 

 

 NLP using machine learning

 History of natural language processing

 Major tasks in NLP

 Statistical Natural Language Processing

 Evaluation of natural language processing

 

6.0 TUTOR- MARKED ASSIGNMENT 

 
1. List four major tasks in NLP. 

2. Describe the history of natural language processing. 

3. Mention different types of evaluation of NPL. 
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1.0 INTRODUCTION 
 

Expert system is a computer program that uses artificial intelligence to 

solve problems within a specialized domain that ordinarily requires 

human expertise. The first expert system was developed in 1965 by 

Edward Feigenbaum and Joshua Lederberg of Stanford University in 

California, U.S. Dendral, as their expert system was later known, was 
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designed to analyze chemical compounds. Expert systems now have 

commercial applications in fields as diverse as medical diagnosis, 

petroleum engineering, financial investing make financial forecasts and 

schedule routes for delivery vehicles. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain an expert system

distinction between expert systems and traditional problem 

solving programs 

 explain the term ―knowledge base‖.

 

3.0 MAIN CONTENT 
 

3.1 What is an Expert System? 
 

It is a computer application that performs a task that would otherwise be 

performed by a human expert. Some expert systems are designed to take 

the place of human experts, while others are designed to aid them. 

 

To design an expert system, one needs a knowledge engineer, an 

individual who studies how human experts make decisions and 

translates the rules into terms that a computer can understand. In order 

to accomplish feats of apparent intelligence, an expert system relies on 

two components: a knowledge base and an inference engine. 

 

3.1.1 Comparison to problem-solving systems 
 

The principal distinction between expert systems and traditional 

problem solving. 

 

Programs are the way in which the problem related expertise is coded. 

In traditional applications, problem-related expertise is encoded in both 

program and data structures. In the expert system approach all of the 

problem     expertise     is     encoded     mostly     in     data     structures. 

 

In an example related to tax advice, the traditional approach has data 

structures that describe the taxpayer and tax tables, and a program that 

contains rules (encoding expert knowledge) that relate information about 

the taxpayer to tax table choices. In contrast, in the expert system 

approach, the latter information is also encoded in data structures. The 

collective data structures are called the knowledge base . The program 

(inference engine ) of an expert system is relatively independent of the 





CIT478 ARTIFICIAL INTELLIGENCE 

130 

 

 

 

problem domain (taxes) and processes the rules without regard to the 

problem area they describe. 

 

This organization has several benefits: 

 

 New rules can be added to the knowledge base or altered without 

needing to rebuild the program. This allows changes to be made 

rapidly to a system (e.g., after it has been shipped to its 

customers, to accommodate very recent changes in state or 

federal tax codes). 

 Rules are arguably easier for (non-programmer) domain experts 

to create and modify than writing code. Commercial rule engines 

typically come with editors that allow rule creation/modification 

through a graphical user interface, which also performs actions 

such as consistency and redundancy checks. 

 

Modern rule engines allow a hybrid approach: some allow rules to be 

"compiled" into a form that is more efficiently machine-executable. 

Also, for efficiency concerns, rule engines allow rules to be defined 

more expressively and concisely by allowing software developers to 

create functions in a traditional programming language such as Java, 

which can then be invoked from either the condition or the action of a 

rule. Such functions may incorporate domain-specific (but reusable) 

logic. 

 

3.2 Knowledge Base 

 
A knowledge base (abbreviated KB, kb or Δ) is a special kind of 

database for knowledge management, providing the means for the 

computerized collection, organization, and retrieval of knowledge. Also, 

it is a collection of data representing related experiences which their 

results is related to their problems and solutions. 

 

Facts for a knowledge base must be acquired from human experts 

through interviews and observations. This knowledge is then usually 

represented in the form of ―if-then‖ rules (production rules): ―If some 

condition is true then the following inference can be made (or some 

action taken).‖ The knowledge base of a major expert system includes 

thousands of rules. A probability factor is often attached to the 

conclusion of each production rule, because the conclusion is not a 

certainty. For example, a system for the diagnosis of eye diseases might 

indicate, based on information supplied to it, a 90 percent probability 

that a person has glaucoma, and it might also list conclusions with lower 

probabilities. An expert system may display the sequence of rules 

through which it arrived at its conclusion; tracing this flow helps the 
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user to appraise the credibility of its recommendation and is useful as a 

learning tool for students. 

 

Human experts frequently employ heuristic rules, or ―rules of thumb,‖ in 

addition to simple production rules. For example, a credit manager 

might know that an applicant with a poor credit history, but a clean 

record since acquiring a new job, might actually be a good credit risk. 

Expert systems have incorporated such heuristic rules and increasingly 

have the ability to learn from experience. Nevertheless, expert systems 

remain supplements, rather than replacements, for human experts. 
 

3.2.1 Types Of Knowledge Base 

 
Knowledge bases are essentially closed or open information repositories 

and can be categorized under two main headings: 

 

 Machine-readable knowledge bases store knowledge in a 

computer-readable form, usually for the purpose of having 

automated deductive reasoning applied to them. They contain a 

set of data, often in the form of rules that describe the knowledge 

in a logically consistent manner. An ontology can define the 

structure of stored data - what types of entities are recorded and 

what their relationships are. Logical operators, such as And 

(conjunction), Or (disjunction), material implication and 

negation may be used to build it up from simpler pieces of 

information. Consequently, classical deduction can be used to 

reason about the knowledge in the knowledge base. Some 

machine-readable knowledge bases are used with artificial 

intelligence, for example as part of an expert system that focuses 

on a domain like prescription drugs or customs law. Such 

knowledge bases are also used by the semantic web.

 Human-readable knowledge bases are designed to allow people 

to retrieve and use the knowledge they contain. They are 

commonly used to complement a help desk or for sharing 

information among employees within an organization. They 

might store troubleshooting information, articles, white papers, 

user manuals, knowledge tags, or answers to frequently asked 

questions. Typically, a search engine is used to locate 

information in the system, or users may browse through a 

classification scheme.

 

A text based system that can include groups of documents including 

hyperlinks between them is known as Hypertext Systems. Hypertext 

systems support the decision process by relieving the user of the 

significant effort it takes to relate and remember things." Knowledge 
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bases can exist on both computers and mobile phones in a hypertext 

format. Knowledge base analysis and design (also known as KBAD) is 

an approach that allows people to conduct analysis and design in a way 

that result in a knowledge base, which can later be used to make 

informative decisions. This approach was first implemented by Dr. 

Steven H. Dam 

 

3.3 Inference Engine 
 

In computer science, and specifically the branches of knowledge 

engineering and artificial intelligence, an inference engine is a computer 

program that tries to derive answers from a knowledge base. It is the 

"brain" that expert systems use to reason about the information in the 

knowledge base for the ultimate purpose of formulating new 

conclusions. Inference engines are considered to be a special case of 

reasoning engines, which can use more general methods of reasoning. 

 

3.3.1 Architecture 
 

The separation of inference engines as a distinct software component 

stems from the typical production system architecture. This architecture 

relies on a data store: 

 

1. An interpreter. The interpreter executes the chosen agenda items 

by applying the corresponding base rules. 

2. A scheduler. The scheduler maintains control over the agenda by 

estimating the effects of applying inference rules in light of item 

priorities or other criteria on the agenda. 

3. A consistency enforcer. The consistency enforcer attempts to 

maintain a consistent representation of the emerging solution 

 

3.3.2 The Recognize-Act Cycle 
 

The inference engine can be described as a form of finite state machine 

with a cycle consisting of three action states: match rules, select rules, 

and execute rules. Rules are represented in the system by a notation 

called predicate logic. 

 

In the first state, match rules, the inference engine finds all of the rules 

that are satisfied by the current contents of the data store. When rules are 

in the typical condition-action form, this means testing the conditions 

against the working memory. The rule matching that are found are all 

candidates for execution: they are collectively referred to as the conflict 

set. Note that the same rule may appear several times in the conflict set 
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if it matches different subsets of data items. The pair of a rule and a 

subset of matching data items are called an instantiation of the rule. 

In many applications, where large volumes of data are concerned and/or 

when performance time considerations are critical, the computation of 

the conflict set is a non-trivial problem. 

 

3.3.3 Data-Driven Computation versus Procedural Control 
 

The inference engine control is based on the frequent re - evaluation of 

the data store states, not on any static control structure of the program. 

The computation is often qualified as data-driven or pattern-directed in 

contrast to the more traditional procedural control. Rules can 

communicate with one another only by way of the data, whereas in 

traditional programming languages procedures and functions explicitly 

call one another. Unlike instructions, rules are not executed sequentially 

and it is not always possible to determine through inspection of a set of 

rules which rule will be executed first or cause the inference engine to 

terminate. 

 

In contrast to a procedural computation, in which knowledge about the 

problem domain is mixed in with instructions about the flow of 

control—although object-oriented programming languages mitigate this 

entanglement—the inference engine model allows a more complete 

separation of the knowledge (in the rules) from the control (the 

inference engine). 

 

3.3.4 Inference Rules 
 

An inference rule is a conditional statement with two parts namely; if 

clause and a then clause. 

 

This rule is what gives expert systems the ability to find solutions to 

diagnostic and prescriptive problems. An example of an inference rule 

is: 

 

If the restaurant choice includes French and the occasion is romantic, 

Then the restaurant choice is definitely Paul Bocuse. 

 

An expert system's rule base is made up of many such inference rules. 

They are entered as separate rules and it is the inference engine that uses 

them together to draw conclusions. Because each rule is a unit, rules 

may be deleted or added without affecting other rules - though it should 

affect which conclusions are reached. One advantage of inference rules 

over traditional programming is that inference rules use reasoning which 

more closely resembles human reasoning. 
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Thus, when a conclusion is drawn, it is possible to understand how this 

conclusion was reached. Furthermore, because the expert system uses 

knowledge in a form similar to the that of the expert, it may be easier to 

retrieve this information directly from the expert. 

 

3.3.5 Chaining 
 

Two methods of reasoning when using inference rules are forward 

chaining and backward chaining. 

 

Forward chaining starts with the data available and uses the inference 

rules to extract more data until a desired goal is reached. An inference 

engine using forward chaining searches the inference rules until it finds 

one in which the if clause is known to be true . It then concludes the 

then clause and adds this information to its data. It continues to do this 

until a goal is reached. Because the data available determines which 

inference rules are used, this method is also classified as data driven. 

Backward chaining starts with a list of goals and works backwards to 

see if there is data which will allow it to conclude any of these goals. An 

inference engine using backward chaining would search the inference 

rules until it finds one which has a then clause that matches a desired 

goal. If the if clause of that inference rule is not known to be true, then it 

is added to the list of goals. For example, suppose a rule base contains: 

 

(1) IF X is green THEN X is a frog. (Confidence Factor: +1%) 

(2) IF X is NOT green THEN X is NOT a frog. (Confidence Factor: 

+99%) 

(3) IF X is a frog THEN X hops. (Confidence Factor: +50%) 

(4) IF X is NOT a frog THEN X does NOT hop. (Confidence Factor 

+50%) 

 

Suppose a goal is to conclude that Fritz hops. Let X = "Fritz". The rule 

base would be searched and rule (3) would be selected because its 

conclusion (the then clause) matches the goal. It is not known that Fritz 

is a frog, so this "if" statement is added to the goal list. The rule base is 

again searched and this time rule (1) is selected because its then clause 

matches the new goal just added to the list. This time, the if clause (Fritz 

is green) is known to be true and the goal that Fritz hops is concluded. 

Because the list of goals determines which rules are selected and used, 

this method is called goal driven. 

 

However, note that if we use confidence factors in even a simplistic 

fashion - for example, by multiplying them together as if they were like 

soft probabilities - we get a result that is known with a confidence factor 

of only one-half of 1%. (This is by multiplying 0.5 x 0.01 = 0.005). This 
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is useful, because without confidence factors, we might erroneously 

conclude with certainty that a sea turtle named Fritz hops just by virtue 

of being green. In Classical logic or Aristotelian term logic systems, 

there are no probabilities or confidence factors; all facts are regarded as 

certain. An ancient example from Aristotle states, "Socrates is a man. 

All men are mortal. Thus Socrates is mortal." 

 

In real world applications, few facts are known with absolute certainty 

and the opposite of a given statement may be more likely to be true 

("Green things in the pet store are not frogs, with the probability or 

confidence factor of 99% in my pet store survey"). Thus it is often 

useful when building such systems to try and prove both the goal and 

the opposite of a given goal to see which is more likely. 

 

3.4 Certainty Factors 
 

One method of operation of expert systems is through a quasi- 

probabilistic approach with certainty factors: A human, when reasoning, 

does not always make statements with 100% confidence: he might 

venture, "If Fritz is green, then he is probably a frog" (after all, he might 

be a chameleon). This type of reasoning can be imitated using numeric 

values called confidences. For example, if it is known that Fritz is green, 

it might be concluded with 0.85 confidence that he is a frog; or, if it is 

known that he is a frog, it might be concluded with 0.95 confidence that 

he hops. These Certainty factor (CF) numbers quantify uncertainty in 

the degree to which the available evidence supports a hypothesis. They 

represent a degree of confirmation, and are not probabilities in a 

Bayesian sense. The CF calculus, developed by Shortliffe & Buchanan, 

increases or decreases the CF associated with a hypothesis as each new 

piece of evidence becomes available. It can be mapped to a probability 

update, although degrees of confirmation are not expected to obey the 

laws of probability. It is important to note, for example, that evidence 

for hypothesis H may have nothing to contribute to the degree to which 

Noth is confirmed or disconfirmed (e.g., although a fever lends some 

support to a diagnosis of infection, fever does not disconfirm alternative 

hypotheses) and that the sum of CFs of many competing hypotheses 

may be greater than one (i.e., many hypotheses may be well confirmed 

based on available evidence). 

 

The CF approach to a rule-based expert system design does not have a 

widespread following, in part because of the difficulty of meaningfully 

assigning CFs a priori. (The above example of green creatures being 

likely to be frogs is excessively naive.) Alternative approaches to quasi- 

probabilistic reasoning in expert systems involve fuzzy logic, which has 

a firmer mathematical foundation. Also, rule-engine shells such as 
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Drools and Jess do not support probability manipulation: they use an 

alternative mechanism called salience, which is used to prioritize the 

order of evaluation of activated rules. 

 

In certain areas, as in the tax-advice scenarios discussed below, 

probabilistic approaches are not acceptable. For instance, a 95% 

probability of being correct means a 5% probability of being wrong. The 

rules that are defined in such systems have no exceptions: they are only 

a means of achieving software flexibility when external circumstances 

change frequently. Because rules are stored as data, the core software 

does not need to be rebuilt each time changes to federal and state tax 

codes are announced. 

 

3.5 Real-Time Adaption 
 

Industrial processes, data networks, and many other systems change 

their state and even their structure over time. Real time expert systems 

are designed to reason over time and change conclusions as the 

monitored system changes. Most of these systems must respond to 

constantly changing input data, arriving automatically from other 

systems such as process control systems or network management 

systems. 

 

Representation includes features for defining changes in belief of data or 

conclusions over time. This is necessary because data becomes stale. 

Approaches to this can include decaying belief functions, or the simpler 

validity interval that simply lets data and conclusions expire after 

specified time period, falling to "unknown" until refreshed. An often- 

cited example (attributed to real time expert system pioneer Robert L. 

Moore) is a hypothetical expert system that might be used to drive a car. 

Based on video input, there might be an intermediate conclusion that a 

stop light is green and a final conclusion that it is OK to drive through 

the intersection. But that data and the subsequent conclusions have a 

very limited lifetime. You would not want to be a passenger in a car 

driven based on data and conclusions that were, say, an hour old. 

 

The inference engine must track the times of each data input and each 

conclusion, and propagate new information as it arrives. It must ensure 

that all conclusions are still current. Facilities for periodically scanning 

data, acquiring data on demand, and filtering noise, become essential 

parts of the overall system. Facilities to reason within a fixed deadline 

are important in many of these applications. 

 

An overview of requirements for a real-time expert system shell is given 

in. Examples of real time expert system applications are given in and. 
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Several conferences were dedicated to real time expert system 

applications in the chemical process industries, including. 

 

3.5.1 Ability to Make Relevant Inquiries 
 

An additional skill of an expert system is the ability to give relevant 

inquiries based on previous input from a human user, in order to give 

better replies or other actions, as well as working faster, which also 

pleases an impatient or busy human user - it allows a priori volunteering 

of information that the user considers important. 

 

Also, the user may choose not to respond to every question, forcing the 

expert system to function in the presence of partial information. 

 

Commercially viable systems will try to optimize the user experience by 

presenting options for commonly requested information based on a 

history of previous queries of the system using technology such as 

forms, augmented by keyword-based search. The gathered information 

may be verified by a confirmation step (e.g., to recover from spelling 

mistakes), and now act as an input into a forward-chaining engine. If 

confirmatory questions are asked in a subsequent phase, based on the 

rules activated by the obtained information, they are more likely to be 

specific and relevant. Such abilities can largely be achieved by control 

flow structures. 

 

In an expert system, implementing the ability to learn from a stored 

history of its previous use involves employing technologies considerably 

different from that of rule engines, and is considerably more challenging 

from a software-engineering perspective. It can, however, make the 

difference between commercial success and failure. A large part of the 

revulsion that users felt towards Microsoft's Office Assistant was due to 

the extreme naivete of its rules ("It looks like you are typing a letter: 

would you like help?") and its failure to adapt to the user's level of 

expertise over time (e.g. a user who regularly uses features such as 

Styles, Outline view, Table of Contents or cross-references is unlikely to 

be a beginner who needs help writing a letter). 

 

3.6 Explanation System 
 

Another major distinction between expert systems and traditional 

systems is illustrated by the following answer given by the system when 

the user answers a question with another question, "Why", as occurred 

in the above example. The answer is: 
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A. I am trying to determine the type of restaurant to suggest. So far 

Indian is not a likely choice. It is possible that French is a likely choice. 

If I know that if the diner is a wine drinker, and the preferred wine is 

French, then there is strong evidence that the restaurant choice should 

include French. 

 

It is very difficult to implement a general explanation system (answering 

questions like "Why" and "How") in a traditional computer program. An 

expert system can generate an explanation by retracing the steps of its 

reasoning. The response of the expert system to the question "Why" 

exposes the underlying knowledge structure. It is a rule; a set of 

antecedent conditions which, if true, allow the assertion of a consequent. 

The rule references values, and tests them against various constraints or 

asserts constraints onto them. This, in fact, is a significant part of the 

knowledge structure. There are values, which may be associated with 

some organizing entity. For example, the individual diner is an entity 

with various attributes (values) including whether they drink wine and 

the kind of wine. There are also rules, which associate the currently 

known values of some attributes with assertions that can be made about 

other attributes. It is the orderly processing of these rules that dictates 

the dialogue itself. 

 

3.7 Knowledge Engineering 
 

The building, maintaining and development of expert systems are 

known as knowledge engineering. Knowledge engineering is a 

"discipline that involves integrating knowledge into computer systems 

in order to solve complex problems normally requiring a high level of 

human. 

 

There are generally three individuals having an interaction in an expert 

system. Primary among these is the end-user, the individual who uses 

the system for its problem solving assistance. In the construction and 

maintenance of the system there are two other roles: the problem 

domain expert who builds the system and supplies the knowledge base, 

and a knowledge engineer who assists the experts in determining the 

representation of their knowledge, enters this knowledge into an 

explanation module and who defines the inference technique required to 

solve the problem. Usually the knowledge engineer will represent the 

problem solving activity in the form of rules. When these rules are 

created from domain expertise, the knowledge base stores the rules of 

the expert system. 
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3.8 General Types of Problems Solved 
 

Expert systems are most valuable to organizations that have a high-level 

of know-how experience and expertise that cannot be easily transferred 

to other members. They are designed to carry the intelligence and 

information found in the intellect of experts and provide this knowledge 

to other members of the organization for problem-solving purposes. 

 

Typically, the problems to be solved are of the sort that would normally 

be tackled by a professional, such as a medical professional in the case 

of clinical decision support systems. Real experts in the problem domain 

(which will typically be very narrow, for instance "diagnosing skin 

conditions in teenagers") are asked to provide "rules of thumb" on how 

they evaluate the problem — either explicitly with the aid of 

experienced systems developers, or sometimes implicitly, by getting 

such experts to evaluate test cases and using computer programs to 

examine the test data and derive rules from that (in a strictly limited 

manner). Generally, expert systems are used for problems for which 

there is no single "correct" solution which can be encoded in a 

conventional algorithm — one would not write an expert system to find 

the shortest paths through graphs, or to sort data, as there are simpler 

ways to do these tasks. 

 

Simple systems use simple true/false logic to evaluate data. More 

sophisticated systems are capable of performing at least some 

evaluation, taking into account real-world uncertainties, using such 

methods as fuzzy logic. Such sophistication is difficult to develop and 

still highly imperfect. 

 

3.9 Different Types of Expert System are 

 

 Rule-Based expert system

 Frames-Based expert system

 Hybird system

 Model-based expert system

 Ready-made system

 Real-Time expert system

 

3.10 Examples of Applications 
 

Expert systems are designed to facilitate tasks in the fields of 

accounting, medicine, process control, financial service, production, 

human resources among others. Typically, the problem area is complex 

enough that a more simple traditional algorithm cannot provide a proper 

solution, The foundation of a successful expert system depends on a 
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series of technical procedures and development that may be designed by 

technicians and related experts. As such, expert systems do not typically 

provide a definitive answer, but provide probabilistic recommendations. 

An example of the application of expert systems in the financial field is 

expert systems for mortgages. Loan departments are interested in expert 

systems for mortgages because of the growing cost of labour, which 

makes the handling and acceptance of relatively small loans less 

profitable. They also see a possibility for standardised, efficient 

handling of mortgage loan by applying expert systems, appreciating that 

for the acceptance of mortgages there are hard and fast rules which do 

not always exist with other types of loans. Another common application 

in the financial area for expert systems is in trading recommendations in 

various marketplaces. These markets involve numerous variables and 

human emotions which may be impossible to deterministically 

characterize, thus expert systems based on the rules of thumb from 

experts and simulation data are used. Expert system of this type can 

range from ones providing regional retail recommendations, like 

Wishabi, to ones used to assist monetary decisions by financial 

institutions and governments. Another 1970s and 1980s application of 

expert systems, which we today would simply call AI, was in computer 

games. For example, the computer baseball games Earl Weaver Baseball 

and Tony La Russa Baseball each had highly detailed simulations of the 

game strategies of those two baseball managers. When a human played 

the game against the computer, the computer queried the Earl Weaver or 

Tony La Russa Expert System for a decision on what strategy to follow. 

Even those choices where some randomness was part of the natural 

system (such as when to throw a surprise pitch-out to try to trick a 

runner trying to steal a base) were decided based on probabilities 

supplied by Weaver or La Russa. Today we would simply say that "the 

game's AI provided the opposing manager's strategy." 
 

Advantages 
 
 

 Compared to traditional programming techniques, expert-system 

approaches provide the added flexibility (and hence easier 

modifiability) with the ability to model rules as data rather than 

as code. In situations where an organization's IT department is 

overwhelmed by a software-development backlog, rule-engines, 

by facilitating turnaround, provide a means that can allow 

organizations to adapt more readily to changing needs. 

 In practice, modern expert-system technology is employed as an 

adjunct to traditional programming techniques, and this hybrid 

approach allows the combination of the strengths of both 

approaches. Thus, rule engines allow control through programs 

3.11 
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(and user interfaces) written in a traditional language, and also 

incorporate necessary functionality such as inter-operability with 

existing database technology. 

 

3.12 Disadvantages 
 
 

The Garbage In, Garbage Out (GIGO) phenomenon: A system 

that uses expert-system technology provides no guarantee about 

the quality of the rules on which it operates. All self-designated 

"experts" are not necessarily so, and one notable challenge in 

expert system design is in getting a system to recognize the limits 

to its knowledge. 

Expert systems are notoriously narrow in their domain of 

knowledge— as an amusing example, a researcher used the "skin 

disease" expert system to diagnose his rust bucket car as likely to 

have developed measles — and the systems are thus prone to 

making errors that humans would easily spot. Additionally, once 

some of the mystique had worn off, most programmers realized 

that simple expert systems were essentially just slightly more 

elaborate versions of the decision logic they had already been 

using. Therefore, some of the techniques of expert systems can 

now be found in most complex programs without drawing much 

recognition. 

 An expert system or rule-based approach is not optimal for all 

problems, and considerable knowledge is required so as to not 

misapply the systems.

 Ease of rule creation and rule modification can be double-edged. 

A system can be sabotaged by a non-knowledgeable user who 

can easily add worthless rules or rules that conflict with existing 

ones. Reasons for the failure of many systems include the 

absence of (or neglect to employ diligently) facilities for system 

audit, detection of possible conflict, and rule lifecycle 

management (e.g. version control, or thorough testing before 

deployment). The problems to be addressed here are as much 

technological as organizational.

An example and a good demonstration of the limitations of an expert 

system is the Windows operating system troubleshooting software 

located in the "help" section in the taskbar menu. Obtaining technical 

operating system support is often difficult for individuals not closely 

involved with the development of the Operating System. Microsoft has 

designed their expert system to provide solutions, advice, and 

suggestions to common errors encountered while using their operating 

systems. 

4.0 CONCLUSION 
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Expert systems now have commercial applications in fields as diverse as 

medical diagnosis, petroleum engineering, financial investing make 

financial forecasts and schedule routes for delivery vehicles. 

 

5.0 SUMMARY 
 

In this unit, you learnt: 

 

 Definition of an Expert System 

 Knowledge Base and Types of Knowledge Base 

 Inference Engine 

 Certainty factors 

 Real-time adaption 

 Knowledge Engineering 

 General types of problems solved 

 Different types of expert system 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Explain expert system. 

ii. Mention and explain two methods of reasoning when using 

inference rules. 

iii. Describe two type of knowledge bases. 

iv. Mention two advantages of expert system. 
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1.0 INTRODUCTION 
 

Robotics is the branch of technology that deals with the design, 

construction, operation, structural disposition, manufacture and 

application of robots. Robotics is related to the sciences of electronics, 

engineering, mechanics, and software. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 explain the word robotics 

 list 4 types of robotics you know 

 describe the history of robotics. 

 

3.0 MAIN CONTENT 
 

3.1 What is a Robot? 
 

The word robotics was derived from the word robot, which was 

introduced to the public by Czech writer Karel Čapek in his play R.U.R. 

(Rossum's Universal Robots), which premiered in 1921. 
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According to the Oxford English Dictionary, the word robotics was first 

used in print by Isaac Asimov, in his science fiction short story "Liar!", 

published in May 1941 in Astounding Science Fiction. Asimov was 

unaware that he was coining the term; since the science and technology 

of electrical devices is electronics, he assumed robotics already referred 

to the science and technology of robots. In some of Asimov's other 

works, he states that the first use of the word robotics was in his short 

story Runaround (Astounding Science Fiction, March 1942). However, 

the word robotics appears in "Liar!" 

 

3.1.1 Types of Robots 
 

Figure 1: TOPIO, a humanoid robot, played ping pong at Tokyo 

International Robot Exhibition (IREX) 
 
 

 

Figure 2: The Shadow robot hand system 
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Figure 3: A Pick and Place robot in a factory 

 
 

3.1.2 History of Robots 
 

Stories of artificial helpers and companions and attempts to create them 

have a long history. 
 

 

Figure 4: A scene from Karel Čapek's 1920 play R.U.R. (Rossum's 

Universal Robots), showing three robots. 

 

The word robot was introduced to the public by the Czech writer Karel 

Čapek in his play R.U.R. (Rossum's Universal Robots), published in 

1920. The play begins in a factory that makes artificial people called 

robots creatures who can be mistaken for humans – though they are 

closer to the modern ideas of androids. Karel Čapek himself did not coin 

the word. He wrote a short letter in reference to an etymology in the 

Oxford English Dictionary in which he named his brother Josef Čapek 

as its actual originator. 

 

In 1927 the Maschinenmensch ("machine-human") gynoid humanoid 

robot (also called "Parody", "Futura", "Robotrix", or the "Maria 
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impersonator") was the first and perhaps the most memorable depiction 

of a robot ever to appear on film was played by German actress Brigitte 

Helm) in Fritz Lang's film Metropolis. 

 

In 1942 the science fiction writer Isaac Asimov formulated his Three 

Laws of Robotics and, in the process of doing so, coined the word 

"robotics" (see details in "Etymology" section below). 

 

In 1948 Norbert Wiener formulated the principles of cybernetics, the 

basis of practical robotics. 

 

Fully autonomous robots only appeared in the second half of the 20th 

century. The first digitally operated and programmable robot, the 

Unimate, was installed in 1961 to lift hot pieces of metal from a die 

casting machine and stack them. Commercial and industrial robots are 

widespread today and used to perform jobs more cheaply, or more 

accurately and reliably, than humans. They are also employed in jobs 

which are too dirty, dangerous, or dull to be suitable for humans. Robots 

are widely used in manufacturing, assembly, packing and packaging, 

transport, earth and space exploration, surgery, weaponry, laboratory 

research, safety, and the mass production of consumer and industrial 

goods. 

 

Date Significance Robot Name Inventor 

 

 
Third 

century 

B.C. 

and 

earlier 

One of the earliest descriptions of 

automata appears in the Lie Zi 

text, on a much earlier encounter 

between King Mu of Zhou (1023- 

957 BC) and a mechanical 

engineer known as Yan Shi, an 

'artificer'. The latter allegedly 

presented the king with a life-size, 

human-shaped figure of his 

mechanical handiwork. 

  

 

 

 
Yan Shi 

 
First 

century 

A.D. 

and 

earlier 

Descriptions of more than 100 

machines and automata, including 

a fire engine, a wind organ, a 

coin-operated machine, and a 

steam-powered engine, in 

Pneumatica and Automata by 

Heron of Alexandria 

 
Ctesibius, 

Philo of 

Byzantium, 

Heron of 

Alexandria, 

and others 

1206 
Created early humanoid automata, 

programmable automaton band 

Robot band, 

hand- 
Al-Jazari 
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  washing 

automaton,[1 

1] automated 

moving 

peacocks[12] 

 

1495 Designs for a humanoid robot 
Mechanical 

knight 

Leonardo da 

Vinci 

1738 
Mechanical duck that was able to 

eat, flap its wings, and excrete 

Digesting 

Duck 

Jacques de 

Vaucanson 

1898 
Nikola Tesla demonstrates first 

radio-controlled vessel. 

Teleautomat 

on 

Nikola 

Tesla 

 
1921 

First fictional automatons called 

"robots" appear in the play R.U.R. 

Rossum's 

Universal 

Robots 

 
Karel Čapek 

 
1930s 

Humanoid robot exhibited at the 

1939 and 1940 World's Fairs 

 
Elektro 

Westinghou 

se Electric 

Corporation 

1948 
Simple robots exhibiting 

biological behaviors 

Elsie and 

Elmer 

William 

Grey Walter 

 

 
1956 

First commercial robot, from the 

Unimation company founded by 

George Devol and Joseph 

Engelberger, based on Devol's 

patents 

 

 
Unimate 

 

George 

Devol 

1961 First installed industrial robot. Unimate 
George 

Devol 

 
1963 

First palletizing 

robothttp://www.ask.com/wiki/Ro 

botics - cite_note-14 

 
Palletizer 

Fuji Yusoki 

Kogyo 

 
1973 

First industrial robot with six 

electromechanically driven axes 

 
Famulus 

KUKA 
Robot 

Group 

 
1975 

Programmable universal 

manipulation arm, a Unimation 

product 

 
PUMA 

Victor 

Scheinman 

http://www.ask.com/wiki/Ro
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3.2 Components 
 

3.2.1 Power source 
 

At present; mostly (lead-acid) batteries are used, but potential power 

sources could be: 

 

 pneumatic (compressed gases)

 hydraulics (compressed liquids)

 flywheel energy storage

 organic garbage (through anaerobic digestion)

 faeces (human, animal); may be interesting in a military context 

as faeces of small combat groups may be reused for the energy 

requirements of the robot assistant (see DEKA's project Slingshot 

Stirling engine on how the system would operate)

 still unproven energy sources: for example Nuclear fusion, as yet 

not used in nuclear reactors whereas Nuclear fission is proven 

(although there are not many robots using it as a power source 

apart from the Chinese rover tests).

 radioactive source (such as with the proposed Ford car of the 

'50s); to those proposed in movies such as Red Planet
 

3.2.2 Actuation 
 

Figure 5: A robotic leg powered by Air Muscles 
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Actuators are like the "muscles" of a robot, the parts which convert 

stored energy into movement. By far the most popular actuators are 

electric motors that spin a wheel or gear, and linear actuators that 

control industrial robots in factories. But there are some recent advances 

in alternative types of actuators, powered by electricity, chemicals, or 

compressed air: 

 

3.2.2.1 Electric motors 
 

The vast majority of robots use electric motors, often brushed and 

brushless DC motors in portable robots or AC motors in industrial 

robots and CNC machines. 

 

3.2.2.2 Linear Actuators 
 

Various types of linear actuators move in and out instead of by spinning, 

particularly when very large forces are needed such as with industrial 

robotics. They are typically powered by compressed air (pneumatic 

actuator) or an oil (hydraulic actuator). 

 

3.2.2.3 Series Elastic Actuators 
 

A spring can be designed as part of the motor actuator, to allow 

improved force control. It has been used in various robots, particularly 

walking humanoid robots. 

 

3.2.2.4 Air Muscles 
 

Pneumatic artificial muscles, also known as air muscles, are special 

tubes that contract (typically up to 40%) when air is forced inside it. 

They have been used for some robot applications. 

 

3.2.2.5 Muscle Wire 
 

Muscle wire, also known as Shape Memory Alloy, Nitinol or Flexinol 

Wire, is a material that contracts slightly (typically under 5%) when 

electricity runs through it. They have been used for some small robot 

applications. 

 

3.2.2.6 Electroactive Polymers 
 

EAPs or EPAMs are a new plastic material that can contract 

substantially (up to 400%) from electricity, and have been used in facial 

muscles and arms of humanoid robots, and to allow new robots to float, 

fly, swim or walk. 
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3.2.2.7 Piezo Motors 
 

A recent alternative to DC motors are piezo motors or ultrasonic motors. 

These work on a fundamentally different principle, whereby tiny 

piezoceramic elements, vibrating many thousands of times per second, 

cause linear or rotary motion. There are different mechanisms of 

operation; one type uses the vibration of the piezo elements to walk the 

motor in a circle or a straight line. Another type uses the piezo elements 

to cause a nut to vibrate and drive a screw. The advantages of these 

motors are nanometer resolution, speed, and available force for their 

size. These motors are already available commercially, and being used 

on some robots. 

 

3.2.2.8 Elastic Nanotubes 
 

Elastic Nanotubes are a promising artificial muscle technology in early- 

stage experimental development. The absence of defects in carbon 

nanotubes enables these filaments to deform elastically by several 

percent, with energy storage levels of perhaps 13 J/cm3 for metal 

nanotubes. Human biceps could be replaced with an 8 mm diameter wire 

of this material. Such compact "muscle" might allow future robots to 

outrun and out jump humans. 

 

3.3 Sensing 

 

3.3.1 Touch 
 

Current robotic and prosthetic hands receive far less tactile information 

than the human hand. Recent research has developed a tactile sensor 

array that mimics the mechanical properties and touch receptors of 

human fingertips. The sensor array is constructed as a rigid core 

surrounded by conductive fluid contained by an elastomeric skin. 

Electrodes are mounted on the surface of the rigid core and are 

connected to an impedance-measuring device within the core. When the 

artificial skin touches an object the fluid path around the electrodes is 

deformed, producing impedance changes that map the forces received 

from the object. The researchers expect that an important function of 

such artificial fingertips will be adjusting robotic grip on held objects. 

Scientists from several European countries and Israel developed a 

prosthetic hand in 2009, called SmartHand, which functions like a real 

one—allowing patients to write with it, type on a keyboard, play piano 

and perform other fine movements. The prosthesis has sensors which 

enable the patient to sense real feeling in its fingertips. 
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3.3.2 Vision 
 

Computer vision is the science and technology of machines that see. As 

a scientific discipline, computer vision is concerned with the theory 

behind artificial systems that extract information from images. The 

image data can take many forms, such as video sequences and views 

from cameras. 

 

In most practical computer vision applications, the computers are pre- 

programmed to solve a particular task, but methods based on learning 

are now becoming increasingly common. 

 

Computer vision systems rely on image sensors which detect 

electromagnetic radiation which is typically in the form of either visible 

light or infra-red light. The sensors are designed using solid-state 

physics. The process by which light propagates and reflects off surfaces 

is explained using optics. Sophisticated image sensors even require 

quantum mechanics to provide a complete understanding of the image 

formation process. 

 

There is a subfield within computer vision where artificial systems are 

designed to mimic the processing and behavior of biological systems, at 

different levels of complexity. Also, some of the learning-based 

methods developed within computer vision have their background in 

biology. 

 

3.4 Manipulation 
 

Robots which must work in the real world require some way to 

manipulate objects; pick up, modify, destroy, or otherwise have an 

effect. Thus the "hands" of a robot are often referred to as end effectors, 

while the "arm" is referred to as a manipulator. Most robot arms have 

replaceable effectors, each allowing them to perform some small range 

of tasks. Some have a fixed manipulator which cannot be replaced, 

while a few have one very general purpose manipulator, for example a 

humanoid hand. 

 

For the definitive guide to all forms of robot end-effectors, their design, 

and usage consult the book "Robot Grippers". 

 

3.4.1 Mechanical Grippers 
 

One of the most common effectors is the gripper. In its simplest 

manifestation it consists of just two fingers which can open and close to 
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pick up and let go of a range of small objects. Fingers can for example 

be made of a chain with a metal wire run through it. See Shadow Hand. 

 

3.4.2 Vacuum Grippers 
 

Vacuum grippers are very simple astrictive devices, but can hold very 

large loads provided the prehension surface is smooth enough to ensure 

suction. 

 

Pick and place robots for electronic components and for large objects 

like car windscreens, often use very simple vacuum grippers. 

 

3.4.3 General Purpose Effectors 
 

Some advanced robots are beginning to use fully humanoid hands, like 

the Shadow Hand, MANUS, and the Schunk hand. These highly 

dexterous manipulators with as many as 20 degrees of freedom and 

hundreds of tactile sensors. 

 

3.5 Locomotion 

 

3.5.1 Rolling Robots 
 

 

Figure 6: Segway in the Robot museum in Nagoya. 

 
 

For simplicity most mobile robots have four wheels or a number of 

continuous tracks. Some researchers have tried to create more complex 

wheeled robots with only one or two wheels. These can have certain 

advantages such as greater efficiency and reduced parts, as well as 

allowing a robot to navigate in confined places that a four wheeled robot 

would not be able to. 
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3.5.1.1 Two-Wheeled Balancing Robots 
 

Balancing robots generally use a gyroscope to detect how much a robot 

is falling and then drive the wheels proportionally in the opposite 

direction, to counter-balance the fall at hundreds of times per second, 

based on the dynamics of an inverted pendulum. Many different 

balancing robots have been designed. While the Segway is not 

commonly thought of as a robot, it can be thought of as a component of 

a robot, such as NASA's Robonaut that has been mounted on a Segway. 

 

3.5.1.2 One-Wheeled Balancing Robots 
 

A one-wheeled balancing robot is an extension of a two-wheeled 

balancing robot so that it can move in any 2D direction using a round 

ball as its only wheel. Several one-wheeled balancing robots have been 

designed recently, such as Carnegie Mellon University's "Ballbot" that is 

the approximate height and width of a person, and Tohoku Gakuin 

University's "BallIP". Because of the long, thin shape and ability to 

maneuver in tight spaces, they have the potential to function better than 

other robots in environments with people. 

 

3.5.1.3 Spherical Orb Robots 
 

Several attempts have been made in robots that are completely inside a 

spherical ball, either by spinning a weight inside the ball, or by rotating 

the outer shells of the sphere. These have also been referred to as an orb 

bot or a ball bot. 

 

3.5.1.4 Six-Wheeled Robots 
 

Using six wheels instead of four wheels can give better traction or grip 

in outdoor terrain such as on rocky dirt or grass. 

 

3.5.1.5 Tracked Robots 
 

Tank tracks provide even more traction than a six-wheeled robot. 

Tracked wheels behave as if they were made of hundreds of wheels, 

therefore are very common for outdoor and military robots, where the 

robot must drive on very rough terrain. However, they are difficult to 

use indoors such as on carpets and smooth floors. Examples include 

NASA's Urban Robot "Urbie". 
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3.5.2 Walking Applied to Robots 
 

Figure 6:     iCub robot, designed by the RobotCub Consortium 

 

Walking is a difficult and dynamic problem to solve. Several robots 

have been made which can walk reliably on two legs; however none 

have yet been made which are as robust as a human. Many other robots 

have been built that walk on more than two legs, due to these robots 

being significantly easier to construct. Hybrids too have been proposed 

in movies such as I, Robot, where they walk on 2 legs and switch to 4 

(arms+legs) when going to a sprint. Typically, robots on 2 legs can walk 

well on flat floors and can occasionally walk up stairs. None can walk 

over rocky, uneven terrain. Some of the methods which have been tried 

are: 

 

3.5.2.1 ZMP Technique 
 

The Zero Moment Point (ZMP) is the algorithm used by robots such as 

Honda's ASIMO. The robot's onboard computer tries to keep the total 

inertial forces (the combination of earth's gravity and the acceleration 

and deceleration of walking), exactly opposed by the floor reaction force 

(the force of the floor pushing back on the robot's foot). In this way, the 

two forces cancel out, leaving no moment (force causing the robot to 

rotate and fall over). However, this is not exactly how a human walks, 

and the difference is obvious to human observers, some of whom have 

pointed out that ASIMO walks as if it needs the lavatory. ASIMO's 

walking algorithm is not static, and some dynamic balancing is used (see 

below). However, it still requires a smooth surface to walk on. 
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3.5.2.2 Hopping 
 

Several robots, built in the 1980s by Marc Raibert at the MIT Leg 

Laboratory, successfully demonstrated very dynamic walking. Initially, 

a robot with only one leg, and a very small foot, could stay upright 

simply by hopping. The movement is the same as that of a person on a 

pogo stick. As the robot falls to one side, it would jump slightly in that 

direction, in order to catch itself. Soon, the algorithm was generalised to 

two and four legs. A bipedal robot was demonstrated running and even 

performing somersaults. A quadruped was also demonstrated which 

could trot, run, pace, and bound. For a full list of these robots, see the 

MIT Leg Lab Robots page. 

 

3.5.2 .3 Dynamic Balancing (Controlled Falling) 
 

A more advanced way for a robot to walk is by using a dynamic 

balancing algorithm, which is potentially more robust than the Zero 

Moment Point technique, as it constantly monitors the robot's motion, 

and places the feet in order to maintain stability. This technique was 

recently demonstrated by Anybots' Dexter Robot,http://www.ask.com/ 

wiki/Robotics - cite_note-64 which is so stable, it can even jump. 

Another example is the TU Delft Flame. 

 

3.5.2.4 Passive Dynamics 
 

Perhaps the most promising approach utilizes passive dynamics where 

the momentum of swinging limbs is used for greater efficiency. It has 

been shown that totally unpowered humanoid mechanisms can walk 

down a gentle slope, using only gravity to propel them. Using this 

technique, a robot need only supply a small amount of motor power to 

walk along a flat surface or a little more to walk up a hill. This technique 

promises to make walking robots at least ten times more efficient than 

ZMP walkers, like ASIMO. 

 

3.5.3 Other methods of locomotion 
 

Figure 7:     RQ-4 Global Hawk unmanned aerial vehicle 

http://www.ask.com/
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3.5.3.1 Flying 
 

A modern passenger airliner is essentially a flying robot, with two 

humans to manage it. The autopilot can control the plane for each stage 

of the journey, including takeoff, normal flight, and even landing. Other 

flying robots are uninhabited, and are known as unmanned aerial 

vehicles (UAVs). They can be smaller and lighter without a human pilot 

onboard, and fly into dangerous territory for military surveillance 

missions. Some can even fire on targets under command. UAVs are also 

being developed which can fire on targets automatically, without the 

need for a command from a human. Other flying robots include cruise 

missiles, the Entomopter, and the Epson micro helicopter robot. Robots 

such as the Air Penguin, Air Ray, and Air Jelly have lighter-than-air 

bodies, propelled by paddles, and guided by sonar. 
 

 

Figure 8:     Two robot snakes. Left one has 64 motors (with 2 degrees 
of freedom per segment), the right one 10. 

 
 

3.5.3.2 Snaking 
 

Several snake robots have been successfully developed. Mimicking the 

way real snakes move, these robots can navigate very confined spaces, 

meaning they may one day be used to search for people trapped in 

collapsed buildings. The Japanese ACM-R5 snake robot can even 

navigate both on land and in water. 

 

3.5.3.3 Skating 
 

A small number of skating robots have been developed, one of which is 

a multi-mode walking and skating device. It has four legs, with 

unpowered wheels, which can either step or roll. Another robot, Plen, 

can use a miniature skateboard or rollerskates, and skate across a 

desktop. 
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3.5.3.4 Climbing 
 

Several different approaches have been used to develop robots that have 

the ability to climb vertical surfaces. One approach mimicks the 

movements of a human climber on a wall with protrusions; adjusting the 

center of mass and moving each limb in turn to gain leverage. An 

example of this is Capuchin, built by Stanford University, California. 

Another approach uses the specialised toe pad method of wall-climbing 

geckoes, which can run on smooth surfaces such as vertical glass. 

Examples of this approach include Wallbot and Stickybot. China's 

"Technology Daily" November 15, 2008 reported New Concept Aircraft 

(ZHUHAI) Co. Ltd. Dr. Li Hiu Yeung and his research group have 

recently successfully developed the bionic gecko robot "Speedy 

Freelander". According to Dr. Li introduction, this gecko robot can 

rapidly climbing up and down in a variety of building walls, ground and 

vertical wall fissure or walking upside down on the ceiling, it is able to 

adapt on smooth glass, rough or sticky dust walls as well as the various 

surface of metallic materials and also can automatically identify 

obstacles, circumvent the bypass and flexible and realistic movements. 

Its flexibility and speed are comparable to the natural gecko. A third 

approach is to mimick the motion of a snake climbing a pole. 

 

3.5.3.5 Swimming (like a Fish) 
 

It is calculated that when swimming some fish can achieve a propulsive 

efficiency greater than 90%. Furthermore, they can accelerate and 

maneuver far better than any man-made boat or submarine, and produce 

less noise and water disturbance. Therefore, many researchers studying 

underwater robots would like to copy this type of locomotion. Notable 

examples are the Essex University Computer Science Robotic Fish, and 

the Robot Tuna built by the Institute of Field Robotics, to analyze and 

mathematically model thunniform motion. The Aqua Penguin, designed 

and built by Festo of Germany, copies the streamlined shape and 

propulsion by front "flippers" of penguins. Festo have also built the 

Aqua Ray and Aqua Jelly, which emulate the locomotion of manta ray, 

and jellyfish, respectively. 
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3.6 Environmental interaction and navigation 
 

Figure 9: RADAR, GPS, LIDAR, ... are all combined to provide 

proper navigation and obstacle avoidance 

 

Though a significant percentage of robots in commission today are 

either human controlled, or operate in a static environment, there is an 

increasing interest in robots that can operate autonomously in a dynamic 

environment. These robots require some combination of navigation 

hardware and software in order to traverse their environment. In 

particular unforeseen events (e.g. people and other obstacles that are not 

stationary) can cause problems or collisions. Some highly advanced 

robots as ASIMO, EveR-1, Meinü robot have particularly good robot 

navigation hardware and software. Also, self-controlled cars, Ernst 

Dickmanns' driverless car, and the entries in the DARPA Grand 

Challenge, are capable of sensing the environment well and 

subsequently making navigational decisions based on this information. 

Most of these robots employ a GPS navigation device with waypoints, 

along with radar, sometimes combined with other sensory data such as 

LIDAR, video cameras, and inertial guidance systems for better 

navigation between waypoints. 

 

3.7 Human-Robot Interaction 
 

Figure 10:   Kismet can produce a range of facial expressions. 
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If robots are to work effectively in homes and other non-industrial 

environments, the way they are instructed to perform their jobs, and 

especially how they will be told to stop will be of critical importance. 

The people who interact with them may have little or no training in 

robotics, and so any interface will need to be extremely intuitive. 

Science fiction authors also typically assume that robots will eventually 

be capable of communicating with humans through speech, gestures, 

and facial expressions, rather than a command-line interface. Although 

speech would be the most natural way for the human to communicate, it 

is unnatural for the robot. It will probably be a long time before robots 

interact as naturally as the fictional C-3PO. 

 

3.7.1 Speech Recognition 
 

Interpreting the continuous flow of sounds coming from a human, in real 

time, is a difficult task for a computer, mostly because of the great 

variability of speech. The same word, spoken by the same person may 

sound different depending on local acoustics, volume, the previous 

word, whether or not the speaker has a cold, etc.. It becomes even harder 

when the speaker has a different accent. Nevertheless, great strides have 

been made in the field since Davis, Biddulph, and Balashek designed the 

first "voice input system" which recognized "ten digits spoken by a 

single user with 100% accuracy" in 1952. Currently, the best systems 

can recognize continuous, natural speech, up to 160 words per minute, 

with an accuracy of 95%. 

 

3.7.2 Robotic Voice 
 

Other hurdles exist when allowing the robot to use voice for interacting 

with humans. For social reasons, synthetic voice proves suboptimal as a 

communication medium, making it necessary to develop the emotional 

component of robotic voice through various techniques. 

 

3.7.3 Gestures 
 

One can imagine, in the future, explaining to a robot chef how to make a 

pastry, or asking directions from a robot police officer. In both of these 

cases, making hand gestures would aid the verbal descriptions. In the 

first case, the robot would be recognizing gestures made by the human, 

and perhaps repeating them for confirmation. In the second case, the 

robot police officer would gesture to indicate "down the road, then turn 

right". It is likely that gestures will make up a part of the interaction 

between humans and robots. A great many systems have been developed 

to recognize human hand gestures. 
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3.7.4 Facial Expression 
 

Facial expressions can provide rapid feedback on the progress of a 

dialog between two humans, and soon it may be able to do the same for 

humans and robots. Robotic faces have been constructed by Hanson 

Robotics using their elastic polymer called Frubber, allowing a great 

amount of facial expressions due to the elasticity of the rubber facial 

coating and imbedded subsurface motors (servos) to produce the facial 

expressions. The coating and servos are built on a metal skull. A robot 

should know how to approach a human, judging by their facial 

expression and body language. Whether the person is happy, frightened, 

or crazy-looking affects the type of interaction expected of the robot. 

Likewise, robots like Kismet and the more recent addition, Nexi can 

produce a range of facial expressions, allowing it to have meaningful 

social exchanges with humans. 

 

3.7.5 Artificial Emotions 
 

Artificial emotions can also be imbedded and are composed of a 

sequence of facial expressions and/or gestures. As can be seen from the 

movie Final Fantasy: The Spirits Within, the programming of these 

artificial emotions is complex and requires a great amount of human 

observation. To simplify this programming in the movie, presets were 

created together with a special software program. This decreased the 

amount of time needed to make the film. These presets could possibly 

be transferred for use in real-life robots. 

 

3.7.6 Personality 
 

Many of the robots of science fiction have a personality, something 

which may or may not be desirable in the commercial robots of the 

future. Nevertheless, researchers are trying to create robots which 

appear to have a personality: i.e. they use sounds, facial expressions, and 

body language to try to convey an internal state, which may be joy, 

sadness, or fear. One commercial example is Pleo, a toy robot dinosaur, 

which can exhibit several apparent emotions. 



CIT478 ARTIFICIAL INTELLIGENCE 

162 

 

 

 

3.8 Control 
 

Figure 11: A robot-manipulated marionette, with complex control 

systems 

 
 

The mechanical structure of a robot must be controlled to perform tasks. 

The control of a robot involves three distinct phases - perception, 

processing, and action (robotic paradigms). Sensors give information 

about the environment or the robot itself (e.g. the position of its joints or 

its end effector). This information is then processed to calculate the 

appropriate signals to the actuators (motors) which move the 

mechanical. 

 

The processing phase can range in complexity. At a reactive level, it 

may translate raw sensor information directly into actuator commands. 

Sensor fusion may first be used to estimate parameters of interest (e.g. 

the position of the robot's gripper) from noisy sensor data. An immediate 

task (such as moving the gripper in a certain direction) is inferred from 

these estimates. Techniques from control theory convert the task into 

commands that drive the actuators. 

 

At longer time scales or with more sophisticated tasks, the robot may 

need to build and reason with a "cognitive" model. Cognitive models try 

to represent the robot, the world, and how they interact. Pattern 

recognition and computer vision can be used to track objects. Mapping 

techniques can be used to build maps of the world. Finally, motion 

planning and other artificial intelligence techniques may be used to 

figure out how to act. For example, a planner may figure out how to 

achieve a task without hitting obstacles, falling over, etc. 
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3.8.1 Autonomy Levels 
 

Control systems may also have varying levels of autonomy. 

 

Direct interaction is used for haptic or tele-operated devices, and the 

human has nearly complete control over the robot's motion. 

 

Operator-assist modes have the operator commanding medium-to-high- 

level tasks, with the robot automatically figuring out how to achieve 

them. 

 

An autonomous robot may go for extended periods of time without 

human interaction. Higher levels of autonomy do not necessarily require 

more complex cognitive capabilities. For example, robots in assembly 

plants are completely autonomous, but operate in a fixed pattern. 

 

Another classification takes into account the interaction between human 

control and the machine motions. 

 

Teleoperation. A human controls each movement, each machine 

actuator change is specified by the operator. 

 

Supervisory. A human specifies general moves or position changes and 

the machine decides specific movements of its actuators. 

 

Task-level autonomy. The operator specifies only the task and the 

robot manages itself to complete it. 

 

Full autonomy.  The machine will create and complete all its tasks 

without human interaction. 

 

3.9 Robotics Research 
 

Much of the research in robotics focuses not on specific industrial tasks, 

but on investigations into new types of robots, alternative ways to think 

about or design robots, and new ways to manufacture them but other 

investigations, such as MIT's cyberflora project, are almost wholly 

academic. 

 

A first particular new innovation in robot design is the opensourcing of 

robot-projects. To describe the level of advancement of a robot, the term 

"Generation Robots" can be used. This term is coined by Professor Hans 

Moravec, Principal Research Scientist at the Carnegie Mellon 

University Robotics Institute in describing the near future evolution of 

robot technology. First generation robots, Moravec predicted in 1997, 
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should have an intellectual capacity comparable to perhaps a lizard and 

should become available by 2010. Because the first generation robot 

would be incapable of learning, however, Moravec predicts that the 

second generation robot would be an improvement over the first and 

become available by 2020, with intelligence maybe comparable to that 

of a mouse. The third generation robot should have intelligence 

comparable to that of a monkey. Though fourth generation robots, 

robots with human intelligence, professor Moravec predicts, would 

become possible, he does not predict this happening before around 2040 

or 2050. 

 

The second is Evolutionary Robots. This is a methodology that uses 

evolutionary computation to help design robots, especially the body 

form, or motion and behavior controllers. In a similar way to natural 

evolution, a large population of robots is allowed to compete in some 

way, or their ability to perform a task is measured using a fitness 

function. Those that perform worst are removed from the population, 

and replaced by a new set, which have new behaviors based on those of 

the winners. Over time the population improves, and eventually a 

satisfactory robot may appear. This happens without any direct 

programming of the robots by the researchers. Researchers use this 

method both to create better robots, and to explore the nature of 

evolution. Because the process often requires many generations of 

robots to be simulated, this technique may be run entirely or mostly in 

simulation, then tested on real robots once the evolved algorithms are 

good enough. Currently, there are about 1 million industrial robots 

toiling around the world, and Japan is the top country having high 

density of utilizing robots in its manufacturing industry. 

 

3.9.1 Dynamics and Kinematics 
 

The study of motion can be divided into kinematics and dynamics. 

Direct kinematics refers to the calculation of end effector position, 

orientation, velocity, and acceleration when the corresponding joint 

values are known. Inverse kinematics refers to the opposite case in 

which required joint values are calculated for given end effector values, 

as done in path planning. Some special aspects of kinematics include 

handling of redundancy (different possibilities of performing the same 

movement), collision avoidance, and singularity avoidance. Once all 

relevant positions, velocities, and accelerations have been calculated 

using kinematics, methods from the field of dynamics are used to study 

the effect of forces upon these movements. Direct dynamics refers to the 

calculation of accelerations in the robot once the applied forces are 

known. Direct dynamics is used in computer simulations of the robot. 

Inverse dynamics refers to the calculation of the actuator forces 
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necessary to create a prescribed end effector acceleration. This 

information can be used to improve the control algorithms of a robot. 

In each area mentioned above, researchers strive to develop new 

concepts and strategies, improve existing ones, and improve the 

interaction between these areas. To do this, criteria for "optimal" 

performance and ways to optimize design, structure, and control of 

robots must be developed and implemented. 

 

3.10 Education and Training 
 

Figure 12:   The SCORBOT-ER 4u - educational robot. 

 

Robots recently became a popular tool in raising interests in computing 

for middle and high school students. First year computer science courses 

at several universities were developed which involves the programming 

of a robot instead of the traditional software engineering based 

coursework. 

 

3.10.1 Career training 
 

Universities offer Bachelors, Masters and Doctoral degrees in the field 

of robotics. Select Private Career Colleges and vocational schools offer 

robotics training to train individuals towards being job ready and 

employable in the emerging robotics industry. 
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3.10.2 Certification 
 

The Robotics Certification Standards Alliance (RCSA) is an 

international robotics certification authority who confers various 

industry and educational related robotics certifications. 

 

3.11 Employment 
 

Figure 13: A robot technician builds small all-terrain robots. 

(Courtesy: MobileRobots Inc) 

 
 

Robotics is an essential component in any modern manufacturing 

environment. As factories increase their use of robots, the number of 

robotics related jobs grow and have been observed to be on a steady rise. 

 

3.11.1 Effects on Unemployment 
 

Some analysts, such as Martin Ford, argue that robots and other forms of 

automation will ultimately result in significant unemployment as 

machines begin to match and exceed the capability of workers to 

perform most jobs. At present the negative impact is only on menial and 

repetitive jobs, and there is actually a positive impact on the number of 

jobs for highly skilled technicians, engineers, and specialists. However, 

these highly skilled jobs are not sufficient in number to offset the greater 

decrease in employment among the general population, causing 

structural unemployment in which overall (net) unemployment rises. 

 

As robotics and artificial intelligence develop further, some worry even 

many skilled jobs may be threatened. In conventional economic theory 

this should merely cause an increase in the productivity of the involved 

industries, resulting in higher demand for other goods, and hence higher 

labour demand in these sectors, off-setting whatever negatives are 

caused. Conventional theory describes the past well but may not 
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describe the future due to shifts in the parameter values that shape the 

context. 

4.0 CONCLUSION 

Robotics is an essential component in any modern manufacturing 

environment. As factories increase their use of robots, the number of 

robotics related jobs grow and have been observed to be on a steady rise. 

As robotics and artificial intelligence develop further, some worry even 

many skilled jobs may be threatened. 

5.0 SUMMARY 

In this unit, you learnt: 

 Robots and Types of Robots

 History of Robots

 Components of Robots

 Robotics research

 Education and training

 Robots and Employment.

6.0 TUTOR-MARKED ASSIGNMENT 

1. Explain the word Robotics. 

2. List five (5) areas where Robots can be used. 

3. List three (3) areas where Robots can be used for now. 
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