

 NATIONAL OPEN UNIVERSITY OF NIGERIA

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

COURSE CODE: CIT478

COURSE TITLE: ARTIFICIAL INTELLIGENCE

CIT478 COURSE GUIDE

ii

CIT478

ARTIFICIAL INTELLIGENCE

Course Team Dr. J.N. Ndunagu (Developer/Writer) - NOUN

Dr. J.N. Ndunagu (Coordinator) - NOUN

COURSE

GUIDE

CIT478 COURSE GUIDE

iii

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT478 COURSE GUIDE

iv

National Open University of Nigeria

Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

No. 5 Dar es Salaam Street

Off Aminu Kano Crescent

Wuse II, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published By:

National Open University of Nigeria

First Printed 2012

Reviewed and Reprinted 2021

ISBN: 978-058-826-4

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT478 COURSE GUIDE

v

CONTENTS PAGE

Introduction… ... 1

What You Will Learn in This Course… ... 1

Course Aim .. 2

Course Objectives… .. 2

Working through This Course… ... 3

Course Materials… ... 3

Study Units… ... 4

Textbooks and References .. 4

Assignment File… .. 9

Presentation Schedule… ... 9

Assessment… .. 9

Tutor Marked Assignments (TMAs)… ... 10

Final Examination and Grading….. 10

Course Marking Scheme .. 10

Course Overview… .. 11

How to Get the Most from This Course ... 12

Facilitators/Tutors and Tutorials… .. 13

Introduction

Welcome to CIT478 Artificial Intelligence which is a two credit unit

course offered in the fourth year to students of the undergraduate degree

programme in Communication Technology and Computer Science.

There are eleven study Units in this course. There are no prerequisites

for studying this course. It has been developed with appropriate local

and foreign examples suitable for audience.

This course guide is for distance learners enrolled in the B.Sc.

Communication Technology and Computer Science programmes of the

National Open University of Nigeria. This guide is one of the several

resource tools available to you to help you successfully complete this

course and ultimately your programme.

In this guide you will find very useful information about this course,

aims and objectives, what the course is about, what course materials you

will be used, available services to support your learning, information on

assignments and examination. It also offers you guidelines on how to

plan your time for study the amount of time you are likely to spend on

each study unit as well as your tutor-marked assignments.

I strongly recommend that you go through this course guide and

complete the feedback form at the end before you begin studying the

course. The feedback form must be submitted to your tutorial facilitator

along with your first assignment.

I wish you all the best in your learning experience and successful

completion of this course.

What You Will Learn in This Course

The overall aim of this course, CIT478 is to introduce you to artificial

Intelligence and the different faculties involved in it. It also examines

different ways of approaching AI. It starts with the basics and then

moves on to the more advanced concepts. The Search in artificial

Intelligence - State Space Search, uninformed Search, informed Search

Strategies and tree Search are also treated. You will also learn about

Knowledge Representation and programming languages for AI. Finally,

CIT478 ARTIFICIAL INTELLIGENCE

ii

you will be introduced to Artificial Intelligence and its applications –

Expert System and Robotics.

Course Aim

This course aims at introducing you to Artificial Intelligent (AI),

different types of intelligent agents (IA) and types of AI search. You are

not expected to have experience in Artificial Intelligent before using this

course material. It is hoped that the knowledge would help you solve

some real world problems.

Course Objectives

In order to achieve this aim, the course has a set of objectives. Each unit

has specific objectives which are included at the beginning of the unit.

You are expected to read these objectives before you study the unit. You

may wish to refer to them during your study to check on your progress.

You should always look at the unit objectives after completion of each

unit. By doing so, you would have followed the instructions in the unit.

Below are the comprehensive objectives of the course as a whole. By

meeting these objectives, you should have achieved the aim of the

course. Therefore, after going through this course you should be able to:

 State the definition of Artificial Intelligence

 List the different faculties involved with intelligent behavior

 Explain the different ways of approaching AI

 Look at some example systems that use AI

 Describe the history of AI

 Explain what an agent is and how it interacts with the
environment.

 Identify the percepts available to the agent and the actions that
the agent can execute, if given a problem situation

 Measure the performance used to evaluate an agent

 State based agents

 Identify the characteristics of the environment

 Describe the state space representation.

 Describe Some algorithms

CIT478 ARTIFICIAL INTELLIGENCE

iii

 Formulate, when given a problem description, the terms of a
state space search problem

 Analyze the properties of Some algorithms

 Analyze a given problem and identify the most suitable search
strategy for the problem.

 Solve Some Simple problems
 Explain Uninformed Search

 List two types of Uninformed Search

 Describe Depth First and Breadth First Search

 Solve simple problems on Uninformed Search

 Explain informed Search

 Mention other names of informed Search

 Describe Best-first Search

 Describe Greedy Search
 Solve simple problems on informed Search

 Describe a Game tree

 Describe Some Two-Player Games Search Algorithms

 Explain Intelligent Backtracking

 Solve Some Simple problems on tree search.
 Explain the meaning of Knowledge Representation

 Describe the history of History of knowledge representation

and reasoning

 List some Characteristics of KR

 List 4 main features of KR language

 Describe the History of IPL

 Discuss the similarities between Lisp and Prolog Programming

 list the areas where Lisp can be used

 Describe the history of natural language processing

 List major tasks in NLP

 Mention different types of evaluation of NPL

 Explain an Expert System

Distinction between expert systems and traditional problem

solving programs

 Explain the term ―Knowledge Base‖

 Explain the word Robotics

 List 4 types of Robotics you know

 Describe the history of Robotics

Working through This Course

CIT478 ARTIFICIAL INTELLIGENCE

iv

To complete this course, you are required to read each study unit, read

the textbooks and read other materials which may be provided by the

National Open University of Nigeria.

Each unit contains tutor marked assignments and at certain points in the

course you would be required to submit assignment for assessment

purposes. At the end of the course there is a final examination. The

course should take you about a total of eleven (11) weeks to complete.

Below is the list of all the components of the course, what you have to

do and how you should allocate your time to each unit in order to

complete the course on time and successfully.

This course entails that you spend a lot of time to read and practice. For

easy understanding of this course, I will advise that you avail yourself

the opportunity of attending the tutorials sessions where you would have

the opportunity to compare your knowledge with that of other people,

and also have your questions answered.

The Course Material

The main components of this course are:

1. The Course Guide

2. Study Units

3. Further Reading/References

4. Assignments

5. Presentation Schedule

Study Units

There are 11 study units and 4 modules in this course. They are:

Module 1 Introduction to AI

Unit 1 What is Artificial Intelligent (AI)?
Unit 2 Introduction to Intelligent Agent (IA)

Module 2 Search in Artificial Intelligence

Unit 1 Introduction to State Space Search
Unit 2 Uninformed Search

CIT478 ARTIFICIAL INTELLIGENCE

v

Unit 3 Informed Search Strategies
Unit 4 Tree Search

Module 3 Artificial Intelligence Techniques in

Programming and Natural Languages

Unit 1 Knowledge Representation

Unit 2 Programming Languages for Artificial

Intelligence

Unit 3 Natural Language Processing

Module 4 Artificial Intelligence and Its Applications

Unit 1 Expert System

Unit 2 Robotics

Textbooks and References

These texts will be of enormous benefit to you in learning this course:

Adrian Walker; Michael McCord; John F. Sowa and Walter G. Wilson

(1990). Knowledge Systems and Prolog (Second Edition).

Addison-Wesley.

Argumentation in Artificial Intelligence by Iyad Rahwan, Guillermo R.

Simari

Arthur B. Markman (1998). Knowledge Representation. Lawrence

Erlbaum Associates.

Asimov, Isaac (1996) [1995]. "The Robot Chronicles". Gold. London:

Voyager. pp. 224–225. ISBN 0-00-648202-3.

Bates, M. (1995). Models of Natural Language Understanding.

Proceedings of the National Academy of Sciences of the United

States of America, Vol. 92, No. 22 (Oct. 24, 1995), pp. 9977–

9982.

CIT478 ARTIFICIAL INTELLIGENCE

vi

Bowling, M. and Veloso, M. (2002). Multiagent Learning Using a
Variable Learning Rate Artificial Intelligence, 136(2): 215-250.

Chein, M. & Mugnier, M.-L. (2009). Graph-based Knowledge

Representation: Computational Foundations of Conceptual

Graphs, Springer, 2009,ISBN 978-1-84800-285-2.

Christopher D. Manning, Hinrich Schütze (1999). Foundations of

Statistical Natural Language Processing, MIT Press, ISBN 978-0-

262-13360-9, p. Xxxi.

Crane, Carl D.; Joseph Duffy (1998-03). Kinematic Analysis of Robot

Manipulators. Cambridge University Press. ISBN 0521570638.

http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521

570638.

Crevier, Daniel (1993). AI: The Tumultuous Search for Artificial

Intelligence. New York, NY: Basic Books, ISBN 0-465-02997-3.

Davis, R. Shrobe, H.E. Representing Structure and Behavior of Digital

Hardware, IEEE Computer, Special Issue on Knowledge

Representation, 16(10):75-82.

Dechter, Rina; Judea Pearl (1985). "Generalized best-first search

strategies and the optimality of A*". Journal of the ACM 32 (3):

505–536. doi:10.1145/3828.3830.

Dowe, D.L. and Hajek, A. R. (1997). "A Computational Extension to

the Turing Test". Proceedings of the 4th Conference of the

Australasian Cognitive Science jSociety.

http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-

abs.html.

Hermann Helbig: Knowledge Representation and the Semantics of

Natural Language. Springer, Berlin, Heidelberg, New York 2006

Jean-Luc Hainaut, Jean-Marc Hick, Vincent Englebert, Jean Henrard,

Didier Roland: Understanding Implementations of IS-A

Relations. ER 1996: 42-57

http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521
http://www.csse.monash.edu.au/publications/1997/tr-cs97-322-

CIT478 ARTIFICIAL INTELLIGENCE

vii

Jeen Broekstraa, Michel Klein, Stefan Deckerc, Dieter Fenselb, Frank

van Harmelenb and Ian Horrocks Enabling knowledge

representation on the Web by extending RDF Schema, , April 16

2002.

John F. Sowa (2000). Knowledge Representation: Logical,

Philosophical, and Computational Foundations. New York:

Brooks/Cole.

John McCarthy (1979). History of Lisp "LISP prehistory - Summer 1956

through Summer 1958."

Jose H. (2000). "Beyond the Turing Test". Journal of Logic, Language

and Information 9 (4): 447–466. doi:10.1023/A:1008367325700.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.894

3.

Koenig, Sven; Maxim Likhachev, Yaxin Liu, David Furcy (2004).

"Incremental heuristic search in AI". AI Magazine 25 (2): 99–

112. http://portal.acm.org/citation.cfm?id=1017140.

Lowerre, Bruce (1976). "The Harpy Speech Recognition System", Ph.D.

thesis, Carnegie Mellon University.

Marakas, George. Decision Support Systems in the 21st Century.

Prentice Hall, 1999, p.29.

McCarthy, John (November 12, 2007). "What Is Artificial

Intelligence?". http://www-formal.stanford.edu/jmc/whatisai/

whatisai.html

Michael Wooldridge, An Introduction to Multiagent Systems, John

Wiley & Sons, Ltd.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto,

California: Tioga Publishing Company. ISBN 0-935382-01-1.

Nilsson, Nils (1998). Artificial Intelligence: A New Synthesis, Morgan

Kaufmann Publishers, ISBN 978-1-55860-467-4.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.894
http://portal.acm.org/citation.cfm?id=1017140
http://www-formal.stanford.edu/jmc/whatisai/

CIT478 ARTIFICIAL INTELLIGENCE

viii

Nishibori; et al. (2003). Robot Hand with Fingers Using Vibration-Type

Ultrasonic Motors (Driving Characteristics). Journal of Robotics

and Mechatronics. http://www.fujipress.jp/finder/xslt.php?mode=

present&inputfile=ROBOT001500060002.xml.

OWL DL Semantics. http://www.obitko.com/tutorials/ontologies-

semantic-web/owl-dl-semantics.html.

Park; et al. (2005). Synthetic Personality in Robots and Its Effect on

Human-Robot Relationship.

Pearl, Judea (1984). Heuristics: Intelligent Search Strategies for

Computer Problem Solving. Addison-Wesley Longman

Publishing Co., Inc.. ISBN 0-201-05594-5.

Philippe Martin "Knowledge representation in RDF/XML, KIF, Frame-

CG and Formalized-English", , Distributed System Technology

Centre, QLD, Australia, July 15-19, 2002

Poole, David; Mackworth, Alan; Goebel, Randy (1998). Computational

Intelligence: A Logical Approach. New York: Oxford University

Press, ISBN 0195102703, http://www.cs.ubc.ca/spider/poole/

ci.html

Pople H, Heuristic Methods for Imposing Structure on Ill-Structured

Problems, in AI in Medicine, Szolovits (ed.). AAAS Symposium

51, Boulder: Westview Press.

Randall Davis, Howard Shrobe, and Peter Szolovits; What Is a

Knowledge Representation? AI Magazine, 14(1):17-33,1993

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, Moshe Y. Vardi

Reasoning About Knowledge. MIT Press, 1995, ISBN 0-262-

06162-7.

Ronald J. Brachman, Hector J. Levesque (eds) Readings in Knowledge

Representation, Morgan Kaufmann, 1985, ISBN 0-934613-01-X

http://www.fujipress.jp/finder/xslt.php?mode
http://www.obitko.com/tutorials/ontologies-
http://www.cs.ubc.ca/spider/poole/

CIT478 ARTIFICIAL INTELLIGENCE

ix

Ronald J. Brachman, Hector J. Levesque Knowledge Representation and

Reasoning, Morgan Kaufmann, 2004 ISBN 978-1-55860-932-7

Ronald J. Brachman; What IS-A is and Isn't. An Analysis of Taxonomic

Links in Semantic Networks; IEEE Computer, 16 (10); October

1983.

Rosheim, Mark E. (1994). Robot Evolution: The Development of

Anthrobotics. Wiley-IEEE. pp. 9–10. ISBN 0471026220.

Russell, S. J.; Norvig, P. (2003). Artificial Intelligence: A Modern

Approach. Upper Saddle River, N.J.: Prentice Hall. pp. 97–104.

ISBN 0-13-790395-2.

Russell, Stuart J.; Norvig, Peter (2003). Artificial Intelligence: A

Modern Approach (2nd ed.), Upper Saddle River, New Jersey:

Prentice Hall, ISBN 0-13-790395-2, http://aima.cs.berkeley.edu/

Russell, Stuart J.; Norvig, Peter (2003). Artificial Intelligence: A

Modern Approach (2nd ed.), Upper Saddle River, New Jersey:

Prentice Hall, pp. 111–114, ISBN 0-13-790395-2

Russell, Stuart J.; Norvig, Peter (2003). Artificial Intelligence: A

Modern Approach (2nd ed.). Upper Saddle River, New Jersey:

Prentice Hall, ISBN 0-13-790395-2, http://aima.cs.berkeley.edu/

Russell, Stuart J.; Norvig, Peter (2010). Artificial Intelligence: A

Modern Approach (3rd ed.), Upper Saddle River, New Jersey:

Prentice Hall, ISBN 0-13-604259-7, p. 437-439.

Sebesta, Robert W. (1996). Concepts of Programming Languages,

(Third Edition). Addison-Wesley Publishing Company, Menlo

Park, California.

Serenko, Alexander; Detlor, Brian (2004). "Intelligent agents as

innovations". AI and Society 18 (4): 364–381.
doi:10.1007/s00146-004-0310-5. http://foba.lakeheadu.ca/
serenko/papers/Serenko_Detlor_AI_and_Society.pdf

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/
http://foba.lakeheadu.ca/

CIT478 ARTIFICIAL INTELLIGENCE

x

Serenko, Alexander; Ruhi, Umar; Cocosila, Mihail (2007). "Unplanned

effects of intelligent agents on Internet use: Social Informatics

approach". AI and Society 21 (1–2): 141–166.

doi:10.1007/s00146-006-0051-8.

http://foba.lakeheadu.ca/serenko/papers/AI_Society_Serenko_So

cial_Impacts_of_Agents.pdf

Shapiro, Stuart C. (1992). "Artificial Intelligence". In Shapiro, Stuart C..

Encyclopedia of Artificial Intelligence (2nd ed.). New York: John

Wiley. pp. 54–57. ISBN 0471503061.

http://www.cse.buffalo.edu/~shapiro/Papers/ai.pdf.

Skillings, J. (2006). "Getting Machines to Think Like Us". cnet.

http://news.cnet.com/Getting-machines-to-think-like-us/2008-

11394_3-6090207.html.

Stuart Russell; Peter Norvig (2010). Artificial Intelligence: A Modern

Approach (3 ed.). Prentice Hall. ISBN 978-0-13-6042594

Turing, Alan (1950), "Computing Machinery and Intelligence", Mind

LIX (236): 433–460, doi:10.1093/mind/LIX.236.433, ISSN

0026-4423, http://loebner.net/Prizef/TuringArticle.html.

Yucong Duan, Christophe Cruz (2011). Formalizing Semantic of

Natural Language through Conceptualization from Existence.

International Journal of Innovation, Management and

Technology (2011) 2 (1), pp. 37-42.

Zhou, Rong. Hansen, Eric (2005). "Beam-Stack Search: Integrating

Backtracking with Beam Search".

http://www.aaai.org/Library/ICAPS/2005/icaps05-010.php

Assignment File

The assignment file will be given to you in due course. In this file, you
will find all the details of the work you must submit to your tutor for
marking. The marks you obtain for these assignments will count
towards the final mark for the course. Altogether, there are 11 tutor
marked assignments for this course.

http://foba.lakeheadu.ca/serenko/papers/AI_Society_Serenko_So
http://www.cse.buffalo.edu/~shapiro/Papers/ai.pdf
http://news.cnet.com/Getting-machines-to-think-like-us/2008-
http://loebner.net/Prizef/TuringArticle.html
http://www.aaai.org/Library/ICAPS/2005/icaps05-010.php

CIT478 ARTIFICIAL INTELLIGENCE

xi

Presentation Schedule

The presentation schedule included in this course guide provides you
with important dates for completion of each tutor marked assignment.
You should therefore endeavor to meet the deadlines.

Assessment

There are two aspects to the assessment of this course. First, there are

tutor marked assignments; and second, the written examination.

Therefore, you are expected to take note of the facts, information and

problem solving gathered during the course. The tutor marked

assignments must be submitted to your tutor for formal assessment, in

accordance to the deadline given. The work submitted will count for

40% of your total course mark. At the end of the course, you will need

to sit for a final written examination. This examination will account for

60% of your total score.

Tutor-Marked Assignments (TMAs)

There are 11 TMAs in this course. You need to submit all the TMAs. The
best 4 will therefore be counted. When you have completed each
assignment, send them to your tutor as soon as possible and make
certain that it gets to your tutor on or before the stipulated deadline. If
for any reason you cannot complete your assignment on time, contact
your tutor before the assignment is due to discuss the possibility of
extension. Extension will not be granted after the deadline, unless on
extraordinary cases.

Final Examination and Grading

The final examination for CIT478 will be of last for a period of 2 hours
and have a value of 60% of the total course grade. The examination will
consist of questions which reflect the tutor marked assignments that
you have previously encountered. Furthermore, all areas of the course
will be examined. It would be better to use the time between finishing
the last unit and sitting for the examination, to revise the entire course.
You might find it useful to review your TMAs and comment on them
before the examination. The final examination covers information from
all parts of the course.

Course Marking Scheme

CIT478 ARTIFICIAL INTELLIGENCE

xii

The following table includes the course marking scheme

Table 1: Course Marking Scheme
Assessment Marks

Assignments 1-11 11 assignments, 40% for the
best 4 Total = 10% X 4 = 40%

Final Examination 60% of overall course marks

Total 100% of Course Marks

Course Overview

This table indicates the units, the number of weeks required to
complete them and the assignments.

Table 2: Course Organizer

How to Get the Best from This Course

Unit Title of the work Weeks

Activity

Assessment

(End of Unit)

 Course Guide Week 1

Module 1 Introduction to AI

1 What Is AI? Week 1 Assessment 1

2 Introduction to Agent Week 2 Assessment 2

Module 2 Search in Artificial Intelligence

1 Introduction to State Space Search Week 3 Assessment 3

2 Uninformed Search Week 4 Assessment 4

3 - Informed Search Strategies Week 5 Assessment 5

4 Tree Search Week 6 Assessment 6

Module 3 Knowledge Representation and Programming Languages for

AI

1 Knowledge Representation Week 7 Assessment 7

2 Programming Languages for Artificial

Intelligence

Week 8 Assessment 8

3 – Natural Language Processing Week 9 Assessment 9

Module 4 Artificial Intelligence and the Future

1 Expert System Week 10 Assessment 10

2 Robotics Week 11 Assessment 11

CIT478 ARTIFICIAL INTELLIGENCE

xi

ii

In distance learning, the study units replace the university lecturer. This

is one of the great advantages of distance learning; you can read and

work through specially designed study materials at your own pace, and

at a time and place that suit you best. Think of it as reading the lecture

instead of listening to a lecturer. In the same way that a lecturer might

set you some reading to do, the study units tell you when to read your

set books or other material. Just as a lecturer might give you an in-class

exercise, your study units provide exercises for you to do at appropriate

points.

Each of the study units follows a common format. The first item is an

introduction to the subject matter of the unit and how a particular unit is

integrated with the other units and the course as a whole. Next is a set of

learning objectives. These objectives enable you know what you should

be able to do by the time you have completed the unit. You should use

these objectives to guide your study. When you have finished the units

you must go back and check whether you have achieved the objectives.

If you make a habit of doing this you will significantly improve your

chances of passing the course.

Remember that your tutor‘s job is to assist you. When you need help,

don‘t hesitate to call and ask your tutor to provide it.

 Read this Course Guide thoroughly.

 Organize a study schedule. Refer to the ‗Course Overview‘ for

more details.

Note the time you are expected to spend on each unit and how the

assignments relate to the units. Whatever method you chose to use, you

should decide on it and write in your own dates for working on each

unit.

 Once you have created your own study schedule, do everything

you can to stick to it. The major reason that students fail is that

they lag behind in their course work.

 Turn to Unit 1 and read the introduction and the objectives for the

unit.

 Assemble the study materials. Information about what you need

for a unit is given in the ‗Overview‘ at the beginning of each unit.

You will almost always need both the study unit you are working

on and one of your set of books on your desk at the same time.

CIT478 ARTIFICIAL INTELLIGENCE

xiv

 Work through the unit. The content of the unit itself has been

arranged to provide a sequence for you to follow. As you work

through the unit you will be instructed to read sections from your

set books or other articles. Use the unit to guide your reading.

 Review the objectives for each study unit to confirm that you

have achieved them. If you feel unsure about any of the

objectives, review the study material or consult your tutor.

 When you are confident that you have achieved a unit‘s

objectives, you can then start on the next unit. Proceed unit by

unit through the course and try to pace your study so that you

keep yourself on schedule.

 When you have submitted an assignment to your tutor for

marking, do not wait for its return before starting on the next unit.

Keep to your schedule. When the assignment is returned, pay

particular attention to your tutor‘s comments on the tutor-marked

assignment form. Consult your tutor as soon as possible if you

have any questions or problems.

 After completing the last unit, review the course and prepare

yourself for the final examination. Check that you have achieved

the unit objectives (listed at the beginning of each unit) and the

course objectives (listed in this Course Guide).

Facilitators/Tutors and Tutorials

There are 11 hours of tutorials provided in support of this course. You

will be notified of the dates, times and location of these tutorials,

together with the name and phone number of your tutor, as soon as you

are allocated a tutorial group.

 Your tutor will mark and comment on your assignments, keep a

close watch on your progress and on any difficulties you might

encounter and provide assistance to you during the course. You

must mail or submit your tutor-marked assignments to your tutor

well before the due date (at least two working days are required).

They will be marked by your tutor and returned to you as soon as

possible.

 Do not hesitate to contact your tutor by telephone, or e-mail if

you need help. The following might be circumstances in which

you would find help necessary.

Contact your tutor if:

CIT478 ARTIFICIAL INTELLIGENCE

xv

 You do not understand any part of the study units or the assigned

readings

 You have a question or problem with an assignment, with your

tutor‘s comments on an assignment or with the grading of an

assignment.

You should try your best to attend the tutorials. This is the only chance
to have face to face contact with your tutor and to ask questions which
are answered instantly. You can raise any problem encountered in the
course of your study. To gain the maximum benefit from course
tutorials, prepare a question list before attending them. You will learn a
lot from participating in discussions actively. GOODLUCK!

CIT478 ARTIFICIAL INTELLIGENCE

xvi

Course Code CIT478

Course Title Artificial Intelligence

Course Team Dr. J.N. Ndunagu (Developer/Writer) - NOUN

Dr. J.N. Ndunagu (Coordinator) - NOUN

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT478 ARTIFICIAL INTELLIGENCE

xv

ii

National Open University of Nigeria

Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

No. 5 Dar es Salaam Street

Off Aminu Kano Crescent

Wuse II, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published By:

National Open University of Nigeria

First Printed 2012

ISBN: 978-058-826-4

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT478 ARTIFICIAL INTELLIGENCE

xviii

CONTENTS PAGE

Module 1 Introduction to AI .. 1

Unit 1 What is Artificial Intelligent (AI)? 1

Unit 2 Introduction to Intelligent Agent (IA) 13

Module 2 Search in Artificial Intelligence 24

Unit 1 Introduction to State Space Search 24

Unit 2 Uninformed Search .. 42

Unit 3 Informed Search Strategies .. 53

Unit 4 Tree Search ... 72

Module 3 Artificial Intelligence Techniques in

Programming and Natural Languages 81

Unit 1 Knowledge Representation .. 81

Unit 2 Programming Languages for Artificial Intelligence 100

Unit 3 Natural Language Processing ..115

Module 4 Artificial Intelligence and its Applications 128

Unit 1 Expert System ... 128

Unit 2 Robotics .. 142

CIT478 ARTIFICIAL INTELLIGENCE

1

MODULE 1 INTRODUCTION TO AI

Unit 1 What Is Artificial Intelligent (AI)?

Unit 2 Introduction to Intelligent Agent (IA)

UNIT 1 WHAT IS ARTIFICIAL INTELLIGENT (AI)?

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Definition of AI

3.1.1 What is AI?

3.1.2 Typical AI problem

3.1.3 Practical Impact of AI

3.1.4 Approaches to AI

3.1.5 Limits of AI Today

3.2 AI History

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit introduces you to Artificial Intelligence and the different

faculties involve in it. It also examines different ways of approaching

AI.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 state the definition of Artificial Intelligence

 list the different faculties involved with intelligent behavior

 explain the different ways of approaching AI

 look at some example systems that use AI

 describe the history of AI.

CIT478 ARTIFICIAL INTELLIGENCE

2

3.0 MAIN CONTENT

3.1 Definition of AI

What is AI?

Artificial Intelligence is a branch of Science which deals with helping

machines find solutions to complex problems in a more human-like

fashion. This generally involves borrowing characteristics from human

intelligence, and applying them as algorithms in a computer friendly

way. A more or less flexible or efficient approach can be taken

depending on the requirements established, which influences how

artificial the intelligent behaviour appears.

AI is generally associated with Computer Science, but it has many

important links with other fields such as Mathematics, Psychology,

Cognition, Biology and Philosophy, among many others. Our ability to

combine knowledge from all these fields will ultimately benefit our

progress in the quest of creating an intelligent artificial being

It is also concerned with the design of intelligence in an artificial device.

The term was coined by McCarthy in 1956. There are two ideas in the

definition.

1. Intelligence
2. Artificial device

What is intelligence?

- Is it that which characterize humans? Or is there an absolute

standard of judgment?

- Accordingly there are two possibilities:

- A system with intelligence is expected to behave as intelligently

as a human

- A system with intelligence is expected to behave in the best

possible manner

- Secondly what type of behavior are we talking about?
- Are we looking at the thought process or reasoning ability of the

system?

- Or are we only interested in the final manifestations of the system

in terms of its actions?

Given this scenario different interpretations have been used by different

researchers as defining the scope and view of Artificial Intelligence.

1. One view is that artificial intelligence is about designing systems

that are as intelligent as humans. This view involves trying to

CIT478 ARTIFICIAL INTELLIGENCE

3

understand human thought and an effort to build machines that

emulate the human thought process. This view is the cognitive

science approach to AI.

2. The second approach is best embodied by the concept of the

Turing Test. Turing held that in future computers can be

programmed to acquire abilities rivaling human intelligence. As

part of his argument Turing put forward the idea of an 'imitation

game', in which a human being and a computer would be

interrogated under conditions where the interrogator would not

know which was which, the communication being entirely by

textual messages. Turing argued that if the interrogator could not

distinguish them by questioning, then it would be unreasonable

not to call the computer intelligent. Turing's 'imitation game' is

now usually called 'the Turing test' for intelligence.

Figure 1: Turing Test

Turing Test

Consider the following setting. There are two rooms, A and B. One of

the rooms contains a computer. The other contains a human. The

interrogator is outside and does not know which one is a computer. He

can ask questions through a teletype and receives answers from both A

CIT478 ARTIFICIAL INTELLIGENCE

4

and B. The interrogator needs to identify whether A or B are humans.

To pass the Turing test, the machine has to fool the interrogator into

believing that it is human. For more details on the Turing test visit the

site http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

3. Logic and laws of thought deals with studies of ideal or rational

thought process and inference. The emphasis in this case is on the

inferencing mechanism, and its properties. That is how the

system arrives at a conclusion, or the reasoning behind its

selection of actions is very important in this point of view. The

soundness and completeness of the inference mechanisms are

important here.

4. The fourth view of AI is that it is the study of rational agents.

This view deals with building machines that act rationally. The

focus is on how the system acts and performs, and not so much

on the reasoning process. A rational agent is one that acts

rationally, that is, is in the best possible manner.

3.1.2 Typical AI problems

While studying the typical range of tasks that we might expect an

―intelligent entity‖ to perform, we need to consider both ―common-

place‖ tasks as well as expert tasks.

Examples of common-place tasks include

- Recognizing people, objects.

- Communicating (through natural language).

- Navigating around obstacles on the streets

These tasks are done matter of firstly and routinely by people and some

other animals.

Expert tasks include:

• Medical diagnosis.

• Mathematical problem solving

• Playing games like chess

These tasks cannot be done by all people, and can only be performed by

skilled specialists.

Now, which of these tasks are easy and which ones are hard? Clearly

tasks of the first type are easy for humans to perform, and almost all are

able to master them. The second range of tasks requires skill

http://cogsci.ucsd.edu/~asaygin/tt/ttest.html

CIT478 ARTIFICIAL INTELLIGENCE

5

development and/or intelligence and only some specialists can perform

them well. However, when we look at what computer systems have been

able to achieve to date, we see that their achievements include

performing sophisticated tasks like medical diagnosis, performing

symbolic integration, proving theorems and playing chess.

On the other hand it has proved to be very hard to make computer

systems perform many routine tasks that all humans and a lot of animals

can do. Examples of such tasks include navigating our way without

running into things, catching prey and avoiding predators. Humans and

animals are also capable of interpreting complex sensory information.

We are able to recognize objects and people from the visual image that

we receive. We are also able to perform complex social functions.

Intelligent behaviour. This discussion brings us back to the question of

what constitutes intelligent behaviour. Some of these tasks and

applications are:

 Perception involving image recognition and computer vision

 Reasoning

 Learning

 Understanding language involving natural language processing,

speech processing

 Solving problems

 Robotics

3.1.3 Practical Impact of AI

AI components are embedded in numerous devices e.g. in copy

machines for automatic correction of operation for copy quality

improvement. AI systems are in everyday use for identifying credit card

fraud, for advising doctors, for recognizing speech and in helping

complex planning tasks. Then there are intelligent tutoring systems that

provide students with personalized attention

Thus AI has increased understanding of the nature of intelligence and

found many applications. It has helped in the understanding of human

reasoning, and of the nature of intelligence. It will also help you

understand the complexity of modeling human reasoning.

You can now look at a few famous AI systems.

CIT478 ARTIFICIAL INTELLIGENCE

6

1. ALVINN

Autonomous Land Vehicle in a Neural Network

In 1989, Dean Pomerleau at CMU created ALVINN. This is a system

which learns to control vehicles by watching a person drive. It contains

a neural network whose input is a 30x32 unit two dimensional camera

image. The output layer is a representation of the direction the vehicle

should travel.

The system drove a car from the East Coast of USA to the west coast, a

total of about 2850 miles. Out of this about 50 miles were driven by a

human being and the rest solely by the system.

2. Deep Blue

In 1997, the Deep Blue chess program created by IBM, beat the current

world chess champion, Gary Kasparov.

3. Machine translation

A system capable of translations between people speaking different

languages will be a remarkable achievement of enormous economic and

cultural benefit. Machine translation is one of the important fields of

endeavour in AI. While some translating systems have been developed,

there is a lot of scope for improvement in translation quality.

4. Autonomous agents

In space exploration, robotic space probes autonomously monitor their

surroundings, make decisions and act to achieve their goals.

NASA's Mars rovers successfully completed their primary three-month

missions in April, 2004. The Spirit rover had been exploring a range of

Martian hills that took two months to reach. It is finding curiously

eroded rocks that may be new pieces to the puzzle of the region's past.

Spirit's twin, Opportunity, had been examining exposed rock layers

inside a crater.

5. Internet Agents

The explosive growth of the internet has also led to growing interest in

internet agents to monitor users' tasks, seek needed information, and to

learn which information is most useful

CIT478 ARTIFICIAL INTELLIGENCE

7

3.1.4 Approaches to AI

Strong AI aims to build machines that can truly reason and solve

problems. These machines should be self aware and their overall

intellectual ability needs to be indistinguishable from that of a human

being. Excessive optimism in the 1950s and 1960s concerning strong AI

has given way to an appreciation of the extreme difficulty of the

problem. Strong AI maintains that suitably programmed machines are

capable of cognitive mental states.

Weak AI deals with the creation of some form of computer-based

artificial intelligence that cannot truly reason and solve problems, but

can act as if it were intelligent. Weak AI holds that suitably programmed

machines can simulate human cognition.

Applied AI aims to produce commercially viable "smart" systems such

as, security system that is able to recognise the faces of people who are

permitted to enter a particular building. Applied AI has already enjoyed

considerable success.

Cognitive AI: computers are used to test theories about how the human

mind works--for example, theories about how we recognise faces and

other objects, or about how we solve abstract problems.

3.1.5 Limits of AI Today

Today‘s successful AI systems operate in well-defined domains and

employ narrow, specialized knowledge. Common sense knowledge is

needed to function in complex, open-ended worlds. Such a system also

needs to understand unconstrained natural language. However these

capabilities are not yet fully present in today‘s intelligent systems.

 What can AI systems do?

Today‘s AI systems have been able to achieve limited success in some

of these tasks.

 In Computer vision, the systems are capable of face

recognition

 In Robotics, we have been able to make vehicles that are

mostly autonomous

 In Natural language processing, we have systems that are

capable of simple machine translation

 Today‘s Expert systems can carry out medical diagnosis in

a narrow domain

CIT478 ARTIFICIAL INTELLIGENCE

8

 Speech understanding systems are capable of recognizing

several thousand words continuous speech

 Planning and scheduling systems had been employed in

scheduling experiments with the Hubble Telescope

 The Learning systems are capable of doing text

categorization into about a 1000 topics

 In Games, AI systems can play at the Grand Master level

in chess (world champion), checkers, etc.

 What can AI systems NOT do yet?

 Understand natural language robustly (e.g., read and understand

articles in a newspaper)

 Surf the web

 Interpret an arbitrary visual scene

 Learn a natural language

 Construct plans in dynamic real-time domains

 Exhibit true autonomy and intelligence

3.2 AI History

Intellectual roots of AI date back to the early studies of the nature of

knowledge and reasoning. The dream of making a computer imitate

humans also has a very early history.

The concept of intelligent machines is found in Greek mythology. There
th

is a story in the 8 century A.D about Pygmalion Olio, the legendary
king of Cyprus. He fell in love with an ivory statue he made to represent

his ideal woman. The king prayed to the goddess Aphrodite, and the

goddess miraculously brought the statue to life. Other myths involve

human-like artifacts. As a present from Zeus to Europa, Hephaestus

created Talos, a huge robot. Talos was made of bronze and his duty was

to patrol the beaches of Crete.

Aristotle (384-322 BC) developed an informal system of syllogistic

logic, which is the basis of the first formal deductive reasoning system.

th

Early in the 17 century, Descartes proposed that bodies of animals are

nothing more than complex machines.

Pascal in 1642 made the first mechanical digital calculating machine.

In the 19
th

century, George Boole developed a binary algebra

representing (some) "laws of thought."

CIT478 ARTIFICIAL INTELLIGENCE

9

Charles Babbage & Ada Byron worked on programmable mechanical

calculating machines.

In the late 19th century and early 20th century, mathematical

philosophers like Gottlob Frege, Bertram Russell, Alfred North

Whitehead, and Kurt Gödel built on Boole's initial logic concepts to

develop mathematical representations of logic problems.

The advent of electronic computers provided a revolutionary advance in

the ability to study intelligence.

In 1943 McCulloch & Pitts developed a Boolean circuit model of brain.

They wrote the paper ―A Logical Calculus of Ideas Immanent in

Nervous Activity‖, which explained how it is possible for neural

networks to compute.

Marvin Minsky and Dean Edmonds built the SNARC in 1951, which is

the first randomly wired neural network learning machine (SNARC

stands for Stochastic Neural-Analog Reinforcement Computer).It was a

neural network computer that used 3000 vacuum tubes and a network

with 40 neurons.

In 1950 Turing wrote an article on ―Computing Machinery and

Intelligence‖ which articulated a complete vision of AI. For more on

Alan Turing see the site http://www.turing.org.uk/turing/ . Turing‘s

paper talked of many things, of solving problems by searching through

the space of possible solutions, guided by heuristics. He illustrated his

ideas on machine intelligence by reference to chess. He even

propounded the possibility of letting the machine alter its own

instructions so that machines can learn from experience.

In 1956 a famous conference took place in Dartmouth. The conference

brought together the founding fathers of artificial intelligence for the

first time. In this meeting the term ―Artificial Intelligence‖ was adopted.

Between 1952 and 1956, Samuel had developed several programs for

playing checkers. In 1956, Newell & Simon‘s Logic Theorist was

published. It is considered by many to be the first AI program. In 1959,

Gelernter developed a Geometry Engine. In 1961 James Slagle (PhD

dissertation, MIT) wrote a symbolic integration program SAINT. It was

written in LISP and solved calculus problems at the college freshman

level. In 1963, Thomas Evan's program Analogy was developed which

could solve IQ test type analogy problems.

http://www.turing.org.uk/turing/

CIT478 ARTIFICIAL INTELLIGENCE

10

In 1963, Edward A. Feigenbaum & Julian Feldman published

Computers and Thought, the first collection of articles about artificial

intelligence.

In 1965, J. Allen Robinson invented a mechanical proof procedure, the

Resolution Method, which allowed programs to work efficiently with

formal logic as a representation language. In 1967, the Dendral program

(Feigenbaum, Lederberg, Buchanan, Sutherland at Stanford) was

demonstrated which could interpret mass spectra on organic chemical

compounds. This was the first successful knowledge-based program for

scientific reasoning. In 1969 the SRI robot, Shakey, demonstrated

combining locomotion, perception and problem solving.

The years from 1969 to 1979 marked the early development of

knowledge-based systems

In 1974, MYCIN demonstrated the power of rule-based systems for

knowledge representation and inference in medical diagnosis and

therapy. Knowledge representation schemes were developed. These

included frames developed by Minski. Logic based languages like

Prolog and Planner were developed.

We will now mention a few of the AI systems that were developed over

the years.

The Meta-Dendral learning program produced new results in chemistry

(rules of mass spectrometry)

In the 1980s, Lisp Machines developed and marketed.

Around 1985, neural networks return to popularity.

In 1988, there was a resurgence of probabilistic and decision-theoretic

methods.

The early AI systems used general systems, little knowledge. AI

researchers realized that specialized knowledge is required for rich tasks

to focus reasoning.

The 1990's saw major advances in all areas of AI including the

following:

 Machine learning, data mining

 Intelligent tutoring,

 Case-based reasoning,

 Multi-agent planning, scheduling,

CIT478 ARTIFICIAL INTELLIGENCE

11

 Uncertain reasoning,

 Natural language understanding and translation,

 Vision, virtual reality, games, and other topics.

Rod Brooks' COG Project at MIT, with numerous collaborators, made

significant progress in building a humanoid robot.

The first official Robo-Cup soccer match featuring table-top matches

with 40 teams of interacting robots was held in 1997. For details, see the

site http://murray.newcastle.edu.au/users/students/2002/c3012299/bg.

html

In the late 90s, Web crawlers and other AI-based information extraction

programs become essential in widespread use of the world-wide-web.

Interactive robot pets ("smart toys") become commercially available,

realizing the vision of the 18th century novelty toy makers.

In 2000, the Nomad robot explores remote regions of Antarctica looking

for meteorite samples.

AI in the news

http://www.aaai.org/AITopics/html/current.html

4.0 CONCLUSION

Artificial intelligence (AI) is the intelligence of machines and the branch

of computer science that aims to create it. AI textbooks define the field

as "the study and design of intelligent agents" where an intelligent agent

is a system that perceives its environment and takes actions that

maximize its chances of success. John McCarthy, who coined the term

in 1956, defines it as "the science and engineering of making intelligent

machines."

The field was founded on the claim that a central property of humans,

intelligence—the sapience of Homo sapiens—can be so precisely

described that it can be simulated by a machine. This raises

philosophical issues about the nature of the mind and the ethics of

creating artificial beings, issues which have been addressed by myth,

fiction and philosophy since antiquity. Artificial intelligence has been

the subject of optimism, but has also suffered setbacks and, today, has

become an essential part of the technology industry, providing the heavy

lifting for many of the most difficult problems in computer science.

http://murray.newcastle.edu.au/users/students/2002/c3012299/bg
http://www.aaai.org/AITopics/html/current.html

CIT478 ARTIFICIAL INTELLIGENCE

12

5.0 SUMMARY

In this unit, you have learnt that:

 Artificial Intelligence is a branch of Science which deals with

helping machines find solutions to complex problems in a more

human-like fashion

 Typical AI problems

 AI History

 Limits of AI Today

6.0 TUTOR-MARKED ASSIGNMENT

1. Define intelligence.

2. What are the different approaches in defining artificial

intelligence?

3. List five tasks that you will like a computer to be able to do

within the next five years.

4. List five tasks that computers are unlikely to be able to do in the

next five years.

7.0 REFERENCES/FURTHER READING

Dowe D.L. & Hajek, A. R. (1997). "A Computational Extension to the

Turning Test". Proceedings of the 4th Conference of the

Australasian Cognitive Science Society. http://www.csse.monash.

edu.au/publications/1997/tr-cs97-322-abs.html.

Jose, H. (2000). "Beyond the Turing Test". Journal of Logic, Language

and Information 9 (4): 447–466. doi:10.1023/A:1008367325700.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.894

3.

McCarthy, J. (November 12, 2007). "What Is Artificial Intelligence? .

http://www-formal.stanford.edu/jmc/whatisai/whatisai.html

Shapiro, S. C. (1992). "Artificial Intelligence". In Shapiro, Stuart, C..

Encyclopedia of Artificial Intelligence (2nd ed.). New York: John

Wiley. pp. 54–57. ISBN 0471503061. http://www.cse.buffalo.

edu/~shapiro/Papers/ai.pdf.

Skillings, J. (2006). "Getting Machines to Think Like Us". cnet.

http://news.cnet.com/Getting-machines-to-think-like-us/2008-

11394_3-6090207.html.

Turing, Alan (1950), "Computing Machinery and Intelligence", Mind

LIX (236): 433–460, doi:10.1093/mind/LIX.236.433, ISSN

0026-4423, http://loebner.net/Prizef/TuringArticle.html.

http://www.csse.monash/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.894
http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
http://www.cse.buffalo/
http://news.cnet.com/Getting-machines-to-think-like-us/2008-
http://loebner.net/Prizef/TuringArticle.html

CIT478 ARTIFICIAL INTELLIGENCE

13

UNIT 2 INTRODUCTION TO INTELLIGENT AGENTS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1. Introduction to Agent

3.1.1 Agent Performance

3.1.2 Examples of Agents

3.1.3 Agent Faculties

3.1.4 Intelligent Agents

3.1.5 Rationality

3.1.6 Bound Rationality

3.2 Agent Environment

3.2.1 Observability

3.2.2 Determinism

3.2.3 Episodicity

3.2.4 Dynamism

3.2.5 Continuity

3.2.6 Presence of other Agents

3.3 Agent Architectures or Reflex Agent

3.3.1 Table Based Agent

3.3.2 Percept based

3.3.3 Subsumption Architecture

3.3.4 State-based Reflex Agent

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit introduces you to Intelligence Agents (IA), how it interacts

with the environment and Agent architectures. IA is an autonomous

entity which observes and acts upon an environment . It may use

knowledge to achieve their goals. They may be very simple or very

complex.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain what an agent is and how it interacts with the

environment.

CIT478 ARTIFICIAL INTELLIGENCE

14

 identify the percepts available to the agent and the actions that the

agent can execute, if given a problem situation

 measure the performance used to evaluate an agent

 list based agents

 identify the characteristics of the environment.

3.0 MAIN CONTENT

3.1 Introduction to Agent

An agent perceives its environment through sensors. The complete set of

inputs at a given time is called a percept. The current percept or a

sequence of percepts can influence the actions of an agent. The agent

can change the environment through actuators or effectors. An operation

involving an Effector is called an action. Actions can be grouped into

action sequences. The agent can have goals which it tries to achieve.

Thus, an agent can be looked upon as a system that implements a

mapping from percept sequences to actions.

A performance measure has to be used in order to evaluate an agent.

An autonomous agent decides autonomously which action to take in the

current situation to maximize progress towards its goals.

3.1.1 Agent Performance

An agent function implements a mapping from perception history to

action. The behaviour and performance of intelligent agents have to be

evaluated in terms of the agent function.

The ideal mapping specifies which actions an agent ought to take at any

point in time.

The performance measure is a subjective measure to characterize how

successful an agent is. The success can be measured in various ways. It

can be measured in terms of speed or efficiency of the agent. It can be

measured by the accuracy or the quality of the solutions achieved by the

agent. It can also be measured by power usage, money, etc.

3.1.2 Examples of Agents

1. Humans can be looked upon as agents. They have eyes, ears,

skin, taste buds, etc. for sensors; and hands, fingers, legs, mouth

for effectors.

CIT478 ARTIFICIAL INTELLIGENCE

15

2. Robots are agents. Robots may have camera, sonar, infrared,

bumper, etc. for sensors. They can have grippers, wheels, lights,

speakers, etc. for actuators. Some examples of robots are Xavier

from CMU, COG from MIT, etc.

Figure 2: Xavier Robot (CMU)

Then we have the AIBO entertainment robot from SONY.

Figure 3: Aibo from SONY

3. We also have software agents or softbots that have some

functions as sensors and some functions as actuators.

Askjeeves.com is an example of a softbot.

4. Expert systems like the Cardiologist are an agent.

5. Autonomous spacecrafts.

6. Intelligent buildings.

CIT478 ARTIFICIAL INTELLIGENCE

16

3.1.3 Agent Faculties

The fundamental faculties of intelligence are

 Acting

 Sensing

 Understanding, reasoning, learning

Blind action is not a characterization of intelligence. In order to act

intelligently, one must sense. Understanding is essential to interpret the

sensory percepts and decide on an action. Many robotic agents stress

sensing and acting, and do not have understanding.

3.1.4 Intelligent Agents

An Intelligent Agent must sense, must act, must be autonomous (to

some extent). It also must be rational.

AI is about building rational agents. An agent is something that

perceives and acts.

A rational agent always does the right thing.

1. What are the functionalities (goals)?

2. What are the components?

3. How do we build them?

3.1.5 Rationality

Perfect Rationality assumes that the rational agent knows all and will

take the action that maximizes her utility. Human beings do not satisfy

this definition of rationality.

Rational Action is the action that maximizes the expected value of the

performance measure given the percept sequence to date.

However, a rational agent is not omniscient. It does not know the actual

outcome of its actions, and it may not know certain aspects of its

environment. Therefore rationality must take into account the limitations

of the agent. The agent has too select the best action to the best of its

knowledge depending on its percept sequence, its background

knowledge and its feasible actions. An agent also has to deal with the

expected outcome of the actions where the action effects are not

deterministic.

CIT478 ARTIFICIAL INTELLIGENCE

17

3.1.6 Bounded Rationality

―Because of the limitations of the human mind, humans must use

approximate methods to handle many tasks.‖ Herbert Simon, 1972

Evolution did not give rise to optimal agents, but to agents which are in

some senses locally optimal at best. In 1957, Simon proposed the notion

of Bounded Rationality: that property of an agent that behaves in a

manner that is nearly optimal with respect to its goals as its resources

will allow.

Under these promises an intelligent agent will be expected to act

optimally to the best of its abilities and its resource constraints.

3.2 Agent Environment

Environments in which agents operate can be defined in different ways.

It is helpful to view the following definitions as referring to the way the

environment appears from the point of view of the agent itself.

3.2.1 Observability

In terms of observability, an environment can be characterized as fully

observable or partially observable.

In a fully observable environment, the entire environment relevant to the

action being considered is observable. In such environments, the agent

does not need to keep track of the changes in the environment. A chess

playing system is an example of a system that operates in a fully

observable environment.

In a partially observable environment, the relevant features of the

environment are only partially observable. A bridge playing program is

an example of a system operating in a partially observable environment.

3.2.2 Determinism

In deterministic environments, the next state of the environment is

completely described by the current state and the agent‘s action. Image

analysis

If an element of interference or uncertainty occurs then the environment

is stochastic. Note that a deterministic yet partially observable

environment will appear to be stochastic to the agent. Ludo

CIT478 ARTIFICIAL INTELLIGENCE

18

If the environment state is wholly determined by the preceding state and

the actions of multiple agents, then the environment is said to be

strategic. Example: Chess

3.2.3 Episodicity

An episodic environment means that subsequent episodes do not depend

on what actions occurred in previous episodes.

In a sequential environment, the agent engages in a series of connected

episodes.

3.2.4 Dynamism

Static Environment: does not change from one state to the next while the

agent is considering its course of action. The only changes to the

environment are those caused by the agent itself.

 A static environment does not change while the agent is thinking.

 The passage of time as an agent deliberates is irrelevant.

 The agent doesn‘t need to observe the world during deliberation.

A Dynamic Environment changes over time independent of the actions

of the agent -- and thus if an agent does not respond in a timely manner,

this counts as a choice to do nothing

3.2.5 Continuity

If the number of distinct percepts and actions is limited, the environment

is discrete, otherwise it is continuous.

3.2.6 Presence of Other agents

Single agent/ Multi-agent

A multi-agent environment has other agents. If the environment contains

other intelligent agents, the agent needs to be concerned about strategic,

game-theoretic aspects of the environment (for either cooperative or

competitive agents)

Most engineering environments do not have multi-agent properties,

whereas most social and economic systems get their complexity from

the interactions of (more or less) rational agents.

CIT478 ARTIFICIAL INTELLIGENCE

19

3.3 Agent architectures

3.3.1 Table Based Agent

In table based agent the action is looked up from a table based on

information about the agent‘s percepts. A table is simple way to specify

a mapping from percepts to actions. The mapping is implicitly defined

by a program. The mapping may be implemented by a rule based

system, by a neural network or by a procedure.

There are several disadvantages to a table based system. The tables may

become very large. Learning a table may take a very long time,

especially if the table is large. Such systems usually have little

autonomy, as all actions are pre-determined.

3.3.2 Percept based agent or reflex agent

In percept based agents,

1. information comes from sensors - percepts

2. changes the agents current state of the world

3. triggers actions through the effectors

Such agents are called reactive agents or stimulus-response agents.

Reactive agents have no notion of history. The current state is as the

sensors see it right now. The action is based on the current percepts

only.

The following are some of the characteristics of percept-based agents.

 Efficient

 No internal representation for reasoning, inference.

 No strategic planning, learning.

 Percept-based agents are not good for multiple, opposing, goals.

3.3.3 Subsumption Architecture

We will now briefly describe the subsumption architecture (Rodney

Brooks, 1986). This architecture is based on reactive systems. Brooks

notes that in lower animals there is no deliberation and the actions are

based on sensory inputs. But even lower animals are capable of many

complex tasks. His argument is to follow the evolutionary path and build

simple agents for complex worlds.

CIT478 ARTIFICIAL INTELLIGENCE

20

The main features of Brooks‘ architecture are.

 There is no explicit knowledge representation

 Behaviour is distributed, not centralized

 Response to stimuli is reflexive

 The design is bottom up, and complex behaviours are fashioned

from the combination of simpler underlying ones.

 Individual agents are simple

The Subsumption Architecture built in layers. There are different layers

of behaviour. The higher layers can override lower layers. Each activity

is modeled by a finite state machine.

The subsumption architecture can be illustrated by Brooks‘ Mobile

Robot example.

Figure 4: Subsumption Architecture

The system is built in three layers.

1. Layer 0: Avoid Obstacles

2. Layer1: Wander behaviour

3. Layer 2: Exploration behavior

Layer 0 (Avoid Obstacles) has the following capabilities:

 Sonar: generate sonar scan

 Collide: send HALT message to forward

 Feel force: signal sent to run-away, turn

CIT478 ARTIFICIAL INTELLIGENCE

21

Layer1 (Wander behaviour)

 Generates a random heading

 Avoid reads repulsive force, generates new heading, feeds to turn

and forward

Layer 2 (Exploration behaviour)

 Whenlook notices idle time and looks for an interesting place.

 Pathplan sends new direction to avoid.

 Integrate monitors path and sends them to the path plan.

3.3.4 State-Based Agent or Model-Based Reflex Agent

State based agents differ from percept based agents in that such agents

maintain some sort of state based on the percept sequence received so

far. The state is updated regularly based on what the agent senses, and

the agent‘s actions. Keeping track of the state requires that the agent has

knowledge about how the world evolves, and how the agent‘s actions

affect the world.

Thus a state based agent works as follows:

 information comes from sensors – percepts

 based on this, the agent changes the current state of the world

 based on state of the world and knowledge (memory), it triggers

actions through the effectors

3.3.5 Goal-based Agent

The goal based agent has some goal which forms a basis of its actions.

Such agents work as follows:

 information comes from sensors - percepts

 changes the agents current state of the world

 based on state of the world and knowledge (memory) and

goals/intentions, it chooses actions and does them through the

effectors.

Goal formulation based on the current situation is a way of solving

many problems and search is a universal problem solving mechanism in

AI. The sequence of steps required to solve a problem is not known a

priori and must be determined by a systematic exploration of the

alternatives.

CIT478 ARTIFICIAL INTELLIGENCE

22

3.3.6 Utility-based Agent

Utility based agents provide a more general agent framework. In case

that the agent has multiple goals, this framework can accommodate

different preferences for the different goals.

Such systems are characterized by a utility function that maps a state or

a sequence of states to a real valued utility. The agent acts so as to

maximize expected utility.

3.3.7 Learning Agent

Learning allows an agent to operate in initially unknown environments.

The learning element modifies the performance element. Learning is

required for true autonomy

4.0 CONCLUSION

In conclusion, an intelligent agent (IA) is an autonomous entity which

observes and acts upon an environment . Intelligent agents may also

learn or use knowledge to achieve their goals. They may be very simple

or very complex: a reflex machine such as a thermostat is an intelligent

agent, as is a human being, as is a community of human beings working

together towards a goal.

5.0 SUMMARY

In this unit, you have learnt that:

 AI is a truly fascinating field. It deals with exciting but hard

problems. A goal of AI is to build intelligent agents that act so as

to optimize performance.

 An agent perceives and acts in an environment that has

architecture, and is implemented by an agent program.

 An ideal agent always chooses the action which maximizes its

expected performance, given its percept sequence so far.

 An autonomous agent uses its own experience rather than built-in

knowledge of the environment by the designer.

 An agent program maps from percept to action and updates its

internal state.

 Reflex agents respond immediately to percepts.

 Goal-based agents act in order to achieve their goal(s).

 Utility-based agents maximize their own utility function.

 Representing knowledge is important for successful agent design.

CIT478 ARTIFICIAL INTELLIGENCE

23

 The most challenging environments are partially observable,

stochastic, sequential, dynamic, and continuous, and contain

multiple intelligent agents.

6.0 TUTOR-MARKED ASSIGNMENT

1. Define an agent.

2. What is a rational agent?

3. What is bounded rationality?

4. What is an autonomous agent?

5. Describe the salient features of an agent.

7.0 REFERENCES/FURTHER READING

Bowling, M. & Veloso, M. (2002). Multiagent Learning Using a

Variable Learning Rate. Artificial Intelligence. 136(2): 215-250.

Serenko, A.; Detlor, B. (2004). "Intelligent Agents as Innovations". AI

and Society 18 (4): 364–381. doi:10.1007/s00146-004-0310-5.

http://foba.lakeheadu.ca/serenko/papers/Serenko_Detlor_AI_and

_Society.pdf

Serenko, A.; Ruhi, U.; Cocosila, M. (2007). "Unplanned Effects of

Intelligent Agents on Internet use: Social Informatics approach".

AI and Society 21 (1–2): 141–166. doi:10.1007/s00146-006-

0051-8. http://foba.lakeheadu.ca/serenko/papers/AI_Society_

Serenko_Social_Impacts_of_Agents.pdf.

http://foba.lakeheadu.ca/serenko/papers/Serenko_Detlor_AI_and
http://foba.lakeheadu.ca/serenko/papers/AI_Society_

CIT478 ARTIFICIAL INTELLIGENCE

24

MODULE 2 SEARCH IN ARTIFICIAL

INTELLIGENCE

Unit 1 Introduction to State Space Search

Unit 2 Uninformed Search

Unit 3 Informed Search Strategies-I

Unit 4 Tree Search

UNIT 1 INTRODUCTION TO STATE SPACE SEARCH

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 State space search

3.1.1 Goal Directed Agent

3.1.2 State Space Search Notations

3.2 Problem Space

3.2.1 Search Problem

3.3 Examples

3.2.1 Illustration of a search process

3.2.2 Example problem: Pegs and Disks problem

3.2.3 Queens Problem

3.2.4 Problem Definition - Example, 8 puzzle

3.4 Types of AI Search Techniques

4.0 Conclusion

5.0 Summary

6.0 Tutor- Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In computer science, a search algorithm, broadly speaking, is an

algorithm for finding an item with specified properties among a

collection of items. The items may be stored individually as records in a

database; or may be elements of a search space defined by a

mathematical formula or procedure, such as the roots of an equation

with integer variables; or a combination of the two, such as the

Hamiltonian circuits of a graph.

Specifically, Searching falls under Artificial Intelligence (AI). A major

goal of AI is to give computers the ability to think, or in other words,

mimic human behavior. The problem is, unfortunately, computers don't

CIT478 ARTIFICIAL INTELLIGENCE

25

function in the same way our minds do. They require a series of well-

reasoned out steps before finding a solution. Your goal, then, is to take a

complicated task and convert it into simpler steps that your computer

can handle. That conversion from something complex to something

simple is what this unit is primarily about. Learning how to use two

search algorithms is just a welcome side-effect. This unit will explain

the background for AI search and some of the AI search techniques.

2.0 OBJECTIVES

After the end of this unit, you should be able to:

 describe the state space representation

 describe some algorithms

 formulate, when given a problem description, the terms of a state

space search problem

 analyse the properties of some algorithms

 analyse a given problem and identify the most suitable search

strategy for the problem

 solve some simple problems.

3.0 MAIN CONTENT

3.1 State Space Search

Let us begin by introducing certain terms.

An initial state is the description of the starting configuration of the

agent.

An action or an operator takes the agent from one state to another state

which is called a successor state. A state can have a number of successor

states.

A plan is a sequence of actions. The cost of a plan is referred to as the

path cost. The path cost is a positive number, and a common path cost

may be the sum of the costs of the steps in the path. The goal state is the

partial description of the solution

CIT478 ARTIFICIAL INTELLIGENCE

26

3.1.1 Goal Directed Agent

Figure 1: Goal Directed Agent

We have earlier discussed about an intelligent agent. In this unit we will

study a type of intelligent agent which we will call a goal directed agent.

A goal directed agent needs to achieve certain goals. Such an agent

selects its actions based on the goal it has. Many problems can be

represented as a set of states and a set of rules of how one state is

transformed to another. Each state is an abstract representation of the

agent's environment. It is an abstraction that denotes a configuration of

the agent.

Let us look at a few examples of goal directed agents.

1. 15-puzzle: The goal of an agent working on a 15-puzzle problem

may be to reach a configuration which satisfies the condition that

the top row has the tiles 1, 2 and 3. The details of this problem

will be described later.

2. The goal of an agent may be to navigate a maze and reach the

HOME position.

The agent must choose a sequence of actions to achieve the desired goal.

3.1.2 State Space Search Notations

Now let us look at the concept of a search problem.

CIT478 ARTIFICIAL INTELLIGENCE

27

Problem formulation means choosing a relevant set of states to

consider, and a feasible set of operators for moving from one state to

another.

Search is the process of considering various possible sequences of

operators applied to the initial state, and finding out a sequence which

culminates in a goal state.

3.2 Problem Space

What is problem space?

A problem space is a set of states and a set of operators. The operators

map from one state to another state. There will be one or more states

that can be called initial states, one or more states which we need to

reach what are known as goal states and there will be states in between

initial states and goal states known as intermediate states. So what is the

solution? The solution to the given problem is nothing but a sequence of

operators that map an initial state to a goal state. This sequence forms a

solution path. What is the best solution? Obviously the shortest path

from the initial state to the goal state is the best one. Shortest path has

only a few operations compared to all other possible solution paths.

Solution path forms a tree structure where each node is a state. So

searching is nothing but exploring the tree from the root node.

3.2.1 Search Problem

We are now ready to formally describe a search problem.

A search problem consists of the following:

 S: the full set of states

 s : the initial state

0

 A:S→S is a set of operators

 G is the set of final states. Note that G ⊆S

These are schematically depicted in Figure 2.

CIT478 ARTIFICIAL INTELLIGENCE

28

The search problem is to find a sequence of actions which transforms

the agent from the initial state to a goal state g∈G. A search problem is

represented by a 4-tuple {S, s , A, G}.
0

S: set of states
s ∈ S: initial state

0

A: S? S operators/ actions that transform one state to another state

G: goal, a set of states. G ⊆ S

This sequence of actions is called a solution plan. It is a path from the

initial state to a goal state. A plan P is a sequence of actions.

P = {a , a , a } which leads to traversing a number of states {s , s ,

0 1 N 0 1

Sn+ ∈G}. A sequence of states is called a path. The cost of a path is a
1

positive number. In many cases the path cost is computed by taking the

sum of the costs of each action.

Representation of search problems

A search problem is represented using a directed graph.

 The states are represented as nodes.

 The allowed actions are represented as arcs.

CIT478 ARTIFICIAL INTELLIGENCE

29

Do until a solution is found or the state space is exhausted.

1. Check the current state

2. Execute allowable actions to find the successor states.

3. Pick one of the new states.

4. Check if the new state is a solution state

If it is not, the new state becomes the current state and the process is

repeated

Searching process

The generic searching process can be very simply described in terms of

the following steps:

3.3 Examples

3.3.1 Illustration of a search process

We will now illustrate the searching process with the help of an

example. Consider the problem depicted in Figure 3.

s is the initial state.
0

The successor states are the adjacent states in the graph.

CIT478 ARTIFICIAL INTELLIGENCE

30

There are three goal states.

The two successor states of the initial state are generated.

The successors of these states are picked and their successors are

generated.

CIT478 ARTIFICIAL INTELLIGENCE

31

Successors of all these states are generated.

The successors are generated.

A goal state has been found.

The above example illustrates how we can start from a given state and

follow the successors, and be able to find solution paths that lead to a

goal state. The grey nodes define the search tree. Usually the search tree

is extended one node at a time. The order in which the search tree is

extended depends on the search strategy.

CIT478 ARTIFICIAL INTELLIGENCE

32

We will now illustrate state space search with one more example – the

pegs and disks problem. We will illustrate a solution sequence which

when applied to the initial state takes us to a goal state.

3.3.2 Example problem: Pegs and Disks problem

Consider the following problem. We have 3 pegs and 3 disks.

Operators: one may move the topmost disk on any needle to the topmost

position to any other needle.

In the goal state all the pegs are in the needle B as shown in the figure

below.

The initial state is illustrated below.

Now we will describe a sequence of actions that can be applied on the

initial state.

Step 1: Move A → C

CIT478 ARTIFICIAL INTELLIGENCE

33

Step 2: Move A → B

Step 3: Move A → C

Step 4: Move B→ A

CIT478 ARTIFICIAL INTELLIGENCE

34

Step 5: Move C → B

Step 6: Move A → B

Step 7: Move C→ B

We will now look at another search problem – the 8-queens problem,

which can be generalized to the N-queens problem.

3.3.3 Queens Problem

The problem is to place 8 queens on a chessboard so that no two queens

are in the same row, column or diagonal.

The picture below on the left shows a solution of the 8-queens problem.

The picture on the right is not a correct solution, because some of the

queens are attacking each other.

CIT478 ARTIFICIAL INTELLIGENCE

35

Figure 18: Queens Problem

How do we formulate this in terms of a state space search problem? The

problem formulation involves deciding the representation of the states,

selecting the initial state representation, the description of the operators,

and the successor states. We will now show that we can formulate the

search problem in several different ways for this problem.

N queens problem formulation 1

 States: Any arrangement of 0 to 8 queens on the board

 Initial state: 0 queens on the board

 Successor function: Add a queen in any square

 Goal test: 8 queens on the board, none are attacked

The initial state has 64 successors. Each of the states at the next level

has 63 successors, and so on. We can restrict the search tree somewhat

by considering only those successors where no queen is attacking each

other. To do that, we have to check the new queen against all existing

queens on the board. The solutions are found at a depth of 8.

CIT478 ARTIFICIAL INTELLIGENCE

36

N queens problem formulation 2

 States: Any arrangement of 8 queens on the board

 Initial state: All queens are at column 1

 Successor function: Change the position of any one queen

 Goal test: 8 queens on the board, none are attacked

If we consider moving the queen at column 1, it may move to any of the

seven remaining columns.

N queens problem formulation 3

CIT478 ARTIFICIAL INTELLIGENCE

37

 States: Any arrangement of k queens in the first k rows such that

none are attacked

 Initial state: 0 queens on the board

 Successor function: Add a queen to the (k+1) th row so that

none are attacked.

 Goal test : 8 queens on the board, none are attacked

We will now take up yet another search problem, the 8 puzzle.

3.3.4 Problem Definition - Example, 8 puzzle

In the 8-puzzle problem we have a 3×3 square board and 8 numbered

tiles. The board has one blank position. Bocks can be slid to adjacent

blank positions. We can alternatively and equivalently look upon this as

the movement of the blank position up, down, left or right. The

objective of this puzzle is to move the tiles starting from an initial

position and arrive at a given goal configuration.

CIT478 ARTIFICIAL INTELLIGENCE

38

The 15-puzzle problems is similar to the 8-puzzle. It has a 4×4 square

board and 15 numbered tiles

The state space representation for this problem is summarized below:

States: A state is a description of each of the eight tiles in each location

that it can occupy.

Operators/Action: The blank moves left, right, up or down

Goal Test: The current state matches a certain state (e.g. one of the ones

shown on previous slide)

Path Cost: Each move of the blank costs 1

A small portion of the state space of 8-puzzle is shown below. Note that

we do not need to generate all the states before the search begins. The

states can be generated when required.

8-puzzle partial state space

3.4 Types of AI Search Techniques

Solution can be found with less information or with more information. It

all depends on the problem we need to solve. Usually when we have

more information it will be easy to solve the problem. The following are

the types of AI search namely: Uninformed Search, List search, Tree

search , Graph search, SQL search, Tradeoff Based search, Informed

search, Adversarial search. This module will only deal with uninformed

search, informed search and Tree search.

CIT478 ARTIFICIAL INTELLIGENCE

39

4.0 CONCLUSION

State space search is a process used in the field of computer science,

including artificial intelligence (AI), in which successive configurations

or states of an instance are considered, with the goal of finding a goal

state with a desired property.

Problems are often modelled as a state space, a set of states that a

problem can be in. The set of states forms a graph where two states are

connected if there is an operation that can be performed to transform the

first state into the second.

State space search often differs from traditional computer science search

methods because the state space is implicit: the typical state space graph

is much too large to generate and store in memory. Instead, nodes are

generated as they are explored, and typically discarded thereafter. A

solution to a combinatorial search instance may consist of the goal state

itself, or of a path from some initial state to the goal state.

5.0 SUMMARY

In this unit, you have learnt that:

 State space search is a process used in the field of computer

science, including artificial intelligence (AI), in which successive

configurations or states of an instance are considered, with the

goal of finding a goal state with a desired property

 The search problem is to find a sequence of actions which

transforms the agent from the initial state to a goal state g∈G. A

search problem is represented by a 4-tuple {S, s , A, G}.
0

 Solution can be found with less information or with more

information. It all depends on the problem we need to solve

CIT478 ARTIFICIAL INTELLIGENCE

40

6.0 TUTOR-MARKED ASSIGNMENT

1. Find a path from a boxed node to the goal node (p).

2. Using the following AND/OR graph, where is fred?

7.0 REFERENCES/FURTHER READING

Dechter, R. & Judea, P. (1985). "Generalized Best-First Search

Strategies and the Optimality of A*". Journal of the ACM 32 (3):

505–536. doi:10.1145/3828.3830.

Koenig, S.; Maxim, L.; Yaxin, L.; David, F. (2004). "Incremental

Heuristic Search in AI". AI Magazine 25 (2): 99–112.

http://portal.acm.org/citation.cfm?id=1017140.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto,

California: Tioga Publishing Company. ISBN 0-935382-01-1.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley Longman Publishing Co., Inc.

ISBN 0-201-05594-5.

http://portal.acm.org/citation.cfm?id=1017140

CIT478 ARTIFICIAL INTELLIGENCE

41

Russell, S. J. & Norvig, P. (2003). Artificial Intelligence. A Modern

Approach. Upper Saddle River, N.J.: Prentice Hall. pp. 97–104.

ISBN 0-13-790395-2.

CIT478 ARTIFICIAL INTELLIGENCE

42

UNIT 2 UNINFORMED SEARCH OR BRUTE FORCE

SEARCH

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Uninformed Search
3.2 Depth First

and

Breadth

First

Search

3.2.1 Depth First Search

3.2.2 Breadth First Search

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In computer science, uninform-cost search (UCS) is a tree search

algorithm used for traversing or searching a weighted tree, tree structure,

or graph. The search begins at the root node. The search continues by

visiting the next node which has the least total cost from the root. Nodes

are visited in this manner until a goal state is reached.

Typically, the search algorithm involves expanding nodes by adding all

unexpanded neighbouring nodes that are connected by directed paths to

a priority queue. In the queue, each node is associated with its total path

cost from the root, where the least-cost paths are given highest priority.

The node at the head of the queue is subsequently expanded, adding the

next set of connected nodes with the total path cost from the root to the

respective node. The uniform-cost search is complete and optimal if the

cost of each step exceeds some positive bound ε.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain uninformed search

 list two types of uninformed search

 describe depth first and breadth first search

 solve simple problems on uninformed search.

CIT478 ARTIFICIAL INTELLIGENCE

43

3.0 MAIN CONTENT

3.1 Uninformed Search

Sometimes we may not get much relevant information to solve a

problem. Suppose we lost our car key and we are not able to recall

where we left, we have to search for the key with some information such

as in which places we used to place it. It may be our pant pocket or may

be the table drawer. If it is not there then we have to search the whole

house to get it. The best solution would be to search in the places from

the table to the wardrobe. Here we need to search blindly with fewer

clues. This type of search is called uninformed search or blind search.

There are two popular AI search techniques in this category: breadth

first search and depth first search.

3.2 Depth First and Breadth First Search

If you want to go from Point A to Point B, you are employing some kind

of search. For a direction finder, going from Point A to Point B literally

means finding a path between where you are now and your intended

destination. For a chess game, Point A to Point B might be two points

between its current position and its position 5 moves from now. For a

genome sequence, Points A and B could be a link between two DNA

sequences.

As you can tell, going from Point A to Point B is different for every

situation. If there is a vast amount of interconnected data, and you are

trying to find a relation between few such pieces of data, you would use

search. In this unit, you will learn about two forms of searching, depth

first and breadth first.

Our Search Representation

Lets you learn how we humans could solve a search problem. First, we

need a representation of how our search problem will exist. The

following is an example of our search tree. It is a series of

interconnected nodes that we will be searching through:

CIT478 ARTIFICIAL INTELLIGENCE

44

In our above graph, the path connections are not two-way. All paths go

only from top to bottom. In other words, A has a path to B and C, but B

and C do not have a path to A. It is basically like a one-way street.

Each lettered circle in our graph is a node. A node can be connected to

other via our edge/path, and those nodes that are connected to be called

neighbors. B and C are neighbors of A. E and D are neighbors of B, and

B is not a neighbor of D or E because B cannot be reached using either

D or E.

Our search graph also contains depth:

We now have a way of describing location in our graph. We know how

the various nodes (the lettered circles) are related to each other

CIT478 ARTIFICIAL INTELLIGENCE

45

(neighbors), and we have a way of characterizing the depth each belongs

in. Knowing this information isn't directly relevant in creating our

search algorithm, but they do help us to better understand the problem.

3.2.1 Depth First Search

Depth first search works by taking a node, checking its neighbors,

expanding the first node it finds among the neighbors, checking if that

expanded node is our destination, and if not, continue exploring more

nodes.

The above explanation is probably confusing if this is your first

exposure to depth first search. I hope the following demonstration will

help you more. Using our same search tree, let's find a path between

nodes A and F:

Step 0

let‘s start with our root/goal node:

I will be using two lists to keep track of what we are doing - an Open list

and a Closed List. An Open list keeps track of what you need to do, and

the Closed List keeps track of what you have already done. Right now,

we only have our starting point, node A. We haven't done anything to it

yet, so let's add it to our Open list.

CIT478 ARTIFICIAL INTELLIGENCE

46

 Open List: A

 Closed List: <empty>

Step 1

Now, let's explore the neighbors of our A node. To put another way, let's

take the first item from our Open list and explore its neighbors:

Node A's neighbors are the B and C nodes. Because we are now done

with our A node, we can remove it from our Open list and add it to our

Closed List. You aren't done with this step though. You now have two

new nodes B and C that need exploring. Add those two nodes to our

Open list.

Our current Open and Closed Lists contain the following data:

 Open List: B, C

 Closed List: A

Step 2

Our Open list contains two items. For depth first search and breadth first

search, you always explore the first item from our Open list. The first

item in our Open list is the B node. B is not our destination, so let's

explore its neighbors:

Because I have now expanded B, I am going to remove it from the Open

list and add it to the Closed List. Our new nodes are D and E, and we

add these nodes to the beginning of our Open list:

 Open List: D, E, C

 Closed List: A, B

Step 3

CIT478 ARTIFICIAL INTELLIGENCE

47

You should start to see a pattern forming. Because D is at the beginning

of our Open List, we expand it. D isn't our destination, and it does not

contain any neighbors. All you do in this step is remove D from our

Open List and add it to our Closed List:

 Open List: E, C

 Closed List: A, B, D

Step 4

We now expand the E node from our Open list. E is not our destination,

so we explore its neighbors and find out that it contains the neighbors F

and G. Remember, F is our target, but we don't stop here though.

Despite F being on our path, we only end when we are about to expand

our target Node - F in this case:

Our Open list will have the E node removed and the F and G nodes

added. The removed E node will be added to our Closed List:

 Open List: F, G, C

 Closed List: A, B, D, E

Step 5

We now expand the F node. Since it is our intended destination, we

stop:

CIT478 ARTIFICIAL INTELLIGENCE

48

We remove F from our Open list and add it to our Closed List. Since we

are at our destination, there is no need to expand F in order to find its

neighbors. Our final Open and Closed Lists contain the following data:

 Open List: G, C

 Closed List: A, B, D, E, F

The final path taken by our depth first search method is what the final

value of our Closed List is: A, B, D, E, F. Towards the end of this

tutorial, I will analyze these results in greater detail so that you have a

better understanding of this search method.

3.2.2 Breadth First Search

The reason I cover both depth and breadth first search methods in the

same unit is because they are both similar. In depth first search, newly

explored nodes were added to the beginning of your Open list. In

breadth first search, newly explored nodes are added to the end of your

Open list.

Let's see how that change will affect our results. For reference, here is

our original search tree:

Let's try to find a path between nodes A and E.

CIT478 ARTIFICIAL INTELLIGENCE

49

Step 0

let‘s start with our root/goal node:

Like before, I will continue to employ the Open and Closed Lists to

keep track of what needs to be done:

 Open List: A

 Closed List: <empty>

Step

1

Now, let's explore the neighbours of our A node. So far, we are

following in depth first's footsteps:

We remove A from our Open list and add A to our Closed List. A's

neighbours, the B and C nodes, are added to our Open list. They are

added to the end of our Open list, but since our Open list was empty

(after removing A), it's hard to show that in this step.

Our current Open and Closed Lists contain the following data:

 Open List: B, C

 Closed List: A

Step 2

Here is where things start to diverge from our depth first search method.

We take a look the B node because it appears first in our Open List.

Because B isn't our intended destination, we explore its neighbours:

CIT478 ARTIFICIAL INTELLIGENCE

50

B is now moved to our Closed List, but the neighbours of B, nodes D

and E are added to the end of our Open list:

 Open List: C, D, E

 Closed List: A, B

Step 3

We now expand our C node:

Since C has no neighbours, all we do is remove C from our Closed List

and move on:

 Open List: D, E

 Closed List: A, B, C

Step 4

Similar to Step 3, we expand node D. Since it isn't our destination, and it

too does not have any neighbours, we simply remove D from our to

Open list, add D to our Closed List, and continue on:

 Open List: E

 Closed List: A, B, C, D

Step 5

Because our Open list only has one item, we have no choice but to take

a look at node E. Since node E is our destination, we can stop here:

CIT478 ARTIFICIAL INTELLIGENCE

51

Our final versions of the Open and Closed Lists contain the following

data:

 Open List: <empty>

 Closed List: A, B, C, D, E

Traveling from A to E takes you through B, C, and D using breadth first

search

4.0 CONCLUSION

1. Uninformed search strategies -Also known as "blind search,"

uninformed search strategies use no information about the likely

"direction" of the goal node(s).

2. Uninformed search major methods are Breadth-first and depth-

first

5.0 SUMMARY

In this unit, you learnt that:

 Uninformed strategies use only the information available in the

problem definition.

 Some such strategies considered :

- Breadth-first search

- Tree Search

- Depth-first search

6.0 TUTOR -MARKED ASSIGNMENT

Water Jug Problem

i. Given a 5-gallon jug and a 2-gallon jug, with the 5-gallon jug

initially full of water and the 2-gallon jug empty, the goal is to fill

the 2-gallon jug with exactly one gallon of water.

ii. 8-Puzzle

Given an initial configuration of eight numbered tiles on a 3 x 3

CIT478 ARTIFICIAL INTELLIGENCE

52

board, move the tiles in such a way so as to produce a desired

goal configuration of the tiles.

iii. Missionaries and Cannibals
There are three missionaries, three cannibals, and 1 boat that can

carry up to two people on one side of a river. Goal: Move all the

missionaries and cannibals across the river.

iv. Remove five Sticks
Given the following configuration of sticks; remove exactly five

sticks in such a way that the remaining configuration forms

exactly three squares.

7.0 REFERENCES/FURTHER READING

Christopher, D. M. & Hinrich, S., Foundations of Statistical Natural

Language Processing. The MIT Press.

Wooldridge, M. An Introduction to Multiagent Systems. John Wiley &

Sons, Ltd.

Russell, S. J. & Norvig, P. (2003). Artificial Intelligence: A Modern

Approach (2nd ed.). Upper Saddle River, New Jersey: Prentice

 Hall, ISBN 0-13-790395-2, http://aima.cs.berkeley.edu/

Russell, S. & Norvig, P. (2010). Artificial Intelligence: A Modern

Approach (3 ed.). Prentice Hall. ISBN 978-0-13-6042594.

http://aima.cs.berkeley.edu/

CIT478 ARTIFICIAL INTELLIGENCE

53

UNIT 3 INFORMED SEARCH OR HEURISTIC

SEARCH

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 What is Heuristic?

3.1.1 Examples of Heuristic Function

3.2 Best-first Search

3.2.1 Greedy Search

3.2.2 A* Search

3.2.3 Proof of Admissibility of A*

3.2.4 Proof of Completeness of A*

3.2.5 Properties of Heuristics

3.2.6 Using Multiple Heuristics

3.3 Beam search

3.3.1 Name and Uses

3.3.2 Extensions

3.4 Hill climbing

3.4.1 Mathematical description

3.4.2 Variants

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

We have seen that uninformed search methods that systematically

explore the state space and find the goal. They are inefficient in most

cases. Informed search methods use problem specific knowledge, and

may be more efficient. Informed Search will be able to unravel the

factoring an effective way if we now have relevant information, clues or

hints. The clues that assist solve the factor constitute heuristic

information. Informed search could also be known as heuristic search.

According to George Polya heuristic is the study of the methods and

rules of discovery and invention. In state space search, heuristic define

the rules for choosing branches in a state space that are most likely to

lead to an acceptable solution. There are two cases in AI searches when

heuristics are needed:

CIT478 ARTIFICIAL INTELLIGENCE

54

 The problem has no exact solution. For example, in medical

diagnosis doctors use heuristic to choose the most likely

diagnoses given a set of symptoms.

 The problem has an exact solution but is too complex to allow for

a brute force solution.

Key Point: Heuristics are fallible. Because they rely on limited

information, they may lead to a suboptimal solution or to a dead end.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain informed search

 mention other names of informed search

 describe best-first search

 describe greedy search

 solve simple problems on informed search.

3.0 MAIN CONTENT

3.1 What is Heuristic?

Heuristic search methods explore the search space "intelligently". That

is, evaluating possibilities without having to investigate every single

possibility.

Heuristic search is an AI search technique that employs heuristic for its

moves. Heuristic is a rule of thumb that probably leads to a solution.

Heuristic play a major role in search strategies because of exponential

nature of the most problems. Heuristics help to reduce the number of

alternatives from an exponential number to a polynomial number. In

Artificial Intelligence, heuristic search has a general meaning, and a more

specialized technical meaning. In a general sense, the term heuristic is

used for any advice that is often effective, but is not guaranteed to work

in every case.

Heuristic means ―rule of thumb‖. To quote Judea Pearl, ―Heuristics are

criteria, methods or principles for deciding which among several

alternative courses of action promises to be the most effective in order to

achieve some goal‖. In heuristic search or informed search, heuristics

are used to identify the most promising search path.

CIT478 ARTIFICIAL INTELLIGENCE

55

3.1.1 Examples of Heuristic Function

A heuristic function at a node n is an estimate of the optimum cost from

the current node to a goal. It is denoted by h (n).

H (n) = estimated cost of the cheapest path from node n to a goal node

Example 1: We want a path from Kolkata to Guwahati Heuristic for

Guwahati may be straight-line distance between Kolkata and Guwahati

h(Kolkata) = euclideanDistance(Kolkata, Guwahati)

Example 2: 8-puzzle: Misplaced Tiles Heuristics is the number of tiles

out of place.

The first picture shows the current state n, and the second picture the

goal state.

h(n) = 5 because the tiles 2, 8, 1, 6 and 7 are out of place.

Manhattan Distance Heuristic: Another heuristic for 8-puzzle is the

Manhattan distance heuristic. This heuristic sums the distance that the

tiles are out of place. The distance of a tile is measured by the sum of

the differences in the x-positions and the y-positions.

For the above example, using the Manhattan distance heuristic,

h(n) = 1 + 1 + 0 + 0 + 0 + 1 + 1 + 2 = 6

We will now study a heuristic search algorithm best-first search.

3.2 Best-First Search

Best-first search is a search algorithm which explores a graph by

expanding the most promising node chosen according to a specified

rule.

CIT478 ARTIFICIAL INTELLIGENCE

56

Let fringe be a priority queue containing the initial state

Loop if fringe is empty return failure Node ?□remove-first (fringe)

if Node is a goal

then return the path from initial state to Node

else generate all successors of Node, and

put the newly generated nodes into fringe

according to their f values

End Loop

Best First Search

Judea Pearl described best-first search as estimating the promise of node

n by a "heuristic evaluation function f(n) which, in general, may depend

on the description of n, the description of the goal, the information

gathered by the search up to that point, and most important, on any extra

knowledge about the problem domain.

Uniform Cost Search is a special case of the best first search algorithm.

The algorithm maintains a priority queue of nodes to be explored. A cost

function f(n) is applied to each node. The nodes are put in OPEN in the

order of their f values. Nodes with smaller f(n) values are expanded

earlier. The generic best first search algorithm is outlined below.

We will now consider different ways of defining the function f. This

leads to different search algorithms.

3.2.1 Greedy Search

In greedy search, the idea is to expand the node with the smallest

estimated cost to reach the goal.

We use a heuristic function

f(n) = h(n)

h(n) estimates the distance remaining to a goal.

A greedy algorithm is any algorithm that follows the problem solving

heuristic of making the locally optimal choice at each stage with the

hope of finding the global optimum. In general, greedy algorithms are

used for optimization problems.

Greedy algorithms often perform very well. They tend to find good

solutions quickly, although not always optimal ones.

The resulting algorithm is not optimal. The algorithm is also incomplete,

and it may fail to find a solution even if one exists. This can be seen by

CIT478 ARTIFICIAL INTELLIGENCE

57

running greedy search on the following example. A good heuristic for

the route-finding problem would be straight-line distance to the goal.

S is the starting state, G is the goal state.

Figure 2 is an example of a route finding problem.

Figure 3 -The straight line distance heuristic estimates for the nodes.

Let us run the greedy search algorithm for the graph given in Figure 2.

The straight line distance heuristic estimates for the nodes are shown in

Figure 3.

Step 1: S is expanded. Its children are A and D.

CIT478 ARTIFICIAL INTELLIGENCE

58

Step 2: D has smaller cost and is expanded next.

CIT478 ARTIFICIAL INTELLIGENCE

59

CIT478 ARTIFICIAL INTELLIGENCE

60

CIT478 ARTIFICIAL INTELLIGENCE

61

CIT478 ARTIFICIAL INTELLIGENCE

62

CIT478 ARTIFICIAL INTELLIGENCE

63

CIT478 ARTIFICIAL INTELLIGENCE

64

CIT478 ARTIFICIAL INTELLIGENCE

65

CIT478 ARTIFICIAL INTELLIGENCE

66

3.3 Beam Search

In computer science, beam search is a heuristic search algorithm that

explores a graph by expanding the most promising node in a limited set.

Beam search is an optimization of best-first search that reduces its

memory requirements. Best-first search is a graph search which orders

all partial solutions (states) according to some heuristic which attempts

to predict how close a partial solution is to a complete solution (goal

state). In beam search, only a predetermined number of best partial

solutions are kept as candidates.

Beam search uses breadth-first search to build its search tree. At each

level of the tree, it generates all successors of the states at the current

level, sorting them in increasing order of heuristic

cost.http://en.wikipedia.org/wiki/Beam_search - cite_note-1 However, it

only stores a predetermined number of states at each level (called the

beam width). The greater the beam width, the fewer states are pruned.

With an infinite beam width, no states are pruned and beam search is

identical to breadth-first search. The beam width bounds the memory

required to perform the search. Since a goal state could potentially be

pruned, beam search sacrifices completeness (the guarantee that an

http://en.wikipedia.org/wiki/Beam_search

CIT478 ARTIFICIAL INTELLIGENCE

67

algorithm will terminate with a solution, if one exists) and optimality

(the guarantee that it will find the best solution).

The beam width can either be fixed or variable. One approach that uses

a variable beam width starts with the width at a minimum. If no solution

is found, the beam is widened and the procedure is repeated.

3.3.1 Name and Uses

The term "beam search" was coined by Raj Reddy, Carnegie Mellon

University, 1976.

A beam search is most often used to maintain tractability in large

systems with insufficient amount of memory to store the entire search

tree. For example, it is used in many machine translation systems. To

select the best translation, each part is processed, and many different

ways of translating the words appear. The top best translations

according to their sentence structures are kept and the rest are discarded.

The translator then evaluates the translations according to a given

criteria, choosing the translation which best keeps the goals. The first

use of a beam search was in the Harpy Speech Recognition System,

CMU 1976.

3.3.2 Extensions

Beam search has been made complete by combining it with depth-first

search, resulting in Beam Stack Search and Depth-First Beam Search,

and limited discrepancy search, resulting in Beam Search Using Limited

Discrepancy Backtrackinghttp://en.wikipedia.org/wiki/Beam_search -

cite_note-furcy-3 (BULB). The resulting search algorithms are anytime

algorithms that find good but likely sub-optimal solutions quickly, like

beam search, then backtrack and continue to find improved solutions

until convergence to an optimal solution.

3.4 Hill climbing

In computer science, hill climbing is a mathematical optimization

technique which belongs to the family of local search. It is an iterative

algorithm that starts with an arbitrary solution to a problem, then

attempts to find a better solution by incrementally changing a single

element of the solution. If the change produces a better solution, an

incremental change is made to the new solution, repeating until no

further improvements can be found.

http://en.wikipedia.org/wiki/Beam_search

CIT478 ARTIFICIAL INTELLIGENCE

68

For example, hill climbing can be applied to the travelling salesman

problem. It is easy to find an initial solution that visits all the cities but

will be very poor compared to the optimal solution. The algorithm starts

with such a solution and makes small improvements to it, such as

switching the order in which two cities are visited. Eventually, a much

shorter route is likely to be obtained.

Hill climbing is good for finding a local optimum (a solution that cannot

be improved by considering a neighbouring configuration) but it is not

guaranteed to find the best possible solution (the global optimum) out of

all possible solutions (the search space). The characteristic that only

local optima are guaranteed can be cured by using restarts (repeated

local search), or more complex schemes based on iterations, like iterated

local search, on memory, like reactive search optimization and tabu

search, on memory-less stochastic modifications, like simulated

annealing.

The relative simplicity of the algorithm makes it a popular first choice

amongst optimizing algorithms. It is used widely in artificial

intelligence, for reaching a goal state from a starting node. Choice of

next node and starting node can be varied to give a list of related

algorithms. Although more advanced algorithms such as simulated

annealing or tabu search may give better results, in some situations hill

climbing works just as well. Hill climbing can often produce a better

result than other algorithms when the amount of time available to

perform a search is limited, such as with real-time systems. It is an

anytime algorithm: it can return a valid solution even if it's interrupted at

any time before it ends.

3.4.1 Mathematical description

Hill climbing attempts to maximize (or minimize) a target function

, where is a vector of continuous and/or discrete values. At each

iteration, hill climbing will adjust a single element in and determine

whether the change improves the value of . (Note that this differs

from gradient descent methods, which adjust all of the values in at

each iteration according to the gradient of the hill.) With hill climbing,

any change that improves is accepted, and the process continues

until no change can be found to improve the value of . is then

said to be "locally optimal".

In discrete vector spaces, each possible value for may be visualized as

a vertex in a graph. Hill climbing will follow the graph from vertex to

CIT478 ARTIFICIAL INTELLIGENCE

69

vertex, always locally increasing (or decreasing) the value of , until

a local maximum (or local minimum) xm is reached.

3.4.2 Variants

In simple hill climbing, the first closer node is chosen, whereas in

steepest ascent hill climbing all successors are compared and the closest

to the solution is chosen. Both forms fail if there is no closer node,

which may happen if there are local maxima in the search space which

are not solutions. Steepest ascent hill climbing is similar to best-first

search, which tries all possible extensions of the current path instead of

only one.

Stochastic hill climbing does not examine all neighbours before

deciding how to move. Rather, it selects a neighbour at random, and

decides (based on the amount of improvement in that neighbour)

whether to move to that neighbour or to examine another.

Random-restart hill climbing is a meta-algorithm built on top of the hill

climbing algorithm. It is also known as Shotgun hill climbing. It

iteratively does hill-climbing, each time with a random initial condition

x0. The best xm is kept: if a new run of hill climbing produces a better xm

than the stored state, it replaces the stored state.

Random-restart hill climbing is a surprisingly effective algorithm in

many cases. It turns out that it is often better to spend CPU time

exploring the space, than carefully optimizing from an initial condition.

4.0 CONCLUSION

Informed search strategies -Also known as "heuristic search," informed

search strategies use information about the domain to (try to) (usually)

head in the general direction of the goal node(s)

-Informed search methods: Hill climbing, best-first, greedy search, beam

search, A, A*

CIT478 ARTIFICIAL INTELLIGENCE

70

5.0 SUMMARY

In this unit, you learnt that:

 Heuristic search is an AI search technique that employs heuristic

for its moves.

 Best-first search is a search algorithm which explores a graph by

expanding the most promising node chosen according to a

specified rule.

 A greedy algorithm is any algorithm that follows the problem

solving heuristic of making the locally optimal choice at each

stage with the hope of finding the global optimum

 Beam search is a heuristic search algorithm that explores a graph

by expanding the most promising node in a limited set

 Hill climbing is a mathematical optimization technique which

belongs to the family of local search.

6.0 TUTOR-MARKED ASSIGNMENT

1. What is A* Search?

2. Consider the following table

 A B C D E F G H I J K L M

A 36 61

43

 20

 40

80

B 31

C 32 31

D 52

E

F 122 112

G

H

I 45

J 36

K 32

L 102

M 0

CIT478 ARTIFICIAL INTELLIGENCE

71

Using the A* algorithm work out a route from town A to town M. Use

the following cost functions.

1. G(n) = The cost of each move as the distance between each town

(shown on map).

2. H(n) = The Straight Line Distance between any town and town

M. These distances are given in the table below.
Provide the search tree for your solution and indicate the order in

which you expanded the nodes. Finally, state the route you would

take and the cost of that route.

7.0 REFERENCES/FURTHER READING

Lowerre, B. (1976). "The Harpy Speech Recognition System", Ph.D.

thesis, Carnegie Mellon University.

Russell, S. J. & Norvig, P. (2003). Artificial Intelligence: A Modern

Approach. (2nd ed.). Upper Saddle River, New Jersey: Prentice

Hall, pp. 111–114, ISBN 0-13-790395-2.

Zhou, R. & Hansen, E. (2005). "Beam-Stack Search: Integrating

Backtracking with Beam Search".

http://www.aaai.org/Library/ICAPS/2005/icaps05-010.php

http://www.aaai.org/Library/ICAPS/2005/icaps05-010.php

CIT478 ARTIFICIAL INTELLIGENCE

72

UNIT 4 TREE SEARCH

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Game Tree

3.2 Two-Player Games Search Algorithms

3.2.1 Minimax Search

3.2.2 Alpha-Beta Pruning

3.2.3 Quiecence

3.2.4 Transposition Tables

3.2.5 Limited Discrepancy Search

3.2.6 Intelligent Backtracking

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Tree search algorithms are specialised versions of graph search

algorithms, which take the properties of trees into account. An example

of tree search is the game tree of multiple-player games, such as chess or

backgammon, whose nodes consist of all possible game situations that

could result from the current situation. The goal in these problems is to

find the move that provides the best chance of a win, taking into account

all possible moves of the opponent(s). Similar problems occur when

humans or machines have to make successive decisions whose outcomes

are not entirely under one's control, such as in robot guidance or in

marketing, financial or military strategy planning. This kind of problems

has been extensively studied in the context of artificial intelligence.

Examples of algorithms for this class are the minimax algorithm, alpha-

beta pruning, and the A* algorithm.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 describe a game tree

 describe some two-player games search algorithms

 explain intelligent backtracking

 solve some simple problems on tree search.

CIT478 ARTIFICIAL INTELLIGENCE

73

3.0 MAIN CONTENT

3.1 Game Tree

A game tree is a directed graph whose nodes are positions in a game and

whose edges are moves. The complete game tree for a game is the game

tree starting at the initial position and containing all possible moves

from each position; the complete tree is the same tree as that obtained

from the extensive-form game representation.

Figure 1: Game tree for tic-tac-toe

The first two plies of the game tree for tic-tac-toe.

The diagram shows the first two levels, or plies, in the game tree for tic-

tac-toe. We consider all the rotations and reflections of positions as

being equivalent, so the first player has three choices of move: in the

center, at the edge, or in the corner. The second player has two choices

for the reply if the first player played in the center, otherwise five

choices. And so on.

The number of leaf nodes in the complete game tree is the number of

possible different ways the game can be played. For example, the game

tree for tic-tac-toe has 26,830 leaf nodes.

Game trees are important in artificial intelligence because one way to

pick the best move in a game is to search the game tree using the

minimax algorithm or its variants. The game tree for tic-tac-toe is easily

searchable, but the complete game trees for larger games like chess are

much too large to search. Instead, a chess-playing program searches a

partial game tree: typically as many plies from the current position as it

CIT478 ARTIFICIAL INTELLIGENCE

74

can search in the time available. Except for the case of "pathological"

game trees (which seem to be quite rare in practice), increasing the

search depth (i.e., the number of plies searched) generally improves the

chance of picking the best move.

Two-person games can also be represented as and-or trees. For the first

player to win a game there must be a winning move for all moves of the

second player. This is represented in the and-or tree by using disjunction

to represent the first player's alternative moves and using conjunction to

represent all of the second player's moves.

3.2 Two-Player Games Search Algorithms

The second major application of heuristic search algorithms in Artificial

Intelligence is two-player games. One1 of the original challenges of AI,

which in fact predates the term, Artificial Intelligence, was to build a

program that could play chess at the level of the best human players, a

goal recently achieved.

Following are the algorithms meant to solve this problem.

 Minimax Search

 Alpha-Beta Pruning

 Quiecence

 Transposition Tables

 Limited Discrepancy Search

 Intelligent Backtracking

3.2.1 Minimax Search Algorithm

The standard algorithm for two-player perfect-information games such

as chess, checkers or Othello is minimax search with heuristic static

evaluation. The minimax search algorithm searches forward to a fixed

depth in the game tree, limited by the amount of time available per

move. At this search horizon, a heuristic function is applied to the

frontier nodes. In this case, a heuristic evaluation is a function that takes

a board position and returns a number that indicates how favourable that

position is for one player relative to the other. For example, a very

simple heuristic evaluator for chess would count the total number of

pieces on the board for one player, appropriately weighted by their

relative strength, and subtract the weighted sum of the opponent‘s

places. Thus, large positive values would correspond to strange

positions for one player called MAX, whereas large negative values

would represent advantageous situation for the opponent called MIN.

CIT478 ARTIFICIAL INTELLIGENCE

75

Given the heuristic evaluations of the frontier nodes, minimax search

algorithm recursively computes the values for the interior nodes in the

tree according to the maximum rule. The value of a node where it is

MAX‘s turn to move is the maximum of the values of its children, while

the value of the node where MIN is to move is the minimum of the

values of its children. Thus at alternative levels of the tree, the

maximum values of the children are backed up. This continues until the

values of the immediate children of the current position are computed at

which point one move to the child with the maximum or minimum value

is made depending on whose turn it is to move.

3.2.2 Alpha-Beta Pruning

One of the most elegant of all AI search algorithms is alpha-beta

pruning. The idea, similar to branch-and-bound, is that the minimax

value of the root of a game tree can be determined without examining all

the nodes at the search frontier.

Only the labeled nodes are generated by the algorithm, with the heavy

black lines indicating pruning. At the square node MAX is to move,

while at the circular nodes it MIN‘s turn. The search proceeds depth-

first to minimize the memory required, and only evaluates a node when

necessary. First node and f are statically evaluated at 4 and 5,

respectively, and their minimum value, 4 is backed up to their parent

node d. Node h is then evaluated at 3, and hence the value of its parent

node g must be less than or equal to 3, since it is the minimum of 3 and

the unknown value of its right child. Thus, we level node g as <=3. The

value of node c must be 4 then, because it is the maximum of 4 and a

value that is less than or equal to 3. Since we have determined the

minimax value of node c, we do not need to evaluate or even generate

the brother of node h.

Similarly, after evaluating nodes k and l at 6 and 7 respectively, the

backed up value of their parent node j is 6, the minimum of these values.

This tells us that the minimax value of node I must be greater than or

equal to 6 since it is the maximum of 6 and the unknown value of its

right child. Since the value of node b is the minimum of 4 and a value

that is greater than or equal to 6, it must be 4 and hence we achieve

another cut off.

The right half of the tree shows an example of deep pruning. After

evaluating the left half of the tree, we know that the value of the root

node a is greater than or equal to four, the minimax value of node b.

Once node q is equated at 1, the value of its parent node nine must be

less than or equal to 1. Since the value of the root is greater than or

CIT478 ARTIFICIAL INTELLIGENCE

76

equal to two. Moreover, since the value of node m is the minimum of

the value of node n and its brother, and node n has a value less than or

equal to two, the value of node m must also be less than or equal to two.

This causes the brother of node n to be pruned, since the value of the

root node a is greater than or equal to four. Thus, we computed the

minimax value of the root of the tree to be four, by generating only

seven of sixteen leaf nodes in this area.

Since alpha-beta pruning performs a minimax search while pruning

much of the tree, its effect is to allow a deeper search with the same

amount of computation. This raises the question of how much does

alpha-beta improve performance. The best way to characterize the

efficiency of a pruning algorithm is in terms of its effective branching

factor. The effective branching factor is the dth root of the frontier nodes

that must be evaluated in a search to depth d, in the limit of large d.

The efficiency of alpha-beta pruning depends upon the order in which

nodes are encountered at the search frontier. For any set of frontier node

values, there exists same ordering of the values such that alpha-beta will

not perform any cut offs at all. In that case, the effective branching

factor is reduced from b to b^1/2., the square root of the brute-force

branching factor. Another way of viewing the perfect ordering case is

that for the same amount of computation, one can search twice as deep

as with alpha-beta pruning as without since the search tree grows

exponentially with depth, doubling the search horizon is a dramatic

improvement.

In between worst-possible ordering and perfect ordering is random

ordering, which is the average case. Under random ordering of the

frontier nodes, alpha-beta pruning reduces the effective branching factor

approximately b3/4. This means that one can search 4/3 as deep with

alpha-beta, yielding as 33% improvement in search depth.

In practice, however, the effective branching factor of alpha-beta is

closer to the best case of b1/2 due to node ordering. The idea of node

ordering is that instead of generating the tree left to right, we can reorder

the tree based on static evaluations of the interior nodes. In other words,

the children of MAX nodes are expanded in decreasing order of their

static values, while the children of MIN nodes are expanded in

increasing order of their static values.

3.2.3 Quiescence Search

The idea of quiescence is that the static evaluator should not be applied to

positions whose values are unstable, such as those occurring in the

CIT478 ARTIFICIAL INTELLIGENCE

77

middle of the piece trade. In those positions, a small secondary search is

conducted until the static evaluation becomes more stable. In games

such as chess or checkers, this can be achieved by always exploring any

capture moves one level deeper. This extra search is called quiescence

search. Applying quiescence search to capture moves quickly will resolve

the uncertainties in the position.

3.2.4 What is Transposition Table?

A transposition table is a table of previously encountered game states,

together with their backed-up minimax values. Whenever a new state is

generated, if it is stored in the transposition table, its stored value is used

instead of searching the tree below the node. Transposition table can be

used very effectively so that reachable search depth in chess, for

example, can be doubled.

3.2.5 Limited Discrepancy Search (LDS)

Limited Discrepancy Search (LDS) is a completely general tree-search

algorithm, but is most useful in the context of constraint satisfaction

problems in which the entire tree is too large to search exhaustively. In

that case, we would like to search that subset of the tree that is most

likely to yield a solution in the time available. Assume that we can

heuristically order a binary tree so that at any node, the left branch is

more likely to lead to a solution than the right branch. LDS then

proceeds in a series of depth-first iterations. The first iteration explores

just the left-most path in the tree. The second iteration explores those

root-to-leaf paths with exactly one right branch, or discrepancy in them.

In general, each iteration explores those paths with exactly k

discrepancies, with k ranging from zero to the depth of the tree. The last

iteration explores just the right most branch. Under certain assumptions,

one can show that LDS is likely to find a solution sooner than a strict

left-to-right depth-first search.

3.2.6 What is Intelligent Backtracking?

Performance of brute force backtracking can be improved by using a

number of techniques such as variable ordering, value ordering, back

jumping, and forward checking.

The order in which variables are instantiated can have a large effect on

the size of the search tree. The idea of variable ordering is to order the

variables form most constrained to least constrained. For example, if a

variable has only a single value remaining that is consistent with the

previously instantiated variable, it should be assigned that value

CIT478 ARTIFICIAL INTELLIGENCE

78

immediately. In general, the variables should be instantiated in

increasing order of the size of their remaining domains. This can either

be done statically at the beginning of the search or dynamically,

reordering the remaining variables each time a variable is assigned a

new value.

The order in which the value of a given variable is chosen determines

the order in which the tree is searched. Since it does not affect the size

of the tree, it makes no difference if all solutions are to be found. If only

a single solution is required, however, value ordering can decrease the

time required to find a solution. In general, one should order the values

from least constraining to most constraining in order to minimize the

time required to find a first solution.

An important idea, originally called back jumping, is that when an

impasse is reached, instead of simply undoing the last decision made,

the decision that actually caused the failure should be modified. For

example, consider the three-variable problem where the variables are

instantiated in the order x,y,z. Assume that values have been chosen for

both x and y, but that all possible values for z conflict with the value

chosen for x. In chronological backtracking, the value chosen for y

would be changed, and then all the possible values for z would be tested

again, to no avail. A better strategy in this case is to go back to the

source of the failure, and change the value of x before trying different

values for y.

When a variable is assigned a value, the idea of forward checking is to

check each remaining uninstantiated variable to make sure that there is

at least one assignment for each of them that is consistent with the

previous assignments. If not, the original variable is assigned its next

value.

4.0 CONCLUSION

In computer science, a search tree is a binary tree data structure in

whose nodes data values are stored from some ordered set, in such a

way that in-order traversal of the tree visits the nodes in ascending order

of the stored values. This means that for any internal node containing a

value v, the values x stored in its left sub tree satisfy x ≤ v, and the

values y stored in its right sub tree satisfy v ≤ y. Each sub tree of a

search tree is by itself again a search tree.

CIT478 ARTIFICIAL INTELLIGENCE

79

5.0 SUMMARY

In this unit, you learnt that:

 A game tree is a directed graph whose nodes are positions in a

game and whose edges are moves

 The second major application of heuristic search algorithms in

Artificial Intelligence is two-player games

 The standard algorithm for two-player perfect-information games

such as chess, checkers or Othello is minimax search with

heuristic static evaluation

 One of the most elegant of all AI search algorithms is alpha-beta

pruning.

 The idea of quiescence is that the static evaluator should not be

applied to positions whose values are unstable, such as those

occurring in the middle of the piece trade.

6.0 TUTOR-MARKED ASSIGNMENT

Answer the following questions on informed search and heuristics:

1. Which of the following are admissible, given admissible

heuristics h1, h2? Which of the following are consistent, given

consistent heuristics h1, h2?

2. h(n) = min{h1(n), h2(n)}

3. h(n) = wh1(n) + (1 −w)h2(n), where 0 w 1

4. h(n) = max{h1(n), h2(n)}

5. The heuristic path algorithm is a best-first search in which the

objective function is ƒ (n) = (2 −w)g(n) + wh(n). For what values

of w is this algorithm guaranteed to be optimal when h is

admissible? What kind of search does this perform when w = 0?

When w = 1? When w = 2?

7.0 REFERENCES/FURTHER READING

Christopher, D. Manning & Schutze, H. Foundations of Statistical

Natural Language Processing. The MIT Press.

Hu, Te Chiang. Shing, M. (2002). Combinatorial Algorithms. Courier

Dover Publications. ISBN 0486419622.

http://books.google.com/?id=BF5_bCN72EUC. Retrieved 2007-

04-02.

http://books.google.com/?id=BF5_bCN72EUC

CIT478 ARTIFICIAL INTELLIGENCE

80

Nau, D. (1982). "An investigation of the causes of pathology in games".

Artificial Intelligence 19: 257–278. doi:10.1016/0004-3702(82)

90002-9.

Allis, V. (1994). Searching for Solutions in Games and Artificial

Intelligence. Ph.D. Thesis, University of Limburg, Maastricht,

The Netherlands. ISBN 9090074880. http://fragrieu.free.fr/

SearchingForSolutions.pdf.

http://fragrieu.free.fr/

CIT478 ARTIFICIAL INTELLIGENCE

81

MODULE 3 ARTIFICIAL INTELLIGENCE

TECHNIQUES IN PROGRAMMING AND

NATURAL LANGUAGES

Unit 1 Knowledge Representation
Unit 2 Programming Languages for Artificial Intelligence

Unit 3 Natural Language Processing

UNIT 1 KNOWLEDGE REPRESENTATION

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Overview of Knowledge Representation
3.1.1 Characteristics

 3.1.2 History of Knowledge Representation and

Reasoning

3.2 Knowledge Representation Languages

3.3 Domain Modeling

3.4 Ontological Analysis

3.5 Classic

3.5.1 The Classic Language

3.5.2 Enhancements to Classic

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Knowledge Representation (KR) has long been considered one of the

principal elements of Artificial Intelligence, and a critical part of all

problems solving [Newell, 1982]. The subfields of KR range from the

purely philosophical aspects of epistemology to the more practical

problems of handling huge amounts of data. This diversity is unified by

the central problem of encoding human knowledge - in all its various

forms - in such a way that the knowledge can be used. This goal is

perhaps best summarized in the Knowledge Representation Hypothesis:

Any mechanically embodied intelligent process will be

comprised of structural ingredients that a) we as external

observers naturally take to represent a propositional

CIT478 ARTIFICIAL INTELLIGENCE

82

account of the knowledge that the overall process exhibits,

and b) independent of such external semantically

attribution, play a formal but causal and essential role in

engendering the behavior that manifests that knowledge

[Smith, 1982].

A successful representation of some knowledge must, then, be in a form

that is understandable by humans, and must cause the system using the

knowledge to behave as if it knows it. The "structural ingredients" that

accomplish these goals are typically found in the languages for KR,

both implemented and theoretical, that have been developed over the

years.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain the meaning of knowledge representation

 describe the history of history of knowledge representation and

reasoning

 list some characteristics of kr

 list 4 main features of kr language.

3.0 MAIN CONTENT

3.1 Overview of Knowledge Representation

Knowledge Representation (KR) research involves analysis of how to

accurately and effectively reason and how best to use a set of symbols to

represent a set of facts within a knowledge domain. A symbol

vocabulary and a system of logic are combined to enable inferences

about elements in the KR to create new KR sentences. Logic is used to

supply formal semantics of how reasoning functions should be applied

to the symbols in the KR system. Logic is also used to define how

operators can process and reshape the knowledge. Examples of

operators and operations include negation, conjunction, adverbs,

adjectives, quantifiers and modal operators. Interpretation theory is this

logic. These elements--symbols, operators, and interpretation theory--

are what give sequences of symbols meaning within a KR.

A key parameter in choosing or creating a KR is its expressivity. The

more expressive a KR, the easier and more compact it is to express a

fact or element of knowledge within the semantics and grammar of that

KR. However, more expressive languages are likely to require more

complex logic and algorithms to construct equivalent inferences. A

CIT478 ARTIFICIAL INTELLIGENCE

83

highly expressive KR is also less likely to be complete and consistent.

Less expressive KRs may be both complete and consistent. Auto

epistemic temporal modal logic is a highly expressive KR system,

encompassing meaningful chunks of knowledge with brief, simple

symbol sequences (sentences). Propositional logic is much less

expressive but highly consistent and complete and can efficiently

produce inferences with minimal algorithm complexity. Nonetheless,

only the limitations of an underlying knowledge base affect the ease

with which inferences may ultimately be made (once the appropriate KR

has been found). This is because a knowledge set may be exported from

a knowledge model or knowledge base system (KBS) into different

KRs, with different degrees of expressiveness, completeness, and

consistency. If a particular KR is inadequate in some way, that set of

problematic KR elements may be transformed by importing them into a

KBS, modified and operated on to eliminate the problematic elements or

augmented with additional knowledge imported from other sources, and

then exported into a different, more appropriate KR.

In applying KR systems to practical problems, the complexity of the

problem may exceed the resource constraints or the capabilities of the

KR system. Recent developments in KR include the concept of the

Semantic Web, and development of XML-based knowledge

representation languages and standards, including Resource Description

Framework (RDF), RDF Schema, Topic Maps, DARPA Agent Mark-up

Language (DAML), Ontology Inference Layer (OIL), and Web

Ontology Language (OWL).

There are several KR techniques such as frames, rules, tagging, and

semantic networks which originated in Cognitive Science. Since

knowledge is used to achieve intelligent behaviour, the fundamental

goal of knowledge representation is to facilitate reasoning, drawing

conclusions. A good KR must be both declarative and procedural

knowledge. What is knowledge representation can best be understood in

terms of five distinct roles it plays, each crucial to the task at hand:

 A knowledge representation (KR) is most fundamentally a

surrogate, a substitute for the thing itself, used to enable an entity

to determine consequences by thinking rather than acting, i.e., by

reasoning about the world rather than taking action in it.

 It is a set of ontological commitments, i.e., an answer to the

question: In what terms should I think about the world?

 It is a fragmentary theory of intelligent reasoning, expressed in

terms of three components: (i) the representation's fundamental

conception of intelligent reasoning; (ii) the set of inferences the

CIT478 ARTIFICIAL INTELLIGENCE

84

representation sanctions; and (iii) the set of inferences it

recommends.

 It is a medium for pragmatically efficient computation, i.e., the

computational environment in which thinking is accomplished.

One contribution to this pragmatic efficiency is supplied by the

guidance a representation provides for organizing information so

as to facilitate making the recommended inferences.

 It is a medium of human expression, i.e., a language in which we

say things about the world."

Some issues that arise in knowledge representation from an AI

perspective are:

 How do people represent knowledge?

 What is the nature of knowledge?

 Should a representation scheme deal with a particular domain or

should it be general purpose?

 How expressive is a representation scheme or formal language?

 Should the scheme be declarative or procedural?

There has been very little top-down discussion of the knowledge

representation (KR) issues and research in this area is a well aged

quillwork. There are well known problems such as "spreading

activation" (this is a problem in navigating a network of nodes),

"subsumption" (this is concerned with selective inheritance; e.g. an ATV

can be thought of as a specialization of a car but it inherits only

particular characteristics) and "classification." For example a tomato

could be classified both as a fruit and a vegetable.

In the field of artificial intelligence, problem solving can be simplified

by an appropriate choice of knowledge representation. Representing

knowledge in some ways makes certain problems easier to solve. For

example, it is easier to divide numbers represented in Hindu-Arabic

numerals than numbers represented as Roman numerals.

3.1.1 Characteristics

A good knowledge representation covers six basic characteristics:

 Coverage, which means the KR covers a breath and depth of

information. Without a wide coverage, the KR cannot determine

anything or resolve ambiguities.

 Understandable by humans. KR is viewed as a natural language,

so the logic should flow freely. It should support modularity and

hierarchies of classes (Polar bears are bears, which are animals).

CIT478 ARTIFICIAL INTELLIGENCE

85

It should also have simple primitives that combine in complex

forms.

 Consistency. If John closed the door, it can also be interpreted as

the door was closed by John. By being consistent, the KR can

eliminate redundant or conflicting knowledge.

 Efficient

 Easiness for modifying and updating.

 Supports the intelligent activity which uses the knowledge base

To gain a better understanding of why these characteristics represent a

good knowledge representation, think about how an encyclopaedia (e.g.

Wikipedia) is structured. There are millions of articles (coverage), and

they are sorted into categories, content types, and similar topics

(understandable). It redirects different titles but same content to the

same article (consistency). It is efficient, easy to add new pages or

update existing ones, and allows users on their mobile phones and

desktops to view its knowledge base.

3.1.2 History of Knowledge Representation and Reasoning

In computer science, particularly artificial intelligence, a number of

representations have been devised to structure information.

KR is most commonly used to refer to representations intended for

processing by modern computers, and in particular, for representations

consisting of explicit objects (the class of all elephants, or Clyde a

certain individual), and of assertions or claims about them ('Clyde is an

elephant', or 'all elephants are grey'). Representing knowledge in such

explicit form enables computers to draw conclusions from knowledge

already stored ('Clyde is grey').

Many KR methods were tried in the 1970s and early 1980s, such as

heuristic question-answering, neural networks, theorem proving, and

expert systems, with varying success. Medical diagnosis (e.g., Mycin)

was a major application area, as were games such as chess.

In the 1980s formal computer knowledge representation languages and

systems arose. Major projects attempted to encode wide bodies of

general knowledge; for example the "Cyc" project (still ongoing) went

through a large encyclopaedia, encoding not the information itself, but

the information a reader would need in order to understand the

encyclopaedia: naive physics; notions of time, causality, motivation;

commonplace objects and classes of objects.

CIT478 ARTIFICIAL INTELLIGENCE

86

Through such work, the difficulty of KR came to be better appreciated.

In computational linguistics, meanwhile, much larger databases of

language information were being built, and these, along with great

increases in computer speed and capacity, made deeper KR more

feasible.

Several programming languages have been developed that are oriented

to KR. Prolog developed in 1972, but popularized much later, represents

propositions and basic logic, and can derive conclusions from known

premises. KL-ONE (1980s) is more specifically aimed at knowledge

representation itself. In 1995, the Dublin Core standard of metadata was

conceived.

In the electronic document world, languages were being developed to

represent the structure of documents, such as SGML (from which

HTML descended) and later XML. These facilitated information

retrieval and data mining efforts, which have in recent years begun to

relate to knowledge representation.

Development of the Semantic Web, has included development of XML-

based knowledge representation languages and standards, including

RDF, RDF Schema, Topic Maps, DARPA Agent Markup Language

(DAML), Ontology Inference Layer (OIL), and Web Ontology

Language (OWL).

3.2 Knowledge Representation Languages

William Woods defines the properties of a KR Language as follows:

A KR language must unambiguously represent any interpretation of a

sentence (logical adequacy), have a method for translating from natural

language to that representation, and must be usable for reasoning

[Woods, 1975].

Wood's definition is merely a simplification of the KR Hypothesis

where "reasoning" is the only method of "engendering the behavior that

manifests that knowledge." Reasoning is essential to KR, and especially

to KR languages, yet even simple reasoning capabilities can lead to

serious tractability problems [Brachman and Levesque, 1987], and thus

must be well understood and used carefully.

One of the most important developments in the application of KR in the

past 20 years has been the proposal [Minsky, 1981], study [Woods,

1975] [Brachman, 1977] [Brachman, 1979], and development

[Brachman and Schmolze, 1985] [Fox, Wright, and Adam, 1985]

[Bobrow and Winograd, 1985] of frame-based KR languages. While

CIT478 ARTIFICIAL INTELLIGENCE

87

frame-based KR languages differ in varying degrees from each other,

the central tenet of these systems is a notation based on the specification

of objects (concepts) and their relationships to each other. The main

features of such a language are:

1. Object-orientedness. All the information about a specific concept

is stored with that concept, as opposed, for example, to rule-

based systems where information about one concept may be

scattered throughout the rule base.

2. Generalization/Specialization. Long recognized as a key aspect

of human cognition [Minsky, 1981], KR languages provide a

natural way to group concepts in hierarchies in which higher

level concepts represent more general, shared attributes of the

concepts below.

3. Reasoning. The ability to state in a formal way that the existence

of some piece of knowledge implies the existence of some other,

previously unknown piece of knowledge is important to KR.

Each KR language provides a different approach to reasoning.

4. Classification. Given an abstract description of a concept, most

KR languages provide the ability to determine if a concept fits

that description, this is actually a common special form of

reasoning.

Object orientation and generalization help to make the represented

knowledge more understandable to humans; reasoning and classification

help make a system behave as if it knows what is represented. Frame-

based systems thus meet the goals of the KR Hypothesis.

It is important to realize both the capabilities and limitations of frame-

based representations, especially as compared to other formalisms. To

begin with, all symbolic KR techniques are derived in one way or

CIT478 ARTIFICIAL INTELLIGENCE

88

another from First Order Logic (FOL), and as a result are suited for

representing knowledge that doesn't change.(Figure one Simple database

representation) . Different KR systems may be able to deal with non-

monotonic changes in the knowledge being represented, but the basic

assumption has been that change, if present, is the exception rather than

the rule.

Two other major declarative KR formalisms are production systems and

database systems. Production systems allow for the simple and natural

expression of if-then rules. However, these systems have been shown to

be quite restrictive when applied to large problems, as there is no

ordering of the rules, and inferences cannot be constrained away from

those dealing only with the objects of interest. Production systems are

subsumed by frame-based systems, which additionally provide natural

inference capabilities like classification and inheritance, as well as

knowledge-structuring techniques such as generalization and object

orientation.

Database systems provide only for the representation of simple

assertions, without inference. Rules of inference are important pieces of

knowledge about a domain. For example, consider the bibliographic

database in Figure 1. If someone were interested in article-10 and

wanted to know where it was, that person would have to be smart

enough to realize that an article can be found in the location of the

journal in which it is published. That sentence is a rule, it is knowledge.

It is knowledge that cannot be expressed in a database system. The

person doing the retrieval of the information in the database must have

that knowledge in order to type the SQL statement that will get the

proper location. In a frame-based system that knowledge can be

expressed as a rule that will fire when article-10 is accessed, thus

the user is not required to know it.

CIT478 ARTIFICIAL INTELLIGENCE

89

Frame-based systems are currently severely limited when dealing with

procedural knowledge [Winograd, 1975]. An example of procedural

knowledge would be Newton's Law of Gravitation - the attraction

between two masses is inversely proportional to the square of their

distances from each other. Given two frames representing the two

bodies, with slots holding their positions and mass, the value of the

gravitational attraction between them cannot be (Figure 2-A framework

for Domain Modelling).

Inferred declaratively using the standard reasoning mechanisms

available in frame-based KR languages, though a function or procedure

in a programming language could represent the mechanism for

performing this "inference" quite well. Frame-based systems that can

deal with this kind of knowledge do so by adding a procedural language

to its representation. The knowledge is not being represented in a frame-

based way, it is being represented as C or (more commonly) LISP code

which is accessed through a slot in the frame [Bobrow and Winograd,

1985]. This is an important distinction - there is knowledge being.

Encoded in those LISP functions that is not fully accessible. The system

can reason with that knowledge, but not about it; in other words we can

use some attached procedure to compute (or infer) the value of one slot

based on some others, but we cannot ask how that value was obtained.

3.3 Domain Modeling

Domain modeling is the field in which the application of KR to specific

domains is studied and performed. Figure 2 shows a framework for

discussing domain modeling that seems to map well onto most examples

[Iscoe, Tam, and Liu, 1991].

The amorphous shape labelled Domain Knowledge refers to the

knowledge possessed by the domain expert that must be encoded in

some fashion. This knowledge is not well defined and is fairly difficult

for others to access. The box labelled Meta-Model refers to the KR

formalism, typically a KR language that will be used as the symbol level

[Newell, 1982] for the machine representation of this knowledge. The

box labelled instantiation refers to the process of taking the domain

knowledge and physically representing it using the meta-model, this

process is sometimes referred to as knowledge acquisition [Schoen,

1991]. The box labelled domain model refers to the knowledge-base that

results from the instantiation, and the operational goals are typically not

represented formally, but refer to the reason the domain model was built

and what it will be used for.

CIT478 ARTIFICIAL INTELLIGENCE

90

Specific examples of real-world domain modelling efforts and how they

fit into this framework can be found in [Iscoe, 1991], and it has become

clear that the most prevalent operational goal across modelling efforts

today is understanding the domain of a large software system [Arango,

1989]. One thing that seems to be universally lacking in efforts with this

operational goal is the realization that a software system operating

within a domain is a part of that domain, and deserves as much attention

and detail in the model as any other part. The main reason for this

oversight is that there is a historical reason for distinguishing procedural

from declarative knowledge [Winograd, 1975], and as a result the two

are typically represented differently: domain models are represented

with frame based KR languages and programs are represented with

programming languages.

This traditional separation between programs and domain models causes

problems during the instantiation of a domain model that includes not

only knowledge of the objects and attributes, but knowledge of the

procedural aspects of the processes associated with the domain as well.

The problems stem from the fact that domain modelling is a discipline in

which advances are made incrementally, by building upon previous

systems [Simon, 1991]. Some of the most significant results are in the

form of methodologies which help other domain modellers to avoid

pitfalls and use techniques that work [Gruber, 1993].

The predominant methodologies for domain modelling clearly indicate

that the instantiation of the model is the most time consuming part, and

that the most important part of instantiation is ontological analysis

[Alexander, Freiling, and Shulman, 1986] (which is more fully

described in the next section). Ontologies for general taxonomies of

objects are abundant, and there seem to be clear guidelines for

developing new ones.

The problem is that for the knowledge required to represent procedural

knowledge and reason about it (not with it); there are few guidelines,

especially when the procedures requiring representation are

implemented as software. There is not much background to draw upon,

other than software information systems, as far as ontologies and

methodologies for modelling what software does. Ontological analysis

ended up being a large part of the effort for this research, since it had

never been done before.

3.4 Ontological Analysis

The word ontology means "the study of the state of being." Ontology

describes the states of being of a particular set of things. This

CIT478 ARTIFICIAL INTELLIGENCE

91

description is usually made up of axioms that define each thing. In

knowledge representation, ontology has become the defining term for

the part of a domain model that excludes the instances, yet describes

what they can be. Ontological analysis is the process of defining this

part of the model.

What makes up a specific domain ontology is restricted by the

representational capabilities of the meta-model - the language used to

construct the model. Each knowledge representation language differs in

its manner and range of expression. In general, ontology consists of

three parts: concept definitions, role definitions, and further inference

definitions.

The concept definitions set up all the types of objects in the domain. In

object oriented terms this is called the class definitions, and in database

terms these are the entities. There can be three parts to the concept

definitions:

 Concept taxonomy. The taxonomy is common to most

knowledge representation languages, and through it is specified

the nature of the categories in terms of generalization and

specialization.

 Role defaults which specify for each concept what the default

values are for any attributes.

 Role restrictions which specify for a concept any constraints on

the values in a role, such as what types the values must be, how

many values there can be, etc.

A role is an attribute of an object. In object-oriented terms it is a slot, in

database terms (and even some KR languages) it is a relation. In the

simplest case, a role for an object just has a value; the object mailbox-4

might have a role number-of-messages, for example, that would have a

value which is a number. Roles also express relationships between

objects. The same object might have a role called owner which relates

mailbox-4 to the object person-2. Roles which represent relationships

are unidirectional. A role definition may have up to three parts as well:

 The role taxonomy which specifies the

generalization/specialization relationship between roles. For

example, ontology for describing cars might include roles called

has-engine, has-seats, and has-headlights, which relate objects

that represent cars to objects that represent engines, seats, and

headlights, resp. The role has-parts, then, could be expressed as

the generalization of all these roles, and the result is that all the

CIT478 ARTIFICIAL INTELLIGENCE

92

values of all the more specialized roles would also be values of

the more general role.

 Role inverses which provide a form of inference that allows the

addition of a role in the opposite direction when the forward link

is made. For example, if the inverse of has-engine was engine-of,

then when the has-engine link between the object that represents

the car and the object that represents the engine is made, the

engine-of link will automatically be added between the engine

object and the car object.

 Role restrictions. The role itself may be defined such that it can

only appear between objects of certain types (domain/range

restrictions), or can only appear a specified number of times

(cardinality restriction). This is the same information specified in

role restriction for concepts, some representation languages

consider this information to be part of the role, and some consider

it to be part of the concept.

The final part of ontology is the specification of additional inference that

the language provides. Examples of this are forward and/or backward

chaining rules, path grammars, subsumption and/or classification,

demons, etc. An explanation of the inference mechanisms used in this

research will be given in the next section.

3.5 Classic

Classic is a frame-based knowledge representation language that

belongs to the family of description logics [Brachman, et al., 1991]. It is

descended from KL-ONE [Brachman and Schmolze, 1985], and has

been specifically designed to be mindful of the tractability of its own

inferences [Brachman, et al., 1989].

Classic knowledge-bases are composed of four kinds of objects:

concepts, roles, rules, and individuals. Ontology in Classic consists of

concept taxonomy, role taxonomy, role inverses, role restrictions and

defaults. The role restrictions and defaults are specified as part of the

concept definitions. Classic rules are forward chaining rules.

3.5.1 The Classic Language

Throughout this document, it has been necessary to make explicit use of

the notation and terminology of Classic to explain and describe some of

the more detailed aspects of this research. This section contains a brief

introduction to the language of Classic in order to make it clear precisely

how one goes about describing objects. This introduction only presents

the subset of Classic which was used in this research. The Classic

CIT478 ARTIFICIAL INTELLIGENCE

93

language is specifically designed to make it possible to describe objects

in such a way that it is possible to determine automatically whether one

object is subsumed by another. The peculiarities of the language arise

from the goal of making this determination not only possible, but

tractable.

To begin with, a typical concept description looks like this:

(defconcept information-filter

(and kbeds-object
(all information-filter-of valid-mail-recipient)

(at-least one information-filter-of)

(all has-filter-condition kbeds-mail-message)

(at-least one has-filter-condition)

(at-most one has-filter-condition)
(all has-filter-action kbeds-filter-action)

(at-least one has-filter-action))

:disjoint kbeds-thing)

This says an information-filter is subsumed by (or is more

specialized than, or is a subclass of) kbeds-object (and therefore is

also described by that concept), and that all the fillers (in Classic a filler

is the value of a particular role on a particular object) for its

information-filter-of role must be individuals of valid-

mail-recipient, and that there must be at least one filler for that

role, and similarly for the role has-filter-condition except that

there can also be at most one filler (in other words, there can be only one

filler), and so on. The disjoint specification identifies this concept as a

member of a disjoint set, which means that an individual cannot be

subsumed by more than one concept in that set. The most obvious

example of a disjoint set would be the gender set, containing the

concepts "male person" and "female person."

In the terminology of Classic, the description above is told information.

Told information is precisely the information that is explicitly typed into

the knowledge base. This is opposed to derived information, which is all

the information that Classic derives or infers through its various

mechanisms. (Figure 3 – A Simple taxonomy of primitive concepts).

This description actually shows a primitive concept - one which Classic

will not automatically try to classify. Classic will also not automatically

try to find which individuals are subsumed by a primitive concept, this

information must be told. This subtle notion may seem irrelevant, but it

is the norm in most representation languages (when a concept is created

the modeller explicitly names the parent concepts, and when an

CIT478 ARTIFICIAL INTELLIGENCE

94

individual is created, the modeller explicitly names the concept that the

new individual is an instance of). It is important in Classic because there

is another kind of concept, the defined concept, which Classic actually

does automatically classify and find individuals of. For example, in

figure 3 a simple taxonomy of primitive concepts is shown. Let us

suppose we create a defined concept called vegetarian-mammal as

follows: (and mammal (all

food plant)). Next we create

another defined concept called

fruit-eating-person: (and

person (all food fruit)).

Classic will derive that

vegetarian-mammal subsumes

fruit-eating-person (why?

because mammal subsumes person and plant subsumes fruit). If

we created two individuals, joe and

apple, and tell Classic that they are

instances of person and fruit,

resp., and further tell Classic that

apple is a filler for joe's food

role, Classic will derive that joe is

an instance of fruit-eating-

person (and therefore also

vegetarian-mammal). Again, Classic will never derive that an

individual is an instance of a primitive concept, it must always be told
that.

This automatic classification of individuals of defined concepts through

subsumption is a simple, yet extremely powerful process. It is the key to

several significant advances in software information systems described

in later sections.

Another important point about Classic is the Open World Assumption.

Classic does not assume that the information it knows is all the

information there is. Returning to the example above, we have the

following told information about two individuals, joe: (and person

(fills food apple)), and apple: fruit. Classic will then add

all the derived information it can to these individuals, yielding joe:

(and person mammal classic-thing (fills food

apple)), and apple: (and fruit plant classic-

thing). Where is the information about joe being a fruit-

eating-person? The truth is that Classic cannot derive this yet. The

definition of fruit-eating-person specifies that all the fillers for

CIT478 ARTIFICIAL INTELLIGENCE

95

the food role of an individual must be instances of fruit. Classic

does not assume that because it knows one (or two, or zero, etc.) fillers

for an individual's role, that it knows them all. In fact, Classic assumes

the opposite: it assumes it does not know them all.

There are two ways for Classic to figure out that it knows all the fillers

for an individual's role. The first way is for it to be told, by closing the

role. When a role is closed on an individual, it tells Classic that there can

be no more filler. In the above example, the user would have to close the

food role on joe in order for Classic to derive that joe is an instance

of fruit-eating-person (Classic always tries to reclassify

individuals when their roles are closed). The second way is for Classic

to derive that a role is closed on an individual if there is an at-most

restriction on the role. For example, if the concept person (or

mammal) additionally had (at-most one food) in its description,

then since joe is told to be an instance of person that restriction

would apply to him, and since he already has one filler in his food role,

and since he can have at most one filler in his food role, he can have

no more and the role is derived to be closed.

The final part of ontology in Classic is the rules. Classic rules come in

two forms, description rules and filler rules. All classic rules have as

their antecedent a named concept, and are fired on an individual when

the individual is classified as an instance of the concept.

The consequent of a classic description rule is a classic description

which, when the rule fires on an individual, is merged into the

description of the individual. For example, if we had a description rule

like: vegetarian-mammal --> (at-most 0 has-prey), the

rule would fire on joe when he is classified as a fruit-eating-

person and would add the at-most restriction to the description of

joe. Classic would then also derive that joe's has-prey role is

closed as well.

The consequent of a classic filler rule is the name of a role and a LISP

function that will be invoked when the rule fires. The function is passed

the individual the rule fired on and the role named in the consequent,

and returns a list of new fillers for that role and individual. One useful

application for filler rules is to create inter-role dependencies. For

example, the concept rectangle has three roles: length, width,

and area. We could define a function for calculating the area in LISP

as follows:

(defun calculate-area (rect role)

CIT478 ARTIFICIAL INTELLIGENCE

96

(let ((length (car (cl-fillers rect @length)))

(width (car (cl-fillers rect @width))))

(* length width)))

And then define a filler rule: rectangle --> area calculate-area, the filler

for the area role would automatically be generated based on the fillers in

the length and width roles.

3.5.2 Enhancements to Classic

It was necessary to extend Classic in several ways in order to support

this research. Each extension had a different motivation, which may not

be entirely clear until that aspect of the research is discussed. These

extensions are explained here, however, so that the sections involving

the research do not need to sidetrack into explanations of the underlying

support.

The first extension to Classic was a facility for supporting what some

other representation languages call path grammars or role transitivity

[Fox, Wright, and Adam, 1985]. A very common form of inference in

frame-based representations is one in which the fillers for one role in a

class of individuals can always be found by following the same role

path. For example, an individual representing an article in a journal

might have a role called published-in which is filled with an

individual representing a journal. Journal individuals could have a role

called location which is filled with some string indicating the place

where the journal is physically located. It makes sense that the article

individual should also have a location that is the same as the location of

the journal it is published in, and this can be represented as a path rule.

A path rule, like all Classic rules, has for its antecedent a concept name,

and for its consequent a role and a role path (an ordered list of roles).

When a rule fires on an individual, classic follows the role path to the

end, and fills the role specified in the rule with all the values it finds at

the end of the path. In the journal article example, the path rule would

be: article --> location (published-in location).

An individual of article might be described: (and article

(fills published-in journal-10)), and the journal

individual journal-10: (and journal (fills location

"Shelf 10")). Classic would fire the path rule on the individual of

article and follow the path: the first part of the path is

published-in, which gets us to article-10, and the next part of

the path is location which gets us to the string "Shelf 10." This

value is then derived to be the filler for the location role of the

individual of article. If a particular path ends "early," that is, the

path leads to an intermediate individual that has no fillers for the next

CIT478 ARTIFICIAL INTELLIGENCE

97

role in the path, no fillers are returned for that particular branch of the

path.

The path rule facility was further expanded to allow for the expression

of specialization overrides. A specialization override is a type of

inference in which a value that would normally be derived to fill a role

is blocked if and only if there is already a value filling the role that is

more specialized. The most common example of this is in object-

oriented languages, a class inherits all the methods of its superclass,

except the ones that are already defined by the class.

The next enhancement to Classic was a facility for dumping individuals

into a file; in essence there is no way to save the current state of a classic

knowledge-base. While this may not sound like a significant extension,

there is one aspect of dumping (or, more accurately, of loading) a

knowledge-base that is very intricate: the order in which roles are

closed. When a role is told to be closed on an individual, it means there

can be no more filler for that role - told or derived. However, when

derived role filler depends on filler or fillers in other individuals, the

role cannot be closed until the fillers it depends on are closed. There is

an implicit ordering of role closing based on all the ways Classic can

derive information.

The most significant enhancement to Classic was the addition of a

facility for representing spanning objects [Welty and Ferrucci, 1994]. In

reality, this enhancement is in the process of being made to Classic by

its support team, and the spanning object facility used for this research

was actually applied to the "dumped" knowledge-based - that is, the

spanning functions worked by generating a text file containing Classic

descriptions, then the knowledge-base was cleared and the text file

could be loaded in. Until support for multiple universes of discourse is

added to Classic (which will happen in the next major release), this was

the only way to proceed. The only limitation this presented was an

inability to change the first universe from the second.

4.0 CONCLUSION

Knowledge representation (KR) is an area of artificial intelligence

research aimed at representing knowledge in symbols to facilitate

inferencing from those knowledge elements, creating new elements of

knowledge. The KR can be made to be independent of the underlying

knowledge model or knowledge base system (KBS) such as a semantic

network.

5.0 SUMMARY

CIT478 ARTIFICIAL INTELLIGENCE

98

In this unit, you learnt that:

 Knowledge Representation (KR) research involves analysis of

how to accurately and effectively reason and how best to use a set

of symbols to represent a set of facts within a knowledge domain.

 A good knowledge representation covers six basic characteristics

 In computer science, particularly artificial intelligence, a number

of representations have been devised to structure information.

 A KR language must unambiguously represent any interpretation

of a sentence (logical adequacy), have a method for translating

from natural language to that representation, and must be usable

for reasoning [Woods, 1975].

 Classic is a frame-based knowledge representation language that

belongs to the family of description logics [Brachman, et al.,

1991]

6.0 TUTOR-MARKED ASSIGNMENT

1. List four (4) Characteristics of Knowledge representation.

2. Explain Knowledge representation.

3. Explain Domain Modeling in KR.

7.0 REFERENCES/FURTHER READING

Walker, A. McCord, M., John, F. Sowa, & Walter, G. Wilson (1990).

Knowledge Systems and Prolog (Second Edition). Addison-

Wesley.

Arthur, B. M. (1998). Knowledge Representation. Lawrence Erlbaum

Associates.

Chein, M. ; Mugnier, M.L. (2009). Graph-based Knowledge

Representation: Computational Foundations of Conceptual

Graphs. Springer. ISBN 978-1-84800-285-2.

Davis, R.; Shrobe, H. E. Representing Structure and Behavior of Digital

Hardware, IEEE Computer, Special Issue on Knowledge

Representation, 16(10):75-82.

Hermann Helbig K. (2006). knowledge Representation and the

Semantics of Natural Language. Springer, Berlin, Heidelberg,

New York.

CIT478 ARTIFICIAL INTELLIGENCE

99

Jean-Luc, Hainaut, Jean-Marc, H.; Vincent Englebert, Henrard, J.,

Roland, D. Understanding Implementations of IS-A Relations.

ER 1996: 42-57.

Jeen Broekstraa, Michel Klein, Stefan Deckerc, Dieter Fenselb, Frank

van Harmelenb and Ian Horrocks Enabling knowledge

representation on the Web by extending RDF Schema, , April 16

2002.

John F. Sowa (2000). Knowledge Representation: Logical,

Philosophical, and Computational Foundations. New York:

Brooks/Cole.

Philippe Martin "Knowledge representation in RDF/XML, KIF, Frame-

CG and Formalized-English", Distributed System Technology

Centre, QLD, Australia, July 15-19, 2002

Pople H, Heuristic Methods for imposing structure on ill-structured

problems, in AI in Medicine, Szolovits (ed.). AAAS Symposium

51, Boulder: Westview Press.

Randall Davis, Howard Shrobe, and Peter Szolovits; What Is a

Knowledge Representation? AI Magazine, 14(1):17-33,1993

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, Moshe Y. Vardi

Reasoning About Knowledge, MIT Press, 1995, ISBN 0-262-

06162-7.

Ronald J. Brachman, Hector J. Levesque (eds). Readings in Knowledge

Representation, Morgan Kaufmann, 1985, ISBN 0-934613-01-X

Ronald J. Brachman, Hector J. Levesque Knowledge Representation and

Reasoning, Morgan Kaufmann, 2004 ISBN 978-1-55860-932-7

Ronald J. Brachman; What IS-A is and isn't. An Analysis of Taxonomic

Links in Semantic Networks; IEEE Computer, 16 (10); October

1983

Russell, Stuart J.; Norvig, Peter (2010). Artificial Intelligence: A

Modern Approach (3rd ed.). Upper Saddle River, New Jersey:

Prentice Hall, ISBN 0-13-604259-7, p. 437-439.

CIT478 ARTIFICIAL INTELLIGENCE

100

UNIT 2 PROGRAMMING LANGUAGES FOR

ARTIFICIAL INTELLIGENCE

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 IPL Programming Language

3.1.1 A taste of IPL

3.1.2 History of Ipl

3.2 Lisp Programming Language

3.2.1 History

3.2.2 Connection to Artificial Intelligence

3.2.3 Areas of Application

3.2.4 Syntax and Semantics

3.3 Prolog Programming Language

3.3.1 History of Prolog

3.3.2 Prolog Syntax and Semantics

3.3.2.1 Data Types

3.3.2.2 Rules and Facts

3.3.2.3 Evaluation

3.3.2.4 Loops and Recursion

3.3.2.5 Negation

3.3.2.6 Examples

3.3.2.7 Criticism

3.3.2.8 Types

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Artificial intelligence researchers have developed several specialized

programming languages for artificial intelligence:

 IPL was the first language developed for artificial intelligence. It

includes features intended to support programs that could

perform general problem solving, including lists, associations,

schemas (frames), dynamic memory allocation, data types,

recursion, associative retrieval, functions as arguments,

generators (streams), and cooperative multitasking.

 Lisp is a practical mathematical notation for computer programs

based on lambda calculus. Linked lists are one of Lisp languages'

CIT478 ARTIFICIAL INTELLIGENCE

101

major data structures, and Lisp source code is itself made up of

lists. As a result, Lisp programs can manipulate source code as a

data structure, giving rise to the macro systems that allow

programmers to create new syntax or even new domain-specific

programming languages embedded in Lisp. There are many

dialects of Lisp in use today, among them are Common Lisp,

Scheme, and Clojure.

 Prolog is a declarative language where programs are expressed in

terms of relations, and execution occurs by running queries over

these relations. Prolog is particularly useful for symbolic

reasoning, database and language parsing applications. Prolog is

widely used in AI today.

 A STRIP is a language for expressing automated planning

problem instances. It expresses an initial state, the goal states,

and a set of actions. For each action preconditions (what must be

established before the action is performed) and post conditions

(what is established after the action is performed) are specified.

 Planner is a hybrid between procedural and logical languages. It

gives a procedural interpretation to logical sentences where

implications are interpreted with pattern-directed inference.

AI applications are also often written in standard languages like C++

and languages designed for mathematics, such as MATLAB and Lush.

This unit will deal only on IPL, Lisp and Prolog.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 describe the history of IPL

 discuss the similarities between lisp and prolog programming

 list the areas where lisp can be used.

3.0 MAIN CONTENT

3.1 IPL Programming Language

Information Processing Language (IPL) is a programming language

developed by Allen Newell, Cliff Shaw, and Herbert Simon at RAND

Corporation and the Carnegie Institute of Technology from about 1956.

Newell had the role of language specifier-application programmer,

Shaw was the system programmer and Simon took the role of

application programmer-user.

CIT478 ARTIFICIAL INTELLIGENCE

102

The language includes features intended to support programs that could

perform general problem solving, including lists, associations, schemas

(frames), dynamic memory allocation, data types, recursion, associative

retrieval, functions as arguments, generators (streams), and cooperative

multitasking. IPL pioneered the concept of list processing, albeit in an

assembly-language style.

3.1.1 A taste of IPL

An IPL computer has:

1. A set of symbols. All symbols are addresses, and name cells.

Unlike symbols in later languages, symbols consist of a character

followed by a number, and are written H1, A29, 9-7, 9-100.

 Cell names beginning with a letter are regional, and are absolute

addresses.

 Cell names beginning with "9-" are local, and are meaningful

within the context of a single list. One list's 9-1 is independent of

another list's 9-1.

 Other symbols (e.g., pure numbers) are internal.

2. A set of cells. Lists are built from several cells holding mutual

references. Cells have several fields:

 P, a 3-bit field used for an operation code when the cell is used as

an instruction and unused when the cell is data.

 Q, a 3-valued field used for indirect reference when the cell is

used as an instruction and unused when the cell is data.

 SYMB, a symbol used as the value in the cell.

3. A set of primitive processes, which would be termed primitive

functions in modern languages.

3.1.2 History of IPL

The first application of IPL was to demonstrate that the theorems in

Principia Mathematica which were laboriously proven by hand, by

Bertrand Russell and Alfred North Whitehead, could in fact be proven

by computation. According to Simon's autobiography Models of My

Life, this first application was developed first by hand simulation, using

his children as the computing elements, while writing on and holding up

note cards as the registers which contained the state variables of the

program.

CIT478 ARTIFICIAL INTELLIGENCE

103

IPL was used to implement several early artificial intelligence programs,

also by the same authors: the Logic Theory Machine (1956), the General

Problem Solver (1957), and their computer chess program NSS (1958).

Several versions of IPL were created: IPL-I (never implemented), IPL-II

(1957 for JOHNNIAC), IPL-III (existed briefly), IPL-IV, IPL-V (1958,

for IBM 650, IBM 704, IBM 7090, many others. Widely used), IPL-VI.

However the language was soon displaced by Lisp, which had far more

powerful features, a simpler syntax, and the benefit of automatic

garbage collection.

3.2 Lisp Programming Language

Lisp (or LISP) is a family of computer programming languages with a

long history and a distinctive, fully parenthesized syntax. Originally

specified in 1958, Lisp is the second-oldest high-level programming

language in widespread use today; only FORTRAN is older (by one

year). Like FORTRAN, Lisp has changed a great deal since its early

days, and a number of dialects have existed over its history. Today, the

most widely known general-purpose Lisp dialects are Common Lisp,

Scheme, and Clojure.

Lisp was originally created as a practical mathematical notation for

computer programs, influenced by the notation of Alonzo Church's

lambda calculus. It quickly became the favored programming language

for artificial intelligence (AI) research. As one of the earliest

programming languages, Lisp pioneered many ideas in computer

science, including tree data structures, automatic storage management,

dynamic typing, and the self-hosting compiler.

The name LISP derives from "LISt Processing". Linked lists are one of

Lisp languages' major data structures, and Lisp source code is itself

made up of lists. As a result, Lisp programs can manipulate source code

as a data structure, giving rise to the macro systems that allow

programmers to create new syntax or even new domain-specific

languages embedded in Lisp.

The interchange ability of code and data also gives Lisp its instantly

recognizable syntax. All program code is written as s-expressions, or

parenthesized lists. A function call or syntactic form is written as a list

with the function or operator's name first, and the arguments following;

for instance, a function f that takes three arguments might be called

using (f arg1 arg2 arg3).

CIT478 ARTIFICIAL INTELLIGENCE

104

3.2.1 History

Interest in artificial intelligence first surfaced in the mid 1950.

Linguistics, psychology, and mathematics were only some areas of

application for AI. Linguists were concerned with natural language

processing, while psychologists were interested in modelling human

information and retrieval. Mathematicians were more interested in

automating the theorem proving process. The common need among all

of these applications was a method to allow computers to process

symbolic data in lists.

IBM was one of the first companies interested in AI in the 1950s. At the

same time, the FORTRAN project was still going on. Because of the

high cost associated with producing the first FORTRAN compiler, they

decided to include the list processing functionality into FORTRAN. The

FORTRAN List Processing Language (FLPL) was designed and

implemented as an extension to FORTRAN.

In 1958 John McCarthy took a summer position at the IBM Information

Research Department. He was hired to create a set of requirements for

doing symbolic computation. The first attempt at this was differentiation

of algebraic expressions. This initial experiment produced a list of

language requirements, most notably was recursion and conditional

expressions. At the time, not even FORTRAN (the only high-level

language in existence) had these functions.

It was at the 1956 Dartmouth Summer Research Project on Artificial

Intelligence that John McCarthy first developed the basics behind Lisp.

His motivation was to develop a list processing language for Artificial

Intelligence. By 1965 the primary dialect of Lisp was created (version

1.5). By 1970 special-purpose computers known as Lisp Machines, were

designed to run Lisp programs. 1980 was the year that object-oriented

concepts were integrated into the language. By 1986, the X3J13 group

formed to produce a draft for ANSI Common Lisp standard. Finally in

1992, X3J13 group published the American National Standard for

Common Lisp.

Since 2000

After having declined somewhat in the 1990s, Lisp has recently

experienced a resurgence of interest. Most new activity is focused

around open source implementations of Common Lisp, and includes the

development of new portable libraries and applications. This interest can

be measured partly by sales from the print version of Practical Common

Lisp by Peter Seibel, a tutorial for new Lisp programmers published in

CIT478 ARTIFICIAL INTELLIGENCE

105

2004. It was briefly Amazon.com's second most popular programming

book. It is available free online.http://en.wikipedia.org/wiki/Lisp_

(programming_language) - cite_note-15

Many new Lisp programmers were inspired by writers such as Paul

Graham and Eric S. Raymond to pursue a language others considered

antiquated. New Lisp programmers often describe the language as an

eye-opening experience and claim to be substantially more productive

than in other languages. This increase in awareness may be contrasted to

the "AI winter" and Lisp's brief gain in the mid-1990s.

Dan Weinreb lists in his survey of Common Lisp implementations

eleven actively maintained Common Lisp implementations. Scieneer

Common Lisp is a new commercial implementation forked from

CMUCL with a first release in 2002.

The open source community has created new supporting infrastructure:

Cliki is a wiki that collects Common Lisp related information, the

Common Lisp directory lists resources, #lisp is a popular IRC channel

(with support by a Lisp-written Bot), lisppaste supports the sharing and

commenting of code snippets, Planet Lisp collects the contents of

various Lisp-related Blogs, on LispForum user discuss Lisp topics, Lisp

jobs is a service for announcing job offers and there is a new weekly

news service (Weekly Lisp News). Common-lisp.net is a hosting site for

open source Common Lisp projects.

50 years of Lisp (1958–2008) has been celebrated at

LISP50@OOPSLA. There are several regular local user meetings

(Boston, Vancouver, Hamburg,), Lisp Meetings (European Common

Lisp Meeting, European Lisp Symposium) and an International Lisp

Conference.

The Scheme community actively maintains over twenty

implementations. Several significant new implementations (Chicken,

Gambit, Gauche, Ikarus, Larceny, and Ypsilon) have been developed in

the last few years. The Revised Report on the Algorithmic Language

Scheme standard of Scheme was widely accepted in the Scheme

community. The Scheme Requests for Implementation process has

created a lot of quasi standard libraries and extensions for Scheme. User

communities of individual Scheme implementations continue to grow. A

new language standardization process was started in 2003 and led to the

RRS Scheme standard in 2007. Academic use of Scheme for teaching

computer science seems to have declined somewhat. Some universities

are no longer using Scheme in their computer science introductory

courses.

There are several new dialects of Lisp: Arc, Nu, and Clojure.

http://en.wikipedia.org/wiki/Lisp_

CIT478 ARTIFICIAL INTELLIGENCE

106

3.2.2 Connection to artificial intelligence

Since its inception, Lisp was closely connected with the artificial

intelligence research community, especially on PDP-10http://en.

wikipedia.org/wiki/Lisp_(programming_language)- cite_note-5 systems.

Lisp was used as the implementation of the programming language

Micro Planner which was used in the famous AI system SHRDLU. In

the 1970s, as AI research spawned commercial offshoots, the

performance of existing Lisp systems became a growing issue.

3.2.3 Areas of Application

Lisp totally dominated Artificial Intelligence applications for a quarter

of a century, and is still the most widely used language for AI. In

addition to its success in AI, Lisp pioneered the process of Functional

Programming. Many programming language researchers believe that

functional programming is a much better approach to software

development, than the use of Imperative Languages (Pascal, C++, etc).

Below is a short list of the areas where Lisp has been used:

 Artificial Intelligence

- AI Robots

- Computer Games (Craps, Connect-4, BlackJack)

- Pattern Recognition

 Air Defense Systems

 Implementation of Real-Time, embedded Knowledge-Based

Systems

 List Handling and Processing

 Tree Traversal (Breath/Depth First Search)

 Educational Purposes (Functional Style Programming)

3.2.4 Syntax and semantics

Symbolic expressions

Lisp is an expression-oriented language. Unlike most other languages,

no distinction is made between "expressions" and "statements"; all code

and data are written as expressions. When an expression is evaluated, it

produces a value (in Common Lisp, possibly multiple values), which

then can be embedded into other expressions. Each value can be any

data type.

http://en/

CIT478 ARTIFICIAL INTELLIGENCE

107

McCarthy's 1958 paper introduced two types of syntax: S-expressions

(Symbolic expressions, also called "sexps"), which mirror the internal

representation of code and data; and M-expressions (Meta Expressions),

which express functions of S-expressions. M-expressions never found

favour, and almost all Lisps today use S-expressions to manipulate both

code and data.

The use of parentheses is Lisp's most immediately obvious difference

from other programming language families. As a result, students have

long given Lisp nicknames such as Lost in Stupid Parentheses, or Lots

of Irritating Superfluous Parentheses.
[23]

 However, the S-expression

syntax is also responsible for much of Lisp's power: the syntax is

extremely regular, which facilitates manipulation by computer.

However, the syntax of Lisp is not limited to traditional parentheses

notation. It can be extended to include alternative notations. XMLisp,

for instance, is a Common Lisp extension that employs the metaobject-

protocol to integrate S-expressions with the Extensible Markup

Language (XML).

The reliance on expressions gives the language great flexibility. Because

Lisp functions are themselves written as lists, they can be processed

exactly like data. This allows easy writing of programs which

manipulate other programs (metaprogramming). Many Lisp dialects

exploit this feature using macro systems, which enables extension of the

language almost without limit.

3.3 Prolog Programming Language

Prolog is a general purpose logic programming language associated with

artificial intelligence and computational linguistics.

Prolog has its roots in first-order logic, a formal logic, and unlike many

other programming languages, Prolog is declarative: the program logic

is expressed in terms of relations, represented as facts and rules. A

computation is initiated by running a query over these relations.

The language was first conceived by a group around Alain Colmerauer

in Marseille, France, in the early 1970s and the first Prolog system was

developed in 1972 by Colmerauer with Philippe Roussel.

Prolog was one of the first logic programming languages, and remains

among the most popular such languages today, with many free and

commercial implementations available. While initially aimed at natural

language processing, the language has since then stretched far into other

areas like theorem proving, expert systems, games, automated

CIT478 ARTIFICIAL INTELLIGENCE

108

answering systems, ontologies and sophisticated control systems.

Modern Prolog environments support creating graphical user interfaces,

as well as administrative and networked applications.

3.3.1 History of Prolog

The name Prolog was chosen by Philippe Roussel as an abbreviation for

programmation en logique (French for programming in logic). It was

created around 1972 by Alain Colmerauer with Philippe Roussel, based

on Robert Kowalski's procedural interpretation of Horn clauses. It was

motivated in part by the desire to reconcile the use of logic as a

declarative knowledge representation language with the procedural

representation of knowledge that was popular in North America in the

late 1960s and early 1970s. According to Robert Kowalski, the first

Prolog system was developed in 1972 by Alain Colmerauer and Phillipe

Roussel. The first implementations of Prolog were interpreters;

however, David H. D. Warren created the Warren Abstract Machine, an

early and influential Prolog compiler which came to define the

"Edinburgh Prolog" dialect which served as the basis for the syntax of

most modern implementations.

Much of the modern development of Prolog came from the impetus of

the Fifth Generation Computer Systems project (FGCS), which

developed a variant of Prolog named Kernel Language for its first

operating system.

Pure Prolog was originally restricted to the use of a resolution theorem

prove with Horn clauses of the form:

3.3.2 Prolog Syntax and Semantics

In Prolog, program logic is expressed in terms of relations, and a

computation is initiated by running a query over these relations.

Relations and queries are constructed using Prolog's single data type, the

term. Relations are defined by clauses. Given a query, the Prolog engine

attempts to find a resolution refutation of the negated query. If the

negated query can be refuted, i.e., an instantiation for all free variables is

found that makes the union of clauses and the singleton set consisting of

the negated query false, it follows that the original query, with the found

instantiation applied, is a logical consequence of the program. This

makes Prolog (and other logic programming languages) particularly

useful for database, symbolic mathematics, and language parsing

applications. Because Prolog allows impure predicates, checking the

truth value of certain special predicates may have some deliberate side

effect, such as printing a value to the screen. Because of this, the

CIT478 ARTIFICIAL INTELLIGENCE

109

programmer is permitted to use some amount of conventional

imperative programming when the logical paradigm is inconvenient. It

has a purely logical subset, called "pure Prolog", as well as a number of

extra logical features.

3.3.2.1 Data Types

Prolog's single data type is the term. Terms are atoms, numbers,

variables or compound terms.

 An atom is a general-purpose name with no inherent meaning.

Examples of atoms include x, blue, 'Taco', and 'some atom'.

 Numbers can be floats or integers.

 Variables are denoted by a string consisting of letters, numbers

and underscore characters, and beginning with an upper-case

letter or underscore. Variables closely resemble variables in logic

in that they are placeholders for arbitrary terms.

 A compound term is composed of an atom called a "functor" and

a number of "arguments", which are again terms. Compound

terms are ordinarily written as a functor followed by a comma-

separated list of argument terms, which is contained in

parentheses. The number of arguments is called the term's arity.

An atom can be regarded as a compound term with arity zero.

Examples of compound terms are truck_year('Mazda', 1986) and

'Person_Friends'(zelda,[tom,jim]).

Special cases of compound terms:

 A List is an ordered collection of terms. It is denoted by square

brackets with the terms separated by commas or in the case of the

empty list, []. For example [1,2,3] or [red,green,blue].

 Strings: A sequence of characters surrounded by quotes is

equivalent to a list of (numeric) character codes, generally in the

local character encoding, or Unicode if the system supports

Unicode. For example, "to be, or not to be".

3.3.2.2 Rules and Facts

Prolog programs describe relations, defined by means of clauses. Pure

Prolog is restricted to Horn clauses. There are two types of clauses: facts

and rules. A rule is of the form

CIT478 ARTIFICIAL INTELLIGENCE

110

Head: - Body.

and is read as "Head is true if Body is true". A rule's body consists of

calls to predicates, which are called the rule's goals. The built-in

predicate ,/2 (meaning a 2-arity operator with name ,) denotes

conjunction of goals, and ;/2 denotes disjunction. Conjunctions and

disjunctions can only appear in the body, not in the head of a rule.

Clauses with empty bodies are called facts. An example of a fact is:

cat(tom).

which is equivalent to the rule?

cat(tom) :- true.

The built-in predicate true/0 is always true.

Given the above fact, one can ask:

is tom a cat?

?- cat(tom).

Yes

what things are cats?
?- cat(X).

X = tom

Clauses with bodies are called rules. An example of a rule is:

animal(X):- cat(X).

If we add that rule and ask what things are animals?

?- animal(X).

X = tom

Due to the relational nature of many built-in predicates, they can

typically be used in several directions. For example, length/2 can be

used to determine the length of a list (length(List, L), given a list) as

well as to generate a list skeleton of a given length (length(X, 5)), and

also to generate both list skeletons and their lengths together (length(X,

L)). Similarly, append/3 can be used both to append two lists

(append(ListA, ListB, X) given lists ListA and ListB) as well as to split

a given list into parts (append(X, Y, List), given a list List). For this

reason, a comparatively small set of library predicates suffices for many

Prolog programs.

As a general purpose language, Prolog also provides various built-in

predicates to perform routine activities like input/output, using graphics

and otherwise communicating with the operating system. These

predicates are not given a relational meaning and are only useful for the

side-effects they exhibit on the system. For example, the predicate

write/1 displays a term on the screen.

CIT478 ARTIFICIAL INTELLIGENCE

111

3.3.2.3 Evaluation

Execution of a Prolog program is initiated by the user's posting of a

single goal, called the query. Logically, the Prolog engine tries to find a

resolution refutation of the negated query. The resolution method used

by Prolog is called SLD resolution. If the negated query can be refuted,

it follows that the query, with the appropriate variable bindings in place,

is a logical consequence of the program. In that case, all generated

variable bindings are reported to the user, and the query is said to have

succeeded. Operationally, Prolog's execution strategy can be thought of

as a generalization of function calls in other languages, one difference

being that multiple clause heads can match a given call. In that case, the

system creates a choice-point, unifies the goal with the clause head of

the first alternative, and continues with the goals of that first alternative.

If any goal fails in the course of executing the program, all variable

bindings that were made since the most recent choice-point was created

are undone, and execution continues with the next alternative of that

choice-point. This execution strategy is called chronological

backtracking. For example:

mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).
This results in the following query being evaluated as true:
?- sibling(sally, erica).

Yes

This is obtained as follows: Initially, the only matching clause-head for

the query sibling(sally, erica) is the first one, so proving the query is

equivalent to proving the body of that clause with the appropriate

variable bindings in place, i.e., the conjunction (parent_child(Z,sally),

parent_child(Z,erica)). The next goal to be proved is the leftmost one of

this conjunction, i.e., parent_child(Z, sally). Two clause heads match

this goal. The system creates a choice-point and tries the first

alternative, whose body is father_child(Z, sally). This goal can be

proved using the fact father_child(tom, sally), so the binding Z = tom is

generated, and the next goal to be proved is the second part of the above

conjunction: parent_child(tom, erica). Again, this can be proved by the

corresponding fact. Since all goals could be proved, the query succeeds.

CIT478 ARTIFICIAL INTELLIGENCE

112

Since the query contained no variables, no bindings are reported to the

user. A query with variables, like:

?- father_child(Father, Child).

enumerates all valid answers on backtracking.
Notice that with the code as stated above, the query?- sibling(sally,

sally). Also succeeds. One would insert additional goals to describe the

relevant restrictions, if desired.

3.3.2.4 Loops and recursion

Iterative algorithms can be implemented by means of recursive

predicates.

3.3.2.5 Negation

The built-in Prolog predicate \+/1 provides negation as failure, which

allows for non-monotonic reasoning. The goal \+ legal(X) in the rule

illegal(X) :- \+ legal(X).

is evaluated as follows: Prolog attempts to prove the legal(X). If a proof

for that goal can be found, the original goal (i.e., \+ legal(X)) fails. If no

proof can be found, the original goal succeeds. Therefore, the \+/1 prefix

operator is called the "not provable" operator, since the query ?- \+ Goal.

succeeds if Goal is not provable. This kind of negation is sound if its

argument is "ground" (i.e. contains no variables). Soundness is lost if the

argument contains variables and the proof procedure is complete. In

particular, the query ?- illegal(X). can now not be used to enumerate all

things that are illegal.

3.3.2.6 Examples

Here follow some example programs written in Prolog.

Hello world

An example of a query:
?- write('Hello world!'), nl.

Hello world!

true.

?-

3.3.2.7 Criticism

Although Prolog is widely used in research and education, Prolog and

other logic programming languages have not had a significant impact on

CIT478 ARTIFICIAL INTELLIGENCE

113

the computer industry in general. Most applications are small by

industrial standards, with few exceeding 100,000 lines of code.

Programming in the large is considered to be complicated because not

all Prolog compilers support modules, and there are compatibility

problems between the module systems of the major Prolog compilers.

Portability of Prolog code across implementations has also been a

problem, but developments since 2007 have meant: "the portability

within the family of Edinburgh/Quintus derived Prolog implementations

is good enough to allow for maintaining portable real-world

applications."

Software developed in Prolog has been criticised for having a high

performance penalty compared to conventional programming languages.

However, advances in implementation methods have reduced the

penalties to as little as 25%-50% for some applications.

3.3.2.8 Types

Prolog is an untyped language. Attempts to introduce types date back to

the 1980s, and as of 2008 there are still attempts to extend Prolog with

types. Type information is useful not only for type safety but also for

reasoning about Prolog programs.

4.0 CONCLUSION

IPL, Lisp and Prolog considered in this unit are among other specialized

programming languages for artificial intelligence.

5.0 SUMMARY

In this unit, you learnt that:

 IPL is the pi1ered concept of list processing.

 Lisp is the second-oldest high-level programming language in

widespread use today

 Prolog was 1 of the first logic programming languages, and

remains among the most popular such languages today, with

many free and commercial implementations available.

6.0 TUTOR-MARKED ASSIGNMENT

1. Describe Prolog programming Language.

2. Describe Lisp programming Language.

3. List three (3) areas where Lisp can be used.

CIT478 ARTIFICIAL INTELLIGENCE

114

7.0 REFERENCES/FURTHER READING

Crevier, D. (1993). AI: The Tumultuous Search for Artificial

Intelligence. New York, NY: BasicBooks, ISBN 0-465-02997-3

McCarthy, J. (1979). History of Lisp. "LISP prehistory - Summer 1956

through Summer 1958."

Nilsson, N. (1998). Artificial Intelligence: A New Synthesis. Morgan:

Kaufmann Publishers, ISBN 978-1-55860-467-4.

Poole, D. Mackworth, A. Goebel, R. (1998). Computational

Intelligence: A Logical Approach. New York: Oxford University

Press, ISBN 0195102703, http://www.cs.ubc.ca/spider/poole/

ci.html

Russell, S. J.& Norvig, Peter (2003). Artificial Intelligence: A Modern

Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice

Hall, ISBN 0-13-790395-2, http://aima.cs.berkeley.edu/

Sebesta, R.W. (1996). Concepts of Programming Languages, (Third

Edition). Menlo Park, California: Addison-Wesley Publishing

Company.

http://www.cs.ubc.ca/spider/poole/
http://aima.cs.berkeley.edu/

CIT478 ARTIFICIAL INTELLIGENCE

115

UNIT 3 NATURAL LANGUAGE PROCESSING

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 History of Natural Language Processing (NLP)

3.2 NLP using Machine Learning

3.3 Major Tasks in NLP

3.4 Statistical Natural Language Processing

3.5 Evaluating of Natural Language Processing

3.5.1 Objectives

3.5.2 Sort History of Evaluation in NLP

3.5.3 Different Types of Evaluation

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Natural language processing (NLP) is a field of computer science and

linguistics concerned with the interactions between computers and

human (natural) languages; it began as a branch of artificial intelligence.

In theory, natural language processing is a very attractive method of

human–computer interaction. Natural language understanding is

sometimes referred to as an AI-complete problem because it seems to

require extensive knowledge about the outside world and the ability to

manipulate it.

An automated online assistant providing customer service on a web page

is an example of an application where natural language processing is a

major comp1nt.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 describe the history of natural language processing

 list major tasks in NLP

 mention different types of evaluation of NPL.

CIT478 ARTIFICIAL INTELLIGENCE

116

3.0 MAIN CONTENT

3.1 History of natural language processing

The history of NLP generally starts in the 1950s, although work can be

found from earlier periods. In 1950, Alan Turing published his famous

article "Computing Machinery and Intelligence" which proposed what is

now called the Turing test as a criterion of intelligence. This criterion

depends on the ability of a computer program to impersonate a human in

a real-time written conversation with a human judge, sufficiently well

that the judge is unable to distinguish reliably — on the basis of the

conversational content alone — between the program and a real human.

The Georgetown experiment in 1954 involved fully automatic

translation of more than sixty Russian sentences into English. The

authors claimed that within three or five years, machine translation

would be a solved problem. However, real progress was much slower,

and after the ALPAC report in 1966, which found that ten years long

research had failed to fulfill the expectations, funding for machine

translation was dramatically reduced. Little further research in machine

translation was conducted until the late 1980s, when the first statistical

machine translation systems were developed.

Some notably successful NLP systems developed in the 1960s were

SHRDLU, a natural language system working in restricted "blocks

worlds" with restricted vocabularies, and ELIZA, a simulation of a

Rogerian psychotherapist, written by Joseph Weizenbaum between 1964

to 1966. Using almost no information about human thought or emotion,

ELIZA sometimes provided a startlingly human-like interaction. When

the "patient" exceeded the very small knowledge base, ELIZA might

provide a generic response, for example, responding to "My head hurts"

with "Why do you say your head hurts?‖

During the 70's many programmers began to write 'conceptual

ontologies', which structured real-world information into computer-

understandable data. Examples are MARGIE (Schank, 1975), SAM

(Cullingford, 1978), PAM (Wilensky, 1978), TaleSpin (Meehan, 1976),

QUALM (Lehnert, 1977), Politics (Carbonell, 1979), and Plot Units

(Lehnert 1981). During this time, many chatterbots were written

including PARRY, Racter, and Jabberwacky.

Up to the 1980s, most NLP systems were based on complex sets of

hand-written rules. Starting in the late 1980s, however, there was a

revolution in NLP with the introduction of machine learning algorithms

for language processing. This was due both to the steady increase in

computational power resulting from Moore's Law and the gradual

CIT478 ARTIFICIAL INTELLIGENCE

117

lessening of the dominance of Chomskyan theories of linguistics (e.g.

transformational grammar), whose theoretical underpinnings

discouraged the sort of corpus linguistics that underlies the machine-

learning approach to language processing. Some of the earliest-used

machine learning algorithms, such as decision trees, produced systems

of hard if-then rules similar to existing hand-written rules. Increasingly,

however, research has focused on statistical models, which make soft,

probabilistic decisions based on attaching real-valued weights to the

features making up the input data. Such models are generally more

robust when given unfamiliar input, especially input that contains errors

(as is very common for real-world data), and produce more reliable

results when integrated into a larger system comprising multiple

subtasks.

Many of the notable early successes occurred in the field of machine

translation, due especially to work at IBM Research, where successively

more complicated statistical models were developed. These systems

were able to take advantage of existing multilingual textual corpora that

had been produced by the Parliament of Canada and the European

Union as a result of laws calling for the translation of all governmental

proceedings into all official languages of the corresponding systems of

government. However, most other systems depended on corpora

specifically developed for the tasks implemented by these systems,

which was (and often continues to be) a major limitation in the success

of these systems. As a result, a great deal of research has gone into

methods of more effectively learning from limited amounts of data.

Recent research has increasingly focused on unsupervised and semi-

supervised learning algorithms. Such algorithms are able to learn from

data that has not been hand-annotated with the desired answers, or using

a combination of annotated and non-annotated data. Generally, this task

is much more difficult than supervised learning, and typically produces

less accurate results for a given amount of input data. However, there is

an enormous amount of non-annotated data available (including, among

other things, the entire content of the World Wide Web), which can

often make up for the inferior results.

3.2 NLP Using Machine Learning

As described above, modern approaches to natural language processing

(NLP) are grounded in machine learning. The paradigm of machine

learning is different from that of most prior attempts at language

processing. Prior implementations of language-processing tasks

typically involved the direct hand coding of large sets of rules. The

machine-learning paradigm calls instead for using general learning

CIT478 ARTIFICIAL INTELLIGENCE

118

algorithms — often, although not always, grounded in statistical

inference — to automatically learn such rules through the analysis of

large corpora of typical real-world examples. A corpus (plural,

"corpora") is a set of documents (or sometimes, individual sentences)

that have been hand-annotated with the correct values to be learned.

As an example, consider the task of part of speech tagging, i.e.

determining the correct part of speech of each word in a given sentence,

typically one that has never been seen before. A typical machine-

learning-based implementation of a part of speech tagger proceeds in

two steps, a training step and an evaluation step. The first step — the

training step — makes use of a corpus of training data, which consists of

a large number of sentences, each of which has the correct part of

speech attached to each word. (An example of such a corpus in common

use is the Penn Treebank. This includes (among other things) a set of

500 texts from the Brown Corpus, containing examples of various

genres of text, and 2500 articles from the Wall Street Journal.) This

corpus is analyzed and a learning model is generated from it, consisting

of automatically created rules for determining the part of speech for a

word in a sentence, typically based on the nature of the word in

question, the nature of surrounding words, and the most likely part of

speech for those surrounding words. The model that is generated is

typically the best model that can be found that simultaneously meets two

conflicting objectives: To perform as well as possible on the training

data, and to be as simple as possible (so that the model avoids over

fitting the training data, i.e. so that it generalizes as well as possible to

new data rather than only succeeding on sentences that have already

been seen). In the second step (the evaluation step), the model that has

been learned is used to process new sentences. An important part of the

development of any learning algorithm is testing the model that has been

learned on new, previously unseen data. It is critical that the data used

for testing is not the same as the data used for training; otherwise, the

testing accuracy will be unrealistically high.

Many different classes of machine learning algorithms have been

applied to NLP tasks. In common to all of these algorithms is that they

take as input a large set of "features" that are generated from the input

data. As an example, for a part-of-speech tagger, typical features might

be the identity of the word being processed, the identity of the words

immediately to the left and right, the part-of-speech tag of the word to

the left, and whether the word being considered or its immediate

neighbors are content words or function words. The algorithms differ,

however, in the nature of the rules generated. Some of the earliest-used

algorithms, such as decision trees, produced systems of hard if-then

rules similar to the systems of hand-written rules that were then

CIT478 ARTIFICIAL INTELLIGENCE

119

common. Increasingly, however, research has focused on statistical

models, which make soft, probabilistic decisions based on attaching real-

valued weights to each input feature. Such models have the advantage

that they can express the relative certainty of many different possible

answers rather than only one, producing more reliable results when such

a model is included as a component of a larger system. In addition,

models that make soft decisions are generally more robust when given

unfamiliar input, especially input that contains errors (as is very

common for real-world data).

Systems based on machine-learning algorithms have many advantages

over hand-produced rules:

 The learning procedures used during machine learning

automatically focus on the most common cases, whereas when

writing rules by hand it is often not obvious at all where the effort

should be directed.

 Automatic learning procedures can make use of statistical

inference algorithms to produce models that are robust to

unfamiliar input (e.g. containing words or structures that have not

been seen before) and to erroneous input (e.g. with misspelled

words or words accidentally omitted). Generally, handling such

input gracefully with hand-written rules — or more generally,

creating systems of hand-written rules that make soft decisions

— is extremely difficult and error-prone.

 Systems based on automatically learning the rules can be made

more accurate simply by supplying more input data. However,

systems based on hand-written rules can only be made more

accurate by increasing the complexity of the rules, which is a

much more difficult task. In particular, there is a limit to the

complexity of systems based on hand-crafted rules, beyond

which the systems become more and more unmanageable.

However, creating more data to input to machine-learning

systems simply requires a corresponding increase in the number

of man-hours worked, generally without significant increases in

the complexity of the annotation process.

3.3 Major tasks in NLP

The following is a list of some of the most commonly researched tasks

in NLP. Note that some of these tasks have direct real-world

applications, while others more commonly serve as subtasks that are

used to aid in solving larger tasks. What distinguishes these tasks from

other potential and actual NLP tasks is not only the volume of research

devoted to them but the fact that for each one there is typically a well-

CIT478 ARTIFICIAL INTELLIGENCE

120

defined problem setting, a standard metric for evaluating the task,

standard corpora on which the task can be evaluated, and competitions

devoted to the specific task.

 Automatic summarization: Produce a readable summary of a

chunk of text. Often used to provide summaries of text of a

known type, such as articles in the financial section of a

newspaper.

 Co reference resolution: Given a sentence or larger chunk of

text, determine which words ("mentions") refer to the same

objects ("entities"). Anaphora resolution is a specific example of

this task, and is specifically concerned with matching up

pronouns with the nouns or names that they refer to. The more

general task of co reference resolution also includes identify so-

called "bridging relationships" involving referring expressions.

For example, in a sentence such as "He entered John's house

through the front door", "the front door" is a referring expression

and the bridging relationship to be identified is the fact that the

door being referred to is the front door of John's house (rather

than of some other structure that might also be referred to).

 Discourse analysis: This rubric includes a number of related

tasks. One task is identifying the discourse structure of connected

text, i.e. the nature of the discourse relationships between

sentences (e.g. elaboration, explanation, contrast). Another

possible task is recognizing and classifying the speech acts in a

chunk of text (e.g. yes-no question, content question, statement,

assertion, etc.).

 Machine translation: Automatically translate text from one

human language to another. This is one of the most difficult

problems, and is a member of a class of problems colloquially

termed "AI-complete", i.e. requiring all of the different types of

knowledge that humans possess (grammar, semantics, facts about

the real world, etc.) in order to solve properly.

 Morphological segmentation: Separate words into individual

morphemes and identify the class of the morphemes. The

difficulty of this task depends greatly on the complexity of the

morphology (i.e. the structure of words) of the language being

considered. English has fairly simple morphology, especially

inflectional morphology, and thus it is often possible to ignore

this task entirely and simply model all possible forms of a word

(e.g. "open, opens, opened, and opening") as separate words. In

languages such as Turkish, however, such an approach is not

possible, as each dictionary entry has thousands of possible word

forms.

CIT478 ARTIFICIAL INTELLIGENCE

121

 Named entity recognition (NER): Given a stream of text,

determine which items in the text map to proper names, such as

people or places, and what the type of each such name is (e.g.

person, location, organization). Note that, although capitalization

can aid in recognizing named entities in languages such as

English, this information cannot aid in determining the type of

named entity, and in any case is often inaccurate or insufficient.

For example, the first word of a sentence is also capitalized, and

named entities often span several words, only some of which are

capitalized. Furthermore, many other languages in non-Western

scripts (e.g. Chinese or Arabic) do not have any capitalization at

all, and even languages with capitalization may not consistently

use it to distinguish names. For example, German capitalizes all

nouns, regardless of whether they refer to names, and French and

Spanish do not capitalize names that serve as adjectives.

 Natural language generation: Convert information from

computer databases into readable human language.

 Natural language understanding: Convert chunks of text into

more formal representations such as first-order logic structures

that are easier for computer programs to manipulate. Natural

language understanding involves the identification of the

intended semantic from the multiple possible semantics which

can be derived from a natural language expression which usually

takes the form of organized notations of natural languages

concepts. Introduction and creation of language metamodel and

ontology are efficient however empirical solutions. An explicit

formalization of natural languages semantics without confusions

with implicit assumptions such as closed world assumption

(CWA) vs. open world assumption, or subjective Yes/No vs.

objective True/False is expected for the construction of a basis of

semantics formalization.

 Optical character recognition (OCR): Given an image

representing printed text, determine the corresponding text.

 Part-of-speech tagging: Given a sentence, determine the part of

speech for each word. Many words, especially common ones, can

serve as multiple parts of speech. For example, "book" can be a

noun ("the book on the table") or verb ("to book a flight"); "set"

can be a noun, verb or adjective; and "out" can be any of at least

five different parts of speech. Note that some languages have

more such ambiguity than others. Languages with little

inflectional morphology, such as English are particularly prone to

such ambiguity. Chinese is prone to such ambiguity because it is

a tonal language during verbalization. Such inflection is not

readily conveyed via the entities employed within the

orthography to convey intended meaning.

CIT478 ARTIFICIAL INTELLIGENCE

122

 Parsing: Determine the parse tree (grammatical analysis) of a

given sentence. The grammar for natural languages is ambiguous

and typical sentences have multiple possible analyses. In fact,

perhaps surprisingly, for a typical sentence there may be

thousands of potential parses (most of which will seem

completely nonsensical to a human).

 Question answering: Given a human-language question,

determine its answer. Typical questions have a specific right

answer (such as "What is the capital of Canada?"), but sometimes

open-ended questions are also considered (such as "What is the

meaning of life?").

 Relationship extraction: Given a chunk of text, identify the

relationships among named entities (e.g. who is the wife of

whom).

 Sentence breaking (also known as sentence boundary

disambiguation): Given a chunk of text, find the sentence

boundaries. Sentence boundaries are often marked by periods or

other punctuation marks, but these same characters can serve

other purposes (e.g. marking abbreviations).

 Sentiment analysis: Extract subjective information usually from

a set of documents, often using online reviews to determine

"polarity" about specific objects. It is especially useful for

identifying trends of public opinion in the social media, for the

purpose of marketing.

 Speech recognition: Given a sound clip of a person or people

speaking, determine the textual representation of the speech. This

is the opposite of text to speech and is one of the extremely

difficult problems colloquially termed "AI-complete" (see

above). In natural speech there are hardly any pauses between

successive words, and thus speech segmentation is a necessary

subtask of speech recognition (see below). Note also that in most

spoken languages, the sounds representing successive letters

blend into each other in a process termed coarticulation, so the

conversion of the analog signal to discrete characters can be a

very difficult process.

 Speech segmentation: Given a sound clip of a person or people

speaking, separate it into words. A subtask of speech recognition

and typically grouped with it.

 Topic segmentation and recognition: Given a chunk of text,

separate it into segments each of which is devoted to a topic, and

identify the topic of the segment.

 Word segmentation: Separate a chunk of continuous text into

separate words. For a language like English, this is fairly trivial,

since words are usually separated by spaces. However, some

written languages like Chinese, Japanese and Thai do not mark

CIT478 ARTIFICIAL INTELLIGENCE

123

word boundaries in such a fashion, and in those languages text

segmentation is a significant task requiring knowledge of the

vocabulary and morphology of words in the language.

 Word sense disambiguation: Many words have more than one

meaning; we have to select the meaning which makes the most

sense in context. For this problem, we are typically given a list of

words and associated word senses, e.g. from a dictionary or from

an online resource such as WordNet.

In some cases, sets of related tasks are grouped into subfields of NLP

that are often considered separately from NLP as a whole. Examples

include:

 Information retrieval (IR): This is concerned with storing,

searching and retrieving information. It is a separate field within

computer science (closer to databases), but IR relies on some

NLP methods (for example, stemming). Some current research

and applications seek to bridge the gap between IR and NLP.

 Information extraction (IE): This is concerned in general with

the extraction of semantic information from text. This covers

tasks such as named entity recognition, coreference resolution,

relationship extraction, etc.

 Speech processing: This covers speech recognition, text-to-

speech and related tasks.

Other tasks include:

 Stemming

 Text simplification

 Text-to-speech

 Text-proofing

 Natural language search

 Query expansion

 Truecasing

3.4 Statistical Natural Language Processing

Statistical natural-language processing uses stochastic, probabilistic and

statistical methods to resolve some of the difficulties discussed above,

especially those which arise because longer sentences are highly

ambiguous when processed with realistic grammars, yielding thousands

or millions of possible analyses. Methods for disambiguation often

involve the use of corpora and Markov models. Statistical NLP

comprises all quantitative approaches to automated language processing,

CIT478 ARTIFICIAL INTELLIGENCE

124

including probabilistic modeling, information theory, and linear algebra.

The technology for statistical NLP comes mainly from machine learning

and data mining, both of which are fields of artificial intelligence that

involve learning from data.

3.5 Evaluation of natural language processing

3.5.1 Objectives

The goal of NLP evaluation is to measure one or more qualities of an

algorithm or a system, in order to determine whether (or to what extent)

the system answers the goals of its designers, or meets the needs of its

users. Research in NLP evaluation has received considerable attention,

because the definition of proper evaluation criteria is one way to specify

precisely an NLP problem, going thus beyond the vagueness of tasks

defined only as language understanding or language generation. A

precise set of evaluation criteria, which includes mainly evaluation data

and evaluation metrics, enables several teams to compare their solutions

to a given NLP problem.

3.5.2 Short history of evaluation in NLP

The first evaluation campaign on written texts seems to be a campaign

dedicated to message understanding in 1987 (Pallet 1998). Then, the

Parseval/GEIG project compared phrase-structure grammars (Black

1991). A series of campaigns within Tipster project were realized on

tasks like summarization, translation and searching (Hirschman 1998).

In 1994, in Germany, the Morpholympics compared German taggers.

Then, the Senseval and Romanseval campaigns were conducted with the

objectives of semantic disambiguation. In 1996, the Sparkle campaign

compared syntactic parsers in four different languages (English, French,

German and Italian). In France, the Grace project compared a set of 21

taggers for French in 1997 (Adda 1999). In 2004, during the

Technolangue/Easy project, 13 parsers for French were compared.

Large-scale evaluation of dependency parsers were performed in the

context of the CoNLL shared tasks in 2006 and 2007. In Italy, the

EVALITA campaign was conducted in 2007 and 2009 to compare

various NLP and speech tools for Italian; the 2011 campaign is in full

progress - EVALITA web site. In France, within the ANR-Passage

project (end of 2007), 10 parsers for French were compared - passage

web site.

CIT478 ARTIFICIAL INTELLIGENCE

125

3.5.3 Different types of evaluation

Depending on the evaluation procedures, a number of distinctions are

traditionally made in NLP evaluation:

 Intrinsic vs. extrinsic evaluation

Intrinsic evaluation considers an isolated NLP system and characterizes

its performance mainly with respect to a gold standard result, pre-

defined by the evaluators. Extrinsic evaluation, also called evaluation in

use considers the NLP system in a more complex setting, either as an

embedded system or serving a precise function for a human user. The

extrinsic performance of the system is then characterized in terms of its

utility with respect to the overall task of the complex system or the

human user. For example, consider a syntactic parser that is based on the

output of some new part of speech (POS) tagger. An intrinsic evaluation

would run the POS tagger on some labelled data, and compare the

system output of the POS tagger to the gold standard (correct) output.

An extrinsic evaluation would run the parser with some other POS

tagger, and then with the new POS tagger, and compare the parsing

accuracy.

 Black-box vs. glass-box evaluation

Black-box evaluation requires one to run an NLP system on a given data

set and to measure a number of parameters related to the quality of the

process (speed, reliability, resource consumption) and, most

importantly, to the quality of the result (e.g. the accuracy of data

annotation or the fidelity of a translation). Glass-box evaluation looks at

the design of the system, the algorithms that are implemented, the

linguistic resources it uses (e.g. vocabulary size), etc. Given the

complexity of NLP problems, it is often difficult to predict performance

only on the basis of glass-box evaluation, but this type of evaluation is

more informative with respect to error analysis or future developments

of a system.

 Automatic vs. manual evaluation

In many cases, automatic procedures can be defined to evaluate an NLP

system by comparing its output with the gold standard (or desired) one.

Although the cost of producing the gold standard can be quite high,

automatic evaluation can be repeated as often as needed without much

additional costs (on the same input data). However, for many NLP

problems, the definition of a gold standard is a complex task, and can

prove impossible when inter-annotator agreement is insufficient. Manual

CIT478 ARTIFICIAL INTELLIGENCE

126

evaluation is performed by human judges, which are instructed to

estimate the quality of a system, or most often of a sample of its output,

based on a number of criteria. Although, thanks to their linguistic

competence, human judges can be considered as the reference for a

number of language processing tasks, there is also considerable variation

across their ratings. This is why automatic evaluation is sometimes

referred to as objective evaluation, while the human kind appears to be

more subjective.

3.5.4 Shared tasks (Campaigns)

 BioCreative

 Message Understanding Conference

 Technolangue/Easy

 Text Retrieval Conference

 Evaluation exercises on Semantic Evaluation (SemEval)

4.0 CONCLUSION

Systems based on machine-learning algorithms have many advantages

over hand-produced rules.

5.0 SUMMARY

In this unit, you learnt:

 NLP using machine learning

 History of natural language processing

 Major tasks in NLP

 Statistical Natural Language Processing

 Evaluation of natural language processing

6.0 TUTOR- MARKED ASSIGNMENT

1. List four major tasks in NLP.

2. Describe the history of natural language processing.

3. Mention different types of evaluation of NPL.

CIT478 ARTIFICIAL INTELLIGENCE

127

7.0 REFERENCES/FURTHER READING

Bates, M. (1995). Models of Natural Language Understanding.

Proceedings of the National Academy of Sciences of the United

States of America, Vol. 92, No. 22 (Oct. 24, 1995), pp. 9977–

9982.

Christopher, D. Manning, Hinrich Schütze (1999). Foundations of

Statistical Natural Language Processing, MIT Press, ISBN 978-0-

262-13360-9, p. xxxi.

Yucong, D. & Christophe C. (2011). Formalizing Semantic of Natural

Language through Conceptualization from Existence.

International Journal of Innovation, Management and

Technology (2011) 2 (1), pp. 37-42.

CIT478 ARTIFICIAL INTELLIGENCE

128

MODULE 4 ARTIFICIAL INTELLIGENCE AND ITS

APPLICATIONS

Unit 1 Expert System

Unit 2 Robotics

UNIT 1 EXPERT SYSTEM

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 What is an Expert System?

3.1.1 Comparison to Problem-Solving Systems

3.2 Knowledge Base

3.2.1 Types of Knowledge Base

3.3. Inference Engine

3.3.1 Architecture

3.3.2 The Recognize-Act Cycle

3.3.3 Data-Driven Computation versus Procedural Control

3.3.4 Inference Rules

3.3. 5 Chaining

3.4 Certainty Factors

3.5 Real-Time Adaption

3.5.1 Ability to make Relevant Inquiries

3.7 Knowledge Engineering

3.8 General Types of Problems Solved

3.9 Different Types of Expert System

3.10 Examples of Applications

3.11 Advantages

3.12 Disadvantages

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Expert system is a computer program that uses artificial intelligence to

solve problems within a specialized domain that ordinarily requires

human expertise. The first expert system was developed in 1965 by

Edward Feigenbaum and Joshua Lederberg of Stanford University in

California, U.S. Dendral, as their expert system was later known, was

CIT478 ARTIFICIAL INTELLIGENCE

129

designed to analyze chemical compounds. Expert systems now have

commercial applications in fields as diverse as medical diagnosis,

petroleum engineering, financial investing make financial forecasts and

schedule routes for delivery vehicles.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain an expert system

distinction between expert systems and traditional problem

solving programs

 explain the term ―knowledge base‖.

3.0 MAIN CONTENT

3.1 What is an Expert System?

It is a computer application that performs a task that would otherwise be

performed by a human expert. Some expert systems are designed to take

the place of human experts, while others are designed to aid them.

To design an expert system, one needs a knowledge engineer, an

individual who studies how human experts make decisions and

translates the rules into terms that a computer can understand. In order

to accomplish feats of apparent intelligence, an expert system relies on

two components: a knowledge base and an inference engine.

3.1.1 Comparison to problem-solving systems

The principal distinction between expert systems and traditional

problem solving.

Programs are the way in which the problem related expertise is coded.

In traditional applications, problem-related expertise is encoded in both

program and data structures. In the expert system approach all of the

problem expertise is encoded mostly in data structures.

In an example related to tax advice, the traditional approach has data

structures that describe the taxpayer and tax tables, and a program that

contains rules (encoding expert knowledge) that relate information about

the taxpayer to tax table choices. In contrast, in the expert system

approach, the latter information is also encoded in data structures. The

collective data structures are called the knowledge base . The program

(inference engine) of an expert system is relatively independent of the

CIT478 ARTIFICIAL INTELLIGENCE

130

problem domain (taxes) and processes the rules without regard to the

problem area they describe.

This organization has several benefits:

 New rules can be added to the knowledge base or altered without

needing to rebuild the program. This allows changes to be made

rapidly to a system (e.g., after it has been shipped to its

customers, to accommodate very recent changes in state or

federal tax codes).

 Rules are arguably easier for (non-programmer) domain experts

to create and modify than writing code. Commercial rule engines

typically come with editors that allow rule creation/modification

through a graphical user interface, which also performs actions

such as consistency and redundancy checks.

Modern rule engines allow a hybrid approach: some allow rules to be

"compiled" into a form that is more efficiently machine-executable.

Also, for efficiency concerns, rule engines allow rules to be defined

more expressively and concisely by allowing software developers to

create functions in a traditional programming language such as Java,

which can then be invoked from either the condition or the action of a

rule. Such functions may incorporate domain-specific (but reusable)

logic.

3.2 Knowledge Base

A knowledge base (abbreviated KB, kb or Δ) is a special kind of

database for knowledge management, providing the means for the

computerized collection, organization, and retrieval of knowledge. Also,

it is a collection of data representing related experiences which their

results is related to their problems and solutions.

Facts for a knowledge base must be acquired from human experts

through interviews and observations. This knowledge is then usually

represented in the form of ―if-then‖ rules (production rules): ―If some

condition is true then the following inference can be made (or some

action taken).‖ The knowledge base of a major expert system includes

thousands of rules. A probability factor is often attached to the

conclusion of each production rule, because the conclusion is not a

certainty. For example, a system for the diagnosis of eye diseases might

indicate, based on information supplied to it, a 90 percent probability

that a person has glaucoma, and it might also list conclusions with lower

probabilities. An expert system may display the sequence of rules

through which it arrived at its conclusion; tracing this flow helps the

CIT478 ARTIFICIAL INTELLIGENCE

131

user to appraise the credibility of its recommendation and is useful as a

learning tool for students.

Human experts frequently employ heuristic rules, or ―rules of thumb,‖ in

addition to simple production rules. For example, a credit manager

might know that an applicant with a poor credit history, but a clean

record since acquiring a new job, might actually be a good credit risk.

Expert systems have incorporated such heuristic rules and increasingly

have the ability to learn from experience. Nevertheless, expert systems

remain supplements, rather than replacements, for human experts.

3.2.1 Types Of Knowledge Base

Knowledge bases are essentially closed or open information repositories

and can be categorized under two main headings:

 Machine-readable knowledge bases store knowledge in a

computer-readable form, usually for the purpose of having

automated deductive reasoning applied to them. They contain a

set of data, often in the form of rules that describe the knowledge

in a logically consistent manner. An ontology can define the

structure of stored data - what types of entities are recorded and

what their relationships are. Logical operators, such as And

(conjunction), Or (disjunction), material implication and

negation may be used to build it up from simpler pieces of

information. Consequently, classical deduction can be used to

reason about the knowledge in the knowledge base. Some

machine-readable knowledge bases are used with artificial

intelligence, for example as part of an expert system that focuses

on a domain like prescription drugs or customs law. Such

knowledge bases are also used by the semantic web.

 Human-readable knowledge bases are designed to allow people

to retrieve and use the knowledge they contain. They are

commonly used to complement a help desk or for sharing

information among employees within an organization. They

might store troubleshooting information, articles, white papers,

user manuals, knowledge tags, or answers to frequently asked

questions. Typically, a search engine is used to locate

information in the system, or users may browse through a

classification scheme.

A text based system that can include groups of documents including

hyperlinks between them is known as Hypertext Systems. Hypertext

systems support the decision process by relieving the user of the

significant effort it takes to relate and remember things." Knowledge

CIT478 ARTIFICIAL INTELLIGENCE

132

bases can exist on both computers and mobile phones in a hypertext

format. Knowledge base analysis and design (also known as KBAD) is

an approach that allows people to conduct analysis and design in a way

that result in a knowledge base, which can later be used to make

informative decisions. This approach was first implemented by Dr.

Steven H. Dam

3.3 Inference Engine

In computer science, and specifically the branches of knowledge

engineering and artificial intelligence, an inference engine is a computer

program that tries to derive answers from a knowledge base. It is the

"brain" that expert systems use to reason about the information in the

knowledge base for the ultimate purpose of formulating new

conclusions. Inference engines are considered to be a special case of

reasoning engines, which can use more general methods of reasoning.

3.3.1 Architecture

The separation of inference engines as a distinct software component

stems from the typical production system architecture. This architecture

relies on a data store:

1. An interpreter. The interpreter executes the chosen agenda items

by applying the corresponding base rules.

2. A scheduler. The scheduler maintains control over the agenda by

estimating the effects of applying inference rules in light of item

priorities or other criteria on the agenda.

3. A consistency enforcer. The consistency enforcer attempts to

maintain a consistent representation of the emerging solution

3.3.2 The Recognize-Act Cycle

The inference engine can be described as a form of finite state machine

with a cycle consisting of three action states: match rules, select rules,

and execute rules. Rules are represented in the system by a notation

called predicate logic.

In the first state, match rules, the inference engine finds all of the rules

that are satisfied by the current contents of the data store. When rules are

in the typical condition-action form, this means testing the conditions

against the working memory. The rule matching that are found are all

candidates for execution: they are collectively referred to as the conflict

set. Note that the same rule may appear several times in the conflict set

CIT478 ARTIFICIAL INTELLIGENCE

133

if it matches different subsets of data items. The pair of a rule and a

subset of matching data items are called an instantiation of the rule.

In many applications, where large volumes of data are concerned and/or

when performance time considerations are critical, the computation of

the conflict set is a non-trivial problem.

3.3.3 Data-Driven Computation versus Procedural Control

The inference engine control is based on the frequent re - evaluation of

the data store states, not on any static control structure of the program.

The computation is often qualified as data-driven or pattern-directed in

contrast to the more traditional procedural control. Rules can

communicate with one another only by way of the data, whereas in

traditional programming languages procedures and functions explicitly

call one another. Unlike instructions, rules are not executed sequentially

and it is not always possible to determine through inspection of a set of

rules which rule will be executed first or cause the inference engine to

terminate.

In contrast to a procedural computation, in which knowledge about the

problem domain is mixed in with instructions about the flow of

control—although object-oriented programming languages mitigate this

entanglement—the inference engine model allows a more complete

separation of the knowledge (in the rules) from the control (the

inference engine).

3.3.4 Inference Rules

An inference rule is a conditional statement with two parts namely; if

clause and a then clause.

This rule is what gives expert systems the ability to find solutions to

diagnostic and prescriptive problems. An example of an inference rule

is:

If the restaurant choice includes French and the occasion is romantic,

Then the restaurant choice is definitely Paul Bocuse.

An expert system's rule base is made up of many such inference rules.

They are entered as separate rules and it is the inference engine that uses

them together to draw conclusions. Because each rule is a unit, rules

may be deleted or added without affecting other rules - though it should

affect which conclusions are reached. One advantage of inference rules

over traditional programming is that inference rules use reasoning which

more closely resembles human reasoning.

CIT478 ARTIFICIAL INTELLIGENCE

134

Thus, when a conclusion is drawn, it is possible to understand how this

conclusion was reached. Furthermore, because the expert system uses

knowledge in a form similar to the that of the expert, it may be easier to

retrieve this information directly from the expert.

3.3.5 Chaining

Two methods of reasoning when using inference rules are forward

chaining and backward chaining.

Forward chaining starts with the data available and uses the inference

rules to extract more data until a desired goal is reached. An inference

engine using forward chaining searches the inference rules until it finds

one in which the if clause is known to be true . It then concludes the

then clause and adds this information to its data. It continues to do this

until a goal is reached. Because the data available determines which

inference rules are used, this method is also classified as data driven.

Backward chaining starts with a list of goals and works backwards to

see if there is data which will allow it to conclude any of these goals. An

inference engine using backward chaining would search the inference

rules until it finds one which has a then clause that matches a desired

goal. If the if clause of that inference rule is not known to be true, then it

is added to the list of goals. For example, suppose a rule base contains:

(1) IF X is green THEN X is a frog. (Confidence Factor: +1%)

(2) IF X is NOT green THEN X is NOT a frog. (Confidence Factor:

+99%)

(3) IF X is a frog THEN X hops. (Confidence Factor: +50%)

(4) IF X is NOT a frog THEN X does NOT hop. (Confidence Factor

+50%)

Suppose a goal is to conclude that Fritz hops. Let X = "Fritz". The rule

base would be searched and rule (3) would be selected because its

conclusion (the then clause) matches the goal. It is not known that Fritz

is a frog, so this "if" statement is added to the goal list. The rule base is

again searched and this time rule (1) is selected because its then clause

matches the new goal just added to the list. This time, the if clause (Fritz

is green) is known to be true and the goal that Fritz hops is concluded.

Because the list of goals determines which rules are selected and used,

this method is called goal driven.

However, note that if we use confidence factors in even a simplistic

fashion - for example, by multiplying them together as if they were like

soft probabilities - we get a result that is known with a confidence factor

of only one-half of 1%. (This is by multiplying 0.5 x 0.01 = 0.005). This

CIT478 ARTIFICIAL INTELLIGENCE

135

is useful, because without confidence factors, we might erroneously

conclude with certainty that a sea turtle named Fritz hops just by virtue

of being green. In Classical logic or Aristotelian term logic systems,

there are no probabilities or confidence factors; all facts are regarded as

certain. An ancient example from Aristotle states, "Socrates is a man.

All men are mortal. Thus Socrates is mortal."

In real world applications, few facts are known with absolute certainty

and the opposite of a given statement may be more likely to be true

("Green things in the pet store are not frogs, with the probability or

confidence factor of 99% in my pet store survey"). Thus it is often

useful when building such systems to try and prove both the goal and

the opposite of a given goal to see which is more likely.

3.4 Certainty Factors

One method of operation of expert systems is through a quasi-

probabilistic approach with certainty factors: A human, when reasoning,

does not always make statements with 100% confidence: he might

venture, "If Fritz is green, then he is probably a frog" (after all, he might

be a chameleon). This type of reasoning can be imitated using numeric

values called confidences. For example, if it is known that Fritz is green,

it might be concluded with 0.85 confidence that he is a frog; or, if it is

known that he is a frog, it might be concluded with 0.95 confidence that

he hops. These Certainty factor (CF) numbers quantify uncertainty in

the degree to which the available evidence supports a hypothesis. They

represent a degree of confirmation, and are not probabilities in a

Bayesian sense. The CF calculus, developed by Shortliffe & Buchanan,

increases or decreases the CF associated with a hypothesis as each new

piece of evidence becomes available. It can be mapped to a probability

update, although degrees of confirmation are not expected to obey the

laws of probability. It is important to note, for example, that evidence

for hypothesis H may have nothing to contribute to the degree to which

Noth is confirmed or disconfirmed (e.g., although a fever lends some

support to a diagnosis of infection, fever does not disconfirm alternative

hypotheses) and that the sum of CFs of many competing hypotheses

may be greater than one (i.e., many hypotheses may be well confirmed

based on available evidence).

The CF approach to a rule-based expert system design does not have a

widespread following, in part because of the difficulty of meaningfully

assigning CFs a priori. (The above example of green creatures being

likely to be frogs is excessively naive.) Alternative approaches to quasi-

probabilistic reasoning in expert systems involve fuzzy logic, which has

a firmer mathematical foundation. Also, rule-engine shells such as

CIT478 ARTIFICIAL INTELLIGENCE

136

Drools and Jess do not support probability manipulation: they use an

alternative mechanism called salience, which is used to prioritize the

order of evaluation of activated rules.

In certain areas, as in the tax-advice scenarios discussed below,

probabilistic approaches are not acceptable. For instance, a 95%

probability of being correct means a 5% probability of being wrong. The

rules that are defined in such systems have no exceptions: they are only

a means of achieving software flexibility when external circumstances

change frequently. Because rules are stored as data, the core software

does not need to be rebuilt each time changes to federal and state tax

codes are announced.

3.5 Real-Time Adaption

Industrial processes, data networks, and many other systems change

their state and even their structure over time. Real time expert systems

are designed to reason over time and change conclusions as the

monitored system changes. Most of these systems must respond to

constantly changing input data, arriving automatically from other

systems such as process control systems or network management

systems.

Representation includes features for defining changes in belief of data or

conclusions over time. This is necessary because data becomes stale.

Approaches to this can include decaying belief functions, or the simpler

validity interval that simply lets data and conclusions expire after

specified time period, falling to "unknown" until refreshed. An often-

cited example (attributed to real time expert system pioneer Robert L.

Moore) is a hypothetical expert system that might be used to drive a car.

Based on video input, there might be an intermediate conclusion that a

stop light is green and a final conclusion that it is OK to drive through

the intersection. But that data and the subsequent conclusions have a

very limited lifetime. You would not want to be a passenger in a car

driven based on data and conclusions that were, say, an hour old.

The inference engine must track the times of each data input and each

conclusion, and propagate new information as it arrives. It must ensure

that all conclusions are still current. Facilities for periodically scanning

data, acquiring data on demand, and filtering noise, become essential

parts of the overall system. Facilities to reason within a fixed deadline

are important in many of these applications.

An overview of requirements for a real-time expert system shell is given

in. Examples of real time expert system applications are given in and.

CIT478 ARTIFICIAL INTELLIGENCE

137

Several conferences were dedicated to real time expert system

applications in the chemical process industries, including.

3.5.1 Ability to Make Relevant Inquiries

An additional skill of an expert system is the ability to give relevant

inquiries based on previous input from a human user, in order to give

better replies or other actions, as well as working faster, which also

pleases an impatient or busy human user - it allows a priori volunteering

of information that the user considers important.

Also, the user may choose not to respond to every question, forcing the

expert system to function in the presence of partial information.

Commercially viable systems will try to optimize the user experience by

presenting options for commonly requested information based on a

history of previous queries of the system using technology such as

forms, augmented by keyword-based search. The gathered information

may be verified by a confirmation step (e.g., to recover from spelling

mistakes), and now act as an input into a forward-chaining engine. If

confirmatory questions are asked in a subsequent phase, based on the

rules activated by the obtained information, they are more likely to be

specific and relevant. Such abilities can largely be achieved by control

flow structures.

In an expert system, implementing the ability to learn from a stored

history of its previous use involves employing technologies considerably

different from that of rule engines, and is considerably more challenging

from a software-engineering perspective. It can, however, make the

difference between commercial success and failure. A large part of the

revulsion that users felt towards Microsoft's Office Assistant was due to

the extreme naivete of its rules ("It looks like you are typing a letter:

would you like help?") and its failure to adapt to the user's level of

expertise over time (e.g. a user who regularly uses features such as

Styles, Outline view, Table of Contents or cross-references is unlikely to

be a beginner who needs help writing a letter).

3.6 Explanation System

Another major distinction between expert systems and traditional

systems is illustrated by the following answer given by the system when

the user answers a question with another question, "Why", as occurred

in the above example. The answer is:

CIT478 ARTIFICIAL INTELLIGENCE

138

A. I am trying to determine the type of restaurant to suggest. So far

Indian is not a likely choice. It is possible that French is a likely choice.

If I know that if the diner is a wine drinker, and the preferred wine is

French, then there is strong evidence that the restaurant choice should

include French.

It is very difficult to implement a general explanation system (answering

questions like "Why" and "How") in a traditional computer program. An

expert system can generate an explanation by retracing the steps of its

reasoning. The response of the expert system to the question "Why"

exposes the underlying knowledge structure. It is a rule; a set of

antecedent conditions which, if true, allow the assertion of a consequent.

The rule references values, and tests them against various constraints or

asserts constraints onto them. This, in fact, is a significant part of the

knowledge structure. There are values, which may be associated with

some organizing entity. For example, the individual diner is an entity

with various attributes (values) including whether they drink wine and

the kind of wine. There are also rules, which associate the currently

known values of some attributes with assertions that can be made about

other attributes. It is the orderly processing of these rules that dictates

the dialogue itself.

3.7 Knowledge Engineering

The building, maintaining and development of expert systems are

known as knowledge engineering. Knowledge engineering is a

"discipline that involves integrating knowledge into computer systems

in order to solve complex problems normally requiring a high level of

human.

There are generally three individuals having an interaction in an expert

system. Primary among these is the end-user, the individual who uses

the system for its problem solving assistance. In the construction and

maintenance of the system there are two other roles: the problem

domain expert who builds the system and supplies the knowledge base,

and a knowledge engineer who assists the experts in determining the

representation of their knowledge, enters this knowledge into an

explanation module and who defines the inference technique required to

solve the problem. Usually the knowledge engineer will represent the

problem solving activity in the form of rules. When these rules are

created from domain expertise, the knowledge base stores the rules of

the expert system.

CIT478 ARTIFICIAL INTELLIGENCE

139

3.8 General Types of Problems Solved

Expert systems are most valuable to organizations that have a high-level

of know-how experience and expertise that cannot be easily transferred

to other members. They are designed to carry the intelligence and

information found in the intellect of experts and provide this knowledge

to other members of the organization for problem-solving purposes.

Typically, the problems to be solved are of the sort that would normally

be tackled by a professional, such as a medical professional in the case

of clinical decision support systems. Real experts in the problem domain

(which will typically be very narrow, for instance "diagnosing skin

conditions in teenagers") are asked to provide "rules of thumb" on how

they evaluate the problem — either explicitly with the aid of

experienced systems developers, or sometimes implicitly, by getting

such experts to evaluate test cases and using computer programs to

examine the test data and derive rules from that (in a strictly limited

manner). Generally, expert systems are used for problems for which

there is no single "correct" solution which can be encoded in a

conventional algorithm — one would not write an expert system to find

the shortest paths through graphs, or to sort data, as there are simpler

ways to do these tasks.

Simple systems use simple true/false logic to evaluate data. More

sophisticated systems are capable of performing at least some

evaluation, taking into account real-world uncertainties, using such

methods as fuzzy logic. Such sophistication is difficult to develop and

still highly imperfect.

3.9 Different Types of Expert System are

 Rule-Based expert system

 Frames-Based expert system

 Hybird system

 Model-based expert system

 Ready-made system

 Real-Time expert system

3.10 Examples of Applications

Expert systems are designed to facilitate tasks in the fields of

accounting, medicine, process control, financial service, production,

human resources among others. Typically, the problem area is complex

enough that a more simple traditional algorithm cannot provide a proper

solution, The foundation of a successful expert system depends on a

CIT478 ARTIFICIAL INTELLIGENCE

140

series of technical procedures and development that may be designed by

technicians and related experts. As such, expert systems do not typically

provide a definitive answer, but provide probabilistic recommendations.

An example of the application of expert systems in the financial field is

expert systems for mortgages. Loan departments are interested in expert

systems for mortgages because of the growing cost of labour, which

makes the handling and acceptance of relatively small loans less

profitable. They also see a possibility for standardised, efficient

handling of mortgage loan by applying expert systems, appreciating that

for the acceptance of mortgages there are hard and fast rules which do

not always exist with other types of loans. Another common application

in the financial area for expert systems is in trading recommendations in

various marketplaces. These markets involve numerous variables and

human emotions which may be impossible to deterministically

characterize, thus expert systems based on the rules of thumb from

experts and simulation data are used. Expert system of this type can

range from ones providing regional retail recommendations, like

Wishabi, to ones used to assist monetary decisions by financial

institutions and governments. Another 1970s and 1980s application of

expert systems, which we today would simply call AI, was in computer

games. For example, the computer baseball games Earl Weaver Baseball

and Tony La Russa Baseball each had highly detailed simulations of the

game strategies of those two baseball managers. When a human played

the game against the computer, the computer queried the Earl Weaver or

Tony La Russa Expert System for a decision on what strategy to follow.

Even those choices where some randomness was part of the natural

system (such as when to throw a surprise pitch-out to try to trick a

runner trying to steal a base) were decided based on probabilities

supplied by Weaver or La Russa. Today we would simply say that "the

game's AI provided the opposing manager's strategy."

Advantages

 Compared to traditional programming techniques, expert-system

approaches provide the added flexibility (and hence easier

modifiability) with the ability to model rules as data rather than

as code. In situations where an organization's IT department is

overwhelmed by a software-development backlog, rule-engines,

by facilitating turnaround, provide a means that can allow

organizations to adapt more readily to changing needs.

 In practice, modern expert-system technology is employed as an

adjunct to traditional programming techniques, and this hybrid

approach allows the combination of the strengths of both

approaches. Thus, rule engines allow control through programs

3.11

CIT478 ARTIFICIAL INTELLIGENCE

141

(and user interfaces) written in a traditional language, and also

incorporate necessary functionality such as inter-operability with

existing database technology.

3.12 Disadvantages

The Garbage In, Garbage Out (GIGO) phenomenon: A system

that uses expert-system technology provides no guarantee about

the quality of the rules on which it operates. All self-designated

"experts" are not necessarily so, and one notable challenge in

expert system design is in getting a system to recognize the limits

to its knowledge.

Expert systems are notoriously narrow in their domain of

knowledge— as an amusing example, a researcher used the "skin

disease" expert system to diagnose his rust bucket car as likely to

have developed measles — and the systems are thus prone to

making errors that humans would easily spot. Additionally, once

some of the mystique had worn off, most programmers realized

that simple expert systems were essentially just slightly more

elaborate versions of the decision logic they had already been

using. Therefore, some of the techniques of expert systems can

now be found in most complex programs without drawing much

recognition.

 An expert system or rule-based approach is not optimal for all

problems, and considerable knowledge is required so as to not

misapply the systems.

 Ease of rule creation and rule modification can be double-edged.

A system can be sabotaged by a non-knowledgeable user who

can easily add worthless rules or rules that conflict with existing

ones. Reasons for the failure of many systems include the

absence of (or neglect to employ diligently) facilities for system

audit, detection of possible conflict, and rule lifecycle

management (e.g. version control, or thorough testing before

deployment). The problems to be addressed here are as much

technological as organizational.

An example and a good demonstration of the limitations of an expert

system is the Windows operating system troubleshooting software

located in the "help" section in the taskbar menu. Obtaining technical

operating system support is often difficult for individuals not closely

involved with the development of the Operating System. Microsoft has

designed their expert system to provide solutions, advice, and

suggestions to common errors encountered while using their operating

systems.

4.0 CONCLUSION

CIT478 ARTIFICIAL INTELLIGENCE

142

Expert systems now have commercial applications in fields as diverse as

medical diagnosis, petroleum engineering, financial investing make

financial forecasts and schedule routes for delivery vehicles.

5.0 SUMMARY

In this unit, you learnt:

 Definition of an Expert System

 Knowledge Base and Types of Knowledge Base

 Inference Engine

 Certainty factors

 Real-time adaption

 Knowledge Engineering

 General types of problems solved

 Different types of expert system

6.0 TUTOR-MARKED ASSIGNMENT

i. Explain expert system.

ii. Mention and explain two methods of reasoning when using

inference rules.

iii. Describe two type of knowledge bases.

iv. Mention two advantages of expert system.

7.0 REFERENCES/FURTHER READING

Argumentation in Artificial Intelligence by Iyad Rahwan, Guillermo R.

Simari.

OWL DL Semantics. http://www.obitko.com/tutorials/ontologies-

semantic-web/owl-dl-semantics.html.

Marakas, George. Decision Support Systems in the 21st Century.

Prentice Hall, 1999, p.29.

UNIT 2 ROBOTICS

http://www.obitko.com/tutorials/ontologies-

CIT478 ARTIFICIAL INTELLIGENCE

143

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 What is a Robot

3.1.1 Types of Robot

3.1.2 History of Robots

3.2 Components of Robots

3.2.1 Power Source

3.2.2 Actuation

3.2.3.1 Electric Motors

3.2.2.2 Linear Actuators

3.2.2.3 Series Elastic Actuators

3.2.2.4 Air Muscles

3.2.2.5 Muscle Wire

3.2.2.6 Electro Active Polymers

3.2.2.7 Pies Motors

3.2.2.8 Elastic Annotates

3.3 Sensing

3.3.1 Touch

3.3.2 Vision

3.4 Manipulation

3.4.1 Mechanical Grippers

3.4.2 Vacuum Grippers

3.4.3 General Purpose Effectors

3.5 Locomotion

3.5.1 Rolling Robots

3.5.1.1 Two-Wheeled Balancing Robots

3.5.1.2 One-Wheeled Balancing Robots

3.5.1.3 Spherical Orb Robots

3.5.1.4 Six-Wheeled Robots

3.5.1.5 Tracked Robots

3.5.2 Walking Applied to Robots

3.5.2.1 ZMP Technique

3.5.2.2 Hopping

3.5.2.3 Dynamic Balancing (Controlled Falling)

3.5.2.4 Passive Dynamics

3.5.3 Other methods of Locomotion

3.5.3.1 Flying

3.5.3.2 Snaking

3.5.3.3 Skating

3.5.3.4 Climbing

3.5.3.5 Swimming (like a fish)

CIT478 ARTIFICIAL INTELLIGENCE

144

3.6 Environmental Interaction and Navigation

3.7 Human-Robot Interaction

3.7.1 Speech Recognition

3.7.2 Robotic Voice

3.7.3 Gestures

3.7.4 Facial Expression

3.7.5 Artificial Emotions

3.7.6 Personality

3.8 Control

3.8.1 Autonomy Levels

3.9 Robotics Research

3.9.1 Dynamics and Kinematics

3.10 Education and Training

3.10.1 Career Training

3.10.2 Certification

3.11 Employment

3.11.1 Effects on Unemployment

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Robotics is the branch of technology that deals with the design,

construction, operation, structural disposition, manufacture and

application of robots. Robotics is related to the sciences of electronics,

engineering, mechanics, and software.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain the word robotics

 list 4 types of robotics you know

 describe the history of robotics.

3.0 MAIN CONTENT

3.1 What is a Robot?

The word robotics was derived from the word robot, which was

introduced to the public by Czech writer Karel Čapek in his play R.U.R.

(Rossum's Universal Robots), which premiered in 1921.

CIT478 ARTIFICIAL INTELLIGENCE

145

According to the Oxford English Dictionary, the word robotics was first

used in print by Isaac Asimov, in his science fiction short story "Liar!",

published in May 1941 in Astounding Science Fiction. Asimov was

unaware that he was coining the term; since the science and technology

of electrical devices is electronics, he assumed robotics already referred

to the science and technology of robots. In some of Asimov's other

works, he states that the first use of the word robotics was in his short

story Runaround (Astounding Science Fiction, March 1942). However,

the word robotics appears in "Liar!"

3.1.1 Types of Robots

Figure 1: TOPIO, a humanoid robot, played ping pong at Tokyo

International Robot Exhibition (IREX)

Figure 2: The Shadow robot hand system

CIT478 ARTIFICIAL INTELLIGENCE

146

Figure 3: A Pick and Place robot in a factory

3.1.2 History of Robots

Stories of artificial helpers and companions and attempts to create them

have a long history.

Figure 4: A scene from Karel Čapek's 1920 play R.U.R. (Rossum's

Universal Robots), showing three robots.

The word robot was introduced to the public by the Czech writer Karel

Čapek in his play R.U.R. (Rossum's Universal Robots), published in

1920. The play begins in a factory that makes artificial people called

robots creatures who can be mistaken for humans – though they are

closer to the modern ideas of androids. Karel Čapek himself did not coin

the word. He wrote a short letter in reference to an etymology in the

Oxford English Dictionary in which he named his brother Josef Čapek

as its actual originator.

In 1927 the Maschinenmensch ("machine-human") gynoid humanoid

robot (also called "Parody", "Futura", "Robotrix", or the "Maria

CIT478 ARTIFICIAL INTELLIGENCE

147

impersonator") was the first and perhaps the most memorable depiction

of a robot ever to appear on film was played by German actress Brigitte

Helm) in Fritz Lang's film Metropolis.

In 1942 the science fiction writer Isaac Asimov formulated his Three

Laws of Robotics and, in the process of doing so, coined the word

"robotics" (see details in "Etymology" section below).

In 1948 Norbert Wiener formulated the principles of cybernetics, the

basis of practical robotics.

Fully autonomous robots only appeared in the second half of the 20th

century. The first digitally operated and programmable robot, the

Unimate, was installed in 1961 to lift hot pieces of metal from a die

casting machine and stack them. Commercial and industrial robots are

widespread today and used to perform jobs more cheaply, or more

accurately and reliably, than humans. They are also employed in jobs

which are too dirty, dangerous, or dull to be suitable for humans. Robots

are widely used in manufacturing, assembly, packing and packaging,

transport, earth and space exploration, surgery, weaponry, laboratory

research, safety, and the mass production of consumer and industrial

goods.

Date Significance Robot Name Inventor

Third

century

B.C.

and

earlier

One of the earliest descriptions of

automata appears in the Lie Zi

text, on a much earlier encounter

between King Mu of Zhou (1023-

957 BC) and a mechanical

engineer known as Yan Shi, an

'artificer'. The latter allegedly

presented the king with a life-size,

human-shaped figure of his

mechanical handiwork.

Yan Shi

First

century

A.D.

and

earlier

Descriptions of more than 100

machines and automata, including

a fire engine, a wind organ, a

coin-operated machine, and a

steam-powered engine, in

Pneumatica and Automata by

Heron of Alexandria

Ctesibius,

Philo of

Byzantium,

Heron of

Alexandria,

and others

1206
Created early humanoid automata,

programmable automaton band

Robot band,

hand-
Al-Jazari

CIT478 ARTIFICIAL INTELLIGENCE

148

 washing

automaton,[1

1] automated

moving

peacocks[12]

1495 Designs for a humanoid robot
Mechanical

knight

Leonardo da

Vinci

1738
Mechanical duck that was able to

eat, flap its wings, and excrete

Digesting

Duck

Jacques de

Vaucanson

1898
Nikola Tesla demonstrates first

radio-controlled vessel.

Teleautomat

on

Nikola

Tesla

1921

First fictional automatons called

"robots" appear in the play R.U.R.

Rossum's

Universal

Robots

Karel Čapek

1930s

Humanoid robot exhibited at the

1939 and 1940 World's Fairs

Elektro

Westinghou

se Electric

Corporation

1948
Simple robots exhibiting

biological behaviors

Elsie and

Elmer

William

Grey Walter

1956

First commercial robot, from the

Unimation company founded by

George Devol and Joseph

Engelberger, based on Devol's

patents

Unimate

George

Devol

1961 First installed industrial robot. Unimate
George

Devol

1963

First palletizing

robothttp://www.ask.com/wiki/Ro

botics - cite_note-14

Palletizer

Fuji Yusoki

Kogyo

1973

First industrial robot with six

electromechanically driven axes

Famulus

KUKA
Robot

Group

1975

Programmable universal

manipulation arm, a Unimation

product

PUMA

Victor

Scheinman

http://www.ask.com/wiki/Ro

CIT478 ARTIFICIAL INTELLIGENCE

149

3.2 Components

3.2.1 Power source

At present; mostly (lead-acid) batteries are used, but potential power

sources could be:

 pneumatic (compressed gases)

 hydraulics (compressed liquids)

 flywheel energy storage

 organic garbage (through anaerobic digestion)

 faeces (human, animal); may be interesting in a military context

as faeces of small combat groups may be reused for the energy

requirements of the robot assistant (see DEKA's project Slingshot

Stirling engine on how the system would operate)

 still unproven energy sources: for example Nuclear fusion, as yet

not used in nuclear reactors whereas Nuclear fission is proven

(although there are not many robots using it as a power source

apart from the Chinese rover tests).

 radioactive source (such as with the proposed Ford car of the

'50s); to those proposed in movies such as Red Planet

3.2.2 Actuation

Figure 5: A robotic leg powered by Air Muscles

CIT478 ARTIFICIAL INTELLIGENCE

150

Actuators are like the "muscles" of a robot, the parts which convert

stored energy into movement. By far the most popular actuators are

electric motors that spin a wheel or gear, and linear actuators that

control industrial robots in factories. But there are some recent advances

in alternative types of actuators, powered by electricity, chemicals, or

compressed air:

3.2.2.1 Electric motors

The vast majority of robots use electric motors, often brushed and

brushless DC motors in portable robots or AC motors in industrial

robots and CNC machines.

3.2.2.2 Linear Actuators

Various types of linear actuators move in and out instead of by spinning,

particularly when very large forces are needed such as with industrial

robotics. They are typically powered by compressed air (pneumatic

actuator) or an oil (hydraulic actuator).

3.2.2.3 Series Elastic Actuators

A spring can be designed as part of the motor actuator, to allow

improved force control. It has been used in various robots, particularly

walking humanoid robots.

3.2.2.4 Air Muscles

Pneumatic artificial muscles, also known as air muscles, are special

tubes that contract (typically up to 40%) when air is forced inside it.

They have been used for some robot applications.

3.2.2.5 Muscle Wire

Muscle wire, also known as Shape Memory Alloy, Nitinol or Flexinol

Wire, is a material that contracts slightly (typically under 5%) when

electricity runs through it. They have been used for some small robot

applications.

3.2.2.6 Electroactive Polymers

EAPs or EPAMs are a new plastic material that can contract

substantially (up to 400%) from electricity, and have been used in facial

muscles and arms of humanoid robots, and to allow new robots to float,

fly, swim or walk.

CIT478 ARTIFICIAL INTELLIGENCE

151

3.2.2.7 Piezo Motors

A recent alternative to DC motors are piezo motors or ultrasonic motors.

These work on a fundamentally different principle, whereby tiny

piezoceramic elements, vibrating many thousands of times per second,

cause linear or rotary motion. There are different mechanisms of

operation; one type uses the vibration of the piezo elements to walk the

motor in a circle or a straight line. Another type uses the piezo elements

to cause a nut to vibrate and drive a screw. The advantages of these

motors are nanometer resolution, speed, and available force for their

size. These motors are already available commercially, and being used

on some robots.

3.2.2.8 Elastic Nanotubes

Elastic Nanotubes are a promising artificial muscle technology in early-

stage experimental development. The absence of defects in carbon

nanotubes enables these filaments to deform elastically by several

percent, with energy storage levels of perhaps 13 J/cm3 for metal

nanotubes. Human biceps could be replaced with an 8 mm diameter wire

of this material. Such compact "muscle" might allow future robots to

outrun and out jump humans.

3.3 Sensing

3.3.1 Touch

Current robotic and prosthetic hands receive far less tactile information

than the human hand. Recent research has developed a tactile sensor

array that mimics the mechanical properties and touch receptors of

human fingertips. The sensor array is constructed as a rigid core

surrounded by conductive fluid contained by an elastomeric skin.

Electrodes are mounted on the surface of the rigid core and are

connected to an impedance-measuring device within the core. When the

artificial skin touches an object the fluid path around the electrodes is

deformed, producing impedance changes that map the forces received

from the object. The researchers expect that an important function of

such artificial fingertips will be adjusting robotic grip on held objects.

Scientists from several European countries and Israel developed a

prosthetic hand in 2009, called SmartHand, which functions like a real

one—allowing patients to write with it, type on a keyboard, play piano

and perform other fine movements. The prosthesis has sensors which

enable the patient to sense real feeling in its fingertips.

CIT478 ARTIFICIAL INTELLIGENCE

152

3.3.2 Vision

Computer vision is the science and technology of machines that see. As

a scientific discipline, computer vision is concerned with the theory

behind artificial systems that extract information from images. The

image data can take many forms, such as video sequences and views

from cameras.

In most practical computer vision applications, the computers are pre-

programmed to solve a particular task, but methods based on learning

are now becoming increasingly common.

Computer vision systems rely on image sensors which detect

electromagnetic radiation which is typically in the form of either visible

light or infra-red light. The sensors are designed using solid-state

physics. The process by which light propagates and reflects off surfaces

is explained using optics. Sophisticated image sensors even require

quantum mechanics to provide a complete understanding of the image

formation process.

There is a subfield within computer vision where artificial systems are

designed to mimic the processing and behavior of biological systems, at

different levels of complexity. Also, some of the learning-based

methods developed within computer vision have their background in

biology.

3.4 Manipulation

Robots which must work in the real world require some way to

manipulate objects; pick up, modify, destroy, or otherwise have an

effect. Thus the "hands" of a robot are often referred to as end effectors,

while the "arm" is referred to as a manipulator. Most robot arms have

replaceable effectors, each allowing them to perform some small range

of tasks. Some have a fixed manipulator which cannot be replaced,

while a few have one very general purpose manipulator, for example a

humanoid hand.

For the definitive guide to all forms of robot end-effectors, their design,

and usage consult the book "Robot Grippers".

3.4.1 Mechanical Grippers

One of the most common effectors is the gripper. In its simplest

manifestation it consists of just two fingers which can open and close to

CIT478 ARTIFICIAL INTELLIGENCE

153

pick up and let go of a range of small objects. Fingers can for example

be made of a chain with a metal wire run through it. See Shadow Hand.

3.4.2 Vacuum Grippers

Vacuum grippers are very simple astrictive devices, but can hold very

large loads provided the prehension surface is smooth enough to ensure

suction.

Pick and place robots for electronic components and for large objects

like car windscreens, often use very simple vacuum grippers.

3.4.3 General Purpose Effectors

Some advanced robots are beginning to use fully humanoid hands, like

the Shadow Hand, MANUS, and the Schunk hand. These highly

dexterous manipulators with as many as 20 degrees of freedom and

hundreds of tactile sensors.

3.5 Locomotion

3.5.1 Rolling Robots

Figure 6: Segway in the Robot museum in Nagoya.

For simplicity most mobile robots have four wheels or a number of

continuous tracks. Some researchers have tried to create more complex

wheeled robots with only one or two wheels. These can have certain

advantages such as greater efficiency and reduced parts, as well as

allowing a robot to navigate in confined places that a four wheeled robot

would not be able to.

CIT478 ARTIFICIAL INTELLIGENCE

154

3.5.1.1 Two-Wheeled Balancing Robots

Balancing robots generally use a gyroscope to detect how much a robot

is falling and then drive the wheels proportionally in the opposite

direction, to counter-balance the fall at hundreds of times per second,

based on the dynamics of an inverted pendulum. Many different

balancing robots have been designed. While the Segway is not

commonly thought of as a robot, it can be thought of as a component of

a robot, such as NASA's Robonaut that has been mounted on a Segway.

3.5.1.2 One-Wheeled Balancing Robots

A one-wheeled balancing robot is an extension of a two-wheeled

balancing robot so that it can move in any 2D direction using a round

ball as its only wheel. Several one-wheeled balancing robots have been

designed recently, such as Carnegie Mellon University's "Ballbot" that is

the approximate height and width of a person, and Tohoku Gakuin

University's "BallIP". Because of the long, thin shape and ability to

maneuver in tight spaces, they have the potential to function better than

other robots in environments with people.

3.5.1.3 Spherical Orb Robots

Several attempts have been made in robots that are completely inside a

spherical ball, either by spinning a weight inside the ball, or by rotating

the outer shells of the sphere. These have also been referred to as an orb

bot or a ball bot.

3.5.1.4 Six-Wheeled Robots

Using six wheels instead of four wheels can give better traction or grip

in outdoor terrain such as on rocky dirt or grass.

3.5.1.5 Tracked Robots

Tank tracks provide even more traction than a six-wheeled robot.

Tracked wheels behave as if they were made of hundreds of wheels,

therefore are very common for outdoor and military robots, where the

robot must drive on very rough terrain. However, they are difficult to

use indoors such as on carpets and smooth floors. Examples include

NASA's Urban Robot "Urbie".

CIT478 ARTIFICIAL INTELLIGENCE

155

3.5.2 Walking Applied to Robots

Figure 6: iCub robot, designed by the RobotCub Consortium

Walking is a difficult and dynamic problem to solve. Several robots

have been made which can walk reliably on two legs; however none

have yet been made which are as robust as a human. Many other robots

have been built that walk on more than two legs, due to these robots

being significantly easier to construct. Hybrids too have been proposed

in movies such as I, Robot, where they walk on 2 legs and switch to 4

(arms+legs) when going to a sprint. Typically, robots on 2 legs can walk

well on flat floors and can occasionally walk up stairs. None can walk

over rocky, uneven terrain. Some of the methods which have been tried

are:

3.5.2.1 ZMP Technique

The Zero Moment Point (ZMP) is the algorithm used by robots such as

Honda's ASIMO. The robot's onboard computer tries to keep the total

inertial forces (the combination of earth's gravity and the acceleration

and deceleration of walking), exactly opposed by the floor reaction force

(the force of the floor pushing back on the robot's foot). In this way, the

two forces cancel out, leaving no moment (force causing the robot to

rotate and fall over). However, this is not exactly how a human walks,

and the difference is obvious to human observers, some of whom have

pointed out that ASIMO walks as if it needs the lavatory. ASIMO's

walking algorithm is not static, and some dynamic balancing is used (see

below). However, it still requires a smooth surface to walk on.

CIT478 ARTIFICIAL INTELLIGENCE

156

3.5.2.2 Hopping

Several robots, built in the 1980s by Marc Raibert at the MIT Leg

Laboratory, successfully demonstrated very dynamic walking. Initially,

a robot with only one leg, and a very small foot, could stay upright

simply by hopping. The movement is the same as that of a person on a

pogo stick. As the robot falls to one side, it would jump slightly in that

direction, in order to catch itself. Soon, the algorithm was generalised to

two and four legs. A bipedal robot was demonstrated running and even

performing somersaults. A quadruped was also demonstrated which

could trot, run, pace, and bound. For a full list of these robots, see the

MIT Leg Lab Robots page.

3.5.2 .3 Dynamic Balancing (Controlled Falling)

A more advanced way for a robot to walk is by using a dynamic

balancing algorithm, which is potentially more robust than the Zero

Moment Point technique, as it constantly monitors the robot's motion,

and places the feet in order to maintain stability. This technique was

recently demonstrated by Anybots' Dexter Robot,http://www.ask.com/

wiki/Robotics - cite_note-64 which is so stable, it can even jump.

Another example is the TU Delft Flame.

3.5.2.4 Passive Dynamics

Perhaps the most promising approach utilizes passive dynamics where

the momentum of swinging limbs is used for greater efficiency. It has

been shown that totally unpowered humanoid mechanisms can walk

down a gentle slope, using only gravity to propel them. Using this

technique, a robot need only supply a small amount of motor power to

walk along a flat surface or a little more to walk up a hill. This technique

promises to make walking robots at least ten times more efficient than

ZMP walkers, like ASIMO.

3.5.3 Other methods of locomotion

Figure 7: RQ-4 Global Hawk unmanned aerial vehicle

http://www.ask.com/

CIT478 ARTIFICIAL INTELLIGENCE

157

3.5.3.1 Flying

A modern passenger airliner is essentially a flying robot, with two

humans to manage it. The autopilot can control the plane for each stage

of the journey, including takeoff, normal flight, and even landing. Other

flying robots are uninhabited, and are known as unmanned aerial

vehicles (UAVs). They can be smaller and lighter without a human pilot

onboard, and fly into dangerous territory for military surveillance

missions. Some can even fire on targets under command. UAVs are also

being developed which can fire on targets automatically, without the

need for a command from a human. Other flying robots include cruise

missiles, the Entomopter, and the Epson micro helicopter robot. Robots

such as the Air Penguin, Air Ray, and Air Jelly have lighter-than-air

bodies, propelled by paddles, and guided by sonar.

Figure 8: Two robot snakes. Left one has 64 motors (with 2 degrees
of freedom per segment), the right one 10.

3.5.3.2 Snaking

Several snake robots have been successfully developed. Mimicking the

way real snakes move, these robots can navigate very confined spaces,

meaning they may one day be used to search for people trapped in

collapsed buildings. The Japanese ACM-R5 snake robot can even

navigate both on land and in water.

3.5.3.3 Skating

A small number of skating robots have been developed, one of which is

a multi-mode walking and skating device. It has four legs, with

unpowered wheels, which can either step or roll. Another robot, Plen,

can use a miniature skateboard or rollerskates, and skate across a

desktop.

CIT478 ARTIFICIAL INTELLIGENCE

158

3.5.3.4 Climbing

Several different approaches have been used to develop robots that have

the ability to climb vertical surfaces. One approach mimicks the

movements of a human climber on a wall with protrusions; adjusting the

center of mass and moving each limb in turn to gain leverage. An

example of this is Capuchin, built by Stanford University, California.

Another approach uses the specialised toe pad method of wall-climbing

geckoes, which can run on smooth surfaces such as vertical glass.

Examples of this approach include Wallbot and Stickybot. China's

"Technology Daily" November 15, 2008 reported New Concept Aircraft

(ZHUHAI) Co. Ltd. Dr. Li Hiu Yeung and his research group have

recently successfully developed the bionic gecko robot "Speedy

Freelander". According to Dr. Li introduction, this gecko robot can

rapidly climbing up and down in a variety of building walls, ground and

vertical wall fissure or walking upside down on the ceiling, it is able to

adapt on smooth glass, rough or sticky dust walls as well as the various

surface of metallic materials and also can automatically identify

obstacles, circumvent the bypass and flexible and realistic movements.

Its flexibility and speed are comparable to the natural gecko. A third

approach is to mimick the motion of a snake climbing a pole.

3.5.3.5 Swimming (like a Fish)

It is calculated that when swimming some fish can achieve a propulsive

efficiency greater than 90%. Furthermore, they can accelerate and

maneuver far better than any man-made boat or submarine, and produce

less noise and water disturbance. Therefore, many researchers studying

underwater robots would like to copy this type of locomotion. Notable

examples are the Essex University Computer Science Robotic Fish, and

the Robot Tuna built by the Institute of Field Robotics, to analyze and

mathematically model thunniform motion. The Aqua Penguin, designed

and built by Festo of Germany, copies the streamlined shape and

propulsion by front "flippers" of penguins. Festo have also built the

Aqua Ray and Aqua Jelly, which emulate the locomotion of manta ray,

and jellyfish, respectively.

CIT478 ARTIFICIAL INTELLIGENCE

159

3.6 Environmental interaction and navigation

Figure 9: RADAR, GPS, LIDAR, ... are all combined to provide

proper navigation and obstacle avoidance

Though a significant percentage of robots in commission today are

either human controlled, or operate in a static environment, there is an

increasing interest in robots that can operate autonomously in a dynamic

environment. These robots require some combination of navigation

hardware and software in order to traverse their environment. In

particular unforeseen events (e.g. people and other obstacles that are not

stationary) can cause problems or collisions. Some highly advanced

robots as ASIMO, EveR-1, Meinü robot have particularly good robot

navigation hardware and software. Also, self-controlled cars, Ernst

Dickmanns' driverless car, and the entries in the DARPA Grand

Challenge, are capable of sensing the environment well and

subsequently making navigational decisions based on this information.

Most of these robots employ a GPS navigation device with waypoints,

along with radar, sometimes combined with other sensory data such as

LIDAR, video cameras, and inertial guidance systems for better

navigation between waypoints.

3.7 Human-Robot Interaction

Figure 10: Kismet can produce a range of facial expressions.

CIT478 ARTIFICIAL INTELLIGENCE

160

If robots are to work effectively in homes and other non-industrial

environments, the way they are instructed to perform their jobs, and

especially how they will be told to stop will be of critical importance.

The people who interact with them may have little or no training in

robotics, and so any interface will need to be extremely intuitive.

Science fiction authors also typically assume that robots will eventually

be capable of communicating with humans through speech, gestures,

and facial expressions, rather than a command-line interface. Although

speech would be the most natural way for the human to communicate, it

is unnatural for the robot. It will probably be a long time before robots

interact as naturally as the fictional C-3PO.

3.7.1 Speech Recognition

Interpreting the continuous flow of sounds coming from a human, in real

time, is a difficult task for a computer, mostly because of the great

variability of speech. The same word, spoken by the same person may

sound different depending on local acoustics, volume, the previous

word, whether or not the speaker has a cold, etc.. It becomes even harder

when the speaker has a different accent. Nevertheless, great strides have

been made in the field since Davis, Biddulph, and Balashek designed the

first "voice input system" which recognized "ten digits spoken by a

single user with 100% accuracy" in 1952. Currently, the best systems

can recognize continuous, natural speech, up to 160 words per minute,

with an accuracy of 95%.

3.7.2 Robotic Voice

Other hurdles exist when allowing the robot to use voice for interacting

with humans. For social reasons, synthetic voice proves suboptimal as a

communication medium, making it necessary to develop the emotional

component of robotic voice through various techniques.

3.7.3 Gestures

One can imagine, in the future, explaining to a robot chef how to make a

pastry, or asking directions from a robot police officer. In both of these

cases, making hand gestures would aid the verbal descriptions. In the

first case, the robot would be recognizing gestures made by the human,

and perhaps repeating them for confirmation. In the second case, the

robot police officer would gesture to indicate "down the road, then turn

right". It is likely that gestures will make up a part of the interaction

between humans and robots. A great many systems have been developed

to recognize human hand gestures.

CIT478 ARTIFICIAL INTELLIGENCE

161

3.7.4 Facial Expression

Facial expressions can provide rapid feedback on the progress of a

dialog between two humans, and soon it may be able to do the same for

humans and robots. Robotic faces have been constructed by Hanson

Robotics using their elastic polymer called Frubber, allowing a great

amount of facial expressions due to the elasticity of the rubber facial

coating and imbedded subsurface motors (servos) to produce the facial

expressions. The coating and servos are built on a metal skull. A robot

should know how to approach a human, judging by their facial

expression and body language. Whether the person is happy, frightened,

or crazy-looking affects the type of interaction expected of the robot.

Likewise, robots like Kismet and the more recent addition, Nexi can

produce a range of facial expressions, allowing it to have meaningful

social exchanges with humans.

3.7.5 Artificial Emotions

Artificial emotions can also be imbedded and are composed of a

sequence of facial expressions and/or gestures. As can be seen from the

movie Final Fantasy: The Spirits Within, the programming of these

artificial emotions is complex and requires a great amount of human

observation. To simplify this programming in the movie, presets were

created together with a special software program. This decreased the

amount of time needed to make the film. These presets could possibly

be transferred for use in real-life robots.

3.7.6 Personality

Many of the robots of science fiction have a personality, something

which may or may not be desirable in the commercial robots of the

future. Nevertheless, researchers are trying to create robots which

appear to have a personality: i.e. they use sounds, facial expressions, and

body language to try to convey an internal state, which may be joy,

sadness, or fear. One commercial example is Pleo, a toy robot dinosaur,

which can exhibit several apparent emotions.

CIT478 ARTIFICIAL INTELLIGENCE

162

3.8 Control

Figure 11: A robot-manipulated marionette, with complex control

systems

The mechanical structure of a robot must be controlled to perform tasks.

The control of a robot involves three distinct phases - perception,

processing, and action (robotic paradigms). Sensors give information

about the environment or the robot itself (e.g. the position of its joints or

its end effector). This information is then processed to calculate the

appropriate signals to the actuators (motors) which move the

mechanical.

The processing phase can range in complexity. At a reactive level, it

may translate raw sensor information directly into actuator commands.

Sensor fusion may first be used to estimate parameters of interest (e.g.

the position of the robot's gripper) from noisy sensor data. An immediate

task (such as moving the gripper in a certain direction) is inferred from

these estimates. Techniques from control theory convert the task into

commands that drive the actuators.

At longer time scales or with more sophisticated tasks, the robot may

need to build and reason with a "cognitive" model. Cognitive models try

to represent the robot, the world, and how they interact. Pattern

recognition and computer vision can be used to track objects. Mapping

techniques can be used to build maps of the world. Finally, motion

planning and other artificial intelligence techniques may be used to

figure out how to act. For example, a planner may figure out how to

achieve a task without hitting obstacles, falling over, etc.

CIT478 ARTIFICIAL INTELLIGENCE

163

3.8.1 Autonomy Levels

Control systems may also have varying levels of autonomy.

Direct interaction is used for haptic or tele-operated devices, and the

human has nearly complete control over the robot's motion.

Operator-assist modes have the operator commanding medium-to-high-

level tasks, with the robot automatically figuring out how to achieve

them.

An autonomous robot may go for extended periods of time without

human interaction. Higher levels of autonomy do not necessarily require

more complex cognitive capabilities. For example, robots in assembly

plants are completely autonomous, but operate in a fixed pattern.

Another classification takes into account the interaction between human

control and the machine motions.

Teleoperation. A human controls each movement, each machine

actuator change is specified by the operator.

Supervisory. A human specifies general moves or position changes and

the machine decides specific movements of its actuators.

Task-level autonomy. The operator specifies only the task and the

robot manages itself to complete it.

Full autonomy. The machine will create and complete all its tasks

without human interaction.

3.9 Robotics Research

Much of the research in robotics focuses not on specific industrial tasks,

but on investigations into new types of robots, alternative ways to think

about or design robots, and new ways to manufacture them but other

investigations, such as MIT's cyberflora project, are almost wholly

academic.

A first particular new innovation in robot design is the opensourcing of

robot-projects. To describe the level of advancement of a robot, the term

"Generation Robots" can be used. This term is coined by Professor Hans

Moravec, Principal Research Scientist at the Carnegie Mellon

University Robotics Institute in describing the near future evolution of

robot technology. First generation robots, Moravec predicted in 1997,

CIT478 ARTIFICIAL INTELLIGENCE

164

should have an intellectual capacity comparable to perhaps a lizard and

should become available by 2010. Because the first generation robot

would be incapable of learning, however, Moravec predicts that the

second generation robot would be an improvement over the first and

become available by 2020, with intelligence maybe comparable to that

of a mouse. The third generation robot should have intelligence

comparable to that of a monkey. Though fourth generation robots,

robots with human intelligence, professor Moravec predicts, would

become possible, he does not predict this happening before around 2040

or 2050.

The second is Evolutionary Robots. This is a methodology that uses

evolutionary computation to help design robots, especially the body

form, or motion and behavior controllers. In a similar way to natural

evolution, a large population of robots is allowed to compete in some

way, or their ability to perform a task is measured using a fitness

function. Those that perform worst are removed from the population,

and replaced by a new set, which have new behaviors based on those of

the winners. Over time the population improves, and eventually a

satisfactory robot may appear. This happens without any direct

programming of the robots by the researchers. Researchers use this

method both to create better robots, and to explore the nature of

evolution. Because the process often requires many generations of

robots to be simulated, this technique may be run entirely or mostly in

simulation, then tested on real robots once the evolved algorithms are

good enough. Currently, there are about 1 million industrial robots

toiling around the world, and Japan is the top country having high

density of utilizing robots in its manufacturing industry.

3.9.1 Dynamics and Kinematics

The study of motion can be divided into kinematics and dynamics.

Direct kinematics refers to the calculation of end effector position,

orientation, velocity, and acceleration when the corresponding joint

values are known. Inverse kinematics refers to the opposite case in

which required joint values are calculated for given end effector values,

as done in path planning. Some special aspects of kinematics include

handling of redundancy (different possibilities of performing the same

movement), collision avoidance, and singularity avoidance. Once all

relevant positions, velocities, and accelerations have been calculated

using kinematics, methods from the field of dynamics are used to study

the effect of forces upon these movements. Direct dynamics refers to the

calculation of accelerations in the robot once the applied forces are

known. Direct dynamics is used in computer simulations of the robot.

Inverse dynamics refers to the calculation of the actuator forces

CIT478 ARTIFICIAL INTELLIGENCE

165

necessary to create a prescribed end effector acceleration. This

information can be used to improve the control algorithms of a robot.

In each area mentioned above, researchers strive to develop new

concepts and strategies, improve existing ones, and improve the

interaction between these areas. To do this, criteria for "optimal"

performance and ways to optimize design, structure, and control of

robots must be developed and implemented.

3.10 Education and Training

Figure 12: The SCORBOT-ER 4u - educational robot.

Robots recently became a popular tool in raising interests in computing

for middle and high school students. First year computer science courses

at several universities were developed which involves the programming

of a robot instead of the traditional software engineering based

coursework.

3.10.1 Career training

Universities offer Bachelors, Masters and Doctoral degrees in the field

of robotics. Select Private Career Colleges and vocational schools offer

robotics training to train individuals towards being job ready and

employable in the emerging robotics industry.

CIT478 ARTIFICIAL INTELLIGENCE

166

3.10.2 Certification

The Robotics Certification Standards Alliance (RCSA) is an

international robotics certification authority who confers various

industry and educational related robotics certifications.

3.11 Employment

Figure 13: A robot technician builds small all-terrain robots.

(Courtesy: MobileRobots Inc)

Robotics is an essential component in any modern manufacturing

environment. As factories increase their use of robots, the number of

robotics related jobs grow and have been observed to be on a steady rise.

3.11.1 Effects on Unemployment

Some analysts, such as Martin Ford, argue that robots and other forms of

automation will ultimately result in significant unemployment as

machines begin to match and exceed the capability of workers to

perform most jobs. At present the negative impact is only on menial and

repetitive jobs, and there is actually a positive impact on the number of

jobs for highly skilled technicians, engineers, and specialists. However,

these highly skilled jobs are not sufficient in number to offset the greater

decrease in employment among the general population, causing

structural unemployment in which overall (net) unemployment rises.

As robotics and artificial intelligence develop further, some worry even

many skilled jobs may be threatened. In conventional economic theory

this should merely cause an increase in the productivity of the involved

industries, resulting in higher demand for other goods, and hence higher

labour demand in these sectors, off-setting whatever negatives are

caused. Conventional theory describes the past well but may not

CIT478 ARTIFICIAL INTELLIGENCE

167

describe the future due to shifts in the parameter values that shape the

context.

4.0 CONCLUSION

Robotics is an essential component in any modern manufacturing

environment. As factories increase their use of robots, the number of

robotics related jobs grow and have been observed to be on a steady rise.

As robotics and artificial intelligence develop further, some worry even

many skilled jobs may be threatened.

5.0 SUMMARY

In this unit, you learnt:

 Robots and Types of Robots

 History of Robots

 Components of Robots

 Robotics research

 Education and training

 Robots and Employment.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain the word Robotics.

2. List five (5) areas where Robots can be used.

3. List three (3) areas where Robots can be used for now.

7.0 REFERENCES/FURTHER READING

Asimov, I. (1996). [1995]. "The Robot Chronicles". Gold. London:

Voyager. pp. 224–225. ISBN 0-00-648202-3.

Crane, C. D. & Duffy, J. (1998-03). Kinematic Analysis of Robot

Manipulators. Cambridge: University Press. ISBN 0521570638.

http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521

570638.

Nishibori; et al. (2003). Robot Hand with Fingers Using Vibration-Type

Ultrasonic Motors (Driving Characteristics). Journal of Robotics

and Mechatronics. http://www.fujipress.jp/finder/xslt.php?mode

=present&inputfile=ROBOT001500060002.xml.

Park; et al. (2005). Synthetic Personality in Robots and its Effect on

Human-Robot Relationship.

Rosheim, M. E. (1994). Robot Evolution: The Development of

Anthrobotics. Wiley-IEEE. pp. 9–10. ISBN 0471026220.

http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521
http://www.fujipress.jp/finder/xslt.php?mode

