

NATIONAL OPEN UNIVERSITY OF NIGERIA

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

COURSE CODE: CIT427

COURSE TITLE:

DATABASE SYSTEM AND MANAGEMENT

COURSE

GUIDE

CIT427 COURSE GUIDE

CIT427

DATABASE SYSTEM AND MANAGEMENT

Course Team Vivian Nwaocha (Developer/Writer) - NOUN

Prof. Hyacinth C. Inyiama (Editor) - NAU, AWKA

Prof. Kehinde Obidairo (Programme Leader) - NOUN

ii

CIT427 COURSE GUIDE

NATIONAL OPEN UNIVERSITY OF NIGERIA

National Open University of Nigeria

Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

No. 5 Dar es Salaam Street

Off Aminu Kano Crescent

Wuse II, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published By:

National Open University of Nigeria

First Printed 2012

Reviewed and Reprinted 2021

ISBN: 978-058-862-0

All Rights Reserved

iii

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT427 COURSE GUIDE

iv

CONTENTS PAGE

Introduction… ... 1

What You Will Learn in This Course… ... 1

Course Aim ... 2

Course Objectives… ... 2

Working through This Course .. 3

Course Materials… ... 3

Study Units ... 3

Textbooks and References .. 4

Assignment File .. 6

Presentation Schedule… ... 6

Assessment… ... 7

Tutor-Marked Assignments .. 7

Final Examination and Grading .. 7

Course Marking Scheme ... 8

Course Overview… .. 8

How to Get the Most from this Course… ... 9

Facilitation/Tutors and Tutorials…..11

Introduction

CIT427: Database Systems and Management is a three-credit

preliminary course, intended for undergraduates studying towards

acquiring the Bachelor of Science in Computer Science and other related

disciplines of the National Open University of Nigeria (NOUN).

The course is divided into 5 modules and 21 study units. It offers

students an introduction to the design and programming of database

systems. In particular, we will cover the ER (entity-relationship)

approach to data modelling, the relational model of database

management systems (DBMSs) and the use of query languages such as

SQL. We will also cover relational algebra and the use of SQL in a

programming environment. We will briefly touch upon query processing

and aspects of computer data storage and file structure. We will also

dedicate the concluding module to two contemporary topics: XML

Documents and Web Services.

At the end of this course, it is expected that students should be able to

understand, explain and be adequately equipped to handle database

systems, common storage technologies as well as XML documents and

common Web Services.

The course guide therefore gives you an overview of what the course:

CIT427 is all about, the textbooks and other course materials to be

referenced, what you are expected to know in each unit, and how to

work through the course material. It suggests the general strategy to be

adopted and also emphasises the need for self-assessment and tutor-

marked assignment. There are also tutorial classes that are linked to this

course and students are advised to attend.

What You Will Learn in This Course

The overall aim of this course, CIT427, is to enhance the students‘ skills

in order to manage database systems effectively as well as deal with

other issues related to XML and Web applications. This course provides

extensive hands-on, case study examples, and reference materials

designed to enhance database systems management skills. In the course

of your study, you will be taught definitions of common terms,

characteristics and applications of database systems. You will also learn

about computer data storage and file structure. Finally, you will learn

about basic concepts of XML and Web services.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

ii

Course Aim

This course aims to give students an in-depth understanding of database

systems. It is hoped that the knowledge acquired from this course would

enhance students‘ skills in handling database systems, files, common

storage technologies as well as XML documents and common Web

Services.

Course Objectives

It is pertinent to note that each unit has precise objectives. Students

should learn them carefully before proceeding to subsequent units.

Therefore, it may be useful to refer to these objectives in the course of

your study of the unit to assess your progress. You should always look

at the unit objectives after completing each unit. In this way, you can be

sure that you have done what is required of you by the end of the unit.

However, below are overall objectives of this course. On successful

completion of this course, you should be able to:

 define the term ‗database management system‘

 state typical examples of database management systems

 identify the categories of database management systems

 explain the concept ‗database servers‘

 outline the evolution of database management systems

 state the common features of database management systems

 explain the notion ‗ data models‘

 identify the common categories of data models

 explain the concept of entity-relationship models

 describe the concept of mapping cardinalities with respect to

entity-relationship diagram

 identify the link between instances and schemes

 list and describe the components of a data structure

 state the data structures required for physical system

 describe the notion of relationship sets

 mention a formal definition of a relational algebra

 state the key role of each component of an SQL expression

 identify the common forms of database modification

 discuss the link between main Constraints and Integrity

Constraints

 itemise the core characteristics of storage technologies

 sketch a succinct description of computer data storage

 classify the levels of storage

 distinguish between volatile and non-volatile memory

CIT427 DATABASE SYSTEMS AND MANAGEMENT

iii

 state the difference between the Read/Write and Read only

storage

 identify the components of file organisation

 mention the key considerations in specifying a system of file

organisation

 outline the components of a Structured Document

 distinguish between XML, HTML and SGML

 describe the four main kinds of declarations in XML

 list and describe the common attribute types

 identify the procedure involved in accessing information from

Web Services

 mention the common advantages and disadvantages of Web

Services

 list the components of Web Services Architecture.

Working through This Course

To complete this course, you are required to study all the units, the

recommended text books, and other relevant materials. Each unit

contains some self -assessment exercises and tutor- marked assignments.

At some point in this course, you would be required to submit the tutor-

marked assignments. There is also a final examination at the end of this

course. Stated below are the components of this course and what you

have to do.

Course Materials

The major components of the course are:

1. Course Guide

2. Study Units

3. Text Books

4. Assignment File

5. Presentation Schedule

Study Units

There are 21 study units and 5 modules in this course. They are:

Module 1 Introduction to Database Management Systems

Unit 1 Basic Concepts of Database Management

Systems

Unit 2 Data Models
Unit 3 Instances and Schemes

Unit 4 Overall System Structure

CIT427 DATABASE SYSTEMS AND MANAGEMENT

iv

Module 2 The Entity-Relationship Data Model

Unit 1 Entities and Entity Sets
Unit 2 Relationships and Relationship Sets

Unit 3 Structure of Relational Database

Unit 4 The Relational Algebra

Module 3 SQL and Integrity Constraints

Unit 1 Structured Query Language (SQL) Fundamentals

Unit 2 SQL Expression

Unit 3 Database Modification

Unit 4 Integrity Constraints

Module 4 Computer Data Storage and File Structure

Unit 1 Computer Data Storage and Level

Unit 2 Features of Storage Technologies

Unit 3 Common Storage Technologies

Unit 4 File Organisation

Module 5 Introduction to XML and Web Services

Unit 1 Fundamentals of XML

Unit 2 Significance of XML

Unit 3 XML Document

Unit 4 Document Type Declaration

Unit 5 Introduction to Web Services

Textbooks and References

These texts will be of enormous benefit to you in this course:

Avi, S.; et al. (N.D.). Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (2009). (Eds.). Learning SQL (2
nd

 Ed.).

Sebastapol, CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Borja, S. (2005). The Globus Toolkit 4 Programmer's Tutorial.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

v

Byers, F. R. (2003). Care and Handling of CDs and DVDs - A Guide for

Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. In: Communications of the ACM 13 (6): 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared

Data Banks‖. In: Communications of the ACM archive. Vol 13.

Issue 6(June 1970). pp.377-387.

Database Design Basics. (N.D.).Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

―Development of an Object-Oriented DBMS‖; Portland, Oregon, United

States; Pages: 472 - 482; 1986; ISBN 0-89791-204-7.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic‘s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Kawash, J. (2004). Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus - Journal

of Computers in Mathematics and Science Teaching. 23 (2) 2004

AACE Norfolk, Virginia.

Mike, C. ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage and

More. Morgan Kaufmann Press,

Norman, W. (1998). A Technical Introduction to XML.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

vi

Performance Enhancement through Replication in an Object-Oriented

DBMS; Pages 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). Database Management Systems

(2
nd

 Ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). Beyond Relational Databases. Communications of

the ACM, 51(7), 52-58. Retrieved July 6, 2009, from Business

Source Complete Database.

Teorey, T.; et al. (2005) Database Modeling & Design: Logical Design

(4th ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it all (1st Ed.)

Burlington, MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

Assignment File

The assignment file will be given to you in due course. In this file, you

will find all the details of the work you must submit to your tutor for

marking. The marks you obtain for these assignments will count towards

the final mark for the course. Altogether, there are 21 tutor-marked

assignments for this course.

Presentation Schedule

The presentation schedule included in this course guide provides you

with important dates for completion of each tutor-marked assignment.

You should therefore endeavour to meet the deadlines.

Assessment

There are two aspects to the assessment for this course. First, there are

tutor-marked assignments; and second, the written examination.

Therefore, you are expected to take note of the facts, information and

problem solving gathered during the course. The tutor-marked

assignments must be submitted to your tutor for formal assessment, in

accordance with the deadline. The work submitted will count for 40% of

your total course marks.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

vii

At the end of the course, you will need to sit for a final written

examination. This examination will account for 60% of your total score.

Tutor-Marked Assignments (TMAs)

There are 21 TMAs in this course. You need to submit all the TMAs.

The best four will be counted. When you have completed each

assignment, send them to your tutor as soon as possible and make

certain that it gets to your tutor on or before the stipulated deadline. If

for any reason you cannot complete your assignment on time, contact

your tutor before the assignment is due to discuss the possibility of

extension. Extension will not be granted after the deadline, unless on

exceptional circumstances.

Final Examination and Grading

The final examination for CIT427 will be of last for a period of 3 hours

and have a value of 60% of the total course grade. The examination will

consist of questions which reflect the self assessment exercise and tutor-

marked assignments that you have previously encountered. Furthermore,

all areas of the course will be examined. It would be better to use the

time between finishing the last unit and sitting for the examination, to

revise the entire course. You might find it useful to review your TMAs

and comment on them before the examination. The final examination

covers information from all parts of the course.

Course Marking Scheme

The following table indicates the course marking scheme:

Table 1: Course Marking Scheme

Assessment Marks

Assignments 1-21 21 assignments, 40% for the best 4

Total = 10% X 4 = 40%

Final Examination 60% of overall course marks

Total 100% of Course Marks

CIT427 DATABASE SYSTEMS AND MANAGEMENT

viii

Course Overview

This table indicates the units, the number of weeks required to complete

them and the assignments.

Table 2: Course Organiser

Unit Title of Work Weeks

Activity

Assessment

(End of Unit)
 Course Guide Week 1

Module 1 Introduction to Database Management Systems

1 Basic Concepts of Database
Management Systems

Week 1 Assignment 1

2 Data Models Week 2 Assignment 2

3 Instances and Schemes Week 3 Assignment 3

4 Overall System Structure Week 3 Assignment 4

Module 2 The Entity-Relationship Data Model

1 Entities and Entity Sets Week 4 Assignment 5

2 Relationships and Relationship
Sets

Week 4 Assignment 6

3 Structure of Relational Database Week 5 Assignment 7

4 The Relational Algebra Week 5 Assignment 8

Module 3 SQL and Integrity Constraints

1 Structured Query Language

(SQL) Fundamentals

Week 6 Assignment 9

2 SQL Expression Week 6 Assignment 10

3 Database Modification Week 7 Assignment 11

4 Integrity Constraints Week 7 Assignment 12

Module 4 Computer Data Storage and File Structure

1 Computer Data Storage and
Levels

Week 8 Assignment 13

2 Features of Storage Technologies Week 9 Assignment 14

3 Common Storage Technologies Week 10 Assignment 15

4 File Organisation Assignment 16

Module 5 Introduction to XML and Web Services

1 Fundamentals of XML Week 11 Assignment 17

2 Significance of XML Week 12 Assignment 18

3 XML Document Week 13 Assignment 19

4 Document Type Declaration Week 14 Assignment 20

5 Introduction to Web Services Week 14 Assignment 21

CIT427 DATABASE SYSTEMS AND MANAGEMENT

ix

How to Get the Most from This Course

In open and distance learning (ODL), the study units replace the

university lecturer. This is one of the huge advantages of distance

learning mode; you can read and work through specially designed study

materials at your own pace and at a time and place that is most

convenient. Think of it as reading from the teacher, the study guide

indicates what you ought to study, how to study it and the relevant texts

to consult. You are provided with exercises at appropriate points, just as

a lecturer might give you an in-class exercise.

Each of the study units follows a common format. The first item is an

introduction to the subject matter of the unit and how a particular unit is

integrated with the other units and the course as a whole. Next to this is

a set of learning objectives. These learning objectives are meant to guide

you in your study. The moment a unit is finished, you must go back and

check whether you have achieved the objectives. If this is made a habit,

then you will increase your chances of passing the course. The main

body of the units also guides you through the required readings from

other sources. This will usually be either from a set book or from other

sources.

Self assessment exercises are provided throughout the unit, to aid

personal studies and answers are provided at the end of the unit.

Working through these self tests will help you to achieve the objectives

of the unit and also prepare you for tutor-marked assignments and

examinations. You should attempt each self test as you encounter them

in the units.

The following are practical strategies for working through this

course

 Read the course guide thoroughly

 Organise a study schedule. Refer to the course overview for more

details. Note the time you are expected to spend on each unit and

how the assignment relates to the units. Important details, e.g.

details of your tutorials and the date of the first day of the

semester are available. You need to gather together all these

information in one place such as a diary, a wall chart calendar or

an organiser. Whatever method you choose, you should decide on

and write in your own dates for working on each unit.

 Once you have created your own study schedule, do everything

you can to stick to it. The major reason that students fail is that

they get behind with their course work. If you get into difficulties

with your schedule, please let your tutor know before it is too late

for help.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

x

 Turn to Unit 1 and read the introduction and the objectives for the

unit

 Assemble the study materials. Information about what you need

for a unit is given in the table of content at the beginning of each

unit. You will need both the study unit you are working on and

one of the materials recommended for further reading, on your

desk at the same time

 Work through the unit, the content of the unit itself has been

arranged to provide a sequence for you to follow. As you work

through the unit, you will be encouraged to read from your set

books

 Keep in mind that you will learn a lot by doing all your

assignments carefully. They have been designed to help you meet

the objectives of the course and will help you pass the

examination.

 Review the objectives of each study unit to confirm that you have

achieved them. If you are not certain about any of the objectives,

review the study material and consult your tutor

 When you are confident that you have achieved a unit‘s

objectives, you can start on the next unit. Proceed unit by unit

through the course and try to pace your study so that you can

keep yourself on schedule

 When you have submitted an assignment to your tutor for

marking, do not wait for its return before starting on the next unit.

Keep to your schedule. When the assignment is returned, pay

particular attention to your tutor‘s comments, both on the tutor-

marked assignment form and also written on the assignment.

Consult your tutor as soon as possible if you have any questions

or problems

 After completing the last unit, review the course and prepare

yourself for the final examination. Check that you have achieved

the unit objectives (listed at the beginning of each unit) and the

course objectives (listed in this course guide)

Facilitation/Tutors and Tutorials

There are 8 hours of tutorial provided in support of this course. You will

be notified of the dates, time and location together with the name and

phone number of your tutor as soon as you are allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close

watch on your progress and any difficulties you might encounter and

provide assistance to you during the course. You must mail your tutor-

marked assignment to your tutor well before the due date. At least two

working days are required for this purpose. They will be marked by your

tutor and returned to you as soon as possible.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

xi

Do not hesitate to contact your tutor by telephone, e-mail or discussion

board if you need help. The following might be circumstances in which

you would find help necessary: contact your tutor if:

 You do not understand any part of the study units or the assigned

readings.

 You have difficulty with the self test or exercise.

 You have questions or problems with an assignment, with your

tutor‘s comments on an assignment or with the grading of an

assignment.

You should try your best to attend the tutorials. This is the only chance

to have face-to- face contact with your tutor and ask questions which are

answered instantly. You can raise any problem encountered in the

course of your study. To gain the maximum benefit from the course

tutorials, prepare a question list before attending them. You will learn a

lot from actively participating in discussions.

I wish you the best in your studies!

CIT427 DATABASE SYSTEMS AND MANAGEMENT

xii

Course Code CIT427

Course Title Database Systems and Management

Course Team Vivian Nwaocha (Developer/Writer) - NOUN

Prof. Hyacinth C. Inyiama (Editor) - NAU, AWKA

Prof. Kehinde Obidairo (Programme Leader) - NOUN

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT427 DATABASE SYSTEMS AND MANAGEMENT

xiii

National Open University of Nigeria

Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

No. 5 Dar es Salaam Street

Off Aminu Kano Crescent

Wuse II, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published By:

National Open University of Nigeria

First Printed 2012

ISBN: 978-058-862-0

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT427 DATABASE SYSTEMS AND MANAGEMENT

xiv

CONTENTS PAGE

Module 1 Introduction to Database Management Systems … 1

Unit 1 Basic Concepts of Database Management Systems…. 1

Unit 2 Data Models ... 14

Unit 3 Instances and Schemes ... 22

Unit 4 Overall System Structure .. 29

Module 2 The Entity-Relationship Data Model 34

Unit 1 Entities and Entity Sets ... 34

Unit 2 Relationships and Relationship Sets 39

Unit 3 Structure of Relational Database 45

Unit 4 The Relational Algebra ... 50

Module 3 SQL and Integrity Constraints 59

Unit 1 Structured Query Language (SQL) Fundamentals… 59

Unit 2 SQL Expressions .. 63

Unit 3 Database Modification .. 69

Unit 4 Integrity Constraints ... 75

Module 4 Computer Data Storage and File Structure 84

Unit 1 Computer Data Storage and Levels 84

Unit 2 Features of Storage Technologies 93

Unit 3 Common Storage Technologies… 100

Unit 4 File Organisation… .. 106

Module 5 Introduction to XML and Web Services 113

Unit 1 Fundamentals of XML... 113

Unit 2 Significance of XML .. 119

Unit 3 XML Document ... 126

Unit 4 Document Type Declaration… 134

Unit 5 Introduction to Web Services .. 146

CIT427 DATABASE SYSTEMS AND MANAGEMENT

1

MODULE 1 INTRODUCTION TO DATABASE

MANAGEMENT SYSTEMS

Unit 1 Basic Concepts of Database Management Systems

Unit 2 Data Models

Unit 3 Instances and Schemes

Unit 4 Overall System Structure

UNIT 1 BASIC CONCEPTS OF DATABASE

MANAGEMENT SYSTEMS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Overview of a Database Management System

3.1.1 What is a Database Management System?

3.1.2 Categories of Database Management Systems

3.1.3 Relational Database Management Systems

3.1.4 Hierarchical Database Management System

3.1.5 Object-Oriented Database Management System

3.1.6 Features of Database Management Systems

3.1.7 Database Servers

3.2 Evolution of Database Management Systems (DBMS)

3.2.1 Navigational DBMS

3.2.2 Relational DBMS

3.2.3 SQL DBMS

3.2.4 Object-Oriented Database

3.2.5 Current Trends

3.3 Components of Database Management Systems (DBMS)

3.3.1 Modeling Language

3.3.2 Data Structure

3.3.3 Data Query Language

3.3.4 Transaction Mechanism

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This course provides a fundamental overview of the concepts, principles

and techniques of modern database management systems and of

database (data-driven) business application system development.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

2

The most important thing you would need to grasp from this module is

the fact that database management systems make the logical presentation

of database information to users possible. It is much more than just

learning new functions, syntax, etc. Thus, database management systems

require a logical way of thinking.

This module has thus been designed to enhance your database

management expertise. Even if you have gained previous database

management experience, it is recommended that you go through the

entire module systematically to gain some insight into the course.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 define the term ‗database management system‘

 cite typical examples of database management systems

 identify the categories of database management systems

 explain the concept of ‗database servers‘

 outline the evolution of database management systems

 mention the common features of database management systems

 describe the main components of a database management system.

3.0 MAIN CONTENT

3.1 Overview of a Database Management System

A Database Management System (DBMS) is a set of software programs

that controls the organisation, storage, management, and retrieval of data

in a database. The DBMS accepts requests for data from an application

program and instructs the operating system to transfer the appropriate

data. The queries and responses must be submitted and received

according to a format that conforms to one or more applicable protocols.

When a DBMS is used, information systems can be changed much more

easily as the organisation‘s information requirements change. New

categories of data can be added to the database without disruption to the

existing system.

3.1.1 What is a Database Management System?

A Database Management System can simply be defined as a set of

software programs that controls the organisation, storage, management,

and retrieval of data in a database.

Typical examples of Database Management Systems include Oracle

Database, Microsoft SQL Server, and PostgreSQL. Nowadays, a small

CIT427 DATABASE SYSTEMS AND MANAGEMENT

3

number of DBMSs are used by the great majority of database

applications to manage practically all the world‘s databases.

3.1.2 Categories of Database Management Systems (DBMS)

Database management systems are categorised according to their data

structures and types. Well known types are relational, hierarchical, and

object-oriented.

3.1.3 Relational Database Management System (RDBMS)

The Relational database management system organises data in tabular

files. Most modern Database Management Systems (Oracle, Sybase, and

Microsoft SQL Server) are relational databases. These databases support

a standard language - SQL (Structured Query Language).

3.1.4 Hierarchical Database Management System (RDBMS)

This category of database management system stores data in a tree-like

structure.

3.1.5 Object-Oriented Database Management System

(RDBMS)

The Object-Oriented database management system stores objects as

opposed to tuples or records in a RDBMS.

DBMSs are categorized according to their data structures or types.

3.1.6 Features of Database Management Systems (DBMS)

Features commonly offered by database management systems include:

Query ability

 Querying is the process of requesting attribute information from

various perspectives and combinations of factors. Example:

―How many 2-door cars in Texas are green?‖ A database query

language and report writer allow users to interactively interrogate

the database, analyze its data and update it according to the users

privileges on data.

Backup and replication

 Copies of attributes need to be made regularly in case primary

disks or other equipment fails. A periodic copy of attributes may

also be created for a distant organisation that cannot readily

CIT427 DATABASE SYSTEMS AND MANAGEMENT

4

access the original. DBMS usually provide utilities to facilitate

the process of extracting and disseminating attribute sets. When

data is replicated between database servers, so that the

information remains consistent throughout the database system

and users cannot tell or even know which server in the DBMS

they are using, the system is said to exhibit replication

transparency.

Rule enforcement

 Often one wants to apply rules to attributes so that the attributes

are clean and reliable. For example, we may have a rule that says

each car can have only one engine associated with it (identified

by Engine Number). If somebody tries to associate a second

engine with a given car, we want the DBMS to deny such a

request and display an error message. However, with changes in

the model specification such as, in this example, hybrid gas-

electric cars, rules may need to change. Ideally such rules should

be able to be added and removed as needed without significant

data layout redesign.

Security

 Often it is desirable to limit who can see or change which

attributes or groups of attributes. This may be managed directly

by individual, or by the assignment of individuals and privileges

to groups, or (in the most elaborate models) through the

assignment of individuals and groups to roles which are then

granted entitlements.

Computation

 There are common computations requested on attributes such as

counting, summing, averaging, sorting, grouping, cross-

referencing, etc. Rather than have each computer application

implement these from scratch, they can rely on the DBMS to

supply such calculations.

Change and access logging

 Often one wants to know who accessed what attributes, what was

changed, and when it was changed. Logging services allow this

by keeping a record of access occurrences and changes.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

5

Automated optimisation

 If there are frequently occurring usage patterns or requests, some

DBMS can adjust themselves to improve the speed of those

interactions. In some cases the DBMS will merely provide tools

to monitor performance, allowing a human expert to make the

necessary adjustments after reviewing the statistics collected.

3.1.7 Database Servers

Database servers are computers that hold the actual databases and run

only the database management system and related software. They are

usually multiprocessor computers, with generous memory and RAID

disk arrays used for stable storage. Hardware database accelerators,

connected to one or more servers via a high-speed channel, are also used

in large volume transaction processing environments.

3.2 Evolution of Database Management Systems

Databases have been in use since the earliest days of electronic

computing, but the vast majority of these were custom programs written

to access custom databases. Unlike modern systems which can be

applied to a wide range of databases and needs, these systems were

tightly linked to the database in order to gain speed at the price of

flexibility.

The major DBMS that evolved are as follows:

 Navigational DBMS

 Relational DBMS

 Multidimensional DBMS

 Object DBMS

3.2.1 Navigational DBMS

Objects are the basic run-time entities in an object-oriented system. A

number of general-purpose database systems emerged due to growth in

the speed and capability of computers; by the mid-1960s there were a

number of such systems in commercial use. Interest in a standard began

to grow, and Charles Bachman, founded the ―Database Task Group‖

within CODASYL, the group responsible for the creation and

standardization of COBOL. In 1971 they delivered their standard, which

generally became known as the ―Codasyl approach‖, and soon there

were a number of commercial products based on it available.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

6

The Codasyl approach was based on the ―manual‖ navigation of a linked

data set which was formed into a large network. To find any particular

record the programmer had to step through these pointers one at a time

until the required record was returned. Simple queries like ―find all the

people in India‖ required the program to walk the entire data set and

collect the matching results. There was, essentially, no concept of ―find‖

or ―search‖. This might sound like a serious limitation today, but in an

era when the data was most often stored on magnetic tape such

operations were too expensive to contemplate anyway.

IBM also had their own DBMS system in 1968, known as IMS. IMS

was a development of software written for the Apollo program on the

System/360. IMS was generally similar in concept to Codasyl, but used

a strict hierarchy for its model of data navigation instead of Codasyl‘s

network model. Both concepts later became known as navigational

databases due to the way data was accessed, and Bachman‘s 1973

Turing Award presentation was The Programmer as Navigator. IMS is

classified as a hierarchical database. IMS and IDMS, both CODASYL

databases, as well as CINCOMs TOTAL database are classified as

network databases.

3.2.2 Relational DBMS

Not satisfied with the navigational model of the Codasyl approach,

notably the lack of a ―search‖ facility which was becoming increasingly

useful, Edgar Codd, wrote a number of papers that outlined a new

approach to database construction in 1970. He described a new system

for storing and working with large databases. Instead of records being

stored in some sort of linked list of free-form records as in Codasyl,

Codd's idea was to use a ―table‖ of fixed-length records. A linked-list

system would be very inefficient when storing ―sparse‖ databases where

some of the data for any one record could be left empty. The relational

model solved this by splitting the data into a series of normalised tables,

with optional elements being moved out of the main table to where they

would take up room only if needed.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

7

Fig. 1.1: The Relational Model

In the relational model, related records are linked together with a ―key‖.

For instance, a common use of a database system is to track information

about users, their name, login information, various addresses and phone

numbers. In the navigational approach all of these data would be placed

in a single record, and unused items would simply not be placed in the

database. In the relational approach, the data would be normalised into a

user table, an address table and a phone number table (for instance).

Records would be created in these optional tables only if the address or

phone numbers were actually provided.

Linking the information back together is the key to this system. In the

relational model, some bit of information was used as a ―key‖, uniquely

defining a particular record. When information was being collected

about a user, information stored in the optional (or related) tables would

be found by searching for this key. For instance, if the login name of a

user is unique, addresses and phone numbers for that user would be

recorded with the login name as its key. This ―re-linking‖ of related data

back into a single collection is something that traditional computer

languages are not designed for.

Just as the navigational approach would require programs to loop in

order to collect records, the relational approach would require loops to

collect information about any one record. Codd‘s solution to the

necessary looping was a set-oriented language, a suggestion that would

later spawn the ubiquitous SQL. Using a branch of mathematics known

as tuple calculus, he demonstrated that such a system could support all

the operations of normal databases (inserting, updating etc.) as well as

providing a simple system for finding and returning sets of data in a

single operation.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

8

IBM itself did one test implementation of the relational model, PRTV,

and a production one, Business System 12, both now discontinued. All

other DBMS implementations usually called relational are actually SQL

DBMSs. In 1968, the University of Michigan began development of the

Micro DBMS relational database management system. It was used to

manage very large data sets by the US Department of Labor, the

Environmental Protection Agency and researchers from University of

Alberta, the University of Michigan and Wayne State University. It ran

on mainframe computers using Michigan Terminal System. The system

remained in production until 1996.

3.2.3 SQL DBMS

IBM started working on a prototype system loosely based on Codd‘s

concepts as System R in the early 1970s. The first version was ready in

1974/5, and work then started on multi-table systems in which the data

could be split so that all of the data for a record (much of which is often

optional) did not have to be stored in a single large ―chunk‖. Subsequent

multi-user versions were tested by customers in 1978 and 1979, by

which time a standardized query language, SQL, had been added.

Codd's ideas were establishing themselves as both workable and

superior to Codasyl, pushing IBM to develop a true production version

of System R, known as SQL/DS, and, later, Database 2 (DB2).

Many of the people involved with INGRES became convinced of the

future commercial success of such systems, and formed their own

companies to commercialise the work but with an SQL interface.

Sybase, Informix, Nonstop SQL and eventually Ingres itself were all

being sold as offshoots to the original INGRES product in the 1980s.

Even Microsoft SQL Server is actually a re-built version of Sybase, and

thus, INGRES.

Stonebraker went on to apply the lessons from INGRES to develop a

new database, Postgres, which is now known as PostgreSQL.

PostgreSQL is often used for global mission critical applications (the

.org and .info domain name registries use it as their primary data store,

as do many large companies and financial institutions).

In Sweden, Codd‘s paper was also read and Mimer SQL was developed

from the mid-70s at Uppsala University. In 1984, this project was

consolidated into an independent enterprise. In the early 1980s, Mimer

introduced transaction handling for high robustness in applications, an

idea that was subsequently implemented on most other DBMS.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

9

3.2.4 Object-Oriented Databases

Objects contain data, and code to manipulate that data. The entire set of

The 1980s, saw a growth in how data in various databases were handled.

Programmers and designers began to treat the data in their databases as

objects. That is as if a person's data were in a database, that person‘s

attributes, such as their address, phone number, and age, were now

considered to belong to that person instead of being extraneous data.

This allows for relationships between data to be relation to objects and

their attributes and not to individual fields.

Another big game changer for databases in the 1980s was the focus on

increasing reliability and access speeds. In 1989, two professors from

the University of Michigan at Madison published an article at an ACM

associated conference outlining their methods on increasing database

performance. The idea was to replicate specific important and often

queried information, and store it in a smaller temporary database that

linked these key features back to the main database. This meant that a

query could search the smaller database much quicker, rather than

search the entire dataset. This eventually leads to the practice of

indexing, which is used by almost every operating system from

Windows to the system that operates Apple iPod devices.

3.2.5 Current Trends

In 1998, Researchers realised that the old trends of database

management were becoming too complex and there was a need for

automated configuration and management. Surajit Chaudhuri, Gerhard

Weikum and Michael Stonebraker, were the pioneers that dramatically

affected the thought of database management systems. They believed

that database management needed a more modular approach and that

there are so many specifications and needs for various users. Database

management is no longer limited to ―monolithic entities‖. Many

solutions have been developed to satisfy individual needs of users.

Development of numerous database options has created flexible

solutions in database management.

Today there are several ways database management has affected the

technology world as we know it. Organisations‘ demand for directory

services has become an extreme necessity as they grow. Businesses are

now able to use directory services that provided prompt searches for

their company information. Mobile devices are not only able to store

contact information of users but have grown to bigger capabilities.

Mobile technology is able to cache large information that is used for

computers and is able to display it on smaller devices. Web searches

have even been affected with database management. Search engine

CIT427 DATABASE SYSTEMS AND MANAGEMENT

10

queries are able to locate data within the World Wide Web. Retailers

have also benefited from the developments with data warehousing.

These companies are able to record customer transactions made within

their business. Online transactions have become tremendously popular

with the e-business world. Consumers and businesses are able to make

payments securely on company websites. None of these current

developments would have been possible without the evolution of

database management. Even with all the progress and current trends of

database management, there will always be a need for new development

as specifications and needs grow.

As the speeds of consumer internet connectivity increase, and as data

availability and computing become more ubiquitous, database are seeing

migration to web services. Web based languages such as XML and PHP

are being used to process databases over web based services. These

languages allow databases to live in "the cloud." As with many other

products such as Google's Gmail, Microsoft's Office 2010, and

Carbonite‘s online backup services, many services are beginning to

move to web based services due to increasing internet reliability, data

storage efficiency, and the lack of a need for dedicated IT staff to

manage the hardware. Faculty at Rochester Institute of Technology

published a paper regarding the use of databases in the cloud and state

that their school plans to add cloud based database computing to their

curriculum to "keep [their] information technology (IT) curriculum at

the forefront of technology‖.

SELF-ASSESSMENT EXERCISE

List five common features of database management systems.

3.3 Components of Database Management System (DBMS)

A Database Management System (DBMS) includes four main parts:

modeling language, data structure, database query language, and

transaction mechanisms. We will look at these components in the

subsequent units.

3.3.1 Modeling Language

The first component of a database management system is the

implementation of a modeling language that serves to define the

language of each database hosted via the DBMS. There are several

approaches currently in use, with hierarchical, network, relational, and

object examples. Essentially, the modeling language ensures the ability

of the databases to communicate with the DBMS and thus operate on the

system.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

11

3.3.2 Data Structures

Data structures are administered by the database management system.

Examples of data that are organised by this function are individual

profiles or records, files, fields and their definitions, and objects such as

visual media. Data structures enable DBMS to interact with the data

without causing damage to the integrity of the data itself.

3.3.3 Data Query Language

A third component of DBMS software is the data query language. This

element is involved in maintaining the security of the database, by

monitoring the use of login data, the assignment of access rights and

privileges, and the definition of the criteria that must be employed to add

data to the system. The data query language works with the data

structures to make sure it is harder to input irrelevant data into any of the

databases in use on the system.

3.3.4 Transaction Mechanism

A database transaction mechanism ideally guarantees ACID properties

in order to ensure data integrity despite concurrent user accesses

(concurrency control), and faults (fault tolerance). It also maintains the

integrity of the data in the database. The DBMS can maintain the

integrity of the database by not allowing more than one user to update

the same record at the same time. The DBMS can help prevent duplicate

records via unique index constraints; for example, no two customers

with the same customer numbers (key fields) can be entered into the

database.

4.0 CONCLUSION

In this unit, we defined some basic concepts of database management

systems. We also looked at the categories and main components of

database management systems.

5.0 SUMMARY

We hope you enjoyed this unit. This unit provided an overview of

database management systems: basic definition, examples, evolution,

features and key components. Now, let us attempt the questions below.

6.0 TUTOR-MARKED ASSIGNMENT

1. Define the term ‗database management system.‘

2. List the common categories of database management systems.

3. Identify the main components of a database management system.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

12

7.0 REFERENCES/FURTHER READING

Avi, S. et al. (N.D). Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd

 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004).Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

13

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management

Systems(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009). Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

14

UNIT 2 DATA MODELS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Object-Based Logical Models

3.1.1 The E-R Model

3.1.2 The Object-Oriented Model

3.2 Record-based Logical Models

3.2.1 The Relational Model

3.2.2 The Network Model

3.2.3 The Hierarchical Model

3.3 Physical Data Models

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit provides a general idea of data models as well as the different

categories of data models. Data models are a collection of conceptual

tools for describing data, data relationships, data semantics and data

constraints. There are three different groups and we will look at them in

more detail in the subsequent units.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 explain the notion of data models

 identify common categories of data models

 describe object-based logical models

 list the common types of object-based logical models

 discuss the concept of entity-relationship models

 state the essential elements of an entity-relationship diagram

 describe the concept of mapping cardinalities with respect to

entity-relationship diagram

 specify classical record-based logical models.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

15

3.0 MAIN CONTENT

3.1 Object-Based Logical Models

Object-based logical models describe data at the conceptual and view

levels. They provide fairly flexible structuring capabilities and facilitate

the explicit specification of data constraints.

There are several categories of object-based logical models. They are:

 Entity-relationship model, Object-oriented model, Binary model,

Semantic data model, Infological model, Functional data model,

etc. However, for the purpose of this course we shall be

considering the Entity-relationship and Object-oriented models.

3.1.1 The E-R Model

The entity-relationship model is based on a perception of the world as

consisting of a collection of basic objects (entities) and relationships

among these objects.

In order to grasp the full notion of this model, we would describe some

of the key terms highlighted above. An entity is a distinguishable object

that exists. Each entity has associated with it a set of attributes

describing it. E.g. number and balance for an account entity. On the

other hand a relationship is an association among several entities. For

example, a cust_acct relationship associates a customer with each

account he or she has. Thus, the set of all entities or relationships of the

same type is called the entity set or relationship set.

Another essential element of the E-R diagram is the mapping

cardinalities, which express the number of entities to which another

entity can be associated with via a relationship set. We will see later

how well this model works to describe real world situations.

The overall logical structure of a database can be expressed graphically

by an E-R diagram as depicted in Figure 1.2 below:

CIT427 DATABASE SYSTEMS AND MANAGEMENT

16

Fig. 1.2: An E-R Diagram

 rectangles: represent entity sets.

 ellipses: represent attributes.

 diamonds: represent relationships among entity sets.

 lines: link attributes to entity sets and entity sets to relationships.

3.1.2 The Object-Oriented Model

The object-oriented model is based on a collection of objects, like the E-

R model. Classically, an object contains values stored in instance

variables within the object. Unlike the record-oriented models, these

values are themselves objects.

An object contains bodies of code that operate on the object. These

bodies of code are called methods. Objects that contain the same types

of values and the same methods are grouped into classes. A class may

be viewed as a type definition for objects. The only way in which one

object can access the data of another object is by invoking the method of

that other object. This is called sending a message to the object. Internal

parts of the object, the instance variables and method code, are not

visible externally.

We can apply the aforementioned theory representing a bank account by

means of an object. The object contains instance variables number and

balance. The object contains a method pay-interest which adds interest

to the balance. Under most data models, changing the interest rate

entails changing code in application programs.

In the object-oriented model, this only entails a change within the pay-

interest method. On the other hand, for entities in the E-R model, each

object has its own unique identity, independent of the values it contains.

Thus, two objects containing the same values are distinct. Furthermore,

distinction is created and maintained in physical level by assigning

distinct object identifiers.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

17

NAME STREET CITY NUMBER

Bisi Agbowo Ibadan NOU090

Hassan Ahmadu Bello Lagos NOU056

Onome Atama Benin NOU074

Uduak Rowlings Calabar NOU081

Zainab Sule Katsina NOU064

NAME BALANCE

NOU090 3000

NOU056 10000

NOU074 14000

NOU081 20000

NOU064 18000

SELF-ASSESSMENT EXERCISE

Describe the concept of mapping cardinalities with respect to entity-

relationship diagram.

3.2 Record-based Logical Models

Record-based logical models are models which describe data at the

conceptual and view levels. Unlike object-oriented models, they are

used to specify overall logical structure of the database, and provide a

higher-level description of the implementation.

They are called record-based logical models because the database is

structured in fixed-format records of several types. Each record type

defines a fixed number of fields, or attributes. Each field is usually of a

fixed length (this simplifies the implementation). Record-based models

do not include a mechanism for direct representation of code in the

database. Separate languages associated with the model are used to

express database queries and updates.

The three most widely accepted models are the relational, network, and

hierarchical. We will now briefly consider these models in the units

that follow.

3.2.1 The Relational Model

In the relational model, data and relationships are represented by a

collection of tables. Each table has a number of columns with unique

names, e.g. customer, account. Figure 1.3 shows a sample relational

database.

Fig. 1.3: A Sample Relational Database

CIT427 DATABASE SYSTEMS AND MANAGEMENT

18

3.2.2 The Network Model

In the network model, data are represented by collections of records.

Relationships among data are represented by links. A network model is

typically arranged as an arbitrary graph. Figure 1.4 shows a sample

network database

Fig. 1.4: A Sample Network Database

3.2.3 The Hierarchical Model

The hierarchical model is similar to the network model. However, in this

model organisation of the records is as a collection of trees, rather than

arbitrary graphs.

The relational model does not use pointers or links, but relates records

by the values they contain. This allows a formal mathematical

foundation to be defined. Figure 1.5 below shows a sample hierarchical

database.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

19

Fig. 1.5: A Sample Hierarchical Database

3.3 Physical Data Models

Physical data models are used to describe data at the lowest level. There

are very few physical data models, e.g. Unifying model, Frame memory.

It would suffice to mention these two since these models are outside the

scope of our studies.

4.0 CONCLUSION

From our studies in this unit, it is vital to remember that Object-based

logical models describe data at the conceptual and view levels. Two

common types of object-based logical models are Entity-relationship

models and Object-oriented models. It is equally worth noting that each

data model plays a specific role following a specific line of action.

5.0 SUMMARY

In this unit, we introduced the concept of data models, identified the

common categories of data models. We equally described the notion of

entity-relationship models, stating the essential elements of an entity-

relationship diagram. Furthermore, we described the concept of mapping

cardinalities with respect to entity-relationship diagram. We hope you

found the unit enlightening. To assess your comprehension, attempt the

questions below.

6.0 TUTOR-MARKED ASSIGNMENT

1. Describe object-based logical models.

2. List the common types of object-based logical models.

3. Explain the concept of entity-relationship models.

4. State the essential elements of an entity-relationship diagram.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

20

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D).Database System Concepts(6
th

 ed.). McGraw-Hill.

Beaulieu, A. & Mary, E. T .(Eds.). Learning SQL (2
nd

 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems. (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S. et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

21

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

22

UNIT 3 INSTANCES AND SCHEMES

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Concepts of Instances and Schemes

3.1.1 Link between Instances and Schemes

3.1.2 Analogy with Programming Languages

3.1.3 Categories of Schemes

3.2 Data Independence

3.2.1 Classes of Data Independence

3.3 Data Definition Language (DDL)

3.4 Data Manipulation Language (DML)

3.4.1 Data Manipulation

3.4.2 Data Manipulation Language (DML)

3.4.3 Types of Data Manipulation Language

3.5 Database Administrator

3.5.1 Duties of a Database Administrator

3.6 Database Users

3.6.1 Application Programmers

3.6.2 Sophisticated Users

3.6.3 Specialised Users

3.6.4 Naïve Users

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

The initial task we have in this unit is to describe the notion of instances

and schemes, in this way you will gain a broader understanding of the

mode of change of data over time. In sum, you would be introduced to

data manipulation and other associated terms.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 describe Instances and Schemes

 determine the link between instances and schemes

 identify the classical categories of schemes

 specify the duties of a Database Administrator

 list the common Database Users.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

23

3.0 MAIN CONTENT

3.1 Concepts of Instances and Schemes

The information in a database at a particular point in time is called an

instance of the database. While the overall design of the database is

called the database scheme.

3.1.1 Link between Instances and Schemes

In order to grasp the key aspects of Instances and Schemes we would

identify the link between these two concepts. Instances and Schemes are

two terms closely associated with the mode of change database over

time.

3.1.2 Analogy with Programming Languages

Instances and Schemes correlate with programming languages as

follows:

 Data type definition - scheme

 Value of a variable - instance

3.1.3 Categories of Schemes

There are several classes of schemes, corresponding to the levels of

abstraction:

 Physical scheme

 Conceptual scheme

 Sub scheme (can be many)

Having been introduced to instances and schemes, we would now

consider other concepts associated with instances and schemes.

3.2 Data Independence

Data independence refers to the ability to modify a scheme definition

in one level without affecting a scheme definition in a higher level.

3.2.1 Classes of Data Independence

There are two categories of data independence:

CIT427 DATABASE SYSTEMS AND MANAGEMENT

24

Physical data independence

 The ability to modify the physical scheme without causing

application programs to be rewritten

 Modifications at this level are usually to improve performance

Logical data independence

 The ability to modify the conceptual scheme without causing

application programs to be rewritten

 Usually done when logical structure of database is altered

 Logical data independence is harder to achieve as the application

programs are to a large extent heavily dependent on the logical

structure of the data.

3.3 Data Definition Language (DDL)

The data definition language (DDL) is a language used to specify a

database scheme as a set of definitions expressed in a DDL. DDL

statements are compiled, resulting in a set of tables stored in a special

file called a data dictionary or data directory. This directory contains

metadata (data about data). The storage structure and access methods

used by the database system are specified by a set of definitions in a

special type of DDL called a data storage and definition language.

Basically, DDL statements enable developers hide the implementation

details of the database schemes from the users.

3.4 Data Manipulation Language (DML)

3.4.1 Data Manipulation

Data Manipulation could refer to any of the following:

 retrieval of information from the database

 insertion of new information into the database

 deletion of information in the database

 modification of information in the database

3.4.2 Data Manipulation Language (DML)

A Data Manipulation Language (DML) is a language which enables

users to access and manipulate data. The main goal of the DML is to

provide efficient human interaction with the system.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

25

3.4.3 Types of Data Manipulation Language (DML)

There are two types of DML:

 procedural: the user specifies what data is needed and how to get

it

 nonprocedural: the user only specifies what data is needed

Easier for user

 May not generate code as efficient as that produced by procedural

languages.

 The terms DML and query language are often used

synonymously. This is due to the fact that a query language is a

portion of a DML involving information retrieval only.

SELF-ASSESSMENT EXERCISE

Identify four classical forms of data manipulation.

3.5 Database Administrator

The term Database Administrator simply refers to a person having

central control over data and programs accessing that data.

3.5.1 Duties of the Database Administrator

The duties of the database administrator include:

 Scheme definition: the creation of the original database scheme.

This involves writing a set of definitions in a DDL (data storage

and definition language), compiled by the DDL compiler into a

set of tables stored in the data dictionary.

 Storage structure and access method definition: writing a set

of definitions translated by the data storage and definition

language compiler

 Scheme and physical organisation modification: writing a set

of definitions used by the DDL compiler to generate

modifications to appropriate internal system tables (e.g. data

dictionary). This is done rarely, but sometimes the database

scheme or physical organisation must be modified.

 Granting of authorisation for data access: granting different

types of authorisation for data access to various users

 Integrity constraint specification: generating integrity

constraints. These are consulted by the database manager module

whenever updates occur.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

26

3.6 Database Users

The database users fall into several categories:

3.6.1 Application Programmers

Application programmers are computer professionals interacting with

the system through DML calls embedded in a program written in a host

language (e.g. C, PL/1, Pascal). These programs are called application

programs.

The DML precompiler converts DML calls (prefaced by a special

character like $, #, etc.) to normal procedure calls in a host language.

The host language compiler then generates the object code. Some

special types of programming languages combine Pascal-like control

structures with control structures for the manipulation of a database.

These are sometimes called fourth-generation languages. They often

include features to help generate forms and display data.

3.6.2 Sophisticated Users

Sophisticated users interact with the system without writing programs.

They form requests by writing queries in a database query language.

These are submitted to a query processor that breaks a DML statement

down into instructions for the database manager module.

3.6.3 Specialised Users

Specialised users are sophisticated users writing special database

application programs. These may be CADD systems, knowledge-based

and expert systems, complex data systems (audio/video), etc.

3.6.4 Naive Users

Naive users are unsophisticated users who interact with the system by

using permanent application programs (e.g. automated teller machine).

4.0 CONCLUSION

Instances and Schemes are two terms closely associated with the mode

of change database over time. The information in a database at a

particular point in time is called an instance of the database. While the

overall design of the database is called the database scheme. A database

Administrator is a person having central control over data and programs

and programs accessing that data. The main goal of the DML is to

provide efficient human interaction with the system.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

27

5.0 SUMMARY

In this unit, we considered instances and schemes, stating the classical

categories of schemes. We equally looked at data definition language

and data manipulation language as well as database users and duties of a

database administrator. Hoping that you understood the topics discussed,

you may now attempt the questions below.

6.0 TUTOR-MARKED ASSIGNMENT

1. State the categories of data independence.

2. How would a database administrator define a scheme?

3. Describe a data dictionary.

4. How do sophisticated users interact with database systems?

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D).Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems. (3
rd

 Ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol 13. Issue 6.pp.

377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S.(2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

28

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

29

UNIT 4 OVERALL SYSTEM STRUCTURE

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Partitioning of Databases

3.2 Components of Data Structure

3.3 Data Structures for Physical Implementation

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In the previous unit we discussed instances and schemes, data

manipulation and data definition language. This unit presents the

components of data structure and data structures required for physical

system implementation.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain the basis of partitioning databases

 list and describe the components of a data structure

 state the data structures required for physical system

implementation.

3.0 MAIN CONTENT

3.1 Partitioning of Databases

Database systems are normally partitioned into modules for different

functions. Some functions (e.g. file systems) may be provided by the

operating system.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

30

3.2 Components of Data Structure

The components of a data structure include:

 File manager manages allocation of disk space and data

structures used to represent information on disk.

 Database manager: The interface between low-level data and

application programs and queries.

 Query processor translates statements in a query language into

low-level instructions the database manager understands. (May

also attempt to find an equivalent but more efficient form.)

 DML precompiler converts DML statements embedded in an

application program to normal procedure calls in a host language.

The precompiler interacts with the query processor.

 DDL compiler converts DDL statements to a set of tables

containing metadata stored in a data dictionary.

SELF-ASSESSMENT EXERCISE

What is the basis for partitioning databases?

3.3 Data Structures for Physical Implementation

Several data structures are required for physical system implementation,

these include:

 Data files: store the database itself.

 Data dictionary: stores information about the structure of the

database. It is used heavily. Great emphasis should be placed on

developing a good design and efficient implementation of the

dictionary.

 Indices: provide fast access to data items holding particular

values.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

31

Figure 1.6 below depicts these components:

Fig. 1.6: Database System Structure

4.0 CONCLUSION

Note that, a typical data structure consists of file manager, database

manager, query processor, data manipulation language precompiler and

the data definition language compiler. Database systems are partitioned

into modules for different functions. Data structures required for

physical system implementation include data files, indices and data

dictionary.

5.0 SUMMARY

This unit provided us with databases and data structures. The

components a data structure was equally highlighted. In order to assess

your understanding of this unit, you need to attempt the questions

below.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

32

6.0 TUTOR-MARKED ASSIGNMENT

1. Describe any three components of a data structure.

1. Explain how statements in a query language are translated.
2. State the data structures required for physical system

implementation.

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D). Database System Concepts(6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd

 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004).Database Systems (3
rd

 ed.).Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E.F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E.F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

33

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

34

MODULE 2 THE ENTITY-RELATIONSHIP DATA

MODEL

Unit 1 Entities and Entity Sets

Unit 2 Relationships and Relationship Sets

Unit 3 Structure of Relational Database

Unit 4 The Relational Algebra

UNIT 1 ENTITIES AND ENTITY SETS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 What is an Entity?

3.2 Types of Entities

3.3 Entity Set

3.4 Entity Representation

3.5 Entity and Programming Languages

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

The E-R (entity-relationship) data model views the real world as a set of

basic objects (entities) and relationships among these objects. It is

intended primarily for the database design process by allowing the

specification of an enterprise scheme. This represents the overall

logical structure of the database. In this unit, we will consider entities,

types and representation. A brief analogy would be made with respect to

programming languages.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 describe an entity

 specify the common types of entities

 explain the concept of an entity set

 state the attributes for entity representation

 identify the link between entities and programming languages.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

35

3.0 MAIN CONTENT

3.1 What is an Entity?

An entity simply refers to an object that exists and is distinguishable

from other objects. For instance, John Harris with S.I.N. 890-12-3456 is

an entity, as he can be uniquely identified as one particular person in the

universe.

3.2 Types of Entities

An entity may be concrete (a person or a book, for example) or

abstract (like a holiday or a concept).

3.3 Entity Set

An entity set is a set of entities of the same type (e.g., all persons having

an account in a particular bank).

Entity sets need not be disjoint. For example, the entity set employee

(all employees of a bank) and the entity set customer (all customers of

the bank) may have members in common.

SELF-ASSESSMENT EXERCISE

Specify the two types of entities.

3.4 Entity Representation

An entity is represented by a set of attributes as follows:

 E.g. name, S.I.N., street, city for ―customer‖' entity.

 The domain of the attribute is the set of permitted values (e.g. the

telephone number must be seven positive integers).

 An attribute is in fact a function which maps an entity set into a

domain. Consequently every entity is described by a set of

(attribute, data value) pairs. Normally, there is one pair for each

attribute of the entity set. For example, a particular customer

entity is described by the set {(name, Harris), (S.I.N., 890-123-

456), (street, North), (city, Georgetown)}.

3.5 Entity and Programming Language

An analogy can be made with the programming language notion of type

definition. The concept of an entity set corresponds to the programming

language type definition. A variable of a given type has a particular

CIT427 DATABASE SYSTEMS AND MANAGEMENT

36

value at a point in time. Thus, a programming language variable

corresponds to an entity in the E-R model.

4.0 CONCLUSION

We discovered that the E-R (entity-relationship) data model is intended

primarily for the database design process by allowing the specification

of an enterprise scheme. This represents the overall logical structure of

the database. The concept of an entity set corresponds to the

programming language type definition. A variable of a given type has a

particular value at a point in time. Thus, a programming language

variable corresponds to an entity in the E-R model. An entity is

represented by a set of attributes.

5.0 SUMMARY

In this unit, we learnt about the entity-relationship data model, giving a

concise description of an entity. We equally considered entity types and

representations. A brief analogy was made with respect to programming

languages. Be assured that the facts gathered from this unit will be

valuable for understanding other aspects of database systems. Now,

attempt the questions below.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain the concept of an entity set.

2. State the link between entities and programming languages.

3. Within the context of entity representation, what is an attribute?

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D).Database System Concepts (6
th

 ed.). McGraw-Hill.

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems. (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E.F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

37

Codd, E.F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol 13. Issue 6.pp.

377-387

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching ISSN 0731-

9258 0731-9258 Volume 23, Issue 2, 2004 AACE

Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

38

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7),pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design.

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

39

UNIT 2 RELATIONSHIPS AND RELATIONSHIP SETS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Relationships

3.2 Relationship Sets

3.3 The Role of an Entity

3.4 Mapping Constraints

3.5 Primary Key for Relationship Sets

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In database systems, relationships and entities are very important. The

notion of mapping cardinalities equally plays a significant role. This unit

sheds more light on the aforementioned topics.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 define a relationship

 describe the notion of relationship sets

 explain the role of an entity

 state the Entity-Relationship scheme for defining constraints

 identify primary keys for relationship sets.

3.0 MAIN CONTENT

3.1 Relationships

A relationship is a term which simply describes an association between

several entities.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

40

3.2 Relationship Set

A relationship set is a set of relationships of the same type.

In formal terms, it is a mathematical relation on (possibly non-

distinct) sets.

If are entity sets, then a relationship set R is a subset of

Where is a relationship.

To illustrate this further, consider two entity sets customer and account.

We define the relationship CustAcct to denote the association between

customers and their accounts. This is a binary relationship set.

Now, going back to our formal definition, the relationship set CustAcct

is a subset of all the possible customer and account pairings. This is a

binary relationship. Occasionally there are relationships involving more

than two entity sets.

SELF-ASSESSMENT EXERCISE

How would you specify a relationship set in formal terms?

3.3 The Role of an Entity

The role of an entity is the function it plays in a relationship. For

example, the relationship works-for could be ordered pairs of employee

entities. The first employee takes the role of manager, and the second

one will take the role of worker.

A relationship may also have descriptive attributes. For example, date

(last date of account access) could be an attribute of the CustAcct

relationship set.

3.4 Mapping Constraints

An Entity-Relationship (E-R) scheme may define certain constraints to

which the contents of a database must conform.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

41

Mapping Cardinalities: express the number of entities to which

another entity can be associated via a relationship. For binary

relationship sets between entity sets A and B, the mapping cardinality

must be one of:

 One-to-one: An entity in A is associated with at most one entity

in B, and an entity in B is associated with at most one entity in A.

(Figure 2.3)

 One-to-many: An entity in A is associated with any number in

B. An entity in B is associated with at most one entity in A.

(Figure 2.4)

 Many-to-one: An entity in A is associated with at most one

entity in B. An entity in B is associated with any number in A.

(Figure 2.5)

 Many-to-many: Entities in A and B are associated with any

number from each other. (Figure 2.6)

The appropriate mapping cardinality for a particular relationship set

depends on the real world being modeled. (Think about the CustAcct

relationship...)

 Existence Dependencies: if the existence of entity X depends on

the existence of entity Y, then X is said to be existence

dependent on Y. (Or we say that Y is the dominant entity and X

is the subordinate entity.)

For example:

 Consider account and transaction entity sets, and a relationship

log between them.

 This is one-to-many from account to transaction.

 If an account entity is deleted, its associated transaction entities

must also be deleted.

 Thus account is dominant and transaction is subordinate.

3.5 Primary Keys for Relationship Sets

The attributes of a relationship set are the attributes that comprise the

primary keys of the entity sets involved in the relationship set.

For example:

 S.I.N. is the primary key of customer, and

 Account-number is the primary key of account.

 The attributes of the relationship set custacct are then (account-

number, S.I.N.).

CIT427 DATABASE SYSTEMS AND MANAGEMENT

42

This is enough information to enable us to relate an account to a person.

If the relationship has descriptive attributes, those are also included in its

attribute set. For example, we might add the attribute date to the above

relationship set, signifying the date of last access to an account by a

particular customer. Note that this attribute cannot instead be placed in

either entity set as it relates to both a customer and an account, and the

relationship is many-to-many.

The primary key of a relationship set depends on the mapping

cardinality and the presence of descriptive attributes.

With no descriptive attributes:

 Many-to-many: all attributes in .

 One-to-many: primary key for the ―many‖ entity.

Descriptive attributes may be added, depending on the mapping

cardinality and the semantics involved.

4.0 CONCLUSION

Relationships describe association between several entities. A

relationship set is a set of relationships of the same type. In formal

terms, it is a mathematical relation on (possibly non-distinct) sets.

The role of an entity is the function it plays in a relationship. Mapping

Cardinalities express the number of entities to which another entity can

be associated via a relationship.

5.0 SUMMARY

In summary, this unit looked at relationships and relationship sets,

identifying the role of an entity and the primary keys for relationship

sets. We can now attempt the questions below.

6.0 TUTOR-MARKED ASSIGNMENT

1. Give a brief description of relationship sets.

2. Explain the role of an entity.

3. State the Entity-Relationship scheme for defining constraints.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

43

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D).Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd

 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. (1
st
 Ed.). Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

44

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009). Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

45

UNIT 3 STRUCTURE OF RELATIONAL DATABASE

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 The Entity Relationship Diagram

3.2 Components of an Entity Relationship Diagram

3.3 Design of an E-R Database Scheme

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

The previous unit introduced relationships and relationship sets and

entities. We will consider specific entity-relationships in this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 define a logical structure of a relational database by means of an

E-R diagram

 list the components of an E-R diagram

 explain the roles of each component of an E-R diagram.

3.0 MAIN CONTENT

3.1 The Entity Relationship Diagram

We can express the overall logical structure of a relational database

graphically by means of an Entity-Relationship (E-R) diagram.

3.2 Components of an Entity Relationship Diagram

The components of an entity-relationship diagram and their

corresponding roles are as follows:

 rectangles representing entity sets

 ellipses representing attributes

 diamonds representing relationship sets

 lines linking attributes to entity sets and entity sets to relationship

sets.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

46

In the course of our studies, lines would be directed (either with an

arrow at the end) to signify mapping cardinalities for relationship sets.

The Figures below illustrate this:

Fig. 2.1: An E-R Diagram

Fig. 2.2: One-To-Many from Customer to Account

Fig. 2.3: Many-To-One from Customer to Account

Fig. 2.4: One-To-One From Customer to Account

In order to grasp the aspect of relationship better, it is recommended that

you review mapping cardinalities treated in the previous unit. They

CIT427 DATABASE SYSTEMS AND MANAGEMENT

47

express the number of entities to which an entity can be associated via a

relationship.

The arrow positioning is simple. Simply think of the arrow head as

pointing to the entity that ―one‖ refers to.

SELF-ASSESSMENT EXERCISE

State any four components of an entity-relationship model and their

corresponding key roles.

3.3 Design of an E-R Database Scheme

The E-R data model provides a wide range of choice in designing a

database scheme to accurately model some real-world situation.

Some of the decisions to be made are:

 Using a ternary relationship versus two binary relationships.

 Whether an entity set or a relationship set best fit a real-world

concept.

 Whether to use an attribute or an entity set.

 Use of a strong or weak entity set.

 Appropriateness of generalisation.

 Appropriateness of aggregation.

4.0 CONCLUSION

In conclusion, the entire logical structure of a relational database can be

represented graphically by means of an Entity-Relationship (E-R)

diagram. Components of an entity-relationship diagram and their

corresponding roles are as follows:

 rectangles representing entity sets

 ellipses representing attributes

 diamonds representing relationship sets

 lines linking attributes to entity sets and entity sets to relationship

sets.

5.0 SUMMARY

In this unit, we considered specific entity-relationship diagrams and

their components. We equally looked at models for designing E-R

database schemes. Now, please attempt the questions below.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

48

6.0 TUTOR-MARKED ASSIGNMENT

1. Outline the logical structure of a relational database by means of

an E-R diagram.

2. List the components of an E-R diagram.

3. State the specific roles of each component of an E-R diagram.

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D).Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T.(Eds.). Learning SQL (2
nd

 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems. (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

49

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design.

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

50

UNIT 4 THE RELATIONAL ALGEBRA

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Formal Definition of a Relational Algebra

3.2 Fundamental Operations

3.2.1 The Select Operation

3.2.2 The Project Operation

3.2.3 The Cartesian Product Operation

3.2.4 The Rename Operation

3.2.5 The Union Operation

3.2.6 The Set Difference Operation

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit presents the relational algebra. The fundamental operations are

highlighted and the outcome that corresponds to each operation is

specified. As you study this unit, you need to take note of these key

points.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 define relational algebra

 mention six basic operations

 state the specific role of each operation

 identify the operators that correspond to each operation.

3.0 MAIN CONTENT

3.1 Formal Definition of a Relational Algebra

Basically, the relational algebra is a procedural query language. It can

be defined formally by means of a basic expression consisting of either:

 a relation in the database

 a constant relation

CIT427 DATABASE SYSTEMS AND MANAGEMENT

51

General expressions of a relational algebra are formed out of smaller

sub-expressions using

 select (p a predicate)

 project (s a list of attributes)

 rename (x a relation name)

 union

 set difference

 cartesian product

SELF-ASSESSMENT EXERCISE

How are relational algebras defined?

3.2 Fundamental Operations

Relational algebra necessarily undertakes operations. These operations

in turn produce a new relation as a result. There are basically six

operations a relational algebra can undergo, these include:

 select (unary)

 project (unary)

 cartesian product (binary)

 rename (unary)

 union (binary)

 set-difference (binary)

Now, we shall consider these operations in-depth in the units that ensue.

3.2.1 The Select Operation

The Select operation is responsible for selecting tuples that satisfy a

given predicate. This operation is denoted by a lowercase Greek sigma

(), with the predicate appearing as a subscript. The argument relation

is given in parentheses following the .

For example, to select tuples (rows) of the borrow relation where the

branch is ―SFU‖, we would write:

CIT427 DATABASE SYSTEMS AND MANAGEMENT

52

Figure 2.5.represent the borrow and branch relations in the banking

example:

Fig. 2.5: The Borrow and Branch Relations

The new relation created as the result of this operation consists of one

tuple: .

We allow comparisons using =, , <, , > and in the selection

predicate.

We also allow the logical connectives (or) and (and). For example:

Fig. 2.6: The Client Relation

Suppose there is one more relation, client, shown in Figure 2.6 with the

scheme.

we might write

to find clients who have the same name as their banker.

3.2.2 The Project Operation

Project copies its argument relation for the specified attributes only.

Since a relation is a set, duplicate rows are eliminated.

Projection is denoted by the Greek capital letter pi (). The attributes to

be copied appear as subscripts.

For example, to obtain a relation showing customers and branches, but

ignoring amount and loan#, we write

CIT427 DATABASE SYSTEMS AND MANAGEMENT

53

We can perform these operations on the relations resulting from other

operations. To get the names of customers having the same name as

their bankers,

Think of select as taking rows of a relation, and project as taking

columns of a relation.

3.2.3 The Cartesian Product Operation

The cartesian product of two relations is denoted by a cross (), written

The result of is a new relation with a tuple for each possible

pairing of tuples from and .

In order to avoid ambiguity, the attribute names have been attached to

the name of the relation from which they came. If no ambiguity will

result, we drop the relation name.

The result is a very large relation. If has tuples,

and has tuples, then will have tuples.

The resulting scheme is the concatenation of the schemes of and ,

with relation names added as mentioned.

To find the clients of banker Johnson and the city in which they live, we

need information in both client and customer relations. We can get this

by writing

However, the customer.cname column contains customers of bankers

other than Johnson. (Why?)

We want rows where client.cname = customer.cname. So we can write

to get just these tuples.

Finally, to get just the customer's name and city, we need a projection:

CIT427 DATABASE SYSTEMS AND MANAGEMENT

54

3.2.4 The Rename Operation

The rename operation solves naming problems which occur when

performing the Cartesian product of a relation with itself.

Suppose we want to find the names of all the customers who live on the

same street and in the same city as Smith. We can get the street and city

of Smith by writing

To find other customers with the same information, we need to reference

the customer relation again:

Where is a selection predicate requiring street and city values to be

equal.

3.2.5 The Union Operation

The union operation is denoted as in set theory. It returns the union

(set union) of two compatible relations.

For a union operation to be legal, we require that:

 and must have the same number of attributes.

 The domains of the corresponding attributes must be the same.

 To find all customers of the SFU branch, we must find everyone

who has a loan or an account or both at the branch. We need both

borrow and deposit relations for this:

As in all set operations, duplicates are eliminated, giving the relation of

Figure 3.5(a).

Fig. 3.5: The Union and Set-Difference Operations

CIT427 DATABASE SYSTEMS AND MANAGEMENT

55

3.2.6 The Set Difference Operation

Set difference is denoted by the minus sign (). It finds tuples that are in

one relation, but not in another.

Thus results in a relation containing tuples that are in but not

in .

To find customers of the SFU branch who have an account there but no

loan, we write

The result is shown in Figure 3.5(b).

We can do more with this operation. Suppose we want to find the largest

account balance in the bank.

The following strategy should be adopted:

 Find a relation containing the balances not the largest.

 Compute the set difference of and the deposit relation.

 To find , we write

This resulting relation contains all balances except the largest one. (See

Figure 3.6(a)).

Now we can finish our query by taking the set difference:

Figure 2.7 (b) shows the result.

Fig. 2.7: Find the Largest Account Balance in the Bank

CIT427 DATABASE SYSTEMS AND MANAGEMENT

56

4.0 CONCLUSION

To wrap up, recall that the state of an object is the property which

describes its individual data or unique configuration. A class-scoped

variable is defined by making a declaration within the class' code block

but outside of any methods or properties. Properties of instantiated

objects are accessed using the object name followed by the member

access operator (.) and the property name.

5.0 SUMMARY

This unit provided an overview of relational algebras, stating the roles of

the basic operations and the operator that corresponds to each operation.

In order to assess your level of assimilation, you need to answer the

questions below.

6.0 TUTOR-MARKED ASSIGNMENT

1. Give a formal definition of a relational algebra.

3. List at least four basic operations.

4. State the specific role of the project operation.

5. Identify the operator that correspond to the union operation.

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D). Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems. (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6. pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

http://office.microsoft.com/en-us/access/HA012242471033.aspx

CIT427 DATABASE SYSTEMS AND MANAGEMENT

57

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 Ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

58

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

59

MODULE 3 SQL AND INTEGRITY CONSTRAINTS

Unit 1 Structured Query Language (SQL) Fundamentals

Unit 2 SQL Expressions

Unit 3 Database Modification

Unit 4 Integrity Constraints

UNIT 1 STRUCTURED QUERY LANGUAGE (SQL)

FUNDAMENTALS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Structured Query Language (SQL)

3.2 Structural Components of SQL

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit delves into an important aspect of a database management

system- the Structured Query language (SQL). We will briefly consider

the structural components of the Structured Query language.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 identify the structural components of SQL

 state the specific roles of a data definition language

 describe the concept of an interactive data manipulation

language.

3.0 MAIN CONTENT

3.1 Structured Query Language (SQL)

For some time now, the Structured Query Language (SQL) has been in

use and has gradually evolved to become the standard relational

database language.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

60

3.2 Structural Components of SQL

A typical SQL consists of several parts which include:

Data definition language (DDL) - provides commands to

 Define relation schemes.

 Delete relations.

 Create indices.

 Modify schemes.

 Interactive data manipulation language (DML) - a query

language based on both relational algebra and tuple relational

calculus, plus commands to insert, delete and modify tuples.

 Embedded data manipulation language - for use within

programming languages like C, PL/1, Cobol, Pascal, etc.

 View Definition - commands for defining views

 Authorisation – this specifies the access rights to relations and

views.

 Integrity - a limited form of integrity checking.

 Transaction control - specifying beginning and end of

transactions.

SELF-ASSESSMENT EXERCISE

Describe the concept of an interactive data manipulation language.

4.0 CONCLUSION

Winding up, we can go over the main points of this unit. The Structured

Query Language (SQL) is regarded as the standard relational database

language. A typical SQL consists of several parts which include: Data

definition language (DDL), Interactive data manipulation language

(DML), Embedded data manipulation language, View Definition,

Authorisation, Integrity and Transaction control. The Data definition

language (DDL) - provides commands to: Define relation schemes,

Delete relations, Create indices and Modify schemes. The Interactive

data manipulation language (DML) - a query language based on both

relational algebra and tuple relational calculus, plus commands to insert,

delete and modify tuples.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

61

5.0 SUMMARY

This unit provided an overview of Structured Query Language (SQL),

specifying the structural components of SQL. We hope you have found

this unit interesting.

6.0 TUTOR-MARKED ASSIGNMENT

1. List at least four structural components of SQL.

2. State the specific roles of a data definition language.
3. Describe the concept of an interactive data manipulation

language.

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D). Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T.(Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

62

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). Database Management Systems

(2
nd

 Ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009). Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

63

UNIT 2 SQL Expressions

CONTENTS

1.0 Introduction

2.0 Objectives

7.0 Main Content

3.1 Components of an SQL Expression

3.2 The ‗SELECT‘ Clause

3.3 The ‗Where‘ Clause

3.4 The ‗From‘ Clause

4. 0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In the previous unit, we established the structural components of a

Structured Query Language (SQL). However, in this unit we will take a

closer look at the components of a classical SQL expression.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 state the components of an SQL expression

 explain the key role of each component of an SQL expression

 indicate specific examples of each of the clauses.

3.0 MAIN CONTENT

3.1 Components of an SQL Expression

An SQL expression consists of select, from and where clauses.

Ordinarily, a query has the form

select

from

where P

CIT427 DATABASE SYSTEMS AND MANAGEMENT

64

where each represents an attribute, each a relation, and P is a

predicate.

This is equivalent to the relational algebra expression

If the where clause is omitted, the predicate P is true. The list of

attributes can equally be replaced with a * to select all. SQL forms the

Cartesian product of the relations named, performs a selection using the

predicate, then projects the result onto the attributes named. The result

of an SQL query is a relation. SQL may internally convert into more

efficient expressions.

3.2 The “SELECT” Clause

The select clause lists attributes to be copied. It corresponds to relational

algebra project.

An example of the select clause is as follows: Find the names of all

branches in the account relation.

select bname

from account

distinct vs. all: elimination or not elimination of duplicates.

Find the names of all branches in the account relation.

select distinct bname

from account

By default, duplicates are not removed. We can state it explicitly using

all.

select all bname

from account

When the asterisk is placed after the select clause, i.e. select * this

denotes select all the attributes. Arithmetic operations can also be used

in the selection list.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

65

SELF-ASSESSMENT EXERCISE

State a typical expression using the „select‟ clause

3.3 The „Where‟ Clause

The ‗where‘ clause corresponds to the selection predicate in a relational

algebra. The predicates can be more complicated, and can involve the

following:

 Logical connectives and, or and not.

 Arithmetic expressions on constant or tuple values.

 The between operator for ranges of values.

 This theory can be applied in the following example: Find

account number of accounts with balances between $90,000 and

$100,000.

select account#

from account

where balance between 90000 and 100000

3.4 The „From‟ Clause

This is the clause that corresponds to Cartesian product, which lists

relations to be used. The ‗from‟ class by itself defines a Cartesian

product of the relations in the clause.

SQL does not have a natural join equivalent. However, natural join can

be expressed in terms of a Cartesian product, selection, and projection.

For the relational algebra expression

We can represent this by means of an SQL statement as follows:

select distinct cname, borrower.loan#

from borrower, loan

where borrower.loan# = loan.loan#

CIT427 DATABASE SYSTEMS AND MANAGEMENT

66

4.0 CONCLUSION

In conclusion, SQL expression consists of Select, From and Where

clauses. The select clause lists attributes to be copied. The „where‟

clause corresponds to the selection predicate in a relational algebra.

While the ‗From‘ clause corresponds to the Cartesian product, which

lists relations to be used.

5.0 SUMMARY

In this unit, we treated the components of an SQL expression. We

equally specified the syntax for the ‗Select‘, ‗Where‘ and ‗From‘

Clause. We hope that you found this unit enlightening.

6.0 TUTOR-MARKED ASSIGNMENT

1. In the SQL context, how are natural joins expressed?

2. State the function of the following operators: OR, BETWEEN,

AND

3. How are duplicates handled in a ‗SELECT‘ clause?

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D). Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

http://office.microsoft.com/en-us/access/HA012242471033.aspx

CIT427 DATABASE SYSTEMS AND MANAGEMENT

67

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. (1
st
 Ed.). Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 Ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

68

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

69

UNIT 3 DATABASE MODIFICATION

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Modes of Database Modification

3.1.1 Deletion

3.1.2 Insertion

3.1.3 Updates

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Up until now, we had looked at the aspect of extracting information

from the database. In this unit we shall consider the common modes of

database modification.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 identify the common forms of database modification

 state the difference between tuples and relations

 give the general syntax for the ‗Deleting, Inserting and Updating‘

databases.

3.0 MAIN CONTENT

3.1 Modes of Database Modification

An interesting feature of databases is the transformative capacity. We

will consider the common forms of a database modification in the

ensuing units.

3.1.1 Deletion

Deletion is expressed in much the same way as a query. Instead of

displaying, the selected tuples are removed from the database. We can

only delete whole tuples.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

70

The syntax for deletion in SQL is given as:

delete from r

where P

Tuples in r for which P is true are deleted. In the event that the ‗where‘

clause is omitted, all tuples are deleted.

Furthermore, the request delete from loan deletes all tuples from the

relation loan. Other examples are as follows:

1. Delete all of Smith‘s account records.

2. delete from depositor

3. where cname=”Smith”

4. Delete all loans with loan numbers between 1300 and 1500.

5. delete from loan

6. where loan# between 1300 and 1500

7. Delete all accounts at branches located in Surrey.

8. delete from account

9. where bname in

10. (select bname

11. from branch

12. where bcity=”Surrey”)

Tuples can only be deleted from one relation at a time, but we may

reference any number of relations in a select-from-where clause

embedded in the where clause of a delete.

However, if the delete request contains an embedded select that

references the relation from which tuples are to be deleted, ambiguities

may result.

For example, to delete the records of all accounts with balances below

the average, we might write

delete from account

where balance <

(select avg(balance) from account)

In this case, when we delete tuples from account, the average balance

changes!

CIT427 DATABASE SYSTEMS AND MANAGEMENT

71

SELF-ASSESSMENT EXERCISE

Identify the main difference between Tuples and Relations.

3.1.2 Insertion

To insert data into a relation, we either specify a tuple, or write a query

whose result is the set of tuples to be inserted. Attribute values for

inserted tuples must be members of the attribute's domain.

Some examples:

1. To insert a tuple for Smith who has $1200 in account A-9372 at

the SFU branch.

2. insert into account

3. values (“SFU”, ―A-9372‖, 1200)
4. To provide each loan that the customer has in the SFU branch

with a $200 savings account.

5. insert into account

6. select bname, loan#, 200

7. from loan

8. where bname=”SFU”

Here, we use a select to specify a set of tuples.

It is important that we evaluate the select statement fully before carrying

out any insertion. If some insertions were carried out even as the select

statement was being evaluated, the insertion might insert an infinite

number of tuples. Evaluating the select statement completely before

performing insertions avoids such problems.

insert into account

select *

from account

It is possible for inserted tuples to be given values on only some

attributes of the schema. The remaining attributes are assigned a null

value denoted by null.

The insertion of null values can be prohibited by using the SQL DDL.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

72

3.1.3 Updates

The ‗Update‘ statement allows us to change some values in a tuple

without necessarily changing all. The example below demonstrates this

as follows:

1. To increase all account balances by 5 percent.

2. update account

3. set balance=balance * 1.05

This statement is applied to every tuple in account.

To make two different rates of interest payment, depending on balance

amount:

1. update account

2. set balance=balance * 1.06

3. where balance > 10,000

4. update account

5. set balance=balance * 1.05

6. where balance 10,000

4.0 CONCLUSION

To wrap up, tuples can only be deleted from one relation at a time. Data

is inserted into a relation by either specifying a tuple, or writing a query

whose result is the set of tuples to be inserted. Selective alteration of

tuples is made possible by means of ‗Update‘ statements.

5.0 SUMMARY

We considered the common forms of database modification, specifying

the general syntax of some common database statement. To test your

knowledge, attempt the exercise below.

6.0 TUTOR-MARKED ASSIGNMENT

1. In the context of database modification, state the main difference

between Tuples and Relations

2. State the general syntax for deleting databases

CIT427 DATABASE SYSTEMS AND MANAGEMENT

73

7.0 REFERENCES/FURTHER READING

Avi, S; et al. (N.D).Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd

 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL (1
st
 Ed.). Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching ISSN 0731-

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

74

9258 0731-9258 Volume 23, Issue 2, 2004 AACE

Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009). Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

75

UNIT 4 INTEGRITY CONSTRAINTS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Domain Constraints

3.1.1 Domain/Key Normal Form (DKNF)

3.1.2 Domain Constraints and Integrity Constraints

3.1.3 Domain Constraint Guidelines

3.2 The ‗Check‘ Clause

3.3 Referential Integrity

3.3.1 Referential Integrity in the E-R Model

3.3.2 Referential Integrity in SQL

3.4 Foreign Keys

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In this unit we will learn about the concept of Integrity constraints. We

would also be taught two core aspects of referential integrity: referential

integrity in the E-R Model and referential integrity in SQL. Hope you

would be able to grasp the main ideas.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 define domain constraints

 show the link between main Constraints and Integrity Constraints

 distinguish between referential integrity in the E-R Model and

referential integrity in SQL.

3.0 MAIN CONTENT

3.1 Domain Constraints

A domain constraint specifies the permissible values for a given

attribute, while a key constraint specifies the attributes that uniquely

identify a row in a given table.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

76

3.1.1 Domain/Key Normal Form (DKNF)

Domain/key normal form (DKNF) is a normal form used in database

normalisation which requires that the database contains no constraints

other than domain constraints and key constraints.

It is required in databases to prevent the occurrence of general

constraints in the database that are not clear domain or key constraints.

3.1.2 Domain Constraints and Integrity Constraints

A domain of possible values should be associated with every attribute.

These domain constraints are the most basic form of integrity

constraints. They are easy to test for when data is entered.

3.1.3 Domain Constraint Guidelines

There are a number of guidelines to adopt in implementing domain

constraints. The key points are itemised below as follows:

 Attributes may have the same domain, e.g. cname and employee-

name.

 It is not as clear whether bname and cname domains ought to be

distinct.

 At the implementation level, they are both character strings

 At the conceptual level, we do not expect customers to have the

same names as branches, in general

 Strong typing of domains enables one to test for values inserted,

and whether queries make sense. Newer systems, particularly

object-oriented database systems, offer a rich set of domain types

that can be extended easily

3.2 The Check Clause

The check clause in SQL-92 permits domains to be restricted in

powerful ways that most programming language type systems do not

permit.

Furthermore, the check clause enables schema designer specify a

predicate that must be satisfied by any value assigned to a variable

whose type is the domain.

Examples: create domain hourly-wage numeric (5,2)

constraint wage-value-test check(value >= 4.00)

CIT427 DATABASE SYSTEMS AND MANAGEMENT

77

Note that ―constraint wage-value-test‖ is optional (to give a name to the

test to signal which constraint is violated).

create domain account-number char(10)

constraint account-number-null-test

check(value not null)

create domain account-type char(10)

constraint account-type-test

check(value in (―Checking'‖, ―Saving‖))

3.3 Referential Integrity

Often we wish to ensure that a value appearing in a relation for a given

set of attributes also appears for another set of attributes in another

relation.

This is called referential integrity.

3.3.1 Referential Integrity in the E-R Model

These constraints arise frequently. Every relation arising from a

relationship set has referential integrity constraints.

Fig. 3.1: An n-ary Relationship Set

CIT427 DATABASE SYSTEMS AND MANAGEMENT

78

Fig. 3.1 Shows an n-ary relationship set R relating

entity sets .

Let denote the primary key of .

The attributes of the relation scheme for relationship

set R include .

Each in the scheme for R is a foreign key that leads to a referential

integrity constraint.

Relation schemes for weak entity sets must include the primary key of

the strong entity set on which they are existence dependent. This is a

foreign key, which leads to another referential integrity constraint.

3.3.2 Referential Integrity in SQL

An addition to the original standard allows specification of primary and

candidate keys and foreign keys as part of the create table command:

 primary key clause includes a list of attributes forming the

primary key.

 unique key clause includes a list of attributes forming a candidate

key.

 foreign key clause includes a list of attributes forming the foreign

key,

 and the name of the relation referenced by the foreign key.

The example below illustrates a summary of the features mentioned so

far:

create table customer

(cname char(20) not null,

street char(30),

city char(30),

primary key (cname))

CIT427 DATABASE SYSTEMS AND MANAGEMENT

79

create table branch

(bname char(15) not null,

bcity char(30),

assets integer,

primary key (bname)

check (assets >= 0))

create table account

(account# char(10) not null,

(bname char(15),

balance integer,

primary key (account#)

foreign key (bname) references branch,

check (balance >= 0))

create table depositor

(cname char(20) not null,

account# char(10) not null,

primary key (cname, account#)

foreign key (cname) references customer,

foreign key (account#) references account)

SELF-ASSESSMENT EXERCISE

What are the components of a unique key?

CIT427 DATABASE SYSTEMS AND MANAGEMENT

80

3.4 Foreign Keys

Fundamentally, in the database context, a foreign key simply refers to

the short form for declaring a single column. For example: bname

char(15) references branch

Normally, when a referential integrity constraint is violated, the action is

rejected.

However, a foreign key clause in SQL-92 can specify steps to be taken

to change the tuples in the referenced relation to restore the constraint.

For example:

create table account

...

foreign key (bname) references branch

on delete cascade

on insert cascade,

...

If a delete of a tuple in branch results in the preceding referential

integrity constraints being violated, the delete is not rejected, but the

delete ―cascade‖ to the account relation, deleting the tuple that refers to

the branch that was deleted.

Update will be cascaded to the new value of the branch!

SQL-92 also allows the foreign key clause to specify actions other than

cascade, such as setting the referencing field to null, or to a default

value, if the constraint is violated.

If there is a chain of foreign key dependencies across multiple relations,

a deletion or update at one end of the chain can propagate across the

entire chain.

If a cascading update or delete causes a constraint violation that cannot

be handled by a further cascading operation, the system aborts the

transaction and all the changes caused by the transaction and its

cascading actions are undone.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

81

Given and complexity and arbitrary nature of the way constraints in

SQL behave with null values, it is the best to ensure that all columns of

unique and foreign key specifications are declared to be non-null.

4.0 CONCLUSION

In this unit, we discovered that permissible values for a given attribute

are specified by the domain constraint, while a key constraint specifies

the attributes that uniquely identify a row in a given table. We also

considered the fact that the Domain/Key Normal form is required in

databases, to prevent the occurrence of general constraints in the

database that are not clear domain or key constraints. The ‗check‘ clause

enables schema designer specify a predicate that must be satisfied by

any value assigned to a variable whose type is the domain. The fact that

strong typing of domains enables one test for values to be inserted was

highlighted. In the database context, a foreign key simply refers to the

short form for declaring a single column.

5.0 SUMMARY

This unit introduced the concept of domain constraints and integrity

constraints. The ‗Check‘ clause and Referential integrity were equally

highlighted. We hope you enjoyed this unit.

6.0 TUTOR-MARKED ASSIGNMENT

1. What is the key role of the domain constraint?
2. State the significance of the domain/key normal form with

respect to databases?

3. Mention the main purpose of the schema designer.

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D). Database System Concepts (6
th

 ed.). McGraw-Hill.

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

82

Codd, E.F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E.F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

83

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

84

MODULE 4 COMPUTER DATA STORAGE AND FILE

STRUCTURE

Unit 1 Computer Data Storage and Levels

Unit 2 Features of Storage Technologies

Unit 3 Common Storage Technologies

Unit 4 File Organisation

UNIT 1 COMPUTER DATA STORAGE AND LEVELS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Computer Data Storage

3.2 Levels of Storage

3.2.1 Primary Storage

3.2.2 Secondary Storage

3.2.3 Types of Secondary Storage

3.2.4 Tertiary Storage

3.2.5 Off-line Storage

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In the previous modules, we considered domain constraints, integrity

constraints and referential integrity with respect to Structured Query

Language (SQL). This unit presents the concept of computer data

storage, the different levels of storage and corresponding forms of

storage.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 describe computer data storage

 classify the levels of storage

 itemise the fundamental components of a basic computer

 differentiate between the auxiliary and main memory

 state the implication of the volatility of the primary storage being

volatile.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

85

3.0 MAIN CONTENT

3.1 Computer Data Storage

Computer data storage, often called storage or memory, refers to

computer components and recording media that retain digital data used

for computing for some interval of time. Computer data storage provides

one of the core functions of the modern computer, that of information

retention. It is one of the fundamental components of all modern

computers, and coupled with a central processing unit (CPU, a

processor), implements the basic computer model.

3.2 Levels of Storage

There are different forms of storage, divided according to their distance

from the central processing unit. The fundamental components of a

general-purpose computer are arithmetic and logic unit, control

circuitry, storage space, and input/output devices.

Fig. 4.1: Levels of Storage

CIT427 DATABASE SYSTEMS AND MANAGEMENT

86

3.2.1 Primary Storage

Primary storage (or main memory or internal memory), commonly

referred to as memory, is the only memory directly accessible to the

CPU. The CPU continuously reads instructions stored there and

executes them as required. Any data actively operated on is also stored

there in uniform manner.

Historically, early computers used rotating magnetic drums as primary

storage. These were later replaced by magnetic core memory and

subsequently by integrated circuit. This led to modern random-access

memory (RAM). It is small-sized, light, but quite expensive at the same

time. (The particular types of RAM used for primary storage are also

volatile, i.e. they lose the information when not powered).

Main memory is directly or indirectly connected to the central

processing unit via a memory bus. This consists of two buses: an address

bus and a data bus. The CPU initially sends a number through an

address bus. This number called the memory address indicates the

desired location of data. Then it reads or writes the data itself using the

data bus.

As the RAM types used for primary storage are volatile (cleared at start

up), a computer containing only such storage would not have a source to

read instructions from, in order to start the computer. Hence, non-

volatile primary storage containing a small startup program (BIOS) is

used to bootstrap the computer, that is, to read a larger program from

non-volatile secondary storage to RAM and start to execute it. A non-

volatile technology used for this purpose is called ROM, for read-only

memory (the terminology may be somewhat confusing as most ROM

types are also capable of random access).

Many types of ‗ROM‘ are not literally read only, as updates are

possible; however it is slow and memory must be erased in large

portions before it can be re-written. Some embedded systems run

programs directly from ROM (or similar), because such programs are

rarely changed. Standard computers do not store non-rudimentary

programs in ROM, rather use large capacities of secondary storage,

which is non-volatile as well, and not as costly.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

87

3.2.2 Secondary Storage

Secondary storage (also known as external memory or auxiliary

storage), differs from primary storage in that it is not directly accessible

by the CPU. The computer usually uses its input/output channels to

access secondary storage and transfers the desired data using

intermediate area in primary storage. Secondary storage does not lose

the data when the device is powered down—it is non-volatile. Per unit,

it is typically also two orders of magnitude less expensive than primary

storage. Consequently, modern computer systems typically have two

orders of magnitude, more secondary storage than primary storage and

data is kept for a longer time there.

3.2.3 Types of Secondary Storage

Hard disk drives

In modern computers, hard disk drives are usually used as secondary

storage. The time taken to access a given byte of information stored on a

hard disk is typically a few thousandths of a second, or milliseconds. By

contrast, the time taken to access a given byte of information stored in

random access memory is measured in billionths of a second, or

nanoseconds. This illustrates the significant access-time difference

which distinguishes solid-state memory from rotating magnetic storage

devices: hard disks are typically about a million times slower than

memory.

Fig. 4.2: A Hard Disk Drive with Protective Cover Removed

Rotating optical storage devices such as CD and DVD drives have

even longer access times. With disk drives, once the disk read/write

head reaches the proper placement and the data of interest rotates under

it, subsequent data on the track are very fast to access. As a result, in

order to hide the initial seek time and rotational latency, data is

transferred to and from disks in large contiguous blocks.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

88

Some other examples of secondary storage technologies are: flash

memory (e.g. USB flash drives or keys), floppy disks, magnetic tape,

paper tape, punched cards, standalone RAM disks, and Iomega Zip

drives.

Normally, the secondary storage is often formatted according to a file

system format, which provides the abstraction necessary to organise data

into files and directories, providing also additional information (called

metadata) which describes the owner of a certain file, the access time,

the access permissions, and other information.

Most computer operating systems use the concept of virtual memory,

allowing utilisation of more primary storage capacity than is physically

available in the system. As the primary memory fills up, the system

moves the least-used chunks (pages) to secondary storage devices (to a

swap file or page file), retrieving them later when they are needed. As

more of these retrievals from slower secondary storage are necessary,

the more the overall system performance is degraded.

SELF-ASSESSMENT EXERCISE

List at least three common types of secondary storage.

3.2.4 Tertiary Storage

Tertiary storage or tertiary memory provides a third level of storage.

Typically, it involves a robotic mechanism which will mount (insert) and

dismount removable mass storage media into a storage device according

to the system‘s demands; this data is often copied to secondary storage

before use. It is primarily used for archiving rarely accessed information

since it is much slower than secondary storage (e.g. 5–60 seconds vs. 1-

10 milliseconds). This is primarily useful for extraordinarily large data

stores, accessed without human operators. Typical examples include

tape libraries and optical jukeboxes.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

89

Fig. 4.3: Large Tape Library

Tape cartridges placed on shelves in the front, robotic arm moving in the

back. Visible height of the library is about 180 cm.

When a computer needs to read information from the tertiary storage, it

will first consult a catalog database to determine which tape or disc

contains the information. Next, the computer will instruct a robotic arm

to fetch the medium and place it in a drive. When the computer has

finished reading the information, the robotic arm will return the medium

to its place in the library.

3.2.5 Off-line Storage

Off-line storage is computer data storage on a medium or a device that

is not under the control of a processing unit. The medium is recorded,

usually in a secondary or tertiary storage device, and then physically

removed or disconnected. It must be inserted or connected by a human

operator before a computer can access it again. Unlike tertiary storage, it

cannot be accessed without human interaction.

This storage is used to transfer information, since the detached medium

can be easily physically transported. Additionally, in case a disaster, for

example a fire, destroys the original data, a medium in a remote location

will probably be unaffected, enabling disaster recovery. Off-line storage

increases general information security, since it is physically inaccessible

from a computer, and data confidentiality or integrity cannot be affected

by computer-based attack techniques. Also, if the information stored for

CIT427 DATABASE SYSTEMS AND MANAGEMENT

90

archival purposes is accessed seldom or never, off-line storage is less

expensive than tertiary storage.

In modern personal computers, most secondary and tertiary storage

media are also used for off-line storage. Optical discs and flash memory

devices are most popular, and to much lesser extent removable hard disk

drives. In enterprise uses, magnetic tape is predominant. Older examples

are floppy disks, Zip disks, or punched cards.

4.0 CONCLUSION

On the whole, we learnt that Computer data storage refers to computer

components and recording media that retain digital data used for

computing for some interval of time. There are different forms of

storage, divided according to their distance from the central processing

unit. The fundamental components of a general-purpose computer are

arithmetic and logic unit, control circuitry, storage space, and

input/output devices. The main memory is the only memory directly

accessible to the CPU. It is directly or indirectly connected to the central

processing unit via a memory bus. The CPU continuously reads

instructions stored in the main memory and executes them as required.

On the other hand, the Secondary storage is not directly accessible by

the CPU. Common forms of Secondary Storage include: hard disk

drives, rotating optical storage devices, flash memory, floppy disks,

magnetic tape, paper tape, punched cards, standalone RAM disks,

Iomega Zip drives and a host of others. Most computer operating

systems use the concept of virtual memory. The tertiary storage or

memory involves a robotic storage mechanism which mounts and

dismounts removable mass storage media into a storage device

according to the system's demands. We equally identified the off-line

storage as a form of computer data storage on a device that is not under

the control of a processing unit. This storage is used to transfer

information, since the detached medium can be easily physically

transported.

5.0 SUMMARY

In this unit, we learnt about computer data storage and the levels of

storage as well as classical examples of each form of storage. Now to

discover if you have been following, please answer the questions below.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

91

6.0 TUTOR-MARKED ASSIGNMENT

1. What is the core distinction between the auxiliary and internal

memory?

2. Explain the implication of the volatility of the primary storage

being volatile.

3. In the data context, list the levels of storage.

7.0 REFERENCES/FURTHER READING

Avi, S. et al. (N.D). Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd

 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

92

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design.

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

93

UNIT 2 FEATURES OF STORAGE TECHNOLOGIES

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Volatility

3.1.1 Non-Volatile Memory

3.1.2 Volatile Memory

3.2 Differentiation

3.2.1 Dynamic Random Access Memory

3.2.2 Static Memory

3.3 Mutability

3.3.1 Read/Write Storage or Mutable Storage

3.3.2 Read Only Storage

3.3.3 Slow Write, Fast Read Storage

3.4 Accessibility

3.4.1 Random Access

3.4.2 Sequential Access

3.5 Addressability

3.5.1 Location Addressable

3.5.2 File Addressable

3.5.3 Content Addressable

3.6 Capacity

3.6.1 Raw Capacity

3.6.2 Memory Storage Density

3.7 Performance

3.7.1 Latency

3.7.2 Throughput

3.8 Energy Use

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, you will be taught the core aspects of storage technologies.

These include: volatility, mutability, accessibility, and addressability.

However, for the implementation of any storage technology, the

characteristics worth measuring are capacity and performance. Keep

these ideas in mind and do enjoy your studies.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

94

2.0 OBJECTIVES

At the end this unit, you should be able to:

 outline the core characteristics of storage technologies

 differentiate between the volatile and non-volatile memory

 explain the mechanism of the Read/Write storage

 distinguish between the Read/Write and Read only storage

 describe the Slow write, fast read storage

 identify the forms of accessibility, addressability

 explain the notion of latency

 describe the term ‗throughput‘.

3.0 MAIN CONTENT

3.1 Volatility

3.1.1 Non-Volatile Memory

This is a form of memory that retains stored information even if it is not

constantly supplied with electric power. It is suitable for long-term

storage of information.

3.1.2 Volatile Memory

This form of memory requires constant power to maintain the stored

information. The fastest memory technologies of today are volatile ones

(not a universal rule). Since primary storage is required to be very fast, it

predominantly uses volatile memory.

3.2 Differentiation

3.2.1 Dynamic Random Access Memory

A form of volatile memory which also requires the stored information to

be periodically re-read and re-written, or refreshed, otherwise it would

vanish.

3.2.2 Static Memory

A form of volatile memory similar to DRAM, that never needs to be

refreshed as long as power is applied. (It loses its content if power is

removed).

CIT427 DATABASE SYSTEMS AND MANAGEMENT

95

SELF-ASSESSMENT EXERCISE

State the major difference between the volatile and non-volatile

memory.

3.3 Mutability

3.3.1 Read/Write Storage or Mutable Storage

This form of storage allows information to be overwritten at any time. A

computer without some amount of read/write storage for primary storage

purposes would be useless for many tasks. Modern computers typically

use read/write storage also for secondary storage.

3.3.2 Read Only Storage

Retains the information stored at the time of manufacture, and write

once storage (Write Once Read Many) allows the information to be

written only once at some point after manufacture. These are called

immutable storage. Immutable storage is used for tertiary and off-line

storage. Examples include CD-ROM and CD-R.

3.3.3 Slow Write, Fast Read Storage

Read/write storage which allows information to be overwritten multiple

times, but with the write operation being much slower than the read

operation. Examples include CD-RW and flash memory.

3.4 Accessibility

This feature can be categorised in two ways:

3.4.1 Random Access

Any location in storage can be accessed at any moment in approximately

the same amount of time. Such characteristic is well suited for primary

and secondary storage.

3.4.2 Sequential Access

The accessing of pieces of information will be in a serial order, one after

the other; therefore the time to access a particular piece of information

depends upon which piece of information was last accessed. Such

characteristic is typical of off-line storage.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

96

3.5 Addressability

3.5.1 Location-Addressable

Each individually accessible unit of information in storage is selected

with its numerical memory address. In modern computers, location-

addressable storage usually limits to primary storage, accessed internally

by computer programs, since location-addressability is very efficient,

but burdensome for humans.

3.5.2 File-Addressable

Information is divided into files of variable length, and a particular file is

selected with human-readable directory and file names. The underlying

device is still location-addressable, but the operating system of a

computer provides the file system abstraction to make the operation

more understandable. In modern computers, secondary, tertiary and off-

line storage use file systems.

3.5.3 Content-Addressable

Each individually accessible unit of information is selected based on the

basis of (part of) the contents stored there. Content-addressable storage

can be implemented using software (computer program) or hardware

(computer device), with hardware being faster but more expensive

option. Hardware content addressable memory is often used in a

computer‘s CPU cache.

3.6 Capacity

3.6.1 Raw Capacity

This is the total amount of stored information that a storage device or

medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4

megabytes).

3.6.2 Memory Storage Density

This refers to the compactness of stored information. It is the storage

capacity of a medium divided with a unit of length, area or volume (e.g.

1.2 megabytes per square inch).

CIT427 DATABASE SYSTEMS AND MANAGEMENT

97

3.7 Performance

3.7.1 Latency

The time it takes to access a particular location in storage. The relevant

unit of measurement is typically nanosecond for primary storage,

millisecond for secondary storage, and second for tertiary storage. It

may make sense to separate read latency and write latency, and in case

of sequential access storage, minimum, maximum and average latency.

3.7.2 Throughput

The term ‗throughput‘ simply refers to the rate at which information can

be read from or written to the storage. In computer data storage,

throughput is usually expressed in terms of megabytes per second or

MB/s, though bit rate may also be used. As with latency, read rate and

write rate may need to be differentiated. Also accessing media

sequentially, as opposed to randomly, typically yields maximum

throughput.

3.8 Energy Use

Storage devices that reduce fan usage, automatically shut-down during

inactivity, and low power hard drives can reduce energy consumption 90

percent. 2.5 inch hard disk drives often consume less power than larger

ones. Low capacity solid-state drives have no moving parts and consume

less power than hard disks. Also, memory may use more power than

hard disks.

4.0 CONCLUSION

To wrap up, we discovered that while the volatile memory requires

constant power to maintain the stored information is the volatile

memory, non-volatile memory retains stored information even if it is not

constantly supplied with electric power. Modern computers typically use

read/write storage also for secondary storage. We also learnt that the

time it takes to access a particular location in storage is referred to as

latency.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

98

5.0 SUMMARY

In this unit, we were able to distinguish between the volatile and non-

volatile memory, explain the mechanism of the Read/Write storage

Identify the difference between the Read/Write and Read only

storage.

Describe the Slow write; fast read storage, Identify the forms of

accessibility, addressability. Explain the notion of latency as well as

explain the term ‗throughput‘.

6.0 TUTOR-MARKED ASSIGNMENT

1. Identify the difference between the Read/Write and Read only

storage.

2. Describe the Slow write, fast read storage.

3. Identify the forms of accessibility, addressability.

4. Explain the notion of latency.

5. Give a succinct description of the term ‗throughput‘.

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D).Database System Concept (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6. pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

http://office.microsoft.com/en-us/access/HA012242471033.aspx

CIT427 DATABASE SYSTEMS AND MANAGEMENT

99

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993). Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching .Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009). Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

100

UNIT 3 COMMON STORAGE TECHNOLOGIES

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Semi Conductors

3.2 Methods and Design Paradigm

3.3 Optical

3.4 Magneto-Optical Disc Storage

3.5 Paper Data Storage

3.6 Uncommon

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, you will learn the different forms of storage technologies.

We will consider specific examples and some real-life applications. Do

enjoy your studies.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain the storage mechanism of semi conductor memory

 describe the storage mechanism of the magnetic storage, optical

disc and the magneto-optical disc storage

 differentiate between the optical disc and the magneto-optical

disc storage

 cite common examples of optical disc storage

 mention the regular forms of uncommon storage.

3.0 MAIN CONTENT

3.1 Semi Conductors

Semi conductor memory uses semi conductor-based integrated circuits

to store information. A semiconductor memory chip may contain

millions of tiny transistors or capacitors. Both volatile and non-volatile

forms of semi conductor memory exist. In modern computers, primary

storage almost exclusively consists of dynamic volatile semi conductor

CIT427 DATABASE SYSTEMS AND MANAGEMENT

101

memory or dynamic random access memory. Since the turn of the

century, a type of non-volatile semiconductor memory known as flash

memory has steadily gained share as off-line storage for home

computers. Non-volatile semiconductor memory is also used for

secondary storage in various advanced electronic devices and

specialised computers.

3.2 Magnetic Storage

Magnetic storage uses different patterns of magnetisation on a

magnetically coated surface to store information. Magnetic storage is

non-volatile. The information is accessed using one or more read/write

heads which may contain one or more recording transducers. A

read/write head only covers a part of the surface so that the head or

medium or both must be moved relative to another in order to access

data. In modern computers, magnetic storage will take these forms:

3.2.1 Magnetic Disk

 Floppy disk, used for off-line storage

 Hard disk drive, used for secondary storage

3.2.2 Magnetic Tape Data Storage (Used for Tertiary and Off-

Line Storage)

Previously, magnetic storage was also used for primary storage in a

form of magnetic drum, or core memory, core rope memory, thin-film

memory, twistor memory or bubble memory. Also unlike today,

magnetic tapes are frequently used for secondary storage.

SELF-ASSESSMENT EXERCISE

Give a brief description of the magnetic storage mechanism.

3.3 Optical Storage

A typical optical disc, stores information on the surface of a circular disc

and reads this information by illuminating the surface with a laser diode

and observing the reflection. Optical disc storage is non-volatile. The

deformities may be permanent (read only media), formed once (write

once media) or reversible (recordable or read/write media). The

following forms are currently in common use:

 CD, CD-ROM, DVD, BD-ROM: Read only storage, used for

mass distribution of digital information (music, video, computer

programs)

CIT427 DATABASE SYSTEMS AND MANAGEMENT

102

 CD-R, DVD-R, DVD+R, BD-R: Write once storage, used for

tertiary and off-line storage

 CD-RW, DVD-RW, DVD+RW, DVD-RAM, BD-RE: Slow

write, fast read storage, used for tertiary and off-line storage

 Ultra Density Optical or UDO is similar in capacity to BD-R or

BD-RE and is slow write, fast read storage used for tertiary and

off-line storage.

3.4 Magneto-Optical Disc Storage

This is a form of optical disc storage where the magnetic state on a

ferromagnetic surface stores information. The information is read

optically and written by combining magnetic and optical methods.

Magneto-optical disc storage is non-volatile, sequential access, slow

write, fast read storage used for tertiary and off-line storage.

3.5 Paper Data Storage

This storage is typically in the form of paper tape or punched cards, has

long been used to store information for automatic processing,

particularly before general-purpose computers existed. Information was

recorded by punching holes into the paper or cardboard medium and was

read mechanically (or later optically) to determine whether a particular

location on the medium was solid or contained a hole. A few

technologies allow people to make marks on paper that are easily read

by machine—these are widely used for tabulating votes and grading

standardised tests. Barcodes made it possible for any object that was to

be sold or transported to have some computer readable information

securely attached to it.

3.6 Uncommon Storage

3.6.1 Vacuum Tube Memory

A Williams tube used a cathode ray tube, and a Selectron tube used a

large vacuum tube to store information. These primary storage devices

were short-lived in the market, since Williams tube was unreliable and

Selectron tube was expensive.

3.6.2 Electro-Acoustic Memory

Delay line memory used sound waves in a substance such as mercury to

store information. Delay line memory was dynamic volatile, cycle

sequential read/write storage, and was used for primary storage.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

103

3.6.3 Optical Tape

This is a medium for optical storage generally consisting of a long and

narrow strip of plastic onto which patterns can be written and from

which the patterns can be read back. It shares some technologies with

cinema film stock and optical discs, but is compatible with neither. The

motivation behind developing this technology was the possibility of far

greater storage capacities than either magnetic tape or optical discs.

4.0 CONCLUSION

In conclusion, we have seen that at the moment, the most commonly

used data storage technologies are semiconductor, magnetic, and optical,

while paper still finds some limited usage. Some other fundamental

storage technologies have also been used in the past or are proposed for

development.

5.0 SUMMARY

In sum, we discovered the common types of data storage technologies.

We equally considered the uncommon storage technologies. You can

now attempt the questions below.

6.0 TUTOR-MARKED ASSIGNMENT

1. Describe the storage mechanism of the magneto-optical disc

storage.

2. State the core difference between the optical disc and the

magneto-optical disc storage.

3. List common examples of optical disc storage.

4. Identify the regular forms of uncommon storage.

5. Cite at least three examples of optical disc storage.

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D).Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

104

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6. pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching .Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

105

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

106

UNIT 4 FILE ORGANISATION

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Introduction to File Organisation

3.2 Methods and Design Paradigms

3.3 System File Organisation Specifics

3.4 Factors that affect File Organisation

3.5 File Organisation Techniques

3.5.1 Sequential Organisation

3.5.2 Line-Sequential Paradigms

3.5.3 Indexed-Sequential Organisation

3.5.4 Inverted List Technique

3.5.5 Direct or Hashed Access

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit presents key considerations in specifying a system of file

organisation as well as techniques of file organisation. You will actually

find this aspect simple and interesting. Enjoy your studies!

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain the concept of file organisation

 identify the components of file organisation

 state the key considerations in specifying a system of file

organisation

 outline the common methods of organising files.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

107

3.0 MAIN CONTENT

3.1 Introduction to File Organisation

File organisation is the methodology which is applied to structured

computer files. In general, files contain computer records which can be

documents or information which is stored in a certain way for later

retrieval.

Consequently, file organisation primarily refers to the logical

arrangement of data (which can itself be organised in a system of

records with correlation between the fields/columns) in a file system. It

should not be confused with the physical storage of the file in some

types of storage media. There are certain basic types of computer file,

which can include files stored as blocks of data and streams of data,

where the information streams out of the file while it is being read until

the end of the file is encountered.

Two significant components of file organisation are:

 The way the internal file structure is arranged and

 The external file as it is presented to the operating system or

program that calls it.

3.2 Methods and Design Paradigm

The design of the file organisation depends mainly on the system

environment. For instance, factors such as whether the file is going to be

used for transaction-oriented processes like OLTP or Data

Warehousing, or whether the file is shared among various processes

like those found in a typical distributed system or standalone. Whether

the file is on a network and used by a number of users and whether it

may be accessed internally or remotely and how often it is accessed

must also be determined.

3.3 System File Organisation Specifics

The task of specifying a system of file organisation for a computer

software program or a computer system designed for a particular

purpose is a high-level design decision. Therefore, the key

considerations in specifying a system of file organisation are as follows:

 Rapid access to a record or a number of records which are related

to each other.

 The adding, modification, or deletion of records.

 Efficiency of storage and retrieval of records.

 Redundancy, being the method of ensuring data integrity.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

108

Thus, a file should be organised in such a way that the records are

always available for processing with no delay. This should be done in

line with the activity and volatility of the information.

3.4 Factors that affect File Organisation

Organising a file depends on what kind of file it happens to be: a file in

the simplest form can be a text file, (in other words a file which is

composed of ASCII (American Standard Code for Information

Interchange) text.) Files can also be created as binary or executable

types (containing elements other than plain text.) Also, files are keyed

with attributes which help determine their use by the host operating

system.

SELF-ASSESSMENT EXERCISE

Mention two important components of file organization.

3.5 File Organisation Technique

The common methods of organising files are:

a. Sequential

b. Line-sequential

c. Indexed-sequential

d. Inverted list

e. Direct or hashed access organisation.

3.5.1 Sequential Organisation

A sequential file contains records organised in the order they were

entered. The order of the records is fixed. The records are stored and

sorted in physical, contiguous blocks within each block the records are

in sequence.

Records in these files can only be read or written sequentially. Once

stored in the file, the record cannot be made shorter, or longer, or

deleted. However, the record can be updated if the length does not

change. (This is done by replacing the records by creating a new file.)

New records will always appear at the end of the file.

If the order of the records in a file is not important, sequential

organisation will suffice, no matter how many records you may have.

Sequential output is also useful for report printing or sequential reads

which some programs prefer to do.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

109

3.5.2 Line-Sequential Organisation

Line-sequential files are similar to sequential files, except that the

records can contain only characters as data. Line-sequential files are

maintained by the native byte stream files of the operating system.

In the COBOL environment, line-sequential files that are created with

WRITE statements with the ADVANCING phrase can be directed to a

printer as well as to a disk.

3.5.3 Indexed-Sequential Organisation

Key searches are improved by means of the indexed-sequential file

organisation. The single-level indexing structure is the simplest one

where a file, whose records are pairs, contains a key pointer. This

pointer is the position in the data file of the record with the given key. A

subset of the records, which are evenly spaced along the data file, is

indexed, in order to mark intervals of data records.

In an indexed-sequential organisation, a key is performed as follows:

 the search key is compared with the index keys to find the highest

index key coming in front of the search key

 simultaneously a linear search is performed from the record that

the index key points to, until the search key is matched or until

the record pointed to by the next index entry is reached.

Regardless of double file access (index + data) required by this sort of

search, the access time reduction is significant compared with sequential

file searches.

3.5.4 Inverted List

In an inverted list file organisation, the file is indexed on many of the

attributes of the data itself. The inverted list method has a single index

for each key type. The records are not necessarily stored in a sequence.

They are placed in the data storage area, while indexes are updated for

the record keys and location.

Here is an example, in a company file, an index could be maintained for

all products, and another one might be maintained for product types.

Thus, it is faster to search the indexes than every record. These types of

files are also known as “inverted indexes.” Nevertheless, inverted list

files use more media space and the storage devices get full quickly with

this type of organisation. The benefits are apparent immediately because

searching is fast. However, updating is much slower.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

110

Content-based queries in text retrieval systems use inverted indexes as

their preferred mechanism. Data items in these systems are usually

stored compressed which would normally slow the retrieval process, but

the compression algorithm will be chosen to support this technique.

3.5.5 Direct or Hashed Access

In a direct or hashed access file organisation, a portion of the disk

space is reserved and a ―hashing‖ algorithm computes the record

address. So there is additional space required for this kind of file in the

store. Records are placed randomly throughout the file. Records are

accessed by addresses that specify their disc location. Also, this type of

file organisation requires a disk storage rather than tape. It has an

excellent search retrieval performance, but care must be taken to

maintain the indexes. If the indexes become corrupt, what is left may as

well go to the bit-bucket. For this reason, it is critical to have regular

backup of this kind of file just as it is for all stored valuable data.

4.0 CONCLUSION

To wrap up, in this unit we discovered that file organisation primarily

refers to the logical arrangement of data in a file system. Two significant

components of file organisation are: the way the internal file structure is

arranged and the external file as it is presented to the operating system

or program that calls it. The design of the file organisation depends

mainly on the system environment. Other design consideration include:

whether the file is on a network and used by a number of users and

whether it may be accessed internally or remotely and how often it is

accessed must also be determined. The key considerations in specifying

a system of file organisation are as follows: Rapid access to a record or a

number of records which are related to each other; the adding,

modification, or deletion of records; Efficiency of storage and retrieval

of records; Redundancy, being the method of ensuring data integrity.

In sum, a file should be organised in such a way that the records are

always available for processing with no delay. Organising a file depends

on what kind of file it happens to be. The common methods of

organising files are: Sequential, Line-sequential, Indexed-sequential,

Inverted list and Direct or hashed access organisation.

5.0 SUMMARY

In this unit, we learnt about file organisation techniques and the factors

affecting file organisation. By now, you must certainly be ready to

answer the questions below.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

111

6.0 TUTOR-MARKED ASSIGNMENT

1. Briefly describe the concept of file organization.

2. What factors affect the core design considerations.
3. State the key considerations in specifying a system of file

organization.

4. Mention at least four methods of organising files

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D). Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd

 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S.(2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

112

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional’s Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching . Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009). Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

113

MODULE 5 INTRODUCTION TO XML AND WEB

SERVICES

Unit 1 Fundamentals of XML

Unit 2 Significance of XML

Unit 3 XML Document

Unit 4 Document Type Declaration

Unit 5 Introduction to Web Services

UNIT 1 FUNDAMENTALS OF XML

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 What is XML?

3.2 Common Concepts of XML

3.2.1 Documents Concept

3.2.2 XML and HTML

3.2.3 XML and SGML

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit presents an introduction to the Extensible Markup Language

(XML), at a reasonably technical level in order to gain more insight on

the subject of structured documents. In addition to covering the XML

1.0 Specification, this unit equally underscores related XML

specifications, which are evolving. Do take note of these key points.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 give a brief description of an XML

 describe the common concepts of XML

 identify the components of a Structured Document

 distinguish between XML and HTML

 state the difference between XML and SGML.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

114

3.0 MAIN CONTENT

3.1 What is XML?

XML is an extensible markup language for documents containing

structured information.

Structured information contains both content (words, pictures, etc.) and

some indication of what role that content plays (for example, content in

a section heading has a different meaning from content in a footnote,

which means something different than content in a figure caption or

content in a database table, etc.). Almost all documents have some

structure.

A markup language is a mechanism to identify structures in a document.

The XML specification defines a standard way to add markup to

documents.

SELF-ASSESSMENT EXERCISE

State the core components of a structured document.

3.2 Common Concepts of XML

3.2.1 Documents Concept

The number of applications currently being developed that are based on,

or make use of, XML documents is truly amazing (particularly when

you consider that XML is not yet a year old)! For our purposes, the

word ―document‖ refers not only to traditional documents, like this one,

but also to the myriad of other XML ―data formats‖. These include

vector graphics, e-commerce transactions, mathematical equations,

object meta-data, server APIs, and other kinds of structured information.

3.2.2 XML and HTML

In HTML, both the tag semantics and the tag set are fixed. An <h1> is

always a first level heading and the tag <ati.product.code> is

meaningless. The W3C, in conjunction with browser vendors and the

WWW community, is constantly working to extend the definition of

HTML to allow new tags to keep pace with changing technology and to

bring variations in presentation (stylesheets) to the Web. However, these

changes are always rigidly confined by what the browser vendors have

implemented and by the fact that backward compatibility is paramount.

And for people who want to disseminate information widely, features

CIT427 DATABASE SYSTEMS AND MANAGEMENT

115

supported by only the latest releases of Netscape and Internet Explorer

are not useful.

On the other hand, XML specifies neither semantics nor a tag set. In fact

XML is really a meta-language for describing markup languages. In

other words, XML provides a facility to define tags and the structural

relationships between them. Since there is no predefined tag set, there

cannot be any preconceived semantics. All of the semantics of an XML

document will either be defined by the applications that process them or

by stylesheets.

3.2.3 XML and SGML

While XML is defined as an application profile of SGML, SGML is the

Standard Generalised Markup Language defined by ISO 8879. SGML

has been the standard, vendor-independent way to maintain repositories

of structured documentation for more than a decade, but it is not well

suited to serving documents over the web (for a number of technical

reasons beyond the scope of this material). Defining XML as an

application profile of SGML means that any fully conformant SGML

system will be able to read XML documents. However, using and

understanding XML documents does not require a system that is capable

of understanding the full generality of SGML. XML is, roughly

speaking, a restricted form of SGML.

For technical purists, it is important to note that there may also be subtle

differences between documents as understood by XML systems and

SGML systems. In particular, treatment of white space immediately

adjacent to tags may be different.

4.0 CONCLUSION

We learnt that XML is an extensible markup language for documents

containing structured information. Structured information contains both

content (words, pictures, etc.) and some indication of what role that

content plays. Almost all documents have some structure. A markup

language is a mechanism to identify structures in a document. The XML

specification defines a standard way to add markup to documents.

The term ―document‖ refers not only to traditional documents, but also

to the myriad of other XML ―data formats‖. These include vector

graphics, e-commerce transactions, mathematical equations, object

meta-data, server APIs, and other kinds of structured information.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

116

In HTML, both the tag semantics and the tag set are fixed. On the other

hand, XML specifies neither semantics nor a tag set. In fact XML is

really a meta-language for describing markup languages. In other words,

XML provides a facility to define tags and the structural relationships

between them. Since there is no predefined tag set, there cannot be any

preconceived semantics. All of the semantics of an XML document will

either be defined by the applications that process them or by stylesheets.

While XML is defined as an application profile of SGML, SGML is the

Standard Generalised Markup Language defined by ISO 8879. SGML

has been the standard, vendor-independent way to maintain repositories

of structured documentation for more than a decade, but it is not well

suited to serving documents over the web. Thus, XML is, roughly

speaking, a restricted form of SGML.

5.0 SUMMARY

In this unit, we considered the extensible markup language (XML). We

equally specified the common concepts of XML. Later on, we identified

the relationship and differences between: XML and HTML, XML and

SGML. You may now proceed to the tutor marked assignment below.

6.0 TUTOR-MARKED ASSIGNMENT

1. What is an extensible markup language?

2. How are the semantics of an XML defined?

3. State the key difference between XML and HTML

4. What is the relationship between XML and SGML?

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D).Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O‘Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

117

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching .Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

118

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009). Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

119

UNIT 2 SIGNIFICANCE OF XML

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Why XML?

3.2 XML Development Goals

3.3 Defining XML

3.3.1 Extensible Markup Language (XML) 1.0
3.3.2 XML Pointing Language (XPointer) and XML

Linking Language (XLink)

3.3.3 Extensible Style Language

3.3.4 Understanding the Specs

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

The previous unit introduced some general concepts of the extensible

markup language (XML). In this unit, we will learn the relevance of

XML and its development goals. In order to understand the XML

specifications, we shall equally discuss the extensible pointer language,

extensible linking language and the extensible style language.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 give a concise description of the import of XML

 identify the development goals of extensible markup languages

(XML)

 know how you would view an XML document, assuming you do

not have an XML browser

 state the relationship between the XML pointer language and the

XML linking language.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

120

3.0 MAIN CONTENT

3.1 Why XML?

In order to recognise the value of XML, it is important to understand

why it was created. XML was created so that richly structured

documents could be used over the web. This is because other viable

alternatives, HTML and SGML, are not practical for this purpose.

HTML, as we have already discussed, comes bound with a set of

semantics and does not provide arbitrary structure.

SGML provides arbitrary structure, but is too difficult to implement for

a web browser. Full SGML systems solve large, complex problems that

justify their cost. Viewing structured documents sent over the web rarely

carries such justification.

This is not to say that XML can be expected to completely replace

SGML. While XML is being designed to deliver structured content over

the web, some of the very features it lacks to make this practical, make

SGML a more satisfactory solution for the creation and long-time

storage of complex documents. In many organisations, filtering SGML

to XML will be the standard procedure for web delivery.

3.2 XML Development Goals

Based on the W3C Recommendation, the Extensible Markup Language

(XML) 1.0, XML specification sets out the following goals for XML:

 It shall be straightforward to use XML over the Internet. Users

must be able to view XML documents as quickly and easily as

HTML documents. In practice, this will only be possible when

XML browsers are as robust and widely available as HTML

browsers, but the principle remains.

 XML shall support a wide variety of applications. XML should

be beneficial to a wide variety of diverse applications: authoring,

browsing, content analysis, etc. Although the initial focus is on

serving structured documents over the web, it is not meant to

narrowly define XML.

 XML shall be compatible with SGML. Most of the people

involved in the XML effort come from organisations that have a

large, in some cases staggering, amount of material in SGML.

XML was designed pragmatically, to be compatible with existing

standards while solving the relatively new problem of sending

richly structured documents over the web.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

121

 It shall be easy to write programs that process XML documents.

The colloquial way of expressing this goal while the spec was

being developed is that it ought to take about two weeks for a

competent computer science graduate student to build a program

that can process XML documents.

 The number of optional features in XML is to be kept to an

absolute minimum, ideally zero. Optional features inevitably

raise compatibility problems when users want to share documents

that sometimes lead to confusion and frustration.

 XML documents should be human-legible and reasonably clear.

If you do not have an XML browser and you have received a

chunk of XML from somewhere, you ought to be able to look at

it in your favorite text editor and actually figure out what the

content means.

 The XML design should be prepared quickly. Standards efforts

are notoriously slow. XML was needed immediately and

developed as quickly as possible.

 The design of XML shall be formal and concise. In many ways a

corollary to rule 4, it essentially means that XML must be

expressed in EBNF and must be amenable to modern compiler

tools and techniques.

There are a number of technical reasons why the SGML grammar

cannot be expressed in EBNF. Writing a proper SGML parser

requires handling a variety of rarely used and difficult to parse

language features. XML does not.

 XML documents should be easy to create. Although, there will

eventually be sophisticated editors to create and edit XML

content, they may not appear immediately. In the interim, it must

be possible to create XML documents in other ways: directly in a

text editor, with simple shell and Perl scripts, etc.

 Terseness in XML markup is of minimal importance. Several

SGML language features were designed to minimise the amount

of typing required to manual keying in SGML documents. These

features are not supported in XML. From an abstract point of

view, these documents are indistinguishable from their more fully

specified forms, but supporting these features adds a considerable

burden to the SGML parser (or the person writing it, anyway). In

addition, most modern editors offer better facilities to define

shortcuts when entering text.

SELF-ASSESSMENT EXERCISE

State why it is desirable to have the number of optional features in XML

is to be kept an absolute minimum?

CIT427 DATABASE SYSTEMS AND MANAGEMENT

122

3.3 Defining XML

XML is defined by a number of related specifications:

3.3.1 Extensible Markup Language (XML) 1.0

This defines the syntax of XML. The XML specification is the primary

focus of this unit.

3.3.2 XML Pointer Language (XPointer) and XML Linking

Language (XLink)

This defines a standard way to represent links between resources. In

addition to simple links, like HTML‘s <A> tag, XML has mechanisms

for links between multiple resources and links between read-only

resources. XPointer describes how to address a resource, XLink

describes how to associate two or more resources.

3.3.3 Extensible Style Language (XSL)

The Extensible Style Language defines the standard style sheet language

for XML.

Currently, namespaces (dealing with tags from multiple tag sets), a

query language (finding out what is in a document or a collection of

documents), and a schema language (describing the relationships

between tags, DTDs in XML) are all being actively pursued.

3.3.4 Understanding the Specs

For the most part, reading and understanding the XML specifications

does not require extensive knowledge of SGML or any of the related

technologies.

4.0 CONCLUSION

To wrap up, in this unit we learnt that: XML was created so that richly

structured documents could be used over the web. This is because other

viable alternatives, HTML and SGML, are not practical for this purpose.

Basically, HTML comes bound with a set of semantics and does not

provide arbitrary structure. SGML provides arbitrary structure, but is too

difficult to implement for a web browser.

Based on the W3C Recommendation, the Extensible Markup Language

(XML) 1.0, XML specification sets out a number of goals for XML.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

123

Some of which are as follows:

 It shall be straightforward to use XML over the Internet.

 XML shall support a wide variety of applications.

 XML shall be compatible with SGML.

 It shall be easy to write programs that process XML documents.

 The number of optional features in XML is to be kept to an

absolute minimum, ideally zero.

 XML documents should be human-legible and reasonably clear.

 The XML design should be prepared quickly. Standards efforts

are notoriously slow. XML was needed immediately and was

developed as quickly as possible.

 The design of XML shall be formal and concise.

 XML documents shall be easy to create.

 Terseness in XML markup is of minimal importance.

The Extensible Markup Language (XML) 1.0 defines the syntax of

XML. XML Pointer Language (XPointer) and XML Linking Language

(XLink) define a standard way to represent links between resources. In

addition to simple links, like HTML's <A> tag, XML has mechanisms

for links between multiple resources and links between read-only

resources. XPointer describes how to address a resource; XLink

describes how to associate two or more resources.

The Extensible Style Language (XSL) defines the standard style sheet

language for XML. For the most part, reading and understanding the

XML specifications does not require extensive knowledge of SGML or

any of the related technologies.

5.0 SUMMARY

In this unit, we learnt the significance of XML and its development

goals. We equally considered the extensible pointer language, extensible

linking language and the extensible style language. You can now

attempt the tutor-marked assignment below. Good luck!

6.0 TUTOR-MARKED ASSIGNMENT

1. Give a concise description of the significance of XML.
2. State the development goals of extensible markup languages

(XML).

3. Assuming you do not have an XML browser, how else would you

view an XML document?

4. Identify the relationship between the XML pointer language and

the XML linking language.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

124

7.0 REFERENCES/FURTHER READING

Avi, S. et al. (N.D).Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd

 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL (1
st
 Ed.). Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-

CIT427 DATABASE SYSTEMS AND MANAGEMENT

125

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T. et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

126

UNIT 3 XML DOCUMENTS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 A Simple XML Document

3.2 Model of an XML Document

3.3 XML Markup and Content

3.3.1 Elements

3.3.2 Attributes

3.3.3 Entity References

3.3.4 Comments

3.3.5 Processing Instructions

3.3.6 CDATA Section

3.3.7 Document Type Declaration

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, you shall learn about the simple XML document as well as

XML Markup and Content. You will equally learn about six kinds of

markup that can occur in an XML document: elements, entity

references, comments, processing instructions, marked sections, and

document type declarations.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 describe a simple XML document

 outline the main ideas of a model XML document

 explain the term ‗character references‘

 discuss the main role of a CDATA section in a document

 mention the core components of XML documents

 identify six kinds of markup that can occur in an XML document.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

127

3.0 MAIN CONTENT

3.1 A Simple XML Document

Essentially, XML documents appear similar to HTML or SGML. A

simple XML document is presented in the next section.

3.2 Typical Model of an XML Document

<?xml version="1.0"?>

<oldjoke>

<burns>Say <quote>goodnight</quote>,

Gracie.</burns>

<allen><quote>Goodnight,

Gracie.</quote></allen>

<applause/>

</oldjoke>

Key Points to note:

The document begins with a processing instruction: <?xml ...?>. This is

the XML declaration. While it is not required, its presence explicitly

identifies the document as an XML document and indicates the version

of XML to which it was authored.

There is no document type declaration. Unlike SGML, XML does not

require a document type declaration. However, a document type

declaration can be supplied, and some documents will require one in

order to be understood unambiguously.

Empty elements (<applause/> in this example) have a modified syntax.

While most elements in a document are wrappers around some content,

empty elements are simply markers where something occurs (a

horizontal rule for HTML's <hr> tag, for example or a cross reference

for DocBook‘s <xref> tag). The trailing /> in the modified syntax

indicates to a program processing the XML document that the element is

empty and no matching end-tag should be sought. Since XML

documents do not require a document type declaration, without this clue

it could be impossible for an XML parser to determine which tags were

CIT427 DATABASE SYSTEMS AND MANAGEMENT

128

intentionally empty and which had been left empty by mistake.

XML has softened the distinction between elements which are declared

as EMPTY and elements which merely have no content. In XML, it is

legal to use the empty-element tag syntax in either case. It‘s also legal to

use a start-tag/end-tag pair for empty elements: <applause></applause>.

If interoperability is of any concern, it is best to reserve empty-element

tag syntax for elements which are declared as EMPTY and to only use

the empty-element tag form for those elements.

SELF-ASSESSMENT EXERCISE

Describe the concept of ‗empty elements‘ with respect to an XML

document.

3.3 XML Markup and Content

XML documents are composed of markup and content. There are six

kinds of markup that can occur in an XML document: elements, entity

references, comments, processing instructions, marked sections, and

document type declarations. The following sections introduce each of

these markup concepts. We will take a closer look at document type

declarations in the sections that follow.

3.3.1 Elements

Elements are the most common form of markup. Delimited by angle

brackets, most elements identify the nature of the content they surround.

Some elements may be empty, as seen above, in which case they have

no content. If an element is not empty, it begins with a start-tag,

<element>, and ends with an end-tag, </element>.

3.3.2 Attributes

Attributes are name-value pairs that occur inside start-tags after the

element name. For example,

<div class=‖preface‖>

is a div element with the attribute class having the value preface. In

XML, all attribute values must be quoted.

3.3.3 Entity References

In order to introduce markup into a document, some characters have

been reserved to identify the start of markup. The left angle bracket, < ,

for instance, identifies the beginning of an element start- or end-tag. In

CIT427 DATABASE SYSTEMS AND MANAGEMENT

129

order to insert these characters into your document as content, there

must be an alternative way to represent them. In XML, entities are used

to represent these special characters. Entities are also used to refer to

often repeated or varying text and to include the content of external files.

Every entity must have a unique name. Defining your own entity names

is discussed in the section on entity declarations. In order to use an

entity, you simply reference it by name. Entity references begin with the

ampersand and end with a semicolon.

For example, the lt entity inserts a literal < into a document. So the

string <element> can be represented in an XML document as

<element>.

A special form of entity reference, called a character reference, can be

used to insert arbitrary Unicode characters into your document. This is a

mechanism for inserting characters that cannot be typed directly on your

keyboard.

Character references take one of two forms: decimal references,

℞, and hexadecimal references, ℞. Both of these refer to

character number U+211E from Unicode (which is the standard Rx

prescription symbol, in case you were wondering).

3.3.4 Comments

Comments begin with <!-- and end with -->. Comments can contain any

data except the literal string --. You can place comments between

markups anywhere in your document.

Comments are not part of the textual content of an XML document. An

XML processor is not required to pass them along to an application.

3.3.5 Processing Instruction

Processing instructions (PIs) are an escape hatch to provide information

to an application. Like comments, they are not textually part of the XML

document, but the XML processor is required to pass them to an

application.

Processing instructions have the form: <?name pidata?>. The name,

called the PI target, identifies the PI to the application. Applications

should process only the targets they recognise and ignore all other PIs.

Any data that follows the PI target is optional; it is for the application

that recognises the target. The names used in PIs may be declared as

notations in order to formally identify them.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

130

PI names beginning with xml are reserved for XML standardisation.

3.3.6 CDATA Sections

In a document, a CDATA section instructs the parser to ignore most

markup characters.

Consider a source code listing in an XML document. It might contain

characters that the XML parser would ordinarily recognize as markup (<

and &, for example). In order to prevent this, a CDATA section can be

used.

<![CDATA[

*p = &q;

b = (i <= 3);

]]>

Between the start of the section, <![CDATA[and the end of the section,
]]>, all character data is passed directly to the application, without

interpretation. Elements, entity references, comments, and processing

instructions are all unrecognised and the characters that comprise them

are passed literally to the application.

The only string that cannot occur in a CDATA section is]]>.

3.3.7 Document Type Declaration

A large percentage of the XML specification deals with various sorts of

declarations that are allowed in XML. If you have experience with

SGML, you will recognise these declarations from SGML DTDs

(Document Type Definitions). If you have never seen them before, their

significance may not be immediately obvious.

4.0 CONCLUSION

In this unit, we were made to understand that XML documents appear

similar to HTML or SGML. We equally noted that in an XML

Document:

 The document begins with a processing instruction: <?xml ...?>.

 There‘s no document type declaration.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

131

 Empty elements (<applause/> in this example) have a modified

syntax. The trailing /> in the modified syntax indicates to a

program processing the XML document that the element is empty

and no matching end-tag should be sought.

Finally, we discovered that XML documents are composed of markups

and content and that there are six kinds of markup that can occur in an

XML document: elements, entity references, comments, processing

instructions, marked sections, and document type declarations.

5.0 SUMMARY

This unit presented the simple XML document as well as XML Markup

and Content. We equally considered six kinds of markup that can occur

in an XML document: elements, entity references, comments,

processing instructions, marked sections, and document type

declarations. In order to assess your comprehension of the just

concluded unit, you need to try out the questions that ensue.

6.0 TUTOR-MARKED ASSIGNMENT

1. Give a concise description of the term ‗character references‘.

2. What is the main role of a CDATA section in a document?

3. State the core components of XML documents.

4. List the six kinds of markup that can occur in an XML document.

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D).Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol.13. Issue 6.pp.

377-387.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

132

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖ TechRepublic’s

Builder.com. TechRepublic.

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL (1
st
 Ed.). Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional's Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching. Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

http://office.microsoft.com/en-us/access/HA012242471033.aspx
http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

133

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009).Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

134

UNIT 4 DOCUMENT TYPE DECLARATION

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 XML Document Declarations

3.2 Types of Declarations in XML

3.2.1 Element Type Declarations

3.2.2 Attribute List Declarations

3.2.3 Entity Declarations

3.2.4 Typical Entity Declarations

3.2.5 Types of Entities

3.2.6 Notation Declarations

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit presents the notion of document type declarations with respect

to XML documents. Four main types of XML declarations are identified

as follows: Element Type Declarations, Attribute List Declarations,

Entity Declarations and Notation Declarations. Do take note of these

main ideas. Enjoy your studies.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain the notion of document declaration

 identify the components of meta-information

 describe the four main types of declarations in XML

 list and describe the common attribute types.

3.0 MAIN CONTENT

3.1 XML Document Declarations

One of the greatest strengths of XML is that it enables one to create

personal tag names. However, for any given application, it is probably

not meaningful for tags to occur in a completely arbitrary order.

Consider the example given below:

<gracie><quote><oldjoke>Goodnight,

CIT427 DATABASE SYSTEMS AND MANAGEMENT

135

<applause/>Gracie</oldjoke></quote>

<burns><gracie>Say <quote>goodnight</quote>,

</gracie>Gracie.</burns></gracie>

It is so far outside the bounds of what we normally expect that it appears

nonsensical. It just does not mean anything.

However, from a strictly syntactic point of view, there is nothing wrong

with that XML document. So, if the document is to have meaning, and

certainly if you are writing a stylesheet or application to process it, there

must be some constraint on the sequence and nesting of tags.

Declarations are where these constraints can be expressed.

Generally, declarations allow a document to communicate meta-

information to the parser about its content. Meta-information includes

the allowed sequence and nesting of tags, attribute values and their types

and defaults, the names of external files that may be referenced and

whether or not they contain XML, the formats of some external (non-

XML) data that may be referenced, and the entities that may be

encountered.

SELF-ASSESSMENT EXERCISE

What is the basic requirement for writing an application to process an

XML document?

3.2 Types of Declaration in XML

There are four kinds of declarations in XML: element type declarations,

attribute list declarations, entity declarations, and notation declarations.

3.2.1 Element Type Declarations

Element type declarations identify the names of elements and the nature

of their content. A typical element type declaration looks like this:

<!ELEMENT oldjoke (burns+, allen, applause?)>

This declaration identifies the element named oldjoke. Its content model

follows the element name. The content model defines what an element

may contain. In this case, an oldjoke must contain burns and allen and

may contain applause. The commas between element names indicate

that they must occur in succession. The plus after burns indicates that it

may be repeated more than once but must occur at least once. The

CIT427 DATABASE SYSTEMS AND MANAGEMENT

136

question mark after applause indicates that it is optional (it may be

absent, or it may occur exactly once). A name with no punctuation, such

as allen, must occur exactly once.

Declarations for burns, allen, applause and all other elements used in

any content model must also be present for an XML processor to check

the validity of a document.

In addition to element names, the special symbol #PCDATA is reserved

to indicate character data. The moniker PCDATA stands for parseable

character data.

Elements that contain only other elements are said to have element

content. Elements that contain both other elements and #PCDATA are

said to have mixed content.

For example, the definition for burns might be

<!ELEMENT burns (#PCDATA | quote)*>

The vertical bar indicates an or relationship, the asterisk indicates that

the content is optional (may occur zero or more times); therefore, by this

definition, burns may contain zero or more characters and quote tags,

mixed in any order. All mixed content models must have this form:

#PCDATA must come first, all of the elements must be separated by

vertical bars, and the entire group must be optional.

Two other content models are possible: EMPTY indicates that the

element has no content (and consequently no end-tag), and ANY

indicates that any content is allowed. The ANY content model is

sometimes useful during document conversion, but should be avoided at

almost any cost in a production environment because it disables all

content checking in that element.

Here is a complete set of element declarations for Example 1:

Example 2. Element Declarations for Old Jokes

<!ELEMENT oldjoke (burns+, allen, applause?)>

<!ELEMENT burns (#PCDATA | quote)*>

<!ELEMENT allen (#PCDATA | quote)*>

<!ELEMENT quote (#PCDATA)*>

<!ELEMENT applause EMPTY>

CIT427 DATABASE SYSTEMS AND MANAGEMENT

137

3.2.2 Attribute List Declarations

Attribute list declarations identify which elements may have attributes,

what attributes they may have, what values the attributes may hold, and

what value is the default. A typical attribute list declaration looks like

this:

<!ATTLIST oldjoke

name

ID

#REQUIRED

label

CDATA

#IMPLIED

status (funny | notfunny) 'funny'>

In this example, the oldjoke element has three attributes: name, which

is an ID and is required; label, which is a string (character data) and is

not required; and status, which must be either funny or notfunny and

defaults to funny, if no value is specified.

Each attribute in a declaration has three parts: a name, a type, and a

default value.

You are free to select any name you wish, subject to some slight

restrictions, but names cannot be repeated on the same element.

Typical Attribute Types

There are six possible attribute types:

a. CDATA

 CDATA attributes are strings, any text is allowed. Don't confuse

CDATA attributes with CDATA sections, they are unrelated.

b. ID

 The value of an ID attribute must be a name [Section 2.3,

production 5]. All of the ID values used in a document must be

different. IDs uniquely identify individual elements in a

document. Elements can have only a single ID attribute.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

138

c. IDREF or IDREFS

 An IDREF attribute value must be that of a single ID attribute on

some element in the document. The value of an IDREFS attribute

may contain multiple IDREF values separated by white space.

d. ENTITY OR ENTITIES

 An ENTITY attribute value must be the name of a single entity

(see the discussion of entity declarations below). The value of an

ENTITIES attribute may contain multiple entity names separated

by white space.

e. NMTOKEN or NMTOKENS

 Name token attributes are a restricted form of string attribute. In

general, an NMTOKEN attribute must consist of a single word,

but there are no additional constraints on the word, it does not

have to match another attribute or declaration. The value of an

NMTOKENS attribute may contain multiple NMTOKEN values

separated by white space.

f. A LIST OF NAMES

 One can specify that the value of an attribute must be taken from

a specific list of names. This is frequently called an enumerated

type because each of the possible values is explicitly enumerated

in the declaration. Alternatively, you one can actually specify that

the names must match a notation name.

3.2.3 Entity Declarations

Entity declarations enable one associate a name with some other

fragment of content. That construct can be a chunk of regular text, a

chunk of the document type declaration, or a reference to an external file

containing either text or binary data.

A few typical entity declarations are depicted in the example below:

3.2.4 Typical Entity Declarations

<!ENTITY

ATI

―ArborText, Inc.‖>

<!ENTITY boilerplate SYSTEM

CIT427 DATABASE SYSTEMS AND MANAGEMENT

139

―/standard/legalnotice.xml‖>

<!ENTITY ATIlogo

SYSTEM ―/standard/logo.gif" NDATA GIF87A>

3.2.5 Types of Entities

There are three kinds of entities:

Internal Entities

Internal entities associate a name with a string of literal text. The first

entity in the example above is an internal entity. Using &ATI; anywhere

in the document will insert ArborText, Inc. at that location. Internal

entities allow you to define shortcuts for frequently typed text or text

that is expected to change, such as the revision status of a document.

Internal entities can include references to other internal entities, but it is

an error for them to be recursive.

The XML specification predefines five internal entities:

 < produces the left angle bracket, <

 > produces the right angle bracket, >

 & produces the ampersand, &

 ' produces a single quote character (an apostrophe), '

 " produces a double quote character, "

External Entities

External entities associate a name with the content of another file.

External entities allow an XML document to refer to the contents of

another file. External entities contain either text or binary data. If they

contain text, the content of the external file is inserted at the point of

reference and parsed as part of the referral document. Binary data is not

parsed and may only be referenced in an attribute. Binary data is used to

reference figures and other non-XML content in the document.

The second and third entities in section 3.Ent are external entities.

Using &boilerplate; will have insert the contents of the file
/standard/legalnotice.xml at the location of the entity reference. The

XML processor will parse the content of that file as if it occurred

literally at that location.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

140

The entity ATIlogo is also an external entity, but its content is binary.

The ATIlogo entity can only be used as the value of an ENTITY (or

ENTITIES) attribute (on a graphic element, perhaps). The XML

processor will pass this information along to an application, but it does

not attempt to process the content of /standard/logo.gif.

Parameter Entities

Parameter entities can only occur in the document type declaration. A

parameter entity declaration is identified by placing % (percent-space) in

front of its name in the declaration. The percent sign is also used in

references to parameter entities, instead of the ampersand. Parameter

entity references are immediately expanded in the document type

declaration and their replacement text is part of the declaration, whereas

normal entity references are not expanded. Parameter entities are not

recognised in the body of a document.

Looking back at the element declarations in Ex 2, you will notice that

two of them have the same content model:

<!ELEMENT burns (#PCDATA | quote)*>

<!ELEMENT allen (#PCDATA | quote)*>

At the moment, these two elements are the same only because they

happen to have the same literal definition. In order to make more

explicit the fact that these two elements are semantically the same, use a

parameter entity to define their content model. The advantage of using a

parameter entity is two-fold. First, it allows you to give a descriptive

name to the content, and second it allows you to change the content

model in only a single place, if you wish to update the element

declarations, assuring that they always stay the same:

<!ENTITY % personcontent "#PCDATA | quote">

<!ELEMENT burns (%personcontent;)*>

<!ELEMENT allen (%personcontent;)*>

3.2.6 Notation Declarations

Notation declarations identify specific types of external binary data.

This information is passed to the processing application, which may

make whatever use of it wishes. A typical notation declaration is:

<!NOTATION GIF87A SYSTEM "GIF">

CIT427 DATABASE SYSTEMS AND MANAGEMENT

141

Do I need a Document Type Declaration?

As we have seen, XML content can be processed without a document

type declaration. However, there are some instances where the

declaration is required:

Authoring Environments

Most authoring environments need to read and process document type

declarations in order to understand and enforce the content models of the

document.

Default Attribute Values

If an XML document relies on default attribute values, at least part of

the declaration must be processed in order to obtain the correct default

values.

White Space Handling

The semantics associated with white space in element content differs

from the semantics associated with white space in mixed content.

Without a DTD, there is no way for the processor to distinguish between

these cases, and all elements are effectively mixed content.

In applications where a person composes or edits the data (as opposed to

data that may be generated directly from a database, for example), a

DTD is probably going to be required if any structure is to be

guaranteed.

Including a Document Type Declaration

If present, the document type declaration must be the first thing in the

document after optional processing instructions and comments.

The document type declaration identifies the root element of the

document and may contain additional declarations. All XML documents

must have a single root element that contains all of the content of the

document. Additional declarations may come from an external DTD,

called the external subset, or be included directly in the document, the

internal subset, or both:

<?XML version="1.0" standalone="no"?>

<!DOCTYPE chapter SYSTEM "dbook.dtd" [

CIT427 DATABASE SYSTEMS AND MANAGEMENT

142

<!ENTITY %ulink.module "IGNORE">

<!ELEMENT ulink (#PCDATA)*>

<!ATTLIST ulink

xml:link CDATA #FIXED "SIMPLE"

xml-attributes CDATA #FIXED "HREF URL"

URL CDATA #REQUIRED>

]>

<chapter>...</chapter>

This example references an external DTD, dbook.dtd, and includes

element and attribute declarations for the ulink element in the internal

subset. In this case, ulink is being given the semantics of a simple link

from the XLink specification.

Note that declarations in the internal subset override declarations in the

external subset. The XML processor reads the internal subset before the

external subset and the first declaration takes precedence.

In order to determine if a document is valid, the XML processor must

read the entire document type declaration (both internal and external

subsets). But for some applications, validity may not be required, and it

may be sufficient for the processor to read only the internal subset. In

the example above, if validity is unimportant and the only reason to read

the doctype declaration is to identify the semantics of ulink, reading the

external subset is not necessary.

4.0 CONCLUSION

In this unit, we were made to understand that XML enables one to create

personal tag names. We learnt that in order to ensure that documents are

meaningful, there must be some constraint on the sequence and nesting

of tags. Thus, constraints can be expressed by means of declarations.

Generally, declarations allow a document to communicate meta-

information to the parser about its content. Meta-information includes

the allowed sequence and nesting of tags, attributes, values and their

types and defaults, the names of external files that may be referenced

and whether or not they contain XML, the formats of some external

CIT427 DATABASE SYSTEMS AND MANAGEMENT

143

(non-XML) data that may be referenced, and the entities that may be

encountered.

The four kinds of declarations in XML identified are as follows: element

type declarations attribute list declarations, entity declarations, and

notation declarations.

Element type declarations identify the names of elements and the nature

of their content. Attribute list declarations identify which elements may

have attributes, what attributes they may have, what values the attributes

may hold, and what value is the default.

Six possible attribute types were specified as follows: CDATA, ID,

IDREF or IDREFS, Entity or Entities, NMTOKEN or NMTOKENS and

A List of Names

Entity declarations enable one associate a name with some other

fragment of content. We discovered three kinds of entities: Internal

entities, External entities and Parameter entities.

Notation declarations identify specific types of external binary data.

This information is passed to the processing application, which may

make whatever use of it as it wishes.

In sum, the document type declaration identifies the root element of the

document and may contain additional declarations. All XML documents

must have a single root element that contains all of the content of the

document. Additional declarations may come from an external DTD,

called the external subset, or be included directly in the document, the

internal subset, or both

Note that declarations in the internal subset override declarations in the

external subset. The XML processor reads the internal subset before the

external subset and the first declaration takes precedence.

We equally learnt that in order to determine if a document is valid, the

XML processor must read the entire document type declaration (both

internal and external subsets). But for some applications, validity may

not be required, and it may be sufficient for the processor to read only

the internal subset. In the example above, if validity is unimportant and

the only reason to read the doctype declaration is to identify the

semantics of ulink, reading the external subset is not necessary.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

144

5.0 SUMMARY

This unit presented details of the concept of document type declarations

with respect to XML documents. Four main types of XML declarations

were equally specified as follows: Element Type Declarations, Attribute

List Declarations, Entity Declarations and Notation Declarations. We

hope you enjoyed your studies. It is time to test your knowledge on this

subject, so do attempt all the tasks listed in the tutor-marked assignment

below.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain the notion of document declaration.

2. List the components of meta-information.

3. Describe the four main kinds of declarations in XML.

4. Mention at least five attributes types.

7.0 REFERENCES/FURTHER READING

Avi, S.; et al. (N.D). Database System Concepts (6
th

 ed.). McGraw-Hill

Beaulieu, A. & Mary, E. T. (Eds.). Learning SQL (2
nd
 ed.). Sebastapol,

CA, USA: O'Reilly.

Beynon-Davies, P. (2004). Database Systems (3
rd

 ed.). Palgrave:

Basingstoke, UK.

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13. Issue

6.pp. 377-387.

―Database Design Basics‖. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS; Portland, Oregon, United

States. (1986). pp. 472 – 482.

Doll, S. (2002). ―Is SQL a Standard Anymore?‖. TechRepublic’s

Builder.com. TechRepublic.

http://office.microsoft.com/en-us/access/HA012242471033.aspx

CIT427 DATABASE SYSTEMS AND MANAGEMENT

145

http://articles.techrepublic.com.com/5100-10878_11-

1046268.html. Retrieved 2010-01-07.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press.

itl.nist.gov (1993) Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Lightstone, S.; et al. (2007). Physical Database Design: The Database

Professional’s Guide to Exploiting Indexes, Views, Storage, and

More. Morgan Kaufmann Press.

Kawash, J. (2004). ―Complex Quantification in Structured Query

Language (SQL): a Tutorial using Relational Calculus‖. Journal

of Computers in Mathematics and Science Teaching . Volume 23,

Issue 2, 2004 AACE Norfolk, Virginia.

Mike, C. (2011). ―Referential Integrity‖. http://databases.about.com/:

About.com.

http://databases.about.com/cs/administration/g/refintegrity.htm.

Retrieved 2011-03-17.

Oppel, A. (2004). Databases Demystified. San Francisco, CA: McGraw-

Hill Osborne Media.

Performance Enhancement through Replication in an Object-Oriented

DBM. (1986).pp. 325-336.

Ramakrishnan, R. & Gehrke, J. (2000). .Database Management Systems

(2
nd

 Ed.). McGraw-Hill Higher Education.

Seltzer, M. (2008). ―Beyond Relational Databases‖. Communications of

the ACM, 51(7), pp. 52-58.

Teorey, T.; et al. (2005). Database Modeling & Design: Logical Design

(4
th

 ed.). Morgan Kaufmann Press.

Teorey, T.J.; et al. (2009). Database Design: Know it All. Burlington,

MA: Morgan Kaufmann Publishers.

Thomas, C.; et al. (2009). Database Systems: A Practical Approach to

Design, Implementation and Management.

Tsitchizris, D. C. & Lochovsky, F.H. (1982). Data Models. Englewood-

Cliffs: Prentice-Hall.

http://articles.techrepublic.com.com/5100-10878_11-
http://databases.about.com/
http://databases.about.com/cs/administration/g/refintegrity.htm

CIT427 DATABASE SYSTEMS AND MANAGEMENT

146

UNIT 5 INTRODUCTION TO WEB SERVICES

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Web Services Background

3.2 Website or Web Services Publishing

3.3 Accessing Information from Web Services

3.4 Advantages of Web Services

3.5 Disadvantages of Web Services

3.6 Typical Web Service Invocation

3.7 Web Services Architecture

3.7.1 Service Process

3.7.2 Service Description

3.7.3 Service Invocation

3.7.4 Transport

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This last unit provides an overview of the basic concepts of web

services. Having a basic understanding of how Web Services work, will

enable you appreciate how Web Services Resource Framework (WSRF)

extends Web Services. Even if you think you already know about Web

Services, going through this section would enhance your understanding

of the topic. Enjoy your studies!

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 describe how Web Services are published

 discuss the procedure involved in accessing information from

Web Services

 specify the common advantages and disadvantages of Web

Services

 list the components of Web Services Architecture

 describe each component of Web Services Architecture.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

147

3.0 MAIN CONTENT

3.1 Web Services Background

For quite a while now, there has been a lot of thrill about ―Web

Services,‖ and many companies have begun to rely on them for their

enterprise applications. So, what exactly are Web Services? To put it

quite simply, Web Services are distributed computing technology (like

CORBA, RMI, EJB, etc.) which allow us to create client/server

applications.

For example, let us suppose a database is kept with up-to-date

information about weather in the United States, and that information has

to be distributed to everyone in the world. To do so, the weather

information could be published through a Web Service that, given a ZIP

code, will provide the weather information for that ZIP code.

3.2 Website or Web Services Publishing

Information on a website is intended for users. Conversely, information

which is available through a Web Service will always be accessed by

software, never directly by a user (in spite of the fact that there might be

a user using the software). Although Web Services rely heavily on

existing Web technologies (such as HTTP), they have no relation to web

browsers and HTML. Thus, while websites are for users, Web Services

are for software.

3.3 Accessing Information from Web Services

In order to access information (say weather information) from Web

Services, the clients (i.e. programs that want to access the weather

information) would contact the Web Service (in the server), and send a

service request asking for the weather information. The server would

then return the forecast through a service response. Obviously, this is an

imprecise example of how a Web Service works. Details of how Web

Services work is illustrated below:

Fig. 5.1 Web Services

CIT427 DATABASE SYSTEMS AND MANAGEMENT

148

3.4 Advantages of Web Services

So, what makes Web Services special? Well, Web Services have certain

advantages over other technologies:

a. Web Services are platform-independent and language-

independent, since they use standard XML languages. This

means that my client program can be programmed in C++ and

running under Windows, while the Web Service is programmed

in Java and running under Linux.

b. Most Web Services use HTTP for transmitting messages (such as

the service request and response). This is a major advantage if

you want to build an Internet-scale application, since most of the

Internet's proxies and firewalls will not mess with HTTP traffic

(unlike CORBA, which usually has trouble with firewalls).

3.5 Disadvantages of Web Services

a. Overhead. Transmitting all your data in XML is obviously not as

efficient as using a proprietary binary code. What you win in

portability, you lose in efficiency. Even so, this overhead is

usually acceptable for most applications, but you will probably

never find a critical real-time application that uses Web Services.

b. Lack of versatility. Currently, Web Services are not very

versatile, since they only allow for some very basic forms of

service invocation. CORBA, for example, offers programmers a

lot of supporting services (such as persistency, notifications,

lifecycle management, transactions, etc.). Fortunately, there is a

lot of emerging Web services specifications (including WSRF)

that are helping to make Web services more and more versatile.

However, there is one important characteristic that distinguishes Web

Services. While technologies such as CORBA and EJB are geared

towards highly coupled distributed systems, where the client and the

server are very dependent on each other, Web Services are more

adequate for loosely coupled systems, where the client might have no

prior knowledge of the Web Service until it actually invokes it. Highly

coupled systems are ideal for intranet applications, but perform poorly

on an Internet scale. Web Services, however, are better suited to meet

the demands of an Internet-wide application, such as grid-oriented

applications.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

149

SELF-ASSESSMENT EXERCISE

State two widespread messages transmitted by Web services using

HTTP.

3.6 A Typical Web Service Invocation

In order to understand what a web service invocation entails, we will

need to take a look at all the steps involved in a complete Web Service

invocation.

Fig. 5.2: A Typical Web Service Invocation

1. Ordinarily, a client may have no knowledge of what Web Service

it is going to invoke. So, our first step will be to discover a Web

Service that meets our requirements. For example, we might be

interested in locating a public Web Service which can give us the

weather forecast in Nigerian cities. We will do this by contacting

a discovery service (which is itself a Web service).

2. The discovery service will reply, telling us what servers can

provide us the service we require.

3. We now know the location of a Web Service, but we have no

idea of how to actually invoke it. Sure, we know it can give us

the forecast for a Nigerian city, but how do we perform the actual

service invocation? The method we have to invoke might be

called ―string getCityForecast(int CityPostalCode)‖, but it

CIT427 DATABASE SYSTEMS AND MANAGEMENT

150

could also be called ―string getNigerianCityWeather(string

cityName, bool isFarenheit)‖. We have to ask the Web Service

to describe itself (i.e. tell us how exactly we should invoke it)

4. The Web Service replies in a language called WSDL.

5. We finally know where the Web Service is located and how to

invoke it. The invocation itself is done in a language called

SOAP. Therefore, we will first send a SOAP request asking for

the weather forecast of a certain city.

6. The Web Service will kindly reply with a SOAP response which

includes the forecast we asked for, or maybe an error message if

our SOAP request was incorrect.

3.7 Web Services Architecture

Most of the Web Services Architecture is specified and standardised by

the World Wide Web Consortium, the same organisation responsible for

XML, HTML, CSS, etc. However, Web Services Architecture

essentially consists of:

Fig. 5.3: The Web Services Architecture

3.7.1 Service Process

This part of the architecture generally involves more than one Web

service. For example, discovery belongs in this part of the architecture,

since it allows us to locate one particular service from among a

collection of Web services.

3.7.2 Service Description

One of the most interesting features of Web Services is that they are

self-describing. This means that, once you have located a Web Service,

you can ask it to ‗describe itself‘ and tell you what operations it supports

CIT427 DATABASE SYSTEMS AND MANAGEMENT

151

and how to invoke it. This is handled by the Web Services Description

Language (WSDL).

3.7.3 Service Invocation

Invoking a Web Service (and, in general, any kind of distributed service

such as a CORBA object or an Enterprise Java Bean) involves passing

messages between the client and the server. SOAP (Simple Object

Access Protocol) specifies how we should format requests to the server,

and how the server should format its responses. In theory, we could use

other service invocation languages (such as XML-RPC, or even some ad

hoc XML language). However, SOAP is by far the most popular choice

for Web Services.

3.7.4 Transport

Finally, all these messages must be transmitted somehow between the

server and the client. The protocol of choice for this part of the

architecture is HTTP (HyperText Transfer Protocol), the same protocol

used to access conventional web pages on the Internet. Again, in theory

we could be able to use other protocols, but HTTP is currently the most

used.

4.0 CONCLUSION

To wrap up, we will go over the main ideas discussed in this unit.

Fundamentally, Web Services are distributed computing technology

(such as CORBA, RMI, EJB, etc.) which enables one to create

client/server applications.

Information which is available through a Web Service will always be

accessed by software, never directly by a user (in spite of the fact that

there might be a user using the software). Although Web Services rely

heavily on existing Web technologies (such as HTTP), they have no

relation to web browsers and HTML. Thus, while websites are for users,

Web Services are for software.

Web Services have certain advantages over other technologies:

 They are platform-independent and language-independent

 Most Web Services use HTTP for transmitting messages

On the other hand, Web Services have certain disadvantages as follows:

 Critical real-time application cannot be efficiently deployed via

Web Services.

 Web Services are not very versatile, since they only allow for

some very basic forms of service invocation.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

152

However, there is one important characteristic that distinguishes Web

Services. While technologies such as CORBA and EJB are geared

towards highly coupled distributed systems, where the client and the

server are very dependent on each other, Web Services are more

adequate for loosely coupled systems, where the client might have no

prior knowledge of the Web Service until he/she actually invokes it.

Most of the Web Services Architecture is specified and standardised by

the World Wide Web Consortium, the same organisation responsible for

XML, HTML, CSS, etc. However, Web Services Architecture

essentially consists of: Service Processes, Service Descriptions, Service

Invocations and Transport.

We hope that the ideas presented in this unit and the previous units have

enlightened you on the subjects focusing on database systems, structures

their implementations and management, as well basic concepts of XML

and Web Services. It is however recommended that you go over the

course material and all the references for further reading.

5.0 SUMMARY

This unit presented the background of Web Services as well as Website/

Web Services Publishing. We also learnt how to access information

from Web Services. Web Services Invocation and Architecture were

equally highlighted. We hope that you found this course interesting and

wish you the very best in your studies! However, before you close this

page, do attempt the tasks specified in the tutor-marked assignment

below.

6.0 TUTOR-MARKED ASSIGNMENT

1. How is Web Services Published?

2. Outline the procedure involved in accessing information from

Web Services

3. State at least two advantages of Web Services

4. List the components of Web Services Architecture

5. Give a brief description of Service Invocation

7.0 REFERENCES/FURTHER READING

Beynon-Davies, P. (2004). Database Systems (3
rd
 ed). Palgrave:

Basingstoke.

Borja, S. (2005). The Globus Toolkit 4 Programmer’s Tutorial.

CIT427 DATABASE SYSTEMS AND MANAGEMENT

153

Byers, F. R. (2003). Care and Handling of CDs and DVDs — A Guide

for Librarians and Archivists. National Institute of Standards and

Technology.

Codd, E. F. (1970). ―A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM archive. Vol. 13, pp.377-

387.

Codd, E. F. (1970).‖A Relational Model of Data for Large Shared Data

Banks‖. Communications of the ACM 13 (6):pp. 377–387.

Database Design Basics. (N.D.). Retrieved May 1, 2010, from

http://office.microsoft.com/en-us/access/HA012242471033.aspx

Development of an Object-Oriented DBMS;(1986). Portland, Oregon,

United States; pp. 472 – 482.

Elliote, R.W. & Scott, M.W. (2010). XML in a Nutshell.

Gehani, N. (2006). The Database Book: Principles and Practice using

MySQL. Summit, NJ: Silicon Press

itl.nist.gov (1993). Integration Definition for Information Modeling

(IDEFIX). 21 December 1993.

Norman, W. (1998). A Technical Introduction to XML.

http://office.microsoft.com/en-us/access/HA012242471033.aspx

