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Introduction:  
Several Programming Language (PL) have been developed and most of it are in used. However, 

some of these PLs have similarity while some are entirely different from each other.  The 

comparison between the PLs led to categorize PL into different classes. Organization of 

Programming Languages (OPL) is a course on the fundamental principles of programming 

languages, introduction to fundamental principles and techniques in programming languages 

design and implementation. It handles the programing paradigm and historical pattern of 

programming. The course elaborates on language structure, data type and data structure. 

Course Justification: 
Any serious study of programming languages requires an examination of some related topics 

among which are formal methods of describing the syntax and semantics of programming 

languages and its implementation techniques. The need to use programming language to solve our 

day-to-day problems grows every year. Students should be able to familiar with popular 

programming languages and the advantage they have over each other. They should be able to know 

which programming language solves a particular problem better. The theoretical and practical 

knowledge acquired from this course will give the students a foundation from which they can 

appreciate the relevant and the interrelationships of different programming languages. 

Course Objectives: 
Certain objectives have been set out to ensure that the course achieves its aims. Apart from the 

course objectives, every unit of this course has set objectives. In the course of the study, you will 

need to confirm, at the end of each unit, if you have met the objectives set at the beginning of each 

unit. By the end of this course you should be able to: 

• Increase capacity of computer science students to express ideas 

• Improve their background for choosing appropriate languages 

• Increase the ability to learn new languages 

• Better understand the significance of programming implementation 

• Ensure overall advancement of computing 

 

CIT 401– Organization of Programming Languages is a three (3) unit course. It deals with 

Language definition structure. Data types and structures, Review of basic data types, including 
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lists and tress, control structure and data flow, Run-time consideration, interpretative languages, 

lexical analysis and parsing. 

This Course Guide gives you a brief overview of the course content, course duration, and course 

materials. 

Course Aims 
i. Introduce the concepts of programming language in preparation for the main course; 

ii. to discuss structural layer of programming language and formal methods of describing syntax; 

iii. Introduce lexical analysis, parsing and language processing; and 

iv.  explain data type and structure. 

v. Identify the common error of runtime 

Working through this Course 
In order to have a thorough understanding of the course units, you will need to read and understand 

the contents and be committed to learning and implementing your knowledge. This course is 

designed to cover approximately sixteen weeks, and it will require your devoted attention. You 

should do the exercises in the Tutor-Marked Assignments and submit to your tutors. 

Course Materials 

These include: 

1. Course Guide 

2. Study Units 

3. Recommended Texts 

4. A file for your assignments and for records to monitor your progress. 

Study Units 

There are ten (10) study units in this course:  

Module 1 Introduction to Programming Language 

Unit 1  Introduction to Programming Language 

Unit 2   Programming Languages Evolution and Paradigms 

Unit 3  Structure and unstructured Programming Language 
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Module 2  Language Structure 

Unit 1  Language Structure 

Unit 2  Syntax and Semantics 

Unit 3   Lexical Analysis and Parsing  

Unit 4  Language processing 

 

Module 3 Structuring Data 

Unit 1  Data Types and Data Structure 

Unit 2   Control Structure and Data Flow 

Unit 3  Run-time Consideration 

Make use of the course materials, do the exercises to enhance your learning. 

Textbooks and References 

Chen, Y. (2020). Chapter 1 Basic Principles of Programming Languages. In Introduction to 

Programming Languages (Sixth, pp. 1–40). Kendal Hunt Plublishing 

John C. Mitchell (2003). Concepts in Programming Languages. Cambridge University Press © 

2003 (529 pages). ISBN:0521780985 

Sebesta, R. W. (2016). Concepts of Programming Languages (Eleventh Edition). Pearson 

Education Limited.  

Sebesta, R. W. (2009). Concepts of Programming Languages (Tenth Edition). Pearson Education 

Limited. 

Jaemin Hong and Sukyoung Ryu (2010) Introduction to Programming Languages 

Ghezzi & Jazayeri (1996.) Programming language concepts—Third edition John Wiley & Sons 

New York Chichester Brisbane Toronto Singapore 1996. 

Gabbriell M. & Martini S. (2010). Programming Languages: Principles and Paradigms, 

Undergraduate Topics in Computer Science, DOI 10.1007/978-1-84882-914-5_1, © Springer-

Verlag London Limited 2010 

Archana M. Principles of Programming Languages 

https://www.integralist.co.uk/posts/data-types-and-data-structures/ 

https://www.geeksforgeeks.org/ 

https://www.sctevtservices.nic.in/docs/website/pdf/140338.pdf 
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https://www.scribd.com/document/70893872 

http://www.tutorialsspace.com/Programming-Languages 

https://www.geeksforgeeks.org/the-evolution-of-programming-languages 

https://blog.stackpath.com/runtime/ 

http://net-informations.com/python/iq/checking.htm 

 

Assignments File 
These are of two types: the self-assessment exercises and the Tutor-Marked Assignments. The 

self-assessment exercises will enable you monitor your performance by yourself, while the Tutor-

Marked Assignment is a supervised assignment. The assignments take a certain percentage of your 

total score in this course. The Tutor-Marked Assignments will be assessed by your tutor within a 

specified period. 

The examination at the end of this course will aim at determining the level of mastery of the subject 

matter. This course includes twelve Tutor-Marked Assignments, and each must be done and 

submitted accordingly. Your best scores however, will be recorded for you. Be sure to send these 

assignments to your tutor before the deadline to avoid loss of marks. 

Presentation Schedule 
The Presentation Schedule included in your course materials gives you the important dates for the 

completion of tutor marked assignments and attending tutorials. Remember, you are required to 

submit all your assignments by the due date. You should guard against lagging behind in your 

work. 

Assessment 
There are two aspects to the assessment of the course. First are the tutor marked assignments; 

second, is a written examination. In tackling the assignments, you are expected to apply 

information and knowledge acquired during this course. The assignments must be submitted to 

your tutor for formal assessment in accordance with the deadlines stated in the Assignment File. 

The work you submit to your tutor for assessment will count for 30% of your total course mark. 

At the end of the course, you will need to sit for a final three-hour examination. This will also 

count for 70% of your total course mark. 
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Tutor-Marked Assignment 
There are twelve tutor-marked assignments in this course. You need to submit all the assignments. 

The total marks for the best four (4) assignments will be 30% of your total course mark. 

Assignment questions for the units in this course are contained in the Assignment File. You should 

be able to complete your assignments from the information and materials contained in your set 

textbooks, reading and study units. However, you may wish to use other references to broaden 

your viewpoint and provide a deeper understanding of the subject. 

When you have completed each assignment, send it together with form to your tutor. Make sure 

that each assignment reaches your tutor on or before the deadline given. If, however, you cannot 

complete your work on time, contact your tutor before the assignment is done to discuss the 

possibility of an extension.  

Examination and Grading 
The final examination for the course will carry 70% percentage of the total marks available for 

this course. The examination will cover every aspect of the course, so you are advised to revise all 

your corrected assignments before the examination. 

This course endows you with the status of a teacher and that of a learner. This means that you 

teach yourself and that you learn, as your learning capabilities would allow. It also means that you 

are in a better position to determine and to ascertain the what, the how, and the when of your 

language learning. No teacher imposes any method of leaming on you. 

The course units are similarly designed with the introduction following the table of contents, then 

a set of objectives and then the dialogue and so on. 

The objectives guide you as you go through the units to ascertain your knowledge of the required 

terms and expressions. 
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Course Marking Scheme 
This table 1 shows how the actual course marking is broken down. 

Table 1: Marking Scheme 

Assignment Marks Comment 
Assignment 1  
Assignment 2 
Assignment 3 
Assignment 4 

10 Marks 
10 Marks 
10 Marks 
10 Marks 

Note: The best three marks out 
of the four assignments given 
will be picked as the 
Continuous Assessment (CA) 
to make up for the 30% 

End of Course Examination 70% 0f the overall Course 
Marks. 

 

Total 100% of Course Material.  

How to Get the Best from this Course 
In distance learning the study units replace the university lecturer. This is one of the great 

advantages of distance learning; you can read and work through specially designed study materials 

at your own pace, and at a time and place that suit you best. Think of it as reading the lecture 

instead of listening to a lecturer. In the same way that a lecturer might set you some reading to do, 

the study units tell you when to read your set books or other material. Just as a lecturer might give 

you an in-class exercise, your study units provide exercises for you to do at appropriate points. 

Each of the study units follows a common format. The first item is an introduction to the subject 

matter of the unit and how a unit is integrated with the other units and the course as a whole. Next 

is a set of learning objectives. These objectives enable you know what you should be able to do by 

the time you have completed the unit. You should use these objectives to guide your study. When 

you have finished the units, you must go back and check whether you have achieved the objectives. 

If you make a habit of doing this, you will significantly improve your chances of passing the 

course. 

Remember that your tutor’s job is to assist you. When you need help, don’t hesitate to call and ask 

your him/her. 

1. Read this Course Guide thoroughly. 

2. Organize a study schedule. Refer to the ‘Course Overview’ for more details. Note the time you 

are expected to spend on each unit and how the assignments relate to the units. Whatever method 

you chose to use, you should decide on it and write in your own dates for working on each unit. 
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3. Once you have created your own study schedule, do everything you can to stick to it. The major 

reason that students fail is that they lag behind in their course work. 

4. Turn to Unit 1 and read the introduction and the objectives for the unit. 

5. Assemble the study materials. Information about what you need for a unit is given in the 

‘Overview’ at the beginning of each unit. You will almost always need both the study unit you are 

working on and one of your set of books on your desk at the same time. 

6. Work through the unit. The content of the unit itself has been arranged to provide a sequence 

for you to follow. As you work through the unit you will be instructed to read sections from your 

set books or other articles. Use the unit to guide your reading. 

7. Review the objectives for each study unit to confirm that you have achieved them. If you feel 

unsure about any of the objectives, review the study material or consult your tutor. 

8. When you are confident that you have achieved a unit’s objectives, you can then start on the 

next unit. Proceed unit by unit through the course and try to pace your study so that you keep 

yourself on schedule. 

9. When you have submitted an assignment to your tutor for marking, do not wait for its return 

before starting on the next unit. Keep to your schedule. When the assignment is returned, pay 

attention to your tutor’s comments, both on the tutor-marked assignment form and also written on 

the assignment. Consult your tutor as soon as possible if you have any questions or problems. 

10. After completing the last unit, review the course and prepare yourself for the final examination. 

Check that you have achieved the unit objectives (listed at the beginning of each unit) and the 

course objectives (listed in this Course Guide). 

Facilitators/Tutors and Tutorials 

There are 15 hours of tutorials provided in support of this course. You will be notified of the 

dates, times and location of these tutorials, together with the name and phone number of your tutor, 

as soon as you are allocated a tutorial group. 

Your tutor will mark and comment on your assignments, keep a close watch on your progress and 

on any difficulties you might encounter and provide assistance to you during the course. You must 

mail or submit your tutor-marked assignments to your tutor well before the due date (at least two 

working days are required). They will be marked by your tutor and returned to you as soon as 

possible. 
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Do not hesitate to contact your tutor by telephone, or e-mail if you need help. The following might 

be circumstances in which you would find help necessary. Contact your tutor if you: 

• do not understand any part of the study units or the assigned readings, 

• have difficulty with the self-tests or exercises, 

• have a question or problem with an assignment, with your tutor’s comments on an assignment 

or with the grading of an assignment. 

You should try your best to attend the tutorials. This is the only chance to have face to face contact 

with your tutor and to ask questions which are answered instantly. You can raise any problem 

encountered during your study. To gain the maximum benefit from course tutorials, prepare a 

question list before attending them. You will learn a lot from participating in discussions actively. 

Summary 
The course presented the fundamental of programing language, evolution of programming 

language, programming paradigm, language structure, syntax and semantics, lexical analysis, and 

language processing. Also, the course intimates the leaner with data type and data structure, control 

structure and data flow as well as run-time consideration. Upon the completing this course, the 

learner will be equipped with the ability to know popular programming languages and the 

advantage they have over each other.  

I wish you success with the course and hope that you will find it both interesting and useful.  

 



CIT401  COURSE GUIDE 

1 
 

Module 1: Concept of Programming Language 
 
Introduction of Module 

Programming languages are tools used in developing software thus this module discusses the 

concept of programming language. This discussion on the concept of programming language is 

used to refresh and prepare the leaners towards the main topics.  The first unit of the module 

presents the fundamental of programing language which is the foundation. It also discusses the 

categories of programming language as well as the attribute of good programming language. 

Programming languages have been in active over 40 years ago thus, all languages have their link 

to the earlier versions developed. Hence, the second unit presents discussions on programming 

language evolution and programming paradigm. For easy understanding of programs, the last unit 

of the module deliberates on structured and unstructured programming. Likewise, the merit and 

demerit of structured programming are presented. 
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Unit 1  Introduction to Programming Language 

1   Introduction  

This unit introduces the leaner to fundamental of programing language and serves as the 

foundation for the entire module. Several definitions of programming language are stated and the 

three categories of programming language - machine, assembly and high level languages - are 

briefly discussed. The unit shall therefore expose the students to program performance, features 

and the attribute of good programming language. 

2     Intended Learning Outcomes (ILOs)  

At the end of the unit, students should able to 

• Define Programming language 

• Explain machine language, assembly language and high-level language 

• Discuss attribute of good programming language 

• Explain performance and features of programming language 

3  Main Content 

3.1 Introduction to Programming language 
A programming language is a language designed to communicate instructions to a computer. They 

are used to create programs that control the behavior of a machine. A programming language is a 

notation for writing programs, which are specifications of a computation or algorithm. However, 

some authors restrict the term "programming language" to those languages that can express all 

possible algorithms.  Thus, Programming language is a set of commands, strings or characters 

readable by programmers but easily translatable to machine code. It has syntax, grammar, and 

semantics.  

• Syntax is a set of rules that define how the commands have to be arranged to make sense 

and to be correctly translatable to the machine code.  

• Grammar is a set of rules of using different punctuation, quotation marks, semicolons, and 

other symbols to divide and clarify the syntax of a particular language.  

• Semantics is a set of meanings assigned to every command of the language and is used to 

properly translate the programme to machine code.  
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3.2 Classification of Programming language 
Programming Language can be grouped into three namely; Machine Languages, Assembly 

Languages and High level Languages. 

3.2.1 Machine Language:  
Machine language is a collection of binary digits or bits that the computer reads and interprets. 

Machine language is the only language a computer is capable of understanding. Machine level 

language is a language that supports the machine side of the programming or does not provide 

human side of the programming. It consists of (binary) zeros and ones. Each instruction in a 

program is represented by a numeric code, and numerical addresses are used throughout the 

program to refer to memory locations in the computer’s memory. Microcode allows for the 

expression of some of the more powerful machine level instructions in terms of a set of basic 

machine instructions. 

3.2.2 Assembly language:   
Assembly language is easier to use than machine language. An assembler is useful for detecting 

programming errors. Programmers do not have the absolute address of data items. Assembly 

language encourage modular programming. 

3.2.3 High level language  

High level language is a language that supports the human and the application sides of the 

programming. A language is a machine independent way to specify the sequence of operations 

necessary to accomplish a task. A line in a high-level language can execute powerful operations. 

and correspond to tens, or hundreds, of instructions at the machine level. Consequently more 

programming is now done in high level languages. Examples of high-level languages are BASIC, 

FORTRAN etc. 

3.3 Attribute of good Programming Language 
There are various factors why the programmers prefer one language over the another. Some of 

very good characteristics of a good programming language are, 

3.3.1 Clarity, Simplicity and Unity:  
A Programming language provides both a conceptual framework for Algorithm planning and 

means of expressing them. It should provide a clear, simple and unified set of concepts that can be 

used as primitives in developing algorithms. It should be simple and regular as well as have 
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minimum number of different concepts, and rules for their combination. This attribute is called 

conceptual integrity. 

3.3.2 Orthogonality:  
Orthogonality is one of the most important features of PL. It is the property that says " Changing 

A does not change B".  In real world, radio is an example of an orthogonal system.  For instance, 

changing a station in a radio does not change the volume and vice versa. When the features of a 

language are orthogonal, language is easier to learn and programs are easier to write because only 

few exceptions and special cases to be remembered.  

3.3.3 Support for Abstraction:  
There is always found that a substantial gap remaining between the abstract data structure and 

operations that characterize the solution to a problem and their particular data structure and 

operations built into a language. 

3.3.4 Programming Environment:  
An appropriate programming environment (reliable documentation and testing packages) adds an 

extra utility and make language implementation easier. 

3.3.5 Ease of program verification/Reusability:  
The reusability of program written in a language is always a central concern. A program is checked 

by various testing technique like Formal verification method Desk checking Input output test 

checking. We verify the program by many more techniques. A language that makes program 

verification difficult may be far more troublesome to use. Simplicity of semantic and syntactic 

structure is a primary aspect that tends to simplify program verification. 

3.3.6 Portability of programs:  
Programming language should be portable means it should be easy to transfer a program from 

which they are developed to the other computer. A program whose definition is independent of 

features of a Particular machine forms can only support Portability. Example: Ada, FORTRAN, 

C, C++, Java. 

3.4 Program performance and features of programming languages 
A programming language’s features include orthogonality or simplicity, available control 

structures, data types and data structures, syntax design, support for abstraction, expressiveness, 

type equivalence, and strong versus weak type checking, exception handling, and restricted 

aliasing. While the performance of a program, including reliability, readability, writability, 
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reusability, and efficiency, is largely determined by the way the programmer writes the algorithm 

and selects the data structures, as well as other implementation details. However, the features of 

the programming language are vital in supporting and enforcing programmers in using proper 

language mechanisms in implementing the algorithms and data structures. Table 2 shows the 

influence of a language’s features on the performance of a program written in that language. 

Table 2 indicates that simplicity, control structures, data types, and data structures have significant 

impact on all aspects of performance. Syntax design and the support for abstraction are important 

for readability, reusability, writability, and reliability. However, they do not have a significant 

impact on the efficiency of the program. Expressiveness supports writability, but it may have a 

negative impact on the reliability of the program. Strong type checking and restricted aliasing 

reduce the expressiveness of writing programs, but are generally considered to produce more 

reliable programs. Exception handling prevents the program from crashing due to unexpected 

circumstances and semantic errors in the program. 

Table 2: Impact of Language Features on the Performance of the Programs 

 

4  Self-Assessment Exercises 

• List and explain the three categories of programming language 

• Discuss the attribute of a good programming language 

• State any five features of a computer program 

• List five program performances 

5 Answer to Self-Assessment Exercises 

• List and explain the three categories of programming language – Section 3.2 
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• Discuss the attribute of a good programming language – Section 3.3 

• State any five features of a computer program – Section 3.4 

• List five program performances – Section 3.4 

6  Conclusion  

In this unit, you have been introduced to the fundamental of programming language. Programming 

language is described as a collection of instruction which can be translated to machine code and 

readable by the programmers. There are rules guiding the construction of language. It has syntax, 

semantic and grammar rules.  The features of the programming language are vital in supporting 

and enforcing programmers in using proper language mechanisms in implementing the algorithms 

and data structures. 

7  Summary  

In this unit, you learnt that a programming language is a set of symbols, grammars and rules with the 

help of which one is able to translate algorithms to programs that will be executed by the computer. 

There are three categories of programming language which are machine language, assemble 

language and high level language. Clarity, simplicity and unity, orthogonality, support for 

abstraction, programming environment, ease of program verification and portability of program 

were presented as good attribute of programming language.  
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3. Main Content 
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1 Introduction  
Programming Language is indeed an essential part of today’s tech world.  There are lots of 

programming languages which have their own syntax, sematic and features. This unit presents the 

evolution of programming language and deliberations on programming paradigm. Paradigm in 

programming language is the set of basic principles, concept and methods in which the 

computation or algorithm is expressed. Based on the paradigms, programming languages are 

classified into different classes.   

2 Intended Learning Outcomes (ILOs)  

At the end of the unit, students should able to 

• Have historical knowledge of programming language 

• Discuss the programming paradigm 

• Explain different categories of programming paradigm  

3 Main Content 
3.1 Programming Language Evolution  
3.1.1 1883: The Beginning …!! 
In the early days, Charles Babbage had made the device, but he was confused about how to give 

instructions to the machine, and then Ada Lovelace wrote the instructions for the analytical engine. 

The device was made by Charles Babbage and the code was written by Ada Lovelace for 

computing Bernoulli’s number. That was the first time in history that the capability of computer 

devices was judged. 

3.1.2 1949: Assembly Language 
It is a type of low-level language. It mainly consists of instructions (kind of symbols) that only 

machines could understand. In today’s time, assembly language is used in real-time programs such 

as simulation flight navigation systems and medical equipment e.g. – Fly-by-wire (FBW) systems. 

It is also used to create computer viruses. 

3.1.3 1954 - : FORTRAN 
FORTRAN was developed in 1954 by John Backus and IBM. It was designed for numeric 

computation and scientific computing. Software for NASA probes voyager-1 (space probe) and 

voyager-2 (space probe) was originally written in FORTRAN.  It is first high level language.  It 

was developed using the first compiler and it is Machine Independent Language. In 1958 
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FORTRAN 2nd version was developed which introduces subroutines, functions, loops and 

primitive for loop. It started as a Project and later renamed as ALGOL58. 

3.1.4 1958: ALGOL  
ALGOL stands for ALGOrithmic Language. The initial phase of the most popular programming 

languages of C, C++, and JAVA. It was also the first language implementing the nested function 

and has a simple syntax than FORTRAN. The first programming language to have a code block 

like “begin” that indicates that your program has started and “end” means you have ended your 

code. ALGOL(ALGOrithmic Language) was a first "Block Structured Language released in 1960.  

It was Considered to be the first second generation Computer Language and Machine Independent 

language. It introduced concepts like: Block structure code (Marked by BEGIN and END), Scope 

of variables (Scope of local variables inside blocks), BNF (Backus Naur Form), Notation for 

defining syntax, Dynamic Arrays, Reserved words and IF THEN ELSE, FOR, WHILE loops  

3.1.5 1959: COBOL 
It stands for COmmon Business-Oriented Language. In 1997, 80% of the world’s business ran on 

Cobol. The US internal revenue service scrambled its path to COBOL-based IMF (individual 

master file) in order to pay the tens of millions of payments mandated by the coronavirus aid, 

relief, and economic security. COBOL was rated in May 1959 by the ShortRange committee of 

the US department of DOD.  

3.1.6 1964: BASIC 
BASIC (Beginner's All-purpose Symbolic Instruction Code). It was designed as a teaching 

language in 1963 by John George Kemeny and Thomas Eugene Kurtz of Dartmouth college. 

Intended to make it easy to learn programming. In 1991 Microsoft released Visual Basic, an 

updated version of Basic but the first microcomputer version of Basic was co-written by Bill Gates, 

Paul Allen, and Monte Davidoff for their newly-formed company, Microsoft.   

3.1.7 1970: Pascal  
Pascal is named after a French religious fanatic and mathematician Blaise Pascal. It was Created 

in 1970 with the intension of replacing BASIC for teaching language. It was quickly developed as 

a general purpose language.  It was Programs compiled to a platform-independent intermediate p-

code. The compiler for Pascal was written in Pascal.  
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3.1.8 1972: C 
C is a general-purpose, procedural programming language and the most popular till now. All the 

previous codes (like operating system and kernel) written in assembly language gets replaced by 

the C language. C can be used to implementing operating system, embedded system, and on the 

website using the Common Gateway Interface (CGI). C is the mother of almost all higher-level 

programming languages like C#, D, Go, Java, JavaScript, Limbo, LPC, Perl, PHP, Python, and 

Unix’s C shell. 

3.1.9 Other Programming Languages  
The table 3 below listed some popular programming languages among the programmers.  

Table 3: Other Programming Languages 

YEAR OF 
RELEASE 

PROGRAMMING 
LANGUAGES FACTS 

1972  SQL 
SQL was developed at IBM by Donald D. Chamberlin and Raymond F. 
Boyce. The earlier name was SEQUEL (Structured English Query 
Language). 

1978 MATLAB It stands for MATrix LABoratory. It is used for matrix manipulation, 
implementation of an algorithm, and creation of a user interface. 

1983 Objective-C, C++ C++ is the fastest high-level programming language. Earlier, Apple Inc 
uses Objective-C to make applications. 

1990 Haskell It is a purely functional programming language. 

1991 Python 
It was Created in 1991 by GuidoVan Rossum. The language is very easy 
to understand. Famous language among data scientists and analysts. A 
scripting language with dynamic type, intended to replace perl 

1995 

JAVA JAVA is everywhere. JAVA is the platform-independent language.  

PHP PHP is a scripting language mainly used in web programming for 
connecting databases. 

JavaScript 
JavaScript enables interactive web pages. JS is the most popular 
programming language. JS is famous for building a web application. It 
makes our page interactive. 

2000 C# C#(C-sharp) is mainly used for making games. Unity engine uses C# for 
making amazing games for all platforms 

2009 GO GO language is developed in Google by Robert Griesemer, Rob Pike, and 
Ken Thompson.  

2011 Kotlin Kotlin is developed by JetBrains. It is used for making an android 
application. 

2014 Swift Swift language is developed by Apple Inc. It is a general-purpose 
programming language. 
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3.2 Programming Language Paradigm 
A programming paradigm is an approach to programming a computer based on a coherent set of 

principles or mathematical theory. By the word paradigm, we understand a set of patterns and 

practices used to achieve a certain goal. Millions of programming languages have been invented, 

and several thousands of them are actually in use. Compared to natural languages that developed 

and evolved independently, programming languages are far more similar to each other because: 

• different programming languages share the same mathematical foundation (e.g., Boolean 

algebra, logic);  

• they provide similar functionality (e.g., arithmetic, logic operations, and text processing);  

• they are based on the same kind of hardware and instruction sets;  

• they have common design goals: find languages that make it simple for humans to use and 

efficient for hardware to execute;  

• designers of programming languages share their design experiences. 

It is worthwhile to note that many languages belong to multiple paradigms. For example, we can 

say that C++ is an object-oriented programming language. However, C++ includes almost every 

feature of C and thus is an imperative programming language too. We can use C++ to write C 

programs. Java is more object- oriented, but still includes many imperative features. For example, 

Java’s primitive type variables do not obtain memory from the language heap like other objects. 

Lisp contains many nonfunctional features. Scheme can be considered a subset of Lisp with fewer 

nonfunctional features. Prolog’s arithmetic operations are based on the imperative paradigm. 

3.2.1 Categories of Programming Paradigm 
There are many programming paradigms in use today.  A main programming paradigm stems an 

idea within some basic discipline which is relevant for performing computations. Some 

programming languages, however, are more similar to each other, while other programming 

languages are more different from each other. Based on their similarities or the paradigms, 

programming languages can be divided into different classes namely; 

• Imperative paradigm  

• Functional paradigm,  

• Logic paradigm 

• Object-Oriented paradigm  

• Visual paradigm  
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• Parallel/concurrent paradigms,  

• Constraint based paradigm  

• Dynamic paradigms. 

3.2.2 Overview of Main Programming Paradigm 
There are four main programming paradigms which are imperative paradigm functional paradigm, 

logical paradigm and object-oriented paradigm. 

3.2.2.1 Imperative Paradigm 
The imperative, also called the procedural programming paradigm expresses computation by fully 

specified and controlled manipulation of named data in a stepwise fashion. In other words, data or 

values are initially stored in variables (memory locations), taken out of (read from) memory, 

manipulated in ALU (arithmetic logic unit), and then stored back in the same or different variables 

(memory locations). Finally, the values of variables are sent to the I/O devices as output. The 

foundation of imperative languages is the stored program concept-based computer hardware 

organization and architecture (von Neumann machine). The stored program concept will be further 

explained in the next chapter. Typical imperative programming languages include all assembly 

languages and earlier high-level languages like Fortran, Algol, Ada, Pascal, and C. 

3.2.2.2 Object-Oriented Paradigm 
The object-oriented programming paradigm is basically the same as the imperative paradigm, 

except that related variables and operations on variables are organized into classes of objects. The 

access privileges of variables and methods (operations) in objects can be defined to reduce 

(simplify) the interaction among objects. Objects are considered the main building blocks of 

programs, which support language features like inheritance, class hierarchy, and polymorphism. 

Typical object-oriented programming languages include Smalltalk, C++, Python, Java, and C#. 

3.2.2.3 Functional (Application) Paradigm 
The functional, also called the applicative, programming paradigm expresses computation in terms 

of mathematical functions. Since we express computation in mathematical functions in many of 

the mathematics courses, functional programming is supposed to be easy to understand and simple 

to use. However, programmers find it difficult to switch because they are already familiar with the 

functional programming. The main difference is that there is no concept of memory locations in 

functional programming languages. Each function will take a number of values as input 
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(parameters) and produce a single return value (output of the function). The return value cannot 

be stored for later use. It has to be used either as the final output or immediately as the parameter 

value of another function. Functional programming is about defining functions and organizing the 

return values of one or more functions as the parameters of another function. Functional 

programming languages are mainly based on the lambda calculus that will be discussed in Chapter 

4. Typical functional programming Languages include ML, SML, and Lisp/Scheme. Python and 

C# support direct applications of lambda calculus and many functional programming features. 

3.2.2.4 Logic Paradigm 
The logic, also called the declarative, programming paradigm expresses computation in terms of 

logic predicates. A logic program is a set of facts, rules, and questions. The execution process of a 

logic program is to compare a question to each fact and rule in the given fact and rulebase. If the 

question finds a match, we receive a yes answer to the question. Otherwise, we receive a no answer 

to the question. Logic programming is about finding facts, defining rules based on the facts, and 

writing questions to express the problems we wish to solve. Prolog is the only significant logic 

programming language. 

4 Self-Assessment Exercises 
• Explain the evolution of programming language. 

• What is programming language paradigm? 

• List all categories of programming language paradigm. 

• Compare and contrast the four programming paradigms: imperative, object-oriented, 

functional, and logic 

• Explain in details the four common programming language paradigm. 

5 Answer to Self-Assessment Exercises 
• Explain the evolution of programming language – Section 3.1. 

• What is programming language paradigm? A programming paradigm is an approach to 

programming a computer based on a coherent set of principles or mathematical theory 

• List all categories of programming language paradigm: Imperative paradigm, Functional 

paradigm, Logic paradigm, Object-Oriented paradigm, Visual paradigm, 

Parallel/concurrent paradigms, Constraint based paradigm, Dynamic paradigms. 
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• Compare and contrast the four programming paradigms: imperative, object-oriented, 

functional, and logic – Section 3.2.2 

• Explain in details the four common programming language paradigm. – Section 3.2.2 

6  Conclusion  
Paradigm is a set of basic principles, concepts, and methods for how a computation or algorithm 

is expressed. We have several programming paradigms nowadays. Although there is similarity 

between some of these programming languages. This unit emphasizes the need to know which 

paradigm the programming language in use belong to. 

7 Summary  
In this unit, you learnt that the history of programming language right from the beginning till 

present. Also, the programming paradigms were discussed. The four common program paradigm 

and groups were discussed as well as their similarities and differences.  

8 References/Further Reading 
Ghezzi & Jazayeri (1996.) Programming language concepts—Third edition John Wiley & Sons 

New York Chichester Brisbane Toronto Singapore 1996. 

https://www.geeksforgeeks.org/the-evolution-of-programming-languages 
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1  Introduction  
This unit discusses structured and unstructured programming towards making programming easier 

to understand.  While drawing the difference between structured and unstructured language, the 

unit deliberates on types and components of structured programming language, and highlighted 

their advantages and disadvantages. 

2   Intended Learning Outcomes (ILOs)  
At the end of the unit, students should able to 

• Understand structured/ unstructured programming language 

• Differentiate between structured and unstructured programming language 

• Explain types and component of structured programming 

• Discuss the advantages and disadvantaged od structured programming 

3   Main Content 
3.1 Elementary structures of structured programs? 

Structured programming (sometimes known as modular programming) is a programming 

paradigm that facilitates the creation of programs with readable code and reusable components. 

All modern programming languages support structured programming, but the mechanisms of 

support, like the syntax of the programming languages, varies. Where modules or elements of code 

can be reused from a library, it may also be possible to build structured code using modules written 

in different languages, as long as they can obey a common module interface or application program 

interface (API) specification. However, when modules are reused, it's possible to compromise data 

security and governance, so it's important to define and enforce a privacy policy controlling the 

use of modules that bring with them implicit data access rights.  

Structured programming encourages dividing an application program into a hierarchy of modules 

or autonomous elements, which may, in turn, contain other such elements. Within each element, 

code may be further structured using blocks of related logic designed to improve readability and 

maintainability. These may include case, which tests a variable against a set of values; Repeat, 

while and for, which construct loops that continue until a condition is met. In all structured 

programming languages, an unconditional transfer of control, or goto statement, is deprecated and 

sometimes not even available. 
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• Block: It is a command or a set of commands that the program executes linearly. The 

sequence has a single point of entry (first line) and exit (last line). 

• Selection: It is the branching of the flow of control based on the outcome of a condition. 

Two sequences are specified: the ‘if’ block when the condition is true and the ‘else’ block 

when it is false. The ‘else’ block is optional and can be a no-op. 

• Iteration: It is the repetition of a block as long as it meets a specific condition. The 

evaluation of the condition happens at the start or the end of the block. When the condition 

results in false, the loop terminates and moves on to the next block. 

• Nesting: The above building blocks can be nested because conditions and iterations, when 

encapsulated, have singular entry-exit points and behave just like any other block. 

• Subroutines: Since entire programs now have singular entry-exit points, encapsulating 

them into subroutines allows us to invoke blocks by one identifier. 

3.2 Difference between structured and unstructured programming languages 

A structured programming language facilitates or enforces structured programming practices. 

These practices can also be supported with unstructured languages, but that will require specific 

steps in program design and implementation. Structured programming practices thus date to the 

emergence of structured programming languages. 

The theoretical basis for structured programming goes back to the 1950s, with the emergence of 

the ALGOL 58 and 60 languages. Up to then, code clarity was reduced by the need to build 

condition/action tests by having programmers write linked tests and actions explicitly (using the 

goto statement or its equivalent), resulting in what was often called spaghetti code. ALGOL 

included block structure, where an element of code included a condition and an action. 

Modular programming, which is today seen as synonymous with structured programming, 

emerged a decade later as it became clear that reuse of common code could improve developer 

productivity. In modular programming, a program is divided into semi-independent modules, each 

of which are called when needed. Purists argue that modular programming requires actual 

independence of modules, but most development teams consider any program that divides logic 

into separate elements, even if those elements exist within the same program, as modular. 
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Modern programming languages are universally capable of producing structured code. Similarly, 

they're also capable of producing code fairly described as unstructured if used incorrectly. Some 

would say that an unstructured programming language contains goto statements and, thus, does 

not require a "call" to a separate module, which then returns when complete, but that definition is 

unnecessarily restrictive. It's better to say that the mechanisms for enforcing structure vary by 

language, with some languages demanding structure and other accepting less-structured code. 

3.3 Types of structured programming 

Structured programming can be divided into three categories, including: 

3.3.1 Procedural programming.  

Defines modules as "procedures" or "functions" that are called with a set of parameters to perform 

a task. A procedural language will begin a process, which is then given data. It is also the most 

common category and has recently been subdivided into the following: 

• Service-oriented programming simply defines reusable modules as "services" with 

advertised interfaces. 

• Microservice programming focuses on creating modules that do not store data internally, 

and so are scalable and resilient in cloud deployment. 

• Functional programming, technically, means that modules are written from functions, and 

that these functions' outputs are derived only from their inputs. Designed for server less 

computing, the definition of functional programming has since expanded to be largely 

synonymous with microservices. 

3.3.2 Object-oriented programming (OOP).  

Defines a program as a set of objects or resources to which commands are sent. An object-oriented 

language will define a data resource and send it to process commands. For example, the procedural 

programmer might say "Print(object)" while the OOP programmer might say "Tell Object to 

Print". 

3.3.3 Model-based programming.  

The most common example of this is database query languages. In database programming, units 

of code are associated with steps in database access and update or run when those steps occur. The 

database and database access structure will determine the structure of the code. Another example 

of a model-based structure is Reverse Polish Notation (RPN), a math-problem structure that lends 
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itself to efficient solving of complex expressions. Quantum computing, just now emerging, is 

another example of model-based structured programming that demands a specific model to 

organize steps, and the language simply provides it. 

3.4 Components of structured programming 

At the high level, structured programs consist of a structural hierarchy starting with the main 

process and decomposing downward to lower levels as the logic dictates. These lower structures 

are the modules of the program, and modules may contain both calls to other (lower-level) modules 

and blocks representing structured condition/action combinations. All of this can be combined into 

a single module or unit of code, or broken down into multiple modules, resident in libraries. 

Modules can be classified as "procedures" or "functions." A procedure is a unit of code that 

performs a specific task, usually referencing a common data structure available to the program at 

large. Much of the data operated on by procedures is external. A function is a unit of code that 

operates on specific inputs and returns a result when called. 

Structured programs and modules typically have a header file or section that describes the modules 

or libraries referenced and the structure of the parameters and module interface. In some 

programming languages, the interface description is abstracted into a separate file, which is then 

implemented by one or more other units of code. 

3.5 Advantages and Disadvantages of structured programming 

3.5.1 Advantages of structured programming  

The primary advantages of structured programming are: 

• It encourages top-down implementation, which improves both readability and 

maintainability of code. 

• It promotes code reuse, since even internal modules can be extracted and made 

independent, residents in libraries, described in directories and referenced by many other 

applications. 

• It's widely agreed that development time and code quality are improved through structured 

programming. 

These advantages are normally seen as compelling, even decisive, and nearly all modern software 

development employs structured programming. 
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3.5.2 Disadvantages of structured programming 

The biggest disadvantage of structured programming is a reduction in execution efficiency, 

followed by greater memory usage. Both these problems arise from the introduction of calls to a 

module or process, which then returns to the caller when it's done. System parameters and system 

resources are saved on a stack (a queue organized as LIFO, or last-in-first-out) and popped when 

needed. The more program logic is decomposed, meaning the more modules are involved, the 

greater the overhead associated with the module interface. All structured programming languages 

are at risk to "over-structuring" and loss of efficiency. 

Structured programming can also be applied incorrectly if the type of structure selected isn't right 

for the task at hand. The best-known example is the solving of math problems. RPL is an efficient 

way to state and solve a math problem because it eliminates the need to explicitly state execution 

order and eliminates recursion in code. However, if that problem was to be posed in structured 

programming procedural or object form, the resulting code would be much less efficient than the 

RPL version. 

4  Self-Assessment Exercises 

• Define structured programming and explain its components 

• Differentiate between structured and unstructured programming 

• Discuss different categories of structured programming 

5  Answer to Self-Assessment Exercises 

• Define structured programming: Structured programming is a programming paradigm that 

facilitates the creation of programs with readable code and reusable components.   

Explain its components – Section 3.4 

• Differentiate between structured and unstructured programming – Section 3.2 

• Discuss different categories of structured programming – Section 3.3 

6 Conclusion  
Structured programming is a paradigm that aims to make programs easier to comprehend from a 

reader’s point of view. It does this by line arising the flow of control through a program. In which 

case, execution follows the writing order of the code. Structured programming caught favor with 
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programming languages for its iconic opposition to the keyword goto, aiming to reduce the 

prevalence of spaghetti code. 

7 Summary  
The knowledge of structured and unstructured programming languages led to easy understanding 

of programs. Although, structured programming language possess the risk of over structuring and 

loss of efficiency but its merit cannot be over looked. Structured programming language increases 

the maintainability and readability of code, promotes code reuse and improve the development 

time and code quality. This unit debated extensively on structured programming language. Also, 

the difference between structured and structured programming language were discussed as well as 

the merit and demerit of structured programming language. 

8       References/Further Reading 

https://deepsource.io/glossary/structured-programming 

https://searchsoftwarequality.techtarget.com/definition/structured-programming-modular-

programming 
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Module 2   Language Structure 
 
Having refreshed our memory about programming language in previous module, this module 

handles language structure which is one of a major topic in organization of programming language.  

The module is divided into four units. Unit 1 discusses the different structural layers of 

programming language as well as the designing and constructs of these layers.  Unit 2 and 3 

presents general problem of describing syntax as well as formal methods of describing syntax. 

Also, the attribute grammars, operational semantics, denotational semantic and axiomatic semantic 

will be talk about in unit 2 and 3. Unit 4 shall discuss the parsing problem, recursive-decent parsing 

and bottom-up parsing, before deliberating on the lexical analysis with focus on lexical process 

and lexical analyzer building. The last unit (unit 5) introduces the implementation of language 

processing by discussing interpretation, translation, concept of interpretative language and 

binding. 
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1 Introduction  
A structure is used to represent information about something more complicated than a single 

number, character, or Boolean. Thus, this unit presents the fundamental concepts of language 

structuring by discussing the structural layers of programming language, as well as the designing 

and constructs of those layers.   

2   Intended Learning Outcomes (ILOs)  
At the end of the unit, students should able to  

• discuss in details the structural layers of programming language 

• Understand types of error that occur in each layer 

3   Main Content 
3.1 Structural Layers 

The structures of programming languages are grouped into four structural layers which are lexical, 

syntactic, contextual, and semantic. 

3.1.1  Lexical structure 

Lexical structure defines the vocabulary of a language. Lexical units are considered the building 

blocks of programming languages. The lexical structures of all programming languages are similar 

and normally include the following kinds of units: 

Identifiers - Names that can be chosen by programmers to represent objects like variables, labels, 

procedures, and functions. Most programming languages require that an identifier start with an 

alphabetical letter and can be optionally followed by letters, digits, and some special characters. 

• Keywords: Names reserved by the language designer and used to form the syntactic structure 

of the language. 

• Operators:  Symbols used to represent the operations. All general-purpose programming 

languages should provide certain minimum operators such as mathematical operators like +, 

−, *, /, relational operators like <, ?, ==, >, ?, and logic operators like AND, OR, NOT, etc. 

• Separators: Symbols used to separate lexical or syntactic units of the language. Space, 

comma, colon, semicolon, and parentheses are used as separators. 



CIT401  COURSE GUIDE 

26 
 

• Literals:   Values that can be assigned to variables of different types. For example, integer-

type literals are integer numbers, character-type literals are any character from the character 

set of the language, and string-type literals are any string of characters. 

• Comments:  Any explanatory text embedded in the program. Comments start with a specific 

keyword or separator. When the compiler translates a program into machine code, all 

comments will be ignored. 

• Layout and spacing:  Some languages are of free format such as C, C++, and Java. They 

use braces and parentheses for defining code blocks and separations. Additional whitespace 

characters (spaces, newlines, carriage returns, and tabs) will be ignored. Some languages 

consider layout and whitespace characters as lexical symbols. For example, Python does not 

use braces for defining the block of code. It uses indentation instead. Different whitespace 

characters are considered different lexical symbols. 

3.1.2 Syntactic structure 

Syntactic structure defines the grammar of forming sentences or statements using the lexical units. 

An imperative programming language normally offers the following basic kinds of statements: 

• Assignments: An assignment statement assigns a literal value or an expression to a variable. 

• Conditional statements: A conditional statement tests a condition and branches to a certain 

statement based on the test result (true or false). Typical conditional statements are if-then, 

if-then- else, and switch (case). 

• Loop statements: A loop statement tests a condition and enters the body of the loop or exits 

the loop based on the test result (true or false). Typical loop statements are for-loop and 

while-loop. 

3.1.3 Contextual structure 

Contextual structure (also called static semantics) defines the program semantics before dynamic 

execution. It includes variable declaration, initialization, and type checking. Some imperative 

languages require all variables be initialized when they are declared at the contextual layer, while 

other don’t as long as the variables are initialized before their values are used. This means that 

initialization can be done either at the contextual layer or at the semantic layer. Contextual structure 

starts to deal with the meaning of the program. A statement that is lexically correct may not be 

contextually correct. For example: 



CIT401  COURSE GUIDE 

27 
 

 

The declaration and the assignment statements are lexically and syntactically correct, but the 

assignment statement is contextually incorrect because it does not make sense to add an integer 

variable to a string variable.  

3.1.4 Semantic structure 

Semantic structure describes the meaning of a program, or what the program does during the 

execution. The semantics of a language are often very complex. In most imperative languages, 

there is no formal definition of semantic structure; informal descriptions are normally used to 

explain what each statement does. The semantic structures of functional and logic programming 

languages are normally defined based on the mathematical and logical foundation on which the 

languages are based. For example, the meanings of Scheme procedures are the same as the 

meanings of the lambda expressions in lambda calculus on which Scheme is based, and the 

meanings of Prolog clauses are the same as the meanings of the clauses in Horn logic on which 

Prolog is based. 

3.2 Error types at different levels 
Programming errors can occur at all levels of a program. We call these errors lexical errors, 

syntactic errors, contextual errors, and semantic errors, respectively, depending on the levels where 

the errors occur.  

3.2.1 Lexical errors:  
Errors at the lexical level. Compiler can detect all. For example:  

  

These declarations will cause compilation errors in C, because “if” is a keyword, a variable cannot 

start with a number, and “?” cannot be used in variable definition. 
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3.2.2 Syntactic errors:  
Errors at the syntactic level. Compiler can detect all of them. For example:  

 

There is a number of syntactic errors in C in this piece of code: 

• The condition if-statement must be quoted by parentheses.  

• No comma between the condition and the following statement.  

• A semicolon is missing at the end of z = x+y statement. 

3.2.3 Contextual errors: 
Contextual errors are complex and compiler implementations may or may not detect all of the 

initialization errors, depending on whether they actually compute the initialization expression or 

not. They include all the errors (excluding the lexical errors) in 

• variable declaration,  

• variable initialization, and 

• type inconsistent in assignment. 

The following are examples of contextual errors: 

 

3.2.4 Semantic errors:  
Errors at the semantic level include all the errors in the statements that will be executed after 

passing compilation. The compiler normally does not detect semantic errors. For example: 

 

3.2.5 Examples of contextual errors and semantic errors  
Figure 1 shows several contextual and semantic errors with similar but different types of errors 

that the compilers may handle differently. 

• In Figure 1(a), there is a clear semantic error. The code will pass all compilers but will cause 

an exception at execution. 

• In Figure 1 (b), there is a contextual error in initialization. Since the initialization expression 

is quite complex, both GCC and Visual Studio will not detect the error because they choose to 
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compile the initialization statement as an execution statement in the form shown in Figure 1 

(c). Therefore, the contextual error in initialization will be delayed to the execution stage. We 

still call such errors contextual errors because the compiler’s choice of implementation should 

not impact the definitions of error types. 

• In Figure 1 (c), the initialization statement is written as an execution statement, and, thus, the 

error changes from contextual error to semantic error. 

• Figure 1 (d) has a clearly semantic error that will not be detected by any compilers, even though 

the expression is simple and straightforward, showing a division zero situation. Now, we move 

the execution statement in Figure 1 (d) to the declaration part in Figure 1 (e). It now will be a 

contextual error. This example shows a situation where different compilers will handle it 

differently. Visual Studio will throw a compiler error, whereas GCC will pass the code. 

Although GCC gives a warning of division by zero, it still generates executable.  

 

Figure 1: Examples of contextual and semantic errors 



CIT401  COURSE GUIDE 

30 
 

3.3 Application of BNF Notation and Syntax Graph  
Lexical and syntactic structure of a language can be analyzed using BNF and syntax graph. 

3.3.1 BNF Notation 
BNF (Backus-Naur Form) is a meta language that can be used to define the lexical and syntactic 

structures of another language. For easy understanding, we will first use BNF to define a simplified 

familiar English language and then learn BNF from the definition itself.  

A simple English sentence consists of a subject, a verb, and an object. The subject, in turn, consists 

of possibly one or more adjectives followed by a noun. The object has the same grammatical 

structure but both the verbs and adjectives must come from the vocabulary. A simple English 

sentence can therefore be defined as: 

<sentence> ::= <subject><verb><object> 
 <subject> ::= <noun> | <article><noun> | <adjective><noun> | <article><adjective><noun> 
<adjective> ::= <adjective> | <adjective><adjective> 
 <object> ::= <subject> 
<noun> ::= table | horse | computer  
<article> ::= the | a  
<adjective> ::= big | fast | good | high  
<verb> ::= is | makes 
In the definitions, the symbol “::=” means that the name on the left-hand side is defined by the 

expression on the right-hand side. The name in a pair of angle brackets “<>” is nonterminal, which 

means that the name needs to be further defined. The vertical bar “|” represents an “or” relation. 

The boldfaced names are terminal, which means that the names need not be further defined. They 

form the vocabulary of the language. We can use the sentence definition to check whether the 

following sentences are syntactically correct.  

fast high big computer is good table     1 
the high table is a good table     2 
a fast table makes the high horse      3 
the fast big high computer is good      4 
good table is high       5 
a table is not a horse       6 
 is fast computer good      7 
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The first sentence is syntactically correct, although it does not make much sense. Three adjectives 

in the sentence are correct because the definition of an adjective recursively allows any number of 

adjectives to be used in the subject and the object of a sentence. The second and third sentences 

are also syntactically correct according to the definition. The fourth and fifth sentences are 

syntactically incorrect because a noun is missing in the object of the sentences. The sixth sentence 

is incorrect because “not” is not a terminal. The last sentence is incorrect because the definition 

does not allow a sentence to start with a verb. 

After we have a basic understanding of BNF, we can use it to define a small programming 

language. The first five lines define the lexical structure, and the rest defines the syntactic structure 

of the language.  

<letter>  ::=  a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z 
<digit>   ::=  0|1|2|3|4|5|6|7|8|9 
<symbol> ::=  _|@|.|~|?|#|$ 
<char>  ::= <letter>|<digit>|<symbol> 
<operator>  ::=  +|−|*|/|%|<|>|==|<=|>=|and|or|not  
<identifier> ::=  <letter>|<identifier><char> 
<number>  ::=  <digit>|<number><digit> 
<item>  ::=  <identifier>|<number> 
<expression> ::=  <item>|(<expression>)| <expression><operator><expression>  
<branch> ::=  if <expr>then {<block>} | if <expr>then {<block>}else {<block>} 
<switch>  ::=  switch<expr>{<sbody>} 
<sbody> ::=  <cases> | <cases>; default :<block> 
<cases> ::=  case<value>:<block> | <cases> ; case<value>:<block> 
<loop>  ::=  while <expr>do {<block>} 
<assignment> ::=  <identifier>=<expression>;  
<statement>  ::=  <assignment>|<branch>|<loop> 
 <block> ::=  <statement>|<block>;<statement> 
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Now we use the definition to check which of the following statements are syntactically correct.  

sum1 = 0;          1 
while sum1 <= 100 do {          2 
sum1 = sum1 + (a1 + a2) * (3b % 4*b); }      3 
if sum1 == 120 then 2sum − sum1 else sum2 + sum1;     4 
p4#rd_2 = ((1a + a2) * (b3 % b4)) / (c7 − c8);      5 
_foo.bar = (a1 + a2 − b3 − b4);       6 
 (a1 / a2) = (c3 − c4);         7 
According to the BNF definition of the language, statements 1 and 2 are correct. Statements 3 and 

4 are incorrect because 3b and 2 sum are neither acceptable identifiers nor acceptable expressions. 

Statement 5 is incorrect. Statement 6 is incorrect because an identifier must start with a letter. 

Statement 7 is incorrect because the left-hand side of an assignment statement must be an identifier. 

3.3.2 Syntax graph 
BNF notation provides a concise way to define the lexical and syntactic structures of programming 

languages. However, BNF notations, especially the recursive definitions, are not always easy to 

understand. A graphic form, called a syntax graph, also known as railroad tracks, is often used to 

supplement the readability of BNF notation. For example, the identifier and the if-then-else 

statement corresponding to the BNF definitions can be defined using the syntax graphs in Figure 

2. The syntax graph for the identifier requires that an identifier start with a letter, may exit with 

only one letter, or follow the loops to include any number of letters, digits, or symbols. In other 

words, to check the legitimacy of an identifier, we need to travel through the syntax graph 

following the arrows and see whether we can find a path that matches the given identifier. For 

instance, we can verify that len_23 is a legitimate identifier as follows. We travel through the first 

<letter> once, travel through the second <letter> on the back track twice, travel through the 

<symbol> once, and finally travel through the <digit> twice, and then we exit the definition. On 

the other hand, if you try to verify that 23_len is a legitimate identifier, you will not be able to find 

a path to travel through the syntax graph. 

Using the if-then-else syntax graph in Figure 2, we can precisely verify whether a given statement 

is a legitimate if-then-else statement. The alternative route that bypasses the else branch signifies 

that the else branch is optional. Please note that the definition of the if-then-else statement here is 

not the same as the if- then-else statement in C language.  
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Figure 2. Definition of identifier and if-then-else statement. 

As another example, Figure 3 shows the definitions of a set of data structures, including the 

definitions of value, string, array, bool, number, and object. In syntax graphs, we use the same 

convention that terminals are in boldfaced text and nonterminals are enclosed in a pair of angle 

brackets. 

 
Figure 3: Definitions of different data structures. <digit> 
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4 Self-Assessment Exercises 
• Compare the four structural layers: lexical, syntactic, contextual, and semantic structures 

• Mention and explain error types that occur at each structural layer 

• Explain the application of BNF and syntax graph in lexical and syntactic structure 

• From the stated definitions below check if the following statements stated below are 

syntactically correct.  

Definitions 

<letter> ::=  a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z 
<digit>   ::=  0|1|2|3|4|5|6|7|8|9 
<symbol> ::=  _|@|.|~|?|#|$ 
<char>  ::= <letter>|<digit>|<symbol> 
<operator>  ::=  +|−|*|/|%|<|>|==|<=|>=|and|or|not  
<identifier> ::=  <letter>|<identifier><char> 
<number>  ::=  <digit>|<number><digit> 
<item>  ::=  <identifier>|<number> 
<expression> ::=  <item>|(<expression>)| <expression><operator><expression>  
<branch> ::=  if <expr>then {<block>} | if <expr>then {<block>}else {<block>} 
<switch>  ::=  switch<expr>{<sbody>} 
<sbody> ::=  <cases> | <cases>; default :<block> 
<cases> ::=  case<value>:<block> | <cases> ; case<value>:<block> 
<loop>  ::=  while <expr>do {<block>} 
<assignment> ::=  <identifier>=<expression>;  
<statement>  ::=  <assignment>|<branch>|<loop> 
 <block> ::=  <statement>|<block>;<statement> 
Statement 

sum1 = 0;          1 
while sum1 <= 100 do {         2 
sum1 = sum1 + (a1 + a2) * (3b % 4*b); }      3 
if sum1 == 120 then 2sum − sum1 else sum2 + sum1;     4 
p4#rd_2 = ((1a + a2) * (b3 % b4)) / (c7 − c8);      5 
_foo.bar = (a1 + a2 − b3 − b4);       6 
 (a1 / a2) = (c3 − c4);         7 
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5 Answer to Self-Assessment Exercises 
• Compare the four structural layers: lexical, syntactic, contextual, and semantic structures 

– Section 3.1 

• Mention and explain error types that occur at each structural layer – Section 3.2 

• Explain the application of BNF and syntax graph in lexical and syntactic structure – 

Section 3.3 

• From the stated definitions below check if the following statements stated below are 

syntactically correct.  

Definitions 

<letter> ::=  a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z 
<digit>   ::=  0|1|2|3|4|5|6|7|8|9 
<symbol> ::=  _|@|.|~|?|#|$ 
<char>  ::= <letter>|<digit>|<symbol> 
<operator>  ::=  +|−|*|/|%|<|>|==|<=|>=|and|or|not  
<identifier> ::=  <letter>|<identifier><char> 
<number>  ::=  <digit>|<number><digit> 
<item>  ::=  <identifier>|<number> 
<expression> ::=  <item>|(<expression>)| <expression><operator><expression>  
<branch> ::=  if <expr>then {<block>} | if <expr>then {<block>}else {<block>} 
<switch>  ::=  switch<expr>{<sbody>} 
<sbody> ::=  <cases> | <cases>; default :<block> 
<cases> ::=  case<value>:<block> | <cases> ; case<value>:<block> 
<loop>  ::=  while <expr>do {<block>} 
<assignment> ::=  <identifier>=<expression>;  
<statement>  ::=  <assignment>|<branch>|<loop> 
 <block> ::=  <statement>|<block>;<statement> 
Statement 

sum1 = 0;          1 
while sum1 <= 100 do {         2 
sum1 = sum1 + (a1 + a2) * (3b % 4*b); }      3 
if sum1 == 120 then 2sum − sum1 else sum2 + sum1;     4 
p4#rd_2 = ((1a + a2) * (b3 % b4)) / (c7 − c8);      5 
_foo.bar = (a1 + a2 − b3 − b4);       6 
 (a1 / a2) = (c3 − c4);         7 
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According to the BNF definition of the language, statements 1 and 2 are correct. Statements 3 and 

4 are incorrect because 3b and 2 sum are neither acceptable identifiers nor acceptable expressions. 

Statement 5 is incorrect. Statement 6 is incorrect because an identifier must start with a letter. 

Statement 7 is incorrect because the left-hand side of an assignment statement must be an identifier. 

6 Conclusion  
Defining the language vocabulary and grammar is very crucial in language construction. Thus, 

depth knowledge of the structural layers (lexical, syntactic, contextual, and semantic) will help in 

detecting error easily at each layer. BNF and syntax graph can also be used to define the lexical 

and syntactic structures of a language. 

7 Summary  
This unit presented the fundamental concepts of language structuring, and discussed the structural 

layers of programming language. Error type associated to each of the mentioned structural layers 

were also discussed. 

8 References/Further Reading 
Chen, Y. (2020). Chapter 1 Basic Principles of Programming Languages. In Introduction to Programming 
Languages (Sixth, pp. 1–40). Kendal Hunt Plublishing 
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1  Introduction  
Just like natural language, Programming language have both the syntax and semantics. Syntax of 

a programming language is a form of its expressions, statements, and program units while Its 

semantics is the meaning of those expressions, statements, and program units. The unit presents a 

discussion on general problem of describing syntax and formal methods of describing syntax. 

Attribute grammars, which can be used to describe both the syntax and static semantics of 

programming languages, are also discussed.  

2 Intended Learning Outcomes (ILOs)  

At the end of the unit, students should able to 

• have full understanding of language description  

• know how the expressions, statements, and program units of a language are formed and 

also their intended effect when executed 

• determine how to encode software solutions by referring to a language reference manual.  

3  Main Content  
3.1 Syntax 
Syntax is described by a set of rules that define the form of a language: they define how sentences 

may be formed as sequences of basic constituents called words. Using these rules we can tell 

whether a sentence is legal or not. The syntax does not tell us anything about the content (or 

meaning) of the sentence–the semantic rules tell us that. As an example, C keywords (such as 

while, do, if, else,...), identifiers, numbers, operators, ... are words of the language. The C syntax 

tells us how to combine such words to construct well-formed statements and programs. 

Words are not elementary; they are constructed out of characters belonging to an alphabet. Thus 

the syntax of a language is defined by two sets of rules: lexical rules and syntactic rules. Lexical 

rules specify the set of characters that constitute the alphabet of the language and the way such 

characters can for example, Pascal considers lowercase and uppercase characters to be identical, 

but C and Ada consider them to be distinct. Thus, according to the lexical rules, “Memory” and 

“memory” refer to the same variable in Pascal, but to distinct variables in C and Ada. The lexical 

rules also tell us that <> (or ¦) is a valid operator in Pascal but not in C, where the same operator is 

represented by !=. Ada differs from both, since “not equal” is represented as /=; delimiter <> 

(called “box”) stands for an undefined range of an array index. 
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3.2 The General Problem of Describing Syntax 

A language, whether natural (such as English) or artificial (such as Java), is a set of strings of 

characters from some alphabet. The strings of a language are called sentences or statements. The 

syntax rules of a language specify which strings of characters from the language’s alphabet are in 

the language. English, for example, has a large and complex collection of rules for specifying the 

syntax of its sentences. By comparison, even the largest and most complex programming 

languages are syntactically very simple. Formal descriptions of the syntax of programming 

languages, for simplicity’s sake, often do not include descriptions of the lowest-level syntactic 

units. These small units are called lexemes. The description of lexemes can be given by a lexical 

specification, which is usually separate from the syntactic description of the language. The lexemes 

of a programming language include its numeric literals, operators, and special words, among 

others. One can think of programs as strings of lexemes rather than of characters. 

Lexemes are partitioned into groups—for example, the names of variables, methods, classes, and 

so forth in a programming language form a group called identifiers. Each lexeme group is 

represented by a name, or token. So, a token of a language is a category of its lexemes. For 

example, an identifier is a token that can have lexemes, or instances, such as sum and total. In 

some cases, a token has only a single possible lexeme. For example, the token for the arithmetic 

operator symbol + has just one possible lexeme. Consider the following Java statement: 

 index = 2 * count + 17; 

The lexemes and tokens of this statement are 

Lexemes  Tokens 
index   identifier 
=   equal_sign 
2   int_literal 
*    mult_op 
count   identifier 
+   plus_op 
17   int_literal 
;   semicolon 
In general, languages can be formally described in two distinct ways - by recognition and by 

generation - although neither provides a definition that is practical by itself for people trying to 

learn or use a programming language. 
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3.2.1 Language Recognizers 
Suppose we have a language L that uses an alphabet Σ of characters. To define L formally using 

the recognition method, we would need to construct a mechanism R, called a recognition device, 

capable of reading strings of characters from the alphabet Σ. R would indicate whether a given 

input string was or was not in L. In effect, R would either accept or reject the given string. Such 

devices are like filters, separating legal sentences from those that are incorrectly formed. If R, 

when fed any string of characters over Σ, accepts it only if it is in L, then R is a description of L. 

Because most useful languages are, for all practical purposes, infinite, this might seem like a 

lengthy and ineffective process. Recognition devices, however, are not used to enumerate all of 

the sentences of a language— they have a different purpose. 

The syntax analysis part of a compiler is a recognizer for the language the compiler translates. In 

this role, the recognizer need not test all possible strings of characters from some set to determine 

whether each is in the language. Rather, it need only determine whether given programs are in the 

language. In effect then, the syntax analyzer determines whether the given programs are 

syntactically correct.  

3.2.2 Language Generators 
A language generator is a device that can be used to generate the sentences of a language. We can 

think of the generator as having a button that produces a sentence of the language every time it is 

pushed. Because the particular sentence that is produced by a generator when its button is pushed 

is unpredictable, a generator seems to be a device of limited usefulness as a language descriptor. 

However, people prefer certain forms of generators over recognizers because they can more easily 

read and understand them. By contrast, the syntax-checking portion of a compiler (a language 

recognizer) is not as useful a language description for a programmer because it can be used only 

in trial-and-error mode. For example, to determine the correct syntax of a particular statement 

using a compiler, the programmer can only submit a speculated version and note whether the 

compiler accepts it. On the other hand, it is often possible to determine whether the syntax of a 

particular statement is correct by comparing it with the structure of the generator. 

3.3 Formal Methods of Describing Syntax 

This section discusses the formal language-generation mechanisms, usually called grammars, that 

are commonly used to describe the syntax of programming languages. 
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3.3.1 Backus-Naur Form and Context-Free Grammars 
In the middle to late 1950s, two men, Noam Chomsky and John Backus, in unrelated research 

efforts, developed the same syntax description formalism, which subsequently became the most 

widely used method for programming language syntax.  

3.3.1.1 Context-Free Grammars 
In the mid-1950s, Noam Chomsky, a noted linguist (among other things), described four classes 

of generative devices or grammars that define four classes of languages (Chomsky, 1956, 1959). 

Two of these grammar classes, named context-free and regular, turned out to be useful for 

describing the syntax of programming languages. The forms of the tokens of programming 

languages can be described by regular grammars. The syntax of whole programming languages, 

with minor exceptions, can be described by context-free grammars. Because Chomsky was a 

linguist, his primary interest was the theoretical nature of natural languages. He had no interest at 

the time in the artificial languages used to communicate with computers. So it was not until later 

that his work was applied to programming languages. 

3.3.1.2 Origins of Backus-Naur Form 
Shortly after Chomsky’s work on language classes, the ACM-GAMM group began designing 

ALGOL 58. A landmark paper describing ALGOL 58 was presented by John Backus, a prominent 

member of the ACM-GAMM group, at an international conference in 1959 (Backus, 1959). This 

paper introduced a new formal notation for specifying programming language syntax. The new 

notation was later modified slightly by Peter Naur for the description of ALGOL 60 (Naur, 1960). 

This revised method of syntax description became known as Backus-Naur Form, or simply BNF. 

BNF is a natural notation for describing syntax. In fact, something similar to BNF was used by 

Panini to describe the syntax of Sanskrit several hundred years before Christ (Ingerman, 1967). 

Although the use of BNF in the ALGOL 60 report was not immediately accepted by computer 

users, it soon became and is still the most popular method of concisely describing programming 

language syntax.  It is remarkable that BNF is nearly identical to Chomsky’s generative devices 

for context-free languages, called context-free grammars. In the remainder of the chapter, we refer 

to context-free grammars simply as grammars. Furthermore, the terms BNF and grammar are used 

interchangeably. 
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3.3.1.3 Fundamentals 
A metalanguage is a language that is used to describe another language. BNF is a metalanguage 

for programming languages. BNF uses abstractions for syntactic structures. A simple Java 

assignment statement, for example, might be represented by the abstraction <assign> (pointed 

brackets are often used to delimit names of abstractions). The actual definition of <assign> can be 

given by   <assign> → <var> = <expression> 

The text on the left side of the arrow, which is aptly called the left-hand side (LHS), is the 

abstraction being defined. The text to the right of the arrow is the definition of the LHS. It is called 

the right-hand side (RHS) and consists of some mixture of tokens, lexemes, and references to other 

abstractions. (Actually, tokens are also abstractions.) Altogether, the definition is called a rule, or 

production. In the example rule just given, the abstractions <var> and <expression> obviously 

must be defined for the <assign> definition to be useful. 

This particular rule specifies that the abstraction <assign> is defined as an instance of the 

abstraction <var>, followed by the lexeme =, followed by an instance of the abstraction 

<expression>. One example sentence whose syntactic structure is described by the rule is 

total = subtotal1 + subtotal2 
The abstractions in a BNF description, or grammar, are often called nonterminal symbols, or 

simply nonterminals, and the lexemes and tokens of the rules are called terminal symbols, or 

simply terminals. A BNF description, or grammar, is a collection of rules. Nonterminal symbols 

can have two or more distinct definitions, representing two or more possible syntactic forms in the 

language. Multiple definitions can be written as a single rule, with the different definitions 

separated described with the rules  

<if_stmt> → if ( <logic_expr> ) <stmt> 
<if_stmt> → if ( <logic_expr> ) <stmt> else <stmt> 
or with the rule 
<if_stmt> → if ( <logic_expr> ) <stmt> 

     | if ( <logic_expr> ) <stmt> else <stmt> 
In these rules, <stmt> represents either a single statement or a compound statement. 
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Although BNF is simple, it is sufficiently powerful to describe nearly all of the syntax of 

programming languages. In particular, it can describe lists of similar constructs, the order in which 

different constructs must appear, and nested structures to any depth, and even imply operator 

precedence and operator associativity. 

3.3.1.4 Describing Lists 
Variable-length lists in mathematics are often written using an ellipsis (. . .); 1, 2, . . . is an example. 

BNF does not include the ellipsis, so an alternative method is required for describing lists of 

syntactic elements in programming languages (for example, a list of identifiers appearing on a data 

declaration statement). For BNF, the alternative is recursion. A rule is recursive if its LHS appears 

in its RHS. The following rules illustrate how recursion is used to describe lists: 

<ident_list> → identifier 
| identifier, <ident_list> 

This defines <ident_list> as either a single token (identifier) or an identifier followed by a comma 

and another instance of <ident_list>.  

3.3.1.5 Grammars and Derivations 
A grammar is a generative device for defining languages. The sentences of the language are 

generated through a sequence of applications of the rules, beginning with a special nonterminal of 

the grammar called the start symbol. This sequence of rule applications is called a derivation. In 

a grammar for a complete programming language, the start symbol represents a complete program 

and is often named <program>. The simple grammar shown in Example 1 is used to illustrate 

derivations.  

Example 1: A Grammar for a Small Language  
<program> → begin <stmt_list> end 
<stmt_list> → <stmt>  

       | <stmt> ; <stmt_list> 
<stmt> → <var> = <expression>  
<var> → A | B | C  
<expression> → <var> + <var> 

 | <var> – <var>  
| <var> 
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The language described by the grammar of Example 3.1 has only one statement form: assignment. 

A program consists of the special word begin, followed by a list of statements separated by 

semicolons, followed by the special word end. An expression is either a single variable or two 

variables separated by either a + or - operator. The only variable names in this language are A, B, 

and C.  A derivation of a program in this language follows: 

<program> => begin <stmt_list> end 

=> begin <stmt> ; <stmt_list> end 

=> begin <var> = <expression> ; <stmt_list> end 

=> begin A = <expression> ; <stmt_list> end 

=> begin A = <var> + <var> ; <stmt_list> end 

=> begin A = B + <var> ; <stmt_list> end 

=> begin A = B + C ; <stmt_list> end 

=> begin A = B + ; <stmt> end 

=> begin A = B + C ; <var> = <expression> end 

=> begin A = B + C ; B = <expression> end 

=> begin A = B + C ; B = <var> end 

=> begin A = B + C ; B = C end 

This derivation, like all derivations, begins with the start symbol, in this case <program>. The 

symbol => is read “derives.” Each successive string in the sequence is derived from the previous 

string by replacing one of the nonterminals with one of that nonterminal’s definitions. Each of the 

strings in the derivation, including <program>, is called a sentential form. 

In this derivation, the replaced nonterminal is always the leftmost nonterminal in the previous 

sentential form. Derivations that use this order of replacement are called leftmost derivations. 

The derivation continues until the sentential form contains no nonterminals. That sentential form, 

consisting of only terminals, or lexemes, is the generated sentence. In addition to leftmost, a 

derivation may be rightmost or in an order that is neither leftmost nor rightmost. Derivation order 

has no effect on the language generated by a grammar. By choosing alternative RHSs of rules with 

which to replace nonterminals in the derivation, different sentences in the language can be 

generated. By exhaustively choosing all combinations of choices, the entire language can be 

generated. This language, like most others, is infinite, so one cannot generate all the sentences in 
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the language in finite time. Example 2 is another example of a grammar for part of a typical 

programming language. 

Example 2: A Grammar for Simple Assignment Statements 
<assign> → <id> = <expr>  
<id> → A| B | C  
<expr> → <id> + <expr> 

 | <id> * <expr> 
 | ( <expr>) 
 | <id> 

The grammar of Example 3.2 describes assignment statements whose right sides are arithmetic 

expressions with multiplication and addition operators and parentheses. For example, the statement 

A = B * ( A + C )  
is generated by the leftmost derivation: 

<assign> => <id> = <expr> 
=> A = <expr> 
=> A = <id> * <expr> 
=> A = B * <expr> 
=> A = B * ( <expr>) 
=> A = B * ( <id> + <expr>) 
=> A = B * ( A + <expr>) 
=> A = B * ( A + <id>) 
=> A = B * ( A + C ) 

3.3.1.6 Parse Trees 
One of the most attractive features of grammars is that they naturally describe the hierarchical 

syntactic structure of the sentences of the languages they define. These hierarchical structures are 

called parse trees. For example, the parse tree in Figure 4 shows the structure of the assignment 

statement derived previously 
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Figure 4: Parse tree for the structure of the assignment statement 

Every internal node of a parse tree is labeled with a nonterminal symbol; every leaf is labeled with 

a terminal symbol. Every subtree of a parse tree describes one instance of an abstraction in the 

sentence. 

3.3.1.7 Ambiguity 
A grammar that generates a sentential form for which there are two or more distinct parse trees is 

said to be ambiguous. Consider the grammar shown in Example 3, which is a minor variation of 

the grammar shown in Example 3. 

Example 3: An Ambiguous Grammar for Simple Assignment Statements 

<assign> → <id> = <expr>  
<id> → A | B | C  
<expr> → <expr> + <expr> 

 | <expr> * <expr>  
 | ( <expr>)  
 | <id> 

The grammar of Example 3 is ambiguous because the sentence 

A = B + C * A 
has two distinct parse trees, as shown in Figure 5 and 6. The ambiguity occurs because the grammar 

specifies slightly less syntactic structure than does the grammar of 



CIT401  COURSE GUIDE 

47 
 

                                      

Figure 5      Figure 6 

Example 2. Rather than allowing the parse tree of an expression to grow only on the right, this 

grammar allows growth on both the left and the right. Syntactic ambiguity of language structures 

is a problem because compilers often base the semantics of those structures on their syntactic form. 

Specifically, the compiler chooses the code to be generated for a statement by examining its parse 

tree. If a language structure has more than one parse tree, then the meaning of the structure cannot 

be determined uniquely. This problem is discussed in two specific examples in the following 

subsections. There are several other characteristics of a grammar that are sometimes useful in 

determining whether a grammar is ambiguous. They include the following: (1) if the grammar 

generates a sentence with more than one leftmost derivation and (2) if the grammar generates a 

sentence with more than one rightmost derivation. 

Some parsing algorithms can be based on ambiguous grammars. When such a parser encounters 

an ambiguous construct, it uses nongrammatical information provided by the designer to construct 

the correct parse tree. In many cases, an ambiguous grammar can be rewritten to be unambiguous 

but still generate the desired language. 

3.3.1.8 Operator Precedence 
When an expression includes two different operators, for example, x + y * z, one obvious semantic 

issue is the order of evaluation of the two operators (for example, in this expression is it add and 

then multiply, or vice versa?). This semantic question can be answered by assigning different 

precedence levels to operators. For example, if * has been assigned higher precedence than + (by 

the language designer), multiplication will be done first, regardless of the order of appearance of 

the two operators in the expression. 
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A grammar can be written for the simple expressions we have been discuss- ing that is both 

unambiguous and specifies a consistent precedence of the + and * operators, regardless of the order 

in which the operators appear in an expression. The correct ordering is specified by using separate 

nonterminal symbols to represent the operands of the operators that have different precedence. 

This requires additional nonterminals and some new rules. Instead of using <expr> for both 

operands of both + and *, we could use three nonterminals to represent operands, which allows the 

grammar to force different operators to different levels in the parse tree. If <expr> is the root 

symbol for expressions, + can be forced to the top of the parse tree by having <expr> directly 

generate only + operators, using the new nonterminal, <term>, as the right operand of +. Next, we 

can define <term> to generate * operators, using <term> as the left operand and a new nonterminal, 

<factor>, as its right operand. Now, * will always be lower in the parse tree, simply because it is 

farther from the start symbol than + in in every derivation. The grammar of Example 4 is such a 

grammar. 

Example 4: An Unambiguous Grammar for Expressions 

<assign> → <id> = <expr>  
<id> → A | B | C  
<expr> → <expr> + <term>  

    | <term> 
<term> → <term> * <factor> 
     | <factor> 
<factor> → ( <expr>)  
               | <id> 
The grammar in Example 4 generates the same language as the grammars of Examples 2 and 3, 

but it is unambiguous and specifies the usual precedence order of multiplication and addition 

operators. The following derivation of the sentence A = B + C * A uses the grammar  

<assign> => <id> = <expr> 
 => A = <expr>  
=> A = <expr> + <term> 
 => A = <term> + <term>  
=> A = <factor> + <term> 
 => A = <id> + <term>  
=> A = B + <term>  
=> A = B + <term> * <factor>  
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=> A = B + <factor> * <factor> 
 => A = B + <id> * <factor>  
=> A = B + C * <factor>  
=> A = B + C * <id>  
=> A = B + C * A 

The parse tree for this sentence, as defined with the grammar of Example 4, is shown in Figure 7. 

 

Figure 7 

3.3.2 Extended BNF 
Because of a few minor inconveniences in BNF, it has been extended in several ways. Most 

extended versions are called Extended BNF, or simply EBNF, even though they are not all the 

same. The extensions do not enhance the descriptive power of BNF; they only increase its 

readability and writability. Three extensions are commonly included in the various versions of 

EBNF. The first of these denotes an optional part of an RHS, which is delimited by brackets. For 

example, a C if-else statement can be described as 

<if_stmt> → if (<expression>) <statement> [else <statement>] 
Without the use of the brackets, the syntactic description of this statement would require the 

following two rules: 

<if_stmt> → if (<expression>) <statement> 
|if (<expression>) <statement> else <statement> 

The second extension is the use of braces in an RHS to indicate that the enclosed part can be 

repeated indefinitely or left out altogether. This extension allows lists to be built with a single rule, 
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instead of using recursion and two rules. For example, lists of identifiers separated by commas can 

be described by the following rule: 

<ident_list> → <identifier> {, <identifier>} 
This is a replacement of the recursion by a form of implied iteration; the part enclosed within 

braces can be iterated any number of times. The third common extension deals with multiple-

choice options. When a single element must be chosen from a group, the options are placed in 

parentheses and separated by the OR operator, |. For example, 

<term> → <term> (* | / | %) <factor> 
In BNF, a description of this <term> would require the following three rules: 

<term> → <term> * <factor> 
| <term> / <factor> 
| <term> % <factor> 

The brackets, braces, and parentheses in the EBNF extensions are metasymbols, which means 

they are notational tools and not terminal symbols in the syntactic entities they help describe. In 

cases where these metasymbols are also terminal symbols in the language being described, the 

instances that are terminal symbols can be underlined or quoted. Example 5 illustrates the use of 

braces and multiple choices in an EBNF grammar. 

Example 5: BNF and EBNF Versions of an Expression Grammar  

BNF:  <expr> → <expr> + <term>  
| <expr> - <term>  
| <term> 

<term> → <term> * <factor> 
| <term> / <factor> 
| <factor> 

<factor> → <exp> ** <factor>  
        <exp> 

<exp> → (<expr>)  
| id 

EBNF:  <expr> → <term> {(+ | -) <term>}  
<term> → <factor> {(* | /) <factor>}  
<factor> → <exp> { ** <exp>}  
<exp> → (<expr>) 

 | id 
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The BNF rule 

<expr> → <expr> + <term> 
clearly specifies—in fact forces—the + operator to be left associative. However, the EBNF 

version, 

<expr> → <term> {+ <term>} 
does not imply the direction of associativity. This problem is overcome in a syntax analyzer based 

on an EBNF grammar for expressions by designing the syntax analysis process to enforce the 

correct associativity. Some versions of EBNF allow a numeric superscript to be attached to the 

right brace to indicate an upper limit to the number of times the enclosed part can be repeated. 

Also, some versions use a plus (+) superscript to indicate one or more repetitions. For example, 

<compound> → begin <stmt> {<stmt>} end 
and 

<compound> → begin {<stmt>}+ end 
are equivalent. 

In recent years, some variations on BNF and EBNF have appeared. Among these are the following: 

• In place of the arrow, a colon is used and the RHS is placed on the next line. 

• Instead of a vertical bar to separate alternative RHSs, they are simply placed on separate 

lines. 

• In place of square brackets to indicate something being optional, the subscript opt is used. 

For example, 

• Constructor Declarator → SimpleName (FormalParameterListopt) 

• Rather than using the | symbol in a parenthesized list of elements to indicate a choice, the 

words “one of” are used. For example, 

Assignment Operator → one of = *= /= %= += -= <<= >>= &= ^= |= 

There is a standard for EBNF, ISO/IEC 14977:1996(1996), but it is rarely used. The standard uses 

the equal sign (=) instead of an arrow in rules, terminates each RHS with a semicolon, and requires 

quotes on all terminal symbols. It also specifies a host of other notational rules. 
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3.3.3 Grammars and Recognizers 
Earlier in this chapter, we suggested that there is a close relationship between generation and 

recognition devices for a given language. In fact, given a context-free grammar, a recognizer for 

the language generated by the grammar can be algorithmically constructed. A number of software 

systems have been developed that perform this construction. Such systems allow the quick creation 

of the syntax analysis part of a compiler for a new language and are therefore quite valuable. One 

of the first of these syntax analyzer generators is named yacc ( yet another compiler compiler) 

(Johnson, 1975). There are now many such systems available. 

3.4 Attribute Grammars 

An attribute grammar is a device used to describe more of the structure of a programming language 

than can be described with a context-free grammar. An attribute grammar is an extension to a 

context-free grammar.  The extension allows certain language rules to be conveniently described, 

such as type compatibility. Before we formally define the form of attribute grammars, we must 

clarify the concept of static semantics. 

3.4.1 Static Semantics 
There are some characteristics of programming languages that are difficult to describe with BNF, 

and some that are impossible. As an example of a syntax rule that is difficult to specify with BNF, 

consider type compatibility rules. In Java, for example, a floating-point value cannot be assigned 

to an integer type variable, although the opposite is legal. Although this restriction can be specified 

in BNF, it requires additional nonterminal symbols and rules. If all the typing rules of Java were 

specified in BNF, the grammar would become too large to be useful, because the size of the 

grammar determines the size of the syntax analyzer. 

As an example of a syntax rule that cannot be specified in BNF, consider the common rule that all 

variables must be declared before they are referenced. It has been proven that this rule cannot be 

specified in BNF. These problems exemplify the categories of language rules called static 

semantics rules. The static semantics of a language is only indirectly related to the meaning of 

programs during execution; rather, it has to do with the legal forms of programs (syntax rather than 

semantics). Many static semantic rules of a language state its type constraints. Static semantics is 

so named because the analysis required to check these specifications can be done at compile time. 

Because of the problems of describing static semantics with BNF, a variety of more powerful 

mechanisms has been devised for that task. One such mechanism, attribute grammars, was 
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designed by Knuth (1968a) to describe both the syntax and the static semantics of programs. 

Attribute grammars are a formal approach both to describing and checking the correctness of the 

static semantics rules of a program. Although they are not always used in a formal way in compiler 

design, the basic concepts of attribute grammars are at least informally used in every compiler (see 

Aho et al., 1986).  

3.4.2 Basic Concepts 
Attribute grammars are context-free grammars to which have been added attributes, attribute 

computation functions, and predicate functions. Attributes, which are associated with grammar 

symbols (the terminal and nonterminal symbols), are similar to variables in the sense that they can 

have values assigned to them. Attribute computation functions, sometimes called semantic 

functions, are associated with grammar rules. They are used to specify how attribute values are 

computed. Predicate functions, which state the static semantic rules of the language, are associated 

with grammar rules. These concepts will become clearer after we formally define attribute 

grammars and provide an example. 

3.4.3 Attribute Grammars Defined 
An attribute grammar is a grammar with the following additional features: 

• Associated with each grammar symbol X is a set of attributes A(X). The set A(X) consists of 

two disjoint sets S(X) and I(X), called synthesized and inherited attributes, respectively. 

Synthesized attributes are used to pass semantic information up a parse tree, while inherited 

attributes pass semantic information down and across a tree. 

• Associated with each grammar rule is a set of semantic functions and a possibly empty set of 

predicate functions over the attributes of the symbols in the grammar rule. For a rule X0 SX1 

c Xn, the synthesized attributes of X0 are computed with semantic functions of the form S(X0) 

= f(A(X1), c , A(Xn)). So the value of a synthesized attribute on a parse tree node depends 

only on the values of the attributes on that node’s children nodes. Inherited attributes of 

symbols Xj, 1 … j … n (in the rule above), are computed with a semantic function of the form 

I(X j) = f(A(X0), c , A(Xn)). So the value of an inherited attribute on a parse tree node depends 

on the attribute values of that node’s parent node and those of its sibling nodes. Note that, to 

avoid circularity, inherited attributes are often restricted to functions of the form I(Xj) = 

f(A(X0), c, A(X( j-1))). This form prevents an inherited attribute from depending on itself or 

on attributes to the right in the parse tree. 
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• A predicate function has the form of a Boolean expression on the union of the attribute set 

5A(X0), c, A(Xn)6 and a set of literal attribute values. The only derivations allowed with an 

attribute grammar are those in which every predicate associated with every nonterminal is true. 

A false predicate function value indicates a violation of the syntax or static semantics rules of 

the language.  A parse tree of an attribute grammar is the parse tree based on its underlying 

BNF grammar, with a possibly empty set of attribute values attached to each node. If all the 

attribute values in a parse tree have been computed, the tree is said to be fully attributed. 

Although in practice it is not always done this way, it is convenient to think of attribute values 

as being computed after the complete unattributed parse tree has been constructed by the 

compiler. 

3.4.4 Intrinsic Attributes 
Intrinsic attributes are synthesized attributes of leaf nodes whose values are determined outside the 

parse tree. For example, the type of an instance of a variable in a program could come from the 

symbol table, which is used to store variable names and their types. The contents of the symbol 

table are set based on earlier declaration statements. Initially, assuming that an unattributed parse 

tree has been constructed and that attribute values are needed, the only attributes with values are 

the intrinsic attributes of the leaf nodes. Given the intrinsic attribute values on a parse tree, the 

semantic functions can be used to compute the remaining attribute values. 

3.4.5 Examples of Attribute Grammars 
As a very simple example of how attribute grammars can be used to describe static semantics, 

consider the following fragment of an attribute grammar that describes the rule that the name on 

the end of an Ada procedure must match the procedure’s name. (This rule cannot be stated in 

BNF.) The string attribute of <proc_name>, denoted by <proc_name>.string, is the actual string 

of characters that were found immediately following the reserved word procedure by the compiler. 

Notice that when there is more than one occurrence of a nonterminal in a syntax rule in an attribute 

grammar, the nonterminals are subscripted with brackets to distinguish them. Neither the 

subscripts nor the brackets are part of the described language. 

Syntax rule: <proc_def> → procedure <proc_name>[1] 
           <proc_body> end <proc_name>[2]; 
Predicate: <proc_name>[1]string == <proc_name>[2].string 
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In this example, the predicate rule states that the name string attribute of the <proc_name> 

nonterminal in the subprogram header must match the name string attribute of the <proc_name> 

nonterminal following the end of the subprogram. 

Next, we consider a larger example of an attribute grammar. In this case, the example illustrates 

how an attribute grammar can be used to check the type rules of a simple assignment statement. 

The syntax and static semantics of this assignment statement are as follows: The only variable 

names are A, B, and C. The right side of the assignments can be either a variable or an expression 

in the form of a variable added to another variable. The variables can be one of two types: int or 

real. When there are two variables on the right side of an assignment, they need not be the same 

type. The type of the expression when the operand types are not the same is always real. When 

they are the same, the expression type is that of the operands. The type of the left side of the 

assignment must match the type of the right side. The types of operands in the right side can be 

mixed, but the assignment is valid only if the target and the value resulting from evaluating the 

right side have the same type. The attribute grammar specifies these static semantic rules. The 

syntax portion of our example attribute grammar is 

<assign> → <var> = <expr> 
<expr> → <var> + <var> 

   | <var> 
<var> → A | B | C 
The attributes for the nonterminals in the example attribute grammar are described in the following 

paragraphs: 

• actual_type—A synthesized attribute associated with the nonterminals <var> and <expr>. 

It is used to store the actual type, int or real, of a variable or expression. In the case of a 

variable, the actual type is intrinsic. In the case of an expression, it is determined from the 

actual types of the child node or children nodes of the <expr> nonterminal. 

• expected_type—An inherited attribute associated with the nonterminal <expr>. It is used 

to store the type, either int or real, that is expected for the expression, as determined by the 

type of the variable on the left side of the assignment statement. 

The complete attribute grammar follows in Example 6. 

Example 6: An Attribute Grammar for Simple Assignment Statements  
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1. Syntax rule: <assign> → <var> = <expr>  
 Semantic rule: <expr>.expected_type ← <var>.actual_type 
2. Syntax rule: <expr> → <var>[2] + <var>[3]  
 Semantic rule: <expr>.actual_type ← 
       if (<var>[2].actual_type = int) and  
                 (<var>[3].actual_type = int) 
       then int 
             else real  
            end if 
 Predicade: <expr>.actual_type == <expr>.expected_type: 
3. Syntax rule: <expr> → <var>  
 Semantic rule: <expr>.actual_type ← <var>.actual_type  
 Predicate:  <expr>.actual_type == <expr>.expected_type  
4. Syntax rule: <var> → A | B | C  
 Semantic rule: <var>.actual_type ← look- up(<var>.string) 
The look- up function looks up a given variable name in the symbol table and returns the variable’s 

type. 

A parse tree of the sentence A = A + B generated by the grammar in Example 3.6 is shown in 

Figure 3.6. As in the grammar, bracketed numbers are added after the repeated node labels in the 

tree so they can be referenced unambiguously. 

3.4.6 Evaluation 
Checking the static semantic rules of a language is an essential part of all compilers. Even if a 

compiler writer has never heard of an attribute grammar, he or she would need to use their 

fundamental ideas to design the checks of static semantics rules for his or her compiler. One of the 

main difficulties in using an attribute grammar to describe all of the syntax and static semantics of 

a real contemporary programming language is the size and complexity of the attribute grammar. 

The large number of attributes and semantic rules required for a complete programming language 

make such grammars difficult to write and read. Furthermore, the attribute values on a large parse 

tree are costly to evaluate. On the other hand, less formal attribute grammars are a powerful and 

commonly used tool for compiler writers, who are more interested in the process of producing a 

compiler than they are in formalism. 
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4 Self-Assessment Exercises 

• What is lexeme and token. 

• How are programming languages formally defined?  

• In which form is the programming language syntax commonly described? 

• What is an ambiguous grammar?  

• Explain the use of meta symbols in EBNFs.  

• What is the purpose of a predicate function? 

• What is the use of intrinsic attributes?  

 

5  Self-Assessment Answers 

• What is lexeme and token. A Lexeme is a string of characters that is a lowest-level syntactic 

unit in the programming language while a Token is a syntactic category that forms a class of 

lexemes 

• How are programming languages formally defined?  Languages can be formally described 

in two distinct ways which are by recognition and by generation. 

• In which form is the programming language syntax commonly described Grammars are 

commonly used to describe the syntax of programming languages. The forms of the tokens 

of programming languages can be described by regular grammars while the syntax of whole 

programming languages, with minor exceptions, can be described by context-free grammars 

• What is an ambiguous grammar?  A grammar that generates a sentential form for which there 

are two or more distinct parse trees is said to be ambiguous. 

• Explain the use of metasymbols in EBNFs. The brackets, braces, and parentheses in the 

EBNF extensions are metasymbols, which means they are notational tools and not terminal 

symbols in the syntactic entities they help describe. In cases where these metasymbols are 

also terminal symbols in the language being described, the instances that are terminal 

symbols can be underlined or quoted 

• What is the purpose of a predicate function? . Predicate functions state the static semantic 

rules of the language which is used to check if the input meets some condition. 

• What is the use of intrinsic attributes? Intrinsic attributes are synthesized attributes of leaf 

nodes whose values are determined outside the parse tree. 
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6  Conclusion  

Backus- Naur Form and context- free grammars are equivalent metalanguages that are well suited 

for the task of describing the syntax of programming languages. Not only are they concise 

descriptive tools, but also the parse trees that can be associated with their generative actions give 

graphical evidence of the underlying syntactic structures. Furthermore, they are naturally related 

to recognition devices for the languages they generate, which leads to the relatively easy 

construction of syntax analyzers for compilers for these languages. An attribute grammar is a 

descriptive formalism that can describe both the syntax and static semantics of a language. 

Attribute grammars are extensions to context- free grammars. An attribute grammar consists of a 

grammar, a set of attributes, a set of attribute computation functions, and a set of predicates that 

describe static semantics rules. 

7  Summary  

This unit discussed syntax of programming language and presented a discussion on general 

problem of describing syntax. Also, the formal methods of describing syntax such as Backus- Naur 

Form (BNF) and context- free grammars, Extended BNF, grammar and recognizers were 

deliberated on. The attribute grammars, which can be used to describe both the syntax and static 

semantics of programming languages were briefly discussed.  
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1  Introduction    

Just like natural language, Programming language have both the syntax and semantics. Semantics 

is the meaning of those expressions, statements, and program units.  

2 Intended Learning Outcomes (ILOs)    

At the end of the unit, students should able to 

• have full understanding of language description  

• know how the expressions, statements, and program units of a language are formed and 

also their intended effect when executed 

• determine how to encode software solutions by referring to a language reference manual.  

3  Main Content   
3.1 Semantics  
Syntax defines well-formed programs of a language. Semantics defines the meaning of   

syntactically correct programs in that language. For example, the semantics of C help us determine 

that the declaration int vector [10]; causes ten integer elements to be reserved for a variable named 

vector. The first element of the vector may be referenced by vector [0]; all other elements may be 

referenced by an index i, 0 ��i ��9.  

As another example, the semantics of C states that the instruction if (a > b) max = a; else max = b; 

means that the expression a > b must be evaluated, and depending on its value, one of the two 

given assignment statements is executed. Note that the syntax rules tell us how to form this 

statement–for example, where to put a “;”–and the semantic rules tell us what the effect of the 

statement is. 

3.2 Describing the Meanings of Programs: Dynamic Semantics  

We now turn to the difficult task of describing the dynamic semantics, or meaning, of the 

expressions, statements, and program units of a programming language. Because of the power and 

naturalness of the available notation, describing syntax is a relatively simple matter. On the other 

hand, no universally accepted notation or approach has been devised for dynamic semantics. In 

this section, we briefly describe several of the methods that have been developed. For the 

remainder of this section, when we use the term semantics, we mean dynamic semantics. 

There are several different reasons underlying the need for a methodology and notation for 

describing semantics. Programmers obviously need to know precisely what the statements of a 
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language do before they can use them effectively in their programs. Compiler writers must know 

exactly what language constructs mean to design implementations for them correctly. If there were 

a precise semantics specification of a programming language, programs written in the language 

potentially could be proven correct without testing. Also, compilers could be shown to produce 

programs that exhibited exactly the behavior given in the language definition; that is, their 

correctness could be verified. A complete specification of the syntax and semantics of a 

programming language could be used by a tool to generate a compiler for the language 

automatically. 

Finally, language designers, who would develop the semantic descriptions of their languages, 

could in the process discover ambiguities and inconsistencies in their designs. Software developers 

and compiler designers typically determine the semantics of programming languages by reading 

English explanations in language manuals. Because such explanations are often imprecise and 

incomplete, this approach is clearly unsatisfactory. Due to the lack of complete semantics 

specifications of programming languages, programs are rarely proven correct without testing, and 

commercial compilers are never generated automatically from language descriptions. 

3.3 Operational Semantics   
The idea behind operational semantics is to describe the meaning of a statement or program by 

specifying the effects of running it on a machine. The effects on the machine are viewed as the 

sequence of changes in its state, where the machine’s state is the collection of the values in its 

storage. An obvious operational semantics description, then, is given by executing a compiled 

version of the program on a computer. Most programmers have, on at least one occasion, written 

a small test program to determine the meaning of some programming language construct, often 

while learning the language. Essentially, what such a programmer is doing is using operational 

semantics to determine the meaning of the construct. 

There are several problems with using this approach for complete formal semantics descriptions. 

First, the individual steps in the execution of machine language and the resulting changes to the 

state of the machine are too small and too numerous. Second, the storage of a real computer is too 

large and complex. There are usually several levels of memory devices, as well as connections to 

enumerable other computers and memory devices through networks. Therefore, machine 

languages and real computers are not used for formal operational semantics. Rather, intermediate-
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level languages and interpreters for idealized computers are designed specifically for the process. 

There are different levels of uses of operational semantics. At the highest level, the interest is in 

the final result of the execution of a complete program. This is sometimes called natural operational 

semantics. At the lowest level, operational semantics can be used to determine the precise meaning 

of a program through an examination of the complete sequence of state changes that occur when 

the program is executed. This use is sometimes called structural operational semantics. 

3.3.1 The Basic Process   
The first step in creating an operational semantics description of a language is to design an 

appropriate intermediate language, where the primary desired characteristic of the language is 

clarity. Every construct of the intermediate language must have an obvious and unambiguous 

meaning. This language is at the intermediate level, because machine language is too low-level to 

be easily understood and another high-level language is obviously not suitable. If the semantics 

description is to be used for natural operational semantics, a virtual machine (an interpreter) must 

be constructed for the intermediate language. 

The virtual machine can be used to execute either single statements, code segments, or whole 

programs. The semantics description can be used without a virtual machine if the meaning of a 

single statement is all that is required. In this use, which is structural operational semantics, the 

intermediate code can be visually inspected. 

The basic process of operational semantics is not unusual. In fact, the concept is frequently used 

in programming textbooks and programming language reference manuals. For example, the 

semantics of the C for construct can be described in terms of simpler statements, as in  

C Statement       Meaning 

for (expr1; expr2; expr3)     { expr1; 
   . . .        loop: if expr2 == 0 goto out 
}         . . . 

expr3; 
goto loop 

out:  . . . 
The human reader of such a description is the virtual computer and is assumed to be able to 

“execute” the instructions in the definition correctly and recognize the effects of the “execution.” 

The intermediate language and its associated virtual machine used for formal operational 
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semantics descriptions are often highly abstract. The intermediate language is meant to be 

convenient for the virtual machine, rather than for human readers. For our purposes, however, a 

more human-oriented intermediate language could be used. As such an example, consider the 

following list of statements, which would be adequate for describing the semantics of the simple 

control statements of a typical programming language: 

ident = var 
ident = ident + 1 
ident = ident – 1 
goto label 
if var relop var goto label 
In these statements, relop is one of the relational operators from the set {=, <>, >, <, >=, <=}, ident 

is an identifier, and var is either an identifier or a constant. These statements are all simple and 

therefore easy to understand and implement. 

A slight generalization of these three assignment statements allows more general arithmetic 

expressions and assignment statements to be described. The new statements are 

ident = var bin_op var 
ident = un_op var 
where bin_op is a binary arithmetic operator and un_op is a unary operator. Multiple arithmetic 

data types and automatic type conversions, of course, complicate this generalization. Adding just 

a few more relatively simple instructions would allow the semantics of arrays, records, pointers, 

and subprograms to be described. using this intermediate language. 

3.3.2 Evaluation  
The first and most significant use of formal operational semantics was to describe the semantics 

of PL/I (Wegner, 1972). The abstract machine and the translation rules for PL/I were together 

named the Vienna Definition Language (VDL), after the city where IBM designed it. Operational 

semantics provides an effective means of describing semantics for language users and language 

implementors, as long as the descriptions are kept simple and informal. The VDL description of 

PL/I, unfortunately, is so complex that it serves no practical purpose. 

Operational semantics depends on programming languages of lower levels not mathematics. The 

statements of one programming language are described in terms of the statements of a lower-level 
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programming language. This approach can lead to circularities, in which concepts are indirectly 

defined in terms of themselves. The methods described in the following two sections are much 

more formal, in the sense that they are based on mathematics and logic, not programming 

languages. 

3.4 Denotational Semantics  
Denotational semantics is the most rigorous and most widely known formal method for describing 

the meaning of programs. It is solidly based on recursive function theory. A thorough discussion 

of the use of denotational semantics to describe the semantics of programming languages is 

necessarily long and complex. It is our intent to provide the reader with an introduction to the 

central concepts of denotational semantics, along with a few simple examples that are relevant to 

programming language specifications. 

The process of constructing a denotational semantics specification for a programming language 

requires one to define for each language entity both a mathematical object and a function that maps 

instances of that language entity onto instances of the mathematical object. Because the objects 

are rigorously defined, they model the exact meaning of their corresponding entities. The idea is 

based on the fact that there are rigorous ways of manipulating mathematical objects but not 

programming language constructs. The difficulty with this method lies in creating the objects and 

the mapping functions. The method is named denotational because the mathematical objects 

denote the meaning of their corresponding syntactic entities. 

The mapping functions of a denotational semantics programming language specification, like all 

functions in mathematics, have a domain and a range. The domain is the collection of values that 

are legitimate parameters to the function; the range is the collection of objects to which the 

parameters are mapped. In denotational semantics, the domain is called the syntactic domain, 

because it is syntactic structures that are mapped. The range is called the semantic domain. 

Denotational semantics is related to operational semantics. In operational semantics, programming 

language constructs are translated into simpler programming language constructs, which become 

the basis of the meaning of the construct. In denotational semantics, programming language 

constructs are mapped to mathematical objects, either sets or, more often, functions. However, 

unlike operational semantics, denotational semantics does not model the step-by-step 

computational processing of programs. 
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3.4.1 Two Simple Examples 
We use a very simple language construct, character string representations of binary numbers, to 

introduce the denotational method. The syntax of such binary numbers can be described by the 

following grammar rules: 

<bin_num> → '0' 
| '1' 
| <bin_num> '0' 
| <bin_num> '1' 

A parse tree for the example binary number, 110, is shown in Figure 8. Notice that we put 

apostrophes around the syntactic digits to show they are not mathematical digits. This is similar to 

the relationship between ASCII coded digits and mathematical digits. When a program reads a 

number as a string, it must be converted to a mathematical number before it can be used as a value 

in the program. 

 

Figure 8 

The syntactic domain of the mapping function for binary numbers is the set of all character string 

representations of binary numbers. The semantic domain is the set of nonnegative decimal 

numbers, symbolized by N. To describe the meaning of binary numbers using denotational 

semantics, we associate the actual meaning (a decimal number) with each rule that has a single 

terminal symbol as its RHS. In our example, decimal numbers must be associated with the first 

two grammar rules. The other two grammar rules are, in a sense, computational rules, because they 

combine a terminal symbol, to which an object can be associated, with a nonterminal, which can 

be expected to represent some construct. Presuming an evaluation that progresses upward in the 

parse tree, the nonterminal in the right side would already have its meaning attached. So, a syntax 
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rule with a nonterminal as its RHS would require a function that computed the meaning of the 

LHS, which represents the meaning of the complete RHS. The semantic function, named Mbin, 

maps the syntactic objects, as described in the previous grammar rules, to the objects in N, the set 

of non-negative decimal numbers. The function Mbin is defined as follows:  

Mbin('0') = 0 
Mbin('1') = 1 
Mbin(<bin_num> '0') = 2 * Mbin(<bin_num>) 
Mbin(<bin_num> '1') = 2 * Mbin(<bin_num>) + 1 
3.4.2 The State of a Program  
The denotational semantics of a program could be defined in terms of state changes in an ideal 

computer. Operational semantics are defined in this way, and denotational semantics are defined 

in nearly the same way. In a further simplification, however, denotational semantics is defined in 

terms of only the values of all of the program’s variables. So, denotational semantics uses the state 

of the program to describe meaning, whereas operational semantics uses the state of a machine. 

The key difference between operational semantics and denotational semantics is that state changes 

in operational semantics are defined by coded algorithms, written in some programming language, 

whereas in denotational semantics, state changes are defined by mathematical functions. Let the 

states of a program be represented as a set of ordered pairs as follows: 

s = {<i1, v1>, <i2, v2>, . . . , <in, vn>} 

Each i is the name of a variable, and the associated v’s are the current values of those variables. 

Any of the v’s can have the special value undef, which indicates that its associated variable is 

currently undefined. Let VARMAP be a function of two parameters: a variable name and the 

program state. The value of VARMAP (ij, s) is vj (the value paired with ij in state s). Most 

semantics mapping functions for programs and program constructs map states to states. These state 

changes are used to define the meanings of programs and program constructs. Some language 

constructs—for example, expressions—are mapped to values, not states. 

3.4.3 Expressions  
Expressions are fundamental to most programming languages. We assume here that expressions 

have no side effects. Furthermore, we deal with only very simple expressions: The only operators 

are + and *, and an expression can have at most one operator; the only operands are scalar integer 



CIT401  COURSE GUIDE 

67 
 

variables and integer literals; there are no parentheses; and the value of an expression is an integer. 

Following is the BNF description of these expressions: 

<expr> → <dec_num> | <var> | <binary_expr> 
<binary_expr> → <left_expr> <operator> <right_expr> 
<left_expr> → <dec_num> | <var> 
<right_expr> → <dec_num> | <var> 
<operator> → + | * 
The only error we consider in expressions is a variable having an undefined value. Obviously, 

other errors can occur, but most of them are machine-dependent. Let Z be the set of integers, and 

let error be the error value. Then ZՍ { error } is the semantic domain for the denotational 

specification for our expressions. The mapping function for a given expression E and state s 

follows. To distinguish between mathematical function definitions and the assignment statements 

of programming languages, we use the symbol Δ = to define mathematical functions. The 

implication symbol, =>, used in this definition connects the form of an operand with its associated 

case (or switch) construct. Dot notation is used to refer to the child nodes of a node. For example, 

<binary_expr>.<left_expr> refers to the left child node of <binary_expr>. 

Me(<expr>, s) Δ= case <expr> of 
<dec_num>=>Mdec(<dec_num>, s) 
<var> =>if VARMAP(<var>, s) == undef 

then error 
else VARMAP(<var>, s) 

<binary_expr> => 
if(Me(<binary_expr>.<left_expr>,s) == undef OR 
   Me(<binary_expr>.<right_expr>, s) == undef) 
then error 
else if (<binary_expr>.<operator> == '+') 

then Me(<binary_expr>.<left_expr>, s) + 
     Me(<binary_expr>.<right_expr>, s) 
else Me(<binary_expr>.<left_expr>, s) * 
    Me(<binary_expr>.<right_expr>, s) 

3.4.4 Assignment Statements  
An assignment statement is an expression evaluation plus the setting of the target variable to the 

expression’s value. In this case, the meaning function maps a state to a state. This function can be 

described with the following: 
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Ma(x = E, s) Δ= if Me(E, s) == error 
then error 
else s′ = {<i1, v1′ >, <i2, v2′>, . . . , <in, vn′>}, where 

for j = 1, 2, . . . , n 
if ij == x 
    then vj′ = Me(E, s) 
    else vj′ = VARMAP(ij, s) 

Note that the comparison in the third last line above, ij == x, is of names, not values. 

3.4.5 Logical Pretest Loops  
The denotational semantics of a logical pretest loop is deceptively simple. To expedite the 

discussion, we assume that there are two other existing mapping functions, Msl and Mb, that map 

statement lists and states to states and Boolean expressions to Boolean values (or error ), 

respectively. The function is  

M1(while B do L, s) Δ= if Mb(B, s) == undef 
    then error 
    else if Mb(B, s) == false 

then s 
else if Msl(L, s) == error 
then error 
else M1(while B do L, Msl(L, s)) 

The meaning of the loop is simply the value of the program variables after the statements in the 

loop have been executed the prescribed number of times, assuming there have been no errors. In 

essence, the loop has been converted from iteration to recursion, where the recursion control is 

mathematically defined by other recursive state mapping functions. Recursion is easier to describe 

with mathematical rigor than iteration.  One significant observation at this point is that this 

definition, like actual program loops, may compute nothing because of nontermination. 

3.4.6 Evaluation  
Objects and functions, such as those used in the earlier constructs, can be defined for the other 

syntactic entities of programming languages. When a complete system has been defined for a given 

language, it can be used to determine the meaning of complete programs in that language. This 

provides a framework for thinking about programming in a highly rigorous way. As stated 

previously, denotational semantics can be used as an aid to language design. For example, 

statements for which the denotational semantic description is complex and difficult may indicate 
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to the designer that such statements may also be difficult for language users to understand and that 

an alternative design may be in order. 

3.5 Axiomatic Semantics   
Axiomatic semantics, thus named because it is based on mathematical logic, is the most abstract 

approach to semantics specification discussed in this chapter. Rather than directly specifying the 

meaning of a program, axiomatic semantics specifies what can be proven about the program. 

Recall that one of the possible uses of semantic specifications is to prove the correctness of 

programs. 

In axiomatic semantics, there is no model of the state of a machine or program or model of state 

changes that take place when the program is executed. The meaning of a program is based on 

relationships among program variables and constants, which are the same for every execution of 

the program. Axiomatic semantics has two distinct applications: program verification and program 

semantics specification. This section focuses on program verification in its description of 

axiomatic semantics.  

Axiomatic semantics was defined in conjunction with the development of an approach to proving 

the correctness of programs. Such correctness proofs, when they can be constructed, show that a 

program performs the computation described by its specification. In a proof, each statement of a 

program is both preceded and followed by a logical expression that specifies constraints on 

program variables. These, rather than the entire state of an abstract machine (as with operational 

semantics), are used to specify the meaning of the statement. The notation used to describe 

constraints—indeed, the language of axiomatic semantics—is predicate calculus. Although simple 

Boolean expressions are often adequate to express constraints, in some cases they are not. When 

axiomatic semantics is used to specify formally the meaning of a statement, the meaning is defined 

by the statement’s effect on assertions about the data affected by the statement. 

3.5.1 Assertions 
The logical expressions used in axiomatic semantics are called predicates, or assertions. An 

assertion immediately preceding a program statement describes the constraints on the program 

variables at that point in the program. An assertion immediately following a statement describes 

the new constraints on those variables (and possibly others) after execution of the statement. These 

assertions are called the precondition and postcondition, respectively, of the statement. For two 
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adjacent statements, the postcondition of the first serves as the precondition of the second. 

Developing an axiomatic description or proof of a given program requires that every statement in 

the program has both a precondition and a postcondition. 

In the following sections, we examine assertions from the point of view that preconditions for 

statements are computed from given postconditions, although it is possible to consider these in the 

opposite sense. We assume all variables are integer type. As a simple example, consider the 

following assignment statement and postcondition: 

sum = 2 * x + 1 {sum > 1} 

Precondition and postcondition assertions are presented in braces to distinguish them from parts 

of program statements. One possible precondition for this statement is {x > 10}. In axiomatic 

semantics, the meaning of a specific statement is defined by its precondition and its postcondition. 

In effect, the two assertions specify precisely the effect of executing the statement. The general 

concept of axiomatic semantics is to state precisely the meaning of statements and programs in 

terms of logic expressions. Program verification is one application of axiomatic descriptions of 

languages. 

3.5.2 Weakest Preconditions  
The weakest precondition is the least restrictive precondition that will guarantee the validity of the 

associated postcondition. For example, in the statement and postcondition given in Section 3.6.3.1, 

{x > 10}, {x > 50}, and {x > 1000} are all valid preconditions. The weakest of all preconditions 

in this case is {x > 0}. 

If the weakest precondition can be computed from the most general postcondition for each of the 

statement types of a language, then the processes used to compute these preconditions provide a 

concise description of the semantics of that language. Furthermore, correctness proofs can be 

constructed for programs in that language. A program proof is begun by using the characteristics 

of the results of the program’s execution as the postcondition of the last statement of the program. 

This postcondition, along with the last statement, is used to compute the weakest precondition for 

the last statement. This precondition is then used as the postcondition for the second last statement. 

This process continues until the beginning of the program is reached. At that point, the 

precondition of the first statement states the conditions under which the program will compute the 
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desired results. If these conditions are implied by the input specification of the program, the 

program has been verified to be correct. 

An inference rule is a method of inferring the truth of one assertion on the basis of the values of 

other assertions. The general form of an inference rule is as follows: 

 

This rule states that if S1, S2, . . . , and Sn are true, then the truth of S can be inferred. The top part 

of an inference rule is called its antecedent; the bottom part is called its consequent. An axiom is 

a logical statement that is assumed to be true. Therefore, an axiom is an inference rule without an 

antecedent. For some program statements, the computation of a weakest precondition from the 

statement and a postcondition is simple and can be specified by an axiom. In most cases, however, 

the weakest precondition can be specified only by an inference rule. 

To use axiomatic semantics with a given programming language, whether for correctness proofs 

or for formal semantics specifications, either an axiom or an inference rule must exist for each 

kind of statement in the language.  In the following subsections, we present an axiom for 

assignment statements and inference rules for statement sequences, selection statements, and 

logical pretest loop statements. Note that we assume that neither arithmetic nor Boolean 

expressions have side effects. 

3.5.3 Assignment Statements  
The precondition and postcondition of an assignment statement together define its meaning. To 

define the meaning of an assignment statement there must be a way to compute its precondition 

from its postcondition.  Let x = E be a general assignment statement and Q be its postcondition. 

Then, its weakest precondition, P, is defined by the axiom 

P = Qx→E 
which means that P is computed as Q with all instances of x replaced by E. For example, if we 

have the assignment statement and postcondition 

a = b / 2 - 1 {a < 10} 
the weakest precondition is computed by substituting b / 2 - 1 for a in the postcondition {a < 10}, 

as follows: 
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b / 2 - 1 < 10 
b < 22 
Thus, the weakest precondition for the given assignment statement and postcondition is {b < 22}. 

Remember that the assignment axiom is guaranteed to be correct only in the absence of side effects. 

An assignment statement has a side effect if it changes some variable other than its target. 

The usual notation for specifying the axiomatic semantics of a given statement form is 

{P} S {Q} 
where P is the precondition, Q is the postcondition, and S is the statement form. In the case of the 

assignment statement, the notation is 

{Qx→E} x = E{Q} 
As another example of computing a precondition for an assignment statement, consider the 

following: 

x = 2 * y - 3 {x > 25} 
The precondition is computed as follows: 

2 * y - 3 > 25 
y > 14 
So {y > 14} is the weakest precondition for this assignment statement and postcondition.  

Note that the appearance of the left side of the assignment statement in its right side does not affect 

the process of computing the weakest precondition. 

For example, for 

x = x + y - 3 {x > 10} 

the weakest precondition is 

x + y - 3 > 10 

y > 13 - x 

Recall that axiomatic semantics was developed to prove the correctness of programs. In light of 

that, it is natural at this point to wonder how the axiom for assignment statements can be used to 

prove anything. Here is how: A given assignment statement with both a precondition and a 

postcondition can be considered a logical statement, or theorem. If the assignment axiom, when 
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applied to the postcondition and the assignment statement, produces the given precondition, the 

theorem is proved. For example, consider the following logical statement: 

{x > 3} x = x - 3 {x > 0} 

Using the assignment axiom on the statement and its postcondition produces 

{x > 3}, which is the given precondition. Therefore, we have proven the example logical statement.  

3.5.4 Sequences  
The weakest precondition for a sequence of statements cannot be described by an axiom, because 

the precondition depends on the particular kinds of statements in the sequence. In this case, the 

precondition can only be described with an inference rule. Let S1 and S2 be adjacent program 

statements. If S1 and S2 have the following pre- and postconditions 

{P} S1 {P2} 

{P2} S2 {P3} 

the inference rule for such a two-statement sequence is 

 

So, for our example, 5P16 S1; S2 5P36 describes the axiomatic semantics of the sequence S1; S2. 

The inference rule states that to get the sequence precondition, the precondition of the second 

statement is computed. This new assertion is then used as the postcondition of the first statement, 

which can then be used to compute the precondition of the first statement, which is also the 

precondition of the whole sequence. If S1 and S2 are the assignment statements  

3.5.5 Selection  
We next consider the inference rule for selection statements, the general form of which is 

if B then S1 else S2 
We consider only selections that include else clauses. The inference rule is 

 

This rule specifies that selection statements must be proven both when the Boolean control 

expression is true and when it is false. The first logical statement above the line represents the then 
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clause; the second represents the else clause. According to the inference rule, we need a 

precondition P that can be used in the precondition of both the then and else clauses. 

Consider the following example of the computation of the precondition using the selection 

inference rule. The example selection statement is  

if x > 0 then 

y = y - 1 

else 

y = y + 1 

Suppose the postcondition, Q, for this selection statement is {y > 0}. We can use the axiom for 

assignment on the then clause 

 y = y - 1 {y > 0} 

This produces {y - 1 > 0} or {y > 1}. It can be used as the P part of the precondition for the then 

clause. Now we apply the same axiom to the else clause 

y = y + 1 {y > 0} 

3.5.6 Logical Pretest Loops  
Another essential construct of imperative programming languages is the logical pretest, or while 

loop. Computing the weakest precondition for a while loop is inherently more difficult than for a 

sequence, because the number of iterations cannot always be predetermined. In a case where the 

number of iterations is known, the loop can be unrolled and treated as a sequence. 

The problem of computing the weakest precondition for loops is similar to the problem of proving 

a theorem about all positive integers. In the latter case, induction is normally used, and the same 

inductive method can be used for some loops. The principal step in induction is finding an 

inductive hypothesis. The corresponding step in the axiomatic semantics of a while loop is finding 

an assertion called a loop invariant, which is crucial to finding the weakest precondition. The 

inference rule for computing the precondition for a while loop is as follows: 

 

In this rule, I is the loop invariant. This seems simple, but it is not. The complexity lies in finding 

an appropriate loop invariant. The axiomatic description of a while loop is written as 



CIT401  COURSE GUIDE 

75 
 

{P} while B do S end {Q} 

The loop invariant must satisfy a number of requirements to be useful. First, the weakest 

precondition for the while loop must guarantee the truth of the loop invariant. In turn, the loop 

invariant must guarantee the truth of the postcondition upon loop termination. These constraints 

move us from the inference rule to the axiomatic description. During execution of the loop, the 

truth of the loop invariant must be unaffected by the evaluation of the loop-controlling Boolean 

expression and the loop body statements. Hence, the name invariant. Another complicating factor 

for while loops is the question of loop termination. A loop that does not terminate cannot be 

correct, and in fact computes nothing. If Q is the postcondition that holds immediately after loop 

exit, then a precondition P for the loop is one that guarantees Q at loop exit and also guarantees 

that the loop terminates. 

The complete axiomatic description of a while construct requires all of the following to be true, in 

which I is the loop invariant: 

P => I 

{I and B} S {I} 

(I and (not B)) => Q 

the loop terminates 

Once again, the computed I can serve as P, and I passes the four requirements. Unlike our earlier 

example of finding a loop precondition, this one clearly is not a weakest precondition. Consider 

using the precondition {s > 1}. The logical statement 

{s > 1} while s > 1 do s = s / 2 end {s = 1} 

can easily be proven, and this precondition is significantly broader than the one computed earlier. 

The loop and precondition are satisfied for any positive value for s, not just powers of 2, as the 

process indicates. Because of the rule of consequence, using a precondition that is stronger than 

the weakest precondition does not invalidate a proof. 

Finding loop invariants is not always easy. It is helpful to understand the nature of these invariants. 

First, a loop invariant is a weakened version of the loop postcondition and also a precondition for 

the loop. So, I must be weak enough to be satisfied prior to the beginning of loop execution, but 

when combined with the loop exit condition, it must be strong enough to force the truth of the 
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postcondition. Because of the difficulty of proving loop termination, that requirement is often 

ignored. If loop termination can be shown, the axiomatic description of the loop is called total 

correctness. If the other conditions can be met but termination is not guaranteed, it is called partial 

correctness. In more complex loops, finding a suitable loop invariant, even for partial correctness, 

requires a good deal of ingenuity. Because computing the precondition for a while loop depends 

on finding a loop invariant, proving the correctness of programs with while loops using axiomatic 

semantics can be difficult. 

3.5.7 Program Proofs  
This section provides validations for two simple programs. The first example of a correctness proof 

is for a very short program, consisting of a sequence of three assignment statements that 

interchange the values of two variables. 

{x = A AND y = B} 

t = x; 

x = y; 

y = t; 

{x = B AND y = A} 

Because the program consists entirely of assignment statements in a sequence, the assignment 

axiom and the inference rule for sequences can be used to prove its correctness. The first step is to 

use the assignment axiom on the last statement and the postcondition for the whole program. This 

yields the precondition 

{x = B AND t = A} 

3.5.8 Evaluation  
As stated previously, to define the semantics of a complete programming language using the 

axiomatic method, there must be an axiom or an inference rule for each statement type in the 

language. Defining axioms or inference rules for some of the statements of programming 

languages has proven to be a difficult task. An obvious solution to this problem is to design the 

language with the axiomatic method in mind, so that only statements for which axioms or inference 

rules can be written are included. Unfortunately, such a language would necessarily leave out some 

useful and powerful parts. 
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Axiomatic semantics is a powerful tool for research into program correctness proofs, and it 

provides an excellent framework in which to reason about programs, both during their construction 

and later. Its usefulness in describing the meaning of programming languages to language users 

and compiler writers is, however, highly limited. 

4 Self-Assessment Exercises  
• Describe the two levels of uses of operational semantics.   

• Explain the domain, range, syntactic and semantic domains in denotational semantics?  

• What is an assertion in axiomatic semantics?   

• What is an inference rule? 

• Which part of an inference rule is the antecedent and consequent?   

 

5 Answer to Self-Assessment Exercises 

• Describe the two levels of uses of operational semantics. At the highest level, the interest is 

in the final result of the execution of a complete program. This is sometimes called natural 

operational semantics. At the lowest level, operational semantics can be used to determine 

the precise meaning of a program through an examination of the complete sequence of state 

changes that occur when the program is executed. This use is sometimes called structural 

operational semantics.    

• Explain the domain, range, syntactic and semantic domains in denotational semantics?  - The 

domain is the collection of values that are legitimate parameters to the function; the range is 

the collection of objects to which the parameters are mapped. In denotational semantics, the 

domain is called the syntactic domain, because it is syntactic structures that are mapped. The 

range is called the semantic domain. 

 

• What is an assertion in axiomatic semantics? The logical expressions used in axiomatic 

semantics are called predicates, or assertions. 

• What is an inference rule? An inference rule is a method of inferring the truth of one assertion 

on the basis of the values of other assertions.  

• Which part of an inference rule is the antecedent and consequent? The top part of an inference 

rule is called its antecedent while the bottom part is called its consequent. An axiom is a 

logical statement that is assumed to be true 
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6  Conclusion  

In a well- designed programming language, semantics should follow directly from syntax; that is, 

the appearance of a statement should strongly suggest what the statement is meant to accomplish. 

Describing syntax is easier than describing semantics, partly because a concise and universally 

accepted notation is available for syntax description, but none has yet been developed for 

semantics. 

7  Summary  

The unit provided a brief introduction to three methods of semantic description: operational, 

denotational, and axiomatic. Operational semantics is a method of describing the meaning of 

language constructs in terms of their effects on an ideal machine. In denotational semantics, 

mathematical objects are used to represent the meanings of language constructs. Language entities 

are converted to these mathematical objects with recursive functions. Axiomatic semantics, which 

is based on formal logic, was devised as a tool for proving the correctness of programs. 
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1 Introduction  
The syntax analyzer is the heart of a compiler, because several other important components, 

including the semantic analyzer and the intermediate code generator, are driven by the actions of 

the syntax analyzer. Syntax analyzers are based directly on the grammars as discussed in Module 

2 unit 1 and 2 thus, it is necessary to discuss them as an application of grammars. Many 

applications, among them program listing formatters, programs that compute the complexity of 

programs, and programs that must analyze and react to the contents of a configuration file, all need 

to do lexical and syntax analyses. Therefore, lexical and syntax analyses are important topics for 

software developers, even if they never need to write a compiler. This unit discusses extensively 

on lexical analysis with focus on lexical process and building lexical analyzer. Also, the unit 

discusses the parsing problem, recursive-decent parsing and bottom-up parsing. 

2 Intended Learning Outcomes (ILOs)  

At the end of the unit, students should able to 

• Explain lexical analysis 

• Discuss parsing and parsing algorithm 

• Understand the implementation process of recursive-decent parsing 

3  Main Content 

3.1 Lexical Analysis 

A lexical analyzer is essentially a pattern matcher. A pattern matcher attempts to find a substring 

of a given string of characters that matches a given character pattern. Pattern matching is a 

traditional part of computing. One of the earliest uses of pattern matching was with text editors, 

such as the ed line editor, which was introduced in an early version of UNIX. Since then, pattern 

matching has found its way into some programming languages—for example, Perl and JavaScript. 

It is also available through the standard class libraries of Java, C++, and C#. A lexical analyzer 

serves as the front end of a syntax analyzer. Technically, lexical analysis is a part of syntax 

analysis.  

A lexical analyzer performs syntax analysis at the lowest level of program structure. An input 

program appears to a compiler as a single string of characters. The lexical analyzer collects 

characters into logical groupings and assigns internal codes to the groupings according to their 

structure. In unit 2, these logical groupings are named lexemes, and the internal codes for 



CIT401  COURSE GUIDE 

81 
 

categories of these groupings are named tokens. Lexemes are recognized by matching the input 

character string against character string patterns. Although tokens are usually represented as 

integer values, for the sake of readability of lexical and syntax analyzers, they are often referenced 

through named constants.  

Consider the following example of an assignment statement: 

result = oldsum - value / 100; 
Following are the tokens and lexemes of this statement: 

Token     Lexeme 
IDENT    result 
ASSIGN_OP    = 
IDENT    oldsum 
SUB_OP   - 
IDENT    value 
DIV_OP    / 
INT_LIT    100 
SEMICOLON   ; 

Lexical analyzers extract lexemes from a given input string and produce the corresponding tokens. 

In the early days of compilers, lexical analyzers often processed an entire source program file and 

produced a file of tokens and lexemes. Now, however, most lexical analyzers are subprograms that 

locate the next lexeme in the input, determine its associated token code, and return them to the 

caller, which is the syntax analyzer. So, each call to the lexical analyzer returns a single lexeme 

and its token. The only view of the input program seen by the syntax analyzer is the output of the 

lexical analyzer, one token at a time. 

The lexical-analysis process includes skipping comments and white space outside lexemes, as they 

are not relevant to the meaning of the program. Also, the lexical analyzer inserts lexemes for user-

defined names into the symbol table, which is used by later phases of the compiler. Finally, lexical 

analyzers detect syntactic errors in tokens, such as ill-formed floating-point literals, and report 

such errors to the user. 
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3.2 Building Lexical Analyzer 
There are three approaches to building a lexical analyzer: 

• Write a formal description of the token patterns of the language using a descriptive 

language related to regular expressions. These descriptions are used as input to a software 

tool that automatically generates a lexical analyzer. There are many such tools available 

for this. The oldest of these, named lex, is commonly included as part of UNIX systems. 

• Design a state transition diagram that describes the token patterns of the language and write 

a program that implements the diagram. 

• Design a state transition diagram that describes the token patterns of the language and hand 

construct a table-driven implementation of the state diagram. 

A state transition diagram, or just state diagram, is a directed graph. The nodes of a state diagram 

are labeled with state names. The arcs are labeled with the input characters that cause the 

transitions among the states. An arc may also include actions the lexical analyzer must perform 

when the transition is taken. 

State diagrams of the form used for lexical analyzers are representations of a class of mathematical 

machines called finite automata. Finite automata can be designed to recognize members of a class 

of languages called regular languages. Regular grammars are generative devices for regular 

languages. The tokens of a programming language are a regular language, and a lexical analyzer 

is a finite automaton. We now illustrate lexical-analyzer construction with a state diagram and the 

code that implements it. The state diagram could simply include states and transitions for each and 

every token pattern. However, that approach results in a very large and complex diagram, because 

every node in the state diagram would need a transition for every character in the character set of 

the language being analyzed. We therefore consider ways to simplify it.  

Suppose we need a lexical analyzer that recognizes only arithmetic expressions, including variable 

names and integer literals as operands. Assume that the variable names consist of strings of 

uppercase letters, lowercase letters, and digits but must begin with a letter. Names have no length 

limitation. The first thing to observe is that there are 52 different characters (any uppercase or 

lowercase letter) that can begin a name, which would require 52 transitions from the transition 

diagram’s initial state. However, a lexical analyzer is interested only in determining that it is a 

name and is not concerned with which specific name it happens to be. Therefore, we define a 
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character class named LETTER for all 52 letters and use a single transition on the first letter of 

any name.  

Another opportunity for simplifying the transition diagram is with the integer literal tokens. There 

are 10 different characters that could begin an integer literal lexeme. This would require 10 

transitions from the start state of the state diagram. Because specific digits are not a concern of the 

lexical analyzer, we can build a much more compact state diagram if we define a character class 

named DIGIT for digits and use a single transition on any character in this character class to a state 

that collects integer literals. 

Because our names can include digits, the transition from the node following the first character of 

a name can use a single transition on LETTER or DIGIT to continue collecting the characters of a 

name. Next, we define some utility subprograms for the common tasks inside the lexical analyzer. 

First, we need a subprogram, which we can name getChar, that has several duties. When called, 

getChar gets the next character of input from the input program and puts it in the global variable 

nextChar. getChar also must determine the character class of the input character and put it in the 

global variable charClass. The lexeme being built by the lexical analyzer, which could be 

implemented as a character string or an array, will be named lexeme. 

We implement the process of putting the character in nextChar into the string array lexeme in a 

subprogram named addChar. This subprogram must be explicitly called because programs include 

some characters that need not be put in lexeme, for example the white-space characters between 

lexemes. In a more realistic lexical analyzer, comments also would not be placed in lexeme. When 

the lexical analyzer is called, it is convenient if the next character of input is the first character of 

the next lexeme. Because of this, a function named getNonBlank is used to skip white space every 

time the analyzer is called. Finally, a subprogram named lookup is needed to compute the token 

code for the single-character tokens. In our example, these are parentheses and the arithmetic 

operators. Token codes are numbers arbitrarily assigned to tokens by the compiler writer. 

The state diagram in Figure 9 describes the patterns for our tokens. It includes the actions required 

on each transition of the state diagram. The following is a C implementation of a lexical analyzer 

specified in the state diagram of Figure 9, including a main driver function for testing. 
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 purposes: 
/* front.c - a lexical analyzer system for simple arithmetic expressions */ 
#include <stdio.h>  
#include <ctype.h> 
/* Global declarations */  
/* Variables */  
int charClass;  
char lexeme [100];  
char nextChar;  
int lexLen;  
int token; int nextToken; 
FILE *in_fp, *fopen(); 

 

Figure 9: A state diagram to recognize names, parentheses and arithmetic operators 

3.3 The Parsing Problem 

The part of the process of analyzing syntax that is referred to as syntax analysis is often called 

parsing. We will use these two interchangeably. This section discusses the general parsing problem 

and introduces the two main categories of parsing algorithms, top-down and bottom-up, as well as 

the complexity of the parsing process. 

3.3.1 Introduction to Parsing 
Parsers for programming languages construct parse trees for given programs. In some cases, the 

parse tree is only implicitly constructed, meaning that perhaps only a traversal of the tree is 
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generated. But in all cases, the information required to build the parse tree is created during the 

parse. Both parse trees and derivations include all of the syntactic information needed by a 

language processor. 

There are two distinct goals of syntax analysis: First, the syntax analyzer must check the input 

program to determine whether it is syntactically correct. When an error is found, the analyzer must 

produce a diagnostic message and recover. In this case, recovery means it must get back to a 

normal state and continue its analysis of the input program. This step is required so that the 

compiler finds as many errors as possible during a single analysis of the input program. If it is not 

done well, error recovery may create more errors, or at least more error messages. The second goal 

of syntax analysis is to produce a complete parse tree, or at least trace the structure of the complete 

parse tree, for syntactically correct input. The parse tree (or its trace) is used as the basis for 

translation. 

Parsers are categorized according to the direction in which they build parse trees. The two broad 

classes of parsers are top-down, in which the tree is built from the root downward to the leaves, 

and bottom-up, in which the parse tree is built from the leaves upward to the root. 

In this unit, we use a small set of notational conventions for grammar symbols and strings to make 

the discussion less cluttered. For formal languages, they are as follows: 

• Terminal symbols—lowercase letters at the beginning of the alphabet (a, b, . . .) 

• Nonterminal symbols—uppercase letters at the beginning of the alphabet (A, B, . . .) 

• Terminals or nonterminals—uppercase letters at the end of the alphabet (W, X, Y, Z) 

• Strings of terminals—lowercase letters at the end of the alphabet (w, x, y, z) 

• Mixed strings (terminals and/or nonterminals)—lowercase Greek letters (a, b, d, g) 

For programming languages, terminal symbols are the small-scale syntactic constructs of the 

language, what we have referred to as lexemes. The nonterminal symbols of programming 

languages are usually connotative names or abbreviations, surrounded by angle brackets—for 

example, <while_statement>, <expr>, and <function_def>. The sentences of a language 

(programs, in the case of a programming language) are strings of terminals. Mixed strings describe 

right-hand sides (RHSs) of grammar rules and are used in parsing algorithms. 
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3.3.2 Top-Down Parsers 
A top-down parser traces or builds a parse tree in preorder. A preorder traversal of a parse tree 

begins with the root. Each node is visited before its branches are followed. Branches from a 

particular node are followed in left-to-right order. This corresponds to a leftmost derivation. 

In terms of the derivation, a top-down parser can be described as follows: 

Given a sentential form that is part of a leftmost derivation, the parser’s task is to find the next 

sentential form in that leftmost derivation. The general form of a left sentential form is xAa, 

whereby our notational conventions x is a string of terminal symbols, A is a nonterminal, and a is 

a mixed string. Because x contains only terminals, A is the leftmost nonterminal in the sentential 

form, so it is the one that must be expanded to get the next sentential form in a leftmost derivation. 

Determining the next sentential form is a matter of choosing the correct grammar rule that has A 

as its LHS. For example, if the current sentential form is xAa and the A-rules are A→bB, A→cBb, 

and A→a, a top- down parser must choose among these three rules to get the next sentential form, 

which could be xbBa, xcBba, or xaa. This is the parsing decision problem for top-down parsers.  

Different top-down parsing algorithms use different information to make parsing decisions. The 

most common top-down parsers choose the correct RHS for the leftmost nonterminal in the current 

sentential form by comparing the next token of input with the first symbols that can be generated 

by the RHSs of those rules. Whichever RHS has that token at the left end of the string it generates 

is the correct one. So, in the sentential form xAa, the parser would use whatever token would be 

the first generated by A to determine which A-rule should be used to get the next sentential form. 

In the example above, the three RHSs of the A-rules all begin with different terminal symbols. The 

parser can easily choose the correct RHS based on the next token of input, which must be a, b, or 

c in this example. In general, choosing the correct RHS is not so straightforward, because some of 

the RHSs of the leftmost nonterminal in the current sentential form may begin with a nonterminal. 

The most common top-down parsing algorithms are closely related. A recursive-descent parser is 

a coded version of a syntax analyzer based directly on the BNF description of the syntax of 

language. The most common alternative to recursive descent is to use a parsing table, rather than 

code, to implement the BNF rules. Both, which are called LL algorithms, are equally powerful, 

meaning they work on the same subset of all context-free grammars. The first L in LL specifies a 

left-to-right scan of the input; the second L specifies that a leftmost derivation is generated. 
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3.3.3 Bottom-Up Parsers 

A bottom- up parser constructs a parse tree by beginning at the leaves and progressing toward the 

root. This parse order corresponds to the reverse of a rightmost derivation. That is, the sentential 

forms of the derivation are produced in order of last to first. In terms of the derivation, a bottom-

Up parser can be described as follows: Given a right sentential form α, the parser must determine 

what substring of α is the RHS of the rule in the grammar that must be reduced to its LHS to 

produce the previous sentential form in the rightmost derivation. For example, the first step for a 

bottom-up parser is to determine which substring of the initial given sentence is the RHS to be 

reduced to its corresponding LHS to get the second last sentential form in the derivation. 

The process of finding the correct RHS to reduce is complicated by the fact that a given right 

sentential form may include more than one RHS from the grammar of the language being parsed. 

The correct RHS is called the handle. A right sentential form is a sentential form that appears in a 

rightmost derivation.  Consider the following grammar and derivation: 

S → aAc  
A → aA | b  
S => aAc => aaAc => aabc 
A bottom-up parser of this sentence, aabc, starts with the sentence and must find the handle in it. 

In this example, this is an easy task, for the string contains only one RHS, b. When the parser 

replaces b with its LHS, A, it gets the second to last sentential form in the derivation, aaAc. In the 

general case, as stated previously, finding the handle is much more difficult, because a sentential 

form may include several different RHSs. 

A bottom-up parser finds the handle of a given right sentential form by examining the symbols on 

one or both sides of a possible handle. Symbols to the right of the possible handle are usually 

tokens in the input that have not yet been analyzed. The most common bottom-up parsing 

algorithms are in the LR family, where the L specifies a left-to-right scan of the input and the R 

specifies that a rightmost derivation is generated. 

3.3.4 The Complexity of Parsing 

Parsing algorithms that work for any unambiguous grammar are complicated and inefficient. In 

fact, the complexity of such algorithms is O(n3), which means the amount of time they take is on 
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the order of the cube of the length of the string to be parsed. This relatively large amount of time 

is required because these algorithms frequently must back up and reparse part of the sentence being 

analyzed. Reparsing is required when the parser has made a mistake in the parsing process. 

Backing up the parser also requires that part of the parse tree being constructed (or its trace) must 

be dismantled and rebuilt. O(n3) algorithms are normally not useful for practical processes, such 

as syntax analysis for a compiler, because they are far too slow. In situations such as this, computer 

scientists often search for algorithms that are faster, though less general. Generality is traded for 

efficiency. In terms of parsing, faster algorithms have been found that work for only a subset of 

the set of all possible grammars. These algorithms are acceptable as long as the subset includes 

grammars that describe programming languages. All algorithms used for the syntax analyzers of 

commercial compilers have complexity O(n), which means the time they take is linearly related to 

the length of the string to be parsed. This is vastly more efficient than O(n3) algorithms. 

3.4 Recursive-Descent Parsing 

This section introduces the recursive-descent top-down parser implementation process and 

Grammar Class. 

3.4.1 The Recursive-Descent Parsing Process 

A recursive-descent parser is so named because it consists of a collection of subprograms, many 

of which are recursive, and it produces a parse tree in top-down order. This recursion is a reflection 

of the nature of programming languages, which include several different kinds of nested structures. 

For example, statements are often nested in other statements. Also, parentheses in expressions 

must be properly nested. The syntax of these structures is naturally described with recursive 

grammar rules.  

EBNF is ideally suited for recursive-descent parsers. Consider the following examples: 

<if_statement> → if <logic_expr> <statement> [else <statement>] 
<ident_list> → ident {, ident} 
In the first rule, the else clause of an if statement is optional. In the second, an <ident_list> is an 

identifier, followed by zero or more repetitions of a comma and an identifier. 

A recursive-descent parser has a subprogram for each nonterminal in its associated grammar. The 

responsibility of the subprogram associated with a particular nonterminal is as follows: When 
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given an input string, it traces out the parse tree that can be rooted at that nonterminal and whose 

leaves match the input string. In effect, a recursive-descent parsing subprogram is a parser for the 

language (set of strings) that is generated by its associated nonterminal. Consider the following 

EBNF description of simple arithmetic expressions: 

<expr> → <term> {(+ | -) <term>} 
<term> → <factor> {(* | /) <factor>} 
<factor> → id | int_constant | ( <expr> ) 
Recall from unit 2 that an EBNF grammar for arithmetic expressions, such as this one, does not 

force any associativity rule. Therefore, when using such a grammar as the basis for a compiler, 

one must take care to ensure that the code generation process, which is normally driven by syntax 

analysis, produces code that adheres to the associativity rules of the language. This can be done 

easily when recursive-descent parsing is used. 

A recursive-descent subprogram for a rule with a single RHS is relatively simple. For each terminal 

symbol in the RHS, that terminal symbol is compared with nextToken. If they do not match, it is 

a syntax error. If they match, the lexical analyzer is called to get the next input token. For each 

nonterminal, the parsing subprogram for that nonterminal is called. The recursive-descent 

subprogram for the first rule in the previous example grammar, written in C, is 

/*   expr 
Parses strings in the language generated by the rule: 
<expr> -> <term> {(+ | -) <term>} 
*/ 

void expr() { 
printf("Enter <expr>\n"); 

/* Parse the first term */ 
term(); 

/*  As long as the next token is + or -, get 
the next token and parse the next term */ 

while (nextToken == ADD_OP || nextToken == SUB_OP) { 
lex(); 
term(); 

} 
printf("Exit <expr>\n"); 

} /* End of function expr */ 
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Recursive-descent parsing subprograms are written with the convention that each one leaves the 

next token of input in nextToken. So, whenever a parsing function begins, it assumes that 

nextToken has the code for the leftmost token of the input that has not yet been used in the parsing 

process.  

The part of the language that the expr function parses consists of one or more terms, separated by 

either plus or minus operators. This is the language generated by the nonterminal <expr>. 

Therefore, first it calls the function that parses terms (term). Then it continues to call that function 

as long as it finds ADD_OP or SUB_OP tokens (which it passes over by calling lex). This 

recursive-descent function is simpler than most, because its associated rule has only one RHS. 

Furthermore, it does not include any code for syntax error detection or recovery, because there are 

no detectable errors associated with the grammar rule. 

A recursive-descent parsing subprogram for a nonterminal whose rule has more than one RHS 

begins with code to determine which RHS is to be parsed. Each RHS is examined (at compiler 

construction time) to determine the set of terminal symbols that can appear at the beginning of 

sentences it can generate. By matching these sets against the next token of input, the parser can 

choose the correct RHS.  The parsing subprogram for <term> is similar to that for <expr>: 

/*  term 
Parses strings in the language generated by the rule: 
<term> -> <factor> {(* | /) <factor>) 
*/ 

void term() { 
printf("Enter <term>\n"); 

/* Parse the first factor */ 
factor(); 

/* As long as the next token is * or /, get the 
next token and parse the next factor */ 

while (nextToken == MULT_OP || nextToken == DIV_OP) { 
lex(); 
factor(); 

} 
printf("Exit <term>\n"); 

} /* End of function term */ 
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The function for the <factor> nonterminal of our arithmetic expression grammar must choose 

between its two RHSs. It also includes error detection. In the function for <factor>, the reaction to 

detecting a syntax error is simply to call the error function. In a real parser, a diagnostic message 

must be produced when an error is detected. Furthermore, parsers must recover from the error so 

that the parsing process can continue. 

/*  factor 
Parses strings in the language generated by the rule: 
<factor> -> id | int_constant | ( <expr ) 
*/ 

void factor() { 
printf("Enter <factor>\n"); 

/* Determine which RHS */ 
if (nextToken == IDENT || nextToken == INT_LIT) 

/* Get the next token */ 
lex(); 

/* If the RHS is ( <expr>), call lex to pass over the left parenthesis, call expr, and check for the 
right parenthesis */  

else {  
if (nextToken == LEFT_PAREN) { 

 lex();  
expr();  
if (nextToken == RIGHT_PAREN) 
  lex(); 
else  

error();  
} /* End of if (nextToken == ... */ 

/* It was not an id, an integer literal, or a left parenthesis */  
else 

error(); 
} /* End of else */ printf("Exit <factor>\n");; 
} /* End of function factor */ 
  printf("Exit <factor>\n");; 
} /* End of function factor */ 
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Following is the trace of the parse of the example expression (sum + 47) / total, using the parsing 

functions expr, term, and factor, and the function lex. Note that the parse begins by calling lex and 

the start symbol routine, in this case, expr. 

Next token is: 25 Next lexeme is ( Enter <expr> Enter <term> Enter <factor> 
Next token is: 11 Next lexeme is sum Enter <expr> Enter <term> Enter <factor> 
Next token is: 21 Next lexeme is + Exit <factor> Exit <term> 
Next token is: 10 Next lexeme is 47 Enter <term> Enter <factor> 
Next token is: 26 Next lexeme is ) Exit <factor> Exit <term> Exit <expr> 
Next token is: 24 Next lexeme is / Exit <factor> 
Next token is: 11 Next lexeme is total Enter <factor> 
Next token is: -1 Next lexeme is EOF Exit <factor> Exit <term> Exit <expr> 
 
The parse tree traced by the parser for the preceding expression is shown in Figure 10 

 
Figure 10: Parse tree for (Sum + 47)/total 

3.4.2 The LL Grammar Class 

Before choosing to use recursive descent as a parsing strategy for a compiler or other program 

analysis tool, one must consider the limitations of the approach, in terms of grammar restrictions. 

One simple grammar characteristic that causes a catastrophic problem for LL parsers is left 

recursion. For example, consider the following rule: 

A → A + B 
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A recursive-descent parser subprogram for A immediately calls itself to parse the first symbol in 

its RHS. That activation of the A parser subprogram then immediately calls itself again, and again, 

and so forth. It is easy to see that this leads nowhere (except to stack overflow). The left recursion 

in the rule A → A + B is called direct left recursion, because it occurs in one rule. Direct left 

recursion can be eliminated from a grammar by the following process:  

For each nonterminal, A,  

1. Group the A-rules as A → Aα1, |…| Aαm | β1 | β2 | …| βn where none of the β’s begins with A 

2. Replace the original A-rules with 

A→β1A ′ | β2A ′ | … | βnA′ 
A′ →α1A′ | α2A ′ | αmA ′ | ԑ 
Note that e specifies the empty string. A rule that has e as its RHS is called an erasure rule, because 

its use in a derivation effectively erases its LHS from the sentential form. Consider the following 

example grammar and the application of the above process:  

E →E + T | T 
T →T * F | F 
F → (E) | id 

For the E-rules, we have α1 = + T and β = T, so we replace the E-rules with 

E →T E′ 
E′ → + T E′ | ԑ 
For the T-rules, we have α1 = *F and β = F, so we replace the T-rules with 

T →F T′ 
T′ →* F T′ | ԑ 
Because there is no left recursion in the F-rules, they remain the same, so the complete replacement 

grammar is 

E →T E′ 
E′ → + T E′ | ԑ 
T →F T′ 
T′ →* F T′ | ԑ  
F→ (E) | id 

This grammar generates the same language as the original grammar but is not left recursive. As 

was the case with the expression grammar written using EBNF in Section 3.3.1, this grammar does 
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not specify left associativity of operators. However, it is relatively easy to design the code 

generation based on this grammar so that the addition and multiplication operators will have left 

associativity. Indirect left recursion poses the same problem as direct left recursion.  

3.5 Bottom-Up Parsing 

3.5.1 The Parsing Problem for Bottom-Up Parsers 
Consider the following grammar for arithmetic expressions: 

E → E + T | T 
T →T * F | F 
F → (E) | id 

Notice that this grammar generates the same arithmetic expressions as the example in Section 3.4. 

The difference is that this grammar is left recursive, which is acceptable to bottom-up parsers. Also 

note that grammars for bottom-up parsers normally do not include metasymbols such as those used 

to specify extensions to BNF. The following rightmost derivation illustrates this grammar: 

E => E + T 
=> E + T * F 
=> E + T * id 
=> E + F * id 
=> E + id * id 
=> T + id * id 
=> F + id * id 
=> id + id * id 

The underlined part of each sentential form in this derivation is the RHS that is rewritten as its 

corresponding LHS to get the previous sentential form. The process of bottom-up parsing produces 

the reverse of a rightmost derivation. So, in the example derivation, a bottom-up parser starts with 

the last sentential form (the input sentence) and produces the sequence of sentential forms from 

there until all that remains is the start symbol, which in this grammar is E. In each step, the task of 

the bottom- up parser is to find the specific RHS, the handle, in the sentential form that must be 

rewritten to get the next (previous) sentential form. As mentioned earlier, a right sentential form 

may include more than one RHS. For example, the right sentential form 

E + T * id 
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includes three RHSs, E + T, T, and id. Only one of these is the handle. For example, if the RHS E 

+ T were chosen to be rewritten in this sentential form, the resulting sentential form would be E * 

id, but E * id is not a legal right sentential form for the given grammar. 

The handle of a right sentential form is unique. The task of a bottom-up parser is to find the handle 

of any given right sentential form that can be generated by its associated grammar. Formally, 

handle is defined as follows: 

 

In this definition, => rm specifies a rightmost derivation step, and => *rm specifies zero or more 

rightmost derivation steps. Although the definition of a handle is mathematically concise, it 

provides little help in finding the handle of a given right sentential form. In the following, we 

provide the definitions of several substrings of sentential forms that are related to handles. The 

purpose of these is to provide some intuition about handles. 

 

In this definition, => + means one or more derivation steps.  

 

If these two definitions are compared carefully, it is clear that they differ only in the last derivation 

specification. The definition of phrase uses one or more steps, while the definition of simple phrase 

uses exactly one step. 

The definitions of phrase and simple phrase may appear to have the same lack of practical value 

as that of a handle, but that is not true. Consider what a phrase is relative to a parse tree. It is the 

string of all of the leaves of the partial parse tree that is rooted at one particular internal node of 

the whole parse tree. A simple phrase is just a phrase that takes a single derivation step from its 

root nonterminal node. In terms of a parse tree, a phrase can be derived from a single nonterminal 
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in one or more tree levels, but a simple phrase can be derived in just a single tree level. Consider 

the parse tree shown in Figure 11. 

 

Figure 11: A parse tree for W + T * id 

The leaves of the parse tree in Figure 11 comprise the sentential form E + T * id. Because there 

are three internal nodes, there are three phrases. Each internal node is the root of a subtree, whose 

leaves are a phrase. The root node of the whole parse tree, E, generates all of the resulting sentential 

form, E + T * id, which is a phrase. The internal node, T, generates the leaves T * id, which is 

another phrase. Finally, the internal node, F, generates id, which is also a phrase. So, the phrases 

of the sentential form E + T * id are E + T * id, T * id, and id. Notice that phrases are not necessarily 

RHSs in the underlying grammar. 

The simple phrases are a subset of the phrases. In the previous example, the only simple phrase is 

id. A simple phrase is always a RHS in the grammar. The reason for discussing phrases and simple 

phrases is this: The handle of any rightmost sentential form is its leftmost simple phrase. So now 

we have a highly intuitive way to find the handle of any right sentential form, assuming we have 

the grammar and can draw a parse tree. This approach to finding handles is of course not practical 

for a parser. (If you already have a parse tree, why do you need a parser?) Its only purpose is to 

provide the reader with some intuitive feel for what a handle is, relative to a parse tree, which is 

easier than trying to think about handles in terms of sentential forms. 

We can now consider bottom-up parsing in terms of parse trees, although the purpose of a parser 

is to produce a parse tree. Given the parse tree for an entire sentence, you easily can find the handle, 

which is the first thing to rewrite in the sentence to get the previous sentential form. Then the 
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handle can be pruned from the parse tree and the process repeated. Continuing to the root of the 

parse tree, the entire rightmost derivation can be constructed. 

3.5.2  Shift-Reduce Algorithms 
Bottom-up parsers are often called shift-reduce algorithms, because shift and reduce are the two 

most common actions they specify. An integral part of every bottom-up parser is a stack. As with 

other parsers, the input to a bottom-up parser is the stream of tokens of a program and the output 

is a sequence of grammar rules. The shift action moves the next input token onto the parser’s stack. 

A reduce action replaces an RHS (the handle) on top of the parser’s stack by its corresponding 

LHS. Every parser for a programming language is a pushdown automaton (PDA), because a PDA 

is a recognizer for a context-free language. You need not be intimate with PDAs to understand 

how a bottom-up parser works, although it helps. A PDA is a very simple mathematical machine 

that scans strings of symbols from left to right. A PDA is so named because it uses a pushdown 

stack as its memory. PDAs can be used as recognizers for context-free languages. Given a string 

of symbols over the alphabet of a context-free language, a PDA that is designed for the purpose 

can determine whether the string is or is not a sentence in the language. In the process, the PDA 

can produce the information needed to construct a parse tree for the sentence. 

With a PDA, the input string is examined, one symbol at a time, left to right. The input is treated 

very much as if it were stored in another stack, because the PDA never sees more than the leftmost 

symbol of the input. Note that a recursive-descent parser is also a PDA. In that case, the stack is 

that of the run-time system, which records subprogram calls (among other things), which 

correspond to the nonterminals of the grammar. 

3.5.3 LR Parsers 
Many different bottom-up parsing algorithms have been devised. Most of them are variations of a 

process called LR. LR parsers use a relatively small program and a parsing table that is built for a 

specific programming language. This algorithm, which is sometimes called canonical LR, was not 

used in the years immediately following its publication because producing the required parsing 

table required large amounts of computer time and memory. These are characterized by two 

properties: (1) They require far less computer resources to produce the required parsing table than 

the canonical LR algorithm, and (2) they work on smaller classes of grammars than the canonical 

LR algorithm. 
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There are three advantages to LR parsers: 

• They can be built for all programming languages. 

• They can detect syntax errors as soon as it is possible in a left-to-right scan. 

• The LR class of grammars is a proper superset of the class parsable by LL parsers (for 

example, many left recursive grammars are LR, but none are LL). 

The only disadvantage of LR parsing is that it is difficult to produce by hand the parsing table for 

a given grammar for a complete programming language.  

Prior to the appearance of the LR parsing algorithm, there were a number of parsing algorithms 

that found handles of right sentential forms by looking both to the left and to the right of the 

substring of the sentential form that was suspected of being the handle.  

4 Self-Assessment Exercises 

• What is a lexical analyzer?  

• State the two classes of parsers with their function.  

• State three approaches in building a lexical analyzer.   

• What are the two distinct goals of syntax analysis?  

• Describe the complexity of parsing algorithms.  

• Briefly describe the recursive-descent parser.  

• What do the two Ls in LL algorithm specify?  

• State the advantages and disadvantage of LR parsing 

5 Answer to Self-Assessment Exercises 

• What is a lexical analyzer? A lexical analyzer is a pattern matcher which attempts to find a 

substring of a given string of characters that matches a given character pattern. 

• State the two classes of parsers with their function. The two broad classes of parsers are top-

down, in which the tree is built from the root downward to the leaves, and bottom-up, in which 

the parse tree is built from the leaves upward to the root. 

• State three approaches in building a lexical analyzer.  Using a software tool to generate a table 

for a table-driven analyzer, building such a table by hand, and writing code to implement a 

state diagram description of the tokens of the language being implemented  
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• What are the two distinct goals of syntax analysis? To detect syntax errors in a given program 

and to produce a parse tree, or possibly only the information required to build such a tree, for 

a given program 

• Describe the complexity of parsing algorithms. Section 3.3.4 

• Briefly describe the recursive-descent parser. A recursive-descent parser is an LL parser that 

is implemented by writing code directly from the grammar of the source language. It consists 

of a collection of subprograms, many of which are recursive, and it produces a parse tree in 

top-down order. This recursion is a reflection of the nature of programming languages, which 

include several different kinds of nested structures. 

• What do the two Ls in LL algorithm specify? The first L in LL specifies a left-to-right scan 

of the input while the second L specifies that a leftmost derivation is generated. 

• State the advantages and disadvantage of LR parsing. Advantages of LR parsers: They can be 

built for all programming languages; They can detect syntax errors as soon as it is possible in 

a left-to-right scan; The LR class of grammars is a proper superset of the class parsable by LL 

parsers (for example, many left recursive grammars are LR, but none are LL). Disadvantage 

of LR parsers: It is difficult to produce by hand the parsing table for a given grammar for a 

complete programming language. 

6 Conclusion  

Although there is terminology confusion between lexical analysis and syntax analysis but nearly 

all compilers separate the task of analyzing syntax into two parts, lexical analysis and syntax 

analysis. The lexical analyzer deals with small-Scale language constructs, such as names and 

numeric literals while the syntax analyzer deals with the large-scale constructs, such as 

expressions, statements, and program units. There are three reasons why lexical analysis is 

separated from syntax analysis because of its simplicity, efficiency and portability. However, the 

syntax analyzer can be platform independent and it is always good to isolate machine-dependent 

parts of any software system. 

7 Summary  

Syntax analysis is a common part of language implementation, regardless of the implementation 

approach used. Syntax analysis is normally based on a formal syntax description of the language 
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being implemented. This unit discussed lexical process and how to build lexical analyzer. Also, 

discussed the parsing problem, recursive-decent parsing and bottom-up parsing. 
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1  Introduction  

Machine languages are designed on the basis of speed of execution, cost of realization, and 

flexibility in building new software layers upon them. On the other hand, programming languages 

often are designed on the basis of the ease and reliability of programming. A basic problem, then, 

is how a higher level language eventually can be executed on a computer whose machine language 

is very different and at a much lower level. Thus, this unit focus on implementation of language 

processing by discussing interpretation, translation concept of interpretative language and binding. 

2   Intended Learning Outcomes (ILOs)  

At the end of the unit, students should able to 

• Understand how constructs of the language are executed directly 

• Understand how program are translated into an equivalent machine language before 

being executed 

• Differentiate between compilers and interpreter 

• Understand the concept of binding 

3   Main Content 

3.1 Interpretation 
In this solution, the actions implied by the constructs of the language are executed directly (see 

Figures 12). Usually, for each possible action there exists a subprogram–written in machine 

language–to execute the action. Thus, interpretation of a program is accomplished by calling 

subprograms in the appropriate sequence. More precisely, an interpreter is a program that 

repeatedly executes the following sequence. 

• Get the next statement; 

• Determine the actions to be executed; 

• Perform the actions; 

This sequence is very similar to the pattern of actions carried out by a traditional computer, that 

is: 

• Fetch the next instruction (i.e., the instruction whose address is specified by the instruction 

pointer). 

• Advance the instruction pointer (i.e., set the address of the instruction to be fetched next). 
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• Decode the fetched instruction. 

• Execute the instruction. 

This similarity shows that interpretation can be viewed as a simulation, on a host computer, of a 

special-purpose machine whose machine language is the higher level language. 

 

                 

Figure 12:  Language processing by interpretation (a) and translation (b) 

3.2 Translation 
In this solution, programs written in a high-level language are translated into an equivalent 

machine-language version before being executed. This translation is often performed in several 

steps (Figure 12). Program modules might first be separately translated into relocatable machine 

code; modules of relocatable code are linked together into a single relocatable unit; finally, the 

entire program is loaded into the computer’s memory as executable machine code. The translators 
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used in each of these steps have specialized names: compiler, linker (or linkage editor), and loader, 

respectively.  

In some cases, the machine on which the translation is performed (the host machine) is different 

from the machine that is to run the translated code (the target machine). This kind of translation is 

called cross-translation. Crosstranslators offer the only viable solution when the target machine is 

a special purpose processor rather than a general-purpose one that can support a translator. 

3.3 Concept of Interpretative Language 
Pure interpretation and pure translation are two ends of a continuous spectrum. In practice, many 

languages are implemented by a combination of the two techniques. A program may be translated 

into an intermediate code that is then interpreted. The intermediate code might be simply a 

formatted representation of the original program, with irrelevant information (e.g., comments and 

spaces) removed and the components of each statement stored in a fixed format to simplify the 

subsequent decoding of instructions. In this case, the solution is basically interpretive. 

Alternatively, the intermediate code might be the (low-level) machine code for a virtual machine 

that is to be later interpreted by software. This solution, which relies more heavily on translation, 

can be adopted for generating portable code, that is, code that is more easily, transferable to 

different machines than machine language code. For example, for portability purposes, one of the 

best known initial implementations of a Pascal compiler was written in Pascal and generated an 

intermediate code, called Pcode. The availability of a portable implementation of the language 

contributed to the rapid diffusion of Pascal in many educational environments. More recently, with 

the widespread use of Internet, code portability became a primary concern for network application 

developers. A number of language efforts have recently been undertaken with the goal of 

supporting code mobility over a network. Language Java is perhaps the best known and most 

promising example. Java is first translated to an intermediate code, called Java bytecode, which is 

interpreted in the client machine. 

In a purely interpretive solution, executing a statement may require a fairly complicated decoding 

process to determine the operations to be executed and their operands. In most cases, this process 

is identical each time the statement is encountered. Consequently, if the statement appears in a 

frequently-executed part of a program (e.g., an inner loop), the speed of execution is strongly 

affected by this decoding process. On the other hand, pure translation generates machine code for 
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each high-level statement. In so doing, the translator decodes each high-level statement only once. 

Frequently-used parts are then decoded many times in their machine language representation; 

because this is done efficiently by hardware, pure translation can save processing time over pure 

interpretation. On the other hand, pure interpretation may save storage. In pure translation, each 

high-level language statement may expand into tens or hundreds of machine instructions. In a 

purely interpretive solution, high-level statements are left in the original form and the instructions 

necessary to execute them are stored in a subprogram of the interpreter. The storage saving is 

evident if the program is large and uses most of the language's statements. On the other hand, if 

all of the interpreter's subprograms are kept in main memory during execution, the interpreter may 

waste space for small programs that use only a few of the language's statements. 

Compilers and interpreters differ in the way they can report on run-time errors. Typically, with 

compilation, any reference to the source code is lost in the generated object code. If an error is 

generated at run-time, it may be impossible to relate it to the source language construct being 

executed. This is why run-time error messages are often obscure and almost meaningless to the 

programmer. On the opposite, the interpreter processes source statements, and can relate a run-

time error to the source statement being executed. For these reasons, certain programming 

environments contain both an interpreter and a compiler for a given programming language. The 

interpreter is used while the program is being developed, due to its improved diagnostic facilities. 

The compiler is then used to generate efficient code, after the program has been fully validated. 

Macro processing is a special kind of translation that may occur as the first step in the translation 

of a program. A macro is a named source text fragment, called the macro body. Through macro 

processing, macro names in a text are replaced by the corresponding bodies. In C, one can write 

macros, handled by a preprocessor, which generates source C code through macro expansion. For 

example, one can use a macro to provide a symbolic name for a constant value, as in this fragment: 

#define upper_limit 100 
. . . 
sum = 0; 
for (index = 0; index < upper_lmit; index++) 
{ 
sum += a [index]; 
}  
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3.4 The Concept of Binding 

Programs deal with entities, such as variables, routines, statements, and so on. Program entities 

have certain properties called attributes. For example, a variable has a name, a type, a storage area 

where its value is stored; a routine has a name, formal parameters of a certain type, certain 

parameter-passing conventions; a statement has associated actions. Attributes must be specified 

before an entity is elaborated. Specifying the exact nature of an attribute is known as binding. For 

each entity, attribute information is contained in a repository called a descriptor. 

Binding is a central concept in the definition of programming language semantics. Programming 

languages differ in the number of entities with which they can deal, in the number of attributes to 

be bound to entities, in the time at which such bindings occur (binding time), and in the stability 

of the binding (i.e., whether an established binding is fixed or modifiable). A binding that cannot 

be modified is called static. A modifiable binding is called dynamic. Bindings can take place at 

language design time, language implementation time, compile time, load time, link time, or run 

time. Some attributes may be bound at language definition time, others at program translation time 

(or compile time), and others at program execution time (or run time). The following is a 

(nonexhaustive) list of binding examples: 

• Language definition time binding. In most languages (including FORTRAN, Ada, C, and 

C++) the type "integer" is bound at language definition time to its well-known mathematical 

counterpart, i.e., to a set of algebraic operations that produce and manipulate integers;  

• Language implementation time binding. In most languages (including FORTRAN, Ada, C, 

and C++) a set of values is bound to the integer type at language implementation time. That 

is, the language definition states that type "integer" must be supported and the language 

implementation binds it to a memory representation, which–in turn–determines the set of 

values that are contained in the type. 

• Compile time (or translation time) binding. Pascal provides a predefined definition of type 

integer, but allows the programmer to redefine it. Thus type integer is bound a representation 

at language implementation time, but the binding can be modified at 

• translation time. 

• Execution time (or run time) binding. In most programming languages variables are bound to 

a value at execution time, and the binding can be modified repeatedly during execution. 
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• In the first two examples, the binding is established before run time and cannot be changed 

thereafter. This kind of binding regime is often called static. The term static denotes both the 

binding time (which occurs before the program is executed) and the stability (the binding is 

fixed). Conversely, a binding established at run time is usually modifiable during execution. 

The fourth example illustrates this case. This kind of binding regime is often called dynamic. 

There are cases, however, where the binding is established at run time, and cannot be changed 

after being established. An example is a language providing (read only) constant variables 

that are initialized with an expression to be evaluated at run time. 

In the first two examples, the binding is established before run time and cannot be changed 

thereafter. This kind of binding regime is often called static. The term static denotes both the 

binding time (which occurs before the program is executed) and the stability (the binding is fixed). 

Conversely, a binding established at run time is usually modifiable during execution. The fourth 

example illustrates this case. This kind of binding regime is often called dynamic. There are cases, 

however, where the binding is established at run time, and cannot be changed after being 

established. An example is a language providing (read only) constant variables that are initialized 

with an expression to be evaluated at run time.  

4  Self-Assessment Exercises 

• How does Compiler differ from interpreter? 

• With an aid the of diagram show the language processing by interpretation and translation  

• List the sequence of executing an interpreter 

• In what does sequence of an interpreter similar to the pattern carried out by a traditional 

computer? 

• What is binding and binding time? 

• What is descriptor? 

• When can binding takes place? 

5  Answer to self-Assessment Exercises 

• How does Compiler differ from interpreter? Compilers and interpreters differ in the way 

they can report on run-time errors. 

• With an aid the of diagram show the language processing by interpretation and translation. 

See figure 12 
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• List the sequence of executing an interpreter: Get the next statement; Determine the actions 

to be executed; Perform the actions; 

• In what does sequence of an interpreter similar to the pattern carried out by a traditional 

computer? Fetch the next instruction; Advance the instruction pointer; Decode the fetched 

instruction; Execute the instruction. 

• What is binding and binding time? A binding is an association between an attribute and an 

entity, such as between a variable and its type or value, or between an operation and a 

symbol while the time at which a binding takes place is regarded as binding time. 

• What is descriptor? Descriptor is a repository that contained attribute information of each 

entity.  

• When can binding takes place? Language design time, language implementation time, 

compile time, load time, link time, or run time. 

6 Conclusion  

In this unit, you have been introduced to the how language processing can be implemented through 

interpretation and translation. Also, binding was described as the association of attributes with 

program entities. Knowledge of the binding times of attributes to entities is essential to 

understanding the semantics of programming languages. Binding can be static or dynamic. 

Declarations, either explicit or implicit, provide a means of specifying the static binding of 

variables to types. In general, dynamic binding allows greater flexibility but at the expense of 

readability, efficiency, and reliability. 

7 Summary 

The unit focused on implementation of language processing through interpretation and translation.  

For a programming language to be meaningful there is need or a translator which accepts other 

languages and execute them directly or transform them into form that is suitable for execution.  A 

translation involves two processes which are interpretation and compilation. Interpreter is a 

translator that execute program directly while compiler is a translator that produces an equivalent 

program in a form suitable for execution. Also the unit explain the concept of binding which is 

regarded as a central concept in the definition of programming language semantics. A binding is 

an association between an attribute and an entity, such as between a variable and its type or value, 

or between an operation and a symbol. The time at which a binding takes place is called binding 
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time. It worth to know that complete understanding of the binding times for the attributes of 

program entities is a prerequisite for understanding the semantics of a programming language. 
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Module 3 Structuring Data 
The effectiveness of implementation of any programming language depends mainly on how 

effectively its information can be stored in the computer. Each programming language contains 

constructs and mechanisms for structuring data. A data structure is a way of organizing 

information, so that it is easier to use. Instead of just the simple sequences of bits in the physical 

machine, a high level language provides complex structured data which easily lends itself to 

describe the structure of the problems that are to be solved. Data structures are often optimized for 

certain operations. Finding the best data structure when solving a problem is an important part of 

programming. Programs that use the right data structure is easier to write, and work better. Unit 1 

elaborates on data type and structure. Unit 2 explains the constructs used in programming 

languages for specification of sequence control. The unit 3 which is the last unit, discusses 

overview of run-time, identifies common errors of runtime and shows how to fix run-time errors.  

Also, it presents the difference between runtime and compile time. 
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1  Introduction  

A data type defines a collection of data values and a set of predefined operations on those values. 

Computer programs produce results by manipulating data. An important factor in determining the 

ease with which they can perform this task is how well the data types available in the language 

being used match the objects in the real world of the problem being addressed. Therefore, it is 

crucial that a language supports an appropriate collection of data types and structures.   

2   Intended Learning Outcomes (ILOs)  

At the end of the unit, students should able to 

• Understand meaning and different types of data type 

• Understand different categories of data structure 

• Know the difference between data types and data structure 

3  Main Content 

3.1 Data Types 
A data type is the most basic and the most common classification of data; it is an attribute of data 

which tells the compiler (or interpreter) how the programmer intends to use the data. Basically 

data type is a type of information transmitted between the programmer and the compiler where the 

programmer informs the compiler about what type of data is to be stored and also tells how much 

space it requires in the memory. Data type can be grouped into three namely; 

• Scalar: basic building block (boolean, integer, float, char etc.) 

• Composite: any data type (struct, array, string etc.) composed of scalars or composite types 

(also referred to as a ‘compound’ type). 

• Abstract: data type that is defined by its behaviour (tuple, set, stack, queue, graph etc). 

If we consider a composite type, such as a ‘string’, it describes a data structure which contains a 

sequence of char scalars (characters), and as such is referred to as being a ‘composite’ type. 

Whereas the underlying implementation of the string composite type is typically implemented 

using an array data structure. An abstract data type (ADT) describes the expected behaviour 

associated with a concrete data structure. For example, a ‘list’ is an abstract data type which 
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represents a countable number of ordered values, but again the implementation of such a data type 

could be implemented using a variety of different data structures, one being a ‘linked list’. 

Some basic examples are int, string etc. It is the type of any variable used in the code. 

#include <iostream.h> 
using namespace std; 
   
void main() 
{ 
    int a; 
    a = 5; 
   
    float b; 
    b = 5.0; 
   
    char c; 
    c = 'A'; 
   
    char d[10]; 
    d = "example"; 
} 
As seen from the theory explained above we come to know that in the above code, the variable ‘a’ 

is of data type integer which is denoted by int a. So the variable ‘a’ will be used as an integer type 

variable throughout the process of the code. And, in the same way, the variables ‘b’, ‘c’ and ‘d’ 

are of type float, character and string respectively. And all these are kinds of data types. 

3.1.1 Primitive data types 

All data in computers based on digital electronics is represented as bits (alternatives 0 and 1) on 

the lowest level. The smallest addressable unit of data is usually a group of bits called a byte 

(usually an octet, which is 8 bits). The unit processed by machine code instructions is called a word 

(as of 2011, typically 32 or 64 bits). Most instructions interpret the word as a binary number, such 

that a 32-bit word can represent unsigned integer values from 0 to or signed integer values from 

to. Because of two's complement, the machine language and machine doesn't need to distinguish 

between these unsigned and signed data types for the most part. 
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There is a specific set of arithmetic instructions that use a different interpretation of the bits in 

word as a floating-point number. Machine data types need to be exposed or made available in 

systems or low-level programming languages, allowing fine-grained control over hardware. The 

C programming language, for instance, supplies integer types of various widths, such as short and 

long. If a corresponding native type does not exist on the target platform, the compiler will break 

them down into code using types that do exist. For instance, if a 32-bit integer is requested on a 

16-bit platform, the compiler will tacitly treat it as an array of two 16 bit integers. Several 

languages allow binary and hexadecimal literals, for convenient manipulation of machine data. 

In higher level programming, machine data types are often hidden or abstracted as an 

implementation detail that would render code less portable if exposed. For instance, a generic 

numeric type might be supplied instead of integers of some specific bit-width. The following are 

primitive data type 

3.1.1.1 Boolean type 
The Boolean type represents the values true and false. Although only two values are possible, they 

are rarely implemented as a single binary digit for efficiency reasons. Many programming 

languages do not have an explicit boolean type, instead interpreting (for instance) 0 as false and 

other values as true. 

3.1.1.2 Numeric types 
• The integer data types, or "whole numbers". May be subtyped according to their ability to 

contain negative values (e.g. unsigned in C and C++). May also have a small number of 

predefined subtypes (such as short and long in C/C++); or allow users to freely define 

subranges such as 1..12 (e.g. Pascal/Ada). 

• Floating point data types, sometimes misleadingly called reals, contain fractional values. They 

usually have predefined limits on both their maximum values and their precision. These are 

often represented as decimal numbers. 

• Fixed point data types are convenient for representing monetary values. They are often 

implemented internally as integers, leading to predefined limits. 

• Bignum or arbitrary precision numeric types lack predefined limits. They are not primitive 

types, and are used sparingly for efficiency reasons. 
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3.1.2 Composite / Derived data types 
Composite types are derived from more than one primitive type and can be done in so many ways 

called data structures. Composing a primitive type into a compound type generally results in a new 

type, e.g. array-of-integer is a different type to integer. 

• An array stores a number of elements of the same type in a specific order. They are accessed 

using an integer to specify which element is required (although the elements may be of 

almost any type). Arrays may be fixed length or expandable. 

• Record (also called tuple or struct) Records are among the simplest data structures. A 

record is a value that contains other values, typically in fixed number and sequence and 

typically indexed by names. The elements of records are usually called fields or members. 

• Union. A union type definition will specify which of a number of permitted primitive types 

may be stored in its instances, e.g. "float or long integer". Contrast with a record, which 

could be defined to contain a float and an integer; whereas, in a union, there is only one 

value at a time. 

• A tagged union (also called a variant, variant record, discriminated union, or disjoint union) 

contains an additional field indicating its current type, for enhanced type safety. 

• A set is an abstract data structure that can store certain values, without any particular order, 

and no repeated values. Values themselves are not retrieved from sets, rather one tests a 

value for membership to obtain a boolean "in" or "not in". 

• An object contains a number of data fields, like a record, and also a number of program 

code fragments for accessing or modifying them. Data structures not containing code, like 

those above, are called plain old data structure. 

3.1.3 Enumerated Type 
This has values which are different from each other, and which can be compared and assigned, but 

which do not necessarily have any particular concrete representation in the computer's memory; 

compilers and interpreters can represent them arbitrarily. For example, the four suits in a deck of 

playing cards may be four enumerators named CLUB, DIAMOND, HEART, SPADE, belonging to 

an enumerated type named suit. If a variable V is declared having suit as its data type, one can 

assign any of those four values to it. Some implementations allow programmers to assign integer 

values to the enumeration values, or even treat them as type-equivalent to integers. 
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3.1.3.1 String and text types 
• Alphanumeric character. A letter of the alphabet, digit, blank space, punctuation mark, etc. 

• Alphanumeric strings, a sequence of characters. They are typically used to represent words 

and text. 

3.1.3.2 Character and string  
Character and string types can store sequences of characters from a character set such as ASCII. 

Since most character sets include the digits, it is possible to have a numeric string, such as "1234". 

However, many languages would still treat these as belonging to a different type to the numeric 

value 1234. Character and string types can have different subtypes according to the required 

character "width". The original 7-bit wide ASCII was found to be limited and superseded by 8 and 

16-bit sets. 

3.1.4 Abstract data types 
Any type that does not specify an implementation is an abstract data type. For instance, a stack 

(which is an abstract type) can be implemented as an array (a contiguous block of memory 

containing multiple values), or as a linked list (a set of non-contiguous memory blocks linked by 

pointers).  Abstract types can be handled by code that does not know or "care" what underlying 

types are contained in them. Arrays and records can also contain underlying types, but are 

considered concrete because they specify how their contents or elements are laid out in memory. 

In computer science, an abstract data type (ADT) is a mathematical model for a certain class of 

data structures that have similar behavior; or for certain data types of one or more programming 

languages that have similar semantics. An abstract data type is defined indirectly, only by the 

operations that may be performed on it and by mathematical constraints on the effects (and 

possibly cost) of those operations. For example, an abstract stack could be defined by three 

operations: 

• push, that inserts some data item onto the structure, 

• pop, that extracts an item from it (with the constraint that each pop always returns the most 

recently pushed item that has not been popped yet), and 

• peek, that allows data on top of the structure to be examined without removal. 
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Abstract data types are purely theoretical entities, used (among other things) to simplify the 

description of abstract algorithms, to classify and evaluate data structures, and to formally describe 

the type systems of programming languages. Some common ADTs, which have proved useful in 

a great variety of programming applications, are – Container, Deque, List, Map, Multimap, 

Multiset Priority queue, Queue, Set, Stack, Tree, Graph. 

3.1.5 Utility data types 
For convenience, high-level languages may supply ready-made "real world" data types, for 

instance times, dates and monetary values and memory, even where the language allows them to 

be built from primitive types. 

3.2 Data Structure  

A data structure is a collection of data type ‘values’ which are stored and organized in such a way 

that it allows for efficient access and modification. In some cases, a data structure can become the 

underlying implementation for a particular data type. 

Data structures perform some special operations like insertion, deletion and traversal. For example, 

you have to store data for many employees where each employee has his name, employee id and 

a mobile number. So this kind of data requires complex data management, which means it requires 

data structure comprised of multiple primitive data types. So data structures are one of the most 

important aspects when implementing coding concepts in real-world applications. Data structures 

can be grouped into four forms: 

• Linear: arrays, lists 

• Tree: binary, heaps, space partitioning etc. 

• Hash: distributed hash table, hash tree etc. 

• Graphs: decision, directed, acyclic etc 

3.2.1 Array 
An array is a finite group of data, which is allocated contiguous (i.e. sharing a common border) 

memory locations, and each element within the array is accessed via an index key (typically 

numerical, and zero based). The name assigned to an array is typically a pointer to the first item in 

the array. Meaning that given an array identifier of arr which was assigned the value ["a", "b", 

"c"], in order to access the "b" element you would use the index 1 to lookup the value: arr[1]. 
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Arrays are traditionally ‘finite’ in size, meaning you define their length/size (i.e. memory capacity) 

up front, but there is a concept known as ‘dynamic arrays’ (and of which you’re likely more 

familiar with when dealing with certain high-level programmings languages) which supports the 

growing (or resizing) of an array to allow for more elements to be added to it. 

In order to resize an array you first need to allocate a new slot of memory (in order to copy the 

original array element values over to), and because this type of operation is quite ‘expensive’ (in 

terms of computation and performance) you need to be sure you increase the memory capacity just 

the right amount (typically double the original size) to allow for more elements to be added at a 

later time without causing the CPU to have to resize the array over and over again unnecessarily. 

One consideration that needs to be given is that you don’t want the resized memory space to be 

too large, otherwise finding an appropriate slot of memory becomes more tricky. 

When dealing with modifying arrays you also need to be careful because this requires significant 

overhead due to the way arrays are allocated memory slots. If you imagine you have an array and 

you want to remove an element from the middle of the array, try to think about that in terms of 

memory allocation: an array needs its indexes to be contiguous, and so we have to re-allocate a 

new chunk of memory and copy over the elements that were placed around the deleted element. 

These types of operations, when done at scale, are the foundation behind reasons to have a good 

understanding of how data structures are implemented. The reason being, when you’re writing an 

algorithm you will hopefully be able to recognize when you’re about to do something (let’s say 

modify an array many times within a loop construct) that could ultimately end up being quite a 

memory intensive set of operations. 

3.2.2 Linked List 
A linked list is different to an array in that the order of the elements within the list are not 

determined by a contiguous memory allocation. Instead the elements of the linked list can be 

sporadically placed in memory due to its design, which is that each element of the list (also referred 

to as a ‘node’) consists of two parts: 

• the data 

• a pointer 
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The data is what you’ve assigned to that element/node, whereas the pointer is a memory address 

reference to the next node in the list as shown in figure 13. 

 

Figure 13: Example of Linked List 

Also unlike an array, there is no index access. So in order to locate a specific piece of data you’ll 

need to traverse the entire list until you find the data you’re looking for. 

This is one of the key performance characteristics of a linked list, and is why (for most 

implementations of this data structure) you’re not able to append data to the list (because if you 

think about the performance of such an operation it would require you to traverse the entire list to 

find the end/last node). Instead linked lists generally will only allow prepending to a list as it’s 

much quicker. The newly added node will then have its pointer set to the original ‘head’ of the list. 

There is also a modified version of this data structure referred to as a ‘doubly linked list’ which is 

essentially the same concept but with the exception of a third attribute for each node: a pointer to 

the previous node (whereas a normal linked list would only have a pointer to the following node). 

3.2.3 Tree 
The concept of a ‘tree’ in its simplest terms is to represent a hierarchical tree structure, with a root 

value and subtrees of children (with a parent node), represented as a set of linked nodes (see figure 

14). A tree contains “nodes” (a node has a value associated with it) and each node is connected by 

a line called an “edge”. These lines represent the relationship between the nodes.  The top level 

node is known as the “root” and a node with no children is a “leaf”. If a node is connected to other 

nodes, then the proceeding node is referred to as the “parent”, and nodes following it are “child” 

nodes. There are various incarnations of the basic tree structure, each with their own unique 

characteristics and performance considerations: Binary Tree, Binary Search Tree, Red-Black Tree, 

B-tree, Weight-balanced Tree, Heap, Abstract Syntax Tree. 

3.2.3.1 Binary Tree 
A binary tree is a ‘rooted tree’ and consists of nodes which have, at most, two children. This is as 

the name suggests (i.e. ‘binary’: 0 or 1), so two potential values/directions. Rooted trees suggest a 

notion of distance (i.e. distance from the ‘root’ node) 
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Binary trees are the building blocks of other tree data structures (see also: this reference for more 

details), and so when it comes to the performance of certain operations (insertion, deletion etc) 

consideration needs to be given to the number of ‘hops’ that need to be made as well as the re-

balancing of the tree (much the same way as the pointers for a linked list need to be updated). The 

most common operations performed on tree structure is that of traversal. Traversal is a procedure 

by which each node in the tree is processed exactly once in a systematic manner. There three ways 

of traversing binary tree which are preorder traversal, inorder traversal and postorder traversal.  

• Preorder Traversal (Root, leftnode, rightnode): Preorder of a binary tree is defined as follow; 

Process the root node; Traverse the left subtree in preorder; Traverse the right subtree in 

preorder; Note that if subtree is empty the traversal is performed by doing nothing. Preorder 

Traversal of a tree in figure 14 is A B C D E F G 

• Inorder Traversal (Leftnode, root, rightnode): Inorder of a binary tree is defined as follow; 

Traverse the left subtree in Inorder; Process the root node; Traverse the right subtree in Inorder. 

Inorder Traversal of a tree in figure 14 is C B A E F D G 

• Postorder Traversal (Leftnode, rightnode, Root): Postorder of a binary tree is defined as 

follow; Traverse the left subtree in postorder; Traverse the right subtree in postorder; Process 

the root node. Preorder Traversal of a tree in figure 14 is C B F E G D A 

 

 

Figure 14: Binary Tree 
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3.2.3.2 Binary Search Tree 
A binary search tree is a ‘sorted’ tree, and is named as such because it helps to support the use of 

a ‘binary search’ algorithm for searching more efficiently for a particular node (more on that later). 

 

Figure 15: Binary Search Tree 

To understand the idea of the nodes being ‘sorted’ (or ‘ordered’) we need to compare the left node 

with the right node. The left node should always be a lesser number than the right node, and the 

parent node should be the decider as to whether a child node is placed to the left or the right. 

Consider the figure 15, where we can see the root node is 8. Let’s imagine we’re going to construct 

this tree. 

We start with 8 as the root node and then we’re given the number 3 to insert into the tree. At this 

point the underlying logic for constructing the tree will know that the number 3 is less than 8 and 

so it’ll first check to see if there is already a left node (there isn’t), so in this scenario the logic will 

determine that the tree should have a new left node under 8 and assign it the value of 3. Now if we 

give the number 6 to be inserted, the logic will find that again it is less than 8 and so it’ll check for 

a left node. There is a left node (it has a value of 3) and so the value 6 is greater than 3. This means 

the logic will now check to see if there is a right node (there isn’t) and subsequently creates a new 

right node and assigns it the value 6. 

This process continues on and on until the tree has been provided all of the relevant numbers to be 

sorted. In essence what this sorted tree design facilitates is the means for an operation (such as 

lookup, insertion, deletion) to only take, on average, time proportional to the logarithm of the 
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number of items stored in the tree. So if there were 1000 nodes in the tree, and we wanted to find 

a specific node, then the average case number of comparisons (i.e. comparing left/right nodes) 

would be 10. 

By using the logarithm to calculate this we get: log 2(10) = 1024 which is the inverse of the 

exponentiation 2^10 (“2 raised to the power of 10”), so this says we’ll execute 10 comparisons 

before finding the node we were after. To break that down a bit further: the exponentiation 

calculation is 1024 = 2 × 2 × 2 x 2 x 2 x 2 × 2 × 2 x 2 x 2 = 2^10, so the “logarithm to base 2” of 

10 is 1024. 

The logarithm (i.e. the inverse function of exponentiation) of 1000 to base 2, in this case abstracted 

to n, is denoted as log 2 (n), but typically the base 2 is omitted to just log(n). When determining 

the ‘time complexity’ for operations on this type of data structure we typically use ‘Big O’ notation 

and thus the Big O complexity would be defined as O(log n) for the average search case (which is 

good), but the worst case for searching would still be O(n) linear time (which is bad – and I’ll 

explain why in the next section on red-black trees). 

Similarly, when considering complexity for a particular algorithm, we should take into account 

both ‘time’ and ‘space’ complexity. The latter is the amount of memory necessary for the algorithm 

to execute and is similar to time complexity in that we’re interested in how that resource (time vs 

space) will change and affect the performance depending on the size of the input. 

3.2.3.3 Red-Black Tree 
The performance of a binary search tree is dependent on the height of the tree. Meaning we should 

aim to keep the tree as ‘balanced’ as possible, otherwise the logarithm performance is lost in favor 

of linear time. 

To understand why that is, consider the following data stored in an array: 

[1, 2, 3, 4] 

If we construct a binary search tree from this data, what we would ultimately end up with is a very 

‘unbalanced’ tree in the sense that all the nodes would be to the right, and none to the left (see 

figure 16). 
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Figure 16: Red-Black Tree-a 

When we search this type of tree (which for all purposes is effectively a linked list) we would, 

worst case, end up with linear time complexity: O(n). To resolve that problem, we need a way to 

balance the nodes in the tree. This is where the concept of a red-black tree comes in to help us. 

With a red-black tree (due to it being consistently balanced) we get O(log n) for search/insert/delete 

operations (which is great). 

Let’s consider the properties of a red-black tree (figure 17): 

• Each node is either red or black. 

• The root node is always black. 

• All leaves are ‘NIL’ and should also be black. 

• All red nodes should have two black child nodes. 

• All paths from given node to NIL must have same num of black nodes. 

• New nodes should be red by default (we’ll clarify below). 

 

Figure 17: Red-Black Tree-b 
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The height of the tree is referred to as its ‘black-height’, which is the number of black nodes (not 

including the root) to the furthest leaf, and should be no longer than twice as long as the length of 

the shortest path (the nearest NIL). These properties are what enable the red-black tree to provide 

the performance characteristics it has (i.e. O(log n)), and so whenever changes are made to the tree 

we want to aim to keep the tree height as short as possible. 

On every node insertion, or deletion, we need to ensure we have not violated the red-black 

properties. If we do, then there are two possible steps that we have to consider in order to keep the 

tree appropriately balanced (which we’ll check in this order): 

• Recolour the node in the case of a red node no longer having two black child nodes. 

• Make a rotation (left/right)in the case where recolouring then requires a structural change. 

The goal of a rotation is to decrease the height of the tree. The way we do this is by moving larger 

subtrees up the tree, and smaller subtrees down the tree. We rotate in the direction of the smaller 

subtree, so if the smaller side is the right side we’ll do a right rotation. Note: there is an 

inconsistency between what node/subtree is affected by a rotation. Does the subtree being moved 

into the parent position indicate the direction or does the target node affected by the newly moved 

subtree indicate the direction (I’ve opted for the latter, as we’ll see below, but be aware of this 

when reading research material). 

In essence, there are three steps that need to be applied to the target node (T) being rotated, and 

this is the same for either a left rotation or a right rotation. Let’s quickly look at both of these 

rotation movements: 

• Left Rotation (figure 18):  

i. T’s right node (R) is unset & becomes T’s parent † 

ii. R’s original left node L is now orphaned. 

iii.  T’s right node is now set to L. 

† we now find R’s left pointer has to be set to T (in order for it to become the parent node), meaning 

R’s original left pointer is orphaned. 

• Right Rotation (figure 19):  

i. T’s left node (L) is unset & becomes T’s parent † 

ii. L’s original right node R is now orphaned. 

iii.  T’s left node is now set to R. 
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† we now find L’s right pointer has to be set to T (in order for it to become the parent node), 

meaning L’s original right pointer is orphaned. 

Let’s now visualize the movements for both rotations: 

 

Figure 18: Left Rotation 

 

Figure 19: Right Rotation 

3.2.3.4 B-tree 
A B-tree is a sorted tree that is very similar in essence to a red-black tree in that it is self-balancing 

and as such can guarantee logarithmic time for search/insert/delete operations. A B-tree is useful 

for large read/writes of data and is commonly used in the design of databases and file systems, but 

it’s important to note that a B-tree is not a binary search tree because it allows more than two child 

nodes. 

The reasoning for allowing multiple children for a node is to ensure the height of the tree is kept 

as small as possible. The rationale is that B-trees are designed for handling huge amounts of data 

which itself cannot exist in-memory, and so that data is pulled (in chunks) from external sources. 

This type of I/O is expensive and so keeping the tree ‘fat’ (i.e. to have a very short height instead 

of lots of node subtrees creating extra length) helps to reduce the amount of disk access. The design 
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of a B-tree means that all nodes allow a set range for its children but not all nodes will need the 

full range, meaning that there is a potential for wasted space. 

Note: there are also variants of the B-tree, such as B+ trees and B* trees (which we’ll leave as a 

research exercise for the reader). 

3.2.3.5 Weight-balanced Tree 
A weight-balanced tree is a form of binary search tree and is similar in spirit to a weighted graph, 

in that individual nodes are ‘weighted’ to indicate the more likely successful route with regards to 

searching for a particular value. The search performance is the driving motivation for using this 

data structure, and typically used for implementing sets and dynamic dictionaries. 

3.2.3.6 Binary Heap 
A binary heap tree is a binary tree, not a binary search tree, and so it’s not a sorted tree. It has some 

additional properties that we’ll look at in a moment, but in essence the purpose of this data structure 

is primarily to be used as the underlying implementation for a priority queue. 

The additional properties associated with a binary heap are: 

• heap property: the node value is either greater (or lesser depending on the direction of the 

heap) or equal to the value of its parent. 

• shape property: if the last level of the tree is incomplete, the missing nodes are filled. 

The insertion and deletion operations yield a time complexity of O(log n). Below are some 

examples of a max and min binary heap tree structure (figure 20 and 21). 

 

Figure 20: Max Heap 
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Figure 21: Min Heap 

3.2.4 Hash Table 
A hash table is a data structure which is capable of maping ‘keys’ to ‘values’, and you’ll typically 

find this is abstracted and enhanced with additional behaviours by many high-level programming 

languages such that they behave like an ‘associative array’ abstract data type. In Python it’s called 

a ‘dictionary’ and has the following structure (on top of which are functions such as del, get and 

pop etc that can manipulate the underlying data): 

table = {'name': 'foobar', 

         'number': 123} 

The keys for the hash table are determined by way of a hash function but implementors need to be 

mindful of hash ‘collisions’ which can occur if the hash function isn’t able to create a distinct or 

unique key for the table. The better the hash generation, the more distributed the keys will be, and 

thus less likely to collide. Also the size of the underlying array data structure needs to 

accommodate the type of hash function used for the key generation. 

For example, if using modular arithmetic you might find the array needs to be sized to a prime 

number. There are many techniques for resolving hashing collisions, but here are two that I’ve 

encountered: 

• Separate Chaining 

• Linear Probing 
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3.2.4.1 Separate Chaining 
With this option our keys will contain a nested data structure, and we’ll use a technique for storing 

our conflicting values into this nested structure, allowing us to store the same hashed value key in 

the top level of the array. 

3.2.4.2 Linear Probing 
With this option when a collision is found, the hash table will check to see if the next available 

index is empty, and if so it’ll place the data into that next index. The rationale behind this technique 

is that because the hash table keys are typically quite distributed (e.g. they’re rarely sequential 0, 

1, 2, 3, 4), then it’s likely that you’ll have many empty elements and you can use that empty space 

to store your colliding data. 

Linear Probing technique is not generally accepted as it feels like it’ll introduce more complexity 

and bugs. and also relies on the top level data structure being an array. This is fine if the key we’re 

constructing is numerical, but if we want to have strings for the keys then, then it won’t work very 

3.2.5 Graph 

A graph is an abstract data type intended to guide the implementation of a data structure following 

the principles of graph theory. The data structure itself is non-linear and it consists of: 

• nodes: points on the graph (also known as ‘vertices’). 

• edges: lines connecting each node. 

The figure 22 demonstrates a ‘directed’ graph (notice the edges have arrows indicating the 

direction and flow): 

 

Figure 22: Directed Graph 
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Note: an ‘undirected’ graph simply has no arrow heads, so the flow between nodes can go in either 

direction. 

Some graphs are ‘weighted’ which means each ‘edge’ has a numerical attribute assigned to them. 

These weights can indicate a stronger preference for a particular flow of direction. Graphs are used 

for representing networks (both real and electronic), such as streets on a map or friends on 

Facebook. When it comes to searching a graph, there are two methods: 

• Breadth First Search: look at siblings. 

• Depth First Search: look at children. 

Which approach you choose depends on the type of values you’re searching for. For example, 

relationship across fields would lend itself to BFS, whereas hierarchical tree searches would be 

better suited to DFS. 

3.2.6 Stack 
A stack is a basic data structure that can be logically thought as linear structure represented by a 

real physical stack or pile, a structure where insertion and deletion of items takes place at one end 

called top of the stack. The basic concept can be illustrated by thinking of your data set as a stack 

of plates or books where you can only take the top item off the stack in order to remove things 

from it. This structure is used all throughout programming. 

The basic implementation of a stack is also called a ―Last In First Outǁ structure; however there 

are different variations of stack implementations. There are basically three operations that can be 

performed on stacks. They are: 

• inserting (―pushingǁ) an item into a stack 

• deleting (―poppingǁ) an item from the stack 

• displaying the contents of the top item of the stack (―peekingǁ) 

3.2.7 Queue 
A queue is an abstract data type or a linear data structure, in which the first element is inserted 

from one end (the ―tailǁ), and the deletion of existing element takes place from the other end 

(the―head‖). A queue is a ―First In First Outǁ structure. The process of adding an element to a 

queue is called ―enqueuingǁ and the process of removing an element from a queue is called 

―dequeuingǁ. 
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3.3 Difference between data type and data structure: 
The table 4 presents the differences between data types and data structures 

Data Types Data Structures 

Data Type is the kind or form of a variable which 
is being used throughout the program. It defines 
that the particular variable will assign the values 
of the given data type only 

Data Structure is the collection of different 
kinds of data. That entire data can be 
represented using an object and can be used 
throughout the entire program. 

Implementation through Data Types is a form of 
abstract implementation 

Implementation through Data Structures is 
called concrete implementation 

Can hold values and not data, so it is data less 
Can hold different kind and types of data 
within one single object 

Values can directly be assigned to the data type 
variables 

The data is assigned to the data structure 
object using some set of algorithms and 
operations like push, pop and so on. 

No problem of time complexity 
Time complexity comes into play when 
working with data structures 

Examples: int, float, double Examples: stacks, queues, tree 

 

4  Self-Assessment Exercises 

• Briefly define the following; i. Field  ii. Record iii. File iv. Data structure  

• Explain the following in detail: i. Hash table   ii. Linked-List  iii  Array 

• What is List the different between data type and data structure 

• What is queue, enqueuing and dequeuing   

• State differences between stack and queue   

• Describe briefly the Preorder, Inorder and Postorder traversal techniques of a binary tree.  

• Construct a tree for the given Inorder and Preorder traversals : Inorder: 

 QBKCFAGPEDHR  Preorder:  GBQACKFPDERH 

• Construct binary search tree for the following data and find its Inorder, Preorder and    

Postorder traversal  10,3,15,22,6,45,65,23,78,34,5 
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5 Answer to self-Assessment Exercises 

• Briefly define the following; i. Field: Field is a single elementary unit of information 

representing an attribute of an entity ii. Record: Record is a collection of field values of a 

given entity or is a collection of related data items, each of which is called a field or attribute 

iii. File: File is a collection of records of the entities in a given entity set or a collection of 

logically related information. iv. Data structure: Data structure is a systematic way to 

organize data in order to use it efficiently or it is a way of organizing all data items by 

considering not only the element stored but also their relationship to each order. 

•  Explain the following in detail: i. Hash Table – Section 3.2.4  ii. Linked-List – Section 3.2.2  

 iii  Array – Section 3.2.1 

• List the different between data type and data structure – Section 3.3 

• What is queue, enqueuing and dequeuing: Queue is a linear data structure, in which the first 

element is inserted from one end and the deletion of existing element takes place from the 

other end. Enqueuing is the process of adding an element to a queue while Dequeuing is the 

and the process of removing an element from a queue.  

• State differences between stack and queue 
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• Describe briefly the Preorder, Inorder and Postorder traversal techniques of a binary tree.  

Preorder of a binary tree is defined as follow; Process the root node, Traverse the left subtree 

in preorder then Traverse the right subtree in preorder; Inorder of a binary tree is defined as 

follow; Traverse the left subtree in Inorder, Process the root node then Traverse the right 

subtree in Inorder; Postorder of a binary tree is defined as follow; Traverse the left subtree in 

postorder, Traverse the right subtree in postorder and Process the root node. 

• Construct a tree for the given Inorder and Preorder traversals : Inorder: 

 QBKCFAGPEDHR  Preorder:  GBQACKFPDERH 

   

 

• Construct binary search tree for the following data and find its Inorder, Preorder and    

Postorder traversal  10,3,15,22,6,45,65,23,78,34,5 

 

 

Preorder (RT-L-R): 10,3,6,5,15,22,45,23,34,65,78 

Inorder (L-RT-R):    3,5,6,10,15,22,23,34,45,65,78 

Postorder(L-R-RT): 5,6,3,34,23,78,65,45,22,15,10 
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6  Conclusion  

This unit discussed the data types and data structure.  Data types of a language was described as a 

large part of what determines that language’s style and usefulness. Along with control structures, 

they form the heart of a language. While data structures determine the way in which information 

can be stored in computer and used. The unit highlighted how data type is different from data 

structure. Data structure can be grouped into the following forms which are Array, Linked List, 

Tree, Hash Table, Graph, Stack and Queue. This unit also, presented a comparison between the 

data type and data structure. 

7  Summary  

The unit discussed extensively on different data types such as primitive data types, composite data 

types, enumerated data types, abstract data types and utility data types. Also, justice was done in 

describing different types of data structure such as array, linked list, tree, hash table, graph, stack 

and queue. The unit presented the differences between data type and data structure. 
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1  Introduction  

This unit tackles the problem of managing sequence control, an important part in defining the 

execution of program instructions in a generic abstract machine’s interpreter. In low-level 

languages, sequence control is implemented in a very simple way, just by updating the value of 

the PC (Program Counter) register. In high-level languages, however, there are special language-

specific constructs which permit the structuring of control and the implementation of mechanisms 

that are much more abstract than those available on the physical machine. Also the unit discusses 

the constructs used in programming languages for the explicit or implicit specification of sequence 

control. 

2   Intended Learning Outcomes (ILOs)  

At the end of the unit, students should able to 

• Manage sequence control implementation 

• Understand sequence control command 

• Understand the construct used for specification of sequence control 

3   Main Content 
3.1 Expressions 
Expressions, together with commands and declarations, are one of the basic components of every 

programming language. We can say that expressions are the essential component of every 

language because, although there exist declarative languages in language. First, let us try to clarify 

what sorts of object we are talking about. 

An expression is defined as a syntactic entity whose evaluation either produces a value or fails to 

terminate, in which case the expression is undefined. The essential characteristic of an expression, 

that which differentiates it from a command, is therefore that its evaluation produces a value. 

Examples of numerical expressions are familiar to all: 4+3*2, for example, is an expression whose 

evaluation is obvious. Moreover, it can be seen that, even in such a simple case, in order to obtain 

the correct result, we have made an implicit assumption (derived from the mathematical 

convention) about operator precedence. This assumption, which tells us that * has precedence over 

+ (and that, therefore, the result of the evaluation is 10 and not 14), specifies a control aspect for 

evaluation of expressions. We will see below other more subtle aspects that can contribute to 

modify the result of the evaluation of an expression.  
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Expressions can be non-numeric, for example in LISP, we can write (cons a b) to denote an 

expression which, if it is evaluated, returns the so-called pair formed by a and b. 

3.1.1 Expression Syntax 

In general, an expression is composed of a single entity (constant, variable, etc.) or even of an 

operator (such as +, cons, etc.), applied to a number of arguments (or operands) which are also 

expressions.  Expression syntax can be precisely described by a context-free grammar and that an 

expression can be represented by a derivation tree in which, in addition to syntax, there is also 

semantic information relating to the evaluation of the expression. Tree structures are also often 

used to represent an expression internally inside the computer. However, if we want to use 

expressions in a conventional way in the text of a program, linear notations allow us to write an 

expression as a sequence of symbols. Fundamentally, the various notations differ from each other 

by how they represent the application of an operator to its operands. We can distinguish three main 

types of notation. 

3.1.1.1 Infix Notation  

In this notation, a binary operation symbol is placed between the expressions representing its two 

operands. For example, we write x+y to denote than the addition of x and y, or (x+y)*z to denote 

the multiplication by z of the result of the addition of x and y. It can be seen that, in order to avoid 

ambiguity in the application of operator to operands, brackets and precedence rules are required. 

For operators other than binary ones, we must basically fall back on their representation in terms 

of binary symbols, even if, in this case, this representation is not the most natural. A programming 

language which insists on infix notation even for user-defined functions is Smalltalk, an object 

oriented language. 

 Infix notation is the one most commonly used in mathematics, and, as a consequence is the one 

used by most programming languages, at least for binary operators and for user syntax. Often, in 

fact, this notation is only an abbreviation or, as we say, a syntactic sugar used to make code more 

readable. For example, in Ada, a + b is an abbreviation for +(a, b), while in C++ the same 

expression is an abbreviation for a.operator+(b). 
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3.1.1.2 Prefix Notation  
Prefix notation is another type of notation. It is also called prefix Polish notation.1 The symbol 

which represents the operation precedes the symbols representing the operands (written from left 

to right, in the same way as text). Thus, to write the sum of x and y, we can write +(x,y), or, without 

using parentheses, + x y, while if we want to write the application of the function f to the operands 

a and b, we write f(a b) or fab. 

It is important to note that when using this kind of notation, parentheses and operator precedence 

rules are of no relevance, provided that the arity (that is the number of operands) of every operator 

is already known. In fact, there is no ambiguity about which operator to apply to any operands, 

because it is always the one immediately preceding the operands. For example, if we write: 

*(+(a b)+(c d))  
or even 
* + a b + c d 

we mean the expression represented by (a+b)*(c+d) in normal infix notation. The majority of 

regular languages use prefix notation for unary operators (often using parentheses to group 

arguments) and for user-defined functions. Some programming languages even use prefix notation 

for binary operators. LISP represents functions using a particular notation known as Cambridge 

Polish, which places operators inside parentheses. In this notation, for example the last expression 

becomes:  

(*(+ a b)(+ c d)). 

3.1.1.3 Postfix Notation  
Postfix notation is also called Reverse Polish. It is similar to the last notation but differs by placing 

the operator symbol after the operands. For example, the last expression above when written in 

postfix notation is: a b + c d + *. 

Prefix notation is used in the intermediate code generated by some compilers. It is also used in 

programming languages (for example Postscript). In general, an advantage of Polish notation 

(prefix or otherwise) over infix is that the former can be used in a uniform fashion to represent 

operators with any number of operands. In infix notation, on the other had, representing operators 

with more than two operands means that we have to introduce auxiliary operators. A second 
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advantage, already stated, is that there is the possibility of completely omitting parentheses even 

if, for reasons of readability, both mathematical prefix notation f(a b) and Cambridge Polish (f a 

b) use parentheses. A final advantage of Polish notation, as we will see in the next subsection is 

that it makes the evaluation of an expression extremely simple. For this reason, this notation 

became rather successful during the 1970s and 80s when it was used for the first pocket-sized 

calculators. 

3.1.2 Semantics of Expressions 
According to the way in which an expression is represented, the way in which its semantics is 

determined changes and so, consequently, does its method of evaluation. In particular, in infix 

representation the absence of parentheses can cause ambiguity problems if the precedence rules 

for different operators and the associativity of every binary operator are not defined clearly. When 

considering the most common programming languages, it is also necessary to consider the fact 

that expressions are often represented internally in the form of a tree. In this section we will discuss 

these problems, starting with the evaluation of expressions in each of the three notations that we 

saw above. 

3.1.2.1 Infix Notation: Precedence and Associativity  
When using infix notation, we pay for the facility and naturalness of use with major complication 

in the evaluation mechanism for expressions. First of all, if parentheses are not used systematically, 

it is necessary to clarify the precedence of each operator. If we write4 + 3 * 5, for example, clearly 

we intend the value of 19 as the result of the expression and not 35: mathematical convention, in 

fact, tells us that we have to perform the multiplication first, and the addition next; that is, the 

expression is to be read as4 + (5 * 3) and not as(4 + 3) * 5. In the case of less familiar operators, 

present in programming languages, matters are considerably more complex. If, for example, in 

Pascal one writes:  x=4 and y=5 

where the and is the logical operator, contrary to what many will probably expect, we will obtain 

an error (a static type error) because, according to Pascal’s precedence rules, this expression can 

be interpreted as 

x=(4 and y)=5 

and not as 

(x=4) and (y=5). 
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To avoid excessive use of parentheses (which, when in doubt it is good to use), programming 

languages employ precedence rules to specify a hierarchy between the operators used in a language 

based upon the relative evaluation order. Various languages differ considerably in their definition 

of such rules and the conventions of mathematical notation are not always respected to the letter. 

A second problem in expression evaluation concerns operator associativity. If we write 15-5-3, we 

could intend it to be read as either (15-5)-3 or as 15-(5-3), with clearly different results. In this 

case, too, mathematical convention says that the usual interpretation is the first. In more formal 

terms, the operator “−” associates from left to right.2 In fact, the majority of arithmetic operators 

in programming languages associate from left to right but there are exceptions. The exponentiation 

operator, for example, often associates from right to left, as in mathematical notation. If we write  

or, using a notation more familiar to programmers, 5 ** 3 ** 2, we mean  , or 5 ** (3 ** 

2), and not (53)2, or ((5 ** 3) ** 2). Thus, when an operator is used, it is useful to include 

parentheses when in doubt about precedence and associativity. In fact, there is no lack of special 

languages that in this respect have rather counter-intuitive behaviour. 

In APL, for example, the expression 15-5-3 is interpreted as 15 - (5 - 3) rather than what we would 

ordinarily expect. The reason for this apparent strangeness is that in APL there are many new 

operators (defined to operate on matrices) that do not have an immediate equivalent in other 

formalisms. Hence, it was decided to abandon operator precedence and to evaluate all expressions 

from right to left. Even if there is no difficulty in conceiving of a direct algorithm to evaluate an 

expression in infix notation, the implicit use of precedence and associativity rules, together with 

the explicit presence of parentheses, complicates matters significantly. In fact, it is not possible to 

evaluate an expression in a single left-to-right scan (or one from right to left), given that in some 

cases we must first evaluate the rest of the expression and then return to a sub-expression of 

interest. For example, in the case of 5+3*2, when the scan from left to right arrives at +, we have 

to suspend the evaluation of this operator but divert to the evaluation of 3*2 and then go back to 

the evaluation of +. 

3.1.2.2 Prefix Notation  
Expressions written in prefix Polish notation lend themselves to a simple evaluation strategy which 

proceeds by simply walking the expression from left to right using a stack to hold its components. 

It can be assumed that the sequence of symbols that forms the expression is syntactically correct 
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and initially not empty. The evaluation algorithm is described by the following steps, where we 

use an ordinary stack (with the push and pop operations) and a counter C to store the number of 

operands requested by the last operator that was read: 

a.  Read in a symbol from the expression and push it on the stack; 

b.  If the symbol just read is an operator, initialise the counter C with the number of arguments 

of the operator and go to step 1. 

c.  If the symbol just read it is an operand, decrement C. 

d.  If C _= 0, go to 1. 

e.  If C = 0, execute the following operations: 

• Apply the last operator stored on the stack to the operands just pushed onto the stack, 

storing the results in R, eliminate operator and operands from the stack and store the value 

of R on the stack. 

• If there is no operator symbol in the stack go to 6. 

• Initialise the counter C to n − m, where n is the number of the argument of the topmost 

operator on the stack, and m is number of operands present on the stack above this 

operator. 

• Go to 4. 

f.  If the sequence remaining to be read is not empty, go to 1. 

The result of the evaluation is located on the stack when the algorithm finishes. It should be noted 

that the evaluation of an expression using this algorithm assumes that we know in advance the 

number of operands required by each operator. This requires that we syntactically distinguish 

unary from binary operators. Furthermore, it is generally necessary to check that the stack contains 

enough operands for the application of the operator (Step 5.(c) in the algorithm above). This check 

is not required when using postfix notation, as we see below. 

3.1.2.3 Postfix Notation  
The evaluation of expression in Polish notation is even simpler. In fact, we do not need to check 

that all the operands for the last operator have been pushed onto the stack, since the operands are 

read (from left to right) before the operators. The evaluation algorithm is then the following (as 

usual, we assume that the symbol sequence is syntactically correct and is not empty): 
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a.  Read the next symbol in the expression and push it on the stack. 

b. If the symbol just read is an operator apply it to the operands immediately below it on the 

stack, store the result in R, pop operator and operands from the stack and push the value in 

R onto the stack. 

c.  If the sequence remaining to be read is not empty, go to 1. 

d.  If the symbol just read is an operand, go to 1. 

This algorithm also requires us to know in advance the number of operands required by each 

operator. 

3.1.3 Evaluation of Expressions 
Expressions, like the other programming language constructs, can be conveniently represented by 

trees. In particular, can be represented by a tree (called the expression’s syntax tree) in which: 

• Every non-leaf node is labelled with an operator.  

• Every subtree that has as root a child of a node N constitutes an operand for the operator 

associated with N.  

• Every leaf node is labelled with a constant, variable or other elementary operand. 

Trees like this can be directly obtained from the derivation trees of an (unambiguous) grammar for 

expressions by eliminating non-terminal symbols and by appropriate rearrangement of the nodes. 

It can be seen also that, given the tree representation, the linear infix, prefix and postfix 

representations can be obtained by traversing the tree in a symmetric, prefix or postfix order, 

respectively. The representation of expressions as trees clarifies (without needing parentheses) 

precedence and associativity of operators. The subtrees found lower in the tree constitute the 

operands and therefore operators at lower levels must be evaluated before those higher in the tree. 

For example the tree shown in Figure 23 represents the expression: (a+f(b))*(c+f(b)) 
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Figure 23: An expression 
 

This expression can be obtained (parentheses apart) from the symmetric-order traversal of the tree 

(f is here an arbitrary unary operation).  

For languages with a compilative implementation, as we have seen, the parser implements 

syntactic analysis by constructing a derivation tree. In the specific case of expressions then, infix 

representation in the source code is translated into a tree based representation. This representation 

is then used by successive phases of the compilation procedure to generate the object code 

implementing runtime expressions evaluation. This object code clearly depends on the type of 

machine for which the compiler is constructed. In the case in which we have a traditional physical 

machine, for example, code of a traditional kind (i.e. in the form opcode operand1 operand2) is 

generated which uses registers as well as a temporary memory location to store intermediate results 

of evaluation.  

In some particular cases, on the other hand, object code can be represented using a prefix or postfix 

form which is subsequently evaluated by a stack architecture. This is the case for example in the 

executable code for many implementations of SNOBOL4 programs. In the case of languages with 

an interpretative implementation, it is also convenient to translate expressions, normally 

represented in the source code in infix notation, into a tree representation which can then be 

directly evaluated using a tree traversal. This is the case, for example, in interpreted 

implementations of LISP, where the entire program is represented as a tree. 

It is beyond the scope of the present text to go into details on mechanisms for generating code or 

for evaluating expression in an interpreter. However, it is important to clarify some difficult points 
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which often cause ambiguity. For convenience, we will fix on the evaluation of expressions 

represented in infix form. We will see that what we have to say applies equally to the direct 

evaluation of expressions represented as a tree, as well as to code generation-mechanisms. 

3.1.4 Subexpression Evaluation Order  

Infix notation precedence and associativity rules (or the structure, when expressions are 

represented as trees) do not hint at the order to evaluate an operator’s operands (i.e., nodes at the 

same level). For example, in the expression in Figure 23, nothing tells us that it is necessary first 

to evaluate either a+f(b) or c+f(b). There is also nothing explicit about whether the evaluation of 

operands or operator should come first; nor, in general, whether expressions which are 

mathematically equivalent can be inter-substituted without modifying the result (for example, (a-

b+c) and(a+c-b) could be considered equivalent). While in mathematical terms these differences 

are unimportant (the result does not change), from our viewpoint these questions are extremely 

relevant and for the following five reasons. 

3.1.4.1 Side effects:  
In imperative programming languages, expression evaluation can modify the value of any 

variables through so-called side effects. A side effect is an action that influences the result (partial 

or final) of a computation without otherwise explicitly returning a value in the context in which it 

is found. The possibility of side effects renders the order of evaluation of operands relevant to the 

final result. In our example in Figure 13, if the evaluation of the function f were to modify the 

value of its operand through side effects, first executing a+f(b) rather than c+f(b), could change 

the value produced by the evaluation. As far as side effects are concerned, languages follow 

various approaches. On the one hand, pure declarative languages do not permit side effects at all, 

while languages which do allow them in some cases forbid the use in expressions of functions that 

can cause side effects. In other, more common cases where the presence of side effects is permitted, 

the order with which expressions are evaluated is, though, clearly stated in the definition of the 

language. Java, for example, imposes left-to right evaluation of expressions (while C fixes no order 

at all). 

3.1.4.2 Finite arithmetic  
Given the set of numbers represented in a computer is finite, reordering expressions can cause 

overflow problems. For example, if a has, as its value, the maximum integer representable and b 
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and c are positive numbers such that b > c, right-to-left evaluation of (a-b+c) does not produce 

overflow, while we have an overflow resulting from the evaluation from left to right of (a+c-b). 

Moreover, when we do not have overflow, the limited precision of computer arithmetic implies 

that changing the order of the operands can lead to different results (this is particularly relevant in 

cases of floating point computation). 

3.1.4.3 Undefined operands  
When the application of operator to operands is considered, two evaluation strategies can be 

followed. The first, called eager evaluation, consists of first evaluating all the operands and then 

applying the operator to the values thus obtained. The strategy probably seems the most reasonable 

when reasoning in terms of normal arithmetic operators. The expressions that we use in 

programming languages, however, pose problems over and above those posed by arithmetic 

expressions, because some can be defined even when some of the operands are missing. Let us 

consider the example of a conditional expression of the form: a == 0 ? b : b/a 

We can write this in C to denote the value of b/a when a is non-zero and b, otherwise. This 

expression results from the application of a single operator (expressed in infix notation using two 

binary operators ? and :) to three operands (the Boolean expression, a==0, and the two arithmetic 

expressions b and b/a). Clearly here we cannot use eager evaluation for such conditional 

expressions because the expression b/a would have to be evaluated even when a is equal to zero 

and this would produce an error. 

In such a case, it is therefore better to use a lazy evaluation strategy which mainly consists of not 

evaluating operands before the application of the operator, but in passing the un-evaluated 

operands to the operator, which, when it is evaluated, will decide which operands are required, and 

will only evaluate the ones it requires. The lazy evaluation strategy, used in some declarative 

languages, is much more expensive to implement than eager evaluation and for this reason, most 

languages use eager evaluation (with the significant exception of conditional expressions as we 

will see below). There are languages which use a mix of both the techniques (ALGOL, for 

example).  
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3.1.4.4 Short-circuit evaluation  
The problem detailed in the previous point presents itself with particular clarity when evaluating 

Boolean expressions. For example, consider the following expression (in C syntax):  

a == 0 || b/a > 2  

If the value of a is zero and both operands of || are evaluated at the same time, it is clear that an 

error will result (in C, “||” denotes the logical operation of disjunction). To avoid this problem, and 

to improve the efficiency of the code, C, like other languages uses a form of lazy evaluation, also 

called short-circuiting evaluation, of  boolean expressions. If the first operand of a disjunction has 

the value true then the second is not evaluated, given that the overall result will certainly have the 

value true. In such a case, the second expression is short-circuited in the sense that we arrive at 

the final value before knowing the value of all of the operands. Analogously, if the first operand 

of a conjunction has the value false, the second is not evaluated, given that the overall result can 

have nothing other than the value false. It is opportune to recall that not all languages use this 

strategy for boolean expressions. Counting on the presence of a short-circuited evaluation, without 

being certain that the language uses it, is dangerous. For example, we can write in Pascal 

p := list; 
while (p <> nil ) and (pˆ.value <> 3) do 
p := pˆ.next; 

The intention of this code is to traverse a list until we have arrived at the end or until we have 

encountered the value 3. This is badly written code that can produce a runtime error. Pascal, in 

fact, does not use short-circuit evaluation. In the case in which we have p = nil, the second operand 

of the conjunction (pˆ.value <>. 3) yields an error when it dereferences a null pointer. Similar code, 

on the other hand, mutatis mutandis, can be written in C without causing problems. In order to 

avoid ambiguity, some languages (for example C and Ada), explicitly provide different boolean 

operators for short-circuit evaluation. Finally, it should be noted that this kind of evaluation can 

be simulated using a conditional command. 
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3.1.4.5 Optimisation  
Frequently, the order evaluation of subexpressions influences the efficiency of the evaluation of 

an expression for reasons relating to the organization of the physical machine. For example, 

consider the following code: 

a = vector[i]; 

b = a*a + c*d; 

In the second expression, it is probably better first to evaluate c*d, given that the value of a has to 

be read from memory (with the first instruction) and might not be yet available; in such a case, the 

processor would have to wait before calculating a * a. In some cases, the compiler can change the 

order of operands expressions to obtain code that is more efficient but semantically equivalent. 

The last point explains many of the semantic problems that appear while evaluating expressions. 

Given the importance of the efficiency of the object code produced by the compiler, it is given 

considerable liberty in the precise definition of its expression evaluation method, without it being 

specified at the level of semantic description of the language (as we have already said, Java is a 

rare exception). The result of this kind of approach is that, sometimes, different implementations 

of the same language produce different results for the same expression, or have errors at runtime 

whose source is hard to determine. 

Wishing to capitalize in a pragmatic prescription, given what has been said so far, if we do not 

know the programming language well and the specific implementation we are using, if we want to 

write correct code, it is wise to use all possible means at our disposal to eliminate as many sources 

of ambiguity as possible in expression evaluation (such as brackets parentheses, specific boolean 

operations, auxiliary variables in expressions, etc.). 

3.2 The Concept of Command 
If, as we were saying above, expressions are present in all programming languages, the same is 

not true for commands. They are constructs that are typically present (but not entirely restricted to 

them) in so-called imperative languages.  A command is a syntactic entity whose evaluation does 

not necessarily return a value but can have a side effect. A command, or more generally, any other 

construct, has a side-effect if it influences the result of the computation but its evaluation returns 
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no value to the context in which it is located. This point is fairly delicate and merits clarification 

with an example. If the print command in a hypothetical programming language can print character 

strings supplied as an argument, when the command print “pippo” is evaluated, we will not obtain 

a value but only a side-effect which is composed of the characters “pippo” appearing on the output 

device.  

The attentive reader will be aware that the definition of command, just as the previous definition 

of expression, it is not very precise, given that we have referred to an informal concept of 

evaluation (the one performed by the abstract machine of the language to which the command or 

the expression belongs). It is clear that we can always modify the interpreter so that we obtain 

some value as a result of the evaluation of the command. A precise definition and, equally, an 

exact distinction, between expressions and commands on the basis of their semantics is possible 

only in the setting of a formal definition of the semantics of language. In such a context, the 

difference between the two concepts derives from the fact that, once a starting state has been fixed, 

the result of the evaluation of an expression is a value (together with possible side effects). On the 

other hand, the result of evaluating a command is a new state which differs from the start state 

precisely in the modifications caused by the side-effects of the command itself (and which are due 

principally to assignments). Command is therefore a construct whose purpose is the modification 

of the state. The concept of state can be defined in various ways, we saw a simple version, one 

which took into account the value of all the variables present in the program. If the aim of a 

command is to modify the state, it is clear that the assignment command is the elementary construct 

in the computational mechanism for languages with commands. Before dealing with them, 

however, it is necessary to clarify the concept of variable. 

3.2.1 The Variable 
In mathematics, a variable is an unknown which can take on all the numerical values in a 

predetermined set. Even if we keep this in mind, in programming languages, it is necessary to 

specify this concept in more detail because, the imperative paradigm uses a model for variables 

which is substantially different from that employed the in logic and functional programming 

paradigms. The classical imperative paradigm uses modifiable variables. According to this model, 

the variable is seen as a sort of container, or location (clearly referring to physical memory), to 

which a name can be given and which contains values (usually of a homogeneous type, for example 
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integers real, characters etc.). These values can be changed over time, by execution of assignment 

commands (whence comes the adjective “modifiable”). This terminology might seem tautological 

to the average computer person, who is almost always someone who knows an imperative language 

and is therefore used to modifiable variables. The attentive reader, though, will have noted that, in 

reality, variables are not always modifiable. In mathematics a variable represents a value that is 

unknown but when such a value is defined the link thus created cannot be modified later. 

 

Figure 24: A modifiable variable 

Modifiable variables are depicted in Figure 24. The small box which represents the variable with 

the name x can be re-filled with a value (in the figure, the value is 3). It can be seen that the variable 

(the box) is different from the name x which denotes it, even if it is common to say “the variable 

x” instead of “the variable with the name x”.   

Some imperative languages (particularly object-oriented ones) use a model that is different from 

this one. According to this alternative model, a variable is not a container for a value but is a 

reference to (that is a mechanism which allows access to) a value which is typically stored in the 

heap. This is a new concept analogous to that of the pointer (but does not permit the usual pointer-

manipulation operations). We will see this in the next section after we have introduced assignment 

commands. This variable model is called, the “reference model”, where it is discussed in the 

context of the language CLU, is called the “object model”. Henceforth, we will refer to this as the 

reference model of variables. (Pure) functional languages use a concept of variable similar to the 

mathematical one: a variable is nothing more than an identifier that stands for a value. Rather, it is 

often said that functional languages “do not have variables”, meaning that (in their pure forms) 

they do not have any modifiable variables. 

Logic languages also use identifiers associated with values as variables and, as with functional 

languages, once a link between a variable identifier and a value is created, it can never be 

eliminated. There is however a mode in which the value associated with a variable can be modified 

without altering the link. 
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3.2.2 Assignment 
Assignment is the basic command that allows the modification of the values associated with 

modifiable variables. It also modifies the state in imperative languages. It is an apparently very 

simple command. However, as will be seen, in different programming languages, there are various 

subtleties to be taken into account. Let us first see the case that will probably be most familiar to 

the reader. This is the case of an imperative language which uses modifiable variables and in which 

assignment is considered only as a command (and not also as an expression). One example is 

Pascal, in which we can write X := 2 to indicate that the variable X is assigned the value 2. The 

effect of such a command is that, after its execution, the container associated with the variable 

(whose name is) X will contain the value 2 in place of the value that was there before. It should be 

noted that this is a side effect, given that the evaluation of the command does not on its own, return 

any kind of value. Furthermore, every access to X in the rest of the program will return the value 

2 and not the one previously stored. 

Consider now the following command:  X := X+1 

The effect of this assignment, as we know, is that of assigning to the variable X its previous value 

incremented by 1. Let us observe the different uses of the name, X, of the variable in the two 

operands of the assignment operator. The X appearing to the left of the := symbol is used to indicate 

the container (the location) inside which the variable’s value can be found. The occurrence of the 

X on the right of the := denotes the value inside the container. This important distinction is 

formalised in programming languages using two different sets of values: l-values are those values 

that usually indicate locations and therefore are the values of expressions that can be on the left of 

an assignment command. On the other hand, r-values are the values that can be stored in locations, 

and therefore are the values of expressions that can appear on the right of an assignment command. 

In general, therefore, the assignment command has the syntax of a binary operator in infix form: 

exp1 OpAss exp2 

where OpAss indicates the symbol used in the particular language to denote assignment (:= in 

Pascal, = in C, FORTRAN, SNOBOL and Java, ← in APL, etc.). The meaning of such a command 

(in the case of modifiable variables) is as follows: compute the l-value of exp1, determining, 

thereby, a container loc; compute the r-value of exp2 and modify the contents of loc by substituting 
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the value just calculated for the one previously there. Which expressions denote (in the context on 

the left of an assignment) an l-value depends on the programming language: the usual cases are 

variables, array elements, record fields (note that, as a consequence, calculation of an l-value can 

be arbitrarily complex because it could involve function calls, for example when determining an 

array index). In some languages, for example C, assignment is considered to be an operator whose 

evaluation, in addition to producing a side effect, also returns the r-value thus computed.  

Thus, if we write in C: x = 2; 

the evaluation of such a command, in addition to assigning the value 2 to x, returns the value 2. 

Therefore, in C, we can also write: y = x = 2; 

which should be interpreted as: (y = (x = 2)); 

This command assigns the value 2 to x as well as to y. In C, as in other languages, there are other 

assignment operators that can be used, either for increasing code legibility or avoiding unforeseen 

side effects. Let us take up the example of incrementing a variable. Once again we have: x = x+1; 

This command, unless optimised by the compiler, requires, in principle, two accesses to the 

variable x: one to determine the l-value, and one to obtain the r-value. If, from the efficiency 

viewpoint, this is not serious (and can be easily optimised by the compiler), there is a question 

which is much more important and which is again related to side-effects. Let us then consider the 

code: b = 0; 

a[f(3)] = a[f(3)]+1; 

where a is a vector and f is a function defined as follows: 
int f (int n){ 
if b == 0{ 
b=1; 
return 1; 
} 
else return 2; 
} 
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This function is defined in such a way that the non-local reference to b in the body of f refers to 

the same variable b that is cleared in the previous fragment. Given that f modifies the non-local 

variable b, it is clear that the assignment  

a[f(3)] = a[f(3)]+1 

does not have the effect of incrementing the value of the element a[f(3)] of the array, as perhaps 

we wanted it to do. Instead, it has the effect of assigning the value of a[1]+1 to a[2] whenever the 

evaluation of the left-hand component of the assignment precedes the evaluation of the right-hand 

one. It should be noted, on the other hand, that the compiler cannot optimise the computation of r-

values, because the programmer might have wanted this apparently anomalous behaviour. 

To avoid this problem, we can clearly use an auxiliary variable and write: 

int j = f(3); 
a[j] = a[j]+1; 

Doing this obscures the code and introduces a variable which expresses very little. To avoid all of 

this, languages like C provide assignment operators which allow us to write: 

a[f(3)] += 1; 

This add to the r-value of the expression present on the left the quantity present on the right of the 

+= operator, and then assigns the result to the location obtained as the l-value of the expression on 

the left. There are many specific assignment commands that are similar to this one. The following 

is an incomplete list of the assignment commands in C, together with their descriptions: 

• X = Y: assign the r-value of Y to the location obtained as the l-value of X and return the r-

value of X; 

• X += Y (or X -= Y): increment (decrement) X by the quantity given by the r-value of Y 

and return of the new r-value; 

• ++X (or -X): increment (decrement) X by and return the new r-value of X; 

• X++ (or X-): return the r-value of X and then increment (decrement) X. 
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We will now see how the reference model for variables differs from the traditional modifiable-

variable one. In a language which uses the reference model (for example, CLU and, as we will see, 

in specific cases, Java) after an assignment of the form: 

x=e 

x becomes a reference to an object that is obtained from the evaluation of the expression e. Note 

that this does not copy the value of e into the location associated with x. This difference becomes 

clear if we consider an assignment between two variables using the reference model. 

x=y 

After such an assignment, x and y are two references to the same object. In the case in which this 

object is modifiable (for example, record or array), a modification performed using the variable x 

becomes visible through variable y and vice versa. 

In this model, therefore, variables behave in a way similar to variables of a pointer type in 

languages which have that type of data. A value of a pointer type is no more than the location of 

some data item (or, equivalently, its address in some area of memory). In many languages which 

have pointer types, the values of such types can be explicitly manipulated. In the case of the 

reference model, however, these values can be manipulated only implicitly using assignments 

3.3 Sequence Control Commands 
Assignment is the basic command in imperative languages (and in “impure” declarative 

languages); it expresses the elementary computation step. The remaining commands serve to 

define sequence control, or rather serve to specify the order in which state modifications produced 

by assignments, are to be performed. These other commands can be divided into three categories: 

• Commands for explicit sequence control These are the sequential command and goto. Let us 

consider, in addition, the composite command, which allows us to consider a group of 

commands as a single one, as being in this category. 

• Conditional (or selection) commands These are the commands which allow the specification 

of alternative paths that the competition can take. They depend on the satisfaction of specific 

conditions. 

• Iterative commands These allow the repetition of a given command for a predefined number 

of times, or until the satisfaction of specific conditions. 
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3.3.1 Sequential Command 
The sequential command, indicated in many languages by a “;”, allows us directly to specify the 

sequential execution of two commands. If we write:  

C1 ; C2 

the execution of C2 starts immediately after C1 terminates. In languages in which the evaluation 

of a command also returns a value, the value returned by the evaluation of the sequential command 

is that of the second argument. 

Obviously we can write a sequence of commands such as:  

C1 ; C2 ; ... ; Cn 

with the implicit assumption that the operator “;” associates to the left. 

3.3.2 Composite Command 
 In modern imperative languages, it is possible to group a sequence of commands into a composite 

command using appropriate delimiters such as those used by Algol: 

begin 
... 
end 
or those in C: 
{ 
... 
} 
3.3.3 Conditional Commands 
Conditional commands, or selection commands, express one alternative between two or more 

possible continuations of the computation based on appropriate logical conditions. We can divide 

conditional commands into two groups.  

If The if command, originally introduced in the ALGOL60 language, is present in almost all 

imperative languages and also in some declarative languages, in various syntactic forms which, 

really, can be reduced to the form: 

 if  Bexp then C1 else C2 
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where Bexp is a boolean expression, while C1 and C2 are commands. Informally, the semantics 

of such a command expresses an alternative in the execution of the computation, based on the 

evaluation of the expression Bexp. When this evaluation returns true, the command C1 is executed, 

otherwise the command C2 is executed. The command is often present in the form without the else 

branch:  

if  Bexp then C1 

In this case, too, if the condition is false, the command C1 is not executed and control passes to 

the command immediately after the conditional. As we saw in Chap. 2, the presence of a branching 

if as in the command 

 if Bexp1 if Bexp2 then C1 else C2 

causes problems of ambiguity, which can be resolved using a suitable grammar which formally 

describes the rules adopted by the language (for example, the else branch belongs to the innermost 

if; this is the rule in Java and it is used in almost every language). To avoid problems of ambiguity, 

some languages use a “ terminator” to indicate where the conditional command ends, as for 

example in:  

if Bexp then C1 else C2 endif 

Furthermore, in some cases, instead of using a list of nested if then elses, use is made of an if 

equipped with more branches, analogous to the following: 

 if Bexp1 then C1  
elseif Bexp2 then C2 
... 
elseif Bexpn then Cn 
else Cn+1 

endif 

The implementation of the conditional command poses no problems, and makes use of instructions 

for test and jump that are found in the underlying physical machine. The evaluation of the boolean 

expression can use the shorter circuit technique that we saw above. 
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Case The command is a specialisation of the if command, just discussed, with more branches. In 

its simplest form it is written as follows: 

case Exp of 
label1: C1; 
label2: C2; 
... 
labeln: Cn; 

else Cn+1 

where Exp is an expression whose value is of a type compatible with that of the labels label1, ... , 

labeln, while C1, ... , Cn+1 are commands. Each label is represented by one or more constants and 

the constant used in different labels are different from each other. The type permitted for labels, as 

well as their form, varies from language to language. In most cases, a discrete type is permitted, 

including enumerations and intervals. So, for example, we can use the constants 2 and 4 to denote 

a label, but in some languages we can also write 2,4 to indicate either the value 2 or the value 4, 

or 2 .. 4to indicate all values between 2 and 4 (inclusive). 

Different languages exhibit significant differences in their case commands. In C, for example, the 

switch has the following syntax (also to be found in C++ and in Java): 

switch (Exp) body 

where body can be any command that all. In general, though, the body is formed from a block in 

which some commands can be labelled; that is they are of the form: 

case label : command 

while the last command of the block is of the form: 

default : command 

When the expression Exp is evaluated and control is to be transferred to the command whose label 

coincides with the resulting value, if there are no labels with such a value, control passes to the 

command with the label default. If there is no default command, control passes to the first 
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command following the switch. It can be seen that, once a branch of the switch has been selected, 

control then flows into the immediately following branches. To obtain a construct with semantics 

analogous to that of the case we discussed above, it is necessary to insert an explicit control transfer 

at the end of the block, using a break: 
switch (Exp){ 

case label1: C1 break; 
case label2: C2 break; 
... 
case labeln: Cn break; 
default: Cn+1 break; 

} 

It can be seen also that in a switch, the value returned by the evaluation of the expression might 

not appear in any label, in which case the entire command has no effect. Finally, lists or ranges of 

values are not permitted as labels. This however is no real limitation, given that lists of values can 

be implemented using the fact that control passes from one branch to its successor when break is 

omitted. If, for example, we write: 

switch (Exp){ 
case 1: 
case 2: C2 break; 
case 3: C3 break; 
default: C4 break; 

} 

in the case in which the value of Exp is 1, given that the corresponding branch does not contain a 

break command, control passes from the case 1 branch immediately to the case 2 branch and 

therefore it is as if we had used a list of values 1,2 for the label of C2. 

3.3.4 Iterative Commands 
The commands that we have seen up to this point, excluding goto, only allow us to express finite 

computations, whose maximum length is determined statically by the length of the program text. 

A language which had only such commands would be of highly limited expressiveness. It would 
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certainly not be Turing complete, in that it would not permit the expression of all possible 

algorithms (consider, for example, scanning a vector of n elements, where n is not known a priori). 

In order to acquire the expressive power necessary to express all possible algorithms in low-level 

languages, jump instructions allowing the repetition of groups of instructions by jumping back to 

the start of the code are needed. In high-level languages, given that, as has been seen, it is desirable 

to avoid commands like goto, two basic mechanisms are employed to achieve the same effect: 

structured iteration and recursion. The first, which we consider in this section, is more familiar 

from imperative languages (and they almost always allow recursion as well). Suitable linguistic 

constructs (which we can regard as special versions of the jump command) allow us compactly to 

implement loops in which commands are repeated or iterated. At the linguistic level, it is possible 

to distinguish between unbounded iteration and bounded iteration. In bounded iteration, repetition 

is implemented by constructs that allow a determinate number of iterations. Unbounded iteration, 

on the other hand, is implemented by constructs which continue until some condition becomes 

true.  

Recursion which we will consider in the next section, allows, instead, the expression of loops in 

an implicit fashion, including the possibility that a function (or procedure) can call itself, thereby 

repeating its own body an arbitrary number of times. The use of recursion is more common in 

declarative languages (in many functional and logic languages there does not, in fact, exist any 

iterative construct). 

3.3.4.1 Unbounded iteration  
Unbounded iteration is logically controlled iteration. It is implemented by linguistic constructs 

composed of two parts: a loop condition (or guard) and a body, which is composed of a (possibly 

compound) command. When executed, the body is repeatedly executed until the guard becomes 

false (or true, according to the construct). In its most common form, this type of iteration takes the 

form of the while command, originally introduced in ALGOL:while 

while (Bexp) do C 

The meaning of this command is as follows: (1) the boolean expression Bexp is evaluated; (2) if 

this evaluation returns the value true, execute the command C and return to (1); otherwise the 

while command terminates. 
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In some languages there are also commands that test the condition after execution of the command 

(which is therefore always executed at least once). This construct is for example present in Pascal 

in the following form: 

repeat C until Bexp 

This is no more than an abbreviation for: 

C; 
while not Bexp do C 
(not Bexp here indicates the negation of the expression Bexp). In C an analogous 
construct is do: 
do C while (Bexp) 
which corresponds to: 
C; 
while Bexp do C 
(note that the guard is not negated as in the case of repeat.) 

The while construct is simple to implement, given that it corresponds directly to a loop that is 

implemented on the physical machine using a conditional jump instruction. This simplicity of 

implementation should not deceive us about the power of this construct. Its addition to a 

programming language which contains only assignment and conditional commands immediately 

makes the language Turing complete.  

3.3.4.2 Bounded iteration  
Bounded iteration (sometimes also called numerically controlled iteration) is implemented by 

linguistic constructs that are more complex than those used for unbounded iteration; their 

semantics is also more elaborate. These forms are very different and not always “pure” as we will 

see shortly. The model that we adopt in this discussion is that of ALGOL, which was then adopted 

by many other languages of the same family (but not by C or Java). 

Bounded iteration is implemented using some variant of the for command. Without wishing to use 

any specific syntax, it can be described as: 

for I = start to end by step do 
      body 
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where I is a variable, called the index, or counter, or control variable; start and end are two 

expressions (for simplicity we can assume that they are of integer type and, in general, they must 

be of a discreet type); step is a (compile-time) non-zero integer constant; body is the command we 

want to repeat. This construct, in the “pure” form we are describing, is subject to the important 

static semantic constraint that the control variable can not be modified (either explicitly nor 

implicitly) during the execution of the body. 

• Semantics of bound iteration 

The semantics of the bounded iteration construct can be described informally as follows (assuming 

that step is positive): 

1. The expression start is evaluated, as is end. The values are frozen and stored in dedicated 

variables (which cannot be updated by the programmer). We denote them, respectively, as 

start_save and end_save. 

2. I is initialised with the value of start_save. 

3. If the value of I is strictly greater than the value of end_save, execution of the for command is 

terminated. 

4. Execute body and increment I by the value of step. 

5. Go to 3. 

In the case in which step is negative, the test in step (3) determines whether I is strictly less than 

end_save. It is worth emphasizing the importance of step (1) above and the constraint that the 

control variable cannot be modified in the body. Their combined effect is to determine the number 

of times and the body will be executed before the loop begins execution. This number is given by 

the quantity, ic (iteration count), which is defined as: 

  

if ic is positive, otherwise it is 0. It can be seen, finally, that there is no way of producing an infinite 

cycle with this construct. 
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• Expressiveness of bounded iteration 

 Using bounded iteration, we can express the repetition of a command for n times, where n it is an 

arbitrary value not known when the program is written, but is fixed at when the iteration starts. It 

is clear that this is something that cannot be expressed using only conditional commands and 

assignment, because it is possible to repeat a command only by repeating the command in the body 

of the program syntactically. Given that every program has a finite length, we have a limit on the 

maximum number of repetitions that we can include in a specific program. 

4  Self-Assessment Exercises 

• Define expression 

• Discuss in detail expression syntax 

• Discuss in detail semantics of expression 

• Define, in any programming language, a function, f , such that the evaluation of the 

expression (a + f (b)) ∗ (c + f (b)) when performed from left-to-right has a result that 

differs from that obtained by evaluating right-to-left. 

• Show how the if then else construct can be used to simulate short-circuit evaluation of 

boolean expressions in a language which evaluates all operands before applying 

boolean operators. 

• Consider the following case command: 

Case  Exp of 
        1:     C1; 
       2,3:     C2; 
          4..6:        C3; 
       7:    C4 

else:        C5 
Provide an efficient pseudocode assembly program that corresponds to the translation of this 

command. 
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5  Answer to Self-Assessment Exercises 

• Define expression: An expression is defined as a syntactic entity whose evaluation 

either produces a value or fails to terminate 

• Discuss in detail expression syntax – Section 3.1.1 

• Discuss in detail semantics of expression – Section 3.1.2 

• Define, in any programming language, a function, f , such that the evaluation of the 

expression (a + f (b)) ∗ (c + f (b)) when performed from left-to-right has a result that 

differs from that obtained by evaluating right-to-left. 

• Show how the if then else construct can be used to simulate short-circuit evaluation of 

boolean expressions in a language which evaluates all operands before applying 

boolean operators. 

• Consider the following case command: 

Case  Exp of 
        1:     C1; 
       2,3:     C2; 
          4..6:        C3; 
       7:    C4 

else:        C5 
Provide an efficient pseudocode assembly program that corresponds to the translation of this 

command. 

 

6  Conclusion  

The unit described and discussed a variety of statement-level in control structures and briefly 

evaluated the expression. A brief evaluation now seems to be in order. Also, the sequence control 

commands were deliberated on which led in grouping the commands to four categories namely 

sequential command, composite command, conditional (or selection) commands and Iterative 

commands.  
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7 Summary  

The unit analyzed the components of high-level languages relating to the control of execution flow 

in programs. We first considered expressions and we have analyzed the types of syntax that most 

used for their description (as trees, or in prefix, infix and postfix linear form) and the related 

evaluation rules. Also, the precedence and associativity rules required for infix notation were 

debated on. Furthermore, the unit discussed the problems generally related to the order of 

evaluation of the subexpressions of an expression.  
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1  Introduction  

The period of time it takes a program to run from the beginning to the end is regarded as running 

time although, the execution time is very crucial in system evaluation. Thus, this unit presents the 

overview of run-time and deliberate on runtime error by discussing the common errors of runtime 

and how these errors can be fixed as well as the comparison between runtime and compile time. 

2  Intended Learning Outcomes (ILOs)  

At the end of the unit, students should be able to 

• Know different types of run-time error 

• Fix run-time error 

• Differentiate between run-time and compile time 

3   Main Content 

3.1 Overview of Run-time 
Run time is a phase of a computer program in which the program is run or executed on a computer 

system. Run time is part of the program life cycle, and it describes the time between when the 

program begins running within the memory until it is terminated or closed by the user or the 

operating system. Run time is also known as execution time. Runtime is a system used primarily 

in software development to describe the period during which a program is running. Runtime is the 

final phase of the program lifecycle in which the machine executes the program’s code. 

When a user tries to start a program a loader runs that allocates memory and links the program 

with any necessary libraries, then the execution begins. Many people who use computer programs 

understand the runtime process; however, runtime is very important to software developers 

because if errors are found in the code the program will throw runtime errors. 

3.2 Runtime errors 
A runtime error is an error that occurs when a program you’re using or writing crashes or produces 

a wrong output. At times, it may prevent you from using the application or even your personal 

computer. In some cases, users need only refresh their device or the program to resolve the runtime 

error. However, sometimes, users may have to perform a particular action to fix the error. Before 

a runtime error shows up on your computer, you may have noticed its performance slowing down. 

When runtime errors occur, your computer will always display a prompt stating the specific type 
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of error you’ve encountered. If a program experiences an error after it has been executed it will 

report back a runtime error. There are hundreds of different errors that programs can experience 

such as division by zero errors, domain errors, and arithmetic underflow errors. 

Some programming languages have built-in exception handling which is designed to handle any 

runtime errors the code encounters. Exception handling can catch both predictable and 

unpredictable errors without excessive inline, manual error checking. Taking Java as an example, 

there are multiple ways to implement exception handling. Below we will cover try-catch blocks 

and throws. The following type of exception handling is called a try-catch block. It tells the 

program to try a block of code and, if it doesn’t work, catch the exception and run another block 

of code: 

public static String readFirstLine(String url) {   

    try { 

        Scanner scanner = new Scanner(new File(url)); 

        return scanner.nextLine(); 

    } catch(FileNotFoundException ex) { 

        System.out.println("File not found."); 

        return null; 

    } 

} 

The next type of exception handling is called a throw. It tells the program to explicitly throw an 

exception object if specific criteria are met: 

public class ThrowExample { 

   static void checkEligibilty(int stuage, int stuweight){  

      if(stuage<12 && stuweight<40) { 

         throw new ArithmeticException("Student is not eligible for registration");  

      } else { 

         System.out.println("Student Entry is Valid!!");  

      } 

   }  



CIT401  COURSE GUIDE 

166 
 

   public static void main(String args[]){  

     System.out.println("Welcome to the Registration process!!"); 

     checkEligibilty(10, 39);  

     System.out.println("Have a nice day..");  

 }  

} 

//If the student does not meet the necessary criteria,  

//we will encounter the following error message. 

Welcome to the Registration process!!Exception in thread "main"  

java.lang.ArithmeticException: Student is not eligible for registration 

3.2.1 Common Types of Runtime Error 

To understand what constitutes a runtime error better, let’s take a look at some of its common 

forms, which include: 

3.2.1.1 Logic Error 

A logic error occurs when a developer enters the wrong statements into the application’s source 

code. With if-then statements, for example, developers would sometimes make the mistake of 

leaving the logical values to revert to “true.” Many runtime errors fall under this category. 

3.2.1.2 Memory Leak 

Memory leaks happen when a program drains your computer’s random access memory (RAM). It 

often arises from unpatched software, such as when you fail to update your operating system (OS) 

to the newest release.  

3.2.1.3 Division by Zero Error 

Division by zero (DIV/0) is an error associated with Excel workbooks. When formula inputs in 

the spreadsheet are left blank, the total might display a DIV/0 error. The cell formulas need to be 

formatted in a precise manner to produce the correct output. 

3.2.1.4 Undefined Object Error 

An undefined object error happens when a program attempts to call a function for a PHP or 

JavaScript object (or a C++ variable) that isn’t defined or assigned a value. The error also occurs 
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for deeply nested objects. In simpler terms, the code “cannot read” or find where a property is 

because it does not exist or is buried several levels deep within the code. 

3.2.1.5 Input/Output Device Error 

Input/Output (I/O) device errors occur when issues arise with the read/write function of a device. 

Common causes include device malfunction, outdated drivers, OS incompatibility, and faulty 

universal serial bus (USB) ports. As a result, users would get a prompt saying that the device 

wasn’t accessible, making it impossible to transfer or encode files into it. Usually, the memory 

drive or the computer only needs to be restarted to get rid of the issue. 

3.2.1.6 Encoding Error 

Encoding errors happen when you’re rendering a file, say a video file, to convert it into a usable 

or accessible file format. This is due to the resource-intensive nature of the encoding process. Error 

messages linked to this type of error include “encoding overloaded” or “encoding failed.” 

3.2.2 How Do You Fix a Runtime Error? 

First off, you need to know that a runtime error occurs due to bugs that the software’s programmers 

knew about but couldn’t fix. More generally, though, a runtime error happens due to lack of 

memory or other system resources required for an application to run properly. The following listed 

are tips to fix a runtime error: 

• Restart your computer. This is an age-old technique that most often than not fixes any 

problem, including runtime errors. 

• Close other applications. It’s possible for a runtime error to occur because another program 

conflicts with the one you’re trying to run. In other cases, that other application is using 

too many system resources, leaving not enough for the program you wish to load. Close 

applications that you don’t need then try opening the program again. 

• Run the application in safe mode. In safe mode, any program runs only the bare minimum 

so your computer can work. To do this, boot into safe mode then try running the program. 

• Update the application. Sometimes, the problem stems from a bug or an error in the 

program’s last release. If you can, update it or manually download its latest version using 

your browser. 

• Reinstall the application. Your program may have been corrupted and needs to be 

reinstalled. Save important files from it then uninstall and reinstall it. 
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• Consult a forum or seek a tech expert’s advice. If none of the above-mentioned tips work, 

look for users online facing the same problem. Forums like Reddit can be a valuable 

resource. You can also try contacting the program’s support team.  

3.3 Runtime vs Compile time  
Runtime and compile time are programming terms that refer to different stages of software 

program development. Compile-time is the instance where the code you entered is converted to 

executable while Run-time is the instance where the executable is running. The terms "runtime" 

and "compile time" are often used by programmers to refer to different types of errors too. 

Compile-time checking occurs during the compile time. Compile time errors are error occurred 

due to typing mistake, if we do not follow the proper syntax and semantics of any programming 

language then compile time errors are thrown by the compiler. They won’t let your program to 

execute a single line until you remove all the syntax errors or until you debug the compile time 

errors. The following are usual compile time errors: 

� Syntax errors 

� Type checking errors 

� Compiler crashes (Rarely) 

Run-time type checking happens during run time of programs. Runtime errors are the errors that 

are generated when the program is in running state. These types of errors will cause your program 

to behave unexpectedly or may even kill your program. They are often referred as Exceptions. The 

following are some usual runtime errors: 

� Division by zero 

� Dereferencing a null pointer 

� Running out of memory 

4  Self-Assessment Exercises 

• List and explain different type of run-time error 

• What is run-time 

• What is run-time error 
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• Explain how run-time error can be fixed 

• What is compile time 

• Compare run-time and compile time 

 

5  Answer to self-Assessment Exercises 

• List and explain different type of run-time error – Section 3.2.1 

• What is run-time: Runtime is a system used primarily in software development to describe 

the period during which a program is running 

• What is run-time error: A runtime error is an error that occurs when a program you’re 

using or writing crashes or produces a wrong output. 

• Explain how run-time error can be fixed – Section 3.2.2 

• What is compile time: Compile-time is the instance where the code you entered is 

converted to executable. 

• Compare run-time and compile time – Section 3.3 

6  Conclusion  
Runtime is a technical term, used most often in software development. It is commonly seen in the 

context of a "runtime error," which is an error that occurs while a program is running. The term 

"runtime error" is used to distinguish from other types of errors, such as syntax errors and 

compilation errors, which occur before a program is run. 

7  Summary  
The unit analyzed the components of high-level languages relating to the control of execution flow 

in programs. We first considered expressions and we have analyzed the types of syntax that most 

used for their description (as trees, or in prefix, infix and postfix linear form) and the related 

evaluation rules. Also, the precedence and associativity rules required for infix notation were 

debated on. Furthermore, the unit discussed the problems generally related to the order of 

evaluation of the subexpressions of an expression.  

 


