

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE CODE: CIT383

COURSE TITLE: INTRODUCTION TO OBJECT-ORIENTED

PROGRAMMING

COURSE

GUIDE

CIT383 COURSE GUIDE

CIT383

INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

Course Team O. R. Vincent (Writer) - UNAAB

A. A. Afolorunso (Editor) - NOUN

NATIONAL OPEN UNIVERSITY OF NIGERIA

ii

CIT383 COURSE GUIDE

National Open University of Nigeria

Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office
No. 5 Dar es Salaam Street

Off Aminu Kano Crescent

Wuse II, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published By:

National Open University of Nigeria

First Printed 2012

Reviewed and Reprinted 2020

ISBN: 978-058-694-6

All Rights Reserved

iii

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT383 COURSE GUIDE

CONTENTS PAGE

Introduction ... 1

What You Will Learn in This Course ... 2

Course Aims .. 2

Course Objectives .. 2
Working through This Course ... 3

Course Materials .. 3

Study Units .. 3

Textbooks and References…... 4

Assignment File ... 7

Presentation Schedule .. 7

Assessment .. 7

Tutor-Marked Assignment (TMA) .. 8

Final Examination and Grading .. 8

Course Marking Scheme ... 9

Course Overview ... 9

How to Get the Most from This Course ... 10

Facilitators/Tutors and Tutorials .. 11

Summary ... 12

iv

Introduction

CIT383 – Introduction to object-oriented programming is a two- credit

unit course consisting of 15 units. The course presents background

concepts of objects and describes a widely used programming

methodology in object-oriented design (OOD). In OOD, the first step in

the problem solving process is to identify the components called objects,

which form the basis of the solutions and determine how these objects

interact with one another.

This course is divided into three modules. Module 1 introduces the basic

concept of object-oriented programming; discusses objects and classes

as the basis for OOD. The module also describes encapsulation,

abstraction, message passing and introduces composition, inheritance

and polymorphism.

Using Java programming language- one of the object-oriented

programming languages, module 2 deals with creating a simple class

and addressing its properties. Constructors and destructors are discussed

in details with concrete examples. Another concept discussed in the

module is the static behaviour of classes. Inheritance and polymorphism

are addressed in details with examples and possible output.

In module 3, units 1 and 2 are discussed using Java while with C sharp

is used in units 3-5. This is done because Java does not support operator

overloading. Overloading is discussed in details. Some types of

overloading discussed are: method overloading, constructor overloading,

basic operators overloading. Others include overloading true and false,

logical operator overloading indexers.

This course is aimed at enhancing your former knowledge in

programming by introducing objects to improve your knowledge in

writing program through possible use of objects and classes. By the end

of this course, you should be able to solve any programming problem by

dividing some into modules. You should also be able to create

constructor and destructors and be able to analyse a problem by writing

its main class using any object-oriented language.

This Course Guide gives you a brief overview of the course content,

course duration, and course materials.

Some of the concepts treated in the course require you to have some

basic background on some topics in computer science, especially

programming course. There is the need to have a fore-knowledge of

programming syntax. Therefore, you are advised to read through further

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

ii

reading to enhance the knowledge you will acquire from this course

material.

What You Will Learn in This Course

The main purpose of this course is to introduce you to the concepts of

object-oriented programming by using any object-oriented programming

language. This will be achieved through the following:

Course Aims

 Introduce the basic concepts of object-oriented programming

(OOP).

 Discuss objects and classes in details and expose their functions

in OOP.

 Create classes and set its properties in OOP.

 Discuss the relationship that exists between constructors and

destructors.

 Expose the relationships of composition, inheritance and

polymorphism in OOP.

 Introduce modular programming and discuss how to divide a

program into modules.

 Discuss in details overloading focussing on the different type of

overloading.

 Analyse static methods and fields associated with an entire class

rather than specific instances of the class.

 Learn how to create a class that inherits fields and methods from

another class.

 Learn how the object of a class can reference members of another

class (composition).

Course Objectives

In order to ensure that this course achieves its aims, some general

objectives have been set though, every unit of this course has some set

objectives. By the end of every unit, you may need to check the

objectives to ensure that you have properly understood the topic treated.

After studying through the course, you should be able to:

 define a class and objects

 create a simple class

 explain the meaning of constructors and destructors

 discuss when a class could become static

 relate inheritance to polymorphism

 create false and true overloading

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

iii

 describe the function of modular programming

 have a good knowledge about composition

 describe abstraction

 differentiate between instance variables of a class and local

variables of a method

 explain the concept of object initialisation

 create your own constructor

 differentiate between constructors and methods

 create multiple constructors in a class and use them as applicable

 explain how static methods and fields are associated with an

entire class rather than specific instances of the class.

Working through This Course

In order to have a proper understanding of the course units, you will

need to study and understand the content, practise after reading through

examples given. You should also learn to write your own program using

the basic concepts treated in this course which can be implemented

using any programming language of your choice.

This course is designed to cover approximately 16 weeks, and it will

require a thorough understanding of the concepts. You should do the

exercises in the Tutor-Marked Assignments and submit to your tutors.

Course Materials

These include:

1. Course Guide

2. Study Units

3. Recommended Texts

4. A file for your assignments and records to monitor your progress.

Study Units

There are 15 study units in this course:

Module 1 Basic Concepts of Object-Oriented Programming

Unit 1 Introduction to Classes and Objects

Unit 2 Passing Message and Encapsulation

Unit 3 Inheritance

Unit 4 Polymorphism and Modulation

Unit 5 Composition and Abstraction

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

iv

Module 2 Object-Oriented Programming Properties Using any

Programming Language

Unit 1 Classes and Objects Properties

Unit 2 Constructors and Destructors

Unit 3 Static Behaviours

Unit 4 Inheritance and Composition

Unit 5 Polymorphism

Module 3 Overloading

Unit 1 Methods and Method Overloading

Unit 2 Basic Operators Overloading

Unit 3 Logical Operator Overloading

Unit 4 Overloading True and False

Unit 5 Conversion Operator Overloading and Indexers

Textbooks and References

Bertrand Meyer Object-Oriented Software Construction (Book/CD-

ROM) (2nd ed.).

Bill Venners (2001). ―Objects and Java: Building Object-Oriented,

Multi-Threaded Applications with Java‖.

Bill Venners (2001). ―Objects and Java: Building Object-Oriented,

Multi-Threaded Applications with Java‖.

Bjarne Stroustrup (1987). What is "Object-Oriented Programming"?

Proceedings ECOOP '87, LNCS, Vol. 276, pp. 51-70, Springer-

Verlag.

Brad A. Myers, Dario A. Giuse & Brad Vander Zanden (1992).

Declarative Programming in a Prototype-Instance System:

Object-Oriented Programming Without Writing Methods,

Proceedings OOPSLA '92, ACM SIGPLAN Notices, Vol. 27, pp.

184-200.

Brad J. Cox (1984). ―Message/Object Programming: An Evolutionary

Change in Programming Technology, IEEE Software, 1(1).

Breu. R. (1991). Algebraic Specification Techniques in Object-Oriented

Programming Environments, LNCS, Vol. 562, Springer-Verlag.

Cannon, H.I. (1982). Flavors: A Non-Hierarchical Approach to Object-

Oriented Programming.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

v

Conrad Bock & James Odell (1994). A Foundation for Composition,

Journal of Object-Oriented Programming, 7(6).

Cormen, T. H.; Leiserson, C. F.; Rivest, R. L. & Stein, C. (2001).

Introduction to Algorithms (2nd ed.). Cambridge: M/T Press.

David Walker (1990). π-calculus Semantics of Object-Oriented

Programming Languages, ECS-LFCS-90-122.

Denis Caromel (1990). ―Programming Abstractions for Concurrent

Programming, Pacific '90, pp. 245-253.

Dijkstra, E.W. (1972). Notes on Structured Programming-Structured

Programming, pp. 1-82, Academic Press, Inc.

Giuseppe Castagna (1997). Object-Oriented Programming: A Unified

Foundation, Birkhaeuser.

Gregory R. Andrews (1991). Concurrent Programming — Principles

and Practice. The Benjamin Cummings Publishing Co. Inc.

Günther Blaschek (1991). Type-Safe Object-Oriented Programming

with Prototypes- The Concepts of Omega Structured

Programming, Vol. 12, pp. 217-225, Springer-Verlag.

Henry Lieberman (1987). Concurrent Object-Oriented Programming in

Act 1-Object-Oriented Concurrent Programming, pp. 9-36, MIT

Press.

Huet, G. (ed.) (1990). Logical Foundations of Functional Programming,

Addison Wesley.

Ian Craig (2000). The Interpretation of Object-Oriented Programming

Languages. Springer-Verlag.

Jaffar, J. & Maher, M. (1994). ―Constraint Logic Programming: A

Survey. The Journal of Logic Programming, Number 19, 20, pp.

503-581.

James O. Coplien (1995). Advanced C++ Programming Styles: Using

C++ as a Higher-Level Language.

James W. Cooper , Principles of Object-Oriented Programming in Java

1.1: The Practical Guide to Effective, Efficient Program Design.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

vi

John R. Koza (1992). Genetic programming: On the Programming of

Computers by Natural Selection, MIT Press.

Ken Arnold & James Gosling (1996). The Java Programming Language.

Addison Wesley.

Malik, D.S. (2006). Java Programming: From Problem Analysis to

Design, (2nd ed.).

Murray, H. J. R. (1902)."The Knight's Tour, Ancient and Oriental."

British Chess Magazine, pp. 1-7.

Per Brinch, Hansen (1972). Structured Multi-Programming, CACM,

15(7), pp. 574-578.

Philip Wadler (1995). Monads for Functional programming: Advanced

Functional Programming, LNCS, Vol. 925, Springer-Verlag.

Philippe Mougin & Stéphane Ducasse (2003). OOPAL: Integrating

Array Programming in Object-Oriented Programming,

Proceedings of 17th International Conference on Object-Oriented

Programming Systems, Languages and Applications, pp. 65-77.

Reiss, S.P. (1987). An Object-Oriented Framework for Conceptual

Programming Research Directions in Object-Oriented

Programming, pp. 189-218, MIT Press.

Satoshi Matsuoka & Akinori Yonezawa (1993). Analysis of Inheritance

Anomaly in Object-Oriented Concurrent Programming

Languages, Research Directions in Concurrent Object-Oriented

Programming, pp. 107-150, MIT Press.

Sergey, Dimitriev (2004). ―Language Oriented Programming: The Next

Programming Paradigm, Online Magazine, 1(1).

Soren Brandt & Ole Lehrmann Madsen (1994). Object-Oriented

Distributed Programming in BETA, Proceedings of the ECOOP

'93 Workshop on Object-Based Distributed Programming, LNCS,

Vol. 791, pp. 185-212, Springer-Verlag.

Timothy A. Budd (1991). An Introduction to Object-Oriented

Programming, Addison Wesley.

(Timothy Budd (1998). Understanding Object-Oriented Programming

with Java, Addison Wesley.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

vii

Timothy Budd (2000). Understanding Object-Oriented Programming

with Java Updated Edition, Addison Wesley.

Tom Cargill (1992). C++ Programming Style, Addison Wesley.

Assignment File

These are of two types: the self-assessment exercises and the Tutor-

Marked Assignments. The self-assessment exercises will enable you

monitor your performance by yourself, while the Tutor-Marked

Assignment is a supervised assignment. The assignments take a certain

percentage of your total score in this course. The Tutor-Marked

Assignments will be assessed by your tutor within a specified period. At

the end of the course, the examination will test your understanding as

regards the concept and principle of the subject matter. This course

includes 15 Tutor-Marked Assignments and each must be done and

submitted accordingly. Your best scores however, will be recorded for

you. Be sure to send these assignments to your tutor before the deadline

to avoid loss of marks.

Presentation Schedule

The Presentation Schedule included in your course materials gives you

the important dates for the completion of Tutor- Marked Assignments

and attending tutorials. Remember, you are required to submit all your

assignments by the due date. You should guard against lagging behind

in your work.

Assessment

There are two aspects to the assessment of the course. First are the

Tutor- Marked Assignments; second, is a written examination.

In order to solve the problems in the Tutor-Marked Assignment and also

pass the examination, you are expected to apply knowledge acquired

during this course. The assignments must be submitted to your tutor for

formal assessment in accordance with the deadlines stated in the

Assignment File. The work you submit to your tutor for assessment will

count for 30% of your total course mark.

At the end of the course, you will need to sit for a final three-hour

examination. This will also count for 70% of your total course mark.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

viii

Tutor -Marked Assignment (TMA)

There are 15 Tutor-Marked Assignments in this course. You need to

submit all the assignments. The total marks for the best four (4)

assignments will be 30% of your total course mark.

Assignment questions for the units in this course are contained in the

Assignment File. You should be able to complete your assignments

from the information and materials contained in your set textbooks,

reading and study units. However, you may wish to use other references

to broaden your viewpoint and provide a deeper understanding of the

subject.

After completing the assignment, you should send it together with the

form to your tutor. Make sure that each assignment reaches your tutor

on or before the deadline given. If, however, you cannot complete your

work on time, contact your tutor before the assignment is done to

discuss the possibility of an extension.

Final Examination and Grading

The final examination for the course will carry 70% percentage of the

total marks available for this course. The examination will cover every

aspect of the course, so you are advised to revise all your corrected

assignments before the examination.

This course endows you with the status of a teacher and that of a learner.

This means that you teach yourself and that you learn, as your learning

capabilities would allow. It also means that you are in a better position

to determine and to ascertain the what, the how, and the when of your

learning. No teacher imposes any method of learning on you.

The course units are similarly designed with the introduction following

the table of contents, then a set of objectives and then the dialogue and

so on.

The objectives guide you as you go through the units to ascertain your

knowledge of the required terms and expressions.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

ix

Course Marking Scheme

This table shows how the actual course marking is broken down.

Table 1: Course Marking Scheme

Assessment Marks

Assignment Four assignments, best three marks of the
four count at 30% of course marks

Final Examination 70% of overall course marks

Total 100% of course marks

Course Overview

Unit Title of Work Weeks

Activity

Assessment

(End of Unit)
 Course Guide Week 1

Module 1 Basic Concepts of Object-Oriented Programming

1 Introduction to Object and Classes Week 1 Assignment 1

2 Message Passing and Encapsulation Week 2 Assignment 2

3 Inheritance Week 3 Assignment 3

4 Polymorphism and Modulation Week 4 Assignment 4

5 Composition and Abstraction Week 5 Assignment 5

Module 2 Object-Oriented Programming Properties Using any

Programming Language

1 Classes and Objects Week 6 Assignment 6

2 Constructors and Destructors Week 7 Assignment 7

3 Static Behaviours Week 8 Assignment 8

4 Inheritance and Composition Week 9 Assignment 9

5 Polymorphism Week 10 Assignment 10

Module 3 Overloading

1 Methods and Method Overloading Week 11 Assignment 11

2 Basic Operators Overloading Week 12 Assignment 12

3 Logical Operator Overloading Week 13 Assignment 13

4 Overloading True and False Week 14 Assignment 14

5 Conversion Operator Overloading and
Indexers

Week 15 Assignment 15

 Revision Week 16

 Examination Week 17

 Total 17 weeks

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

x

How to Get the Most from this Course

In distance learning the study units replace the university lecturer. This

is one of the great advantages of distance learning; you can read and

work through specially designed study materials at your own pace, and

at a time and place that suit you best. Think of it as reading the lecture

instead of listening to a lecturer. In the same way that a lecturer might

set you some reading to do, the study units tell you when to read your

set books or other material. Just as a lecturer might give you an in-class

exercise, your study units provide exercises for you to do at appropriate

points.

Each of the study units follows a common format. The first item is an

introduction to the subject matter of the unit and how a particular unit is

integrated with the other units and the course as a whole. Next is a set

of learning objectives. These objectives enable you know what you

should be able to do by the time you have completed the unit. You

should use these objectives to guide your study. When you have

finished the units you must go back and check whether you have

achieved the objectives. If you make a habit of doing this you will

significantly improve your chances of passing the course.

Remember that your tutor‘s job is to assist you. When you need help,

don‘t hesitate to call and ask your tutor to provide it.

1. Read this Course Guide thoroughly.
2. Organise a study schedule. Refer to the ‗Course Overview‘ for

more details. Note the time you are expected to spend on each

unit and how the assignments relate to the units. Whatever

method you choose to use, you should decide on it and write in

your own dates for working on each unit.

3. Once you have created your own study schedule, do everything

you can to stick to it. The major reason that students fail is that

they lag behind in their course work.

4. Turn to Unit 1 and read the introduction and the objectives for the

unit.

5. Assemble the study materials. Information about what you need

for a unit is given in the ‗Overview‘ at the beginning of each unit.

You will always need both the study unit you are working on and

one of your set of books on your desk at the same time.

6. Work through the unit. The content of the unit itself has been

arranged to provide a sequence for you to follow. As you work

through the unit you will be instructed to read sections from your

set books or other articles. Use the unit to guide your reading.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

xi

7. Review the objectives for each study unit to confirm that you

have achieved them. If you feel unsure about any of the

objectives, review the study material or consult your tutor.

8. When you are confident that you have achieved a unit‘s

objectives, you can then start on the next unit. Proceed unit by

unit through the course and try to pace your study so that you

keep yourself on schedule.

9. When you have submitted an assignment to your tutor for

marking, do not wait for its return before starting on the next unit.

Keep to your schedule. When the assignment is returned, pay

particular attention to your tutor‘s comments, both on the tutor-

marked assignment form and also written on the assignment.

Consult your tutor as soon as possible if you have any questions

or problems.

10. After completing the last unit, review the course and prepare

yourself for the final examination. Check that you have achieved

the unit objectives (listed at the beginning of each unit) and the

course objectives (listed in this Course Guide).

Facilitators/Tutors and Tutorials

There are 15 hours of tutorials provided in support of this course. You

will be notified of the dates, times and location of these tutorials,

together with the name and phone number of your tutor, as soon as you

are allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close

watch on your progress and on any difficulties you might encounter and

provide assistance to you during the course. You must mail or submit

your Tutor-Marked Assignments to your tutor well before the due date

(at least two working days are required). They will be marked by your

tutor and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, or e-mail if you need

help. The following might be circumstances in which you would find

help necessary. Contact your tutor if:

 you do not understand any part of the study units or the assigned

readings,

 you have difficulty with the self-tests or exercises,

 you have a question or problem with an assignment, with your

tutor‘s comments on an assignment or with the grading of an

assignment.

You should try your best to attend the tutorials. This is the only chance

to have face to face contact with your tutor and to ask questions which

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

xii

are answered instantly. You can raise any problem encountered in the

course of your study. To gain the maximum benefit from course

tutorials, prepare a question list before attending them. You will learn a

lot from participating in discussions actively.

Summary

Introduction to object-oriented programming will introduce you to the

concepts of objects-data structures consisting of data fields and methods

and their interactions to design applications and computer programs.

The methodology focuses on data rather than processes, with programs

composed of self-sufficient modules, each containing all information

needed to manipulate its own data structure. In OOP, each object is

capable of receiving messages, processing data, and sending messages to

other objects and can be viewed as an independent 'machine' with a

distinct role or responsibility. Concrete examples with illustrations to

help you get the best from the course are given.

Therefore, I wish you all the best you can get with the hope that you will

understand and find the course interesting.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

xi

ii

Course Code CIT383

Course Title Introduction to Object-Oriented Programming

Course Team O. R. Vincent (Writer) - UNAAB

B. A. Afolorunso (Editor) - NOUN

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

xiv

National Open University of Nigeria

Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

No. 5 Dar es Salaam Street

Off Aminu Kano Crescent

Wuse II, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published By:

National Open University of Nigeria

First Printed 2012

ISBN: 978-058-694-6

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

xv

CONTENTS PAGE

Module 1 Basic Concepts of Object-Oriented Programming… 1

Unit 1 Introduction to Classes and Objects…………….…… 1

Unit 2 Passing Message and Encapsulation………...….……. 14

Unit 3 Inheritance…………………………………….…..….. 18

Unit 4 Polymorphism and Modulation………………...……. 28

Unit 5 Composition and Abstraction…………………...…… 35

Module 2 Object-Oriented Programming Properties Using

any Programming Language………………………..

45

Unit 1 Classes and Objects Properties……………………… 45

Unit 2 Constructors and Destructors……………………….. 58

Unit 3 Static Behaviours……………………………….……. 71

Unit 4 Inheritance and Composition……………………….. 84

Unit 5 Polymorphism………………………………….…….. 97

Module 3 Overloading ..115

Unit 1 Methods and Method Overloading 115

Unit 2 Basic Operators Overloading .. 134

Unit 3 Logical Operator Overloading....................................... 143

Unit 4 Overloading True and False .. 151

Unit 5 Conversion Operator Overloading and Indexers 160

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

16

MODULE 1 BASIC CONCEPTS OF OBJECT-

ORIENTED PROGRAMMING

Unit 1 Introduction to Classes and Objects

Unit 2 Passing Message and Encapsulation

Unit 3 Inheritance

Unit 4 Polymorphism and Modulation

Unit 5 Composition and Abstraction

UNIT 1 INTRODUCTION TO CLASSES AND OBJECTS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Objects and Classes
3.1.1 Objects

3.1.1.1 Object Creation and Destruction

3.1.1.2 Accessing Objects

3.1.2 Classes

3.1.2.1 Accessing Class Members

3.1.2.2 Class Specification

3.1.2.3 Properties
3.1.2.4 Class Methods

3.1.2.4.1 Types of Methods

3.1.2.5 Inner Classes

4.0 Conclusion

5.0 Summary
6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Object-oriented programming (OOP) is a programming paradigm that

uses ―objects‖ – data structures consisting of data fields and methods

and their interactions to design applications and computer programmes.

Programming techniques may include features such as information

hiding, data abstraction, encapsulation, modularity, polymorphism, and

inheritance. It was not commonly used in mainstream software

application development until the early 1990s. Many modern

programming languages now support OOP.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

17

Object-oriented programming has roots that can be traced to the 1960s.

As hardware and software became increasingly complex, quality was

often compromised. Researchers studied ways to maintain software

quality and developed object-oriented programming in part to address

common problems by strongly emphasising discrete, reusable units of

programming logic. The methodology focuses on data rather than

processes, with programmes composed of self-sufficient modules

(objects) each containing all the information needed to manipulate its

own data structure. This is in contrast to the existing modular

programming which had been dominant for many years that focused on

the function of a module, rather than specifically the data, but equally

provided for code reuse, and self-sufficient reusable units of

programming logic, enabling collaboration through the use of linked

modules (subroutines). This more conventional approach, which still

persists, tends to consider data and behaviour separately.

An object-oriented program may thus be viewed as a collection of

cooperating objects, as opposed to the conventional model, in which a

program is seen as a list of tasks (subroutines) to perform. In OOP, each

object is capable of receiving messages, processing data, and sending

messages to other objects and can be viewed as an independent

‗machine‘ with a distinct role or responsibility. The actions (or

―operators‖) on these objects are closely associated with the object. For

example, the data structures tend to carry their own operators around

with them (or at least ―inherit‖ them from a similar object or class).

The category of those programming languages that support the object-

oriented programming paradigm are the main object-oriented

programming languages which are: Ada programming language, C

Sharp programming language family, C++, Fortran, Java programming

language, Smalltalk programming language family.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 define the term classes

 list object-oriented programming concepts

 describe objects

 enumerate how to access a class member.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

18

3.0 MAIN CONTENT

3.1 Objects and Classes

3.1.1 Objects

Objects are keys to understanding object-oriented technology. Real-

world objects share two characteristics: They all have state and

behaviour. Software objects are conceptually similar to real-world

objects: they too consist of state and related behaviour. An object stores

its state in fields (variables in some programming languages) and

exposes its behaviour through methods (functions in some programming

languages). Methods operate on an object's internal state and serve as

the primary mechanism for object-to-object communication. Hiding

internal state and requiring all interaction to be performed through an

object's methods is known as data encapsulation — a fundamental

principle of object-oriented programming.

By attributing state (current speed, and current gear) and providing

methods for changing that state, the object remains in control of how the

outside world is allowed to use it. For example, if the bicycle only has 6

gears, a method to change gears could reject any value that is less than 1

or greater than 6.

Bundling code into individual software objects provides a number of

benefits, including:

 Modularity: The source code for an object can be written and

maintained independently of the source code for other objects.

Once created, an object can be easily passed around inside the

system.

 Information-hiding: By interacting only with an object‘s

methods, the details of its internal implementation remain hidden

from the outside world.

 Code re-use: If an object already exists (perhaps written by

another software developer), you can use that object in your

program. This allows specialists to implement/test/debug

complex, task-specific objects, which you can then trust to run in

your own code.

 Pluggability and debugging ease: If a particular object turns out

to be problematic, you can simply remove it from your

application and plug in a different object as its replacement. This

is analogous to fixing mechanical problems in the real world. If a

bolt breaks, you replace it, not the entire machine.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

19

3.1.1.1 Object Creation and Destruction

To create an object of a particular class, use the new operator. For

example, now that there is a constructor for the Box class you can make

specific instances or discrete copies of a box by using the assignment

operator and the new memory allocation operator as in:

 Box box_1=new Box (3, 4, 5) ;

Once a class has been specified, a data type exists with the same name.

You do not need to destroy or remove an object when it is no longer

needed. Java automatically flags unused objects and applies garbage

collection when appropriate. However you may occasionally need to use

finalise() method to insure that a non-Java resource such as a file handle

or a window font character is released first. The general form is:

void finalise ()

{

/ / cleanup code goes here

Super.finalise () / / parent too!

}

3.1.1.2 Accessing Objects

Object variables and methods are accessed using dot notation. Use

instance_name.variable or instance_name.method_name(args) to

reference instance objects declared with new. Use class_name.variable

or class_name.method_name(args) to reference static variables or

methods.

Employee e=new Employee();
e.name="Al Bundy"; e.setSalary(1000.00); // refs instance

Employee.getCount(); // references static class variable

3.1.2 Classes

As discuss earlier, the first step in problem-solving with object-oriented

design (OOD) is to identify the components called objects. An object

combines data and the operations on that data in a single unit; the

mechanism in Java that allows one to combine data and the operations

on that data in a single unit is called a class.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

20

A class is a collection of a fixed number of components. The

components of a class are called the members of the class. The general

syntax for defining a class is:

modifier (s) class ClassIdentifier modifier (s)

{

classMembers
}

Where modifier(s) are used to alter the behaviour of the class and,

usually, class members consist of named constants, variable

declarations, and/ or methods. That is, a member of a class can be either

a variable (to store data) or a method. Some of the modifiers that are

used are public, private, and static.

Note:

 If a member of a class is a named constant, you declare it just like

any other named constant.

 If a member of a class is a variable, you declare it just like any

other variable.

 If a member of a class is a method, you define it just like any

other method

 If a member of a class is a method, it can (directly) access any

member of the class- data members and methods. Therefore,

when you write a definition of a method, you can directly access

any data member of the class (without passing it as a parameter).

In Java, class is a reserved word, and it defines only a data type; no

memory is allocated. It announces the declaration of a class. The data

members of a class are also called fields. The members of a class are

usually classified into three categories: private, public and protected.

These will be discussed later.

In the real world, one often finds out that many individual objects are all

of the same kind. There may be thousands of other bicycles in existence,

all of the same make and model. Each bicycle was built from the same

set of blueprints and therefore contains the same components. In object-

oriented terms, we say that your bicycle is an instance of the class of

objects known as bicycles. A class is the blueprint from which

individual objects are created. The following class is one possible

implementation of a bicycle:

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

21

class Bicycle {

int cadence = 0;

int speed = 0;

int gear = 1;

void changeCadence(int newValue) {

cadence = newValue;

}

void changeGear(int newValue) {

gear = newValue;

}

void speedUp(int increment) {

speed = speed + increment;

}

void applyBrakes(int decrement) {

speed = speed - decrement;

}

void printStates() {
System.out.println("cadence:"+cadence+" speed:"+speed+"

gear:"+gear);

}

}

The syntax of the Java programming language will look new to you, but

the design of this class is based on the previous discussion of bicycle

objects. The field‘s cadence, speed, and gear represent the object's state,

and the methods (changeCadence, changeGear, speedUp etc.) define its

interaction with the outside world. You may have noticed that the

Bicycle class does not contain a main method. That's because it's not a

complete application; it's just the blueprint for bicycles that might be

used in an application. The responsibility of creating and using new

Bicycle objects belongs to some other class in your application. The

next example is a BicycleDemo class that creates two separate Bicycle

objects and invokes their methods:

class BicycleDemo {

public static void main(String[] args) {

// Create two different Bicycle objects

Bicycle bike1 = new Bicycle();

Bicycle bike2 = new Bicycle();

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

22

// Invoke methods on those objects

bike1.changeCadence(50);

bike1.speedUp(10);

bike1.changeGear(2);

bike1.printStates();

bike2.changeCadence(50);

bike2.speedUp(10);

bike2.changeGear(2);

bike2.changeCadence(40);

bike2.speedUp(10);

bike2.changeGear(3);

bike2.printStates();

}

}

The output of this test prints the ending pedal cadence, speed, and gear

for the two bicycles:

 cadence:50 speed:10 gear:2

 cadence:40 speed:20 gear:3

3.1.2.1 Accessing Class Members

Once an object of a class is created, the object can access the members

of the class. The general syntax for an object to access a data member or

a method is:

referenceVariableName.memberName

The class members that the class object can access depend on where the

object is created.

 If the object is created in the definition of a method of the class,

then the object can access both the public and private members.

 If the object is created elsewhere (for example, in a user‘s

program) then the object can access only the public members of

the class.

3.1.2.2 Class Specification

A class specifies the properties (data) and methods (actions) that objects

can work with. It is a template or prototype for each of the many objects

made to the class design. The syntax for a class is:

[“public”] [“abstract”| “final”] “class” Class_name

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

23

[“extends” object_name] [“implements” interface_name]

“{”

// properties declarations

// bahaviour declarations

“}”

The first optional group indicates the visibility (public) or scope of

accessibility from other objects. The default is package or visible within

the current package only. The second optional group indicates the

capability of a class to be inherited or extended by other classes.

Abstract classes must be extended and final classes can never be

extended by inheritance. The default indicates that the class may or may

not be extended at the programmers‘ discretion.

Class_name has initial letter capitalised by Java convention.

The third option of extends is described in the tutorial on inheritance.

The fourth option of implements is described in the tutorial on

interfaces. A simple example of a class specification is a box. The box

has length, width and height properties as well as a method for

displaying its volume.

public class box

{

// what are the properties or fields

private int length, width, height;

// what are the actions or methods

public void setLenght (int p) {length=p;}

public void setWidth (int p) {width=p;}

public void setHeight (int p) {height=p;}

public int displayVolume()

{System.out.println(length*width*height);}

}

Note: There is no main method in a class defining template! Class

names begin with a capital. Use lowercase for all other names. It is a

good programming practice to write separate files for the class templates

and the driver or main user program. This allows separate compilation

as well as class reuse by other driver programmes. A class file can

contain more than one associated class but normally its filename is that

of the first defined file. A driver program is named the same as the class

that contains the main(). Its file may contain other classes as well.

3.1.2.3 Properties

Properties are sometimes called field variables or states. To declare a

property, use the following syntax:

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

24

[“public” | “private” | “protected”] [“final”]

[“static” | “transient” | “volatile”]

data_type var_name [=var_initialiser] ”;”

The items in the first optional group indicate the visibility or

accessibility from other objects; public means visible everywhere

(global); private indicates accessible only to this class and nested

classes; protected means visible to this class or inherited (extended)

classes only; final indicates continuous retention and unchangeable after

initial assignment (it is read only or constant). The default is friendly or

visible within the current package only. The third optional group

indicates how long a value is retained in the variable. Static indicates

that the value is shared by all members of the class and exists for all

runtime. Static properties can be referenced without creating an instance

of the class. Transient prevents the variable from being transferred

during a serial operation such as file i/o. Volatile is used in multi-

threading to prevent overwrite issues. Many programmers make all

properties private and force access through public accessors and

mutators which can include validation steps.

3.1.2.4 Class Methods

Class behaviour is represented in Java by methods. To declare a method,

use the following syntax:

[“public” | “private” | “protected”] [“final”]

[“static” | “transient” | “volatile”]

return_data_type method_name ”(” parameter_list “)”

“{”

/ / some defining actions

“}”

Accessibility keywords are the same as for properties. The default

(omitted) is package (friendly) or visible within the current package

only. Static methods are shared by all members and exist for all runtime.

Static methods can be referenced without creating an instance of the

class. Abstract methods must be redefined on inheritance. Native

methods are written in C but accessible from Java. The return data type

defines the type of value that the calling routine receives from the object

(the reply message in object terminology). It can be any of the primitive

types or the reserved word void (default value) if no message is to be

returned. The statement returns varName; is used to declare the value to

be returned to the calling routine.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

25

The parameter list can contain from zero to many entries of datatype

varName pairs. Entries are separated by commas. Parameters are passed

by value, thus upholding the encapsulation principle by not allowing

unexpected changes or side effects. Object references (such as arrays)

can also be passed. The projects page has some simple problems based

on array passing. Some examples of method header parameter lists are:

 public static void example1 () {}

 public static int add2 (int x) {x+=2; return x;}

 public static double example3 (int x, double d) {return x*d;}

 public static double example4 (int x, int y, Boolean flagger) {}

 public static void example5 (int arr[]) {} / / note: this is an

object

3.1.2.4.1Types of Methods

Constructor methods allow class objects to be created with fields

initialised to values as determined by the methods' parameters. This

allows objects to start with values appropriate to use (salary set to a base

level or employeeNumber set to an incrementing value to guarantee

uniqueness). For our simple box class:

public Box () / / default box is point

{ lengtht=0; width=0; height; }

public Box{int 1,int w, int h) / / allows giving initial size

{ length=1; width=w; height=h; }

Note: That there is no class keyword or return data type keyword. Also

the method name is the same as the class name. This is what marks the

fragment as a constructor method. If no constructor method is defined

for a class, a default constructor is automatically used to initialise all

fields to 0, false or unicode(0) as appropriate to the data type. The best

programming device is to declare the constructor with no parameters as

private and use it to initialise all properties. Then other constructors can

first call it using this() and then do their own specific property

validations/initialisation.

Accessor (or observer) methods read property (i.e. field variable) values

and are conventionally named getFoobar() or whatever the property is

called while Mutator (or transformer) methods set property values and

are often named setFoobar() etc. Mutators can be used to ensure that the

property's value is valid in both range and type.

It is a good programming practice to make each property in a class

private and include accessor and mutator methods for them. This is a

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

26

good example of object encapsulation. The exceptions to writing

accessor/mutator methods for each property is for those that are used

only within the class itself or for properties that are set in more complex

ways. Helper methods are those routines that are useful within the class

methods but not outside the class. They can help in code modularisation.

Normally they are assigned private access to restrict use. Recursive

methods are methods that are defined in terms of it. A classic recursion

is factorials where n factorial is the product of positive integer n and all

the products before it down to one. In Java this could be programmed as:

Class Factorial

{

Int factorial (int n)

{

If (n= =1) { return 1};

Return (n * factorial (n-1)) ;

}

}

Note: This short method is not very well written as negative and floating

calling parameters are illegal in factorials and will cause problems in

terminating the loop. Bad input should always be trapped.

3.1.2.5 Inner Classes

Inner classes are classes nested inside another class. They have access to

the outer class fields and methods even if marked as private. Inner

classes are used primarily for data structures, helper classes, and event

handlers. A brief example of how an inner class can be used as a data

structure is:

public class Main2

{

class Person
{

// inner class defines the required structure

String first;

String last;

}

// outer class creates array of person objects with specific properties
// the objects can be referenced by personArray[1].last for example

Person personArray[]={new Person(), new Person(), new Person()};

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

27

4.0 CONCLUSION

A class normally consists of one or more variables that represent the

attributes of a particular object of a class. These variables are called

instance variables. Methods within the class manipulate these variables.

Most instance variable declarations are preceded with the private access

modifier. Variables or methods declared with access modifier private

are accessible only to methods of the class in which they are declared.

Classes often provide public methods that allow clients of the class to

set or get private instance variables. The names of these methods need

not begin with set or get, but this naming convention is highly

recommended in Java.

5.0 SUMMARY

In this unit, the following have been discussed:

 Methods operate on an object's internal state and serve as the

primary mechanism for object-to-object communication

 A class is a collection of a fixed number of components. The

components of a class are called the members of the class

 In Java, class is a reserved word, and it defines only a data type;

no memory is allocated. It announces the declaration of a class.

The data members of a class are also called fields. The members

of a class are usually classified into three categories: private,

public and protected

 Recursive methods are methods that are defined in terms of it. A

classic recursion is factorials where n factorial is the product of

positive integer n and all the products before it down to one.

6.0 TUTOR-MARKED ASSIGNMENT

Circle is a class with property radius and methods setRadius(),

getRadius(), calcDiameter(), calcArea(). Use double precision for

everything. Since this is such a short program, you may want to use only

one file say MakeCircle.java that contains both the main (or driver) class

and the Circle class. The driver creates an instance of the Circle class

and then displays the diameter and area. Test with radius=3.0. The

diameter should read as 6.0 and the area as 28.25999. Once it is

working, see if you can factor it into two files (Circle and MakeCircle)

and compile separately, (the Circle class file first). As an enhancement,

you may want to add a command line interpreter to get the radius for the

driver to use.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

28

7.0 REFERENCES/FURTHER READING

Bacchetta, M. et al (1998). Electronic Commerce and the Role of the

Bill Venners (2001). ―Objects and Java: Building Object-

Oriented, Multi-Threaded Applications with Java‖.

Bertrand Meyer (2002). Object-Oriented Software Construction (2nd

ed.).

James W. Cooper (nd). Principles of Object-Oriented Programming in

Java 1.1: The Practical Guide to Effective, Efficient Program

Design.

Malik, D.S. (2006). Java Programming: From Problem Analysis to

Design (2
nd

 ed.).

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

29

UNIT 2 PASSING MESSAGE AND ENCAPSULATION

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 The Model

3.2 Influences on other Programming Models

3.3 Encapsulation

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Message passing in computer science, is a form of communication used

in parallel computing, object-oriented programming, and inter-process

communication. Message passing systems have been called ―shared

nothing‖ systems because the message passing abstraction hides

underlying state changes that may be used in the implementation of

sending messages.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 outline what message passing entails

 define encapsulation

 describe the concept of encapsulation

 list the uses of message passing.

3.0 MAIN CONTENT

3.1 The Model

Message passing model based programming languages typically define

messaging as the (usually asynchronous) sending (usually by copy) of a

data item to a communication endpoint (Actor, process, thread, socket,

etc.). Such messaging is used in Web Services by SOAP. This concept is

the higher-level version of a datagram, except that messages can be

larger than a packet and can optionally be made reliable, durable, secure,

and/or transacted.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

30

Messages are also commonly used in the same sense as a means of inter-

process communication; the other common technique being streams or

pipes, in which data are sent as a sequence of elementary data items

instead (the higher-level version of a virtual circuit). Examples of

Message passing styles are:

a. Actor model implementation

b. Amorphous computing

c. Antiobjects

d. Flow-based programming
e. SOAP (protocol)

3.2 Influences on other Programming Models

In the terminology of some object-oriented programming languages, a

message is the single means to pass control to an object. If the object

'responds' to the message, it has a method for that message. In pure

object-oriented programming, message passing is performed exclusively

through a dynamic dispatch strategy. Sending the same message to an

object twice will usually result in the object applying the method twice.

Two messages are considered to be the same message type, if the name

and the arguments of the message are identical.

Objects can send messages to other objects from within their method

bodies. Message passing enables extreme late binding in systems. Alan

Kay has argued that message passing is a concept more important than

objects in his view of object-oriented programming, however people

often miss the point and place too much emphasis on objects themselves

and not enough on the messages being sent between them. The live

distributed objects programming model builds upon this observation; it

uses the concept of a distributed data flow to characterise the behaviour

of a complex distributed system in terms of message patterns, using

high-level and functional-style specifications. Some languages support

the forwarding or delegation of method invocations from one object to

another if the former has no method to handle the message, but 'knows'

another object that may have one.

3.3 Encapsulation

In OOD, objects combines data and operations on that data in a single

unit, the feature called encapsulation. The object is first identified, then

the relevant data and then the operations which are needed to

manipulate the objects.

Encapsulation is the ability of an object to be a container (or capsule) for

related properties (data variables) and methods (functions). Older

languages did not enforce any property/method relationships. This often

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

31

resulted in side effects where variables had their contents changed or

reused in unexpected ways and spaghetti code that was difficult to

unravel, understand and maintain. Encapsulation is one of the three

fundamental principles in object- oriented programming.

Data hiding is the ability of objects to shield variables from external

access. It is a useful consequence of the encapsulation principle. Those

variables marked as private can only be seen or modified through the

use of public accessor and mutator methods. This permits validity

checking at run time. Access to other variables can be allowed but with

tight control on how it is done. Methods can also be completely hidden

from external use. Those that are made visible externally can only be

called by using the object's front door (i.e. there is no ‗goto‘ branching

concept).

Encapsulation is the concept of hiding the implementation details of a

class and allowing access to the class through a public interface. For

this, there is need to declare the instance variables of the class as private

or protected. The client code should access only the public methods

rather than accessing the data directly. Also, the methods should follow

the Java Bean's naming convention of set and get. Encapsulation makes

it easy to maintain and modify code. The client code is not affected

when the internal implementation of the code changes as long as the

public method signatures are unchanged. For instance:

public class Employee

{

private float salary;

public float getSalary()

{

return salary;
}

public void setSalary(float salary)

{

this.salary = salary;

}

4.0 CONCLUSION

Message passing enables extreme late binding in systems. Message

passing is a concept more important than objects in Alan Kay‘s view of

object-oriented programming, however people often miss the point and

place too much emphasis on objects themselves and not enough on the

messages being sent between them. Encapsulation is the ability of an

object to be a container related properties and methods.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

32

5.0 SUMMARY

In this unit, we have learnt that:

 Messages are also commonly used in the same sense as a means

of inter-process communication. Examples of Message passing

styles are: Actor model implementation ; Amorphous computing;

Antiobjects; Flow-based programming; SOAP (protocol).

 Message passing is performed exclusively through a dynamic

dispatch strategy. Sending the same message to an object twice

will usually result in the object applying the method twice. Two

messages are considered to be the same message type, if the

name and the arguments of the message are identical.

 Those variables marked as private can only be seen or modified

through the use of public accessor and mutator methods. This

permits validity checking at run time

 Encapsulation makes it easy to maintain and modify code. The

client code is not affected when the internal implementation of

the code changes as long as the public method signatures are

unchanged.

6.0 TUTOR-MARKED ASSIGNMENT

1. List some examples of passing message style.

2. Write a program to explain encapsulation.

3. How does message passing affect other programming model.

7.0 REFERENCES/FURTHER READING

Bertrand Meyer, Object-Oriented Software Construction (Book/CD-

ROM) (2nd ed.).

Bill Venners (2001). ―Objects and Java: Building Object-Oriented,

Multi-Threaded Applications with Java‖.

Günther Blaschek (1991). Type-Safe Object-Oriented Programming

with Prototypes- The Concepts of Omega Structured

Programming, Vol. 12, pp. 217-225, Springer-Verlag, 1991.

James W. Cooper (nd). Principles of Object-Oriented Programming in

Java 1.1: The Practical Guide to Effective, Efficient Program

Design.

Malik, D. S. (2006). Java Programming: From Problem Analysis to

Design. (2nd ed.).

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

33

UNIT 3 INHERITANCE

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 What is Inheritance?

3.2 Building Inheritance Hierarchies

3.3 Inheriting Interface and Implementation

3.4 Hiding Fields

3.4.1 Abstract Classes and Methods

4.0 Conclusion
5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In Java, the mechanism that allows us to extend the definition of a class

without making any physical changes to the class is the principle of

inheritance. Inheritance has to do with relationship. It helps in the

creation of new classes from existing classes.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 define inheritance

 differentiate between a subclass and a super class

 outline the uses of a super class

 differentiate between inheritance and overridden.

3.0 MAIN CONTENT

3.1 What is Inheritance?

Inheritance is the capability of a class to use the properties and methods

of another class while adding its own functionality. An example of

where this could be useful is with an employee records system. One

could create a generic employee class with states and actions that are

common to all employees. Then more specific classes could be defined

for salaried, commissioned and hourly employees. The generic class is

known as the super class or base class and the specific classes as

subclasses or derived classes. The concept of inheritance greatly

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

34

enhances the ability to reuse code as well as making design a much

simpler and cleaner process.

For instance, once the problem domain is partitioned into types, one will

likely want to model relationships in which one type is a more specific

or specialised version of another. For example you may have identified

in your problem domain two types, Cup and CoffeeCup, and you want

to be able to express in your solution that a CoffeeCup is a more specific

kind of Cup. In an object-oriented design, you model this kind of

relationship between types with inheritance.

3.2 Building Inheritance Hierarchies

The relationship modeled by inheritance is often referred to as the ―is-a‖

relationship. In the case of Cup and CoffeeCup, a ―CoffeeCup is-a Cup.‖

Inheritance allows you to build hierarchies of classes, such as the one

shown in Figure 3.1. The upside-down tree structure shown in Figure 5-

1 is an example of an inheritance hierarchy displayed in UML form.

Note that the classes become increasingly more specific as you traverse

down the tree. A CoffeeCup is a more specific kind of Cup. A

CoffeeMug is a more specific kind of CoffeeCup. Note also that the is-a

relationship holds even for classes that are connected in the tree through

other classes. For instance, a CoffeeMug is not only more specific

version of a CoffeeCup, it is also a more specific version of a Cup.

Therefore, the is-a relationship exists between CoffeeMug and Cup: a

CoffeeMug is-a Cup.

Fig. 3.1: The is-a Relationship of Inheritance

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

35

When programming in Java, you express the inheritance relationship

with the extends keyword:

class Cup {

}

class CoffeeCup extends Cup {

}

class CoffeeMug extends CoffeeCup {

}

In Java terminology, a more general class in an inheritance hierarchy is

called a superclass. A more specific class is a subclass. In Figure 3.1,

Cup is a superclass of both CoffeeCup and CoffeeMug. Going in the

opposite direction, both CoffeeMug and CoffeeCup are subclasses of

Cup. When two classes are right next to each other in the inheritance

hierarchy, their relationship is said to be direct. For example Cup is a

direct superclass of CoffeeCup, and CoffeeMug is a direct subclass of

CoffeeCup.

The act of declaring a direct subclass is referred to in Java circles as

class extension. For example, a Java guru might be overheard saying,

―Class CoffeeCup extends class Cup.‖ Owing to the flexibility of the

English language, Java in-the-knows may also employ the term

―subclass‖ as a verb, as in ―Class CoffeeCup subclasses class Cup.‖ One

other way to say the same thing is, ―Class CoffeeCup descends from

class Cup.‖

An inheritance hierarchy, such as the one shown in Figure 3.1, defines a

family of types. The most general class in a family of types, the one at

the root of the inheritance hierarchy is called the base class. In Figure

3.1, the base class is Cup. Because every class defines a new type, you

can use the word ―type‖ in many places you can use ―class.‖ For

example, a base class is a base type, a subclass is a subtype, and a direct

superclass is a direct supertype. In Java, every class descends from one

common base class: Object. The declaration of class Cup above could

have been written:

class Cup extends Object { // "extends Object" is optional

}

This declaration of Cup has the same effect as the earlier one that

excluded the "extends Object" clause. If a class is declared with no

extends clause, it by default extends the Object class. (The only

exception to this rule is class Object itself, which has no superclass.)

The inheritance hierarchy of Figure 3.1 could also have shown the

Object class hovering above the Cup class, in its rightful place as the

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

36

most super of all superclasses. In this case, class Object remained

invisible, because the purpose of the figure was to focus on one

particular family of types, the Cup family.

In Java, a class can have only one direct superclass. In object-oriented

parlance, this is referred to as single inheritance. It contrasts with a

multiple inheritance, in which a class can have multiple direct

superclasses. Although Java only supports single inheritance of classes

through class extension, it supports a special variant of a multiple

inheritance through ―interface implementation.‖

3.3 Inheriting Interface and Implementation

Modeling is-a relationship is called inheritance because the subclass

inherits the interface and, by default, the implementation of the

superclass. Inheritance of interface guarantees that a subclass can accept

all the same messages as its superclass. A subclass object can, in fact, be

used anywhere a superclass object is called for. For example, a

CoffeeCup as defined in Figure 3.1 can be used anywhere a Cup is

needed. This substitutability of a subclass (a more specific type) for a

superclass (a more general type) works because the subclass accepts all

the same messages as the superclass. In a Java program, this means you

can invoke on a subclass object any method you can invoke on the

superclass object.

This is only half of the inheritance story, however, because by default, a

subclass also inherits the entire implementation of the superclass. This

means that not only does a subclass accept the same messages as its

direct superclass, but by default it behaves identically to its direct

superclass when it receives one of those messages. Yet unlike

inheritance of interface, which is certain, inheritance of implementation

is optional. For each method inherited from a superclass, a subclass may

choose to adopt the inherited implementation, or to override it. To

override a method, the subclass merely implements its own version of

the method.

Overriding methods is a primary way a subclass specialises its

behaviour with respect to its superclass. A subclass has one other way to

specialise besides overriding the implementation of methods that exist in

its direct superclass. It can also extend the superclass‘s interface by

adding new methods. This possibility will be discussed in detail later.

Suppose there is a method in class Cup with the following signature:

public void addLiquid(Liquid liq) {

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

37

The addLiquid() method could be invoked on any Cup object. Because

CoffeeCup descends from Cup, the addLiquid() method could also be

invoked on any CoffeeCup object.

If you do not explicitly define in class CoffeeCup a method with an

identical signature and return type as the addLiquid() method shown

above, your CoffeeCup class will inherit the same implementation (the

same body of code) used by superclass Cup. If, however, you do define

in CoffeeCup an addLiquid() method with the same signature and return

type, that implementation overrides the implementation that would

otherwise have been inherited by default from Cup.

When you override a method, you can make the access permission more

public, but you cannot make it less public. So far, you have only been

introduced to two access levels, public and private. There are, however,

two other access levels that sit in-between public and private, which

form the two ends of the access-level spectrum. In the case of the

addLiquid() method, because class Cup declares it with public access,

class CoffeeCup must declare it public also. If CoffeeCup attempted to

override addLiquid() with any other access level, class CoffeeCup

would not compile.

For an illustration of the difference between inheriting and overriding

the implementation of a method, see Figure 3.2. The left side of this

figure shows an example of inheriting an implementation, whereas the

right side shows an example of overriding the implementation.

The method in question is the familiar addLiquid() method. In the

superclass, Cup, a comment indicates that the code of the method, which

is not shown in the figure, will cause the liquid to swirl clockwise as it is

added to the cup. Liquid added to an instance of the CoffeeCup class

defined on the left will also swirl clockwise, because that CoffeeCup

inherits Cup's implementation of addLiquid(), which swirls clockwise.

By contrast, liquid added to an instance of the CoffeeCup class defined

on the right will swirl counterclockwise, because this CoffeeCup class

overrides Cup's implementation with one of its own. A more advanced

CoffeeCup could override addLiquid() with an implementation that first

checks to see whether the coffee cup is in the northern or southern

hemisphere of the planet, and based on that information, decide which

way to swirl.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

38

Fig.3.2: Inheriting vs. Overriding the Implementation of a Method

In addition to the bodies of public methods, the implementation of a

class includes any private methods and any fields defined in the class.

Using the official Java meaning of the term ―inherit,‖ a subclass does

not inherit private members of its superclass. It only inherits accessible

members. Well- designed classes most often refuse other classes direct

access to their non-constant fields and this policy generally extends to

subclasses as well. If a superclass has private fields, those fields will be

part of the object data in its subclasses, but they will not be ―inherited‖

by the subclass. Methods defined in the subclasses will not be able to

directly access them. Subclasses, just like any other class, will have to

access the superclass's private fields indirectly, through the superclass's

methods.

3.4 Hiding Fields

If you define a field in a subclass that has the same name as an

accessible field in its superclass, the subclass‘s field hides the

superclass‘s version. (The type of the variables need not match, just the

names.) For example, if a superclass declares a public field, subclasses

will either inherit or hide it. (You can‘t override a field.) If a subclass

hides a field, the superclass's version is still part of the subclass's object

data; however, the subclass doesn‘t ―inherit‖ the superclass‘s version of

the field, because methods in the subclass can‘t access the superclass‘s

version of the field by its simple name. They can only access the

subclass‘s version of the field by its simple name. You can access the

superclass‘s version by qualifying the simple name with the super

keyword, as in super.fieldName.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

39

Java permits you to declare a field in a subclass with the same name as a

field in a superclass so you can add fields to a class without worrying

about breaking compatibility with already existing subclasses. For

example, you may publish a library of classes that your customers can

use in their programmes. If your customers subclass the classes in your

library, you will likely have no idea what new fields they have declared

in their subclasses. In making enhancements to your library, you may

inadvertently add a field that has the same name as a field in one of your

customer's subclasses. If Java didn't permit field hiding, the next time

you released your library, your customer's program might not run

properly, because the like- named field in the subclass would clash with

the new field in the superclass from your library. Java's willingness to

tolerate hidden fields makes subclasses more accepting of changes in

their superclasses.

3.4.1 Abstract Classes and Methods

As you perform an object-oriented design, you may come across classes

of objects that you would never want to instantiate. Those classes will

nevertheless occupy a place in your hierarchies. An example of such a

class might be the Liquid class from the previous discussions. Class

Liquid served as a base class for the family of types that included

subclasses Coffee, Milk, and Tea. While you can picture a customer

walking into a cafe and ordering a coffee, milk, or a tea, you might find

it unlikely that a customer would come in and order a "liquid." You

might also find it difficult to imagine how you would serve a "liquid."

What would it look like? How would it taste? How would it swirl or

gurgle?

Java provides a way to declare a class as conceptual only, not one that

represents actual objects, but one that represents a category of types.

Such classes are called abstract classes. To mark a class as abstract in

Java, you merely declare it with the abstract keyword. The abstract

keyword indicates the class should not be instantiated. Neither the Java

compiler nor the Java Virtual Machine will allow an abstract class to be

instantiated. The syntax is straightforward:

// In Source Packet in file inherit/ex6/Liquid.java

abstract class Liquid {

void swirl(boolean clockwise) {

System.out.println("One Liquid object is swirling.");

}

static void gurgle() {
System.out.println("All Liquid objects are gurgling.");

}

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

40

The above code makes Liquid a place holder in the family tree, unable

to be an object in its own right.

Note that the Liquid class shown above still intends to implement a

default behaviour for swirling and gurgling. This is perfectly fine;

however, classes are often made abstract when it doesn't make sense to

implement all of the methods of the class's interface. The abstract

keyword can be used on methods as well as classes, to indicate that the

method is part of the interface of the class, but does not have any

implementation in that class. Any class with one or more abstract

methods is itself abstract and must be declared as such. In the Liquid

class, you may decide that there is no such thing as a default swirling

behaviour that all liquids share. If so, you can declare the swirl() method

abstract and forgo an implementation, as shown below:

// In Source Packet in file inherit/ex7/Liquid.java

abstract class Liquid {

abstract void swirl(boolean clockwise);

static void gurgle() {

System.out.println("All Liquid objects are gurgling.");
}

}

In the above declaration of Liquid, the swirl() method is part of Liquid's

interface, but doesn't have an implementation. Any subclasses that

descend from the Liquid class shown above will have to either

implement swirl() or declare themselves abstract. For example, if you

decided there were so many varieties of coffee that there is no sensible

default implementation for Coffee, you could neglect to implement

swirl() in Coffee. In that case, however, you would need to declare

Coffee abstract. If you didn't, you would get a compiler error when you

attempted to compile the Coffee class. You would have to subclass

Coffee (for example: Latte, Espresso, CafeAuLait) and implement

swirl() in the subclasses, if you wanted the Coffee type to ever see any

action.

Most often you will place abstract classes at the upper regions of your

inheritance hierarchy, and non- abstract classes at the bottom.

Nevertheless, Java does allow you to declare an abstract subclass of a

non- abstract superclass. For example, you can declare a method

inherited from a non-abstract superclass as abstract in the subclass,

thereby rendering the method abstract at that point in the inheritance

hierarchy. This design implies that the default implementation of the

method is not applicable to that section of the hierarchy. As long as you

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

41

implement the method again further down the hierarchy, this design

would yield an abstract class sandwiched in the inheritance hierarchy

between a non-abstract superclass and non- abstract subclasses.

4.0 CONCLUSION

Inheritance can be viewed as a hierarchical structure wherein a

superclass is declared with its subclass. Any new class that you create

from an existing class is called a subclass or derived class; existing

classes are called superclasses or base classes. The subclass inherits the

properties of the superclass. Rather than creating completely new classes

from scratch, inheritance can be used to reduce software complexity.

Modeling the relationships between types is a fundamental part of the

process of object-oriented design. This unit shows you how to model

relationships using composition and inheritance. It describes many

facets of inheritance in Java, analyse the flexibility and performance

implications of inheritance and composition with guidelines on the

appropriate use of each.

5.0 SUMMARY

In this unit, we have discussed the following:

 The generic class is known as the superclass or base class and the

specific classes as subclasses or derived classes. The concept of

inheritance greatly enhances the ability to reuse code as well as

making design a much simpler and cleaner process.

 In Java terminology, a more general class in an inheritance

hierarchy is called a superclass. A more specific class is a

subclass.

 When a class has only one direct super class, it is referred to as

single inheritance. In contrasts with a multiple inheritance, in

which a class can have multiple direct superclasses.

 Overriding methods is a primary way a subclass specialises its

behaviour with respect to its superclass.

 Well-designed classes most often refuse other classes direct

access to their non-constant fields, and this policy generally

extends to subclasses as well. If a super class has private fields,

those fields will be part of the object data in its subclasses, but

they will not be "inherited" by the subclass.

 Java permits one to declare a field in a subclass with the same

name as a field in a superclass so that one can add fields to a class

without worrying about breaking compatibility with already

existing subclasses.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

42

6.0 TUTOR-MARKED ASSIGNMENT

1. Draw a class hierarchy in which several classes are subclasses of

a single superclass.

2. Suppose that a class Employee is derived from the class Person.

Give examples of data and method members that can be added to

the class Employee.

7.0 REFERENCES/FURTHER READING

Bertrand Meyer (nd).Object-Oriented Software Construction (Book/CD-

ROM) (2nd ed.).

Bill Venners (2001). ―Objects and Java: Building Object-Oriented,

Multi-Threaded Applications with Java‖.

James W. Cooper (nd). Principles of Object-Oriented Programming in

Java 1.1: The Practical Guide to Effective, Efficient Program

Design.

Malik, D. S. (2006). Java Programming: From Problem Analysis to

Design (2nd ed.).

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

43

UNIT 4 POLYMORPHISM AND MODULATION

CONTENTS

1.0 Introduction

1.0 Objectives

3.0 Main Content

3.1 What is Polymorphism?

3.2 Types of Polymorphism

3.3 Modularity
3.3.1 Methods

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Polymorphism is the capability of an action or method to do different

things based on the object that it is acting upon. This is the third basic

principle of object-oriented programming. Overloading and overriding

are two types of polymorphism.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 describe polymorphism

 state types of polymorphism

 define modular programming

 list the functions of modular programming.

3.0 MAIN CONTENT

3.1 What is Polymorphism?

Java allows one to treat an object of a subclass as an object of its

superclass. In other words, a reference variable of a superclass can point

to an object of its subclass. For instance, one could declare classes

Person and PartTimeEmployee as:

Person name, nameRef; //Line 1

PartTimeEmployee employee, employeeRef; //Line 2

name = new Person (“Abraham”, “ Lincoln”); //Line 3

employee = new PartTimeEmployee (“ Susan”, “Johnson”, 6.40, 35);

//Line 4

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

44

The statement in line 1 declares name and nameRef to be reference

variables of the type Person. The statement in line 2 declares employee

and employeeRef to be reference variables of the type

PartTimeEmployee. The statement in line 3 instantiates the object name

while the statement in line 4 instantiates the object employees. Consider

the following:

nameRef = employee; //Line 5

System.out.println (“nameRef: “ + nameRef); //Line 6

The statement in line 5 makes nameRef point to the object employee.

After executing the statement in line 5, the object nameRef is treated as

an object of the class PartTimeEmployee. The statement in line 6

outputs the value of the object nameRef. The output of the statement in

line 6 is:

nameRef: Susan Johnson’s wages are : $ 224.0 //Line 7

Notice that even though nameRef is declared as a reference variable of

the type Person, when the program executes, the statement in line 7

outputs the first name, the last name, and the wages. This is because

when the statement in line 6 executes to output nameRef, the method

toString of the class PartTimeEmployee executes, not the

methodtoString of the class Person. This is called late binding, dynamic

binding, or run-time binding; that is, the method that gets executed is

determined at execution time, not at compile time.

In a class of hierarchy, several methods may have the same name and

the same formal parameter list. Moreover, a reference variable of a class

can refer to either an object of its own class or an object of its subclass.

Therefore, a reference variable can invoke, that is, execute, a method of

its own class or of its subclass(es). Binding means associating a method

definition with its invocation, that is, determining which method

definition gets executed. In early binding, a method‘s definition is

associated with the method‘s invocation at execution time, that is, when

the method is executed. Except for a few cases, java uses late binding

for all methods. Furthermore, the term polymorphism means assigning

multiple meanings to the same method name.

The reference variable name or nameRef can point to any object of the

class Person or the class PartTimeEmployee. Loosely speaking, one

could say that these reference variables have many forms, that is, they

are polymorphism reference variables. They can refer to either objects of

their own class or objects of the subclasses inherited from their class.

The following example further explains polymorphism.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

45

Example 4.1

Consider the following definitions of the classes RectangleFigure and

BoxFigure

public class RectangleFigure
{ private double length ;

private double width;

public rectangleFigure ()

{

length = 0;

width = 0;
}

public RectangleFigure (double 1, double w);

{

setDimension (1, w);

}

public void setDimension (double 1, double w)

{

if (1 >= 0)

length = 1 ;
else

length = 0 ;

if (w <= 0)
width = w;

else
}

public double getwidth ()
{

return length ;

}

public double getwidth ()

{

return;

}

public double area ()

{

return length * width;

}

public double perimeter()
{

return 2 * (length + width);

}

public void print()

{
System.out.print(“ Length = “ + length + “ ; Width = “ + width

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

46

+” \n” + “ Area = “ + area ());

}

}

3.2 Types of Polymorphism

The two main types of polymorphism are overloaded method and

overridden methods. Overloaded methods are methods with the same

name signature but either a different number of parameters or different

types in the parameter list. For example 'spinning' a number may mean

increase it, 'spinning' an image may mean rotate it by 90 degrees. By

defining a method for handling each type of parameter you achieve the

effect that you want. Overridden methods are methods that are redefined

within an inherited or subclass. They have the same signature and the

subclass definition is used. The third type is dynamic method binding.

These will be discussed in details in module two.

3.3 Modularity

Methods in Java are like automobile parts‘, they are building blocks.

Methods are used to divide complicated program into manageable

pieces. They are both predefined methods, methods that are already

written and provided by java, and user-defined methods, methods that

you create. Using methods has several advantages:

 While working on one method, you can focus on just that part of

the program and construct it, debug it and perfect it.

 Different people can work on different methods simultaneously.

 If a method is needed in more than one place in a program, or in

different program, you can write it once and use it many times.

 Using methods greatly enhance the programmes readability

because it reduces the complexity of the main method.

 Methods are often called modules. They are like miniature

programmes; you can put them together to form a larger program.

The ability is less apparent with the predefined methods because

their programming code is not available to us. However, because

predefined methods are already written for us, this will be learnt

first, so that it could be used when needed. To use a predefined

method in your program (s), you need to know only how to use it.

Figure 4.1 gives a picture of what modular programming is all about.

The main program coordinates calls to procedures in separate modules

and hands over appropriate data as parameters.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

47

Fig.4.1: Modular Programming

With modular programming procedures, common functionality is

grouped together into separate modules. A program therefore no longer

consists of only one single part. It is now divided into several smaller

parts which interact through procedure calls and which form the whole

program. Each module can have its own data. This allows each module

to manage an internal state which is modified by calls to procedures of

this module. However, there is only one state per module and each

module exists at most once in the whole program.

3.3.1 Methods

A car can be seen as an object of a class vehicle. When you drive a car,

pressing its accelerator sends a message to the car to perform a task i.e.

make the car move faster. Similarly, messages are sent to an object of a

class. Each message is known as a method call and tells a method of the

object to perform its task. Methods are used to facilitate the design,

implementation, operation and maintenance of large programmes. A

method is invoked by a method call, and when the called method

completes its task, it either returns a result or simply the control to the

caller.

Although, most methods execute in response to method calls on specific

objects, this is not always the case. Sometimes a method performs a task

that does not depend on the contents of any object. Such a method is

called a static method. An example of a static method is the main

method. Every Java application has a main method. The main method is

where Program execution begins. The main method is declared with the

header shown below:

public static void main (String[]args)

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

48

Note: Static methods will be discussed in details in unit 3.

The syntax for creating a method is:

accessmodifier retuntype methodname([parameters])

{
Method body

[return value];

}

Note: Anything contained inside square bracket [] is optional.

In the above syntax, accessmodifier describes how other methods in the

class will be able to access this method. The accessmodifier can either

be public or private. A private accessmodifier makes the method only

accessible to the members of the class; it cannot be used outside the

class. A public accessmodifier makes the method accessible by other

members of the class and it can also be used outside the class. The

returntype describes the data type the method will return to its caller.

Return type can be any valid data type. A method that has a return type

of int returns an integer to its caller, a method that has a return type of

String value returns a String value to its caller. Sometimes a method

may not return any value to its caller. Such methods have a return type

of void.

The methodname is any valid variable name. The method may or may

not have parameters depending on the method action. If a method has

parameters, when such method is to be called, the signature of the

arguments must be equal to the specified signature in the called method.

Note that signature refers to the number of arguments and the data type

of the arguments. Just like classes, methods have a method body that

begins and ends respectively with a left brace ―{―and a right brace ―}‖.

A method may or may not return a value. A method that has a return

type of void does not return any value to its caller, thus, the second to

the last line is absent i.e. return value. It is important to Note that for

methods that do not have a return type of void, the last line before the

closing brace in the method should be the return value.

4.0 CONCLUSION

Polymorphism in java is implemented using late binding. The two main

types of polymorphism are overloaded method and overridden methods.

Overloaded methods are methods with the same name signature but

either a different number of parameters or different types in the

parameter list.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

49

Methods are often called modules. They are like miniature programmes;

you can put them together to form a larger program. Modular

programming involves the procedures of a common functionality which

are grouped together into separate modules. A program therefore no

longer consists of only one single part. It is now divided into several

smaller parts which interact through procedure calls and which form the

whole program.

5.0 SUMMARY

In this unit, the following have been discussed:

 Several methods may have the same name and the same formal

parameter list in a class of hierarchy.

 A reference variable can invoke, that is, execute, a method of its

own class or of its subclass(es). Binding means associating a

method definition with its invocation, that is, determining which

method definition gets executed.

 Overloaded methods are methods with the same name signature

but either a different number of parameters or different types in

the parameter list.

 Methods are often called modules. They are like miniature

programmes; you can put them together to form a larger program.

With modular programming procedures, common functionality is

grouped together into separate modules.

 Although, most methods execute in response to method calls on

specific objects, this is not always the case. Sometimes a method

performs a task that does not depend on the contents of any

object. Such a method is called a static method.

6.0 TUTOR-MARKED ASSIGNMENT

1. List the two static members of a class that we can have?

2. Explain why the main method is always declared as static?

3. Write a program that computes the volume of a sphere. The static

field of Math class should be used to provide the constant

required for this computation.

7.0 REFERENCES/FURTHER READING

Giuseppe Castagna (1997). Object-Oriented Programming: A Unified

Foundation. Birkhaeuser.

Per Brinch Hansen (1972). Structured Multi-Programming, CACM,

15(7), pp. 574-578.

Philip Wadler (1995). Monads for functional programming: Advanced

Functional Programming, LNCS, Vol. 925, Springer-Verlag,

1995.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

50

UNIT 5 COMPOSITION AND ABSTRACTION

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Composition

3.2 Abstraction

3.2.1 Abstract Classes

3.2.2 Interfaces

3.2.3 Abstract Data Types (ADT)

3.2.4 Importance of Data Structure Encapsulation
3.2.5 Generic Abstract Data Types

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Volumes have been written regarding the application layers, web sites.

One of the fundamental activities of any software system design is

establishing relationships between classes. Two fundamental ways to

relate classes are inheritance and composition. Although the compiler

and Java virtual machine (JVM) will do a lot of work for you when you

use inheritance, you can also get at the functionality of inheritance when

you use composition. This unit discusses and compares these two

approaches to relating classes and will also provide guidelines on their

use.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 define composition

 describe abstraction

 define an abstract class

 list abstract data types.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

51

3.0 MAIN CONTENT

3.1 Composition

Composition is a relationship between two classes that is based on the

aggregation relationship. Composition takes the relationship one step

further by ensuring that the containing object is responsible for the

lifetime of the object it holds. If Object B is contained within Object A,

then Object A is responsible for the creation and destruction of Object

B. Unlike aggregation, Object B cannot exist without Object A.

Examples 1.5.1: Imagine you create a Student class that holds

information about individual students at a school. One piece of

information stored is the student's date of birth. It's held in a Gregorian

Calendar object:

import java.util.GregorianCalendar;

public class Student {

private String name;

private GregorianCalendar dateOfBirth;

public Student(String name, int day, int month, int year)

{

this.name = name;
this.dateOfBirth = new GregorianCalendar(year, month, day);

}

//rest of Student class..

}

As the student class is responsible for the creation of the

GregorianCalendar object it will also be responsible for its destruction

(i.e., once the Student object no longer exists neither will the

GregorianCalendar object). Therefore the relationship between the two

classes is composition because Student has-a GregorianCalendar and it

also controls its lifetime. The GreogrianCalender object cannot exist

without the Student object.

It might be useful if the coffee cup object of a program could contain

coffee. Coffee itself could be a distinct class, which your program could

instantiate. One would recognise coffee with a type if it exhibits

behaviour that is important to your solution. Perhaps it will swirl one

way or another when stirred, keep track of a temperature that changes

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

52

over time, or keep track of the proportions of coffee and any additives

such as cream and sugar.

To use composition in Java, you use instance variables of one object to

hold references to other objects. For the CoffeeCup example, you could

create a field for coffee within the definition of class CoffeeCup, as

shown below by implementing the methods.

// In Source Packet in file inherit/ex1/CoffeeCup.java

class CoffeeCup {

private Coffee innerCoffee;

public void addCoffee(Coffee newCoffee) {

// no implementation yet

}

public Coffee releaseOneSip(int sipSize) {

// no implementation yet
// (need a return so it will compile)

return null;

}

public Coffee spillEntireContents() {

// no implementation yet

// (need a return so it will compile)

return null;

}
}

// In Source Packet in file inherit/ex1/Coffee.java

public class Coffee {

private int mlCoffee;

public void add(int amount) {

// No implementation yet

}

public int remove(int amount) {

// No implementation yet
// (return 0 so it will compile)

return 0;

}

public int removeAll() {

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

53

// No implementation yet

// (return 0 so it will compile)

return 0;

}

}

In the example above, the CoffeeCup class contains a reference to one

other object, an object of type Coffee. Class Coffee is defined as a

separate source file. The relationship modeled by composition is often

referred to as the "has-a" relationship. In this case a CoffeeCup has

Coffee. As you can see from this example, the has-a relationship doesn't

mean that the containing object must have a constituent object at all

times, but that the containing object may have a constituent object at

some time. Therefore the CoffeeCup may at some time contain Coffee,

but it need not contain Coffee all the time. (When a CoffeeCup object

does not contain Coffee, its innerCoffee field is null.) In addition, note

that the object contained can change throughout the course of the

containing object's life.

3.2 Abstraction

Abstraction is the process or result of generalisation by reducing the

information content of a concept or an observable phenomenon,

typically to retain only information which is relevant for a particular

purpose. For example, abstracting a leather soccer ball to a ball retains

only the information on the general ball attributes and behaviour.

Similarly, abstracting happiness to an emotional state reduces the

amount of information conveyed about the emotional state. Computer

scientists use abstraction to understand and solve problems and

communicate their solutions with the computer in some particular

computer language.

Abstraction is the process of taking away or removing characteristics

from something in order to reduce it to a set of essential characteristics.

In object-oriented programming, abstraction is one of the three central

principles (along with encapsulation and inheritance). Through the

process of abstraction, a programmer hides all but the relevant data

about an object in order to reduce complexity and increase efficiency. In

the same way that abstraction sometimes works in art, the object that

remains is a representation of the original, with unwanted detail omitted.

The resulting object itself can be referred to as an abstraction, meaning a

named entity made up of selected attributes and behaviour specific to a

particular usage of the originating entity. Abstraction is related to both

encapsulation and data hiding.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

54

In the process of abstraction, the programmer tries to ensure that the

entity is named in a manner that will make sense and that it will have all

the relevant aspects included and none of the extraneous ones. A real-

world analogy of abstraction might work like this: You (the object) are

arranging to meet a blind date and are deciding what to tell them so that

they can recognise you in the restaurant. You decide to include the

information about where you will be located, your height, hair colour,

and the colour of your jacket. This is all the data that will help the

procedure work smoothly. You should include all that information. On

the other hand, there are a lot of bits of information about you that aren't

relevant to this situation: your social security number, your admiration

for obscure films, and what you took to "show and tell" in fifth grade are

all irrelevant to this particular situation because they won't help your

date find you. However, since entities may have any number of

abstractions, you may get to use them in another procedure in the future.

3.2.1 Abstract Classes

From the previous example, the superclass is more general than its

subclass(es). The superclass contains elements and properties common

to all of the subclasses. The previous example was of a concrete

superclass that instance objects can be created from. Often, the

superclass will be set up as an abstract class which does not allow

objects of its prototype to be created. In this case, only objects of the

subclass are used. To do this, the reserved word abstract is included in

the class definition.

Abstract methods are methods with no body specification. Subclasses

must provide the method statements for their particular meaning. If the

method was one provided by the superclass, it would require overriding

in each subclass. And if one forgot to override, the applied method

statements may be inappropriate.

Public abstract class Animal // class is abstract

{

Private String name;

Public Animal(String nm) //constructor method

{ name=nm;}

Public String getName() //regular method

{ return (name); }

Public abstract void speak(); // abstract method
}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

55

3.2.2 Interfaces

Interfaces are similar to abstract classes but all methods are abstract and

all properties are static final. Interfaces can be inherited (i.e. you can

have a sub-interface). As with classes, the extend keyword is used for

inheritance. Java does not allow multiple inheritances for classes (i.e. a

subclass being the extension of more than one superclass). An interface

is used to tie elements of several classes together. Interfaces are also

used to separate design from coding as class method headers are

specified but not their bodies. This allows compilation and parameter

consistency testing prior to the coding phase. Interfaces are also used to

set up unit testing frameworks.

As an example, we will build a Working interface for the subclasses of

Animal. Since this interface has the method called work(), that method

must be defined in any class using the Working interface.

public interface Working

{

public void work();
}

When you create a class that uses an interface, you reference the

interface with the phrase implements interface list. Interface list consists

one or more interfaces, as multiple interfaces are allowed. Any class that

implements an interface must include code for all methods in the

interface. This ensures commonality between interfaced objects.

public class WorkingDog extends Dog implements Working

{

public WorkingDog(String nm)

{

super(nm); //builds parent

}
public void work() // this method is specific to WorkingDog

{

speak();

System.out.printly(“ I can herb sheep and cow”);

}
}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

56

3.2.3 Abstract Data Types (ADT)

If you want to keep a collection of various elements such as address:

students, employees, department and projects. This is a structure and is

called a list; a list is an example of ADT (abstract data type). An ADT is

an abstraction of a commonly appearing data structure, along with

defined operations on the data structure. ADT is a data type that

specifies the logical properties without the implementation details.

Historically, the concept of ADT in computer programming developed

as a way of abstracting the common data structure and the associated

operations. Along the way ADT provides information hiding. That is,

ADT hides the implementation details of the operations and the data

from the users of the ADT. Users can use the operation of an ADT

without knowing the operation is implemented. An abstract data type

(ADT) is characterised by the following properties:

1. It exports a type.

2. It exports a set of operations. This set is called interface.
3. Operations of the interface are the one and only access

mechanism to the type's data structure.

4. Axioms and preconditions define the application domain of the

type.

With the first property, it is possible to create more than one instance of

an ADT as exemplified with the employee example. You might also

remember the list example of chapter 2. In the first version, we have

implemented a list as a module and were only able to use one list at a

time. The second version introduces the ―handle‖ as a reference to a ―list

object‖. From what we have learned now, the handle in conjunction with

the operations defined in the list module defines an ADT List:

1. When we use the handle we define the corresponding variable to

be of type List.

2. The interface to instances of type List is defined by the interface

definition file.

3. Since the interface definition file does not include the actual

representation of the handle, it cannot be modified directly.

4. The application domain is defined by the semantic meaning of

the operations. Axioms and preconditions include statements

such as:

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

57

“An empty list is a list.”

“Let l=(d1, d2, d3, ..., dN) be a list. Then l.append(dM) results in l=(d1,

d2, d3, ..., dN, dM).”

“The first element of a list can only be deleted if the list is not empty.”

However, all of these properties are only valid due to our understanding

of and our discipline in using the list module. It is in our responsibility

to use instances of List according to these rules.

3.2.4 Importance of Data Structure Encapsulation

The principle of hiding the used data structure and to only provide a

well-defined interface is known as encapsulation. Why is it so important

to encapsulate the data structure?

To answer this question, consider the following mathematical example

where we want to define an ADT for complex numbers. For the

following it is enough to know that complex numbers consists of two

parts: real part and imaginary part. Both parts are represented by real

numbers. Complex numbers define several operations: addition,

subtraction, multiplication or division to name a few. Axioms and

preconditions are valid as defined by the mathematical definition of

complex numbers. For example, there exists a neutral element for

addition.

If you think of more complex operations, the impact of decoupling data

structures from operations becomes even clearer. For example the

addition of two complex numbers requires you to perform an addition

for each part. Consequently, you must access the value of each part

which is different for each version. By providing an operation ``add''

you can encapsulate these details from its actual use. In an application

context, you simply ``add two complex numbers'' regardless of how this

functionality is actually achieved. Once you have created an ADT for

complex numbers, for instance Complex, you can use it in the same way

like other well-known data types such as integers.

3.2.5 Generic Abstract Data Types

ADTs are used to define a new type from which instances can be

created. As shown in the list example, sometimes these instances should

operate on other data types as well. For instance, one can think of lists of

apples, cars or even lists. The semantical definition of a list is always the

same. Only the type of the data elements change according to what type

the list should operate on. This additional information could be specified

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

58

by a generic parameter which is specified at instance creation time.

Thus, an instance of a generic ADT is actually an instance of a particular

variant of the ADT. A list of apples can therefore be declared as follows:

List<Apple> listOfApples;

The angle brackets now enclose the data type for which a variant of the

generic ADT List should be created. listOfApples offers the same

interface as any other list, but operates on instances of type Apple.

4.0 CONCLUSION

Abstract classes and methods force prototype standards to be followed,

that is, they provide templates. As ADTs provide an abstract view to

describe properties of sets of entities, their use is independent from a

particular programming language. Each ADT description consists of two

parts:

 Data: This part describes the structure of the data used in the

ADT in an informal way.

 Operations: This part describes valid operations for this ADT,

hence, it describes its interface. We use the special operation

constructor to describe the actions which are to be performed

once an entity of this ADT is created and destructor to describe

the actions which are to be performed once an entity is destroyed.

For each operation, the provided arguments as well as

preconditions and post-conditions are given.

The separation of data structures and operations and the constraint to

only access the data structure via a well-defined interface allows you to

choose data structures appropriate for the application environment.

5.0 SUMMARY

In this unit, the following were discussed:

 Composition takes the relationship one step further by ensuring

that the containing object is responsible for the lifetime of the

object it holds.

 to use composition in Java, instance variables of one object to

hold references to other objects are employed.

 Abstraction is the process of taking away or removing

characteristics from something in order to reduce it to a set of

essential characteristics.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

59

 Through the process of abstraction, a programmer hides all but

the relevant data about an object in order to reduce complexity

and increase efficiency.

 An interface is used to tie elements of several classes together.

Interfaces are also used to separate design from coding as class

method headers are specified but not their bodies. This allows

compilation and parameter consistency testing prior to the coding

phase.

6.0 TUTOR-MARKED ASSIGNMENT

Create a class called Employee that has fields that stores employee‘s

first name, last name, identification number, department name and

salary. Provide the necessary methods that provide meaningful output

when the class is used. Ensure data hiding. Test your class with an

executable class.

7.0 REFERENCES/FURTHER READING

Bill Venners (1998). Composition versus Inheritance: A Comparative

Look at Two Fundamental Ways to Relate Classes, Published in

JavaWorld.

Brad J. Cox (1984). ―Message/Object Programming: An Evolutionary

Change in Programming Technology, IEEE Software, 1(1).

Denis Caromel (1990). ―Programming Abstractions for Concurrent

Programming, Pacific '90, pp. 245-253, November 1990.

Jaffar, J. & Maher, M. (1994). ―Constraint to Logic Programming: a

Survey, The Journal of Logic Programming, no. 19, 20, pp. 503-

581.

Sergey Dimitriev (2004). ―Language-Oriented Programming: The Next

Programming Paradigm, Online Magazine, 1(1), November 2004.

BibTeX.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

60

MODULE 2 OBJECT-ORIENTED PROGRAMMING

PROPERTIES USING ANY

PROGRAMMING LANGUAGE

Unit 1 Classes and Objects Properties

Unit 2 Constructors and Destructors

Unit 3 Static Behaviours

Unit 4 Inheritance and Composition

Unit 5 Polymorphism

UNIT 1 CLASSES AND OBJECTS PROPERTIES

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Classes and Objects

3.2 Characteristics of a Class

3.3 Predefined Classes and User Defined Classes

3.4 Creating a Simple Class
3.5 Object Instantiation

3.6 Local Variables and Instance Variables

3.7 The Get and Set Methods

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit discusses how classes are created in Java (one of the most

prominent and widely used Object-Oriented Programming Language).

The properties of classes and how to control access to members of a

class are also discussed. Object- oriented design (OOD) models software

in terms similar to those that people use to describe real world objects. It

takes advantage of class relationships, where objects of a certain class,

such as a class of vehicles have the same characteristics, for example,

cars, lorries and trailers have many characteristics in common.

A class is the fundamental building block of code when creating object-

oriented software. A class describes in abstract all of the characteristics

and behaviour of a type of object. Once instantiated, an object is

generated that has all of the methods, properties and other behaviours

defined within the class. A class should not be confused with an object.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

61

The class is the abstract concept for an object that is created at design-

time by the programmer. The objects based upon the class are the

concrete instances of the class that occur at run-time.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 describe classes, objects, methods and instance variables

 state a class and use it to create an object

 declare methods in a class to implement the class‘s behaviours

 state instance variables in a class to implement the class‘s

attributes

 list an object‘s methods to make those methods perform their

tasks

 differentiate between instance variables of a class and local

variables of a method.

3.0 MAIN CONTENT

3.1 Classes and Objects

Object-Oriented Programming (OOP) allows computer programmers to

implement an object-oriented design as a working system and in such

instances; the unit of programming is the class from which objects are

created. Creating an instance (preferably object) of a class is called

Object Instantiation. Classes exist in the general with abstract attributes

but objects exist in the specific and automatically possess all the

attributes of the general class.

Classes are to objects as blueprints are to houses, just as a house can be

built from a blueprint. You cannot sleep in the room of a blueprint but

you can sleep in the room of a house. Many objects can be instantiated

from a class just like many houses can be built from a blueprint. OOP

programmers concentrate on creating classes and specify how those

classes will behave; they later instantiate objects of such classes to act as

it has been specified in the general class.

3.2 Characteristics of a Class

Classes contain methods (class behaviours) which implement operations

and fields which then implement attributes. The methods of a class help

in manipulating the fields of the class and thus provide services to the

clients of the class. The clients of a class are other classes that use the

class.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

62

Classes can relate with other classes e.g. in an object- oriented design of

a hospital, the “Patient” class need to relate with the “Nurse” class

which then relates with the “Doctor” class. All these classes cannot

exist in isolation. These relationships are called association. The

association property of a class makes software development an easy task

because a large project can be broken down into smaller classes which

then interact with one another to make the whole project.

Another property that makes a class a vital tool in Object- Oriented

Programming is that it allows software reusability. Packaging software

as classes makes it possible for future software systems to reuse the

class. Groups of related classes are often packaged as reusable

components. The most important factor that affects the future of

software development is software reuse. The advantages of software

reusability are as follows:

 Programmers build more dependable and efficient systems

because existing classes and components often have gone through

extensive testing, debugging and performance tuning.

 It saves programmers the time and effort they would have used in

re-inventing the wheels.

With software reuse, each new class you create will have the ability to

become an asset that you and other programmers can use to speed and

enhance the quality of future software development efforts. Two major

aspects of Object- Oriented Programming that promotes software reuse

are Inheritance and Polymorphism. These two concepts will be

discussed later in this module.

Note: Since we will be using Java as a case study of Object- Oriented

Programming, everything that will be discussed from this moment on

will be in relation to the Java Programming Language.

3.3 Predefined Classes and User Defined Classes

A great strength of Java is its rich set of predefined classes that can be

reused rather than creating new classes. This is an aspect of software

reuse discussed earlier. Related classes are grouped into packages and

collectively referred to as the Java Class Library or the Java Application

Programming Interface (API). These predefined classes are the building

blocks for constructing new classes. Programmers use the import

declaration to identify the predefined classes used in a Java Program.

The syntax of the import statement is:

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

63

import packagename.classname;

If there are many classes in a package that programmers want to use,

each class will be imported individually as follows:

Import packagename.class1name;

Import packagename.class2name;

……………………………………..

import packagename.classnname;

This will be time consuming if there are many classes to be imported, in

such instance; Programmers prefer to import all the classes in the

package at once. When this is done they will be able to access

whichever class they want to use. The syntax for importing all the

classes in a package is:

import packagename.*;

Note: In Computer terminology, “*” means all.

Some packages are implicitly imported into every Java Program. Thus

when the classes contained in such packages are to be used, there‘s no

need to import such packages. An example of this is the package

Java.lang which contains the classes System and String. User defined

classes are the classes newly created by a programmer to assist in

achieving his desired task. Every Java program consist of at least one

user defined class declaration that is defined by the programmer. User

defined classes are also known as Programmer defined classes. The

class keyword introduces a user defined class declaration in Java and it

is followed immediately by the class name. A Java class name is a valid

identifier i.e. a series of characters consisting of letters digits,

underscores and dollar sign that does not begin with a digit neither does

it contain spaces.

The syntax for declaring a class is:

public class classname

{

class body
}

The class body contains methods that specify the actions that the objects

of the class can exhibit. The class body begins and ends respectively

with a left brace ―{―and a right brace ―}‖.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

64

3.4 Creating a Simple Class

Here is an example of a Java class.

Example 2.1.1

Write a Java Program to print the message ―I love Java Programming‖

Program Input:

public class FirstProgram

{

public static void main(String[] args)

{
System.out.println("I love Java Programming");

}

}
// A program to display a line of text.

Program Output:

run:

I love Java Programming

BUILD SUCCESSFUL (total time: 2 seconds)

Program Analysis:

The name of the class is FirstProgram. This class is an executable class.

An executable class is a class that has a main method. A non executable

class is a class that does not have a main method. Such classes cannot

execute on their own unless they are used inside an executable class.

The public static void main (String[]args) is the header of the main

method where program execution begins. Inside this main method we

have the line of action to print out the text ―I love Java Programming‖.

System.out is known as the standard output object. Thus,

System.out.printl() displays or prints a line of text specified in the

parenthesis. This is why the line of action in the main method was able

to display I love Java Programming in the output. The message in

parenthesis must be double quoted because it is regarded as a string

literal. Next example creates a non executable class i.e. a class that has

no main method. This class will then be used inside an executable class

to carry out an action.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

65

Example 2.1.2

Create a non executable class that has a method. This method prints a

line of text that reads ―Object- Oriented Programming is fun‖.

Program Input:

public class MessageClass

{

public void displayMessage()
{

System.out.println("Object Oriented Programming is fun");

}

}

Program Analysis:

The program has no output because it is a non executable class. An

attempt to run this program raises an error but it can be compiled to

check for errors. The name of the class is MessageClass, It has a public

method called displayMessage. It is public because it will be still be

used outside the MessageClass. Thus, public makes it accessible. This

method returns no value to its caller thus it has a return type of void and

it has no parameter. This is because it is only meant to print out a line of

text and that is its main action. It is not acting on any data and it is not

returning any value.

3.5 Object Instantiation

The methods of a non executable class will be useless if specific

instances of such classes are not created. Just like the room in the

blueprint of a house will be useless if a house is not built from the

blueprint, if a house is built from the blue print, the rooms in the house

will become useful. Objects are instances of a class that makes the

actions defined in the class to be carried out. The act of creating an

object of a class is called object instantiation. The syntax for creating an

object of a class is:

Classname objectname=new Classname ();

In the syntax, Classname is the name of the class whose object is to be

created and objectname is the name of the object, new represents a call

to initialise the object. This is done by a constructor. Constructor will be

discussed in details in unit 2. The new keyword is again followed by the

class name. The parenthesis following the class name may or may not be

empty depending on the constructor. Our next example creates an

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

66

executable class to instantiate the object of the class MessageClass

created earlier. The method displayMessage() will then be called on the

object of the class and the effect will be seen.

Example 2.1.3

Create an executable class. The object of MessageClass should be

instantiated in this class and the displayMessage method of the

MessageClass should be called on this object.

Program Input:

public class MessageClassTest

{

public static void main(String[] args)

{

MessageClass msgclass=new MessageClass();

msgclass.displayMessage();

}

}

// An executable class that creates an object of MessageClass and

invokes the displayMethod method on the object.

Program Output:

run:

Object- Oriented Programming is fun

BUILD SUCCESSFUL (total time: 3 seconds)

Program Analysis:

MessageClassTest is an executable class, the object of MessageClass

was created in this executable class and it is given the name msgclass.

The method displayMessage() in MessageClass is called msgclass, this

makes a line of text Object-Oriented Programming is fun to be

displayed in the output.

3.6 Local Variables and Instance Variables

Local variables are variables that are declared in the body of a particular

method, such variables can be used only in that method. When that

method terminates, the values of its local variables are lost. Instance

variable must be initialised to their default value before they are used.

The syntax for declaring an instance variable within a method is:

Datatype variablename;

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

67

Datatype is any valid data type and variablename is any valid variable

name. Instance variables are the attributes of a class. They are declared

inside the body of a class but outside the bodies of the class‘s method

declarations. They are also called Fields. Each object of a class has its

own copy of attribute. Unlike local variables, instance variables are

initialised by default by a constructor. Constructors will be discussed in

details in Unit 2. The syntax for declaring an instance variable within a

class is:

accessmodifier datatype variablename;

accesmodifier can either be private, public or protected

private makes the variable accessible only within the class, public makes

it accessible within and outside the class, protected makes it accessible

within the class and other subclasses of the class. You will understand

how to use protected access modifier in unit 4 (inheritance).

Example 2.1.4

Create a non executable class that has a method that computes factorial.

Program Input:

public class FactorialClass {

public void getFactorial (int num)

{

int result=1;
for(int i=1; i<=num;i++)

result=result*i;

System.out.println("The factorial of "+num+" is "+result);

}

}

// A non executable class that has a method that computes the factorial

of a number.

Program Analysis:

The method for the computation of factorial is an iterative process and it

is expected that before taking OOP, you have an idea of control

structures. The getFactorial method has a return type of void since it

will only print out a line of text that shows the result of the factorial. The

method has an argument since factorial has to be computed for a

number. The datatype of the argument is integer and the name of the

argument is num. The Factorial method also has a local variable result of

integer data type. It is this variable that accumulates the value generated

by each iterative process.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

68

3.7 Set and Get Methods

Classes often provide public methods to allow clients (users) of a class

to set (assign values to) or get (obtain values of) private instance

variables. These methods are used to manipulate the instance variables

of a class to respectively assign values to them (set) and retrieve values

from them (get). When this is done, the instance variables of a class can

be made private because these methods are used to internally manipulate

them within the class. Other clients of the class do not have direct access

to these private instance variables but they can be accessed through the

get and set method. This is an important OOP concept and it is called

data hiding. Another name for the get and set methods are mutator and

accessor methods.

The names of these methods need not begin with set or get but this

naming convention is highly recommended in Java. The next two

examples explain how the mutator and the accessor methods can be

used to manipulate the private instance variables of a class.

Example 2.1.5

Create a non executable class that has a private instance variable that

can hold the first name of a student. Your class should contain methods

to assign values to and retrieve values from the instance variable.

Program Input:

public class SetGetClass {

private String FirstName;

public void setFirstName(String name)

{

FirstName=name;

}

public String getFirstName()
{

return FirstName;

}
}

// A program that has a private instance variable and methods to

manipulate the instance variable

Program Analysis

The instance variable FirstName is a String data type because it accepts

the first name of students and it is set to be private because it will not be

used directly outside the class, it will be used by the public methods that

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

69

are within the class. Method setFirstName stores a student‘s first name.

It does not return any data when it completes its task, so its return type is

void. The method accepts one parameter name which is the first name

that will be passed to the method as an argument. In the body of this

method, the value name in the parameter is assigned to the instance

variable FirstName. i.e. this method sets the instance variable.

Method getFirstName retrieves the value of the class instance variable

FirstName, this is why the method has a return type of string i.e it

returns value of the instance variable which is a string data type. The

method has an empty parameter list, so it does not require additional

information to perform its task. Next example uses this class to see how

the new methods work and the default value of the integer instance

variable will be seen.

Example 2.1.6

Create an executable class that shows how the instance variables of the

SetGetClass2 can be manipulated by the methods of the class.

import java.util.Scanner;

class SetGetClass2Test

{

public static void main(String[] args)

{

Scanner myinput=new Scanner(System.in);

SetGetClass2 setgetclass2=new SetGetClass2();

String myname;

int myscore;

System.out.println("Unassigned first name is

"+setgetclass2.getFirstName());

System.out.println("Unassigned score is "+setgetclass2.getScore());

System.out.println("Enter your First name");

myname=myinput.nextLine();

System.out.println("Enter your Score");

myscore=myinput.nextInt();

setgetclass2.setFirstName(myname);

setgetclass2.setScore(myscore);

System.out.println(setgetclass2.getFirstName()+" scored

"+setgetclass2.getScore());

}

}
// A Program that accepts user’s input and uses the methods of

SetGetClass to manipulate the Input.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

70

Program Output:

run:

Unassigned first name is null

Unassigned score is 0

Enter your First name

Rebecca

Enter your Score

90

Rebecca scored 90

BUILD SUCCESSFUL (total time: 12 seconds)

Program Analysis:

The new thing you will discover in the output is that the default value of

an integer instance variable is 0. A careful examination of the lines of

codes will make you understand it better.

4.0 CONCLUSION

The instance of a class is called an object. This is one of the reasons

Java is known as an Object- Oriented Programming Language. A class

may contain one or more methods that that are designed to carry out the

class‘s tasks. A method can perform a task and return a result. Inside the

method, you put the mechanisms that make the method do its tasks.

Each message sent to an object is known as a method call and tells a

method of the object‘s class to perform its task. A method declaration

that begins with keyword public indicates that the method is ―available

to the public‖- that is, it can be called by other classes declared outside

the class declaration. Keyword void indicates that a method will perform

a task but will not return any information when it completes its task.

When you attempt to execute a class, Java looks for the class‘s main

method to begin execution. Any class that contains the main method can

be used to execute an application. A method that belongs to another

class may not be called until an object of the class is created. Variables

declared in the body of a particular method are known as local variables

and can be used only in that method. Variables declared in the body of a

class are known as instance variables.

5.0 SUMMARY

In this unit, we have learnt the following:

 A class describes in abstract all of the characteristics and

behaviour of a type of object. Once instantiated, an object is

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

71

generated that has all of the methods, properties and other

behaviours defined within the class

 Creating an instance (preferably object) of a class is called Object

Instantiation. Classes exist in the general with abstract attributes

but objects exist in the specific and automatically possess all the

attributes of the general class.

 Classes contain methods (class behaviours) which implement

operations and fields which implement attributes. The methods of

a class help in manipulating the fields of the class and thus

provide services to the clients of the class.

 Related classes are grouped into packages and collectively

referred to as the Java Class Library or the Java Application

Programming Interface (API).

 The methods of a non executable class will be useless if specific

instances of such classes are not created.

6.0 TUTOR-MARKED ASSIGNMENT

Review Exercise

i. What is the difference between a Class and an Object?

ii. List some of the properties of a class

iii. What do you understand by software reuse and list two

advantages of software reusability.

iv. Differentiate between Predefined classes and user defined classes

v. Differentiate between local variables and instance variables

vi. Blueprints are to houses as Classes are to

vii. Man is to walk as a Class is to a _

Programming Exercise

i. Write a Program to create an executable class to display the line

of text.

―I am doing well in my Java lectures‖

ii. Create a non executable class that has two methods that

respectively calculate the perimeter and the area of a circle. The

object of this class should be created in an executable class and

the two methods should be invoked on it. Users should be able to

enter the radius of the circle for processing. Your output should

display a meaningful message that reflects the computation

process.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

72

7.0 REFERENCES/FURTHER READING

Deitel (nd). Java: How to Program (7th ed.).

Wrox (nd).Beginning Java
TM

 2, JDK
TM

(5th ed.).

Zbingniew M. S. (nd).Java Practical Guide for Programmers.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

73

UNIT 2 CONSTRUCTORS AND DESTRUCTORS

CONTENTS

1.0 Introduction

2.0 Objectives
4.0 Main Content

4.1 Constructors

4.1.1 Default Constructors

4.2 Creating Constructors

4.2.1 Creating a No Argument Constructor
3.2.2 Making a Constructor Behave Like a Default

Constructor

3.2.3 Creating an Argument Constructor

3.3 Constructor Overloading

3.4 Destructors (Tidying up)

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, you will learn how the object of a class is been initialised.

Any time the object of a class is created, the object is implicitly

initialised, and this makes the object have a default value. Constructors

are used for such initialisations. Java provides a special kind of method,

called a constructor that executes each time an object of a class is

created. The constructor is used to initialise the state of an object. Apart

from the constructor provided by Java, Programmers can also create

their constructors, In such an instance, the mode of constructor creation

looks like that of a method but care must be taken not to mistake

methods for constructors. In this unit, you will learn how to create your

own constructor and you will be able to differentiate between a method

and a constructor.

There can be more than one constructor in a class, in such an instance

we have overloaded constructions. When objects of that class are

created, the default values of the objects depend on the kind of the

constructor invoked on the object.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

74

2.0 OBJECTIVES

At the end this unit, you should be able to:

 define a constructor

 explain the concept of object initialisation

 create a constructor

 differentiate between constructors and methods

 list multiple constructors in a class and use them as applicable.

3.0 MAIN CONTENT

3.1 Constructors

Constructors are special methods that are used to initialise a new object

of a class. Constructors have the same name as the class; the name of the

Student class's constructor is Student, the name of the Lecturer class's

constructor is Lecturer, etc. If you don‘t define any constructor for your

class, the compiler will supply a default constructor to the class that

assigns a default value to the instance variable of a class‘s object. This

was seen in unit 1, where the default value of a String instance variable

was seen to be null and that of integer was seen to be 0. During object

instantiation, the new keyword is used to invoke the constructor, in order

for it to assign default values to the object‘s instance variable. If you

don‘t want the instance variables of an object to take on default values,

you must create your own constructor.

3.1.1 Default Constructor

When an object of a class SetGetClass2 is created, its instance variables

FirstName and Score are respectively initialised to null and 0 by default.

This initialisation is as a result of the default constructor provided by

Java. It is always invoked during object instantiation with the new

keyword as shown below:

Classname objectname=new Classname();

The empty parenthesis after the Classname indicates a call to the class‘s

constructor without argument which is often the default constructor. The

default value a constructor provides depends on the data type of an

object‘s instance variables. Data types are divided into two categories;

primitive types and reference types. The primitive types are Boolean,

byte, char, short, int, long, float and double. All non primitive types are

reference types, so classes which specify the types of objects are

reference types. A String datatype is also a reference type. Primitive

type instance variables of char, short, int, long, float and double are

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

75

initialised to 0 and variables of type Boolean are initialised to false by

the default constructor. Reference type instance variables are initialised

to null. This is why the FirstName and score instance variables of the

SetGetClass are respectively initialised to null and 0 in the program

output.

3.2 Creating Constructors

Constructors can be created to specify custom initialisation of objects of

a class. For example, a programmer might want to specify a first name

for the SetGetClass object of the programming example 6 in unit 1.

When the object is created as follows:

SetGetClass setgetclass= new SetGetClass(“Rebecca”);

In this case, the argument ―Rebecca‖ is passed to the SetGetClass

object‘s constructor and it is used to initialise the first name. The

statement above requires that the class provides a constructor with a

String parameter. A constructor is like a method but it differs from a

method with the following two attributes:

 A constructor has no return type. It cannot even return void.

 A constructor must have the same name as the class.

 Methods must have a return type, even if it is not returning any

value, it must return void. Methods usually don‘t have the same

name with a class. The syntax for creating a constructor is;

public classname ([parameter])

{

Constructor body

}

The constructor has a public access modifier in order to make it

accessible in other classes. This is so because most times, an object is

always instantiated in another class and since a constructor is always

invoked during object instantiation. A constructor has the same name

with the class. A constructor may or may not have parameters. This is

why parameter is in square bracket in the syntax showing that it is

optional. A constructor that has no parameter is called a no argument

constructor and the one that has parameter is called an argument

constructor. The no argument constructor is different from the default

constructor because it may not return the default value of an object‘s

instance variable, the value it returns depends on the constructor‘s body.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

76

3.2.1 Creating a No Argument Constructor

A no argument constructor is a constructor that is invoked with

arguments. Such a constructor simply initialises the object as specified

in the constructor‘s body. The next example creates a class that has a

non default no argument constructor.

Example 2.2.1

Create a class that has instance variables of String and Integers which

can respectively store a student‘s first name and age. In the class, create

a constructor that assigns non default values to these variables.

Program Input:

public class StudentClass {

private String firstname;

private int age;

public StudentClass()

{
firstname="Grace";

age=25;

}

public void setValues(String myname,int myage)

{
firstname=myname;

age=myage;

}

public String getFirstname()

{

return firstname;

}

public int getAge()

{
return age;

}

}
// A program that uses a non default no argument constructor to change

the default values of instance variables.

Program Analysis

Two private instance variables of type String and int with names

firstname and age respectively were used. The non default no argument

constructor was created immediately after the instance variable

declaration. The instance variables are initialised in the constructor‘s

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

77

body with values Grace and 25. With this, it is expected that when the

constructor is invoked, the default value of firstname and age will be

Grace and 25 respectively. Other methods were also created to assign

new values to and retrieve values from the instance variables (the set

and get methods). This allows the user to enter inputs for firstname and

age.

3.2.2 Making a Constructor Behave Like a Default

Constructor

A constructor can be created to make it behave like a default

constructor. To do this, in the body of the constructor, the instance

variables will be initialised to their default values or the body of the

constructor will be made empty. Our next two examples explain this.

Example 2.2.2

Modify the StudentClass to make its constructor behave like a default

constructor.

Program Input:

public class StudentClass2 {

private String firstname;

private int age;

public StudentClass2()

{

}

public void setValues(String myname,int myage)

{
firstname=myname;

age=myage;

}

public String getFirstname()

{

return firstname;

}
public int getAge()

{

return age;

}

}
// A class that has a non default constructor that behaves like a default

constructor.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

78

Program Analysis

The only difference in this program compared to StudentClass is the

constructor body. The constructor body is empty; this makes instance

variables of the class to be initialised to their default values. The next

example tests this class to see the value that will be returned when an

object of StudentClass2 is created.

Example 2.2.3

Create an executable class to an instantiate object of StudentClass2 and

allow users to enter their first name and age. Display the values of the

object‘s instance variables before and after user‘s input.

Program Input:

import java.util.Scanner;

public class StudentClass2Test

{

public static void main(String[] args)

{
Scanner myinput=new Scanner(System.in);

StudentClass2 stdclass2=new StudentClass2();

String name;

int age;
System.out.println("The initial students's name is:

"+stdclass2.getFirstname());

System.out.println("The initial students's age is:

"+stdclass2.getAge());

System.out.println("Enter your name");

name=myinput.nextLine();

System.out.println("Enter your age");

age=myinput.nextInt();

stdclass2.setValues(name,age);

System.out.println("The real name is: "+stdclass2.getFirstname());

System.out.println("The real age is: "+stdclass2.getAge());

}

}
// A program to test StudentClass2.

Program Output:

run:

The initial students's name is: null

The initial students's age is: 0

Enter your name

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

79

Grace

Enter your age

25

The real name is: Grace

The real age is: 25

BUILD SUCCESSFUL (total time: 16 seconds)

Program Analysis:

The new thing that will be discovered in this program when compared to

StudentClassTest is in the output. Here, the initial values of the instance

variables firstname and age are respectively null and 0. This is because

of the non default constructor created in the StudentClass2 that behaves

like a default constructor.

3.2.3 Creating an Argument Constructor

An argument constructor is a constructor that is invoked with arguments.

Like a method, it specifies in its parameter list the data it requires to

perform its task. When you create a new object of a class, this data is

placed in the parenthesis that follows the class name i.e. the constructor

of the class is called with an argument. Our next example shows how an

argument constructor is created.

Example 2.2.4

Create a class that has a String instance variable and an int instance

variable, in the class, create a constructor that has parameters that uses

these instance variables as its data.

Program Input:

public class StudentClass3 {

private String firstname;

private int age;

public StudentClass3(String myname,int myage)

{
firstname=myname;

age=myage;

}

public String getFirstname()
{

return firstname;

}

public int getAge()

{

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

80

return age;

}

}
// A class that shows how an argument constructor is created.

Program Analysis

The constructor of this class has a parameter that accepts a String value

and an int value as data, the constructor body sets the instance variable

of the class to the values in the parameter. This works like the set

method, so there may not be any need to include the set method. That is

why the set method is not included in the program. The get methods

retrieve the values of the instance variables. The next example creates an

object of Student3Class to see how the class‘s constructor works.

Example 2.2.5

Create an executable class and instantiate two objects of the

StudentClass3 and display the values of their instance variables.

Program Input:

public class StudentClass3Test

{
public static void main(String[] args)

{

StudentClass3 std1class3=new StudentClass3("Grace",25);

StudentClass3 std2class3=new StudentClass3("Rebecca",38);

System.out.println("The first students's name is:

"+std1class3.getFirstname());

System.out.println("The first students's age is:

"+std1class3.getAge());

System.out.println("The second students's name is:

"+std2class3.getFirstname());

System.out.println("The second students's age is:

"+std2class3.getAge());

}

}
// An executable class that tests the StudentClass3.

Program Output:

run:

The first students's name is: Grace

The first students's age is: 25

The second students's name is: Rebecca

The second students's age is: 38

BUILD SUCCESSFUL (total time: 6 seconds)

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

81

Program Analysis

This is the first time we will be creating more than one object of a class.

Two objects of StudentClass2 were instantiated and a constructor call

was invoked on them. The constructor has two arguments that accept a

first name and an age. Because each object has its own instance variable

in memory, that is why we are able to create two objects with different

instance variable. The instance variables for the first object are Grace

and 25 while the instance variables for the second object are Rebecca

and 38 as displayed in the output. These instance variables are set by the

constructor during the constructor call.

3.3 Constructor Overloading

As you know, you can declare your own constructor to specify how

objects of a class should be initialised. In this section, we will explain

how multiple constructors can be used to initialise objects of a class in

different ways. These constructors are called overloaded constructors.

To overload constructors, simply provide multiple constructor

declarations with different signatures. The compiler differentiates

signatures by the number of parameters, the types of parameters and the

order of the parameter types in each signature. This will be further

explained in the next example.

Example 2.2.6

Create a time class that has 3 private instance variables hour, minute and

second. Your class should have overloaded constructors that can be used

to manipulate these instance variables.

Program Input:

public class TimeClass {

private int hour;

private int minute;

private int second;

public TimeClass()

{

}

public TimeClass(int thehour)

{
hour=thehour;

}

public TimeClass(int thehour,int theminute)

{

hour=thehour;

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

82

minute=theminute;

}

public TimeClass(int thehour, int theminute, int thesecond)
{

hour=thehour;

minute=theminute;

second=thesecond;

}

public int getHour()

{

return hour;

}

public int getMinute()

{
return minute;

}

public int getSecond()
{

return second;

}

public String displayTime()
{

return

String.format("%02d:%02d:%02d",getHour(),getMinute(),getSecond());

}

}

// A time class that three time instance variables with constructors to

manipulate these variables differently.

Program Analysis

The time class has four constructors; the no argument constructor that

does not accept any time parameter, the one argument constructor that

accepts only the hour time parameter, the two argument constructors that

accept the hour and the minute time parameters and the three argument

constructor that accepts the hour, minute and the second time

parameters. All these constructors assign values to the time instance

variables in the constructor‘s body. The getMethods retrieve the values

of the three time instance variables. The displayTime method returns a

String value that shows each of the time parameter in two digits

separated by ―:‖

3.4 Destructors (Tidying Up)

Destructors are used to tidy up the computer‘s memory. They are used to

delete unused objects from the memory. The local variables created

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

83

within the body of a method are automatically deleted once the control

is outside the method. This is not so for dynamically created objects.

Objects remain in memory until they are explicitly deleted. A destructor

is a special method typically used to perform cleanup after an object is

no longer needed by the program. C++ supports destructors, but JAVA

does not support destructors. JAVA supports another mechanism for

returning memory to the operating system when it is no longer needed

by an object. This mechanism is called garbage collection.

The garbage collector is a part of the runtime system that runs in a low-

priority thread reclaiming memory that is no longer needed by objects

used by the program. An object becomes eligible for garbage collection

in JAVA when there are no reference variables that reference the object.

The garbage collector makes use of a method finalise to perform its

housekeeping. The finalise method is called by the garbage collector to

perform termination housekeeping on object just before the garbage

collector reclaims the object‘s memory. Method finalise does not take

parameters and has return type void. A problem with method finalise is

that the garbage collector is not guaranteed to execute at a specified

period. Infact, the garbage collector may never execute before a program

terminates. Thus, it is not certain that method finalise will be called all

the time. For this reason, the finalise method is rarely used.

4.0 CONCLUSION

A constructor is used to initialise an object of a class when the object is

created. Constructors can specify parameters but cannot specify return

types. If no constructor is provided by a class, the compiler provides a

default constructor with no parameters. When a class has a default

constructor, its instance variables are initialised to their default values.

Variables of types char, byte, short, int, long, float and double are

initialised to 0, variables of Boolean type are initialised to false and

reference variables are initialised to null.

If a constructor is provided by a class, the default constructor will not be

called. Overloaded constructors enable objects of a class to be initialised

in different ways. The compiler differentiates overloaded constructors

by their signatures.

7.0 SUMMARY

In this unit, the following were discussed:

 Constructors are special methods that are used to initialise a new

object of a class. During object instantiation, the new keyword is

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

84

used to invoke the constructor, in order for it to assign default

values to the object‘s instance variable.

 All non primitive types are reference types, so classes which

specify the types of objects are reference types. A String datatype

is also a reference type. Primitive type instance variables of char,

short, int, long, float and double are initialised to 0 and variables

of type Boolean are initialised to false by the default constructor.

 A constructor is like a method but it differs from a method with

the following two attributes:

- a constructor has no return type. It cannot even return void.

- a constructor must have the same name as the class.
- a constructor that has no parameter is called a no argument

constructor and the one that has parameter is called an argument

constructor.

 An argument constructor is a constructor that is invoked with

arguments. Like a method, it specifies in its parameter list the

data it requires to perform its task.

 When multiple constructors is used to initialise objects of a class

in different ways, these constructors are called overloaded

constructors.

6.0 TUTOR-MARKED ASSIGNMENT

Review Exercise

i. What is the purpose of the keyword new? Explain what happens

when this keyword is used in an application.

ii. What is a default constructor? How is an object‘s instance

variables initialised if a class has only a default constructor?

iii. Can a non default constructor and a default constructor be used in

a class?

iv. Differentiate between a default constructor and a no argument

constructor? Differentiate between a non default constructor and

a method?

v. What is constructor overloading?

vi. Explain the concept behind constructor overloading.

vii. What are destructors?

viii. Explain the concept behind garbage collection.

Programming Exercise

i. Create a class called DateClass that includes three private

instance variables. These variables are the year, month and day

parameter of the DateClass. Your class should have a constructor

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

85

that initialises the three instance variables and assumes that the

values provided are correct. Provide a set and get method for

each instance variable. Provide a method displayDate that

displays the year, month and day separated by forward slashes (/).

Write a test application name DateClasssTest that demonstrates

class Date‘s capabilities.

ii. Create a class called FreshStudentClass that includes four private

instance variables- firstname that can accept a student‘s first

name, matricno that can accept a student‘s matric number,

deptname that can accept a students‘ department name and paid

that states whether a student have paid his bills or not. Instance

variable paid is a Boolean type that accepts true or false. Create

four constructors in this class that manipulates this instance

variable differently.

The FreshStudentClass should be tested to demonstrate the

constructors‘ capabilities.

7.0 REFERENCES/FURTHER READING

Deitel Java How to Program (7th ed.).

Mary Campione & Kathy Walrath. The Java
TM

 Object-Oriented

Programming for the Internet.

Wrox Beginning Java
TM

 2, JDK
TM

(5th ed.).

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

86

UNIT 3 STATIC BEHAVIOURS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Static Behaviours

3.2 Static Methods

3.2.1 Creating Static Methods

3.2.2 Static Predefined Methods

3.2.3 The Main Method

3.3 Static Fields
3.4 Static Imports

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

The methods, attributes and constructors that have been described so far

are all related to instantiated objects of classes. In each case, these

members have defined how the individual objects behave and how they

maintain and manipulate their own state. Sometimes you will want to

create behaviour that is not linked to any individual object; instead it

will be available to all instances and to objects of other classes. This is

where static members become useful.

In this unit, we will discuss the static behaviour of some class members
– methods and instance variables. You will see that at times, you don‘t

need to create an object of a class before you invoke the class‘s method,

the method can be directly called on the class and not the object. Such

methods are called static methods. You will also see that some

predefined classes have static methods which can be invoked directly on

the classes. It is common for some predefined classes to contain

convenient static methods to perform their tasks. We will also discuss

why method main is declared static. We discussed in unit one that every

object of a class has its own copy of all the class‘s instance variable in

memory i.e. there‘s a one-one relationship between the object of a class

and its instance variables. In this unit, you will learn that in certain

cases, only one copy of a particular variable should be shared by all

objects of a class. A static field called a class variable (not an instance

variable) is used in such a case. You will also learn in this unit, how the

import statement can be used to import static members of a predefined

class.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

87

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain how static methods and fields are associated with an

entire class rather than specific instances of the class

 identity and use some common Math methods available in Java

API

 create and use static methods

 identify and use some implicitly imported static methods

 import and use some static methods of a class

 list, create and use the static fields of a class.

3.0 MAIN CONTENT

3.1 Static Behaviours

Two members of a class can have the same static properties and they are

the methods of the class and the fields of the class. When the fields of a

class have a static behaviour, it is called a class variable. When these

static members of a class are used, the object of the class need not be

instantiated to make members carry out their work.

3.2 Static Methods

Although most methods execute in response to method calls on specific

objects, this is not always the case in other methods. Sometimes, a

method performs a task that does not depend on the contents of any

object. Such a method applies to the class in which it is declared as a

whole and is known as a static method, it can also be called a class

method.

3.2.1 Creating Static Methods

The way a static method is created is not too different from the way

normal methods are created. The only difference is the inclusion of the

static keyword. The syntax for creating a static method is shown below:

accessmodifier static returntype methodname([parameter])

{

Method body;
}

The keyword static usually comes before the return type in the method‘s

declaration and the method may or may not accept parameters. Static

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

88

methods are usually called by specifying the name of the class in which

the method is declared, followed by a dot (.) and the method name as

shown below:

Classname.methodname(arguments);

This saves the programmer the stress of instantiating the object of a

class before the class‘s methods can be called. Our next examples

explain how static methods can be created and called in programmes.

Example 2.3.1

Create a non executable class called FactorialClass that has a one

argument method and two argument methods respectively called

computeFactorial and computePermutation. The computeFactorial

method computes the factorial of a number and the computePermutation

method computes the permutation of two numbers. The two methods

should be declared as static, the computeFactorial method should be

used in the computePermutation method, thus it should be declared as

private.

Program Input:

public class PermutationClass {

private static int computeFactorial(int number)

{

int result=1;

for(int i=1;i<=number;i++)

{

result=result*i;

}

return result;

}

public static int computePermutation(int number1,int number2)

{
int result;

int diff;

diff=number1-number2;

result=PermutationClass.computeFactorial(number1)/PermutationClas

s.computeFactorial(diff);

return result;

}
}

// A program that has two static methods that compute the factorial and

permutation of numbers.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

89

Program Analysis:

The class has a static private method computeFactorial that computes

the factorial of a number. The method is private because it is only been

used within the class to compute the permutation of two number. The

computePermutation method uses the static factorial to compute the

permutation of two numbers. Note the way the computeFactorial method

was used; it was prefixed with the class name and a dot (.).

Our next example uses the static computePermutation method to

compute the permutation of two numbers.

Example 2.3.2

Create an executable class that accepts two numbers from the user; the

computePermutation method should be called to compute the

permutation of two numbers.

Program Input:

import java.util.*;

public class PermutationClassTest

{

public static void main(String[] args)

{
Scanner myinput=new Scanner(System.in);

int num1,num2, result;

System.out.println("Enter the first number");

num1=myinput.nextInt();

System.out.println("Enter the second number");

num2=myinput.nextInt();

result= PermutationClass.computePermutation(num1,num2);

System.out.println(num1+" permutation "+num2+" is "+result);

}

}
// A program that uses the static computePermutation method of class

PermutationClass to compute the permutation of two numbers

Program Output:

run:

Enter the first number

5

Enter the second number

3

5 permutation 3 is 60

BUILD SUCCESSFUL (total time: 10 seconds)

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

90

Program Analysis:

An object of Scanner class was called to accept user‘s input, the static

computePermutation method of the PermutationClass was called to

compute the permutation of the two entered numbers. This was done

without instantiating an object of PermutationClass.

3.2.2 Static Predefined Methods

There are some readymade static methods that can be used to achieve

special tasks. To use such methods, the import statement will be used to

import the class (if necessary) and the class‘s name will then be called

directly on the object when the method is used. Some classes do not

need to be imported when their static methods are to be accessed. The

packages of such classes are implicitly imported by the compiler. A

common example of such packages is the Java.lang package. The

package has a class Math that has some static methods that enable you to

perform common mathematical calculations. Some of these static

methods are discussed below and our next programming example shows

how they work.

Table 3.1: One Argument Static Methods of the Math Class

Method Description Example

abs(x) The absolute value of x abs(2.5)=2.5, abs(-
2.5)=2.5

cos(x) The cosine of x in radians cos(0.7)=0.7648

sin(x) The sine of x in radians sin(0.7)=0.6442

tan(x) The tangent of x in radians tan(0.7)=0.8422

sqrt(x) The square root of x in radians sqrt(900)=30

ceil(x) Rounds x to the smallest
integer not less than x

ceil(2.6)=3, ceil(-
2.6)=-2

floor(x) Rounds x to the largest integer
not greater than x

floor(2.6)=2, floor(-
2.6)=-3

Table 3.2: Two Argument Static Methods of the Math Class

Method Description Example

max(x,y) Finds the larger of x and y max(2,5)=5, max(-2,-

5)=-2

min(x,y) Finds the smaller of x and y min(2,5)=2, min(-2,-
5)= -5

pow(x,y) Finds x raise to the power of y pow(2,5)=32,
pow(5,2)=25

The first category of methods accepts only one argument. The second

category has two arguments. Care must be taken in the way the

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

91

arguments are placed when the pow method is used. If the arguments are

not placed in their correct position, a wrong answer may be returned.

From the table above, you can see that pow(2,5) and pow(5,2) returns

different values. The first argument is the base and the second one is the

index. This is further explained in the next example.

Example 2.3.3

Create an executable class that asks the user to input a number, the

number should be passed as argument to all the methods discussed and

the value of the computation should be displayed.

Program Input:

import java.util.*;

public class MathClassTest1

{

public static void main(String[] args)

{
Scanner myinput=new Scanner(System.in);

double num1;

System.out.println("Enter a number");

num1=myinput.nextDouble();

System.out.println("The absolute value of "+num1+" is

"+Math.abs(num1));

System.out.println("The cosine of "+num1+" in radians is

"+Math.cos(num1));

System.out.println("The sine of "+num1+" in radians is

"+Math.sin(num1));

System.out.println("The tangent of "+num1+" in radians is

"+Math.tan(num1));

System.out.println("The square root of "+num1+" is

"+Math.sqrt(num1));

System.out.println("The ceiling of "+num1+" is "+Math.ceil(num1));

System.out.println("The floor of "+num1+" is "+Math.floor(num1));

}

}
// A class that calls some static methods of class Math to perform some

mathematical computations.

Program Output:

Enter a number

1.5

The absolute value of 1.5 is 1.5

The cosine of 1.5 in radians is 0.0707372016677029

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

92

The sine of 1.5 in radians is 0.9974949866040544

The tangent of 1.5 in radians is 14.101419947171719

The square root of 1.5 is 1.224744871391589

The ceiling of 1.5 is 2.0

The floor of 1.5 is 1.0
BUILD SUCCESSFUL (total time: 6 seconds)

Program Analysis:

An object of the Scanner class accepts user input and each of the static

methods of class Math was called to make some computations. No

object of the Math class was created to do this but the class name and a

dot was prefixed to all these methods because they are static methods.

3.2.3 The Main Method

You may be wondering why the main method is always declared as

static whenever it is used, you will know why it is always like that in

this section. Whenever Java programmes are written, the Java compiler

translates the Java source code into bytecodes, which are the codes

understandable by the Java Virtual Machine (JVM). These bytecodes are

executed by the Java Virtual Machine. A virtual machine is a software

application that simulates a computer, but hides the underlying operating

system and hardware from programmes that interact with the virtual

machine. When the Java Virtual Machine (JVM) is executed with the

Java command, the JVM attempts to invoke the main method of the

class you specify; when objects of the class have been created.

Declaring method main as static allows the Java Virtual Machine to

invoke the main method without creating an instance of the class.

3.3 Static Fields

Every object has its own copy of the entire instance variables of the

class. In certain cases, only one of a particular variable should be

shared by all objects of a class. A static field is used in such an instance

and it is usually called a class variable. A static field or a class variable

has general information that is to be shared by all objects of the class.

The syntax for creating a static field is;

accessmodifier static datatype fieldname;

A class‘s static members can be public or private. A class‘s public static

members can be accessed through a reference to any object of a class, or

by qualifying the member name with the class name and a dot (.). A

class‘s private static fields can be accessed only through methods of the

class. Declaring a class field to be static makes the field to exist even

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

93

when no objects of the class exist, they are available as soon as the class

is loaded into memory at execution time. To access a public static field

when no objects of the class exist (and even when they do), prefix the

class name and a dot (.) to the static members. Private static members

can only be accessed within the class. When they are used, a public

static method must be provided and the method must be called by

qualifying its name with the class name and a dot (.).

There are two major static fields in the Math Class of Java.lang, these

fields are PI and E. These fields represent commonly used mathematical

constants, to use them, prefix their names with the class name which is

Math and a dot (.). Thus, we have Math.PI and Math.E. The constant

Math.PI is the ratio of a class‘s circumference to its diameter and its

value is 3.14159265358979323846. The constant Math.E is the base

value for natural logarithms and its value is 2.7182818284590452354.

These fields are declared in the class Math with the modifier public,

final and static. Making them public allows other programmers to use

these fields in their own classes. They are declared final because their

values never change. Making them static allows them to be accessed

through the class name Math and a dot (.) separator.

The difference between an instance variable and a class variable is that

with an instance variable, the object of a class maintains its own copy of

attribute, each object (instance) of the class has a separate instance of the

variable in memory. Class variables are fields for which each object of a

class does not have a separate instance of the field and such variables are

declared as static and they are thus called static variables. When objects

of a class containing static fields are created, all the objects of that class

share one copy of the class‘s static fields. Class variables and instance

variables make up the fields of a class. The next examples explain how

static variables are used.

Example 2.3.4

Create an executable class that allows a user to enter a number that

represents the radius of a circle, use the Math.PI static field of the Math

class to compute the perimeter and the area of the circle.

Program Input:

import java.util.*;

public class CircleTest

{

public static void main(String[] args)

{
Scanner myinput=new Scanner(System.in);

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

94

double radius;

System.out.println("Enter the radius of a circle");

radius=myinput.nextDouble();

System.out.println("The perimeter of a circle with radius "+radius+"

is "+(2*Math.PI*radius));

System.out.println("The area of a circle with radius "+radius+" is

"+(Math.PI*radius*radius));

}

}

// A program that uses the static field PI of the Math class to calculate

the perimeter and the area of a circle.

Program Output:

run:

Enter the radius of a circle

14

The perimeter of a circle with radius 14.0 is 87.96459430051421

The area of a circle with radius 14.0 is 615.7521601035994

BUILD SUCCESSFUL (total time: 4 seconds)

Program Analysis:

An object of Scanner class was instantiated to accept input that

represents the radius of a circle from a user and the Math.PI was used to

calculate the area and perimeter of the circle.

3.4 Static Imports

A static import declaration enables you to refer to imported static

members as if they were declared in the class that uses them because the

class name and a dot(.) will not be required any more. A static import

has two forms; the single static import and the static import on demand.

The former imports a particular static member whereas the later imports

all static members of a class. The syntax for using the single static

import is:

import static packagename.classname.staticmembername;

In the syntax, packagename is the package of the class (e.g Java.lang),

classname is the name of the class (e.g Math) and staticmembername is

the name of the static field or method (e.g cos or PI). The syntax for

using the static import on demand is:

import static packagename.classname.*;

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

95

In the syntax, the packagename and classname represents the package of

the class and the name of the class respectively. The asterisk (*) denotes

that all static members of the specified class should be available for use

in the program. It should be noted that static import declarations import

only static class members. The next example shows how the static

import is used and its effect on a class.

Example 2.3.5

Import all static methods of class Maths explicitly and use some of these

methods to perform some computations without the class name and the

dot(.).

Program Input:

import java.util.*;

import static java.lang.Math.*;

class StaticImportClassTest

{

public static void main(String[] args)

{

Scanner myinput=new Scanner(System.in);

double num1,num2,num3;

System.out.println("Enter a number");

num1=myinput.nextDouble();

System.out.println("Enter another number");

num2=myinput.nextDouble();

System.out.println("Enter the last number");

num3=myinput.nextDouble();

System.out.println("The square root of "+num1+" is "+sqrt(num1));

System.out.println("The cosine of "+ num2+" is "+cos(num2));

System.out.println("The larger number between "+num2+" and

"+num3+" is "+max(num2,num3));

System.out.println(num2+" raise to the power of "+num3+" is

"+pow(num2,num3));

}

}

// A class that explicitly imports all the static methods of class Math.

Program Output:

run:

Enter a number

49

Enter another number

2

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

96

Enter the last number

3

The square root of 49.0 is 7.0

The cosine of 2.0 is -0.4161468365471424

The larger number between 2.0 and 3.0 is 3.0

2.0 raise to the power of 3.0 is 8.0

BUILD SUCCESSFUL (total time: 11 seconds)

Program Analysis:

All the static methods in the Math class were imported explicitly and

when those methods were called, they were no prefixed with the class

name and a dot(.) as if they were created inside the class.

4.0 CONCLUSION

A class may contain static methods to perform common tasks that do not

require an object of the class. A static method is called by specifying the

name of the class in which the method is declared followed by a dot(.)

and the method name. A static variable represents class wide

information that is shared among all objects of the class. Static members

exist even when no objects of the class exist; they are available as soon

as the class is loaded into memory at execution time. To access a private

static member when no objects of the class exist, a public static method

must be provided. A static import declaration enables programmers to

refer to imported static members without the class name and a dot (.). A

single static import declaration imports one static member, and a static

import on demand imports all static members of a class.

7.0 SUMMARY

In this unit, the following were discussed:

 When methods directly called on the class and not the object,

such methods are called static methods. A static field called a

class variable (not an instance variable) is used in such a case.

 The keyword static usually comes before the return type in the

method‘s declaration and the method may or may not accept

parameters. Static methods are usually called by specifying the

name of the class in which the method is declared.

 Some classes do not need to be imported when their static

methods are to be accessed. The packages of such classes are

implicitly imported by the compiler. A common example of such

packages is the Java.lang package.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

97

 A virtual machine is a software application that simulates a

computer, but hides the underlying operating system and

hardware from programmes that interact with the virtual machine.

 When the Java Virtual Machine (JVM) is executed with the Java

command, the JVM attempts to invoke the main method of the

class you specify; when objects of the class have been created.

 A class‘s static members can be public or private. A class‘s

public static members can be accessed through a reference to any

object of a class, or by qualifying the member name with the

class name and a dot (.).

 The difference between an instance variable and a class variable

is that with an instance variable, the object of a class maintains its

own copy of attribute, each object (instance) of the class has a

separate instance of the variable in memory.

6.0 TUTOR-MARKED ASSIGNMENT

Review Exercise

i. Differentiate between a public and a private access modifier?

ii. Differentiate between an instance variable and a static field?
iii. What is the value of x after each of the following statement is

executed:

a. x=Math.abs(-7.5);

b. x=Math.floor(-2.7);

c. x=Math.ceil(6.3);

d. x=Math.flooe(4.1);

e. x=Math.ceil(-2.5);

f. x=Math.pow(4,6);

g. x=Math.pow(7,2);

h. x=Math.ceil(-Math.abs(-5+Math.floor(-3.2)));

Programming Exercise

Write a program that works like a clock. Your class should be given the

name Time and it should have three private static fields hour, minute and

second that respectively represents the hour, the minute and the second

of a time. Whenever an object of time is created, it should be assumed

that 20 ticks have occurred, thus the second should increase by 20, when

it reaches 60, the minute should be increased by 20 and when the minute

reaches 60, the hour should increase by one. Test your time class and

ensure that it is working perfectly.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

98

7.0 REFERENCES/FURTHER READING

Deitel Java How to Program (7th ed.).

Wrox Beginning Java
TM

 2, JDK
TM

 (5th ed.).

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

99

UNIT 4 INHERITANCE AND COMPOSITION

CONTENTS

1.0 Introduction

1.1 Objectives
3.0 Main Content

3.1 Inheritance

3.2 Superclasses and Subclasses

3.2.1 Protected Members

3.2.2 Data Hiding

3.3 Composition

4.0 Conclusion
5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This unit discusses an important OOP concept that promotes software

reusability. This concept is called inheritance. Inheritance allows a new

class to be created by using an existing class‘s members and

manipulating them with new or modified capabilities. Inheritance saves

the time programmers would have otherwise used re-inventing the

wheels. It has increased the possibility that system will be effectively

implemented. Inheritance allows classes to associate with one another.

When creating a class, instead of declaring completely new members,

you can let the new class inherit the members of an existing class. In

such an instance, the existing class is called the superclass and the new

class is called the subclass.A subclass can be a superclass for future

subclasses and a superclass can be a subclass for some superclasses.

Software development has shown that significant amounts of code deal

with closely related special cases. When the developer is preoccupied

with special cases, the details can obscure the big picture. With object-

oriented programming, the programmer focuses on commonalities

among objects in the system rather than on the special cases. New

classes can inherit from classes in class libraries and thus the

development of more powerful, abundant and economical software will

be facilitated. Inheritance is of two types- single and multiple

inheritances. In single inheritance, a class is derived from one direct

superclass whereas in a multiple inheritance, a class is derived from

more than one direct superclass. Java does not support a multiple

inheritance.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

100

Another OOP concept which will be discussed in this unit is

Composition. Composition allows a class to have references to objects

of other classes as members. An example of composition in a real life

sense is an object of AlarmClock class, this object needs to know the

current time and the time when it is supposed to sound its alarm, so it is

reasonable to include two references to Time objects as members of the

AlarmClock object.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain how inheritance promotes software reusability

 describe the concepts of superclasses and subclasses

 list the properties of a class that inherits fields and methods from

another class

 outline how the object of a class can reference members of

another class (composition).

3.0 MAIN CONTENT

3.1 Inheritance

Inheritance allows classes to associate with themselves that is, it

promotes association within classes. This is one of the properties of a

class. There is always a hierarchical structure with inheritance. This

hierarchy is represented by classes and superclasses. A superclass is a

more general class whereas a subclass is a more specific class.

3.2 Inheritance Properties

An example of a superclass and a subclass is a vehicle and a car

respectively. This is an example of inheritance relationship. Inheritance

is an is-a relationship whereby an object of a subclass can also be treated

as an object of its superclass e.g. a car (a subclass) is an object of vehicle

(a superclass). A car is a specific type of vehicle but it is incorrect to say

that every vehicle is a car because a vehicle could be a lorry, trailer,

bicycle or even a motorcycle. The set of objects represented by a

superclass is typically larger than the set of objects represented by any

of its subclasses because every subclass object is an object of its

superclass and one superclass can have many subclasses. Example, the

superclass vehicle represents all vehicles, including cars, trucks,

motorcycles, boats, etc. whereas a subclass lorry represents a smaller

more specific subset of vehicles.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

101

In some cases, a class can be a superclass and also a subclass. For

example, in the Shape class, A shape can be two dimensional or three

dimensional, thus shape is the superclass for two dimensional shapes

and three dimensional shapes, two dimensional shapes and three

dimensional shapes are the subclasses for shape. However, a two

dimensional shape can be a circle, square, triangle, thus it (two

dimensional shape) becomes a superclass for circle, square and triangle.

A three dimensional shape can be a sphere, cube or tetrahedron, thus it

(three dimensional shape) becomes a superclass for sphere, cube, and

tetrahedron. In this example, a two dimensional shape are subclasses of

shape and superclasses of circle, square, triangle and sphere, cube,

tetrahedron respectively.

It is possible to treat superclass objects and subclass objects similarly-

their commonalities are expressed in the members of the superclass.

Objects of all classes that inherits a common superclass can be treated as

objects of that superclass i.e (such objects have an is-a relationship with

the superclass). However, superclass objects cannot be treated as objects

of their subclasses e.g. all cars are vehicles but not all vehicles are cars.

Sometimes, a subclass can inherit methods that it does not need, in such

an instance, the method can be customised in order to make it useful to

the subclass i.e. the subclass will override the superclass method with an

appropriate implementation.

3.2.1 Protected Members

Members can have access modifier protected in their classes in order to

make them accessible by the subclass of that class. In our previous units,

it was discussed that a class‘s public members are accessible wherever

the program has a reference to an object of that class or one of its

subclasses. A class‘s private members are accessible only from within

the class itself. A superclass‘s private members are accessible only from

within the class itself. A superclass‘s private members are not inherited

by its subclasses. When the members of a superclass are declared as

protected, the members of its subclasses and members of other classes in

the same package can also access those members.

All public and protected superclass members retain their original access

modifiers when they become members of the subclass (i.e. the public

members of the superclass become the public members of the subclass

and protected members of the superclass become the protected members

of the subclass).

Subclass methods can refer to public and protected members inherited

from the superclass simply by using the members‘ names. When a

subclass modifies a superclass method, the superclass can be accessed

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

102

from the subclass by preceding the superclass method with keyword

super and a dot (.) separator. This is called method overriding.

Methods of a subclass cannot directly access private members of their

superclass. A subclass can change the state of the private superclass

instance variables only through non-private methods provided in the

superclass and inherited by the subclass. Our next example shows the

concept of superclasses and subclasses.

Example 2.4.1

In a training Institute, the pre-requisite for being a member is to write

three exams (mathematics, English and Science) and score at least a

credit. There is an elective course (vocational study) that is optional for

the aspiring members. Write a non executable class that has all the

appropriate variables and methods that determines members‘ grades and

gives comment showing their first names, last names, their grades and

comment whether they are bonafide member of the institution or not.

The scoring for each grade is shown below:

Grade A – 70 and above

Grade B- 60-69

Grade C-50-59

Grade D- 40-49

Grade F- 39 and below.

Note: Design the class in such a way that it will be used easily by

members offering the elective course.

Program Input:

public class Member {

protected String firstname;

protected String lastname;

protected int mathscore;

protected int englishscore;

protected int sciencescore;

public Member (String first, String last, int course1,int course2, int

course3)

{

firstname=first;

lastname=last;

mathscore=course1;

englishscore=course2;

sciencescore=course3;

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

103

public double getAverage()

{

return (mathscore+englishscore+sciencescore)/3;
}

public char getGrade()

{

double avg;

int approx;

char grade=0;

avg =getAverage();

approx=(int)(avg);

switch(approx/10)

{

case 10:

case 9:

case 8:
case 7:

grade='A';

break;

case 6:

grade='B';

break;

case 5:
grade='C';

break;

case 4:
grade='D';

break;

case 3:

case 2:

case 1:
grade='F';

break;

}

return grade;

}

public void getComment(char grade)
{

if (grade=='A'||grade=='B'||grade=='C')
System.out.println(firstname+" "+lastname+": "+"A bonafide

member");

else

System.out.println(firstname+" "+lastname+": "+"Not a bonafide

member");

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

104

}

// A superclass Member that has five protected members.

Program Analysis:

The class has five protected fields – firstname, lastname, mathscore,

englishscore and sciencescore that respectively store the first name, last

name, mathematics score, English language score and science score of

intending members. The variable are declared as protected because we

will create a class ElectiveMember which is a subclass of this class,

protected makes all these five variables accessible to members of this

subclass. The remaining lines of codes are fundamental programming

concepts which we have either discussed here or you have a prior

knowledge of.

3.2.2 Data Hiding

Declaring the fields of a class as protected is not a good software

development procedure. Doing so may make the subclass of that class to

modify the protected members, which can invariably change the services

provided by the class. The best software development procedure is to

declare the fields of a class as private and then make them available to

other classes through the public methods of the class. When this is done,

other classes do not have a direct access to fields of a class, they can

only access the public methods of the class. This procedure is called

data hiding. The next example shows how the Member class can be

rewritten and used by his subclass to promote good software

development procedure.

Example 2.4.2

From the example above, rewrite the Member class in a way that

promotes data hiding.

Program Input:

public class Member2 {

private String firstname;

private String lastname;

private int mathscore;

private int englishscore;

private int sciencescore;

public Member2 (String first, String last, int course1,int course2, int

course3)

{

firstname=first;

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

105

lastname=last;

mathscore=course1;

englishscore=course2;

sciencescore=course3;

}

public double getAverage()

{

return (mathscore+englishscore+sciencescore)/3;

}

public char getGrade()

{

double avg;

int approx;

char grade=0;

avg =getAverage();

approx=(int)(avg);

switch(approx/10)

{

case 10:

case 9:
case 8:

case 7:

grade='A';

break;

case 6:

grade='B';

break;
case 5:

grade='C';

break;

case 4:
grade='D';

break;

case 3:

case 2:

case 1:

grade='F';

break;

}

return grade;

}

public void getComment(char grade)

{
if (grade=='A'||grade=='B'||grade=='C')

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

106

System.out.println(firstname+" "+lastname+": "+"A bonafide

member");

else

System.out.println(firstname+" "+lastname+": "+"Not a bonafide

member");

}

}
// A modified version of the Member class that promotes data hiding.

Program Analysis:

The only new thing introduced is that all the fields that were declared as

protected before are now declared as private. This is to enhance data

hiding.

Example 2.4.3

Using the Member2 class as subclass, create a subclass that provides the

functions that can handle the necessary computations for students taking

the elective course.

Program Input:

public class ElectiveMember2 extends Member2{

private int vocscore;

public ElectiveMember2(String first,String last, int course1,int course2,

int course3, int course4)

{

super(first,last,course1,course2,course3);

vocscore=course4;

}

public double getAverage()

{

return super.getAverage()+(vocscore/4);

}
}

// A subclass (ElectiveMember2) for the superclass Member2

Program Analysis:

The class has a new name that inherits from the modified Member class.

In the getAverage method, a call was made to the public method of the

superclass to return the average of scores in maths, English and science,

a quarter of the score in vocational studies is then added. This is because

this class no longer has a direct access to these three fields just because

they have been declared as private.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

107

3.3 Composition

People often confuse composition for inheritance and vice versa. This is

because these two concepts allow class association. However, there is a

striking difference between inheritance and composition. Inheritance is

an is-a relationship whereas composition is an has-a relationship. In an

is-a relationship, an object of a subclass can also be treated as an object

of its superclass, e.g. a car (a subclass) is a vehicle (superclass). By

contrast, in an has-a relationship, an object has reference to other objects

e.g. a car has a steering wheel (i.e. a car object has a reference to a

steering wheel object). Composition allows a class to have references to

objects of other classes as members. It is also a form of software reuse.

Next examples explain composition. In these examples, three classes

will be created, the first class is the Date class and this class has three

private instance variables of date parameters- day, month and year.

The second class is the Student class and it has three private variables

pertaining to a student- firstname, lastname, and birthdate. Birthdate is

an object of the Date class, thus, a student object will have a reference to

members of the Date class because a student must have a birth date. The

third class tests the Student class to further explain the concept of

composition.

Example 2.4.4

Create a class Date that has all the three date parameters- day, month

and year. This class should have a method that displays date in a

meaningful format.

Program Input:

public class Date {

private int day;

private int month;

private int year;

public Date(int theday, int themonth, int theyear)
{

day=theday;

month=themonth;

year=theyear;

}

public String toString()

{
return

String.format("%02d%s%02d%s%d",day,"/",month,"/",year);

}

}

// A date class that displays date.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

108

Program Analysis:

The three date parameters – day, month and year are declared private to

promote data hiding. A new method toString was called to display the

date in a meaningful format. This method is inherited from the implicit

direct superclass of Date called Object. Like it was said earlier all

classes have a direct or indirect superclass called Object. Method

toString is one of the most prominent methods of the Object class. The

next example shows how the object of a class can reference the variables

of a class. You will create a Student class, since every student is

expected to have a date of birth; you will reference the Date class in the

class.

Example 2.4.5

Create a class Student that has a field birthdate which is of the date type.

The class should have methods that can display the first name, last name

and the birth date of students.

Program Input:

public class Student {

private String firstname;

private String lastname;

private Date birthdate;

public Student(String first, String last, Date dateOfBirth)

{

firstname=first;

lastname=last;

birthdate=dateOfBirth;

}

public void getComment()

{
System.out.println("Student's name: "+firstname+" "+lastname);

System.out.println("Birth Date: "+birthdate.toString());

}

}

// A Student class that references the Date type as one of its fields.

Program Analysis:

The field birthdate is of the Date class, thus, it is a date datatype. The

constructor also takes as part of its argument a date data type

dateOfbirth since every student is expected to have a date of birth which

is a date data type. When the toString method is called on a date object,

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

109

the date is displayed in the format specified by the Date class in its

toString method.

Example 2.4.6

Test the Student class created in the previous example with an

executable class.

Program Input:

public class StudentTest {

public static void main(String[] args) {

Date birthdate=new Date(13,01,1990);
Student student=new Student("Grace","Omotoso", birthdate);

student.getComment();

}

// A program to test the Student class that has a data type variable.

Program Output:

run:

Student's name: Grace Omotoso

Birth Date: 13/01/1990

BUILD SUCCESSFUL (total time: 1 second)

Program Analysis:

An object of Date class was first created and later passed to the

constructor during object instantiation. The getComment method of the

Student class was then called to display the first name, last name and

birth date of students.

4.0 CONCLUSION

The direct superclass of a subclass (specified by the keyword extends in

the first line of a class declaration) is the superclass from which the

subclass inherits. An indirect superclass of a subclass is two or more

levels up in the class hierarchy from that subclass. Thus, the object class

is either a direct superclass for a class (a class that does not explicitly

inherit from another class) or an indirect superclass for a class (a class

that explicitly inherits from another class). A subclass is more specific

than its superclass and represents a smaller group of objects. Every

object of a subclass is also an object of that class‘s superclass. However,

a superclass object is not an object of its class‘s subclasses.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

110

A superclass‘s public members are accessible wherever the program has

a reference to an object of that superclass or one of its subclasses. A

superclass‘s private members are accessible only within the declaration

of the superclass. A superclass‘s protected members have an

intermediate level of protection between public and private access. They

can be accessed by members of the superclass by members of its

subclasses and by members of other classes in the same package. When

a subclass method overrides a superclass method, the superclass method

can be accessed from the subclass if the superclass method is preceded

by the keyword super. A class can have references to objects of other

classes as members. Such a capability is called composition and it is

sometimes referred to as an has-a relationship.

5.0 SUMMARY

In this unit, we have learnt the following:

 Inheritance is an is-a relationship whereby an object of a subclass

can also be treated as an object of its superclass e.g. a car (a

subclass) is an object of vehicle (a superclass).

 It is possible to treat superclass objects and subclass objects

similarly- their commonalities are expressed in the members of

the superclass.

 Objects of all classes that inherits a common superclass can be

treated as objects of that superclass i.e (such objects have an is-a

relationship with the superclass).

 Members can have access modifier protected in their classes in

order to make them accessible by the subclass of that class.

 A superclass‘s private members are not inherited by its

subclasses. When the members of a superclass are declared as

protected, the members of its subclasses and members of other

classes in the same package can also access those members.

 Composition allows a class to have references to objects of other

classes as members. It is also a form of software reuse.

 A superclass‘s private members are accessible only within the

declaration of the superclass. A superclass‘s protected members

have an intermediate level of protection between public and

private access.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

111

6.0 TUTOR-MARKED ASSIGNMENT

Review Exercise

i. Mention and explain the two forms of software reuse discussed in

this unit

ii. Differentiate between public, private and protected variables?

Which of the variables promotes good software engineering?

iii. Differentiate between inheritance and composition?

iv. Mention the two types of inheritance we have. Which of this

form does Java support.

v. There are classes that can act either as a direct superclass of an

indirect superclass to all classes. What is the name of this class

and mention one of the most prominent methods of this class?

Programming Exercise

In some organisations, some employees are given commission in

addition to their salary based on their sales and commission rate. Create

a class called Commission Employee that uses the Employee class as a

superclass. Provide two new private fields. commisionrate and sales.

Create a method that shows the earnings of a Commission Employee.

Test your class with an executable class.

7.0 REFERENCES/FURTHER READING

Deitel Java How to Program (7th ed.).

SAMS Teach Yourself Borland JBuilder
TM

 2 in 21 Days.

Wrox Beginning Java
TM

 2, JDK
TM

 (5th ed.).

Zbigniew M.S. Java: Practical Guide for Programmers.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

112

UNIT 5 POLYMORPHISM

CONTENTS

1.0 Introduction

2.0 Objectives

4.0 Main Content

4.1 Polymorphic Behaviours and Examples

4.2 Abstract Classes and Concrete Classes

4.3 Abstract Methods

4.4 Downcasting and Dynamic Binding
4.5 Final Methods and Classes

3.6 Interfaces

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, we will discuss a very useful OOP concept called

polymorphism that allows software reuse. It enables programmers to

program in the general rather than in the specific. Polymorphism enables

programmers to write programmes that process objects that share the

same superclass in a class hierarchy as if they were objects of the

superclass. This significantly helps to simplify programming. With

polymorphism, programmers can design and implement systems that are

easily extensible, new classes can be added with little modification to

the general portions of the program.

People often find difficulty in differentiating between polymorphism

and inheritance, at the end of this unit; you will understand the

difference between these two OOP concepts. You will also learn some

OOP terminologies and concepts like interfaces, abstract classes and

abstract methods.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 explain the concept of polymorphism

 use overridden methods to effect polymorphism

 distinguish between abstract and concrete classes

 design abstract methods to create concrete abstract classes

 explain how polymorphism makes systems extensible and

maintainable

 determine an object‘s type at execution.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

113

3.0 MAIN CONTENT

3.1 Polymorphic Behaviours and Examples

An example of polymorphic behaviour is a programme that simulates

the movement of several types of Vehicles for a mechanical study.

Classes car, bicycle and boat represent the three types of vehicles under

investigation; assuming that each of the classes has a superclass Vehicle

that contains a method move and maintains a vehicle current position.

Each subclass of Vehicle implements method move. The program

maintains an array of references to object of the various Vehicle

subclasses. To simulate the vehicles‘ movements, the programme sends

each object of Vehicle the same message once per second- the message

is called move. When this message is received by the objects, each

specific type of vehicle represents a move message in a distinct way.

The program issues the message move to each vehicle object as a group

but each object knows how to modify its position appropriately for its

specific type of movement.

Polymorphism is the act of designing a class in a way that the objects of

the class behave in different ways. With polymorphism, programmers

can rely on various objects of a class to do the right thing (i.e. do what is

appropriate for that type of object) in response to the same method call.

Just like in our example, the same message (in this case, move) sent to

various objects have ―many forms‖ of results; this is where the term

polymorphism is derived.

Another example of polymorphism is with Quadrilaterals. A

Quadrilateral class can have subclasses Square, Parallelogram and

Trapezium. Suppose the Quadrilateral class has a method getArea that

computes the area of a quadrilateral because a quadrilateral has an area,

when the three objects of the Quadrilateral subclasses are called, they all

inherit the getArea method but they will return different values even

though they are using the same method.

With polymorphism, the same method and signature can be used to

cause different actions to occur, depending on the type of object on

which the method is invoked.

Polymorphism promotes extensibility because software that invokes

polymorphic behaviour is independent of the object types to which

messages are sent. New object types that can respond to existing method

calls can be incorporated into a system without requiring modification of

the base system.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

114

3.2 Abstract Classes and Concrete Classes

Not all classes can be used for object instantiations, most times, such

classes acts as a superclass and their main work is to make other classes

inherit their methods and to share a common design. Such classes are

called abstract classes. While abstract classes cannot be used for object

instantiation, concrete classes are classes that can be used for object

instantiation. The classes discussed so far in all our earlier examples are

concrete classes. Concrete classes provide implementations of every

method they declare whereas abstract classes contain at least one

method that does not have implementation.

When polymorphism is discussed, inheritance has to come to play, thus,

there is usually a superclass. A superclass that can behave in many

forms is thus created. This superclass may contain at least one method

that does not provide the actual method implementation; such a

superclass is called an abstract superclass. Abstract superclasses are too

general to create real objects – they specify only what is common among

subclasses and since we need to be more specific before we can create

objects, abstract classes are not used for object instantiation. Although,

object instantiation cannot be done with abstract superclasses, however,

like concrete classes, they can be used to declare variables that can hold

references to objects of any concrete class derived from them. These

variables are used to manipulate the objects of subclasses

polymorphically. Just like concrete classes, an abstract class can have

static methods inside it and the name of the abstract class can be used to

invoke the static methods declared in them. A class can be made abstract

by declaring it with the keyword abstract as shown below:

public abstract class classname

3.3 Abstract Methods

An abstract method is a method that does not provide implementations

for its action. Such a method is declared like a normal method in

addition to the keyword abstract. A class that contains any abstract

method must be declared as an abstract class even if the class contains

some concrete (non abstract) methods. When a concrete subclass

inherits from an abstract superclass, the subclass must provide concrete

implementations of each of the superclass‘s abstract methods, failure to

do this, results in compilation errors.

Constructor and static methods cannot be declared as abstract. Since

constructors are not inherited, an abstract constructor can never be

implemented. Although, static methods are inherited, they are not

associated with particular objects of the classes that declare the static

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

115

methods. Since abstract methods are meant to be overridden so that they

can process objects based on their types, it would not be proper to

declare a static method as abstract. The next examples make use of the

concept of abstract classes, abstract methods and inheritance.

Case Study:

A company pays its employees on a weekly basis. The employees are

hourly-employees, salaried-employees and commission-employees.

Hourly-employees are paid by the hour and receive overtime pay for all

hours worked in excess of forty hours. The overtime pay per hour is one

– half of their normal pay per hour. Salaried-employees are paid a fixed

weekly salary regardless of the number of hours worked. The

commission-employees are only paid a percentage of their sales. The

company wants you to implement a Java application that performs its

payroll calculation polymorphically.

Example 2.5.1

Create an abstract superclass called Employee that each of the employee

class can inherit to perform its payroll calculations.

Program Input:

public abstract class Employee {

private String firstname;

private String lastname;

private String employee_id;

public Employee(String first, String last, String id)
{

firstname=first;

lastname=last;

employee_id=id;

}

public String toString()

{

return String.format("%s %s\n%s %s",firstname,lastname,

"employee_id: ",employee_id);

}

public abstract double earnings();

}
// An abstract class that acts as a superclass for all employee

categories.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

116

Program Analysis:

The class is declared as abstract in the first line, this tells that it has at

least one method that has no implementation. The class contains three

private instance variables firstname, lastname and employee_id, since an

employee is expected to have a first name, a last name and an identity

number. The constructor body sets all these three instance variables. The

toString method is inherited from the implicit direct superclass Object

and it returns a string value that displays the first name, last name and

employee id of all employees. Method earnings is declared abstract

since it does not have implementation code, this is because different

categories of employee have earn different amounts. When subclasses of

employee extend the class, they must all provide the implementation

code for the method earning because this is part of the contract they will

sign with the abstract superclass before inheriting it.

Example 2.5.2

Create a class for the categories of employees that are paid hourly.

Program Input:

public class HourlyEmployee extends Employee{

double hours;

double rate;

public HourlyEmployee(String first, String last, String id, double

thehours, double therate)

{

super(first,last,id);

hours=thehours;

rate=therate;

}

public double earnings()

{
if(hours<=40)

return hours*rate;

else

return (40*rate)+((hours-40)*1.5*rate);

}

public String toString()

{
return String.format("\nHourly employee: %s \n%s%.2f\n%s%.2f",

super.toString(),"Hours worked: ",hours,

"Wages per hour: ",rate);

}
}

// A class for the hourly paid employees.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

117

Program Analysis:

The class has two private variables hours and rate, since an hourly-

employee is paid based on the hours worked and the rate of wages per

hour. The constructor has five arguments, three of the arguments are set

by calling the superclass constructor and the remaining two are set

newly. Method earning returns the amount an hourly paid employee will

earn, overtime is also considered. The overtime is one-half the wages

per hour for each overtime hour. The method toString has a call to the

superclass, this displays the first name, last name and employee id, and

other parameters are also included to make the displayed result

complete.

Example 2.5.3:

Create a class for the salaried-employee.

Program Input:

public class SalariedEmployee extends Employee {

private double weeklysalary;

public SalariedEmployee(String first,String last, String id, double

weeklysal)

{

super(first,last,id);

weeklysalary=weeklysal;

}

public double earnings()
{

return weeklysalary;

}

public String toString()

{

return String.format

("\nSalaried employee: %s\n%s %.2f",super.toString(),"Weekly

Salary:",weeklysalary);

}

}
// A class for the salaried employee

Program Analysis:

The class has a private instance variable salary, since a salaried-

employee is paid a fixed salary irrespective of the hours worked. The

constructor has four arguments, three of the arguments are set by calling

the superclass constructor and the remaining one is set newly. Method

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

118

earning returns the amount salaried-employee will earn which is

basically the value of the instance variable salary. The method toString

has a call to the superclass, this displays the first name, last name and

employee id, and other parameters are also included to make the

displayed result complete.

Example 2.5.4

Create a class for the commissioned-employee.

Program Input:

public class CommissionEmployee extends Employee{

private double grossales;

private double commissionrate;

public CommissionEmployee(String first,String last,String id, double

sales, double rate)

{

super(first,last,id);

grossales=sales;

commissionrate=rate;

}

public double earnings()

{

return grossales*commissionrate;

}

public String toString()

{
return String.format("\nCommission employee:

%s\n%s%.2f\n%s%.2f", super.toString(),"Gross Sales: ",grossales,

"Commission rate: ",commissionrate);

}

}

// A class for the commission-employees

Program Analysis:

The class has two private variables grossales and commissionrate, since

a commission-employee is paid based on the gross sales and the

commission rate. The constructor has five arguments, three of the

arguments are set by calling the superclass constructor and the

remaining two are set newly. Method earning returns the amount a

commission-employee will earn. The method toString has a call to the

superclass, this displays the first name, last name and employee id, and

other parameters are also included to make the displayed result

complete.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

119

3.4 Downcasting and Dynamic Binding

A superclass reference can be used to invoke only the methods declared

in the superclass, attempting to invoke a subclass only methods through

a superclass give a compilation error. If a program needs to perform a

subclass-specific operation in a subclass object referenced by a

superclass variable, the program must first cast the superclass reference

to a subclass reference through a technique known as downcasting.

Downcasting enables a program to invoke subclass methods that are not

in the superclass. The syntax for downcasting is:

subclassname subclassobject = new (subclassname) superclassobject

An object of a subclass is an object of its superclass just like all cars are

vehicles. An object of a superclass may not be an object of a subclass

just like all vehicles are not cars. Downcasting allows an object of a

superclass to behave like an object of a class, thus the methods of a

subclass can be called through a superclass reference. Dynamic binding

is the process through which the type (class) of an object is determined

at execution time rather than at compilation time. It is also called late

binding. Next examples explain the concept of downcasting and

dynamic binding.

Example 2.5.5

For the current pay period, the company has decided to reward the

salaried-commission employees by adding 5% to their base salaries. The

company wants you to implement this without altering the classes you

have already because it‘s going to be a temporal process.

Clue: Use an executable class

Program Input:

public class Main {

public static void main(String[] args) {

HourlyEmployee hourlyemployee=

new

HourlyEmployee("Grace","Omotoso","08/021",16.75,40);

SalariedEmployee salaryemployee=new

SalariedEmployee("John","Kufor","06/017",800);

CommissionEmployee commissionemployee=

new

CommissionEmployee("Victor","Michael","05/002",10000,0.06);

BasePlusCommissionEmployee basepluscommissionemployee=

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

120

new

BasePlusCommissionEmployee("Rebecca","Olufunke","07/001",5000,0.

04,300);

System.out.println("Employees processed Polymorphically");

Employee employees[]=new Employee[4];

employees[0]=hourlyemployee;

employees[1]=salaryemployee;

employees[2]=commissionemployee;

employees[3]=basepluscommissionemployee;

for(Employee currentemp: employees)
{

System.out.println(currentemp);

if (currentemp instanceof BasePlusCommissionEmployee)

{
BasePlusCommissionEmployee

emp=(BasePlusCommissionEmployee)currentemp;

emp.setSalary(1.05*emp.getSalary());

System.out.printf("new base salary with 5%% increase is:

#%,.2f\n",

}

emp.getSalary());

System.out.printf("earned #%,.2f\n",currentemp.earnings());

}

// An executable class that processes the objects of Employee subclasses

polymorphically.

Program Output:

run:

Employees processed Polymorphically

Hourly employee: Grace Omotoso

employee_id: 08/021

Hours worked: 16.75

Wages per hour: 40.00

earned #670.00

Salaried employee: John Kufor

employee_id: 06/017

Weekly Salary: 800.00

earned #800.00

Commission employee: Victor Michael

employee_id: 05/002

Gross Sales: 10000.00

Commission rate: 0.06
earned #600.00

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

121

Base-salaried commission employee:

Commission employee: Rebecca Olufunke

employee_id: 07/001

Gross Sales: 5000.00

Commission rate: 0.04

Salary: 300.00
new base salary with 5% increase is: #315.00

earned #515.00

BUILD SUCCESSFUL (total time: 3 seconds)

Program Analysis:

An array of Employee type is used to process the objects of the various

subclasses polymorphically. Since we are more particular about the

BasePlusCommissionEmployee, the program uses an advanced for loop

to iterate through the various object, if an object is of the

BasePlusEmployee class, it is given a special consideration. The

operator instanceof determines if an object is of a particular class. Thus,

if an object is of the BasePlusCommission class, the object is

downcasted so that the methods of the subclass will be called from a

superclass reference. The salary is reset using the setSalary method of

the class and the new salary is returned by the getSalary method.

3.5 Final Methods and Classes

It was discussed in unit three that a variable declared final cannot be

modified after they are initialised- Such variables represent constant

values. It is also possible to declare methods, method parameters and

classes with the final modifier. A method that is declared final in a

superclass cannot be overridden in a subclass. Methods that are declared

private are implicitly final because they cannot be used outside the class.

A final method‘s declaration can never change, so all subclasses

inheriting the final methods of a superclass use the same implementation

and calls to final methods are resolved at compile time. This concept is

known as static binding.

3.6 Interfaces

Interfaces are used for assigning common functionality to possible

unrelated classes. This allows objects of unrelated classes to be

processed polymorphically. Interfaces define and standardise the ways

in which things such as people and systems can interact with one

another. Interfaces specify what and not how e.g. the controls of a radio

serve as an interface between radio users and a radio‘s internal

components. The interface specifies what operations a radio must permit

users to perform but does not specify how the operations are performed.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

122

An interface is used when unrelated classes need to share common

methods and constants. This allows objects of unrelated classes to be

processed polymorphically.

To use an interface, a concrete class must specify that it implements the

interface and must declare each method in the interface with the

signature specified in the interface declaration. A class that does not

implement all the methods of the interface is like signing an agreement

with the computer that states ―I will declare all the methods specified by

the interface or I will declare my abstract class‖. Although, Java does

not support a multiple inheritance, whereby a class inherits from

multiple classes, it however allows a class to inherit from a superclass

and implement more than one interface. A class makes use of an

interface by using the implements keyword as shown below:

public class classname implements interface

To implement more than one interface, use a comma-separated list of

interface after the keyword implements in the class declaration as shown

below:

public class classname implements interface1, interface2, …

All objects of a class that implement multiple have the is-a relationship

with each implemented interface type. Next examples explain how an

interface can be used to make objects of unrelated classes to be

processed polymorphically.

Case Study:

Suppose that the company involved in our first case study wishes to

perform several accounting operations in a single amountPayable

application- in addition to calculating the earning paid to each employee,

the company must also calculate the payment due on each of several

invoices.

Example 2.5.6

Develop an application that can determine payments for employees and

invoices

Clue: Create an interface called Payment that contains method

getPaymentAmount that returns a double amount that must be paid for

an object of any class that implements the interface.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

123

Program Input:

public interface Payment {

public double getPaymentAmount();

}
// An interface that get the amount of any payable object

Program Analysis:

The program creates an interface called Payment. Inside the interface is

an empty method getPaymentAmount. Any class that implements this

interface must provide implementation for this method, if otherwise, the

class should be declared abstract.

Example 2.5.7

Create a class Invoice that implements the Payment interface. This class

should show the product number and description, it should also show the

product quantity and the price of product. Method getPaymentAmount

should be implemented in this class to calculate the amount on the

invoice.

Program Input

public class Invoice implements Payment{

private String productId;

private String productDesc;

private int quantity;

private double price;

public Invoice(String id, String desc, int qty, double theprice)

{
productId=id;

productDesc=desc;

quantity=qty;

price=theprice;

}

public double getPaymentAmount()

{

return quantity * price;

}

public String toString()

{
return String.format("%s\n%s: %s (%s)\n%s: %d\n%s: #%.2f",

"Invoice","Product

id",productId,productDesc,"Quantity",quantity,"Price per item",

price);

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

124

}

}

// A class that implements the Payment Interface.

Program Analysis:

The first line of the program has the implement keyword. This shows

that it is making use of an interface called Payment. The

getPaymentAmount of this class is implemented because the class is not

declared as abstract, it is implicitly signing an agreement that it will

provide implementations for all the methods of the interface.

Example 2.5.8

Create a class that uses the interface Payment that can be used as a

superclass for any of the categories of employees discussed earlier.

Program Input:

public abstract class Employee2 implements Payment{

private String firstname;

private String lastname;

private String employee_id;

public Employee2(String first, String last, String id)

{

firstname=first;

lastname=last;

employee_id=id;

}

public String toString()

{
return String.format("%s %s\n%s %s",firstname,lastname,

"employee_id: ",employee_id);

}

}
// An abstract class that implements the Payment interface

Program Analysis:

The class is abstract because the method getPaymentAmount has not

been used and hence no implementation is provided for it.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

125

Example 2.5.9

Create a subclass for this new Employee2 superclass for the salaried-

employee category. This method should implement the

getPaymentAmount of the Payment interface.

Program Input:

public class SalariedEmployee extends Employee2{

private double weeklysalary;

public SalariedEmployee(String first,String last, String id, double

weeklysal)

{

super(first,last,id);

weeklysalary=weeklysal;

}

public double getPaymentAmount()
{

return weeklysalary;

}

public String toString()
{

return String.format
("\nSalaried employee: %s\n%s %.2f",super.toString(),"Weekly

Salary:",weeklysalary);

}

}

// A subclass for the Employee2 class that uses interface Payment.

Program Analysis:

The class is a concrete class. Even though the implement keyword was

not used in the first line, since it is a subclass of the Employee2 class

that implements the Payment interface, the class indirectly implements

the interface. It must provide implementations for the

getPaymentAmount method used in the interface since it is not declared

as abstract.

Example 2.5.10

Test all your classes with an executable class by polymorphically

manipulating objects of Invoice and Employee2.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

126

Program Input:

public class Main {

public static void main(String[] args) {

Invoice invoice1=new Invoice("0101","PS2",5,500);

Invoice invoice2=new Invoice ("0201","Optical",7,700);

SalariedEmployee salariedemployee1=new

SalariedEmployee("Rebecca","Olufunke","03/042",120000);

SalariedEmployee salariedemployee2=new

SalariedEmployee("Grace","Omotoso","05/095",50000);

Payment payable[]=new Payment[4];

payable[0]=invoice1;

payable[1]=invoice2;

payable[2]=salariedemployee1;

payable[3]=salariedemployee2;

System.out.println("Employees and invoices processed

polymorphically");

for(Payment currentpayable:payable)

{
System.out.printf("%s\n%s: %.2f\n",

currentpayable.toString(),"Payment due",

currentpayable.getPaymentAmount());

}

}
}

// A class to test the objects of the classes that implement the Payment

interface.

Program Output:

run:

Employees and invoices processed polymorphically

Invoice

Product id: 0101 (PS2)

Quantity: 5

Price per item: #500.00

Payment due: 2500.00

Invoice

Product id: 0201 (Optical)

Quantity: 7

Price per item: #700.00

Payment due: 4900.00

Salaried employee: Rebecca Olufunke

employee_id: 03/042

Weekly Salary: 120000.00

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

127

Payment due: 120000.00

Salaried employee: Grace Omotoso

employee_id: 05/095

Weekly Salary: 50000.00

Payment due: 50000.00

BUILD SUCCESSFUL (total time: 1 second)

Program Analysis:

No new thing was introduced in the program. Careful examination of

each line of code makes you understand better.

4.0 CONCLUSION

With polymorphism, programmers can design and implement systems

that are easily extensible. New classes can be added with little or no

modification to the general portions of the program, as long as the new

classes are part of the inheritance hierarchy that the program processes

generically. In some cases, it is useful to declare classes for which you

never intend to instantiate objects. Such classes are called abstract

classes. Because they are used only as superclasses in inheritance

hierarchies, they are referred to as abstract superclasses. The primary

purpose of an abstract class is to provide an appropriate superclass from

which other classes can inherit and thus share a common design. Classes

that can be used to instantiate objects are called concrete classes and

such classes declare implementations of every method they declare.

Abstract methods do not provide implementations. A class that contains

an abstract method must be declared as an abstract class even if that

class contains some concrete methods. Constructors and static methods

cannot be declared abstract. Including an abstract method in a superclass

forces every direct subclass of the superclass to override the abstract

method in order to become a concrete class. The instanceof operator can

be used to determine whether a particular object‘s type has the is-a

relationship with a specific time.

The is-a relationship applies only between a subclass and its superclass,

not vice-versa. However, downcasting allows a superclass object behave

like its subclass object. A method that is declared final in a superclass

cannot be overridden in a subclass.

Interfaces define and standardise the ways in which things such as

people and system can interact with one another. To use an interface, a

concrete class must specify that it implements the interface and must

declare each interface method with the signatures specified in the

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

128

interface declaration. A class that does not implement all the interface‘s

methods is an abstract class and must be declared abstract.

5.0 SUMMARY

In this unit, the following were discussed:

 Abstract superclasses are too general to create real objects; they

specify only what is common among subclasses and since we

need to be more specific before we can create objects, abstract

classes are not used for object instantiation.

 While abstract classes cannot be used for object instantiation,

concrete classes are classes that can be used for object

instantiation.

 An abstract method is a method that does not provide

implementations for its action. Such a method is declared like a

normal method in addition to the keyword abstract.

 Although, static methods are inherited, they are not associated

with particular objects of the classes that declare the static

methods. Since abstract methods are meant to be overridden so

that they can process objects based on their types, it would not be

proper to declare a static method as abstract.

 A superclass reference can be used to invoke only the methods

declared in the superclass- attempting to invoke a subclass only

methods through a superclass gives a compilation error.

 A method that is declared final in a superclass cannot be

overridden in a subclass. Methods that are declared private are

implicitly final because they cannot be used outside the class.

6.0 TUTOR-MARKED ASSIGNMENT

Review Exercise

1. How does polymorphism enable promote software extensibility?

2. Differentiate between an abstract class and a concrete class

3. What is an interface? Explain the concept of interfaces in OOP

context.

4. Explain what you understand by the term downcasting.

5. Differentiate between dynamic binding and static binding.
6. Differentiate between the inheritance hierarchies designed for

inheriting interface and the ones designed for inheriting

implementations.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

129

ThreeDimensionalSha TwoDimensionalShap

Shape

Circle Squar Triangl Sphere Cube Tetrehedron

Programming Exercise

1. Implement the shape hierarchy shown below. Each

TwoDimensionalShape should contain method getArea to

calculate the area of the two-dimensional shape. Each

ThreeDimensional shape should have methods getArea and

getVolume to calculate the surface area and volume, respectively,

of the three dimensional shape.

2. Create a program that uses an array of shape references to objects

of each concrete class in the hierarchy. The program should print

a text description of the object to which each array element

refers. Also, in the loop that processes all the shapes in the array,

determine whether each shape is a TwoDimensionalShape or a

ThreeDimensionalShape. If it is a TwoDimensionalShape,

display its area. If it is a ThreeDimensionalShape, display its area

and volume.

Fig. 5.1: A Shape Hierarchy for Programming Exercises

7.0 REFERENCES/FURTHER READING

Beginning Java
TM

 2, JDK
TM

 (5th ed.).

Deitel Java How to Program (7th ed.).

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

130

MODULE 3 OVERLOADING

Unit 1 Methods and Method Overloading

Unit 2 Basic Operators Overloading

Unit 3 Logical Operator Overloading

Unit 4 Overloading True and False

Unit 5 Conversion Operator Overloading and Indexers

UNIT 1 METHODS AND METHOD OVERLOADING

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Methods

3.2 Creating and Using Methods

3.2.1 Argument Promotion and Casting
3.2.2 Random Number Generation

3.3 Method Overloading

3.4 Recursive Methods

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Most computer programmes that solve real-world problems are much

larger than the programmes presented in module two. The best way to

develop and maintain a large program is to construct it from small,

simple pieces called modules. Although, methods was introduces in our

previous module, it will be studied at greater length in this unit. In this

unit, you will see how method declaration can be used to facilitate the

design, implementation, operation and maintenance of large

programmes. You will also learn how Java is able to keep track of which

method is currently executing, how local variables of methods are

maintained in memory and how a method knows where to return after it

completes execution.

Many of the classes you will use or create while developing applications

will have more than one method of the same name. This technique is

called method overloading and it is used to implement methods that

perform similar tasks for arguments of different types or for different

numbers of arguments. For some problems, it is useful to have a method

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

131

call itself; such a method is called a recursive method. You will learn the

concepts of recursion in this unit.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 list the mechanisms for passing information between methods

 differentiate between parameters and arguments

 use random-number generation to implement game playing

applications

 define method overloading

 outline the concept of recursion

 identify recursive methods.

3.0 MAIN CONTENT

3.1 Methods

Methods are one of the modules that exist in Java. The three kinds of

modules that exist in Java are methods, classes and packages. Methods

(called functions or procedures in other languages) allow programmers

to modularise a program by separating its tasks into self-contained units.

The statements in the method bodies are written only once, are reused

from perhaps several locations in a program and are hidden from other

methods. The following are the motivations for modularising a program

into methods:

 The divide and conquer approach- This makes program

development more manageable by constructing programmes for

small, simple pieces.

 Software reusability- This allows existing methods to be used as

building blocks to create programmes. Programmers write

programmes from standardised methods rather than building

customised codes.

Code Maintainability: Methods prevent programmers from writing

redundant codes that involves code repetition. Dividing a program into

meaningful methods makes the program easier to debug and maintain.

A method is invoked (i.e., made to perform its designated task) by a

method call. The method call specifies the name of the method and may

provide information (as arguments) that the called method requires to

perform its task. When the method call completes, the method either

returns a result to the calling method (or caller) or simply returns control

to the calling method. A common analogy for this is the hierarchical

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

132

form of management. A boss (the calling method or caller) asks a

worker (the called method) to perform a task and report back (i.e.,

return) the results after completing the task. The boss method does not

know how the worker method performs its designated tasks. The worker

may also call other worker methods, and the boss will be unaware of

these calls. The hiding of implementation details promotes good

software engineering.

3.2 Creating and Using Methods

Methods often require pieces of information to perform their tasks. The

pieces of information are called parameters. Most times, methods use

more than one parameter. When methods are created, the data type,

number of parameters and the order of parameters are to be put into

consideration. These three factors are called method signature. When

methods are to be called (after creation), the pieces of data passed into

them are called arguments. The arguments used by a called method must

have the same signature as the parameters used during the method

creation. Our next examples show how methods with multiple

parameters are declared in a program and the mechanism for passing

information between methods. The syntax for creating a method is;

accesslevel retuntype methodname([parameters])

{

Method body

[return value];

}

Note: Anything contained inside square bracket [] is optional.

The accesslevel describes how other methods in the class will be able to

access this method. The access level can either be public or private. A

private accesslevel makes the method inaccessible by others methods of

the class. A public access level makes the method accessible by other

methods of the class. Returntype describes the data type the method will

return to its caller. Return type can be any valid data type. A method that

has a return type of int returns an integer to its caller, while a method

that has a return type of String value returns a String value to its caller.

Sometimes a method may not return any value to its caller. Such

methods have a return type of void.

The methodname is any valid variablename. The method may or may

not have parameters depending on the method action. If a method has

parameters, when such method is to be called, the signature of the

arguments must be equal to the specified signature in the called method.

Just like classes, methods have a method body that begins and ends

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

133

respectively with a left brace ―{―and a right brace ―}‖. A method may or

may not return a value. A method that has a return type of void does not

return any value to its caller, thus, the second to the last line is absent i.e.

return value.

Note: For methods that do not have a return type of void, the last line

before the closing brace in the method should be the return value. All

programming examples in this Course book are compiled using the Java

Netbeans.

Example 3.1.1

Create an executable class that accepts two numbers from users, the

class should have a method that finds the difference of the two numbers;

the method should be called to display the difference of the two

numbers.

Program Input:

import java.util.Scanner;

public class Main {

public static void main(String[] args) {

double num1,num2;

Scanner myinput=new Scanner(System.in);

System.out.println ("Enter the first number");

num1=myinput.nextDouble();

System.out.println("Enter the second number");

num2=myinput.nextDouble();

System.out.println("The difference between "+num1+" and

"+num2+" is "+getDifference(num1,num2));

System.out.println("The difference between "+num2+" and

"+num1+" is "+getDifference(num2,num1));

}

public static double getDifference(double number1,double number2)

{
return number1-number2;

}

}
// A program that has a method that computes the difference of two

numbers.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

134

Program Output:

run:

Enter the first number

5

Enter the second number

3

The difference between 5.0 and 3.0 is 2.0

The difference between 3.0 and 5.0 is -2.0

BUILD SUCCESSFUL (total time: 10 seconds)

Program Analysis:

The program uses an executable class and the java.util package was

used to import the scanner class. An object of Scanner myinput was

created to accept inputs from users. The input expected from users are of

double types but in our output we entered integer values and no error

was returned, this is because the compiler was able to implicitly convert

the integer values to double values, you can see in the output that 5 and

3 entered by the user have been respectively changed to 5.0 and 3.0 by

the compiler. This process is called argument promotion and it will be

discussed in the next section. The method getDifference was declared as

static because it was used in the static main method. The method has

two parameters number1 and number2 both are of the double data type.

When the method was called in the main method, two arguments num1

and num2 were passed into the method. It should be noted that the

number of parameters and their datatypes in the method is equivalent to

the number of arguments and datatypes when the method was called.

Supplying any data other than the one specified in the method

parameters results to compilation error.

The order of arguments should also be put into consideration. It will be

discovered from the output that changing the order of the method

arguments gives different results. getDifference(5,3)=2.0 whereas

getDifference(3,5)=-2.0. This is because in the method body, the second

argument was to be subtracted from the first argument. During program

execution, control first goes to the main method, when a method call

occurs, control goes to the method and the action specified in the

method is carried out. If it is a method that returns a value, the value is

returned to the previous program segment before the method call, if it is

a method that does not return a value, control is returned back to the

previous program segment. For example, in our programming example,

the getDifference method was called in the output segment of the main

method, this makes control to go to the method body carrying along the

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

135

method arguments num1 and num2 and replacing them with the

parameters number1 and number2 and subtracting num2 from num1.

Since the method returns a value, this value is passed back to the output

segment of the main method. The next example illustrates how

information can be passed between methods.

Example 3.1.2

Modify the programming example 3.1.1 to embed the getDifference

methods. The program should allow users to input three numbers, the

difference of the first number and the last two numbers should be

returned.

Program Input:

import java.util.Scanner;

public class Main {

public static void main(String[] args) {

double num1,num2,num3;

Scanner myinput=new Scanner(System.in);

System.out.println ("Enter the first number");

num1=myinput.nextDouble();

System.out.println("Enter the second number");

num2=myinput.nextDouble();

System.out.println("Enter the third number");

num3=myinput.nextDouble();

System.out.println("The difference between "+num1+" " +"and the

difference of " +

num2+" and "+num3+" is

"+getDifference(num1,getDifference(num2,num3)));

}

public static double getDifference(double number1,double number2)

{
return number1-number2;

}

}
// A program to describe how information is passed between methods.

Program Output:

run:

Enter the first number

9

Enter the second number

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

136

6

Enter the third number

4

The difference between 9.0 and the difference of 6.0 and 4.0 is 7.0

BUILD SUCCESSFUL (total time: 22 seconds)

Program Analysis:

The program is not far different from the one in example one, only that

the getDifference methods were embedded into each other in the output

segment of the main method. The outermost method is first executed,

this accepts 6 and 4 and returns 2 to the outermost method, the

outermost method uses the returned value as its second arguments. The

argument for the method is now 9 and 2 which then returns 7 as its

result.

There are three ways to call a method, they are:

 Using a method name by itself to call another methods of the

same class e.g. in our programming example 3.1.1,

getDifference(num1,num2).

 Using a variable that contains a reference to an object followed

by a dot (.) and the method name to call a method of the

referenced object. This was discussed in unit one of module two.

 Using the class name and a dot (.) to call a static method of a

class. This was discussed in unit three of module two.

3.2.1 Argument Promotion and Casting

Argument promotion is an important feature of method calls. It is the

process of converting an argument‘s value to the type that the method

expects to receive in its corresponding parameter e.g. a program can call

the square root method of the Math class with an integer argument,

although, the method expects to receive a double argument, it does not

still return an error. The method declaration parameter list makes Java to

convert the int values 5 and 3 to 5.0 and 3.0 before passing the values to

getDifference. Some conversions may lead to compilation errors if

Java‘s promotion rules are not satisfied. The promotion rules specify

which conversions are allowed, these are the conversions that can be

performed without losing data. An int value can be converted to a

double value without changing its value just like 9 and 9.0 have the

same value. Converting a double value to an int value truncates the

fractional part of the double value- thus part of the value will be lost.

However, there are cases where programmers may intentionally want

information to be lost, in such cases; the java compiler requires the

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

137

programmer to use a cast operator to explicitly force the conversion to

occur. This makes the programmer take control from the compiler by

saying he knows the conversion might cause loss of information but for

his purpose, he is okay with the information loss. This is called casting.

Next example creates a class that has methods that enables number

conversion from one base to another.

Example 3.1.3

Develop a non executable class that can be used for converting numbers

from one base to another. Modularise your program as much as possible

with methods so that the problem will be easier to solve.

Program Input:

public class NumberConversion {

public int toBaseTen (String number,int base)
{

int num=0, result=0;

for(int i=0;i<number.length();i++)

{

char val=number.charAt(i);

if (isNumber(val)==true)

num= Integer.parseInt(number.charAt(i)+"");

else

num=giveDecValue(val);

result+=num*(int)Math.pow(base, (number.length()-1-i));

}

return result;

}

public boolean isNumber(char value)

{

if(value=='0'||value=='1'||value=='2'||value=='3'||value=='4'||value=

='5'

||value=='6'||value=='7'||value=='8'||value=='9')

return true;

else

return false;
}

public int giveDecValue(char number)
{

int hold=0;

switch(number)

{

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

138

case 'A':

hold=10;

break;

case 'B':

hold=11;

break;

case 'C':

hold=12;

break;

case 'D':

hold=13;

case 'E':

hold=14;

break;

case 'F':

hold=15;

break;

}

return hold;
}

public char giveHexaValues(int number)
{

char hold=' ';

switch(number)

{

case 10:

hold='A';

break;

case 11:

hold='B';

break;

case 12:

hold='C';

break;

case 13:

hold='D';

break;

case 14:

hold='E';

break;

case 15:

hold='F';

break;

}

return hold;

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

139

public String BaseTentoOtherBases(int number, int base)

{

int rem;
String hold="",result="";

rem=number%base;

if(rem<10)

hold+=rem;

else

hold+=giveHexaValues(rem);

number=number/base;

while(number>0)

{

rem=number%base;

if(rem<10)

hold+=rem;

else

hold+=giveHexaValues(rem);

number=number/base;

}

for(int i=hold.length()-1;i>=0;i--)

{

result+=hold.charAt(i);

}

return result;

}

}

// A class for number conversion from one base to another.

Program Analysis:

The program was written based on the concept introduced in our

discussion of methods, careful analysis of each line of codes makes you

understand better.

Example 3.1.4

Test your number conversion class by accepting three inputs from users,

the first input is the number to convert, the second input is the base of

the number and the third input is the base you want to convert the

number to.

Program Input:

import java.util.Scanner;
public class NumberConversionTest {

public static void main(String[] args) {

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

140

Scanner myinput=new Scanner(System.in);

String number;

int initialbase, finalbase;

System.out.println("Enter the number you want to convert");

number= myinput.next();

System.out.println("Enter the initial base of the number");

initialbase=myinput.nextInt();

System.out.println("Enter the base you want to convert the number

to");

finalbase=myinput.nextInt();

NumberConversion nc=new NumberConversion();
System.out.println(number+" in base "+initialbase+" to

"+finalbase+" is "+

nc.BaseTentoOtherBases(nc.toBaseTen(number, initialbase),

finalbase));

}

}
// An executable class that tests the non executable NumberConversion

class.

Program Input:

run:

Enter the number you want to convert

110011

Enter the initial base of the number

2

Enter the base you want to convert the number to

16

110011 in base 2 to 16 is 33

BUILD SUCCESSFUL (total time: 15 seconds)

run:

Enter the number you want to convert

A4B5

Enter the initial base of the number

16

Enter the base you want to convert the number to

10

A4B5 in base 16 to 10 is 42165

BUILD SUCCESSFUL (total time: 40 seconds)

3.2.2 Random Number Generation

This section takes us to a brief and interesting common type of

programming application which is a game of chance using random

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

141

number generation. The element of chance can either be introduced

through the object of class Random in the java.util package or through

the static method random of the Math class. In this section, we will be

using the Random class from the java.util package to simulate a game of

chance. A new random number generator can be created by instantiating

an object of the Random class as follows:

Random random=new Random();

The random number generator can be used to generate random Boolean,

byte, float, double, int, long and Gaussian values but only the int values

will be discussed in this section. There is a method that can be called on

the random generator to make it generate integer values. This method is

the nextInt method. It may or may not accept arguments. If no argument

is supplied, then the method generates a random int value from -

2,147,483,648 to -2,147,483,647. The values returned by nextInt are

pseudorandom numbers – a sequence of values produced by a complex

mathematical calculation. The calculation uses the current time of day

(which changes constantly) to seed the random-number generation such

that each execution of a program yields a different sequence of random

values.

The range of values produced directly by method nextInt often differs

from the range of values required in a particular Java application e.g. a

program that simulates the toss of a coin might only require 0 and 1, and

a method that simulates the rolling of a die might require numbers 1 to

6. For such cases, class Random provides another version of method

nextInt that accepts integer argument, and returns a value from 0 up to

the number before the number specified in the argument. For instance

random.nextInt(4) returns generates number one of numbers 0 to 3.

The argument 4 in the example is called the scaling factor- which

represents the number of unique values that nextInt should produce (In

this case four- 0, 1, 2, 3). To use the random generator to generate

numbers that can appear on a die, we can have the following declaration;

int face= 1 + random.nextInt(6);

random.nextInt(6) generates numbers 0 - 5, addition of 1 make the

variable face to take numbers 1 – 6.

3.3 Method Overloading

Method overloading is the process through which methods of the name

are declared in the same class. In this process, there seems to arise some

naming conflicts, but the signature of the methods resolves this. A

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

142

method signature is the sets of parameters of the method that basically

comprises the number of parameters, the data types of parameters and

the order of the parameters. When an overloaded method is called, the

java compiler is able to select the exact method that is called by

checking the number, data types and the order of arguments supplied to

the called method.

Method overloading is commonly used to create methods with the same

name that perform the same or similar tasks, but on different types or

different numbers of arguments. An important aspect to take note of in

method overloading is that method calls cannot be distinguished by their

return types. The method factors that differentiate between overloaded

methods are their signatures only. Overloaded method declarations with

identical signatures cause compilation errors even if the return types are

different. The next example explains the concept of method overloading.

Example 3.1.5

Write a program that uses a method minimum to find the minimum of

three numbers. The method should be overloaded as three methods. The

first method accepts three integer values as its arguments and returns an

integer, the second method accepts three double values as its parameters

and returns double, and the third method accepts an integer value and

two double values as its argument and returns double. Users should be

asked to enter three integer values and three double values. The

overloaded methods should accept these variables as applicable.

Program Input:

import java.util.Scanner;

public class OverloadedMethods {

public static int minimum(int number1, int number2, int number3)

{

int min=number1;

if(number2<=min)

min=number2;

if(number3<=min)

min=number3;

return min;

}
public static double minimum(double number1, double number2,

double number3)

{

double min=number1;

if(number2<=min)

min=number2;

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

143

if(number3<=min)

min=number3;

return min;

}

public static double minimum(double number1, double number2, int

number3)

{

double min=number1;

if(number2<=min)

min=number2;

if(number3<=min)

min=number3;

return min;

}
public static void main(String[] args) {

Scanner myinput=new Scanner(System.in);

int intnum1=3,intnum2=7, intnum3=6;

double doublenum1=5.0, doublenum2=-2.3, doublenum3=-7;

System.out.println("The minimum of

"+intnum1+","+intnum2+","+intnum3+" is "+

minimum(intnum1,intnum2,intnum3));

System.out.println("The minimum of

"+doublenum1+","+doublenum2+","+doublenum3+" is "+

minimum(doublenum1,doublenum2,doublenum3));

System.out.println("The minimum of

"+doublenum1+","+doublenum2+","+intnum3+" is "+

minimum(doublenum1,doublenum2,intnum3));

}

}

// A program that has overloaded methods.

Program Output:

run:

The minimum of 3,7,6 is 3
The minimum of 5.0,-2.3,-7.0 is -7.0

The minimum of 5.0,-2.3,6 is -2.3

BUILD SUCCESSFUL (total time: 2 seconds)

Program Analysis:

There are three static methods in the program; these methods are

declared static because they are used inside the static main method. The

methods have the same and different signatures, when the methods are

called; the compiler is able to call the right method by comparing the

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

144

signature of the arguments of the called method to that of the parameters

of the method itself.

3.4 Recursive Methods

A recursive method is a method that calls itself. A recursive method can

be called either directly or indirectly through another method. Recursive

problem solving approaches have a number of elements in common.

When a recursive method is called to solve a problem, the method is

only capable of solving the simplest cases. If the method is called with a

base case, it returns a result, if it is called with a more complex problem,

the method divides the problem into conceptual pieces; a piece that the

method knows how to do and a piece that it does not know how to do.

To make recursion feasible, the latter piece must resemble the original

problem but must be a slightly simpler or smaller version of it. Because

this new problem looks like the original problem, the method calls a

fresh copy of itself to work on the smaller problem, this is called a

recursive call and it works like a method call. Our next examples use the

concept of recursion to find the factorial of numbers and to generate

Fibonacci series up to a specified number of terms.

Example 3.1.6

Using recursion, write a method that finds the factorial of numbers.

Your method should be used in an application that finds the factorial of

the first 10 numbers.

Program Input:

public class RecursiveFactorial {

public static long factorial(int number)

{
if (number<=1)

return 1;

else

return number*factorial(number-1);

}

public static void main(String[] args) {

for (int i=1;i<=10;i++)

{

System.out.println(i+"!\t"+factorial(i));
}

}

}

// A program that uses recursion to compute factorial of numbers.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

145

Program Output:

run:

1! 1

2! 2

3! 6

4! 24

5! 120

6! 720

7! 5040

8! 40320

9! 362880

10! 3628800

BUILD SUCCESSFUL (total time: 3 seconds)

Program Analysis:

The factorial method first solves the base case by specifying that

factorial of one or any number less than one should be zero, the complex

case is then solved by dividing the problem into two pieces which later

divides itself until the base case is reached. The next example we will

look at uses recursion to generate Fibonacci series.

4.0 CONCLUSION

Experience has shown that the best way to develop and maintain a large

program is to construct it from several small, simple pieces or modules.

This technique is called divide and conquer. Methods allow

programmers to modularise a program by separating its tasks into self-

contained units. The statements in a method are written only once and

hidden from other methods. Using existing methods as building blocks

to create new programmes is a form of software reusability that prevents

programmers from repeating codes within a program. When a method is

called, the program makes a copy of the method‘s argument values and

assigns them to the method‘s corresponding parameters, which are

created and initialised when the method is called. When program control

returns to the point in the program where the method was called, the

method parameters are removed from memory. A method can return at

most one value, but the returned value can be a reference to an object

that contains many values.

An important feature of method calls is argument promotion- converting

an argument‘s value to the type that the method expects to receive in its

corresponding parameters. In cases where information may be lost due

to conversion, the Java compiler requests programmers to use a cast

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

146

operator to explicitly force the conversion to occur. Random numbers in

a range can be generated with the formula.

Number=shiftin value +randomNumberGenerator.nextInt(scaling

factor);

Where shiftvalue specifies the first number in the desired range of

consecutive integers and scaling factor specifies how many numbers are

in the range. A recursive method calls itself directly or indirectly

through another method. When a recursive method is called to solve a

problem, the method is capable of solving only the simplest case(s) or

base case(s). If it is called with a base case, the method returns a result.

If a recursive method is called with a more complex problem than a base

case, it divides the problem into two conceptual pieces- a piece that the

method knows how to do and a piece that it does not know how to do. It

then further divides the latter piece into two different pieces and

continually does that until the base case is finally used to solve the large

problem.

5.0 SUMMARY

In this unit, we have discussed the following:

 Methods are one of the modules that exist in Java and the three

kinds of modules that exist in Java are methods, classes and

packages.

 Methods (called functions or procedures in other languages)

allow programmers to modularise a program by separating its

tasks into self-contained units.

 A method is invoked (i.e., made to perform its designated task) by

a method call. The method call specifies the name of the method

and may provide information (as arguments) that the called

method requires to perform its task.

 Argument promotion is the process of converting an argument‘s

value to the type that the method expects to receive in its

corresponding parameter.

 Method overloading is commonly used to create methods with

the same name that perform the same or similar tasks, but on

different types or different numbers of arguments.

 A recursive method is a method that calls itself which can be

called either directly or indirectly through another method.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

147

6.0 TUTOR-MARKED ASSIGNMENT

Review Exercise

1. A method is invoked with a

2. The _ statement in a called method

can be used to pass the value of an expression back to the calling

method.

3. The keyword _ indicates that a

method does not return a value.

4. List the three ways through which methods can be called?

5. An object of a class _ _ produces random

numbers

6. Define method overloading?

Programming Exercise

1. Write a method IntegerPower(base, exponent) that returns the

value of base exponent, for example, IntegerPower(3, 4) = 3 * 3

* 3 * 3. Assume that the exponent is a positive integer, and base

is an integer. Method IntegerPower should use for or while to

control the calculation. Do not use any Math library methods.

Use the method in an application that reads integer values for

base and exponent and performs the calculation with the method

IntegerPower.

2. Implement the following methods:

a. Method Celsius returns the Celsius equivalence of a Fahrenheit

temperature using the formalar; Celsius = 5.0/9.0 * (Fahrenheit –

32);

b. Method Fahrenheit returns the Fahrenheit equivalence of a

Celsius temperature using the formular;

Fahrenheit=9.0/5.0*(Celsius + 32);

c. Use the methods from parts (a) and (b) to write an application

that enables the user to either enter a Fahrenheit temperature and

displays the equivalent Celsius temperature or to enter a Celsius

temperature and display the Fahrenheit equivalence.

3. Write an application that displays a table of binary, octal and

hexadecimal equivalence of the decimal numbers in the range I

through 128.

4. A palindrome is a string that is spelt the same way forward and

backward. Some examples of palindromes are ―radar‖, ―pap‖ etc.

Write a recursive method that returns Boolean value true if the

string stored in the array is a palindrome and false, if otherwise.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

148

7.0 REFERENCES/FURTHER READING

Deitel Java How to Program (7th ed.).

Wrox Beginning Java TM 2, JDK TM(5th ed.).

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

149

UNIT 2 BASIC OPERATORS OVERLOADING

CONTENTS

1.0 Introduction

2.0 Objectives
5.0 Main Content

5.1 Basic Operator Overloading

5.2 Binary Operator Overloading

5.2.1 Creating the Addition (+) Operator

5.2.2 Creating the Subtraction (-) Operator

5.2.3 Creating the Multiplication (*) Operator

5.3 Unary Operator Overloading
5.3.1 Creating the Increment and Decrement Operator

5.3.2 Creating the Negation Operator

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Object- Oriented Programming concept allows programmers to overload

operators, not just methods. This can be done by defining static

methods using the operator keyword. Being able to overload basic

operators like +, -, * and so on for classes lets programmers use those

classes with those operators, just as if they were types built into the

program. Although Java does not support operator overloading, we will

look at some other programming languages that support operator

overloading in order to make our discussion on object- oriented

programming complete.

2.0 OBJECTIVES

At the end this unit, you should be able to:

 list the concept of operator overloading

 identify some object oriented programming languages that

support operator overloading

 explain why Java does not support operator overloading.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

150

3.0 MAIN CONTENT

3.1 Basic Operator Overloading

Operator overloading is simply the process of adding operator

functionality to a class. This allows you to define exactly how the

operator behaves when used with your class and other data types. This

can be standard uses such as the ability to add the values of two vectors,

more complex mathematics for multiplying matrices or non-arithmetic

functions such as using the + operator to add a new item to a collection

or combine the contents of two arrays. Multiple overloaded versions of

operators may also be created to provide different functionality

according to the data types being processed, in a similar manner to the

varying signatures of method overloading.

Java does not support operator overloading but an exception was made

for String by using the ―+‖ symbol to concatenate string literals.

Although, this is out of the control of developers as it is a built- in

feature of Java. Developers have no control over operator overloading in

Java. Java does not support operator overloading because the designers

of Java wanted to keep Java codes simple and found that operator

overloading made code more complex and difficult to read. There are

other methods available to achieve the same functionality as operator

overloading, you could create methods in a class named plus (), minus

(), multiply (), etc... The designers of Java must have decided that

operator overloading in Java was more of a problem than it was worth.

Some Object- Oriented languages allow you to overload an operator.

C#/ C++ are examples of such languages. Operator overloading allows

you to change the meaning of an operator. For example, when most

people see a plus sign, they assume it represents addition. If you see the

equation, you expect that X would contain the value 11. And in this

case, you would be correct.

X = 5 + 6;

However, there are times when a plus sign could represent something

else. For example, in the following code:

 String firstName = "Joe", lastName = "Smith";

 String Name = firstName + " " + lastName;

You would expect that Name would contain Joe Smith. The plus sign

here has been overloaded to perform string concatenation which is

commonly used in Java but it is a built- in feature of Java that cannot be

controlled by programmers.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

151

Many languages allow the programmer to redefine, either partially, or

wholly, the definition of basic operators (+, -, etc.). This can be

extremely useful as it allows the programmer to use operators on new

data types in a way that makes sense. For scientist, the classic example

is complex numbers. Most languages don‘t support complex numbers as

intrinsic data types but with operator overloading they can be used and

the resulting code is clear to read since Java doesn‘t allow operator

overloading, the programmer must use methods which makes the code

more verbose and harder to read and maintain.

The following codes create a vector class that can be used to manipulate

values that have two coordinates, e.g. 2x+6y, through operator

overloading, we can perform the basic mathematical operations on

members of the vector class.

public class Vector

{
private int _x, _y;

public Vector(int x, int y) { _x = x; _y = y; }

public int X

{

get { return _x; }

set { _x = value; }

}

public int Y

{

get { return _y; }

set { _y = value; }

}

}

3.2 Binary Operator Overloading

The first type of operator to consider is the binary operator, so named

because they require two values to work with. These include the simple

arithmetic operators such as +, -, *, / and %. In C#, the syntax for

overloading binary operators is:

public static result-type operator binary-operator (

op-type operand,

op-type2 operand2)

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

152

This initially appears to be a rather complex declaration but in fact is

quite simple. The declaration starts with public static as all operators

must be declared as such. Other scopes are not permitted and neither are

non-static operators. The result-type defines the data type or class that is

returned as the result of using the operator. Usually this will be the same

type as the class that it is being defined within. However, that need not

be the case and it is perfectly valid to return data of a different type. The

operator keyword is added to tell the compiler that the following

binary-operator symbol is an operator rather than a normal method. This

operator will then process the two operand parameters, each prefixed

with its data type (op-type and op-type2). As least one of these operands

must be the same type as the containing class.

3.2.1 Creating the Addition (+) Operator

The syntax for binary operators can now be used to create a new

addition operator for the Vector class. This operator will simply add the

X and Y elements of two vectors together and return a new vector

containing the result. Add the following to the Vector class to provide

this functionality. Note that a new vector is created rather than adjusting

one of the operands. This is because the operands are reference-types

and the original values should not be updated in this case.

public static Vector operator +(Vector v1, Vector v2)

{

return new Vector(v1.X + v2.X, v1.Y + v2.Y);

}

We can now test the vector's new operator by modifying the program's

main method. The following program instantiates two vector objects,

adds them together and outputs the values of the resultant vector's X and

Y properties.

static void Main(string[] args)

{

Vector v1 = new Vector(4, 11);

Vector v2 = new Vector(0, 8);

Vector v3 = v1 + v2;

Console.WriteLine("({0},{1})", v3.X, v3.Y); // Outputs "(4,19)"

}

3.2.2 Creating the Subtraction (-) Operator

Addition is a commutative operation. This means the order of the two

operands can be swapped without affecting the outcome. In the case of

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

153

subtraction, this is not the case so it important to remember that the first

operand in the declaration represents the value to the left of the operator

and the second operand represents the value to the right. If these are

used incorrectly, the resultant value will be incorrect. Using this

knowledge we can add a subtraction operator to the Vector class:

public static Vector operator -(Vector v1, Vector v2)

{

return new Vector(v1.X - v2.X, v1.Y - v2.Y);

}
To test the new operator, modify the Main method as follows and

execute the program

static void Main(string[] args)

{
Vector v1 = new Vector(4, 11);

Vector v2 = new Vector(0, 8);

Vector v3 = v1 - v2;

Console.WriteLine("({0},{1})", v3.X, v3.Y); // Outputs "(4,3)"

}

3.2.3 Creating the Multiplication (*) Operator

The last binary operator that will be added to the Vector class is

multiplication. This operator will be used to scale the vector by

multiplying the X and Y properties by the same integer value. This

demonstrates the use of operands of a different type to the class they are

defined within.

public static Vector operator *(Vector v1, int scale)

{

return new Vector(v1.X * scale, v1.Y * scale);

}
To test the multiplication operator, adjust the Main method again

static void Main(string[] args)

{

Vector v1 = new Vector(4, 11);

Vector v2 = v1 * 3;

Console.WriteLine("({0},{1})", v2.X, v2.Y); // Outputs "(12,33)"

}

In the operator code for the multiplication operator, the Vector is the

first operand and the integer the second. This means that the order used

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

154

in the multiplication statement must have the vector at the left of the

operator and the integer value to the right. Changing the order of the

operands in the Main method will cause a compiler error.

static void Main(string[] args)

{

Vector v1 = new Vector(4, 11);

Vector v2 = 3 * v1;

Console.WriteLine("({0},{1})", v2.X, v2.Y); // Does not compile

}

If the class must support both variations of multiplication, both must be

declared in the code. This provides the benefit of allowing the order of

operands change the underlying function. To provide the second

variation of multiplication, add the following code to the Vector class.

Afterwards, the program will execute correctly.

public static Vector operator *(int scale, Vector v1)

{
return new Vector(v1.X * scale, v1.Y * scale);

}

3.3 Unary Operator Overloading

Unary operators are those that require a single operand. These include

the simple increment (++) and decrement (--) operators. To declare a

unary operator, the following syntax is used:

 public static result-type operator unary-operator (op-type

operand)

This syntax is almost identical to that used for binary operators. The

difference is that only one operand is declared. The operand type must

be the same as the class in which the operator is declared.

3.3.1 Creating the Increment and Decrement Operator

Using the syntax defined above, we can now add the increment and

decrement operators to the Vector class. Note that there is only a single

definition for each. There is no way to differentiate between prefix and

postfix versions of the operator so both provide the same underlying

functionality. To declare the two operators, add the following code to

the Vector class. Each increments or decrements both affect X and Y

properties for Vector objects.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

155

public static Vector operator ++(Vector v)

{

v.X++;

v. Y++;

return v;
}

public static Vector operator --(Vector v)

{

v.X--;

v.Y--;

return v;

}

To test these operators, update and execute the Main method:

static void Main(string[] args)

{

Vector v1 = new Vector(4, 11);

v1++;

Console.WriteLine("({0},{1})", v1.X, v1.Y); // Outputs "(5,12)"

v1--;

Console.WriteLine("({0},{1})", v1.X, v1.Y); // Outputs "(4,11)"

}

3.3.2 Creating the Negation Operator

The last arithmetic unary operator to be considered in this unit is the

negation operator. This is the unary version of subtraction used to

identify a negative version of a value. We can add this operator using

the following code:

public static Vector operator -(Vector v)

{
return new Vector(-v.X, -v.Y);

}

To test the negation operator, update the Main method and run the

program.

static void Main(string[] args)

{

Vector v1 = new Vector(4, 11);

Vector v2 = -v1;

Console.WriteLine("({0},{1})", v2.X, v2.Y); //

Outputs "(-4,-11)"

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

156

4.0 CONCLUSION

In this unit, you learnt that it is possible to change the way basic

operators like +, - , *, / etc behave in order to suit the programmers

work. Java does not support this but methods can be used to make Java

behave like that. Java was designed not to support operator overloading

because it makes Java codes complex but since Java was designed to

make programming easier, the feature was embedded into Java. Some

Object- oriented languages like C#/ C++ support the basic operator

overloading it.

8.0 SUMMARY

In this unit, we have discussed the following:

 Operator overloading is the process of adding operator

functionality to a class which allows one to define exactly how

the operator behaves when used with your class and other data

types.

 Java does not support operator overloading but an exception was

made for String by using the ―+‖ symbol to concatenate string

literals.

 In the operator code for the multiplication operator, the Vector is

the first operand and the integer the second.

 Most languages don‘t support complex numbers as intrinsic data

types but with operator overloading they can be used and the

resulting code is clear to read since Java doesn‘t allow operator

overloading, the programmer must use methods which makes the

code more verbose and harder to read and maintain.

 The operator keyword is added to tell the compiler that the

following binary-operator symbol is an operator rather than a

normal method. This operator will then process the two operand

parameters, each prefixed with its data type (op-type and op-

type2).

9.0 TUTOR-MARKED ASSIGNMENT

1. What is operator overloading?

2. How does operator overloading differ from method overloading
3. Why does Java not support operator overloading?

4. Is there a way through which Java methods can be manipulated to

make it behave as if it supports method overloading? If yes,

explain how.

5. Mention a programming language that supports method

overloading.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

157

7.0 REFERENCES/FURTHER READING

The basics of Java Programming for Scientists.

www.blackwasp.co.uk/CSharpObjectOriented.aspx

http://www.blackwasp.co.uk/CSharpObjectOriented.aspx

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

158

UNIT 3 LOGICAL OPERATOR OVERLOADING

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 The Logical Operators

3.2 Overloading the Binary Boolean Logical Operators

3.2.1 Creating the Boolean AND Operator (&)
3.2.2 Creating the Boolean OR (|) and XOR (^)

Operators

3.3 Overloading the Unary Boolean Logical Operator

3.3.1 Creating the Boolean NOT Operator (!)

3.3.2 Enabling the Short-Circuit Operators

3.3.3 Adding the Short-Circuit Operator Pre-Requisites

to the Vector Class

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 Reference/Further Reading

1.0 INTRODUCTION

In this unit, the overloading of the logical operators is described

including how to enable short-circuit Boolean logical operators. All

programmes are written in C sharp because it enables overloading of

operators.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 describe logical operator

 explain operator overloading

 list the boolean AND operator

 outline overloaded boolean logical operator

 analyse short-circuit operator.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

159

3.0 MAIN CONTENT

3.1 The Logical Operators

There are four logical operators that can be directly overloaded for a

class. These are the NOT operator (!), the AND operator (&), the OR

operator (|) and the exclusive OR or XOR operator (^). The short-circuit

operators (&& and ||) cannot be overloaded directly. However, if the

class meets certain conditions the short-circuit operators are enabled

automatically.

In this unit, a Vector class will be used. The Vector class represents a

two-dimensional vector and already overloads arithmetic operators and

the true and false operators. The Vector class will be updated to include

overloading of the four logical operators for Boolean operators.

Here is a sample Vector class

[DefaultMemberAttribute("Item")]

[SerialisableAttribute()]

public class Vector : ICloneable, ISerialisable, IDisposable

3.2 Overloading the Binary Boolean Logical Operators

The Boolean binary logical operators are generally used in conditional

processing operations and thus return a Boolean value, either true or

false. To create an overloaded version of these operators, the syntax is

the same as for other binary overloads, except that the return value is

generally of the bool type.

public static bool operator logical-operator (

op-type operand,

op-type2 operand2

)

At least one of the operands must be of the same type as the containing

class. This means that by providing the correct signature, you can permit

logical operations between two classes of differing types.

3.2.1 Creating the Boolean AND Operator (&)

The three binary Boolean operators can be added to the Vector class

using the syntax described above. When determining the results of each,

a vector will be deemed to equate to true if either of the co-ordinates is

non-zero. If both the X and Y properties are zero, the vector will be

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

160

considered 'false'. Add the following operator overload to the Vector

class to implement the AND function:

public static bool operator &(Vector v1, Vector v2)

{
bool v1flag = !((v1.X == 0) && (v1.Y == 0));

bool v2flag = !((v2.X == 0) && (v2.Y == 0));

return v1flag & v2flag;

}

Analysis:

The code evaluates each vector's co-ordinates to create a Boolean

representation in the 'flag' variables. An AND operation is then

performed on the two flags and the result returned. You can test the code

by changing the Main method of the program as follows and executing

the console application.

static void Main(string[] args)

{

Vector v1 = new Vector(0, 0);

Vector v2 = new Vector(10, 0);

Console.WriteLine(v1 & v1); // Outputs "False"

Console.WriteLine(v1 & v2); // Outputs "False"

Console.WriteLine(v2 & v1); // Outputs "False"

Console.WriteLine(v2 & v2); // Outputs "True"

}

3.2.2 Creating the Boolean OR (|) and XOR (^) Operators

Using similar code, we can add the Boolean OR and XOR operators to

the Vector class. Add the following two operator overloads to the class

to implement the two logical functions.

public static bool operator |(Vector v1, Vector v2)

{

bool v1flag = !((v1.X == 0) && (v1.Y == 0));

bool v2flag = !((v2.X == 0) && (v2.Y == 0));

return v1flag | v2flag;

}

public static bool operator ^(Vector v1, Vector v2)

{

bool v1flag = !((v1.X == 0) && (v1.Y == 0));

bool v2flag = !((v2.X == 0) && (v2.Y == 0));

return v1flag ^ v2flag;

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

161

Again, these operators can be tested using a modified Main method:

static void Main(string[] args)

{
Vector v1 = new Vector(0, 0);

Vector v2 = new Vector(10, 0);

Console.WriteLine(v1 | v1); // Outputs "False"

Console.WriteLine(v1 | v2); // Outputs "True"

Console.WriteLine(v2 | v1); // Outputs "True"

Console.WriteLine(v2 | v2); // Outputs "True"

Console.WriteLine(v1 ^ v1); // Outputs "False"

Console.WriteLine(v1 ^ v2); // Outputs "True"

Console.WriteLine(v2 ^ v1); // Outputs "True"

Console.WriteLine(v2 ^ v2); // Outputs "False"

}

3.3 Overloading the Unary Boolean Logical Operator

Only one unary Boolean logical operator exists. This is the NOT

operator (!) that switches a Boolean value between true and false. When

overloaded using the unary syntax below, the value returned should be

the opposite of the Boolean representation of the object. As with other

unary operators, the type of the operand provided must be the same as

the class that the declaration appears within.

public static bool operator !(op-type operand)

3.3.1 Creating the Boolean NOT Operator (!)

The NOT operator for the Vector class will examine the contents of the

X and Y properties. As described above, if both co-ordinates are zero,

the Boolean value for the object is false. However, as this is the NOT

operator, we will perform the check and return true only when both

values are zero. Add the following code to the class to provide the NOT

operator:

public static bool operator !(Vector v)

{

return ((v.X == 0) && (v.Y == 0));
}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

162

To test that the operator is working correctly, modify the Main method

as follows:

static void Main(string[] args)

{
Vector v1 = new Vector(0, 0);

Vector v2 = new Vector(10, 0);

Console.WriteLine(!v1); // Outputs "True"

Console.WriteLine(!v2); // Outputs "False"

}

3.3.2 Enabling the Short-Circuit Operators

The short-circuit operators provide an additional variant of the AND and

OR operators. In each case, the left-hand operand in the operation is

examined in isolation first. When evaluating an AND where the first

operand evaluates to false, the result of the operation will be false

regardless of the value of the second operand. Similarly, when

evaluating an OR operation where the first operand evaluates to true, the

result will always be true. In these special cases, the right-hand operand

is not evaluated at all, potentially improving performance. The short-

circuit operators cannot be overloaded directly. However, if two

conditions are met in the class then the short-circuit operators are

automatically made available. The two conditions are as follows:

 The class must overload the normal logical operators (& and |)

with the operation returning a value of the same type as the

containing class. Each parameter of the operator must also be of

the type of the containing class.

 The true and false operators must be overloaded.

 When the operator is invoked, the true or false operators are used

to determine the status of the first operand. If this guarantees an

outcome from the operation, the result is returned immediately.

When the state of the first operand does not force an outcome, the

AND or OR operator is used for the two values to determine the

result.

3.3.3 Adding the Short-Circuit Operator Pre-Requisites to the

Vector Class

The Vector class already includes overloaded true and false operators.

To enable the short-circuit operators, one need to add the correct

signature for the AND and OR operators. As these must return a Vector

result that can be evaluated as either true or false according to the

results, this will return (0,0) if the operation equates to false and (1,1)

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

163

for true. Modify the code for the existing & and | operator overloads as

follows:

public static Vector operator &(Vector v1, Vector v2)

{
bool v1flag = !((v1.X == 0) && (v1.Y == 0));

bool v2flag = !((v2.X == 0) && (v2.Y == 0));

if (v1flag & v2flag)

{

return new Vector(1, 1);

}

else

{
return new Vector(0, 0);

}

}

public static Vector operator |(Vector v1, Vector v2)

{

bool v1flag = !((v1.X == 0) && (v1.Y == 0));

bool v2flag = !((v2.X == 0) && (v2.Y == 0));

if (v1flag | v2flag)

{

return new Vector(1, 1);

}

else

{
return new Vector(0, 0);

}

}

You can test that the short-circuit operators are correct by modifying the

Main method of the program. However, as the operators do not return a

Boolean value, an if statement is required in order to test the results of

the operations. This is demonstrated in the following code.

static void Main(string[] args)

{

Vector v1 = new Vector(0, 0);

Vector v2 = new Vector(10, 0);

if (v1 && v2)

{

Console.WriteLine("v1 && v2 = true");
}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

164

else

{

Console.WriteLine("v1 && v2 = false"); // Outputs "v1 && v2 =

false"

}

if (v1 || v2)

{
Console.WriteLine("v1 || v2 = true"); // Outputs "v1 || v2 = true"

}

else
{

Console.WriteLine("v1 || v2 = false");

}

}

4.0 CONCLUSION

Operator overloading refers to the ability to define a new meaning for an

existing (built-in) ―operator‖. The list of ―operators‖ includes

mathematical operators (+, -, *, /, ++, etc), relational operators (<, >,

==, etc), logical operators (&&, ||, etc.), access operators ([], ->),

assignment operator (=), stream I/O operators (<<, >>), type conversion

operators and several others. While all of these operators have a

predefined and unchangeable meaning for the built-in types, all of these

operators can be given a specific interpretation for different classes or

combination of classes.

Vector class is used to represent a real vector. Its methods can be used to

perform vector operations and data manipulation.

8.0 SUMMARY

In this unit, we have discussed the following:

 There are four logical operators that can be directly overloaded

for a class. These are the NOT operator (!), the AND operator

(&), the OR operator (|) and the exclusive OR or XOR operator

(^).

 The Boolean binary logical operators are generally used in

conditional processing operations and thus return a Boolean

value, either true or false.

 The NOT operator for the Vector class will examine the contents

of the X and Y properties. If both co-ordinates are zero, the

Boolean value for the object is false.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

165

 When evaluating an AND where the first operand evaluates to

false, the result of the operation will be false regardless of the

value of the second operand.

 The Vector class already includes overloaded true and false

operators. To enable the short-circuit operators, one need to add

the correct signature for the AND and OR operators.

 Operator overloading refers to the ability to define a new

meaning for an existing (built-in) operator.

9.0 TUTOR-MARKED ASSIGNMENT

1. Write a program to overload the Boolean OR(!) and AND

operators.

2. Due to the recent administration in an organisation, some

commission-employees are to be given a base salary in addition

to their commission. This has to be included in the payroll

urgently. Create a class that handles this new set of employees.

7.0 REFERENCE/FURTHER READING

BlackWasp (2006). C#Object-Oriented Pragramming Tutorial. Website-

www.java2s.com

http://www.java2s.com/

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

166

UNIT 4 OVERLOADING TRUE AND FALSE

CONTENTS

1.0 Introduction

1.2 Objectives
3.0 Main Content

3.1 Adding True and False Operators

3.2 Overloading True and False

3.2.1 Adding True and False to the Vector Class

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

To continue the discussion on overloading, this unit describes

overloading of the true and false operators, allowing an object to be used

in conditional processing. The true and false keywords have many uses

in C#. One of these uses is as a pair of operators within a class that allow

the class to represent its own state as either true or false. The

determination of the result is implemented in rules coded by the

programmer. This effectively gives an implicit conversion of a type to a

Boolean value that can then be used in conditional processing scenarios

such as with the if statement or the conditional operator (?). This unit

uses Vector class to demonstrate overloading bahaviour.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 list true and false overloaded operator

 define true and false operator

 outline the true and false overloading

 identify a vector operator.

3.0 MAIN CONTENT

3.1 Adding True and False Operators

The default behaviour of any class is to provide no support for the true

and false operators. This means that if an attempt is made to evaluate an

object of such a class as a Boolean the code will fail to compile. This

can be demonstrated by using a Vector object as the condition in an if

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

167

statement. Change the Main method of the VectorDemo program as

follows and attempt to compile it to see the error.

static void Main(string[] args)

{
Vector test = new Vector(4, 3);

if (test)

{

Console.WriteLine("True");

}

else

{

Console.WriteLine("False");

}
}

3.2 Overloading True and False

The syntax for overloading the true and false operators is similar to that

of other unary operators. Two limitations exist. Firstly, the return value

must be a Boolean. Secondly, it is invalid to overload only one of the

two operators; if the true operator is overloaded than so must be false

and vice versa.

public static bool operator true(op-type operand)

{

// Evaluation code
}

public static bool operator false(op-type operand)

{

// Evaluation code

}

3.2.1 Adding True and False to the Vector Class

The Vector class can now be updated to include overloaded versions of

the true and false operators. In the case of vectors, the object will be

deemed to be 'true' when either of the vector's X or Y properties is non-

zero. If the X and Y values are both zero, the object will evaluate as

false. This is simply implemented by adding the following code:

public static bool operator true(Vector v)

{

if ((v.X != 0) || (v.Y != 0))

{
return true;

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

168

}

else

{

return false;

}
}

public static bool operator false(Vector v)

{

if ((v.X == 0) && (v.Y == 0))

{

return true;

}

else

{
return false;

}

}

Analysis:

Now that the two operators have been added, you should be able to

compile and execute the Main method described above. As the vector's

X and Y co-ordinates are not zero, the code outputs the text "True". If

you modify the Vector's declaration as follows, the code will output

―False” instead.

static void Main(string[] args)

{
Vector test = new Vector(0, 0);

if (test)

{

Console.WriteLine("True");

}

else

{
Console.WriteLine("False"); // Outputs "False"

}

}

The following are the examples of true and false operator overloading:

Overloading true and false Operator

public class MyType

{

public static bool operator true (MyType e)

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

169

{

return (e == null) ? false : e.b;

}

public static bool operator false (MyType e)

{

return (e == null) ? true : !e.b;
}

public bool b;

public MyType(bool b)

{

this.b = b;
}

public static void Main(string[] args)

{

MyType myTrue = new MyType(true);

MyType myFalse = new MyType(false);

MyType myNull = null;

if (myTrue)

{

System.Console.WriteLine("true");

}

else

{
System.Console.WriteLine("false");

}

if (myFalse)

{

System.Console.WriteLine("true");

}

else

{

System.Console.WriteLine("false");

}

if (myNull)

{
System.Console.WriteLine("true");

}

else
{

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

170

System.Console.WriteLine("false");

}

}
}

Output:

True

False

False

True and False Operator for Complex

using System;

public struct Complex

{

public Complex(double real, double imaginary) {

this.real = real;

this.imaginary = imaginary;

}

public override string ToString() {

return String.Format("({0}, {1})", real, imaginary);

}
public double Magnitude {

get {

return Math.Sqrt(Math.Pow(this.real, 2) +

Math.Pow(this.imaginary, 2));

}

}

public static bool operator true(Complex c) {

return (c.real != 0) || (c.imaginary != 0);

}

public static bool operator false(Complex c) {

return (c.real == 0) && (c.imaginary == 0);

}

private double real;

private double imaginary;

}

public class MainClass

{
static void Main() {

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

171

Complex cpx1 = new Complex(1.0, 3.0);

if(cpx1) {

Console.WriteLine("cpx1 is true");

} else {

Console.WriteLine("cpx1 is false");
}

Complex cpx2 = new Complex(0, 0);

Console.WriteLine("cpx2 is {0}", cpx2 ? "true" : "false");

}
}

Output:

cpx1 is true

cpx2 is false

Overload True and False for Two Dimension

using System;

class TwoDimension {

int x, y;

public TwoDimension() {

x = y = 0;

}

public TwoDimension(int i, int j) {

x = i;

y = j;

}

// Overload true.

public static bool operator true(TwoDimension op) {

if((op.x != 0) || (op.y != 0))

return true; // at least one coordinate is non-zero

else

return false;

}

// Overload false.

public static bool operator false(TwoDimension op) {

if((op.x == 0) && (op.y == 0))

return true; // all coordinates are zero

else

return false;

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

172

// Overload unary --.

public static TwoDimension operator --(TwoDimension op)

{
// for ++, modify argument

op.x--;

op.y--;

return op;

}

// Show X, Y, Z coordinates.

public void show()

{

Console.WriteLine(x + ", " + y);
}

}

class MainClass {

public static void Main() {

TwoDimension a = new TwoDimension(5, 6);

TwoDimension b = new TwoDimension(10, 10);

TwoDimension c = new TwoDimension(0, 0);

Console.Write("Here is a: ");

a.show();

Console.Write("Here is b: ");

b.show();

Console.Write("Here is c: ");

c.show();

Console.WriteLine();

if(a)
Console.WriteLine("a is true.");

else

Console.WriteLine("a is false.");

if(b)
Console.WriteLine("b is true.");

else

Console.WriteLine("b is false.");

if(c)

Console.WriteLine("c is true.");

else

Console.WriteLine("c is false.");

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

173

Console.WriteLine();

Console.WriteLine("Control a loop using a TwoDimension object.");

do {

b.show();

b--;

} while(b);

}

}

Output:

Here is a: 5, 6

Here is b: 10, 10

Here is c: 0, 0

a is true.

b is true.

c is false.

Control a loop using a TwoDimension object.

10, 10

9, 9

8, 8

7, 7

6, 6

5, 5

4, 4

3, 3

2, 2
1, 1

4.0 CONCLUSION

The true and false operators can be overloaded, to allow a class to

represent its own state as true or false. You can overload the true or

false operators if you are defining a specialised boolean value.

Operator overloading allows us to define/redefine the way operators

work with our classes and structures. This allows programmers to make

their custom types look and feel like simple types such as int and string.

It consists of nothing more than a method declared by the keyword

operator and followed by an operator. There are three types of overload

able operators called unary, binary, and conversion. Not all operators of

each type can be overloaded.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

174

5.0 SUMMARY

In this unit, the following were discussed:

 What the default behaviour of any class does is to provide no

support for the true and false operator, Which means if an

attempt is made to evaluate an object of such a class as a

Boolean, the code will fail to compile

 Two limitations that exist in overloading are: first, the return

value must be a Boolean; secondly, it is invalid to overload only

one of the two operators; if the true operator is overloaded than

so must be false and vice versa.

 The true and false operators can be overloaded, to allow a class to

represent its own state as true or false.

6.0 TUTOR-MARKED ASSIGNMENT

1. Describe how you can enable the short- circuit operator.

2. Write a program to add the true and false operator.

7.0 REFERENCES/FURTHER READING

Design Patterns: Elements of Reusable Object-Oriented Software.

Erich Gamma, Richard Helm, Ralph Johnson & John M. Vlissides

(2006).

Iain D. Craig (2003). Object-Oriented Programming Languages:

Interpretation.

Nancy M. Wilkinson (2006). An Informal Approach to Object-Oriented

Development.

Timothy Budd (2005). Understanding Object-Oriented Programming

with Java.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

175

UNIT 5 CONVERSION OPERATOR OVERLOADING

AND INDEXERS

CONTENTS

1.0 Introduction

2.0 Objectives

5.0 Main Content

5.1 Conversion of Data Types

5.2 Creating an Implicit Conversion Operator

5.2.1 Adding Double Conversion to the Vector Class

5.3 Creating an Explicit Conversion Operator
5.3.1 Adding Single Conversion to the Vector Class

5.4 Indexers

5.4.1 Creating an Indexer
5.4.2 Creating a New Array-Like Class

5.4.2.1Adding the Class Variables

5.4.2.2Adding the Constructor

5.4.2.3Adding the Indexer

5.4.3 Creating a Multidimensional Indexer

3.4.4 Creating an Indexer with no Underlying Array

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In order to complete our discussion on operation overloading, this unit

describes the process for overloading conversion operators to allow

implicit and explicit casting between data types. To understand

conversion operator, we will make use of casting. Casting permits a

value of one type to be converted to another data type so that it can be

used in a calculation or method or in any other situation where the

value's current data type is unsuitable.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 create an explicit conversion

 differentiate between implicit and explicit conversion

 create an indexer

 explain how to add indexers to main class.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

176

3.0 MAIN CONTENT

3.1 Conversion of Data Types

The conversion of data types provided by casting can be either implicit

or explicit. An implicit cast occurs automatically when an implicit

conversion operator has been defined and the two data types are

compatible. An explicit cast is used when the two data types are not

entirely compatible and requires the source type to be prefixed with a

cast operator. This operator is the desired data type enclosed in

parentheses ().

The following code sample shows a comparison of conversion using

implicit and explicit casts for basic numeric data types. Note the

requirement for the cast operator for the second conversion.

unit integer = 100;

long longInteger;

// Implicit cast

longInteger = integer;

// Explicit cast

integer = (unit)longInteger;

When you create a new class, it does not possess the capabilities to be

cast to other data types. Each possible cast must be defined within the

class and declared as either implicit or explicit. As can be seen in the

above example code, the implicit cast can be easier to read and can

provide neater code. However, it is not immediately apparent to the

reader that a conversion is occurring and so implicit casting can hide

problems that would be more apparent if an explicit cast operator were

used.

As a rule of thumb, implicit casting should only be used where there is

no risk of data loss or an exception being thrown. Explicit casting

should be used in all other situations. This is demonstrated in the above

code. Implicit casting from the smaller integer to the larger integer is

risk-free as all possible values can be converted. For conversion from

the large signed integer to the smaller unsigned integer, there is a risk

that the value will lose its sign or be too large to be converted, so

explicit casting is more appropriate. There are some restrictions to

overloading the conversion operators. The key restrictions are:

 You may not create operators that convert a class to the object

data type. Conversion to object is provided automatically to

permit boxing and unboxing.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

177

 You may not create operators that convert a class to a defined

interface. If conversion to an interface is required, the class must

implement the interface.

 You may not create operators that convert from a base class into

a class derived from that base class.

This unit uses the Vector class. The Vector class represents a two-

dimensional vector and already overloads arithmetic operators, true and

false operators, logical operators and relational operators.

3.2 Creating an Implicit Conversion Operator

The implicit and explicit cast operators are unary operators and, as such,

are overridden using a similar syntax as other basic unary operators. The

following syntax is for the implicit conversion operator:

public static implicit operator result-type(op-type operand)

The result-type is the data type for the return value of the operation, i.e.

the target type for the cast. The op-type is the data type for the operand

that is to be converted. One of the two data types must be the same as

the class in which the declaration is made.

3.2.1 Adding Double Conversion to the Vector Class

Using the syntax described above, we will now add an implicit

conversion operator to the Vector class. This operator will cast a vector

to a double-precision floating point number representing the length of

the vector. The length calculation is already present as a property of the

class so we will reuse this functionality. To add the new conversion

operator, add the following code to the Vector class:

public static implicit operator double(Vector v)

{

return v.Length;
}

You can test the new conversion operator by modifying the Main

method of the program:

static void Main(string[] args)

{

Vector v = new Vector(5, 5);

double d = v;

Console.WriteLine(d); // Outputs 7.07106781186548

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

178

3.3 Creating an Explicit Conversion Operator

The syntax for creating an explicit conversion operator is similar to that

of the implicit version. Only the implicit keyword is changed. The

syntax is therefore:

public static explicit operator result-type(op-type operand)

3.3.1 Adding Single Conversion to the Vector Class

We will use the explicit version of the conversion operator syntax to

allow the vector to be cast as a single-precision floating point value

representing the vector's length. The choice of explicit operator is due to

the loss of accuracy of the number when the length is converted from a

double to a float. To add the new conversion operator, add the following

code to the Vector class:

public static explicit operator float(Vector v)

{
return (float)v.Length;

}

The new conversion can be tested using the updated Main method

below. Note the loss of accuracy that occurs when the vector's length is

cast.

static void Main(string[] args)

{

Vector v = new Vector(5, 5);

float f = (float)v;

Console.WriteLine(f);

}

// Outputs 7.071068

Note: The use of the (float) operator is required in this example as the

conversion has been defined as explicit. Removing this cast operator

causes a compiler error.

3.4 Indexers

A class that has an indexer can be used in a similar manner to an array.

Objects of the class can use array-style notation to present multiple

values. Most C# programmers first use an indexer when working with

an array. An array is used to store a number of similar, related variables

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

179

under the same name, with each variable accessed using an index

number provided in square brackets. For example:

thirdItem = items[3];

Indexer is use often to incorporate the square bracket notation for new

classes. This may be because the class is used to store related

information in a similar manner to an array, or simply because the index

number can be useful in a calculation or lookup. Adding an indexer to a

class provides this functionality.

3.4.1 Creating an Indexer

The simplest type of an indexer is the one-dimensional. A one-

dimensional indexer accepts a single value between the square brackets

when used. The standard syntax used to declare the indexer is similar to

that used to define the get and set accessors of a property. However,

instead of defining a property name, the accessors are declared for this[]

as follows:

public data-type this[index-type index-name]

{

get {}

set {}

}

In the syntax definition, data-type determines the type of information

that will be returned when the indexer is queried and the type that will

be required when setting a value. Index-type specifies the data type of

the indexer itself. This permits declaration of indexers that are not based

upon integer values, allowing similar functionality to that of a Hash

table for example. The index-name is the variable containing the index

value that can be used during processing of the get and set accessors.

The get accessor is required for an indexer and must return a value of

the type data-type. The set accessor is defined for writeable indexers and

is omitted if a read-only variant is desired.

3.4.2 Creating a New Array-Like Class

To demonstrate the use of an indexer, in this unit, we will create a new

class that behaves like a simple array of string variables. Unlike a

standard array that only permits zero-based indexing, the new class will

provide an integer-based array for which the programmer can specify

the upper and lower boundaries using a constructor during instantiation.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

180

3.4.2.1 Adding the Class Variables

The new array-like class requires three private variables. Two integer

values will hold the upper and lower boundaries. An array of strings will

also be required to store the items added to the MyArray class. This will

be a zero-based array with the same length as the created MyArray

object. The indexer will interpret the index number supplied and map it

against this underlying array forget and set operations. To add the class

level variables, add the following code to the MyArray class‘ code

block:

int _lowerBound;

int _upperBound;

string[] _items;

3.4.2.2 Adding the Constructor

The constructor for the new class will accept two integer parameters that

define the upper and lower boundaries. These values will be stored in

the two associated class variables. Using these boundaries, the length of

the underlying array can be calculated and the array can be initialised

accordingly. To create the constructor, add the following code to the

class:

public MyArray(int lowerBound, int upperBound)

{

_lowerBound = lowerBound;

_upperBound = upperBound;

_items = new string[1 + upperBound - lowerBound];
}

Note: To simplify this example validation, checks have been omitted. In

a real program, you would want to validate that the upper boundary is

larger than the lower boundary. Other validation checks in the code

above have also been removed for clarity.

3.4.2.3 Adding the Indexer

Now that the preparation work is complete, we can add the indexer to

the class. For this simple array-like class, the indexer accepts a single

integer parameter containing the index of the string that is being read

from or written to. This index needs to be adjusted to correctly map to

the underlying data before returning the value from the array or writing

the new value into the array. The code to add the indexer is shown

below. Note that as with property declarations, the set accessor uses the

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

181

'value' variable to determine the value that has been assigned by the

calling function:

public string this[int index]

{

get

{

return _items[index - _lowerBound];

}

set
{

_items[index - _lowerBound] = value;

}

}

Analysis:

The new class can be tested using the Main method of the program.

Open the Program class and add the following code to create a new

instance of MyArray and to populate it with values.

static void Main(string[] args)

{

MyArray fruit = new MyArray(-2, 1);

fruit[-2] = "Apple";

fruit[-1] = "Orange";

fruit[0] = "Banana";

fruit[1] = "Blackcurrant";

Console.WriteLine(fruit[-1]); // Outputs "Orange"

Console.WriteLine(fruit[0]); // Outputs "Banana"

}

3.4.3 Creating a Multidimensional Indexer

Indexers are not limited to a single dimension. By including more than

one index variable in the square brackets of the indexer declaration,

multiple dimensions may be added. For example, to declare a two-

dimensional indexer the syntax is as follows:

public data-type this[index-type1 index-name1, index-type2 index-

name2]

{

get {}

set {}
}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

182

It is also possible to overload indexers in a similar manner to

overloading methods. Several declarations for this [] can be included,

each with a different set of parameters, or signature. We can

demonstrate this by adding a second indexer to the MyArray class. For

simplicity, the following code creates an overloaded read-only indexer.

public string this[int word, int position]

{

get

{

return _items[word - _lowerBound].Substring(position, 1);

}
}

To test the second indexer, modify the Main method as follows:

static void Main(string[] args)

{

MyArray fruit = new MyArray(-2, 1);

fruit[-2] = "Apple";

fruit[-1] = "Orange";

fruit[0] = "Banana";

fruit[1] = "Blackcurrant";

Console.WriteLine(fruit[-1, 0]); // Outputs "O"

Console.WriteLine(fruit[0, 2]); // Outputs "n"

}

3.4.4 Creating an Indexer with no Underlying Array

As mentioned at the beginning of this unit, there is no requirement that

the indexer is linked to an underlying array or collection. Sometimes, it

is useful to use the indexer to refer to a row from a database table, a

position within a text file or XML document or simply to perform a

calculation. The following indexer, added to the MyArray class, uses no

lookup at all. Instead, the floating-point value passed to the indexer is

simply squared:

public float this[float toSquare]

{

get

{
return toSquare * toSquare;

}

}

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

183

This can be tested with a final change to the Main method:

static void Main(string[] args)

{

MyArray fruit = new MyArray(0, 0);

Console.WriteLine(fruit[5F]); // Outputs 25

}

4.0 CONCLUSION

Conversion operators are those that involve converting from one data

type to another through assignment. There are implicit and explicit

conversions. Implicit conversions are those that involve direct

assignment of one type to another. Explicit conversions are conversions

that require one type to be casted as another type in order to perform the

conversion. Conversions that may cause exceptions or result in loss of

data as the type is converted should be handled as explicit conversions.

An indexer allows objects of the class to use array-style notation to

present multiple values. Indexers are not limited to a single dimension.

By including more than one index variable in the square brackets of the

indexer declaration, multiple dimensions may be added. This time, the

indexer will have two integer parameters. The first will determine which

item from the private array will be looked up. The second parameter will

determine a position within the string and return the character at that

position.

5.0 SUMMARY

In this unit, the following were discussed:

 An implicit cast occurs automatically when an implicit

conversion operator has been defined and the two data types are

compatible. An explicit cast is used when the two data types are

not entirely compatible and requires the source type to be

prefixed with a cast operator.

 As a rule of thumb, implicit casting should only be used where

there is no risk of data loss or an exception being thrown. Explicit

casting should be used in all other situations.

 For conversion from the large signed integer to the smaller

unsigned integer, there is a risk that the value will lose its sign or

be too large to be converted, so explicit casting is more

appropriate.

 The implicit and explicit cast operators are unary operators and,

as such, are overridden using a similar syntax as other basic

unary operators.

CIT383 INTRODUCTION TO OBJECT-ORIENTED PROGRAMMING

184

6.0 TUTOR-MARKED ASSIGNMENT

Describe what is meant by conversion operator overloading and write a

program that will overload a conversion operator.

7.0 REFERENCES/FURTHER READING

Erich Gamma, Richard Helm, Ralph Johnson & John M. Vlissides

(2006). Design Patterns: Elements of Reusable Object-Oriented

Software.

Iain D. Craig (2003). Object-Oriented Programming Languages:

Interpretation.

Nancy M. Wilkinson (2006). An Informal Approach to Object-Oriented

Development.

Richard Wiener. Object-Oriented Introduction to Data Structures Using

Eiffel [FACSIMILE] (Paperback).

Timothy Budd (2005). Understanding Object-Oriented Programming

with Java.

