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Introduction 

 

The course, Computational Science and Numerical Methods, is a foundational course 

for students studying towards acquiring the Bachelor of Science in Computer Science 

degree. In this course, learners study computational science and numerical methods 

including computer arithmetic and interpolation. 

 

The overall aim of this course is to introduce you to computational science and 

numerical methods. Topics related to machine numbers, Least Square 

Approximation, Computer Arithmetic and Accumulated Errors are equally 

discussed. 

 

The bottom-up approach is adopted in structuring this course. We start with the basic 

Machine Arithmetic and Related Matter concepts and move on to the fundamental 

principles of Approximation and Interpolation. 

 

What this Course Will Help You Do? 

 

The overall aim and objectives of this course provide guidance on what you should 

be achieving in the course of your studies. Each unit also has its own objectives which 

states specifically what you should be achieving in the corresponding unit. To 

evaluate your progress continuously, you are expected to refer to the overall course 

aims and objectives as well as the corresponding unit objectives upon the completion 

of each. 

 

Course Aims 

The overall aim and objectives of this course include: 

 

 Develop your knowledge and understanding of the underlying 

principles of Computational science. 

 Build up your capacity to solve different 

machine and computer arithmetic and number errors. 

 Develop your competence in error analysis. 

 Build up your capacity to solve Computer Arithmetic. 

 

Course Objectives 

Upon completion of the course, you should be able to: 
 

Explain the basic machine arithmetic and related matter 

Describe the basic problems in approximation theory. 



Explain the notions behind condition number. 
Identify the basic concepts of error analysis and computer arithmetic. 

Discuss the underlying principles of least square approximation. 

Describe and explain least square error convergence. 

Identify sources of error. 

Discuss IEEE Standard for Floating Point. 

Describe the least square approximation. 

Discuss the least square error convergence. 

 

Working through this Course 

 

We designed this course in a systematic way, so you need to work 

through it from Module one, Unit 1 through to Module 3, Unit 4. This 

will enable you appreciate the course better. 

 

Course Materials 

 

Basically, we made use of textbooks and online materials. You are 

expected to search for more literature and web references for 

further understanding. Each unit has references and web 

references that were used to develop them. 

 

Online Materials 

 

Feel free to refer to the websites provided for all the online reference materials required in 

this course. The website is designed to integrate with the print-based course 

materials. The structure follows the structure of the units and all the reading and 

activity numbers are the same in both media. 

 

Study Units 

 

There are 3 modules in this course. Each module comprises various units which you are 

expected to complete in 3 hours. The 3 modules and their units are listed below. 

 
Module 1 Machine Arithmetic and Related Matter 

Unit 1: Real Number 
Unit 2: Machine Arithmetic 

Unit 3: Condition Number 

Unit 4: Computer solution of a Problem 



Unit 1: Real Number 

CONTENTS 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Real Number 

3.2 Machine 

3.2.1 Floating-point Numbers 

3.2.2 Fixed-point Numbers 

3.3 Other Data Structures for Numbers 

3.3.1 Rounding 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Readings 

1.0 Introduction 

The questions addressed in this first chapter are fundamental in the sense that they are relevant in 

any situation that involves numerical machine computation, regardless of the kind of problem that 

gave rise to these computations. In the first place, one has to be aware of the rather primitive type 

of number system available on computers. It is basically a finite system of numbers of finite length, 

thus a far cry from the idealistic number system familiar to us from mathematical analysis. The 

passage from a real number to a machine number entails rounding, and thus small errors, called 

roundoff errors. Additional errors are introduced when the individual arithmetic operations are 

carried out on the computer. In themselves, these errors are harmless, but acting in correct and 

propagating through a lengthy computation, they can have significant–even disastrous–effects. 

2.0 OBJECTIVES 

By the end of this unit, you should be able to: 

 Explain real number 

 Describe machine numbers 

 Identify fixed-point numbers 

 Explain other data structures for numbers 

 Describe the rounding in machine numbers 

3.0 MAIN CONTENT 



4 

3.1 Real Numbers 

 

We begin with the number system commonly used in mathematical analysis and confront it with the more 

primitive number system available to us on any particular computer. We identify the basic constant (the 

machine precision) that determines the level of precision attainable on such computer. 

One can introduce real numbers in many different ways. Mathematicians favor the axiomatic approach, 

which leads them to define the set of real numbers as a ―complete Archimedean ordered field‖. Here we 

adopt a more pedestrian attitude and consider the set of real numbers ℝto consist of positive and negative 

numbers represented in some appropriate number system and manipulated in the usual manner known from 

elementary arithmetic. We adopt here the binary number system, since it is the one most commonly used 

on computers. Thus, 

𝜘 𝜖 ℝ iff 𝜘 = ±(𝑏𝑛2𝑛 + 𝑏𝑛−12𝑛−1 + ⋯ + 𝑏0 + 𝑏−12−1 + 𝑏−22−2 + ⋯ ). (1.1) 

Here 𝑛 ≥ 0 is some integer, and the ―binary digits‖ 𝑏𝑖 are either 0 or 1, 

𝑏𝑖 = 0 𝑜𝑟 𝑏𝑖   = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. (1.2) 

It is important to note that in general we need infinitely many binary digits to represent a real number/ We 

conveniently write such a number in the abbreviated form )familiar from the decimal number system) 

𝜘 = ± (𝑏𝑛𝑏𝑛−1 … 𝑏0 . 𝑏−1𝑏0−2𝑏−3…)2.(1.3) 

Where the subscript 2 at the end is to remind us that we are dealing with a binary number. (Without this 

subscript, the number could also be read as a decimal number, which would be a source of ambiguity). The 

dot in (1.3) – appropriately called the binary point – separates the integer part on the left from the fractional 

part on the right. Note that representation (1.3) is not unique, for example, (0.0111  … )2 =  (0.1)2. We 

regain uniqueness if we always insist on a finite representation, if one exists. 

Examples. 1. (10011.01) = 24 + 21 + 20 + 2−2 = 16 + 2 + 1 + 
1 

= (19.25) 
 

2 
 

2.  (. 0101 0  1  … )   =  ∑∞ 

4 10 

 
2−𝑘 =  ∑𝑛∞   2−2𝑚 =  

1 ∑∞ 1 𝑚 
 

  

2 𝑘=2 (𝑘=𝑒𝑣𝑒𝑛) 𝑚=1 4   𝑚 = 0( ) 
 

=  
1    1     

=  
1  

=  (0.333  … ) 
  

4 1− 
1 3 10 
4 



3.   1 = 0.2 =  (0.0011 0 0  1  1 ) 
 

5 10 2 
 

To determine the binary digits on the right, one keeps multiplying by 2 and observing the integer part in the 

result; if it is zero, the binary digit in question is 0, otherwise 1. In the latter case, the integral part is removed 

and the process repeated. 

The last example is of interest in so far as it shows that to a finite decimal number there may correspond a 

(nontrivial) infinite binary representation. One cannot assume, therefore, that a finite decimal number is 

exactly representable on binary computer. Conversely, however, to a finite binary number there always 

corresponds a finite decimal representation. (Why?) 

3.2 Machine Numbers 

 

There are two kinds of machine numbers: floating point and fixed point. The first corresponds to the 

―scientific notation‖ in the decimal system, whereby a number is written as a decimal fraction times an 

integral power of 10. The second allows only for fractions. On a binary number, one consistently uses 

powers of 2 instead of 10. More important, the number of binary digits, both in the fraction and in the 

exponent of 2 (if any), is finite and cannot exceed certain limits that are characteristics of the particular 

computer at hand. 

3.2.1 Floating-Point Numbers 

 

We denote by t the number of binary digits allowed by the computer in the fractional part and by s the 

number of binary digits in the exponent. Then the (real) floating-point numbers on that computer will be 

denoted by ℝ(𝑡, 𝑠). Thus, 

𝜘 𝜖 ℝ(𝑡, 𝑠)iff 𝜘 = 𝑓. 2𝑒. (1.4) 
 

Where, in the notation of (1.3), 

 

𝑓 = ±(. 𝑏−1𝑏−2 … 𝑏−𝑡)2 𝑒 = ±(𝑐𝑠−1𝑐𝑠−2 … 𝑐0. )2. (1.5) 

Here all 𝑏𝑖 and 𝑐𝑗 are binary digits, that is, either zero or one. The binary fraction f is usually referred to as 

the mantissa of x and the integer e as the exponent of x. The number x in (1.4) is said to be normalized if in 

its fraction f we have 𝑏−1 = 1. We assume that all numbers in ℝ(𝑡, 𝑠) are normalized (with the exception 



of 𝜘 = 0, which is treated as a special number). If 𝜘 ≠ 0 were not normalized. We could 

 

f e 

 

± b-1 b-2 . . . b-t ± Cs-1 Cs-2 . . . C0 

 

 

 
t bits s bits 

 

Fig 1.1 Packaging of a floating-point number in a machine register 

 

Multiply f by an appropriate power of 2, to normalize it, and adjust the exponent accordingly. This is always 

possible as long as the adjusted exponent is still in the admissible range. 

We can think of a floating-point number (1.4) as being accommodated in a machine register as shown in 

Fig. 1.1. The figure does not quite correspond to reality, but is close enough to it for our purposes. 

Note that the set (1.4) of normalized floating-point numbers is finite and is thus represented by a finite set 

of points on the real line. What is worse, these points are not uniformly distributed (cf. Ex. 1). This, then, 

is all we have to work with! 

It is immediately clear from (1.4) and (1.5) that the largest and smallest magnitude of a (normalized) 

floating-point number is given, respectively, by 

max 
X∈ℝ(t ,s ) 

|𝑥|  = (1 − 2−𝑡) 22𝑡−1 , min 
𝑥≤ℝ(𝑡 ,𝑠) 

| 𝑥| = 2−2
 
. (1.6) 

 

On a Sun Spare workstation, for example, one has t = 23, S = 7, so that the maximum and minimum in (1.6) 

are 1.70 x 10
38

 and 2.94 x 10
-39

 respectively. (Because of an asymmetric internal hardware representation 

of the exponent on these computers, the true range of floating-point numbers is slightly shifted, more like 

from 1.18 × 10
-38

 to 3.40 x 10
38

.) Matlab arithmetic, essentially double precision, uses 1 = 53 and s = 10, 

which greatly expands the number range from something like 10
-308

 + 10
+308

. 

A real nonzero number whose modulus is not in the range determined by (1.6) cannot be represented on 

this particular computer. If such a number is produced during the course of a computation, one says that 

overflow has occurred if its modulus is larger than the maximum in (1.6) and underflow if it is smaller than 



the minimum in (1.6). The occurrence of overflow is fatal, and the machine (or its operating system) usually 

prompts the computation to be interrupted. Underflow is less serious, and one may get away with replacing 

the delinquent number by zero. However, this is not foolproof. Imagine that at the next step the number that 

underflow is to be multiplied by a huge number. If the replacement by zero has been made, the result 

will always be zero. 
 

To increase the precision, one can use two machine registers to represent a machine number. In effect, one 

then embeds,  ℝ (t, S) ⊂ ℝ (2+, s), and calls x∈ ℝ (2t, s) a double-precision number 

± 
 

± 

b-1 b-2 . . . b-t ± Cs-1 Cs-2 . . . C0 

 
 

Fig 1.2 Packaging of a fixed-point number in a machine register 

 

3.2.2 Fixed-Point Numbers 

 

This is the case (1.4) where e = O. That is, fixed-point numbers are binary fractions, x = f, hence | f | < 1. 

We can therefore only deal with numbers that are in the interval (-1,1). This, in particular, requires extensive 

scaling and rescaling to make sure that all initial data, as well as all intermediate and final results, lie in that 

interval. Such a complication can only be justified in special circumstances where machine time and/or 

precision is at a premium. Note that on the same computer as considered before, we do not need to allocate 

space for the exponent in the machine register, and thus have in effect s+ t binary digits available for the 

fraction f, hence more precision; cf. Fig. 1.2. 

3.2.3 Other Data Structures for Numbers 

 

Complex floating-point numbers consist of pairs of real floating-point numbers, the first of the pair 

representing the real part and the second the imaginary part. To avoid rounding errors in arithmetic 

operations altogether, one can employ rational arithmetic, in which each (rational) number is represented 

by a pair of extended-precision integers — the numerator and denominator of the rational number, The 

Euclidean algorithm is used to remove common factors. A device that allows keeping track of error 

propagation and the influence of data errors is interval arithmetic involving intervals guaranteed to contain 



𝑘=1 

𝑘=1 

𝑘=𝑡+1 

the desired numbers. In complex arithmetic, one employs rectangular or circular domains. 

 

3.3.1 Rounding 

 

A machine register acts much like the infamous Procrustes bed in Greek mythology. Procrustes was the 

innkeeper whose inn had only beds of one size. If a fellow came along who was too tall to fit into his beds, 

he cut off his feet. If the fellow was too short, he stretched him. In the same way, if a real number comes 

along that is too long, its tail end (not the head) is cutoff; if it is too short, it is padded by zeros at the end. 

More specifically, let 

 

x ∈ 𝑅, x = ±(∑∞ 

 

𝑏 −𝑘 2−𝑘)2
e
 (1.7) 

 

be the ―exact" real number (in normalized floating-point form) and 
 

𝑥 ∗ 𝜖 (𝑡, 𝑠), 𝑥 ∗ = ± (∑𝑡 𝑏 − 𝑘 ∗ 2 − 𝑘) 2𝑒∗ (1.8) 
 

the rounded number. One then distinguishes between two methods of rounding, thefirst being Procrustes' 

method. 

(a) Chopping. One takes 

 

x* = chop(x), e* = e, b*-k = b-k for k = 1,2,…,t. (1.9) 
 

(b) Symmetric rounding. This corresponds to the familiar rounding up or roundingdown in decimal 

arithmetic, based on the first discarded decimal digit: if it islarger than or equal to 5, one rounds up; if it is 

less than 5, one rounds down. Inbinary arithmetic, the procedure is somewhat simpler, since there are only 

twopossibilities: either the first discarded binary digit is 1, in which case one roundsup, or it is 0, in which 

case one rounds down. We can write the procedure verysimply in terms of the chop operation in (1.9): 

x* = rd(x), rd(x) := chop(x + 1. 2
-t
 
.
2

e
)

.
 (1.10) 

2 

 

There is a small error incurred in rounding, which is most easily estimated in thecase of chopping. Here the 
 

absolute error |x – x*|is 

(x - chop(x)|= ±|∑∞ 

≤ ∑∞ 

 

𝑏 − 𝑘 2 − k |2e
 

2-k
.2

e
 = 2

-t
.2

e
 

𝑘=𝑡+1 
 

It depends on e (i.e., the magnitude of .*), which is the reason why one prefers therelative error | (x -x*)/x| 



(if x ≠ 0), which, for normalized r, can be estimated as 
 

| 
𝑥−𝑐𝑜(𝑥)

|≤| 
2−𝑡 .  2𝑒 

 

|2
e
 ≤ 

2− . 2𝑒 
= 2.2

-t
 (1.11) 

 

∞ 
𝑘=1 𝑏−𝑘2−𝑘 

1 
. 2𝑒 

2 
 

Similarly, in the case of symmetric rounding, one finds (cf. Ex. 6) 

 
|𝑥−𝑟(𝑥)| ≤ 2

-t
 (1.12) 

𝑥 

 

The number on the right is an important, machine-dependent quantity, called the machine precision (or 
 

unity roundoff), 

 

eps = 2
-t
; (1.13) 

 

it determines the level of precision of any large-scale floating-point computation. In Matlab double- 

precision arithmetic, one has t=53, so that eps≈1.11X10
-16

 (cf.Ex.5), corresponding to a precision of 15-16 

significant decimal digits. 

Since it is awkward to work with inequalities, one prefers writing (1.12) equivalently as an equality. 
 

rd(x)=x (1+ ɛ), | ɛ | ≤ eps (1.14) 

 

And defers dealing with the inequality (for ɛ) to the very end. 

 

SELFASSESSMENTEXERCISE1 

Define exhaustively the term ‗Real Number‘. 

SELFASSESSMENTEXERCISE2 

What are the constituents of a Machine number? Give 2 typical examples of machine 

numbers. 

4.0 CONCLUSION 

 

In this unit, you have learned about real number, and machine number. You have also 

been able to understand the meaning of some notions about real and machine numbers. 

Finally, you have been able to appreciate the significance of machine numbers in 

developing numbers in computer system. 

 

5.0 SUMMARY 

 

What you have learned borders on the basic real numbers and machine numbers.The 

subsequent units shall build up on these fundamentals. 

± ∑ 𝑥 



 

6.0 TUTOR-MARKEDASSIGNMENT 

 

Represent all elements of ℝ+ (3, 2) = {x ℝ(3, 2); x > 0, x normalized as dots on the real 

axis. For clarity, draw two axes, one from 0 to 8, the other form 0 to ½. 

 

7.0 REFERENCES/FURTHERREADINGS 
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1.0 INTRODUCTION 

 

The arithmetic used on computers unfortunately dos not respect the laws of ordinary arithmetic. Each 

elementary floating-point operation, in general, generates a small error that may then propagate through 

subsequent machine operations. As a rule, this error propagation is harmless, except in the case of 

subtraction, where cancellation effects may seriously compromise the accuracy of the results. 

Most problems involve input data not represented exactly on the computer. Therefore, even before the 

solution process starts, simply by storing the input in computer memory, the problem is already slightly 

perturbed, owing to the necessity of rounding the input. It is important, then, to estimate how such small 

perturbations in the input affect the output, the solution of the problem. This is the question of the 

(numerical) condition of a problem: the problem is called well-conditioned if the changes in the solution of 

the problem are of the same order of magnitude as the perturbations in the input that caused those changes. 

If, on the other hand, they are much larger, the problem is called ill conditioned. It is desirable to measure 

by a single number – the condition number of the problem – the extent to which the solution is sensitive to 

perturbations in the input. The larger this number, the more ill conditioned the problem. 



2.0 OBJECTIVES 

By the end of this unit, you should be able to: 

 Explain machine arithmetic 

 Describe condition numbers 

 Identify the condition of a problem 

3.0 MAIN CONTENT 

3.1 A Model of Machine Arithmetic 

 

Any of the four basic arithmetic operations, when applied to two machine numbers, may produce a result 

no longer represented on the computer. We have therefore errors also associated with arithmetic operations. 

Barring the occurrence of overflow or underflow, we may assume as a model of machine arithmetic that 

each arithmetic operation ο (= +, -, x, /) produces a correctly rounded result. Thus, if x, y ϵ ℝ (t,s) are 

floating-point machine numbers, and fl(xοy) denotes the machine-produced result of the arithmetic 

operation xοy, then 

fl(xοy) = xοy (1+ ɛ), | ɛ | ≤ eps. (1.15) 



This can be interpreted in a number of ways, for example, in the case of multiplication. 

Fl(x x y) = [x (1 + ɛ)] x y = x x [y(1+ ɛ)] = (x√1 + 𝖼 x (y√1 + 𝖼) = ⋯ 

In each equation we identify the computed result as the exact result on data that are slightly perturbed, 
 

whereby the respective relative perturbations can be estimated, for example, by | ɛ|≤eps in the first two 

equations, and √1 + 𝖼≈ 1 + ½ ɛ, |½ ɛ| ≤ ½ eps in the third. These are elementary examples of backward 

error analysis, a powerful tool for estimating errors in machine computation. 

Even though a single arithmetic operation causes a small error that can be neglected, a succession of 

arithmetic operations can well result in a significant error, owing to error propagation. It is like the small 

microorganisms that we all carry in our bodies; if our defense mechanism is in good order, the 

microorganisms cause no harm, in spite of their large presence. If for some reason our defenses are 

weakened, then all of a sudden, they can play havoc with our health. The same is true in machine 

computation: the rounding errors, although widespread, will cause little harm unless our computations 

contain some weak spots that allow rounding errors to take over to the point of completely invalidating the 

results. We learn about one such weak spot (indeed the only one) in the next section. 
1
 

3.2 Error Propagation in Arithmetic Operations: 

 

3.2.1 Cancellation Error 

 

We now study the extent to which basic arithmetic operations propagate errors already present in their 

operands. Previously, in Sect. 1.2.1 we assumed the 

operands to be exact machine-representable numbers and discussed the errors due to imperfect execution 

of the arithmetic operations by the computer. We now change our viewpoint and assume that the operands 

themselves are contaminated by errors, but the arithmetic operations are carried out exactly. (We already 

know what to do, cf. (1.15), when we are dealing with machine operations.) Our interest is in the errors in 

the results caused by errors in the data. 

a) Multiplication We consider values x (1+ ɛx) and y (1+ ɛy) of x and y contaminated by relative 

errors ɛx and ɛy, respectively. What is the relative error in the product? We assume ɛx, ɛy sufficiently 



x  y x y small so that quantities of second order, ɛ
2
 , ɛ ɛ and ɛ

2
 – and even more so, quantities of still higher 

order – can be neglected against the epsilons themselves. Then 

x (1+ ɛx) ‧ y (1+ ɛy) = x ‧ y (1+ ɛx + ɛy + ɛxɛy) ≈ x ‧ y (1+ ɛx + ɛy). 

 

Thus, the relative error ɛx.y in the product is given (at least approximately) by 
 

ɛx.y = ɛx + ɛy, (1.16) 

 
that is, the (relative) errors in the data are being added to produce the (relative) error in the result. 

We consider this to be acceptable error propagation, and in this sense, multiplication is a benign 

operation. 

b) Division. Here we have similarly (if y ≠ 0) 
 (1+ℰ𝑥 ) 

= 
𝑥 

(1 + ɛx) (1 − ɛy + ɛ
2
 − + ⋯) 

y(1+ℰ𝑦) 𝑦 y 

 
≈ (1 + ɛx− ɛy), 
𝑦 

 

that is, 
 

ℰ𝑥 = ɛx− ɛy. (1.17) 
𝑦 

 

Also, division is a benign operation. 

 
c) Addition and subtraction. Since x and y can be numbers of arbitrary signs, it suffices to look at 

addition. We have 

x (1 + ɛx) + y (1 + ɛy) = x + y + xɛx +yɛy 

 

= (x + y) (1 + 
𝑥ℰ𝑥+ 𝑦ℰ𝑦

), 
𝑥+𝑦 

 

assuming x + y≠ 0. Therefore, 
 

ℰ𝑥+𝑦 =  
𝑥 

𝑥+𝑦 
ℰ𝑥 +  

𝑦 

𝑥+𝑦 
ℰ𝑦 . (1.18) 

 

 



 

Fig. 1.3 The cancellation phenomenon 

 

As before, the error in the result is a linear combination of the errors in the data, but now the coefficients 

are no longer ±1 but can assume values that are arbitrarily large. Note first, however, that when x and y 

have the same sign, then both coefficients are positive and bounded by 1, so that 

|휀𝑥+𝑦| ≤ |휀𝑥| + |휀𝑦|(𝑥 ∙ 𝑦 > 0); 
 

Addition, in this case, is a benign operation. It is only when x and y have opposite signs that the coefficients 

in (1.18) can be arbitrarily large, namely, when |𝑥 + 𝑦| is arbitrarily small compared to |𝑥| and|𝑦|. This 

happens when x and y are almost equal in absolute value, but opposite in sign. The large magnification of 

error then occurring in (1.18) is referred to as cancellation error. It is the only serious weakness – the 

Achilles heel, as it were – of numerical computation, and it should be avoided whenever possible. In 

particular, one should e prepared to encounter cancellation effects not only in single devastating amounts, 

but also repeatedly over a long period of time involving ―small doses‖ of cancellation. Either way, the end 

result can be disastrous. 

We illustrate the cancellation phenomenon schematically in Fig. 1.3, where b, b’, b’’ stand for binary digits 

that are reliable, and the g represents binary digits contaminated by error; these are often called garbage 

digits. Note in Fig. 1.3 that ―garbage – garbage = garbage,‖ but more importantly, that the final 

normalization of the result moves the first garbage digit from the 12
th
 position to the 3

rd
. 

Cancellation is such a serious matter that we wish to give a number of elementary examples, not only of its 

occurrence, but also of how it might be avoided. 

Examples. 1. An algebraic identity: (𝑎 − 𝑏)2 = 𝑎2 − 2𝑎𝑏 + 𝑏2. Although this is a valid identity in 

algebra, it is no longer valid in machine arithmetic. Thus, on a 2-decimal digit computer, with a = 1.8, b = 

1.7, we get, using symmetric rounding, 

𝑓(𝑎2 − 2𝑎𝑏 + 𝑏2) = 3.2 -6.2 + 2.9 = -0.10 

 

Instead of the true result 0.010, which we obtain also on our 2-digit computer if we use the left-hand side 



which is off by one order of magnitude and on top, has the wrong sign. 

 

2. Quadratic equation: 𝑥2 − 56𝑥 + 1 = 0. The usual formula for a quadratic gives, in 5-decimal arithmetic, 

 

𝑥1 = 28 − √783 = 28 − 27.982 = 0.018000. 
 

𝑥2 = 28 + √783 = 28 + 27.982 = 55.982 

This should be contrasted with the exact roots 0.0178628… and 55.982137… . As can be seen, the smaller 

of the two is obtained to only two decimal digits, owing to cancellation. An easy way out, of course, is to 

compute 𝑥2 first, which involves a benign addition, and then to compute 𝑥1 = 1/𝑥2 by Vieta‘s formula, 

which gain involves a benign operation – division. In this way we obtain both roots to full machine 

accuracy. 

3. Compute 𝑦 = √𝑥 + 𝛿 − √𝑥, 𝑤𝑒𝑟𝑒 𝑥 > 0 𝑎𝑛𝑑 |𝛿| 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙. Clearly, the formula as written 

causes severe cancellation errors, since each square root has to be rounded. Writing instead 

 

 

 
completely removes the problem. 

𝛿 
𝑦 =    

√𝑥 + 𝛿 + √𝑥 

 

4. Compute y = cos(𝑥 + 𝛿) − cos(𝑥) , 𝑤𝑒𝑟𝑒 |𝛿| 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙. Here cancellation can be avoided by 

writing y in the equivalent form 

𝛿 
𝑦 = −2 sin 

2 

𝛿 
sin (𝑥 +  ). 

2 
 

5. Compute 𝑦 = (𝑥 + 𝛿) − 𝑓(𝑥), 𝑤𝑒𝑟𝑒 |𝛿| 𝑖𝑠 𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙, 𝑎𝑛𝑑 𝑓 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. Special tricks, such 

as those used in the two preceding examples, can no longer be played, but if f is sufficiently smooth in the 

neighborhood of x, we can use Taylor expansion: 

𝑦 = 𝑓′(𝑥)𝛿 + 
1 
𝑓′′(𝑥)𝛿2 + ⋯ 

2 
 

The terms in this series decrease rapidly when |𝛿| is small so that cancellation is no longer a problem. 

Addition is an example of a potentially ill-conditioned function (of two variables). It naturally leads us to 

study the condition of more general functions. 

3.3 The Condition of a Problem 



 
P 

A problem typically has an input and an output. The input consists of a set of data, say, the coefficients of 

some equation, and the output of another set of numbers uniquely determined by the input, say, all the roots 

of the equation in some prescribed order. If we collect the input in a vector x∈ ℝ𝑚 (assuming 

 

 

 

 

 

x y 
 

Fig. 1.4Black box representation of a problem 

 

the data consists of real numbers), and the output in the vector y∈ ℝ𝑛 (also assumed real), we have the 

black box situation shown in Fig. 1.4, where the box P accepts some input x and then solves the problem 

for this input to produce the output y. 

We may this think of a problem as a map f given by 
 

𝑓 ∶ ℝ𝑚 → ℝ𝑛, 𝒚 = 𝒇(𝒙). (1.20) 

 

(One or both of the spaces ℝ𝑚, ℝ𝑛 could be complex spaces without changing in any essential way the 

discussion that follows.) What we are interested in is the sensitivity of the map f at some given point x to a 

small perturbation of x, that is, how much bigger (or smaller) the perturbation in y is compared to the 

perturbation in x. In particular, we wish to measure the degree of sensitivity by a single number – the 

condition number of the map f at the point x. We emphasize that, as we perturb x, the function f is always 

assumed to be evaluated exactly, with infinite precision. The condition of f, therefore is an inherent property 

of the map f and does not depend on algorithmic considerations concerning its implementation. 

This is not to say that knowledge of the condition of a problem is irrelevant to any algorithmic solution of 

the problem. On the contrary, the reason is that quite often the computed solution 𝑦∗ of (1.20) (computed 

in floating point machine arithmetic, using a specified algorithm) can be demonstrated to be the exact 

solution to a ―nearby‖ problem, that is, 

𝑦∗ = (𝑥∗), (1.21) 

 

where 𝑥∗ is a vector close to the given data x, 



𝑥∗ = 𝑥 + 𝛿, (1.22) 
 

and moreover, the distance ‖𝛿‖ of 𝑥∗ to x can be estimated in terms of the machine precision. Therefore, if 

we know how strongly (or weakly) the map f reacts to a small perturbation, such as 𝛿 in (1.22), we can say 

something about the error 𝑦∗ − 𝑦 in the solution caused by this perturbation. This, indeed, is an important 

technique of error analysis – known as backward error analysis – which was pioneered in the 1950s by J.W. 

Givens, C. Lanczos, and above all, J.H. Wilkinson. 

Maps f between more general spaces (in particular, function spaces) have also been considered from the 

point of view of conditioning, but eventually these spaces have to be reduced to finite dimensional spaces 

for practical implementation of the maps in question. 

 

SELFASSESSMENTEXERCISE1 

Define exhaustively the term ‗machine arithmetic‘. 

SELFASSESSMENTEXERCISE2 

List the condition error number in machine arithmetic? Give 2 typical examples of 

each mentioned. 

4.0 CONCLUSION 

 

In this unit, you have learned about machine arithmetic, and error number. You have also 

been able to understand the meaning of some notions about machine arithmetic. 

 

5.0 SUMMARY 

 

What you have learned borders on the basic of machine arithmetic in computer science. 

 

6.0 TUTOR-MARKEDASSIGNMENT 

 

Consider a miniature binary computer whose floating-point words consist of four binary 

digits for the mantissa and three binary digits for the exponent (plus sign bits). Let 

𝑥 = (0.1011)2x 20, 𝑦 = (0.1100)2x 20. 
Mark in the following table whether the machine operation indicated (with the result z 
assumed normalized) is exact, rounded (i.e., subject to a nonzero rounding error), 

overflows, or underflows. 

Operation Exact Rounded Overflow Underflow 

𝑧 = 𝑓𝑙(𝑥 − 𝑦) 



z = 𝑓((𝑥 − 𝑦)10) 
z = 𝑓(𝑥 + 𝑦) 

z = 𝑓𝑙 (𝑦 + (𝑥⁄4)) 

z = 𝑓𝑙 (𝑥 + ( 
𝑦 
⁄4)) 

 

7.1 REFERENCES/FURTHERREADINGS 

 
 

Bloch E. D. (2011).The Real Numbers and Real Analysis, Springer Nature Pp 577. 

 

Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 

2nd ed. McGraw-Hill Tokyo. 

Francis Scheid. (1989) Schaum‘s Outlines Numerical Analysis 2nd ed. McGraw-Hill 

New York. 

Okunuga, S. A., and Akanbi M, A., (2004). Computational Mathematics, First Course, 

WIM Pub. Lagos, Nigeria. 

Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 



Unit 3: Condition Number 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.8 Main Content 

3.9 Condition Numbers 

3.10 The condition of a problem 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Readings 

1.0 INTRODUCTION 

 

In the field of numerical analysis, the condition number of a function measures how much the output value 

of the function can change for a small change in the input argument. This is used to measure how sensitive a 

function is to changes or errors in the input, and how much error in the output results from an error in the 

 
input. Very frequently, one is solving the inverse problem: given {\displaystyle f(x)=y,}     one is solving 

for x, and thus the condition number of the (local) inverse must be used. In linear regression the condition 

number of the moment matrix can be used as a diagnostic for multicollinearity. Once the solution process 

starts, additional rounding errors will be committed, which also contaminate the solution. The resulting 

errors, in contrast to those caused by input errors, depend on the particular solution algorithm. It makes 

sense, therefore, to also talk about the condition of an algorithm, although its analysis is usually quite a bit 

harder. The quality of the computed solution is then determined by both (essentially the product of) the 

condition of the problem and the condition of the algorithm. 

 

 

 

 

 

 

 

2.0 OBJECTIVES 

By the end of this unit, you should be able to: 



 Explain condition numbers 

 Identify the condition of a problem 

3.0 MAIN CONTENT 

3.1 Condition Numbers 

 

We start with the simplest case of a single function of one variable. 

 

The case 𝑚 = 𝑛 = 1: 𝑦 = (𝑥). Assuming first 𝑥 ≠ 0, 𝑦 ≠ 0, and denoting by ∆𝑥 a small 

perturbation of 𝑥, we have for the corresponding perturbation ∆𝑦 by Taylor‘s formula 

∆𝑦 = (𝑥 + ∆𝑥) − 𝑓(𝑥) ≈ 𝑓′(𝑥)∆𝑥, (1.23) 

 

assuming that 𝑓 is differentiable at 𝑥. Since our interest is in relative errors, we write this in the form 
 

𝘍 
∆𝑦  
≈  

𝑥𝑓 (𝑥)  
∙ 
∆𝑥 (1.24) 

𝑦 𝑓(𝑥) 𝑥 
 

The approximate equality becomes a true equality in the limit as ∆𝑥 → 0. This suggests that the condition 

of 𝑓 𝑎𝑡 𝑥 be defined by the quantity 

(𝑐𝑜𝑛𝑑 𝑓)(𝑥) ∶= | 
𝑥𝑓(𝑥) 

| (1.25) 
𝑓(𝑥) 

 

The number tells us how much larger the relative perturbation in y is compared to the relative perturbation 

in 𝑥. 

If 𝑥 = 0 𝑎𝑛𝑑 𝑦 ≠ 0, it is more meaningful to consider the absolute error measure for 𝑥 and for 𝑦 
 

still the relative error. This leads to the condition number |𝑓′(𝑥)/𝑓(𝑥)|. Similarly, for 𝑦 = 0, 𝑥 ≠ 0. If 

 

𝑥 = 𝑦 = 0, the condition number by (1.23) would then simply be |𝑓′(𝑥)|. 
 

The case of arbitrary 𝑚, 𝑛: here we write 

 

𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑚]𝑇 ∈ ℝ𝑚, 𝑦 = [𝑦1, 𝑦2, … , 𝑦𝑚]𝑇 ∈ ℝ𝑛 

And exhibit the map 𝒇in the componentform 
 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑚), 𝑣 = 1, 2, … , 𝑛 . (1.26) 

We assume again that each function 𝑓𝑣 has partial derivatives with respect to all 𝑚 variables at the point 𝒙. 

Then the most detailed analysis departs from considering each component 𝑦𝑣 as a function of one single 

variable, 𝑥𝜇. In other words, we subject just one component, 𝑦𝑣. Then we can apply (1.25) and obtain 



+ 

 
𝑦𝑣𝜇 

 
∶= (𝑐𝑜𝑛𝑑 

 
 
𝑣𝜇 

𝑥𝜇
𝜕𝑓𝑣 

𝒇)(𝑥) ∶= |
   𝜕𝑥𝜇

| (1.27) 
𝑓𝑣(𝑥) 

 

This gives us a whole matrix (𝑥 ) = [𝛾𝑣𝜇(𝑥)] ∈ ℝ𝑛×𝑚 of condition numbers. To obtain a single condition 

number, we can take any convenient measure if the ―magnitude‖ of 𝚪(x) such as one of the matrix defined in 

(1.30). 

(𝑐𝑜𝑛𝑑 𝑓)(𝑥) = ‖Γ(𝑥)‖, Γ(x) = [𝛾𝑣𝜇(𝑥)]. (1.28) 

 
The condition so defined, of course, depends on the choice of norm, but the order of magnitude (and that is 

all that counts) should be more or less the same for any reasonable norm. 

If a component of 𝑥, or 𝑦, vanishes, one modifies (1.27) as discussed earlier. A less-refined analysis can be 

modelled after the one-dimensional case by defining the relative perturbation of 𝑥 ∈ ℝ𝑚 to mean 

‖∆𝑥‖ℝ𝑚 

, ∆𝑥 = [∆𝑥 , ∆ 𝑥 
 

, … , ∆𝑥 ], (1.29) 
‖𝑥‖ℝ𝑚 1 2 𝑚 

 

where ∆𝑥 is a perturbation vector whose components ∆𝑥𝜇 are small compared to 𝑥𝜇, and where ‖∙‖ℝ𝑚 is 

some vector norm in ℝ𝑚. For the perturbation ∆𝑦 caused by ∆𝑥, one defines similarly the relative 

perturbation ‖∆𝑦‖ℝ𝑛⁄‖𝑦‖ℝ𝑛, with as suitable vector ‖∙‖ℝ𝑛 𝑖𝑛 ℝ𝑛. One then tries to relate the relative 

perturbation in 𝒚 to the one 𝒙. 

To carry this out, one needs to define a matrix norm for matrices 𝑨 ∈ ℝ𝑛×𝑚. We choose the so-called 

―operator norm,‖ 

‖𝑨‖ℝ𝑛×𝑚 ∶= 𝑚𝑎𝑥 ‖𝐴𝑥‖ℝ
𝑛
. (1.30) 

𝑥 ∈ ℝ𝑚‖𝑥‖ℝ
𝑛 

𝑥 ≠ 0 

In the following we take vector norms the ―uniform‖ (or infinity) norm, 

 
‖𝑥‖ℝ𝑛 = 𝑚𝑎𝑥 |𝑥𝜇| = : ‖𝑥‖∞, ‖𝑦‖ℝ𝑛   = 𝑚𝑎𝑥 |𝑦𝑣| = : ‖𝑦‖∞ (1.31) 

1 ≤ 𝜇 ≤ 𝑚 1 ≤ 𝜇 ≤ 𝑛 

It is then easy to show that (cf. Ex. 32) 
 

‖𝐴‖ℝ𝑛×𝑚 =  ‖𝐴‖∞ ∶= max ∑𝑚   |𝑎𝑣𝜇|,  𝐴 =  [𝑎𝑣𝜇]  ∈  ℝ𝑛×𝑚. (1.32) 
𝜇=1 

1 ≤ 𝜇 ≤ 𝑛 
 

Now in analogy to (1.23), we have 
 

 
∆𝑦 

𝑚 
 𝜕𝑓𝑣  =  𝑓 (𝑥 + ∆𝑥) − 𝑓 (𝑥) ≈  ∑ ∆∆ 

𝑣 𝑣 𝑣 

𝜇=1 
𝜕𝑋𝜇 

𝜇
 



𝜇=1 

With the partial derivatives evaluated as x. Therefore, at least approximately, 
 

𝑚 
𝜕𝑓𝑣 

𝑚 
𝜕𝑓𝑣 

|∆𝑦𝑣| ≤ ∑ | 
𝜕𝑥𝜇 

|∆𝑥𝜇| ≤ max|∆𝑥𝜇|. ∑ | 
𝜕𝑥𝜇 

| 
𝜇 

 

≤ max|∆𝑥𝜇| . max ∑𝑚 

 
| 
∂𝑓𝑣 

|.
 

∂𝑥𝜇 

𝜇=1 

 

𝜇 
 

Since this holds for each v = 1, 2,……n, it also holds for max |∆𝑦𝑣| giving, in view of (1.31) and (1.32), 
 

||∆𝑦|| ≤ ||∆𝒙||   || 
𝜕𝒇 

|| 
 

(1.33) 
∞ ∞     𝜕𝒙 ∞ 

 

Here, 
 

𝜕𝑓1 𝜕𝑓1 

𝖥𝜕𝑥1 𝜕𝑥2 
. .. .. 

 𝜕𝑓1  
 

𝜕𝑥𝑚 

I 𝜕𝑓1 𝜕𝑓1 . .. 
𝜕𝑓1  I 

𝜕𝒇 
= 

I 𝜕𝑥1 𝜕𝑥1 
 

 

𝜕𝑥𝑚   I 
𝜖 ℝ𝑛 × 𝑚 (1.34) 

𝜕𝒙 I 
I 

I 
. . . . . . I 

I 𝜕𝑓𝑛 𝜕𝑓𝑛 

[𝜕𝑥1 𝜕𝑥2 

. . . . .. 
𝜕𝑓𝑛 I 
𝜕𝑥2 ] 

 

is the Jacobianmatrix of f . (This is the analogue of the first derivative for systems of functions of several 

variables.)From (1.33) one now immediately obtains for relative perturbations 

||∆𝑦||∞ ≤ 
||𝒙||∞ ||𝜕𝒇 / 𝜕𝒙||∞ ∙ 

||∆𝒙||∞ 

||𝑦||∞ ||𝒇(𝒙)||∞ ||𝒙||∞ 
 

Although, this is an inequality it is sharp in the sense that equality can be achieved for a suitable perturbation 

Δx.We are justified, therefore, in defining a global condition number by 

(cond f )(x) ≤ 
||𝒙||∞ ||𝜕𝒇 / 𝜕𝒙||∞ 

||𝒇(𝒙)||∞ 

 

clearly in the case m =n = 1, definition (1.35)reduces precisely to definition (1.25)(as well as (1.28)) given 

earlier.In higher dimensions‘m and/or n larger than 1), however, the condition number in (1.35) is much 

cruder than the one in (1.28). This is because normstend to destroy detail: if x, for example has components 

of vastly differentt magnitudes, then ||𝒙||∞ is simply equal to the largest of these components and the others 

are ignored.For this reason, some caution is required when using (1.35). 
 

To give an example, consider 

1 



2 

1 +    2 1 2 

∫0 

𝑦 

  1  2     

2 

2    2 

5 

𝑦𝑣 

1 
+ 

1 
  

f (x) = [
𝑥1 𝑥2], x = 𝑥1    

.
 

 1 
−

 1  [𝑥2
] 

𝑥1 𝑥2 
 

The components of the condition matrix inΓ(x) in (1.27) are then 

γ11 = |
   𝑥2 

|, γ12 =  |
   𝑥1       

|, γ21 = |
   𝑥2       

|, γ22 = |
   𝑥1       

| 
𝑥1 + 𝑥2 𝑥1 + 𝑥2 𝑥2 − 𝑥1 𝑥2 − 𝑥1 

 

indicating ill-conditioning if either x1≈ x2 or x1 ≈ -x2 and |x1| hence also|x2| is not small. The global 

condition number (1.35), on the other hand, since 

𝜕𝒇 1 𝑥2 𝑥2 
 

 𝜕𝒙 (𝒙) = − 𝑥2𝑥2 [  2 1 ], 
1   2    𝑥2 −𝑥1 

 

becomes, when L1 vector and matrix norms are used (cf.Ex. 33), 
 

||𝑥||1∙
    2     

max(𝑥2,𝑥2) 

(cond f )(x) = 𝑥2 𝑥2 
= 2

|𝑥1| + |𝑥2| 𝑚𝑎(𝑥1 ,𝑥2 ) 
      1      

(|𝑥   | + |𝑥  − 𝑥  |) 
| 𝑥1𝑥2| 

|𝑥1𝑥2 | |𝑥1| + |𝑥2| + |𝑥1 − 𝑥2| 

 

Herex1≈ x2 or x1≈-x2yields (cond f ) (x) ≈ 2, which is obviously misleading. 
 

Examples 

 

We illustrate the idea of numerical condition in the number of examples some of which are of considerable 

interest in applications. 

1. Compute𝐼𝑛 = 
1 𝑡𝑛   

𝑑𝑡 for some fixed integer n ≥ 1 . As it stands, the example here deals with a map 
𝑡+5 

 

from the integers to reals and therefore does 

 

3.2 The Condition of a Problem 
 

 

 

 

Fig 1.6 Black box for the recursion (1.43) 
 

 
𝑦𝑣(− 1  −𝑛 

) 
 

(cond 𝑔𝑛)(𝑦𝑣) =| 5 |, v > n. (1.44) 
𝑛 

 

For 𝑦𝑣 =𝐼𝑣, we get, again by the monotonicity of 𝐼𝑛, 
 

(cond 𝑔  )(𝐼 ) < 1 𝑣− , v > n. (1.45) 
𝑛 𝑣 ( ) 

1    2 



𝑣 

𝑛 

In analogy to (1.40), we now have 
 

𝐼 ∗− 𝐼 𝐼∗− 𝐼 1 𝐼∗− 𝐼 
| 𝑛 𝑛| = (cond 𝑔𝑛) (𝐼𝑣)| 𝑣 𝑣|<( )𝑣−𝑛 | 𝑣 𝑣|, (1.46) 
𝐼𝑛 𝐼𝑣 5 𝐼𝑣 

 

Where 𝐼∗ is some approximation of  . Actually 𝐼∗does not even have to be close to 𝐼 for (1.46) to hold, 
𝑣 𝑣 𝑣 𝑣 

 

since the function 𝑔𝑛is linear. Thus, we may take 𝐼∗ = 0, committing a 100% error in the starting value, 
 

yet obtaining 𝐼 ∗ with a relative error 
 

𝐼 ∗− 𝐼 1 
| 𝑛 𝑛|<( )𝑣−𝑛 , v > n. (1.47) 

𝐼𝑛 5 
 

The bound on the right can be made arbitrarily small, say ≤  , if we choose v large enough, for example, 
 

𝐼𝑛 
1

 

v ≥ n +
 
   𝗌 . (1.48) 
𝐼𝑛 5 

 

The final procedure, therefore, is: given the desired relative accuracy  , choose v to be the smallest 

integer satisfying (1.48) and then compute 

 

 
𝐼∗ = 0, 𝐼 (1.49) 
𝑣 

 

𝐼∗ = 
1   1 

 
  

𝑛 
 

∗ , k = v, v – 1,…,n + 1. 
𝑘−1 ( 

5   𝑘 
−  𝐼𝑘) 

 

This will produce a sufficiently accurate 𝐼 ∗ ≈  , even in the presence of rounding errors committed in 
𝑛 𝑛 

 

(1.49): they, too, will be consistently attenuated. 

 

Similar ideas can be applied to be more important problem of computing solutions to second-order linear 

recurrence relations such as those satisfied by Bessel functions and many other special functions of 

mathematical physics. 

The procedure of backward recurrence is then closely tied up with the theory of continued fractions. 
 

2. Algebraic equations: these are equations involving a polynomial of given degree n, 

P(x) = 0, p(x) = 𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎1x + 𝑎0,0   ≠ 0. (1.50) 

Let 𝜉 be some fixed root of the equation, which we assume to be simple, 

 

P(𝜉) = 0, 𝑝′(𝜉) ≠ 0. (1.51) 

 

The problem then is to find 𝜉, 𝑔𝑖𝑣𝑒𝑛 𝑝. 𝑇𝑒 𝑑𝑎𝑡𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 a = [a0, a1, … an−1]T ∈ ℝnconsists of the 



𝑣=0 

𝑣=0 

coefficients of the polynomial p, and the result is 𝜉, a real or complex number. Thus, we have 

 
 

𝝃 ∶ ℝ𝑛 → ℂ, 𝜉 = (𝑎0𝑎1, … , 𝑎𝑛−1) (1.52) 

What is the condition of 𝜉? We adopt the detailed approach of (1.27) and first define 

 

𝑦𝑣 = (𝑐𝑜𝑛𝑑𝑣 

𝑎𝑣
 𝜕𝜉   

𝜉)(𝑎) = |   𝜕𝑎𝑣| , 𝑣 = 0,1, … , 𝑛 − 1. (1.53) 
𝜉 

 
 

Then we take a convenient norm, say, the 𝐿1 norm ∥ 𝛾 ∥1 := ∑𝑛−1 |𝛾𝑣 |of the vector 𝛾 = 
 

[𝛾0, … , 𝛾𝑛−1]𝑇, to define 

 

(𝑐𝑜𝑛𝑑 𝜉)(𝑎) = ∑𝑛−1(𝑐𝑜𝑛𝑑𝑣 𝜉)(𝑎). 
 

(1.54) 

 

To determine the partial derivative of 𝝃 with respect to 𝑎𝑣, observe that we have the identity 

[(𝑎0, 𝑎1, . . 𝑎𝑛)] + 𝑎𝑛−1[𝜉(… )]𝑛−1 + ⋯ + 𝑎[𝜉(… )]𝑣 + ⋯ + 𝑎0   ≡ 0. 

 
Differentiating this with respect to 𝑎 , we get 

 

 
𝑛[𝜉(𝑎 

 
, 𝑎 , … , 𝑎 )]−1 

𝜕𝜉 
 
+ 𝑎 (𝑛 − 1)[𝜉(… )]𝑛−2 

𝜕𝜉
 

 
+ ⋯ + 𝑎 𝑣 [𝜉(… )]𝑣−1 

𝜕𝜉
 

 
+ ⋯ + 𝑎 𝜕𝜉 

 
 

0 1 𝑛 
𝜕𝑎𝑣 

𝑛−1 
𝜕𝑎𝑣 

𝑣
 𝜕𝑎𝑣 1 𝜕𝑎𝑣 

+ [𝜉(… )]𝑣 ≡ 0. 

 

Where the last term comes from differentiating the first factor in the product 𝑎𝑣𝜉𝑣 

 
The last identity can be written as 

 

and, therefore, (cond A)(x) ≤ 5 |In x|. The algorithm A is well conditioned, except in the immediate right- 

hand vicinity of x = 0 and for x very large. (In the latter case, however, x is likely to overflow before A 

becomes seriously ill conditioned.) 

2. Consider the problem  

f: ℝ𝑛  ⟶  ℝ, y = 𝑥1𝑥2 … 𝑥𝑛. 
 

We solve the problem by the obvious algorithm 



𝑝1 = 𝑥1 

 

A : 𝑝𝑘 = fl(𝑥𝑘𝑝k−1), 𝑘 = 2,3,…,n, 

𝑦𝐴 = 𝑝n. 

Note that x1 is machine representable, since for the algorithm A we assume x ∈ ℝ(t, s). 
 

Now using the basic law of machine arithmetic (cf. (1.15)), we get 

 

𝑝1 = 𝑥1, 

𝑝k = 𝑥𝑘𝑝l−1(1 + 휀𝑘), k = 2,3,…,n, |휀𝑘| ≤ eps, 

From which 

𝑝n = 𝑥1𝑥2 … 𝑥(1 + 휀2)(1 + 휀3) … (1 + 휀𝑛). 

Therefore, we can take for example (there is no uniqueness), 
 

𝑥𝐴 = [𝑥1, 𝑥2(1 + 휀2), … . , 𝑥𝑛(1 + 휀𝑛)]T
 

 

 
 

This gives, using the ∞-norm, 

 
||𝑥𝐴−X||∞  

= 
||[0,𝑥2𝗌2,…,𝑥𝑛𝗌𝑛]𝑇||∞ 

 

≤ 
||𝑥||∞𝑒𝑝𝑠 

= 1
 

||𝑥||∞𝑒𝑝𝑠 ||𝑥||∞𝑒𝑝𝑠 ||𝑥||∞𝑒𝑝𝑠 
 

and so, by (1.66), (cond A)(x)≤ 1 for any x 𝜖 ℝ𝑛(𝑡, 𝑠). Our algorithm, to nobody‘s surprise, is perfectly 

well conditioned. 

 

SELFASSESSMENTEXERCISE1 

Define condition number. 
 

SELFASSESSMENTEXERCISE2 

List two types of condition number. Give 2 typical examples of each mentioned. 

 

 

 

 

 
4.0 CONCLUSION 

 
The condition number is an application of the derivative, and is formally defined as the value of the 



asymptotic worst-case relative change in output for a relative change in input. The "function" is the solution 

of a problem and the "arguments" are the data in the problem. The condition number is frequently applied 

to questions in linear algebra, in which case the derivative is straightforward but the error could be in many 

different directions, and is thus computed from the geometry of the matrix. More generally, condition 

numbers can be defined for non-linear functions in several variables. A problem with a low condition 

number is said to be well-conditioned, while a problem with a high condition number is said to be ill- 

conditioned. 

 

5.0 SUMMARY 

 
In non-mathematical terms, an ill-conditioned problem is one where, for a small change in the inputs 

(the independent variables) there is a large change in the answer or dependent variable. This means that the 

correct solution/answer to the equation becomes hard to find. The condition number is a property of the 

problem. Paired with the problem are any number of algorithms that can be used to solve the problem, that 

is, to calculate the solution. Some algorithms have a property called backward stability. In general, a 

backward stable algorithm can be expected to accurately solve well-conditioned problems. Numerical 

analysis textbooks give formulas for the condition numbers of problems and identify known backward 

stable algorithms. 

 

6.0 TUTOR-MARKEDASSIGNMENT 

 

Let (𝑥) = √1 + 𝑥2 − 1. 

(a) Explain the difficulty of computing (𝑥) for a small value of |𝑥| and show 

how it can be circumvented. 

(b) Compute (𝑐𝑜𝑛𝑑𝑓)(𝑥) and discuss the conditioning of 𝑓(𝑥) for small|𝑥|. 
 

(c) How can the answers to (a) and (b) be reconciled? 
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1.0 INTRODUCTION 

 

In scientific computing, we never expect to get the exact answer. Inexactness is practically the definition 

of scientific computing. Getting the exact answer, generally with integers or rational numbers, is symbolic 

computing, an interesting but distinct subject. Suppose we are trying to compute the number A. The 

computer will produce an approximation, which we call Ab. This Ab may agree with A to 16 decimal 

places, but the identity A = Ab (almost) never is true in the mathematical sense, if only because the computer 

does not have an exact representation for A. For example, if we need to find x that satisfies the equation x 

2 − 175 = 0, we might get 13 or 13.22876, depending on the computational method, but √ 175 cannot be 

represented exactly as a floating point number. Four primary sources of error are: (i) roundoff error, (ii) 

truncation error, (iii) termination of iterations, and (iv) statistical error in Monte Carlo. We will estimate 



𝐴 

the sizes of these errors, either a priori from what we know in advance about the solution, or a posteriori 

from the computed (approximate) solutions themselves. Software development requires distinguishing 

these errors from those caused by outright bugs. In fact, the bug may not be that a formula is wrong in a 

mathematical sense, but that an approximation is not accurate enough. 

2.0 OBJECTIVES 

By the end of this unit, you should be able to: 

 Explain errors in computational science 

 Identify the sources of errors 

 Describe the basic concepts of errors 

3.0 MAIN CONTENT 

 
3.1 Overall Error 

 

The problem to be solved is again 
 

f : ℝ𝑚 ⟶ ℝ𝑛, 𝒚 = 𝒇(𝒙). (1.67) 

 

This is the mathematical (idealized) problem, where the data are exact real numbers, and the solution is the 

mathematically exact solution. 

When solving such a problem on a computer, in floating-point arithmetic with precision eps, and 

using some algorithm A, one first of all rounds the data, and then applies to these rounded data not f , but 

𝒇𝑨:  
x

*
 = rounded data. |

|𝒙∗ −𝒙|| 
= 휀. (1.68) 

||𝒙|| 
 

` 𝒚∗ = 𝒇𝑨(𝒙*
). 



 
 

 
 

 
 

This shows how the data error and machine precision contribute toward the total error: both are amplified 

by the condition of the problem, but the latter is further amplified by the condition of the algorithm. 

In module we illustrated how approximations are introduced in the solution of mathematical problems that 

cannot be solved exactly. One of the tasks in numerical analysis is to estimate the accuracy of the result of 

a numerical computation. In this chapter we discuss different sources of the error that affected the computed 

result and we derive methods for error estimation. In particular we discuss some properties of computer 

arithmetic. Finally, we describe the main features of the standard for floating point arithmetic, which was 

adopted by IEEE in 1985. 



Input 

data 

Experiment 

construction 

 
Numerical problem 

Mathematical model 

mathematical problem 

2.1 Sources of Error 

 

Basically there are three types of error that affect the result of a numerical computation 

 

1. Errors in the input data are often unavoidable. The input data may be results of measurements 

with limited accuracy, or real numbers which must be represented with a fixed number of digits. 

2. Rounding errors arise when computation are performed using a fixed number of digits. 

 

3. Truncation errors arise when ―an infinite process is replace by an infinite one‖, e.g when an 

infinite series is approximated by a partial sum, or when a function is approximated by a straight 

line. 

Truncation errors will be discussed in connection with different numerical methods. In this chapter we shall 

examine the other two sources of error. 

The different types of errors are illustrated in Figure 2.1, which refers to the discussion in Chapter 1. 
 
 

 

 

 

 

Figure 2.1. Sources of error. 

 

We shall use the following notation 

 

 
 

Output 

data 

 
Numerical algorithm 



Absolute error in ā: Δa = ā – a. 

Relative error in ā: 𝚫 , (a ≠ 0). Δ 
𝑎 

RX error in the result, coming from errors in the input data, 
 

RXF error in the result, coming from errors in the function values used, 

RC rounding error, 

RT truncation error. 
 

The error type RXF is a special case of RX. 
 

 
3.3 Basic Concepts 

 

Let a denote an excat value, and a an approximate of a, e.g 

a = √2, ā = 1.414. 

We introduce the definitions 

 

Example. In the above example we have 

 
Δa = 1.414 - √2 = -0.0002135… , 

 
𝚫𝐚 

= 
−0.0002135… 

= −0.0001510 …
 

𝑎 √2 
 

In many cases we only know a bound on the magnitude of the absolute error of an approximation. Also, it 

is often practical to give an estimate of the magnitude of the absolute and relative error, even if more 

information is available. 

Example. Continuing with our example we can write 
 

 

|𝛥𝑎| ≤ 0.00022,      
 
 

|𝛥𝑎| ≤ 0.0003,      

𝚫𝑎 
 

 

𝑎 

𝚫𝑎 
 

 

𝑎 

 

  ≤ 0.00016, 
 
 

  ≤ 0.0002, 

 

Note that we must always round upwards in order that the inequalities shall hold relative errors are often 

given in percentages; in the last example the error is at most 0.02% 

The following three statements are equivalent 



1° ā = 1.414, |𝛥𝑎| ≤ 0.22. 10−3, 

 

2° 𝑎 = 1.414 ± 0.22. 10−3, 

 

3° 1.41378≤ 𝑎 ≤ 1.41422. 
 

There are two ways to reduce the number of digit in a numerical value: rounding and chopping. We first 

consider rounding of decimal numbers to t digits. Let 𝜂 denote the part of the number that corresponds to 

positions to the right of the tth decimal. If𝜂 < 0.5. 10−𝑡, then the tth decimal is left unchanged and it is 

raised by 1 if > 0.5. 10− . In the limit case where if 𝜂 = 0.5. 10−𝑡, the tth decimal is raised by one if it is 

odd and left unchanged if it is even. This is called rounding to even. With chopping all the decimals after 

the tth are ignored. 

EXAMPLE. Rounding to 3 decimals: 

 
1.23767 is rounded to 1.238, 

0.774501 is rounded to 0.775, 

6.3225 is rounded to 6.322, 

6.3235 is rounded to 6.324 

 

Chopping to 3 decimals: 

 

0.69999 is chopped to 0.699 

 

It is important to remember that errors are introduced when numbers are rounded or chopped. From the 

above rules we see that when a number is rounded to t decimals, then the error is at most 0.5.10
-t
, while the 

chopping error can be 10
-t
. Note that chopping errors are systematic: the chopped result is always closer to 

zero than the original number. When an approximate value is rounded or chopped, then the associated error 

must be added to the error bound. 

EXAMPLE. Let b = 11.2376 ± 0.1. Since the absolute error can be one unit in the first decimal, it is not 

meaningful to give four decimals, and we round to one decimal, brd = 11.2. The rounding error is 

|RC| = |brd – b| = | 11.2 – 11.2376| = 0.0376 < 0.04 
 

We must add the rounding error to the original error bound, 



b = 11.2 ± 0.14 

 

This is easily seen if we write 
 

|brd -b| = |brd - b  + b  -b 
 

≤ | brd - b  | + |b  -b| < 0.04 +0.1 = 0.14 . 
 

The corresponding intervals are illustrated below 

 

11.137611.2376 11.3366 
 
 

 

11.06 11.20 11.34 

 

 

Notice that the rounded interval [11.1, 11.3] does not necessarily contain the exact value. 

The following definitions relate to the concepts of absolute and relative error. 

 

SELFASSESSMENTEXERCISE1 

Define errors in computational science. 

SELFASSESSMENTEXERCISE2 

State the four (4) sources of error. Give 3 typical examples of each source of error. 

4.0 CONCLUSION 

 
When you study about error how it is gets measured and what factor affects it in which way only then you 

can improve it. As we know computation is something in which machines do different mathematical or 

other operational work and yes machines also makes mistakes, that's what we call error. The analysis of 

errors computed using the global positioning system is important for understanding how GPS works, and 

for knowing what magnitude errors should be expected. 



5.0 SUMMARY 

 
This module discusses errors and sources of error. Scientific computing is shaped by the fact that nothing 

is exact. A mathematical formula that would give the exact answer with exact inputs might not be robust 

enough to give an approximate answer with (inevitably) approximate inputs. Individual errors that were 

small at the source might combine and grow in the steps of a long computation. Such a method is unstable. 

A problem is ill conditioned if any computational method for it is unstable. Stability theory, which is 

modeling and analysis of error growth, is an important part of scientific computing. 

 

6.0 TUTOR-MARKEDASSIGNMENT 

 

Consider a decimal computer with three (decimal) digits in the floating-point mantissa. 

(a) Estimate the relative error committed in symmetric rounding. 

(b) let 𝑥1 = 0.982, 𝑥2 = 0.984 be two machine numbers. Calculate in machine arithmetic 
the mean 𝑚 = 

1 
(𝑥 + 𝑥 ). Is the computed number between 𝑥 and  ? 

 

2 1 2 1 2 

(c) Derive sufficient conditions for 𝑥1 < 𝑓𝑙(𝑚) < 𝑥2 to hold, where 𝑥1, 𝑥2are two 

machine numbers with 0 < 𝑥1 < 𝑥2. 
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If |𝗈a| = |ā – a| ≤ 0.5 . 10
-t
, then the approximate value ā is said to have t correct 

decimals. 

In an approximate value with t>0 correct decimals, the digits in positions with 

unit ≥ 10
-t
 are called significant digits. Leading zeros are not counted; they only 

indicate the position of the decimal point. 
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3.1 Error Propagation 

 

 

The definitions are easily modified to cover the case when the magnitude of the absolute error is larger than 

0.5. 

Example. From the definitions we have 

 

Approximation with error bound Correct decimals Significant digits 

0.001234 ± 0.5 . 10
-5

 5 3 

56.789± 0.5 . 10
-3

 3 5 

210000 ± 5000 
 

2 

 
 

Note that the approximation 

a = 1.789 ± 0.005 

has two correct decimals even though the exact value may be 1.794. The principles for rounding and 

choppping and the concepts of significant are completely analogous in other number systems than the 



decimal system; see Sections // 

 

when approximate values are used in computations, their errors will, of course, give rise to errors in the 

results. We shall derive some simple methods for estimating how errors in the data are propagated in 

computations. 

In practical applications error analysis is often closely related to the technology for constructions of devices 

and measurement of physical quantities. 

Example. The efficiency of a certain type of solar energy collectors can be computed by the formula 

Ƞ = K QTd , 

I 
 

Where K is a constant, known to high accuracy: Q denotes volume flow; Td denotes temperature difference 

between ingoing and outgoing fluid; and I denotes irradiance. The accuracies with which we can assume 

Q, Td and I depend on the construction of the solar collector. 

Assume that we have computed the efficiencies 0.76 and 0.70 for two solar collectors S1 and S2, and that 

the errors in the data can be estimated as follows 

Collector S1 S2 

Q 1.5% 0.5% 

Td 1% 1% 

I 3.6% 2% 

 

Based on these data, can we be sure that S1 has a larger efficiency than S2? 

 

We return to this example when we have derived mathematical tools that can help us answer the question. 

First, assume that we shall compute f(x), where f is a differentiable function. Further, assume that we know 

an approximation of x with an error bound: x = x    ϵ. If f is monotone (increasing or decreasing), then we 

can estimate the propagated error simply by computing f(x  - ϵ) and f(x  + ϵ) : 

|RX| = |𝗈f| = |f(x  ) - f(x)| 
 

≤ max {|f( x  - ϵ) - f( x  )|, |f( x  + ϵ) – f(x  )|} 

 

A more generally applicable method is provided by the following theorem, which will be used repeatedly 



THEOREM 2.3.1. Mean value theorem of differential calculus. 

If the function f is differentiable, then there is a point ϵ between x  and x such that 

 

𝗈f = f(x  ) - f(x) = f  (ϵ)(x  -x) 

in the module. 

 

The theorem is illustrated in figure 2.2. 

 

When the mean value theorem is used for practical error estimation, the derivative is computed at x  , and 

the error bound is adjusted by adding an appropriate ―safety correction‖. 

 

 

 

 

 

 

 

 

 

 

Δf 
 

 

 

 

 

 

 

 
Figure 2.2: Mean value theorem. 

 

3.2 Addition and Subtraction 

 

Example. We shall compute (α) = √𝛼for α = 2.05 ± 0.01. The mean value theorem gives 

Δ𝑓 = 𝑓’(ξ)Δα = 1 Δα 
2√𝜉 

 

We can estimate  

|𝛥𝑓|≲
    1 

|𝛥𝛼| ≤   
0.01

 
 

 

 
= 0.00349… ≤ 0.0036 

2√2.05 2√2.05 
 

The function (𝑥) = √𝑥 is monotone, and by means of (2.3.1) we get 
 

|𝛥𝑓| ≤ max{|√2.04 − √2.05|, |√2.06 − √2.05|} 

≤ max{0.00350, 0.00349} = 0.0035 

x ξ x 



𝑖=1 

In general there are more than one datum in a computation, and all of them may be approximations. We 

first examine error propagation for the four simple arithmetic operations. 

Let 𝑦 = 𝑥1+ 𝑥2 and assume that we know approximations 𝑥1 and 𝑥2. 

From the definition of absolute error we get 

𝛥𝑦 = 𝑦 − 𝑦 = 𝑥1 + 𝑥2 − (𝑥1 + 𝑥2) = 𝛥𝑥1 + 𝛥𝑥2 
 

 
If we only know bounds for the absolute errors in 𝑥1 and 𝑥2, we must take absolute values and use the 

 

triangle inequality,  
 

|𝛥𝑦| = |𝛥𝑥1 + 𝛥𝑥2| ≤ |𝛥𝑥1| + |𝛥𝑥2| 
 

A similar analysis of the subtraction 𝑦 = 𝑥1 − 𝑥2 shows that 

𝛥𝑦 = 𝛥𝑥1 − 𝛥𝑥2, |𝛥𝑦| ≤ |𝛥𝑥1| + |𝛥𝑥2| 

We summarize the results for addition and subtraction. 

 

2) The symbol "≲" means "less than or approximately equal to". 

 
 

𝑦 = 𝑥1+ 𝑥2 , 𝑦 = 𝑥1 − 𝑥2, 

Absolute error: 𝑦 = 𝛥𝑥1 + 𝛥𝑥2 , 𝑦 = 𝛥𝑥1 − 𝛥𝑥2 , 
 

Error bound : |𝛥𝑦| ≤ |𝛥𝑥1| + |𝛥𝑥2| , |𝛥𝑦| ≤ |𝛥𝑥1| + |𝛥𝑥2| , 

 

 

 
3.3 Multiplication and division 

 

This can easily be generalized to an arbitrary number of data. Eg for 
 

𝑛 
𝑖=1 𝑥𝑖   we get |𝛥𝑦| ≤ ∑𝑛 |𝛥𝑥𝑖| 

 

Next, consider the multiplication 𝑦 = 𝑥1𝑥2. We get 

 

𝛥𝑦 = 𝑥1𝑥2 − 𝑥1𝑥2 = (𝑥1+ 𝛥𝑥1) (𝑥2+ 𝛥𝑥2) −𝑥1𝑥2 

= 𝑥1𝛥𝑥2 + 𝑥2𝛥𝑥1 + 𝛥𝑥1𝛥𝑥2 

It is convenient to consider the relative errors, 

 
𝛥𝑦 

= 
𝛥𝑥2  

+ 
𝛥𝑥1  

+ 
𝛥𝑥1 𝛥𝑥2 

𝑦 𝑥2 𝑥1 𝑥1    𝑥2 

𝑦 ∑= 



If the relative errors in 𝑥1 and 𝑥2 are small, we can ignore the last term, so that 

 
𝛥𝑦 
≃ 

𝛥𝑥1 
+ 
𝛥𝑥2

,
 

𝑦 𝑥1 𝑥2 
 

and if we take absolute values and use the triangle inequality, we get the bound 

 

|
𝛥𝑦
|≲|

𝛥𝑥1| + |
𝛥𝑥2| 

𝑦 𝑥1 𝑥2 
 

By a similar argument for the division 𝑦 = 𝑥1/𝑥2 we get 

 
𝛥𝑦 
≃ 

𝛥𝑥1  
+ 
𝛥𝑥2

, |
𝛥𝑦
|≲|

𝛥𝑥1| + |
𝛥𝑥2|

 

 
We summarize, 

𝑦 𝑥1 𝑥2 𝑦 𝑥1 𝑥2 

 

 
Example. Now we can solve the solar collector problem. The error propagation formulas for 

 

multiplication and division give  

|
𝛥𝑦

| ≤ |
𝛥𝑄

| + |
𝛥𝑇𝑑| + 

 
 

|
𝛥𝐼

|
 

 
For collector S1 we get 

𝑦 𝑄 𝑇𝑑 𝐼 

 

|
𝛥𝑦

|
 

𝑦 
≤ (1.5 + 1 + 3.6) ⋅ 10−2 = 0.061 

 

so that 
 

|𝛥𝜂| ≲ 0.76 ⋅ 0.061 < 0.046 

 

Thus, the efficiency for S1 is in the interval 0.714 ≤ 𝜂1 ≤ 0.806 

The similar computation for S2 gives 0.675 ≤ 𝜂2 ≤ 0.725 

The two intervals overlap, and therefore we cannot be sure that the solar collector S1 is better than S2 

The following generalization of the mean value theorem is useful for examination of error propagation in 

the evaluation of a function f of n variables, 𝑥1, 𝑥2, . . . , 𝑥𝑛. 

𝑦 = 𝑥1 ⋅ 𝑥2 , 𝑦 = 𝑥1/𝑥2, 

Relative error: 
𝛥𝑦 
≃ 

𝛥𝑥1 
+ 
𝛥𝑥2  

,
 

𝑦 𝑥1 𝑥2 

𝛥𝑦 
≃ 

𝛥𝑥1 − 
𝛥𝑥2 

,
 

𝑦 𝑥1 𝑥2 

Error bound : |
𝛥𝑦

|  ≲ |
𝛥𝑥1| + |

𝛥𝑥2| , 
𝑦 𝑥1 𝑥2 

|
𝛥𝑦

|  ≲ |
𝛥𝑥1| + |

𝛥𝑥2| , 
𝑦 𝑥1 𝑥2 



 
Proof. Define the function (𝑡) = f(𝑥 + 𝑡𝛥𝑥) . The mean value theorem for a function of one variable and 

 

the chain rule for differentiation give 

 
𝛥𝑓 = (1) −𝐹(0) = 𝐹′(𝜃) = ∑𝑛 

 
 მ𝑓 

(𝑥 + 𝜃𝛥𝑥 

 

 
)𝛥𝑥 

𝑘=1 მ𝑥𝑘 𝑘 𝑘 

 

When this theorem is used for practical error estimation, the partial derivatives are evaluated at 𝑥 = 𝑥 (the 

given approximation). When there are only bound for the errors in the argument 𝑥, one can get a bound 

for 𝛥f by using the triangle inequality. 

SELFASSESSMENTEXERCISE1 
 

How accurately do we need to know π in order to be able to compute √π with four correct decimals? 

SELFASSESSMENTEXERCISE2 

Derive the error propagation formula for division. 

4.0 CONCLUSION 

 
Error propagation, a term that refers to the way in which, at a given stage of a calculation, part of the error 

arises out of the error at a previous stage. This is independent of the further round off inevitably introduced 

between the two stages. Unfavorable error propagation can seriously affect the results of a calculation. The 

investigation of error propagation in simple arithmetical operations is used as the basis for the detailed 

analysis of more extensive calculations. The way in which uncertainties in the data propagate into the final 

results of a calculation can be assessed in practice by repeating the calculation with slightly perturbed data. 

5.0 SUMMARY 

 
Propagation of error is defined as effect on function by a variable's uncertainty (error). It is technique to 

find effect on function, when there variables uncertainty. Example :- F = ma , for finding error in F 

we take, ∆F/F = ∆m/m + ∆a/a , this process is no other than propagation error . Propagation error in 

Theorem 2.3.2. If the real valued function 𝑓 is differentiable in a neighbourhood of 𝑥 = (𝑥1, 𝑥2, . . 

 

. , 𝑥𝑛) and 𝑥 = 𝑥 + 𝛥𝑥, is a point in that neighbourhood, then there is a number 𝜃, 0 <𝜃< 1, such that 

𝛥𝑓 = 𝑓(𝑥) −𝑓(𝑥) = ∑𝑛 
 მ𝑓  

𝑘=1 მ𝑥𝑘 
(𝑥 + 𝜃𝛥𝑥)𝛥𝑥 𝑘 



addition : when any function y is given in such a way that it is sum of two variable x and z then, error in y 

can be measured by 

dy = dx + dz . 
 

example :- if l₁ = 5   0.1 and l₂ = 10   0.2 

Then, L = ? If L = l₁ + l₂ 

so, L = (5 + 10) ± (0.1 + 0.2) = 15 ± 0.3 

 

Propagation error in multiplication :- if any function y = xz 

Then, taking log both sides, 

logy = logxy = logx + logy 

logy = logx + logy 

Now, differentiate both sides, 

dy/y = dx/x + dz/z 

Hence, for finding error in y = xz 

 

we have to use formula , Dy/y = dx/x + dz/z 

 

example :- m = (5 ± 0.1 )kg , a = (10 ± 0.2) m/s² then, find F = ? 

 

∵F = ma 

 

so, ∆F/F = ∆m/m + ∆a/a 

First find F, 

F = 5 × 10 = 50 N 

 

Now, ∆F/50 = 0.1/5 + 0.2/10 

 

∆F = 50( 0.02 + 0.02) = 50 × 0.04 = 2 

 

Hence, F = (50 ± 2) 

 

 

 

 

 
6.0 TUTOR-MARKEDASSIGNMENT 



(a) Derive the error propagation formula for the function y = log x. 

 

(b) Use the result from (a) to derive the error propagation formula for the function y = f(x1, x2, x3) = 

𝑥1
𝛼1𝑥2

𝛼2𝑥3
𝛼3. (This technique is called logarithmic differentiation) 
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1.0 INTRODUCTION 

 
Example. (760)8 = + 6.81 + 0.80 = (496)10 , 

(101.101)2 = 22 + 20 + 2−1 + 2−3 = (5.625)10 , 
 

(0.333 … )10 = 3.10−1 + 3.10−2 + 3.10−3 + … = 1 . 
3 

 

The architecture of most computers is based on the principle that data are stored in main memory with a 

fixed amount of information as a unit. This unit is called a word, and the word length is the number of bit 

per word. Most computers have word length 32 bits, but some use 64 bits. Integers can, of course, be 

represented exactly in a computer, provided that the word length is large enough for storing all the digits. 

In contrast, a real number cannot in general be represented exactly in a computer. There are two reasons 

for this: Errors may arise when a number is converted from one number system to another, e.g. 

(0.1)10 = (0.0001100110011 … )12 

Thus, the number (0.1)10 cannot be represented exactly in a computer with a binary number system. The 

other reason is that errors may arise because of finite word length of the computer. 



2.0 OBJECTIVES 

By the end of this unit, you should be able to: 

 Explain number representation in computational science 

 Describe ROUNDING Errors in Floating Point Representation 

3.0 MAIN CONTENT 

3.1 Number Representation 

 

How should real numbers be represented in a computer? The first computer (in the 1940s and early 1950s) 

used fixed point representation: 

For each computation the user decided how many units in a computer word were to be used for representing 

respectively the integer and the fractional parts of a real number. Obviously, with this method is difficult 

to represent simultaneously both large and small numbers. Assume e.g. that we have a decimal 

representation with word length six digits, and that we use three digits for decimal parts. The largest and 

smallest positive numbers that can be represented are 999.999 and 0.001, respectively. 

Note that small numbers are represented with large relative errors than large numbers. 

 

This difficulty is overcome if real numbers are represented in the exponential form that we generally use 

for very small and large numbers. 

Eg we would not write 
 

0.00000000789, 6540000000000 

 

but rather 

 

= 7.89 . 10−9 , = 6.54 . 1012 . 
 

This way of representing real numbers is called floating point representation (as opposed to fixed point). 

In the number system with base β any real number X ≠ 0 can be written in the form 

X = M . 𝛽𝐸 , 
 

Where E is an integer, and  
 

M = ±𝐷0.𝐷1𝐷2𝐷3 … , 

1 ≤ 𝐷0≤ β-1 

 

0 ≤ 𝐷𝑖 ≤ β-1, i = 1, 2,…. 



M may be a number with infinitely many digits. When a number written in this form is to be stored in a 

computer, it must be reduced — by rounding or chopping. Assume that t + 1 digits are used for representing 

M. Then we store the number 

 

x = m . 𝛽𝑒 
 

where m is equal to M, reduced to t + 1 digits, 

 

m = ±𝑑0.𝑑1𝑑2𝑑3 … 𝑑 , 

1 ≤ 𝑑0≤ β-1 

 

0 ≤ 𝑑𝑖 ≤ β-1, i = 1, 2,….t, 

𝑎𝑛𝑑3 e = E. The number m is called the significant or mantissa, and e is Called exponent. The digits to the 

right point in m are called fraction. From the expression m it follows that 

1 ≤ │m│ < β . 
 

We say that x is a normalized floating point number. 

 

The range of the numbers that can be represented in the computer depends on the amount of storage that is 

reserved for the exponent. The limits of e can be written 

L ≤ e ≤ U , 

 

Where L and U are negative and positive integers respectively. If the result of a computation is floating 

point number with e > U, then the computer issue an error signal. This kind of error is called overflow. The 

3) In the extreme case where we use rounding; all 𝐷𝑖 = β-1, I = 0,…, t; and we have to augment the last 

digit by 1, we get m =  1.00…0 and e = E + 1. We shall ignore this case in the following presentation, but 

the results regarding relative error are also valid for this extreme case. 

Corresponding error with e < L is called underflow. It is often handled by assigning the value 0 to the result. 

A set of normalized floating point numbers is uniquely characterized by β (the base). T (the precision), and 

│L, U│ (the range of the exponent). 

 

We shall refer to the floating point system. (β, t, L, U). 
 

 

The floating point system (β, t, L, U) is the set of normalized floating point numbers in the 

number system with base β and t digits for the fraction (equivalent to t + 1 digits in the 

significand), ie all numbers of the form 

x = m . 𝛽𝑒 , 
where  

m = ±𝑑0.𝑑1𝑑2𝑑3 … 𝑑 , 
0 ≤ 𝑑𝑖 ≤ β-1, i = 1, 2,….t, 



 

 

 

 

 

 

 

 

 

 

 

 

It is important to realize that the floating point numbers are not evenly distributed over the real axis. As an 

example, the positive floating point numbers in the system (β, t, L, U) = (2, 2, -2, 1) are shown in Figure 

2.3. 

0 0.5       1 
 

 
 

Figure 2.3. The positive numbers in the floating system (2, 2, -2, 1). 

Some typical values of (β, t, L, U) are 

 
 

Β t L U 
 

 

 
 

IEEE standard, single precision 2 23 -126 127 

double precision 2 52 -1022 1023 

T1-85 pocket calculator 10 13 -999 999 
 

 
 

Double precision floating point numbers are available in several programming languages, eg Fortran and 

C, and it is the standard format in 

MATLAB. Usually, such number are implemented so that two computer words are used for storing one 

number; this gives higher precision and a larger range. We return to this in Section 2.8. 

Again, we want to emphasize that our notation ―The floating-point system (β, t, L, U)‖ means that the 

fraction occupies t digits. This notation is consistent with the IEEE standard for floating point arithmetic, 

2 3 



 

There is an ∈ such that 

 

𝑥 = (1+ ∈),   | ∈ | ≤ 𝜇. 

see Section 2.8. In order literature floating point number are often normalized so that 𝛽−1 ≤ |𝑚| < 1, and 

there (𝛽, 𝑡, 𝐿, 𝑈) means that the significand (equal to the fraction) occupies t digits. 

3.2 ROUNDING Errors in Floating Point Representation 

 

When number are represented in the floating point system (β, t, L, U), we get rounding errors because of 

the limiting precision. We shall derive a bound for the relative error. 

Assume that a real number X≠0 can be written (exactly) 
 

𝑋 = 𝑀 ∙ 𝛽𝑒, 1 ≤ |𝑀| < 𝛽, 
 

And let 𝑥 = 𝑚 ∙ 𝛽𝑒, where m is equal to M, rounded to t +1 digits. Then 
 

|𝑚 − 𝑀| ≤  
1 
𝛽−𝑡, 

2 

 

And we get a bound for the absolute error, 
 

|𝑥 − 𝑋| ≤ 
1 
𝛽−𝑡. 𝛽𝑒. 

2 

 

This leads to the following bound for the relative error: 
 

 
|𝑥 − 𝑋| 1 

𝛽−𝑡 ∙ 𝛽𝑒 1 
𝛽−𝑡 1

 
≤ 2 = 2 ≤ 𝛽−𝑡 

|𝑋| |𝑀|  ∙ 𝛽𝑒 |𝑀| 2 
 

The last inequality follows from the condition |𝑀| ≥ 1. Thus, we have shown 

 

Theorem 2.5.1 The relative rounding error in floating point representation can be estimated as 

 

and small numbers are represented with the same relative accuracy. 
 

 

|𝑥 − 𝑋| 

|𝑋| 
≤ 𝜇, 𝜇 = 

1 

2 
𝛽−𝑡𝜇 

µ is called the unit roundoff. 
 

Note that the bound for the relative error is independent of the magnitude of X. This means that both large 



t binary digits corresponding to 0.3t decimal digits. 

s decimal digits correspond to 3.3s binary digits. 

Example. The IEEE standard for single precision arithmetic prescribes t=23 binary digits in the fraction. 

In section 2.7 we shall see that this formulation is useful in the analysis of accumulated rounding errors in 

the connection with sequence of arithmetic operations. 

If we have a computer with binary arithmetic, using 𝑡 + 1 digits in the significand, how accurate is this 

computer, expressed in terms of the decimal number? We must answer this question in order to know how 

many decimal digits it is relevant to print. 

Example. The floating point system (2, 23, -126, 127) has unit roundoff 
 

𝜇 = 
1 
∙ 2−23 = 2−24 ≅ 5.96 ∙ 10−8 ≅ 0.5 ∙ 10−7 

2 
 

Thus, this system is roughly equivalent to a floating-point system with (𝛽, 𝑡) = (10,7). 
 

Alternative formulation of the above question are: ―How many decimal digits correspond to t +1 binary?‖ 

and ―If the unit roundoff in a binary floating point system is 𝜇 = 0.5 ∙ 2−𝑡, how many digit must we have 

in a decimal system with approximately the same unit roundoff?‖ 

This was the formulation used in the example. In general, we have to solve the equation 

 

0.5 ∙ 10−8 = 0.5 ∙ 2−𝑡, 
 

With respect to s, taking logarithms, we get 𝑠 = 𝑡 log10 2 ≅ 0.3𝑡. 
 

Rule of thumb: 

This corresponds approximately to a decimal floating point system with s = 7, since 23 log10 2 ≅ 6.9. 

The standard for MATLAB has (𝛽, 𝑡) = (2 , 52). This corresponding to a decimal system with 𝑠 = 16 
 

digits in the fraction. 

 

>> format long e 
 

>>𝑦 = sin(
𝑝𝑖⁄4) 

𝑦 = 70.0710667811865475𝑒 − 01 
 

The result displayed with 15 digits in the fraction. 



The reasoning in this section can easily be modified to floating point systems with chopping. The only 

difference is that then the unit roundoff is 𝜇𝑐 = 2𝜇 = 𝛽−𝑡. Floating point arithmetic with chopping is easier 

to implement than arithmetic with rounding, but is rarely used today because the IEEE standard for floating 

point arithmetic prescribes that rounding should always be used, 

 

SELFASSESSMENTEXERCISE1 

Convert 10001112 to base ten 

SELFASSESSMENTEXERCISE2 

Convert the following: (i) 2345 to base two (ii) ADE3 to base ten (iii) 65328 to base 

two 

4.0 CONCLUSION 

 

Numbers in everyday life are usually represented using the digits 0 to 9, but this is not the 

only way in which a number can be represented. There are multiple number base systems, 

which determine which digits are used to represent a number. The number system that we 

are most familiar with is called denary or decimal (base-10),   but binary (base-2) 

and hexadecimal (hex or base-16) are also used by computers. You can perform 

arithmetic calculations on numbers written in other base notations, and even convert 

numbers between bases. At a more advanced level, you will learn that representing negative 

numbers and fractional numbers using binary is also possible. There are several different 

methods, each with their own advantages and disadvantages. 

 

 

 

5.0 SUMMARY 

 

All the numbers are the same and the easiest version to remember/understand for humans 



is the base-16. Hexadecimal is used in computers for representing numbers for human 

consumption, having uses for things such as memory addresses and error codes. NOTE: 

Hexadecimal is used as it is shorthand for binary and easier for people to remember. It 

DOES NOT take up less space in computer memory, only on paper or in your head! 

Computers still have to store everything as binary whatever it appears as on the screen. 

6.0 TUTOR-MARKEDASSIGNMENT 

 
 

Let f be a function from R
n
 to R

m
 , and assume that we want to compute f(𝑎 ) ,   where 𝑎  is 

an approximation of a. Show that the general error propagation formula applied to each 

component of f leads to 

∆𝑓 ≃ 𝐽∆𝑎 , 
 

Where J is the m x n matrix (the Jacobi matrix) with elements 
 

(J)ij 
= 𝜕𝑓𝑖  .

 
𝜕𝑥𝑖 
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1.0 INTRODUCTION 

 

To perform calculations, you can write programming statements that include arithmetic operators and 

functions. The values in the calculations to which the arithmetic operators are applied are called operands. 

2.0 OBJECTIVES 

By the end of this unit, you should be able to: 

 Explain arithmetic operation in computational science 

 Describe addition and subtraction of floating point in arithmetic operation 

 Describe multiplication and division of floating point in arithmetic operation 

3.0 MAIN CONTENT 

3.1 ARITHMETIC OPERATION 

 

The aim of this unit is not to describe in full detail how floating point arithmetic can be implemented. 

Rather, we want to show that under certain assumption it is possible to perform floating point operations 

with good accuracy. This accuracy should then be requested from all implementations. 

Since rounding errors arise already when real numbers are stored in the computer, one can handle expect 

that arithmetic operations can be performed without errors. As an example, let a, b and c be variables with 

t + 1 digits, and consider the statement 

𝑎 ∶= 𝑏 ∗ 𝑐. 
 

In general, the product of two 𝑡 + 1digit numbers has 2t + 1 or 2t + 2 digits, so the significance must be 



reduced (by rounding or chopping) before the result can be stored in 𝑎. 

 

Before 1985 there did not exist a standard for the implementation of floating point arithmetic, and different 

computer manufacturers chose different solution, depending on economic and other reasons. In this section 

we shall describe somewhat simplified arithmetic in order to be able to explain the principle of floating 

point arithmetic without giving too many details. A survey of IEEE floating point standard is given in unit 

6. 

We shall describe an arithmetic for the floating point system (β, t, L, U) and assume rounding. In the 

numerical examples we use the system (10, 3, =9, 9). 

Computers have special registers for performing arithmetic operations. The length of these registers (the 

number of digits they hold) determine how exactly floating point operations can be performed. We 

assume that the arithmetic registers hold 2t + 4 digits in the significance (and faster) using shorter 

register, but then more complicated algorithms are needed. 

Apart from arithmetic and logical operations one must be able to perform shift operations, which are used 

in connection with normalization and to make two floating point numbers have the same exponent. As an 

example, a left shift implies that the exponent is decreased. 

0.031.10
1
 = 3.100.10

-1
. 

 

We first discuss floating point addition (and at the same time subtraction, since x – y = x + (-y)). Let 

x = m
x
β

ex
, y=myβ

ey
 , 

and let z = fl [x + y] denotes the result of the floating point addition We assume that ex ≥ ey. If ex > ey, then 

y is shifted ex - ey positions to the right before the addition: 

1.234.10
0
 + 4.567.10

-2
 = (1.234 + 0.04567).10

0
 

 

= 1.27967.10
0
 = 1.280.10

0
. 

 

(The symbol ―=‖ means ―is rounded to‖). If ex - ey ≥ t + 3, then fl [ x + y ] = x. Eg 
 

1.234.10
0
 = 1.234004567.10

0
 = 1.234.10

0
. 

 

We get the following addition algorithm
4)

: 



4) This and the following algorithms are not at a low level and depend on the computer‘s hardware. We 

cannot give them in MATLAB, but present them in pseudo code. 

3.2 FLOATING POINT ADDITION 

 

z= x+ y; 

 

ez := ex; (ex ≥ ey is assumed) 
 

if ex - ey ≥ t + 3 then 
 

mz : mx; 
 

else 

 

my := my / β ex-ey; (right shift ex - ey positions) 

mz := mx + my; 

Normalize; (see below) 

 

endif 

 

if ex - ey < t + 3, then my can be stored exactly after the shift, since the arithmetic register is assumed to 

hold 2t + 4 digits. Also the addition mx + my is performed without error. In general, the result of these 

operations may be an unnormalized floating point number z = mz. β
mz

, with [mz] ≥ β or [mz] < 1, e.g 

5.67.10
0
 = 10.245.10

0
 or 5.678.10

0
 + (-5.612.10

0
) = 0.066.10

0
. In such cases the floating point number is 

normalized by appropriate shifts. Further, the significand must be rounded to t+1 digits. These two tasks 

are performed by the following algorithm that takes an unnormalized, nonzero floating point number m. 

βe as input and gives a normalized floating number x as output. 

3.3 NORMALIZE 

if |m| ≥ β then 

m:= , m/β; e := e + 1; (right shift one position) 

 

else 

 

While |m| < 1 do 

 

m := m* β; e:= e – 1; (left shift one position) 

 

endif 



Round m to t+1 digits; 

 

If |m| = β then 

 

m:= m/β; e:= e + 1; (right shift one position) 

 

endif 

 

if e > U then 

 

x := Inf; (exponent overflow) 

 

elseif e < L then 

 

x := 0; (exponent underflow) 

 

else 

 

x= m.βe; (the normal class) 

 

endif 

 

The if-statement after the rounding is needed because the rounding to t + 1 digits can give an 

unnormalized results: 

9.9995.10
3
 = 10.000.10

3
 = 1.000.10

4
. 

 

The multiplication and division algorithms are simple: 

 

3.4 FLOATING POINT MULTIPLICATION 

 

z := x * y; 

 

ez := ex + ey: 

 

mz = mx * my 

Normalize: 

3.5 FLOATING POINT DIVISION 

 

z := x / y; 

 

if y = 0 then 

 

division by zero; (error signal
5
) 

else 

ez := ex – ez; 



mz = mx / my 

Normlize; 

endif 

We have assumed that the arithmetic registers hold 2t + 4digits. This implies that the results of addition 

and multiplication are exact before normalization and rounding. Therefore, the only error in these 

operations is the rounding error. A careful analysis of the division algorithm shows that the division of the 

significands can be performed so that the 2t + 4 digits are correct. Therefore, the fundamental error 

estimate for floating point representation (Theorem 2.5.1) is valid for floating point arithmetic: 

 
 

 

 
5)

 In the IEEE standard the error signal is z := Inf if x ≠ 0 and z := NaN (Not-a-Number) if x = 0, 

see unit 6. 

It can be shown that the theorem is valid even if the arithmetic registers hold t + 4 digits only, provided that 

the algorithms are modified accordingly. 

A consequence of the errors in floating point arithmetic is that some of the usual mathematical laws are no 

longer valid. Eg the associative law for addition does not necessarily hold. It may happen that 

𝑓𝑙[𝑓𝑙[𝑎 + 𝑏] + 𝑐] ≠ 𝑓𝑙[𝑎 + 𝑓𝑙[𝑏 + 𝑐]] 
 

Example. Let a = 9.876 ∙ 10
4
 
,
 b = -9.880 ∙ 10

4
 , c = 3.456 ∙ 10

1
 , and use the floating point system 

(10, 3, −9, 9) with rounding. Then 

fl [fl [a + b] + c] = fl [ -4.000 ∙ 10
1
 + 3.456 ∙ 10

1
 ] = -5.440 ∙ 10

1
 , 

Theorem 2.6.1. Let ꙩ denote any of the arithmetic operators +,-,* and /, and assume that x ꙩ y 

≠ 0 and that the arithmetic registers are as described above. Then 

|
𝑓[𝑥 ꙩ y]−𝑥 ꙩ y

|≤ µ
 

𝑥 ꙩ y 

Or, equivalently, 

fl[x ꙩ y] = (x ꙩ y) (1 + 𝜖 ), 

For some 𝜖 that satisfies |𝜖| ≤ µ. µ = 1 β-t
 is the unit roundoff. 

2 



and 
 

fl [a + fl [b + c]] = fl [9.876 ∙ 10
4
 - 9.877 ∙ 10

4
 ] = -1.000 ∙ 10

1
 . 

 

Another consequence of the errors is that it is seldom meaningful to test for equality between floating point 

numbers. Let x and y be floating point numbers that are results of earlier computation. 

Then there is very small probability that the Boolean x == y will be true. 

Therefore, instead of 

If x == y 

One should write 

If abs (x-y) < delta*max ( abs ( x ) , abs ( y ) ) 
 

where delta is some small number, slightly larger than the unit round-off µ. 

 

SELF ASSESSMENT EXERCISE1 

Convert 10001112 to base ten 

SELF ASSESSMENT EXERCISE2 

Convert the following: (i) 2345 to base two (ii) ADE3 to base ten (iii) 65328 to base 

two 

4.0 CONCLUSION 

 

The basic arithmetic operators that are used in programming follow the same notation as 

in mathematics. It is useful to know the operators in the table below. You may be unfamiliar 

with the following operators: 

DIV returns a whole number result (or quotient) of a division, which means that the 

fractional part of the result is dismissed 

MOD returns the remainder of a division 

round( ) rounds up the result of an operation 

truncate( ) rounds down the result of an operation 



The syntax for exponentiation, rounding, and truncation is not specified in AQA 

pseudocode. 

5.0         SUMMARY 

 

The basic arithmetic operations (addition, subtraction, multiplication, division, and 

exponentiation) are performed in the natural way with Mathematica. Whenever possible, 

Mathematica gives an exact answer and reduces fractions. 

1. ―a plus b,‖ a+b, is entered as a+b; 

 

2. ―a minus b,‖ a−b, is entered as a-b; 

 

3. ―a times b,‖ ab, is entered as either a*b or a b (note the space between the 

symbols a and b); 

4. ―a divided by b,‖ a/b, is entered as a/b. Executing the command a/b results in a fraction 

reduced to lowest terms; and 

5. ―a raised to the both power,‖ ab, is entered as a^b. 

 

6.0 TUTOR-MARKEDASSIGNMENT 

 

Let f be a function from R
n
 to R

m
 , and assume that we want to compute f(𝑎 ) ,   where 𝑎  is 

an approximation of a. Show that the general error propagation formula applied to each 

component of f leads to 

∆𝑓 ≃ 𝐽∆𝑎 , 
 

Where J is the m x n matrix (the Jacobi matrix) with elements 
 

 

 

 
(J)ij 

= 𝜕𝑓𝑖  .
 

𝜕𝑥𝑖 
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1.0 INTRODUCTION 

 

The overall effect of rounding-off at the various stages of a computation procedure on the 

accuracy of the computed solution to a system of algebraic equations. The most commonly 

employed technique for a priori estimation of the total effect of rounding-off errors in 

numerical methods of linear algebra is the scheme of inverse (or backward) analysis. 

Applied to the solution of linear algebraic equations 

Ax=b 

 

The scheme of inverse analysis is as follows. On the assumption that some direct 

method M has been used, the computed solution xM does not satisfy (1), but it can be 

expressed as the exact solution of a perturbed system 

(A+FM)x=b+kM. 

 

The quality of the direct method is estimated in terms of the best a priori estimate that can 

be found for the norms of the matrix FM and the vector kM. These "best" FM and kM are 

known as the equivalent perturbation matrix and vector, respectively, for the method M. 

If estimates for FM and kM are available, the error of the approximate solution xM can be 

estimated theoretically by the inequality 



‖x−xM‖‖x‖≤ cond(A)1−‖A−1‖‖FM‖(‖FM‖‖A‖+‖kM‖‖b‖). 

 

Here cond(A)=‖A‖‖A−1‖ is the condition number of the matrix A, and the matrix norm in 

 

(3) is assumed to be subordinate to the vector norm ‖‖. 

 

In reality, an estimate for ‖A−1‖ is rarely known in advance, and the principal meaning of 

 

(2) is the possibility that it offers of comparing the merits of different methods. In the sequel 

some typical estimates for the matrix FM are presented. 

For methods with orthogonal transformations and floating-point arithmetic ( A and b in the 

system (1) are assumed to be real) 

‖FM‖E≤ f(n)⋅‖A‖E⋅ϵ. 
 

In this estimate, ϵ is the relative precision of in the computer, ‖A‖E=(∑a2ij)1/2 is the 

Euclidean matrix norm, and f(n) is a function of type Cnk, where n is the order of the 

system. The exact values of the constants C and the exponents k depend on such details of 

the computation procedure as the rounding-off method, the use made of accumulation of 

inner products, etc. Most frequently, k=1 or 3/2. 

In Gauss-type methods, the right-hand side of the estimate (4) involves yet another 

factor g(A), reflecting the possibility that the elements of A may increase at intermediate 

steps of the method in comparison with their initial level (no such increase occurs in 

orthogonal methods). In order to reduce g(A) one resorts to various ways of pivoting, thus 

putting bounds on the increase of the matrix elements. 

In the square-root method (or Cholesky method), which is commonly used when the 

matrix A is positive definite, one has the sharper estimate 

‖FM‖E≤ C‖A‖E⋅ϵ. 



There exist direct methods (the methods of Gordan, bordering and of conjugate gradients) 

for which a direct application of a scheme of inverse analysis does not yield effective 

estimates. In these cases, different arguments are utilized to investigate the accumulation 

of errors 

2.0 OBJECTIVES 

By the end of this unit, you should be able to: 

 Explain accumulation errors in computational science 

3.0 MAIN CONTENT 

 
3.1 ACCUMULATED ERRORS 

 

As an example of error accumulation in repeated floating point operations we shall consider the 
 

computation of a sum, 
 

𝑛 
𝑘=1 

 

 
𝑥𝑘 

 

We assume that the sum is computed in the natural order and let 𝑠 idenote the computed partial sum, 
 

2.7 Accumulated Errors 
 

31 
 

𝑆 I := x1 

 

𝑆 I := fl[ 𝑆 𝑖 − 1 + 𝑥𝑖],  i= 2, 3,….., n. 
 

If we use the error estimate for addition in the form 

 

Fl[a+b] = (a+b) (1+є) , | є | ≤ 𝜇 , 

We see that 

𝑆 i = (  i -1 + x1) (1+𝜖1) , | 𝜖1 | ≤ 𝜇; 𝑖 = 2,3, … , 𝑛. 
 

A simple induction argument shows that the final result can be written in the form 
 

𝑆 i = 𝑥 1    +   2   + …+ 𝑥 n (2.7.1a) 
 

Where 

 

𝑥 1= x1 (1+ є2)(1+ є3)…..(1+ єn) , 

Sn= ∑ 



Lemma 2.7.1 Let the numbers є1 , є2,…, єr satisfy |єi| ≤ 𝜇, i= 1,2,…..r, and assume that r 𝜇 ≤ 
0.1. Then there is number 𝛿r such that 

(1 + є1)(1 + є1)….(1 + єr) = 1 + 𝛿r 

and 
| 𝛿r| ≤1.06 r 𝜇 

𝑥 1= x1 (1+ єi)(1+ єi+1)…..(1+ єn) ,  i =2,3,….,n. (2.7.1b) 

To be able to obtain practical error estimates, we need the following lemma, the proof of which is left as an 

exercise. 

Now we can derive two types of results, which give error estimates for summation in floating point 

arithmetic. 

 

 
Proof. According to (2.7.1) and lemma 2.7.1 we can write 

 

𝑆  = 𝑥1(1 + 𝛿𝑛−1) + 𝑥2(1 + 𝛿𝑛−1) + 𝑥3(1 + 𝛿𝑛−2) + ⋯ + 𝑥𝑛(1 + 𝛿1), 

Where the 𝛿1 satisfy the inequality in the theorem. Subtract 𝑆𝑛 and use the triangle inequality. 

Forward analysis is the type of error analysis that we used at the beginning of this chapter. However, it is 

difficult to use this method to analyze such a fundamental algorithm as Gaussian elimination for the solution 

of a linear system of equations. The first correct error analysis of this algorithm was made in the mid 1950s 

by means of backward error analysis. 

In backward analysis one shows that the approximate solution 𝑆  which has been computed for the problem 

𝑃  is the exact solution of a perturbed problem 𝑃 , and estimate the ―distance‖ between 𝑃  and 𝑃 . By means     

of perturbation analysis of the problem it is then possible to estimate the difference between 𝑆  and the true 

solution 𝑆. 

Theorem 2.7.2. Forward analysis. If 𝑛𝜇 ≤ 0.1, then the error in the computed sum can be 

estimated as  |𝑆 n−𝑆𝑛| ≤ |𝑥1| |𝛿𝑛−1  | + |𝑥2|𝛿𝑛−1| + |𝑥3||𝛿𝑛−2| + ⋯ + |𝑥𝑛||𝛿1| , 
where 

|𝛿𝑖| ≤ 𝑖 ∙ 1.06𝜇, 𝑖 = 1, 2, … , 𝑛 − 1 . Type equation here. 



Theorem 2.7.3. Backward analysis. The compound sum can be expressed as 

𝑆 n= 𝑥 1  +  𝑥 2 +….+ 𝑥 n 

𝑤𝑒𝑟𝑒 
𝑥 1 = 𝑥1(1 +  𝛿𝑛−1) , 
𝑥 i = 𝑥1(1 +  𝛿𝑛+1−𝑖),   𝑖 = 2,3, … . . , 𝑛. 

If 𝑛𝜇 ≤ 0.1 , then 

|𝛿𝑘| ≤ 𝑘 ∙   1.06𝜇,   𝑘 = 1,2, … . 𝑛 − 1 . 

We cite the following description of the aim of backward error analysis from J.R. Rice, Matrix computations 

and mathematical software, McGraw-Hill, New York, 1981. 

―The objective of backward error analysis is to stop worrying about whether one has the ―exact‖ answer, 

because this is not a well-defined thing in most real-world situations. What one wants is to find an answer 

which is the true mathematical solution to a problem which is within the domain of uncertainty of the 

original problem. Any result that does this must be acceptable as an answer to the problem, at least with the 

philosophy of backward error analysis.‖ 

In the summation case we can formulate 
 

 

The error estimates in these two theorems lead to an important conclusion: We can rewrite the estimates in 

the form 

|𝑆 n – Sn | ≤ ((n-1)|x1 |+ (n-1)|x2| + (n-2)|x3| + … + |xn|)1.06µ , 

 

This shows that in order to minimize the error bound, we should add the terms in increasing order of 

magnitude, since the first terms have the largest factors. 

Example: Let 
 

X1 = 1.234. 10
1
, 

 

x2 = 3.453. 10
0
, 

 

x3 =3.442. 10
-2

, 
 

x4 = 4.667.  10
-3

, 
 

x5 = 9.876.  10
-4

, 
 

and use the floating point system (10,3,-90.9) with rounding. Summation in decreasing and 

increasing order gives 



𝑛=1 

decreasing order:  𝑆5 = 1.592. 10
1
 , 

decreasing order:  𝑆5 = 1.583. 10
1
 . 

 

The exact result rounded to 6 decimals is S5 = 1.583306.10
1
. 

 

Similarly, a relatively large error may arise when a slowly converging series is summed in decreasing order. 

Example. We have computed the sum 

∑30000 1/𝑛2 

 
In the floating point system (2,23,-126,127) with rounding. If we take the terms in increasing order of n, 

we get the result 1.644725, while we get 1.644901 if we sum in decreasing order. The last result is equal 

to the true value of the sum rounded to 24 binary digits. 

It should be pointed out that the major part of the difference between the two results is due to the fact that 

when we sum in decreasing order, the last 25904 terms do not contribute to the sum because 

Fl[S +1/n
2
] = S for n>4096, 

Where S is the summation variable, we leave it as an exercise to show this. 

 

SELFASSESSMENTEXERCISE1 

What are accumulation errors? 

SELFASSESSMENTEXERCISE2 

State the steps in finding accumulated errors in computational science 

4.0 CONCLUSION 

 

A significant proportion of such problems arises in the solution of linear or non-linear 

algebraic problems (see above). In turn, one is most commonly concerned with algebraic 

problems that arise from the approximation of differential equations. These problems 

display certain specific features. Errors accumulate in accordance with the same or even 

simpler laws as those governing the accumulation of computational errors; they may be 

investigated when analyzing a method for the solution of a problem. There are two different 



approaches to investigating the accumulation of computational errors. In the first case one 

assumes that the computational errors at each step are introduced in the most unfavourable 

way and so obtains a majorizing estimate for the error. In the second case, one assumes 

that the errors are random and obey a certain distribution law. 

5.0 SUMMARY 

 

The nature of the accumulation of errors depends on the problem being solved, the method 

of solving and a variety of other factors that appear at first sight to be rather inessential: 

such as the type of computer arithmetic (fixed-point or floating-point), the order in which 

the arithmetic operations are performed, etc. For example, in   computing the sum 

of N numbers 

AN=a1+⋯+aN 

 

the order of the operations is significant. Suppose that the computation is being done in a 

computer with floating-point arithmetic with t binary digits, all numbers lying in the 

interval 1/2<|an|≤1. In a direct computation of AN via the recurrence formula 

An+1=An+an, n=1…N−1, 

the majorizing error estimate is of the order 2−tN. But one can proceed otherwise (see [1]). 

First compute sums of pairs, A1k=a2k−1+a2k( if N=2l+1 is odd, one puts A1l+1=a2l+1). 

Then compute further sums of   pairs, A2k=A12k−1+A12k,   etc.   If 2m−1<N≤2m, 

then m steps of pairwise addition using the formulas 

Aqk= Aq−12k−1+Aq−12k, A0k≡ak, 

 

yield Am1=AN; the majorizing error estimate is of the order 2−1log2N. 

 

In typical problems, the numbers am are computed according to formulas, in particular 

https://encyclopediaofmath.org/wiki/Accumulation_of_errors#References


recurrence formulas, or appear consecutively in the operating memory of the computer; in 

such cases use of the scheme just described increases the load on the computer memory. 

However, the sequence of computations can be so organized that the load on the operating 

memory is never more than ∼log2N cells. 

In the numerical solution of differential equations one may encounter the following cases. 

As the grid spacing h tends to zero, the error increases as (a(h))h−q, where q>0, 

while ¯limh→0|a(h)|>1. Such methods of solution fall into the category of unstable 

methods. They are of little practical interest. 

6.0 TUTOR-MARKEDASSIGNMENT 

 

If extended precision is not available, it may be simulated in connection with arithmetic 

operations. 

(a) Let |a| and |b| be two floating point numbers and c = fl[a + b]. The error e = c − (a+b) 

can be computed by the algorithm 

if |a| < |b| then e := (b − c) + a; 

else e := (a − c) + b; 

(a1) Use the algorithm in the floating point system (10, 4,−9, 9) with a = 1.2345, b = 

0.045678. 
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1.0 INTRODUCTION 

 

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are 

developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards 

Association (―IEEE-SA‖) Standards Board. IEEE (―the Institute‖) develops its standards through a 

consensus development process, approved by the American National Standards Institute (―ANSI‖), which 

brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE 

Standards are documents developed through scientific, academic, and industry-based technical working 

groups. Volunteers in IEEE working groups are not necessarily members of the Institute and participate 

without compensation from IEEE. While IEEE administers the process and establishes rules to promote 

fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the 

accuracy of any of the information or the soundness of any judgments contained in its standards. IEEE 

Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure against 

interference with or from other devices or networks. Implementers and users of IEEE Standards documents 

are responsible for determining and complying with all appropriate safety, security, environmental, health, 

and interference protection practices and all applicable laws and regulations. IEEE does not warrant or 

represent the accuracy or content of the material contained in its standards, and expressly disclaims all 

warranties (express, implied and statutory) not included in this or any other document relating to the 

standard, including, but not limited to, the warranties of: merchantability; fitness for a particular purpose; 



non-infringement; and quality, accuracy, effectiveness, currency, or completeness of material. In addition, 

IEEE disclaims any and all conditions relating to: results; and workmanlike effort. IEEE standards 

documents are supplied ―AS IS‖ and ―WITH ALL FAULTS.‖ 

3.1 IEEE standard for Floating Point Arithmetic 

 

Above all, it is the development of microcomputers that has made it necessary to standardize floating point 

arithmetic. The aim is to facilitate portability, ie a program should run on different computers without 

changes, and if two computers conform to the standard, then the program should give identical results (or 

almost identical; see the end of this section). 

A proposal for a standard for binary floating point arithmetic was sentenced in 1979. Some changes were 

made, and the standard was adopted in 1985. It has been implemented in most computers
6)

. We shall present 

the most important parts of the standard for binary floating point arithmetic without going into too much 

detail. 

The standard defines four floating point formats divided into two groups, basic and extended, each in a 

single precision and double precision version. The single precision basic format requires a word of length 

32 bits, organized as shown in figure 2.4 

s E F 

0 8 31 
 

Figure 2.4. Basic format, single precision. 

 

The component of a floating point number x is the sign s (one bit), the biased exponent E (8bits) and the 

fraction f (23bits). The value v of x is 

a. V = (-1)
s
 (1.f)2

E-127
 if 0 < E <255. 

 

b. V = (-1)
s
 (0.f)2

-126
 if E = 0 and f ≠0. 

 

c. V = (-1)
s
 0 if E = 0and f =0. 

 

d. V = NaN (Not-a-Number,see below) if E = 255 and f ≠0. 

 

e. V = (-1)
s
 Inf (Infinity) if E = 255 and f =0. 



In 1987 a base-independent standard was adopted. This was motivated by the pocket calculators, which 

normally use the base β=10. There have also been computers using base 8 (octal system, using 3 bits per 

digit), and base 16(hexadecimal system, using 4 bits per digit ). A major argument for these systems is that 

they need fewer shifts in connection with the arithmetic operations. 

3.2 IEEE Standard 
 

The normal case is a. Due to the normalization the significand satisfies 1 ≤ |𝑚| < 2. Thus, the integer part 

is always one, and by not storing this digit we save an extra bit for the fraction. Also note that the exponent 

is stored in biased (or shifted) form. The range of values that can be obtained with 8 bits is 

[(00000000)2, (11111111)2 = [(0)10, (255)10]. 
 

The two extreme values are reserved (cf the above table), so the range of values for the true exponent e = 

 

E – 127 is 

 

[L, U] = [1 – 127, 254 - 127] = [-126, 127] 

 

This is in accordance with the table on page 23. 
 

Example. The numbers 1, 4.125 = (1 +  
1 

)2
2
 and -0.09375 = -1.5 · 2−4 are stored as 

32 

 

0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 
1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 

One reason for introducing NaN (Not-a-Number) and Inf (Infinity), items d. and e. above is to make 

debugging easier. Both of these are returned as the result in exceptional case. Eg the result of 1/0 and 0/0 

is Inf and NaN, respectively. Also, NaN is the result of a computation involving an initialized variable, and 

Inf is returned in case of overflow. Rather than stopping the execution of the program it may be preferable 

to continue, and analyze the output for this debugging information. 



In the floating point arithmetic of most computers the result is put to zero in case of an underflow. 

 

The IEEE standard allows the option ―gradual underflow‖, item b. 

 

Example. If e ˂ - 126, the floating point number is unnormalized. Eg the number stored as 

 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 

is 2−4·2−126 = 2−130. Note that the leading zeros in f are not significant, and the bound of the relative 

representation error grows with increasing number of leading zeros. 

The smallest, nonzero, positive number that can be represented in this way is 
 

2−23  ·  2−126  =  2−149−  1.40  · 10−45 

 
The smallest normalized, positive number is 

 

2−126−  1.18  · 10−38 
 

and the largest number is 

 

(2 −  2−23) ·  2−127−  3.40  · 1038 
 

The basic double precision format is analogous to the precision format. Here, 64 bits are used as illustrated 

is Figure ―.5. The fraction 

s E F 

01163 

 

Figure 2.5. Basic format double precision. 

 

f is given with t = 52 binary digits, the biased exponents is E = e + 1023 and range of positive, normalized 

floating point numbers point numbers is 

[2−1022, (2 − 2−52)21023]− [2.22 · 10−308, 1.80  ·  10308] 

 

Details of the extended single and double formats are left to the implementer, but there must be at least one 

sign bit and 

Extended single: t ≥ 31, L ≤ - 1022, U ≥ 1023. 

Extended double: t ≥ 63, L ≤ - 16382, U ≥ 16382. 



Example. Intel microprocessors live up to these requirements. They use 80 bits both for extended single 

and extended double. One bit is used for the sign, 15 bits for the biased exponent, and 64 bits for the 

significand, corresponding to 63 bits for the fraction. 

Implementations of the standard must provide the four simple arithmetic operations, the square root 

function and binary-decimal conversion. When every operand is normalized, then an operation (also the 

square root function) must be performed such that the result is equal to the rounded result of the same 

operation performed with infinite precision. 

This implies that Theorem 2.6.1 is valid. 

 

The standard specifies that rounding is done according to the rules in section 2.2. In particular, rounding to 

even must be used in the limit case. 

The extended formats can be used (by the compiler in some high level languages) both for avoiding 

overflow and underflow and to give better accuracy. 

Example. The computation of s:= √𝑥12 + 𝑥22 may give overflow or underflow, even if the result can be 

represented as a normalized floating point number, see Exercise E9. If the computer uses extended precision 

for the computed squares and their sum, then overflow or underflow cannot occur. 

Example. The ―length‖ of a vector with n elements, 
 

 

𝑛 
𝑖=1 

1 
 

 

𝑥𝑖
2)2 

 

can be computed by the following program. 

 

Extended real s; 

 

S:=0; 

 

for i:= 1 to n do s:= s+ 𝑥𝑖 ∗ 𝑥𝑖 ; 

l := √𝑠; 

If l can be represented (e.g. in single precision), overflow or underflow cannot occur. Further, since the 

significand of the extended format has more digits, l will be computed more accurately than in the case 

where s is a basic format variable. If n is not too large, the l can even be equal to the exact result rounded 

l = (∑ 



to the basic format. 

 

In the beginning of this section we mentioned that even if two computers both apply to the IEEE standard 

for floating point arithmetic, the same program does not necessarily give identical results when run on the 

two computers. A difference is caused by different implementations of the extended formats. 

 

SELFASSESSMENTEXERCISE1 

What is IEEE Standard for Floating-Point 

SELFASSESSMENTEXERCISE2 

State two type of IEEE Standard for Floating-PointArithmetic 

4.0 CONCLUSION 

 

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for 

floating-point computation which was established in 1985 by the Institute of Electrical and 

Electronics Engineers (IEEE). The standard addressed many problems found in the diverse 

floating point implementations that made them difficult to use reliably and reduced their 

portability. IEEE Standard 754 floating point is the most common representation today for 

real numbers on computers, including Intel-based PC‘s, Macs, and most Unix platforms. 

There are several ways to represent floating point number but IEEE 754 is the most 

efficient in most cases. IEEE 754 has 3 basic components: 

The Sign of Mantissa –This is as simple as the name. 0 represents a positive number while 

1 represents a negative number.The Biased exponent – 

The exponent field needs to represent both positive and negative exponents. A bias is added 

to the actual exponent in order to get the stored exponent. 

The Normalised Mantissa –The mantissa is part of a number in scientific notation or a 

floating-point number, consisting of its significant digits. Here we have only 2 digits, i.e. 



O and 1. So a normalized mantissa is one with only one 1 to the left of the decimal. 

 

5.0 SUMMARY 

 

This standard specifies interchange and arithmetic formats and methods for binary and 

decimal floating-point arithmetic in computer programming environments. This standard 

specifies exception conditions and their default handling. An implementation of a floating- 

point system conforming to this standard may be realized entirely in software, entirely in 

hardware, or in any combination of software and hardware. For operations specified in the 

normative part of this standard, numerical results and exceptions are uniquely determined 

by the values of the input data, sequence of operations, and destination formats, all under 

user control. This standard specifies formats and operations for floating-point arithmetic in 

computer systems. Exception conditions are defined and handling of these conditions is 

specified. 

6.0 TUTOR-MARKEDASSIGNMENT 

 
1. (a) Use Taylor expansion to avoid cancellation in 𝑒𝑥 − 𝑒−𝑥, x close to 0. Use reformulation to avoid 

cancellation in the following expressions 

(b) sin x – cos x, x close to π /4, 
 

(c) 1 – cos x, x close to 0, 

 

(d) (√1 + 𝑥2 − √1 − 𝑥2)−1 , x close to 0. 

2. Let x be a normalized floating point number in the system (β,t,L,U).  Show that r ≤ |x| ≤ R, where 

r = β
L
, R = (β– β

-t
) β

U
 . 

3. Assume that x and y re binary floating point numbers that satisfy xy >0 and |y| ≤ |x| ≤ 2|y|. Show that 

fl[x-y] = x – y. 

4. (a) Show that fl[1+x] = 1 for all x ∈ [0, µ], where µ is the unit roundoff. 



(b) Show that fl[1+x] > 1 for all x > µ 

 

(c) Let i + e be the smallest floating point number greater than 1. Determine e in the floating point 

system (2, t, L, U) and compare it to µ. (This number is sometimes called the ‘machine epsilon’; it is 

given by eps in MATLAB) 

5. Show that the computation range of s = √𝑥12 + 𝑥22 can give overflow or underflow even if s is in the 

range of the floating point system. (As examples take 𝑥1 = 𝑥2 = 8.10
5
 and 𝑥1 = 𝑥2 = 2.10

-5
 in the system 

(10,4,-9,9)). Rewrite the computation so that over and underflow is avoided for all data 𝑥1, 𝑥2 such that the 

result s can be represented. 
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1.0 INTRODUCTION 

 

For practical use, it is convenient to have an analytical representation of the relationships between variables 

in a physical problem, and this representation can be approximately reproduced from data given by the 

problem. The purpose of such a representation might be to determine the values at intermediate points, to 

approximate an integral or derivative, or simply to represent the phenomena of interest in the form of a 

smooth or continuous function. Interpolation refers to the problem of determining a function that exactly 

represents a collection of data. The most elementary type of interpolation consists of fitting a polynomial 

to a collection of data points. For numerical purposes, polynomials. 

2.0 OBJECTIVES 

By the end of this unit, you should be able to: 

 Explain approximation and interpolation in computational science 

 Describe the general overview of the two concepts 

3.0 MAIN CONTENT 

3.1 Approximation and Interpolation 

 

The present chapter is basically concerned with the approximation of functions. The functions in question 

may be functions defined only on a finite set of points. The first instance arises, for example, in the context 



𝑗=1 

𝑚 

of special functions (elementary or transcendental) that one wishes to evaluate as part of a subroutine. Since 

any such evaluation must be reduced to a finite number of arithmetic operations, we must ultimately 

approximate the function by means of a polynomial or a rational function. The second instance is frequently 

encountered in the physical sciences when measurements are taken of a certain physical quantity as a 

function of some other physical quantity (such as time). In either case one wants to approximate the given 

function ―as well as possible‖ in terms of other simpler functions. 

The general scheme of approximation can be described as follows. We are given the function f to be 

approximated, along with a class 𝛷 of ―approximating functions‖ 𝜑 and a ―norm‖ || ⋅ || measuring the 

overall magnitude of functions. We are looking for an approximation 𝜑  𝜖 𝛷 of f such that 

||   − 𝜑 ||  ≤  || 𝑓  − 𝜑  ||  for all   𝜑 𝜖 𝛷 (2.1) 

The function 𝜑  is called the best approximation to f from the class 𝛷, relative to the norm || ⋅ ||. 

The class 𝛷 is called a (real) linear space if with any two functions 𝜑1, 𝜑2 𝜖 𝛷 it also contains 𝜑1 + 𝜑2 and 
 

c𝜑1 for any c 𝜖 ℝ, hence also any (finite) linear combination of functions 𝜑i 𝜖 𝛷. Given n ―basis functions‖ 
 

𝜋j𝜖 𝛷, j = 1, 2, n, we can define a linear space of finite dimension n by 
 

  = 𝛷n    = { 𝜑 ∶  𝜑(𝑡)  =  ∑𝑛 𝑐𝑗𝜋𝑗(𝑡), 𝑐𝑗 𝜖 ℝ} (2.2) 
 

Examples of linear spaces 𝛷. 1. 𝛷 = ℙm: polynomials of degree ≤ 𝑚. A basis for ℙm is, for example 𝜋(𝑡) = 
 

𝑡 𝑗−1, j = 1, 2,...,m + 1, so that n = m + 1. Polynomials are the most frequently used ―general-purpose‖ 

approximants for dealing with functions on bounded domains (finite intervals or finite sets of points). One 

reason is Weierstrass's theorem, which states that any continuous function can be approximated on a finite 

interval as closely as one wishes by a 

polynomial of sufficiently high degree. 

 
2. 𝛷 = 𝕊𝑘 (𝛥) (polynomial) spline functions of degree m and smoothness class kon the subdivision 

 

𝛥 ∶ 𝑎 = 𝑡1 < 𝑡2 < 𝑡3 < ⋅⋅⋅ < 𝑡𝑁 − 1 < 𝑡𝑁    = b 

of the interval [a, b]. These are piecewise polynomials of degree ≤m pieced together at the "joints" t2,..., tN 

 

- 1 in such a way that all derivatives up to and including the kth are continuous on the whole interval [a, b], 



𝑚 

including the joints: 
 

𝕊𝑘 (𝛥) = {𝑠 𝜖𝐶𝑘 [𝑎, 𝑏] ∶ 𝑠| 𝜖 ℙ , 𝑖 = 1,2, . . . , 𝑁 − 1} 
𝑚 [𝑡𝑖,𝑖 + 1] 𝑚 

 

We assume here 0 ≤k<m; otherwise, we are back to polynomials ℙ𝑚 (see Ex. 68). We set        k = -1 if 

we allow discontinuities at the joints. The dimension of 𝕊𝑘 (𝛥) is n = (m - k) ⋅ (N -2) + m + 1 (see Ex. 71), 

but to find a basis is a nontrivial task; for m = 1, see Sect. 2.3.2. 

3. 𝜙 = 𝕋𝑚 [0, 2𝜋]: trigonometric polynomials of degree ≤m on [0, 2𝜋]. These are linear 

combinations of the basic harmonics up to and including the mth one, that is, 

𝜋(𝑡) = 𝑐𝑜𝑠 (𝑘 − 1)𝑡, 𝑘 = 1,2, . . . , 𝑚 + 1; 
 

𝜋𝑚+1+(𝑡) = 𝑠𝑖𝑛𝑘𝑡, 𝑘 = 1,2, . . . , 𝑚, 
 

where now n = 2m + 1. Such approximants are a natural choice when the function f to be approximated is 

periodic with period 2𝜋. (If f has period p, one makes a preliminary change of variables 𝑡 → 𝑡 ⋅ 𝑝/2𝜋.) 

4. 𝜙 = ➪𝑛: exponential sums. For given distinct 𝛼𝑗 > 0, one takes 𝜋(𝑡) = e
-𝛼𝑗𝑡, j = 1.2,...,n. 

Exponential sums are often employed on the half-infinite interval ℝ+: 0 ≤ 1 < ∞, especially if one knows 

that f decays exponentially as 𝑡 → ∞. 

 

Note that the important class of rational functions, 

 

𝜙 = ℝ𝑟, = {𝜑: 𝜑 = 𝑝/𝑞, 𝑝 𝜖 ℙ𝑟, 𝑞 𝜖 ℙ𝑠}, is 

not a linear space. (Why not?) 

Possible choices of norm - both for continuous and discrete functions and the type of approximation they 

generate are summarized in Table 2.1. The continuous case involves an interval [a, b] and a "weight 

function" w(t) (possibly w(t) = 1) defined on [a, b] and positive except for isolated zeros. The discrete case 

involves a set of N distinct points t1, t2….,tN along with positive weight factors 

Table 2.1 Types of approximation and associated norms 

 

Continuous norm Approximation Discrete norm 



||𝑢||∞ = max |𝑢(𝑡)| 
 

𝑎 ≤ 𝑡 ≤ 𝑏 

L∞ 
 
 

Uniform 

Chebyshev 

||𝑢||∞ = max |𝑢(𝑡𝑖)| 
 

1 ≤ 𝑖 ≤ 𝑁 

||𝑢||1 = ∫
𝑏 

|𝑢(𝑡)|dt 
𝑎 

 

L1 

||𝑢||1 = ∑𝑁 |𝑢(𝑡𝑖)| 
𝑖=1 

||𝑢||1,w = ∫
𝑏 

|𝑢(𝑡)|w(t)dt 
𝑎 

 

Weighted L1 

||𝑢||1,w = ∑𝑁 𝑤𝑖|𝑢(𝑡𝑖)| 
𝑖=1 

𝑏 2 
1 

||𝑢||2,w = (∫𝑎 
|𝑢(𝑡)| 𝑤(𝑡)𝑑𝑡)2 

 

 

Weighted L2 

 

Least squares 

 

1 
||𝑢||2,w = (∑𝑁 𝑤 |𝑢(𝑡 )|)2 

𝑖=1 𝑖 𝑖 

w1, w2,...,wn (possibly all equal to 1). The interval [a, b] may be unbounded if the weight function w is such 

that the integral extended over [a, b], which defines the norm, makes sense. 

Hence, we may take any one of the norms in Table 2.1 and combine it with any of the preceding linear 

spaces 𝜙 to arrive at a meaningful best approximation problem (2.1). In the continuous case, the given 

function f, and the functions 𝜑 of the class 𝜙, of course, must be defined on [a, b] and such that the norm 

||𝑓 − 𝜑|| makes sense. Likewise, f and 𝜑 must be defined at the points ti in the discrete case. 

 
Note that if the best approximant 𝜑  in the discrete case is such that ||𝑓 − 𝜑 || = 0, then 𝜑 (𝑡𝑖) = 𝑓(𝑡𝑖) for i 

 
= 1,2,...,N. We then say that 𝜑   interpolates f at the points ti; and we refer to this kind of approximation 

problem as an interpolation problem. 

The simplest approximation problems are the least squares problem and the interpolation problem, and the 

easiest space 𝜙 to work with the space of polynomials of a given degree. These are indeed the problems we 

concentrate on in this chapter. In the case of the least squares problem, however, we admit general linear 

spaces 𝜙 of approximants, and also in the case of the interpolation problem, we include polynomial splines 

in addition to straight polynomials. 



𝑅 

𝑗=1 

Before we start with the least squares problem, we introduce a notational device that allows us to treat the 

continuous and the discrete case simultaneously. We define, in the continuous case, 

 

 

 

 

 

 
 

𝜆(𝑡) = 

0 if t < a (whenever - ∞ < 𝑎), 
 

𝑡 

∫𝑎 𝑤(𝑟)𝑑𝑟 if 𝑎 ≤ 𝑡 ≤ 𝑏, 

𝑏 

∫𝑎 𝑤(𝑟)𝑑𝑟 if 𝑡 > 𝑏 (whenever b <∞), 

 

 

 

 

 
(2.3) 

 

Then we can write, for any (say, continuous) function u, 

 

∫   (𝑡)𝑑ƛ(𝑡) = ∫
𝑏 
𝑢(𝑡)𝑤(𝑡)𝑑𝑡, 

 

 
(2.4) 

𝑅 𝑎 
 

Since 𝑑ƛ ≡ 0 ―outside‖ [a,b], and 𝑑ƛ(𝑡) = 𝑤(𝑡)𝑑𝑡 𝑖𝑛𝑠𝑖𝑑𝑒. We call 𝑑ƛ a continuous (positive) measure. 

The discrete measure (also called ―Dirac measure‖) associated with the point set {t1, t2, ….., tN} is a 

measure 𝑑ƛ that is nonzero only at the points ti and has the value wi there. Thus, in this case, 

∫    (𝑡) 𝑑ƛ(𝑡) = ∑𝑁 𝑊𝑖𝑢(𝑡𝑖). (2.5) 
𝑅 𝑖=1 

 

(A more precise definition can be given in terms of Stieltjes integrals, if we define ƛ(𝑡) to be a step function 

 

having jump wi at ti.) In particular, we can define the L2 norm as 

 
||𝑢||2,ƛ = (∫   |𝑢(𝑡) |2𝑑ƛ(𝑡) )1/2 , (2.6) 

 
And obtain the continuous or the discrete norm depending on whether ƛ is taken to be as in (2.3), or step 

function, as in (2.5). 

We call the support of 𝑑ƛ – and denote it by supp 𝑑ƛ – the interval [a,b] in the continuous case (assuming 

w positive on [a,b] except for isolated zeros), and the set {𝑡1, 𝑡2, ....... ,𝑡𝑁 } in the discrete case. We say that 

the set of functions 𝜋𝑗 (𝑡) in (2.2) is linearly independent on the support of𝑑ƛ if: 
 

𝑁 
𝑗=1 𝑐𝑗 𝜋𝑗 (t) ≡ 0 for all t Є supply 𝑑ƛ implies 𝑐1 = 𝑐 2 = . . . = 𝑐𝑛   = 0. (2.7) 

 

Example: the powers 𝜋𝑗 (𝑡) =  𝑗−1, j = 1, 2, .............. ,n. 
 

Here ∑𝑁 𝑐𝑗 𝜋 𝑗 (t) = 𝑝𝑛−1(t) is a polynomial of degrees ≤ n – 1. Suppose, first, that supp 𝑑ƛ = [a,b]. 

∑ 



𝑁 

𝑖=1 

Then the identity in (2.7) says that 𝑝𝑛−1(t) ≡ 0 on [a,b]. 

Clearly, this implies 𝑐1 = 𝑐 2 = . . . = 𝑐𝑛 = 0, so that the powers are linearly independent on supp 𝑑ƛ = [a,b]. 

 
If, on the other hand, supp 𝑑ƛ  {𝑡1, 𝑡2,……..,𝑡𝑁 }, then the premise in (2.7) says that 𝑝𝑛−1(ti) = 0, i = 

1,2,… ................. ,N; that is 𝑝𝑛−1 has N distinct zeros 𝑡 𝑖 . This implies 𝑝𝑛−1 ≡ 0 only if N ≥ n. Otherwise, 

𝑝𝑛−1(t) = ∑ (t − 𝑡𝑖) Є 𝑃𝑛−1    would satisfy 𝑝𝑛−1(ti) = 0, I = 1, 2,… ............ ,N, without being identically 

 
zero. Thus, we have linear independence on supp 𝑑ƛ = {𝑡1, 𝑡2, ....... ,𝑁 } if and only if N ≥ n. 

 
SELFASSESSMENTEXERCISE1 

Define Interpolation 

SELFASSESSMENTEXERCISE2 

Differentiate between approximation and Interpolation 

4.0 CONCLUSION 

 

Numerical mathematics deals with the approximate or approximate solution of 

mathematical problems. We distinguish numerical mathematics, numerical linear algebra, 

numerical solution of nonlinear equations, approximation and interpolation methods, etc. 

To apply the methods of numerical mathematics, it is necessary to know and analyze the 

error estimate. In general, we can say that the problem we solve is called input information 

and the corresponding result is output information. The process of transforming input into 

output information is called an algorithm. In this paper, an approximation or approximate 

match and interpolation or exact matches are treated.By interpolation we come to functions 

that pass exactly through all given points, and we use it for a small amount of input data. 

Interpolation implies the passage of an interpolation function through all given points, 

while the approximation allows errors to a certain extent, and then we smooth the obtained 



function. In the case of interpolation, the problem of determining the function f is called 

the interpolation problem, and the given points and xi are called nodes (base points, 

interpolation points). We choose the function f according to the nature of the model, but so 

that it is relatively simple to calculate. These are most often polynomials, trigonometric 

functions, exponential functions and, more recently, rational functions. In practice, it has 

been shown that it is  not wise to use polynomials of  degree greater than three for 

interpolation, because for some functions an increase in the degree of an interpolation 

polynomial can lead to an increase in errors. Therefore, instead of a high degree of 

interpolation polynomial, interpolation by parts of the so-called polynomial is used. By 

approximation, we arrive at functions that pass through a group of data in the best possible 

way, without the obligation to pass exactly through the given points. The approximation is 

suitable for large data groups, nicely grouped data, and small and large groups of scattered 

data. 

5.0 SUMMARY 

 

Approximation occurs in two forms. We know the function f, but its form is complicated 

to compute. In this case, we select the function information to use. The error of the obtained 

approximation can be estimated with respect to the true value of the function. The 

function f is unknown to us, but only some information about it is known. For example, 

values at a set of points are known. The substitution function ϕ is determined from the 

available information, which, in addition to the data itself, includes the expected form of 

data behavior, ie. Functionϕ. In this case, we cannot make an error estimate without 

additional information about the unknown function f [1-3]. In practice, we often encounter 

https://www.pulsus.com/scholarly-articles/interpolation-and-approximation-of-functions-7746.html#1
https://www.pulsus.com/scholarly-articles/interpolation-and-approximation-of-functions-7746.html#3


the variant that the function f is not known to us. It most often occurs when measuring 

various quantities, because in addition to the measured data, we also try to approximate the 

data between the measured points. Some of the mathematical problems can be solved by 

numerical methods, however, not always with great precision and accuracy. Sometimes the 

time we have to solve problems is not enough and in that case we use programming 

methods using a computer. Programming allows you to solve complex tasks with great 

accuracy and in a short period of time. The ability of a computer to perform a large number 

of mathematical operations in real time provides great opportunities for numerical 

mathematics and mathematics in general, and thus the development of science and 

technology. All software solutions are integrated systems for numerical and symbolic 

calculations, graphical presentation and interpretation, and provide support that allows the 

user to program in an easy way. 

6.0 TUTOR-MARKEDASSIGNMENT 

 

We want to compute f(a) = √a, and we have very high requirements concerning speed. 

(a) One possible method is to interpolate linearly in an equidistant table. Which table size 

is needed if we require that |RXF + RT| shall be smaller than 2μ? The computer is using 

the floating point system (2, 23,−126, 127). 

(b) Another method is to perform one iteration with Newton-Raphson‘s method applied 

to the equation f(x) = x2 − a = 0. The initial approximation x0 is taken from a table. 

Which table size is needed if we require that, the error after one iteration is smaller than 

2μ? 
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1.0 INTRODUCTION 

 

We specialize the best approximation problem (2.1) by taking as norm the 𝐿2 norm 

 
||𝑢||2,ƛ = (∫   |𝑢(𝑡) |2𝑑ƛ(𝑡) )1/2 (2.8) 

 
Where 𝑑ƛ is either a continuous measure ( cf. (2.3) ) or a discrete measure ( cf. (2.5) ), and by using 

approximants ϕ from an n-dimensional linear space 

Φ = Φ 𝑛 = { ϕ: ϕ(t) = ∑𝑁 𝑐𝑗 𝜋𝑗 (t) . 𝑐  Є R } . (2.9) 

 

Here the basis functions 𝜋𝑗 are assumed linearly independent as supp 𝑑ƛ (cf. (2.7)). We furthermore assume 

of course, that the integral in (2.8) is meaningful whenever u = 𝜋𝑗 or u = f, the given function to be 

approximated. 

The solution of the best squares problem is mostly easily expressed in terms of orthogonal systems 

 

𝜋𝑗 relative to an appropriate inner product. We therefore begin with a discussion of inner products. 

 

 

 

2.0 OBJECTIVES 

By the end of this unit, you should be able to: 

 Explain inner production in approximation and interpolation 

 Describe the normal equations concepts 



3.0 MAIN CONTENT 

3.1 Inner Products 

 

Given a continuous or discrete measure 𝑑ƛ, as introduced earlier, and given any two functions u, v having 

a finite norm (2.8), we can define the inner product 

(u, v) = ∫𝑅 (𝑡) v(t)𝑑ƛ(𝑡) (2.10) 
 

(Schwarz‘s inequality | (u,v) | ≤ ||𝑢||2,𝑑ƛ . ||𝑣||2,ƛ, cf . Ex . 6, tells us that the integral in (2.10) is well 

defined.) The inner product (2.10) has the following obvious (but useful) properties: 

1. Symmetry: (u,v) = (v,u): 

 

2. Homogeneity: ( 𝛼u, v) = 𝛼 (u, v) , 𝛼 Є R; 

 

3. Additivity: (u + v, w) = (u, w) + (v, w) ; and 

 

4. Positive definiteness: (u, u) ≥0, with equality holding if and only if u ≡ 0 on supp 𝑑ƛ. 

 

5. Homogeneity and Additivity together give linearity, 

 
( 1 𝑢1 + 𝛼2𝑢2 . v ) = 𝛼1(𝑢1 , 𝑣) + 𝛼2(𝑢2 , 𝑣) (2.11) 

 

 

Fig. 2.1 Orthogonal vectors and their sum 

 

In the first variable and, by symmetry, also in the second. Moreover, (2.11) easily extends to linear 

combinations of arbitrary finite length. Note also that 

||u|| 
2
, 𝑑ƛ = (u, u). (2.12) 

2 

 

We say that u and v are orthogonal if 



𝑘=1 

(u, v) = 0. (2.13) 

 

This is always trivially true if either u or v vanishes identically on supp 𝑑ƛ. 

 

It is now a simple exercise, for example, to prove the Theorem of Pythagoras: 
 

If (u, v) = 0, then ||𝑢 + 𝑣||2 = ||𝑢||2 + ||𝑣||2, (2.14) 

Where || . || = || . ||2,ƛ. (From now on we use this abbreviated notation for the norm.) Indeed, 

||𝑢 + 𝑣||2= (u + v, u + v) = (u, u) + (u, v) + (v, u) + (v, v) 
 

= ||𝑢||2 + 2(u, v) + ||𝑣||2 = ||𝑢||2 + ||𝑣||2 
 

Where the first equality is a definition, the second follows from additivity, the third from symmetry, and 

the last from orthogonality. Interpreting functions u, v as ―vectors,‖ we can picture the configuration of u, 

v (orthogonal) and u + v as in Fig.2.1. 

 

More generally, we may consider an orthogonal systems {𝑢 } 𝑛 : 
 

( 𝑢𝑖 , 𝑢𝑗 ) = 0 if I ≠ j, 𝑢𝑘 ≢ 0 on supp 𝑑ƛ; 

I, j = 1, 2, ………,n; k = 1, 2, ………n. (2.15) 

 

For such a system we have the generalized theorem of Pythagoras, 
 

𝑛 2 𝑛 

‖∑ 𝛼𝐾𝑢𝑘‖ 

𝑘=1 

=   ∑|𝛼𝑘|2‖𝑢𝑘‖2 
𝑘=1 

 

The proof is essentially the same as before. An important consequence of (2.16) is that every orthogonal 

system is linearly independent on the support of 𝑑𝜆 Indeed, if the left-hand side (2.16) vanishes, then so 

does the right-hand side, and this since ‖𝑢𝑘‖2 > 0 by assumption, implies 𝑎1 = 𝛼2 = … = 𝛼𝑛 = 0 

3.3 The Normal Equations 
 

We are now in apposition to solve the least square approximation problem. By (2.12), we can write the 𝐿2 
 

error, or rather its square, in the form: 

 

𝐸2[𝜑] ≔ ‖𝜑 − 𝑓‖2 = (𝜑 − 𝑓, 𝜑 − 𝑓) = (𝜑, 𝜑) − 2(𝜑, 𝑓) + (𝑓, 𝑓) 
 

Inserting /// here from (2.9) gives 



𝑛 2 

𝐸2[𝜑] = ∫(∑ 𝐶𝑗𝜋𝑗(𝑡)) 

 

𝑛 

𝑑(𝑡) − 2 ∫(∑ 𝐶𝑗𝜋𝑗(𝑡)) 𝑓(𝑡)𝑑𝜆(𝑡) + ∫ 𝑓2(𝑡)𝑑𝜆(𝑡) 
𝐽=1 

ℝ 

𝑗=1 ℝ 

ℝ 
 

The squared /// error, therefore, is a quadratic function of the coefficients /////////. The problem of best // 

approximation thus amounts to minimizing a quadratic function of // variables. This is a standard problem 

of calculus and is solved by setting all partial derivatives equal to zero. This yields a system of linear 

algebraic equations. Indeed, differentiating partially with respect to /// under the integral sign in (2.17) gives 

𝑛 𝜕 
𝐸2[𝜑] = 2 ∫(∑ 𝐶 𝜋 (𝑡)) 𝜋 (𝑡)𝑑𝜆(𝑡) − 2 ∫ 𝜋 (𝑡)𝑓(𝑡)𝑑𝜆(𝑡) 

 

𝜕𝐶𝑖 
 

𝑗=1 
𝑅 

𝑗  𝑗 𝑖 𝑖 
ℝ 

 

and setting this equal to zero, interchanging integration and summation in the process, we get 
 

𝑝 

∑(𝜋𝑖, 𝜋𝑗)𝐶𝑗 = (𝜋𝑖, 𝑓), 𝑖 = 1,2 … . , 𝑛 

𝐽=1 
 

These are called the normal equations for the least squares problem. They form a linear system of the form 

 

𝑨𝒄 = 𝒃, 
 

Where the matrix 𝑨 and vector 𝒃 have elements 

 

𝑨 = [𝑎𝑖𝑗], 𝑎𝑖𝑗 = (𝜋𝑖, 𝜋𝑗); 𝒃 = [𝑏𝑖], 𝑏𝑖 = (𝜋𝑖, 𝑓). 

 
By symmetry of the inner product, 𝑨 is a symmetry matrix. Moreover, /// is positive definite; that is, 

 

𝑛 
𝑛

 

𝑥𝑇𝐴𝑥 = ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 > 0 
𝐽=1 

if 𝑥 ≠ [0,0, … ,0]𝑇 

𝑖=1 

 

The quadratic function in (2.21) is called a quadratic form (since it is homogeneous of degree 2). Positive 

definiteness of 𝑨 thus says that quadratic form whose coefficients are the elements of 𝑨 is always 

nonnegative, and zero only if all variables 𝑥𝑖 vanish. 

To prove (2.21), all we have to do is insert the definition of the 𝑎𝑖𝑗 and use the elementary properties 1-4 

of the inner product: 



𝑖=1 

𝑛 𝑛 

𝑛 𝑛 

 
𝑛 2 

𝑥𝑇𝐴𝑥 = ∑ ∑ 𝑥𝑖𝑥𝑗(𝜋𝑖, 𝜋𝑗) = ∑ ∑(𝑥𝑖𝜋𝑖, 𝑥𝑗𝜋𝑗) = ‖∑ 𝑥𝑖𝜋𝑖‖ 
 
 

𝑖=1 

𝐽=1  
 

𝑖=1 

𝐽=1 𝑖=1 

 

This clearly is nonnegative. It is zero only if ∑𝑛 𝑥𝑖𝜋𝑖 ≡ 0 on supp 𝑑𝜆, which, by the assumption of linear 
 

independence of the 𝑥𝑖, implies 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = 0. 

Now it is a well-known fact of linear algebra that a symmetric positive definite matrix /// is nonsingular. 

Indeed, its determinant, as well as all its leading principal minor determinants, are strictly positive. It 

follows that the system (2.18) of normal equations has a unique solution. Does this solution correspond to 

the minimum of [𝜑] in (2.17)? Calculus tells sus that for this to be the case, the Hessian matrix 𝐻 = [𝜕2𝐸2 

∕ 𝜕𝐶𝑖𝜕𝐶𝑗] has to be positive define. But H=2A, since 𝐸2 is a quadratic function. Therefore, 𝑯, with A, is 

indeed positive definite, and the solution of the normal equation s gives us the desired minimum. The least 

squares approximation problem thus has a unique solution, given by 

 

 

 
where 𝐶  = [𝐶  , 𝐶    … , 𝐶  

𝑛 

𝜑 (𝑡) = ∑ 𝐶 𝑗𝜋𝑗(𝑡), 
𝑗=1 

 
]

 
is the solution vector of the normal equation (2.18). 

1 2 𝑛 
 

This completely settles the least squares approximation problem in theory. How about in practice? 

Assuming a general set of (linearly independent) basis functions, we can see the following possible 

difficulties. 

1. The system (2.18) may be ill-conditioned. A simple example is provided by supp 𝑑𝜆 = [0,1], 
 

𝑑(𝑡) = 𝑑𝑡 on [0,1], and 𝜋𝑗(𝑡) = 𝑡𝑗−1, 𝑗 = 1,2, … , 𝑛. 

Then 
 

1 
(𝜋 , 𝜋 ) = ∫  𝑖+𝑗−2 𝑑𝑡 = 

1
 
 

, 𝑖, 𝑗 = 1,2, … , 𝑛; 
𝑖 𝑗 

0 

 

𝑖+𝑗−1 

 

this is the matrix 𝑨 in (2.18) is precisely the Hibert matrix. 

 

The resulting severe ill-conditioning of the normal equations in  this example  is entirely due to an 



0 

𝑗 

2 

𝑗 

unfortunate choice of basic functions – the powers. These become almost linearly dependent, more so the 

larger the exponent the (cf. Ex. 38). 

1 

Another source of degradation lies in the element 𝑏𝑗 = ∫ 𝜋(𝑡)𝑓(𝑡) 𝑑𝑡 of the right-hand vector 𝒃 

 
in (2.18). When 𝐽 is large, 𝜋𝑗 = 𝑡𝑗−1 the power behaves very much like a discontinuous function 

on [0,1]: it is practically zero for much of interval until it shoots up to the value 1 at the right 

endpoint. This has the unfortunate consequence that a good deal of information about 𝑓 is lost when 

one forms the integral defining 𝑏𝑗. A polynomial 𝜋𝑗 that oscillates rapidly on [0,1] would seem to 

be preferable from this point of view, since it would ―engage‖ the function 𝑓 more vigorously over 

all of the interval [0,1]. 

 

2. The second disadvantage is the fact that all coefficients 𝑐𝑗 

 

in (2.22) depend on n; that is, 𝑐𝑗 = 
 

𝐶 
(𝑛)

, 𝑗 = 1,2, … 𝑛. Increasing n, for example, will give an enlarge system of normal equations with 

 
a completely new solution vector. We refer to this as the nonpermanence of the coefficients 𝑐𝑗  . 

Both defects 1 and 2 can be eliminated (or at least attenuated in case of 1) in one stroke : 

select for the basis function /// an orthogonal system, 

 

(𝜋𝑖, 𝜋𝑗) = 0 if 𝑖 ≠  ; (𝜋𝑗, 𝜋𝑗) = ‖𝜋𝑗‖  > 0 

 
Then the system of normal equations becomes diagonal and is solved immediately by 

 

𝐶 𝑗 
 (𝜋𝑗, 𝑓) 

= , 𝑗 = 1,2, … . , 𝑛 (𝜋 , 𝜋 ) 
𝑗 𝑗 

 

Clearly, each of these coefficients 𝑐𝑗  is independent of n, and once computed, remains the same for any 

larger n. We now have permanence of the coefficients. Also, we do not have to go through the trouble of 

solving a linear system of equations, but instead can use the formula (2.24) directly. This does not mean 

that there are no numerical problems associated with (2.24). Indeed, it is typical that the denominator ‖𝜋 ‖
2 

in (2.24) decrease rapidly with increasing 𝑗, whereas the integrand in the numerator (or the individual terms 

in the case of a discrete inner product) are of the same magnitude as 𝑓. Yet the coefficients 𝑐𝑗 also are 



expected to decrease rapidly. Therefore, cancellation errors must occur when one computes the inner 
 

product in the numerator. The cancellation problem can be alleviated somewhat by computing 𝑐𝑗 in the 
 

alternative form 
 

 
𝐶 𝑗 

 
1 

= 
(𝜋𝑗𝘍 𝜋𝑗) 

𝑗−1 

(𝑓 − ∑ 𝐶 𝑘 

𝑘=1 

 
𝜋𝑘 

 
, 𝜋𝑗) , 𝑗 = 1,2, … , 𝑛 

 

where the empty sum (when 𝑗 = 1) is taken to be zero, as usual. Clearly, by orthogonality of the 𝜋𝑗, (2.25) 

is equivalent to (2.24) mathematically, but not necessarily numerically. 

An algorithm for computing 𝑐 j  from (2.25), and at the same time 𝜑 (t), is as follows: 
 

s0 = 0. 
 

For j – 1, 2,…, n do 

 

𝑐  j = 1 (f – Sj - 1, πj) 
 

II πj II
2
 

 

Sj = Sj – 1 + 𝑐 j πj (t) 

 

This produces the co-efficient as well as 𝑐 1, 𝑐 2, …, 𝑐 n,  as well as 𝜑  (t) = sn. 
 

Any system {𝜋 j} that is linearly independent on the support of dʎ can be ortogonalized (with respect to 

the measure dʎ) by a device known as the Gram
1
 –Schmidt 

2
procedure. One takes 

𝑗−1 

 

𝜋𝑗 =   j − ∑ 𝐶𝑘 𝜋𝑘. 𝐶𝑘 = 

𝑘=1 

 

Then each πj so determined is orthogonal to all preceding ones. 

 

3.3 Convergence 

 

(𝜋 j, πk) 

(πk, πk) 

 

We have seen in Sect. 2.1.2 that if the class φ = φn consists of n functions πj, j = 1, 2, …., n, that are 

linearly independent on the support of some measure dʎ, then the least squares problem for this measure, 

min II f – φII2. dʎ  = II f –𝜑 II2. dʎ ϕϵφn (2.26) 

2.1 Least Squares Approximation 
 

has a unique solution 𝜑   = 𝜑 ngiven by (2.22). There are many ways we can select a basis πj   in φn and, 



1 

therefore  many  ways  the  solution  𝜑 n  can  be  represented.  Nevertheless,  it  is  always  one  and  the  same 

function. The least squares error – the quantity on the right-hand side of (2.26) – therefore is independent 

of the choice of basis functions (although the calculation of the least squares solution, as mentioned 

previously, is not). In studying this error, we may thus assume, without restricting generality, that the basis 

πj is an orthogonal system. (every Linearly independent system can be orthogonalized by the Gram-Schmidt 

orthogonalization procedure; cf. Sect. 2.1.2.) We then have (cf. (2.24)) 

𝑛 
𝜑 n(t) = ∑ 𝑐 j 𝜋𝑗 (𝑡), 𝑐 j =  (πj,π𝑓) . (2.27) 

𝑗=1 
(πj,πj) 

 

We first note that the error f - 𝜑 n is orthogonal to the space φn; that is, 
 

(f - 𝜑 n , ϕ) = 0 for all ϕ ϵ φn, (2.28) 
 

Where the inner product is the one in (2. 10). Since ϕ is a liner combination of the πk, it suffices to show 

(2.28) for each ϕ = πk, k = 1,2, … , n.  Inserting 𝜑 n  from (2.27) in the left-hand side of (2.28), and using 

orthogonality, we find indeed 

𝑛 

[(𝑓 − 𝜑 n, πk) = 𝑓 − ∑ 𝑐 j 𝜋𝑗, 𝜋𝑘 =   (𝑓, 𝜋𝑘) − 𝑐 k(𝜋𝑘, 𝜋𝑘) = 0,] 

𝑗=1 
 

The last equation following from the formular for in (2.27). the result (2.28) has a simple geometric 

interpretation. If we picture functions as vectors, and the space φn as a plane, then for any f that ―sticks out‖ 

of the plane φn, the least squares approximant 𝜑 n is the orthogonal projection of f onto φn; see Fig. 2.2. 

In particular, choosing ϕ = 𝜑 n (2.28), we get 

 

(f - 𝜑 n, 𝜑 n) = 0 
 

An algorithm for computing 𝑐 j  from (2.25), and at the same time 𝜑 (t), is as follows: 
 

s0 = 0. 
 

For j – 1, 2,…, n do 
 

𝑐  j = (f – Sj - 1, πj) 
 

II πj II
2
 

 

Sj = Sj – 1 + 𝑐 j πj (t) 



This produces the coeeficients as well as 𝑐 1, 𝑐 2, …, 𝑐 n,  as well as 𝜑  (t) = sn. 
 

Any system {𝜋 j} that is linearly independent on the support of dʎ can be ortogonalized (with respect to the 

measure dʎ) by a device known as the Gram
1
 –Schmidt 

2
procedure. One takes 

𝑗−1 

 

𝜋𝑗 =   j − ∑ 𝐶𝑘 𝜋𝑘. 𝐶𝑘 = 

𝑘=1 

 

Then each πj so determined is orthogonal to all preceding ones. 

 

2.1.3 Least Squares Error; Convergence 

 

(𝜋 j, πk) 

(πk, πk) 

 

We have seen in Sect. 2.1.2 that if the class φ = φn consists of n functions πj, j = 1, 2, …., n, that are linearly 

independent on the support of some measure dʎ, then the least squares problem for this measure, 

min II f – φII2. dʎ  = II f –𝜑 II2. dʎ 

 

ϕϵφn (2.26) 
 

 

 

 

 

 

 
 

 
Fig. 2.2 Least squares approximation as orthogonal projection 

 

has a unique solution 𝜑   = 𝜑 ngiven by (2.22). There are many ways we can select a basis πj   in φn and, 

therefore  many  ways  the  solution  𝜑 n  can  be  represented.  Nevertheless,  it  is  always  one  and  the  same 

function. The least squares error – the quantity on the right-hand side of (2.26) – therefore is independent 

of the choice of basis functions (although the calculation of the least squares solution, as mentioned 

previously, is not). In studying this error, we may thus assume, without restricting generality, that the basis 



πj is an orthogonal system. (every Linearly independent system can be orthogonalized by the Gram-Schmidt 

orthogonalization procedure; cf. Sect. 2.1.2.) We then have (cf. (2.24)) 

𝑛 
𝜑 n(t) = ∑ 𝑐 j 𝜋𝑗 (𝑡), 𝑐 j =  (πj,π𝑓) . (2.27) 

𝑗=1 
(πj,πj) 

 

We first note that the error f - 𝜑 n is orthogonal to the space φn; that is, 
 

(f - 𝜑 n , ϕ) = 0 for all ϕ ϵ φn, (2.28) 
 

Where the inner product is the one in (2. 10). Since ϕ is a liner combination of the πk, it suffices to show 

(2.28) for each ϕ = πk, k = 1,2, … , n.  Inserting 𝜑 n  from (2.27) in the left-hand side of (2.28), and using 

orthogonality, we find indeed 

𝑛 

[(𝑓 − 𝜑 n, πk) = 𝑓 − ∑ 𝑐 j 𝜋𝑗, 𝜋𝑘 =   (𝑓, 𝜋𝑘) − 𝑐 k(𝜋𝑘, 𝜋𝑘) = 0,] 

𝑗=1 
 

The last equation following from the formular for in (2.27). the result (2.28) has a simple geometric 

interpretation. If we picture functions as vectors, and the space φn as a plane, then for any f that ―sticks out‖ 

of the plane φn, the least squares approximant 𝜑 n is the orthogonal projection of f onto φn; see Fig. 2.2. 

In particular, choosing ϕ = 𝜑 n (2.28), we get 
 

(f - 𝜑 n, 𝜑 n) = 0 
 
 

SELFASSESSMENTEXERCISE1 

Define least square methods 

SELFASSESSMENTEXERCISE2 

Differentiate between least square method and equal equation 

4.0 CONCLUSION 

 

A mathematical procedure for finding the best-fitting curve to a given set of points by 

minimizing the sum of the squares of the offsets (―the residuals‖) of the points from the 

curve. The sum of the squares of the offsets is used instead of the offset absolute values 

because this allows the residuals to be treated as a continuous differentiable quantity. 



However, because squares of the offsets are used, outlying points can have a 

disproportionate effect on the fit, a property which may or may not be desirable depending 

on the problem at hand. 

5.0 SUMMARY 

 

least squares method, also called least squares approximation, in statistics, a method for 

estimating the true value of some quantity based on a consideration of errors in 

observations or measurements. ... One of the first applications of the method of least 

squares was to settle a controversy involving Earth's shape. 

6.0 TUTOR-MARKEDASSIGNMENT 

 

(1) Derive a method for estimating R b a f(x) dx by interpolating f by a linear spline with 

the knots xi = a + I, n(b − a), i=0, 1, . . . , n . 

(2). Show that the interpolating linear spline with knots x0, x1, . . . , xn is the function that 

minimizes Z xn x0 ¡ g (x) ¢2 dx among all functions g such that g(xi) = fi, i=0, 1, . . . , n, 

and such that the integral is bounded. 

(3). For r =1, 2, 3 show that the B-spline Bir(x) has support [xi, xi+r+1] and that Bir(x) > 

0 for xi <x<xi+r+1. 
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