
1

NATIONAL OPEN UNIVERSITY OF NIGERIA

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

COURSE CODE:CIT 333

COURSE TITLE:SOFTWARE ENGINEERING

2

Course Code CIT 333

Course Title Software Engineering

Course Developer/Writer Olayanju Taiwo Abolaji

Computer Department,

Federal College of Education (Tech.)

Akoka, Lagos (2020)

Course Editor

Programme Leader

Course Coordinator

NATIONAL OPEN UNIVERSITY NIGERIA

3

CONTENTS PAGE

Introduction 1

Course Aims 2

Course Objectives 2

Working through this Course 2

The Course Materials 3

Study Unit 3

Presentation Schedule 4

Assessment 4

Tutor Marked Assignment 4

Final Examination and Grading 5

Course Marking Scheme 5

Facilitator/Tutor/Tutorials 5

Summary 6

4

COURSE GUIDE

Introduction

Software Engineering is a second semester course. It is a two credit degree course

available to all students offering ……………………………………………

The course consists of 15 units which will enable you to develop the skills necessary for

you to develop, operate and maintain software. They are no compulsory pre-requisites to

it, although it is good to have a basic knowledge of operating computer.

What You will Learn in this Course

This Course consists of units and a course guide. This course guide tells you briefly what

the course about, what course materials you will be using and how you can work with

these materials. In addition, it advocates some general guidelines for the amount of time

you are likely to spend on each unit of the course in order to complete it successfully.

It gives you guidance in respect of your Tutor-Marked Assignment which will be made

available in the assessment available. There will be regular tutorial classes that are related

to the course. It is advisable for you to attend these tutorial sessions. The course will

prepare you for challenges you will meet in the field of software engineering.

5

Course Aims

The aim of the course is simple. The couse aims to provide you with an understanding of

Software Engineering; it also aims to provide you with solutions to problem in software

as a whole.

Course Objectives

To achieve the aims set out, the course has a set of objectives which are included at the

beginning of the unit. You should read these objectives before you study the unit. You

may wish to refer to them during your study to check to check on your progress. You

should always look at the nit objectives after completion of each unit. By doing so, you

would have followed the instruction in the unit.

Below are the comprehensive objectives of the course as a whole. By meeting these

objectives, you should have achieved the aims of the course as a whole. In addition to the

aims above, this course sets to achieve some objectives. Thus, after going through the

course, you be able to:

 Explain the basic concept of software

 Explain what software engineering is

 Trace the history of software engineering.

 Explain who a software engineer is

 Explain the software crisis.

 Give an overview of software development.

 Explain software development life cycle model.

 Explain the concept of Modularity.

 Explain Pseudo code.

 Explain programming environment.

 Explain Case Tools.

 Explain Hipo .

 Explain Implementation and Testing

 Explain Software Quality Assuarance.

 Explain Compatibility.

 Explain Software verification and Validation

Working through this Course

To complete this course, you are required to tom read each study unit, read the textbook

and read other materials that may be provided by the National Open University of

Nigeria.

Each unit contains self-assessment exercises and at certain point in the course, you will

be required to assignments for assessment purposes. At the end of the course there is a

6

final examination. The course should take you about a total of 17 weeks to complete.

Below you will find listed all the components of the course, what you have to do and how

you should allocate your time to each unit in order to complete the course on time and

successfully.

This course entails that you spend a lot of time to read. I would advice that you avail

yourself the opportunity of attending the tutorial sessions where you have the opportunity

of comparing your knowledge with that of other people.

The Course Materials

The main components of the course are:

 The course Guide

 Study Units

 References/Further Readings

 Assignments

 Presentation Schedule

Study Unit

The study units in this course are as follows:

Module 1 Basic concept of Software

Unit 1 Computer Software

Module 2 Software Development

Unit 1 Overview of software development

Unit 2 Software development life cycle model

Unit 3 Modularity.

Unit 4 Pseudocode

Unit 5 Programming Enviroment, Case Tools and Hipo Diagram

Module 3 Implementation and Testing

Unit 2 What is Software Engineering

Unit 3 History of Software Engineering.

Unit 4 Software Engineer
Unit 5 software Crisis

7

Unit 1 Implementation
Unit 2 Testing Phase

Unit 3 Software Quality Assuarance

Unit 4 Compatibility
Unit 5 Verification and Validation

Each unit consists of one or two weeks‘s work and include an introduction,

objectives, reading materials, conclusion, summary, Tutor Marked Assignment

(TMAs), references and other resources. The unit directs you to work on execises

related to the required reading. In general, these exrcises test you on the materials you

have just covered or required you to apply it in some way and thereby assist you to

evaluate your progress and to reinforce your comprehension of the material. In

addition to TMAs, these exercises will help you in achieving the stated learning

objectives of rhe individual units and of the course as a whole.

Presentation Schedule

Your course materials have important dates for the early and timely completion and

submission of your TMAs and attending tutorials. You should remember that you are

required to submit all your assignments by the stipulated time and date. You should

guard against falling behind in your work.

Assessment

There are three aspects to the assessment of the course. First is made up of self-

assessment exercises, second consists of the Tutor_Marked Assigment and third is the

written examination/end of course examination.

You are advised to do the exercises. In tackling the assignments, you are expected to

apply information, knowledge and techniques you gathered during the course. The

assignments must be submitted to your facilitator for formal assessments in

accordance with the deadlines stated in the presentation schedule and the assignment

file. The work you submit to your tutor for assessment will count for 30% of your

total course work. At the end of the course you will need to sit for a final or end of

course examination of about a three hour duration. This examination will count for

70% of your total course mark.

Tutor-Marked Assignment

The TMA is a continuous assessment component of your course. It accounts for 30 %

of the total score. You will be given four (4) TMAs to answer. Three of these must be

answered before you are allowed to sit for the end of course examination. The TMAs

would be given to you by your facilitator and returned after you have done the

assignment. Assignment questions for the units in this course are contained in the

assignment file. You will be able to complete your assignment from the information

8

and the material contained in your reading, references and the study units. However,

it is desirable in all degree level of education to demostrrate that you have read and

researched more into your references, which will give you a wider view point and

may provide you with a deeper understanding of the subject.

Make sure that each assignment reaches your facilitator on or before the deadline

given in the presentation schedule and assignment file. If for any reason you can not

complete your work on time, contact your facilitator before the assignment is due to

discuss the possibility of an extension. Extension will not be granted after the due

date unless there are exceptional circumstances.

Final Examination and Grading

The end of your examination for Software Engineering will be for about 3 houurs and

it has a value of 70% of the total course work. The examination will consist of

questions, which will reflect the type of self-testing, practice exercise and tutor-

marked assignment problems you are previously encountered. All areas of the course

will be assessed.

You ate to use the time between finishing the last unit and sitting for the examination

to revise the whole course. You might find it useful to review your self-test, TMAs

and comments on them before the examination. The end of course examination

covers information from all parts of the course.

Course Marking Scheme

Assignment Marks

Assignment 1-4 Four assignments, best three marks of the four count

at 10% each- 30% of course marks

End of course examination 70% of overall course marks

Total 100% of course materials.

Facilitator/Tutor and Tutorials

There are 16 hours of tutorials provided in support of the course. You will be notified of

the dates, times and location of these tutorials as well as the name and phone number of

your facilitator, as soon as you as you are allocated a tutorial group.

Your facilitator will mark and comment on your assignments, keep a close watch on

your progress and any difficulties you might face and provide assistance to you

9

during the course. You are expected to mail you Tutor Marked Assignment to your

facilitator before the schedule date. |(at least two working days are required). They

will be marked by your tutor and returned to you as soon as possible.

Do not delay to contact your facilitator by telephone or e-mail if you need assistance

The following might be the circumstances in which you would find assistance

necessary, you would have to contact your facilitator if :

 Understand any part of the study or assigned reading

 You have difficulty with the self- tests

 You have a question or problem with an assignment or with the grading of an

assignment

You should endeavour to attend the tutorials. This is the only chance to have face to face

contact with your course facilitator and to ask question which are answered instantly.

You can raise any problem encountered in the course of your study.

To gain much benefits from the course tutorials, prepare a question list before attending

them. You will learn a lot from participating actively in the discussions.

Summary

Software Engineering is a course that intends to provide concept of the discipline and is

concerned with application of engineering to software. Upon the completion of the

course, you will be equipped with the knowledge of engineering as it relates to software.

you will be exposed goods details relating to software requirements, design, testing and

implementation. Furthermore, you will be able to answer the following types of

questions:

 What is Software engineering?

 Who is a software engineer

 What is software development life cycle models

 What is software crisis?

Of course a lot more question you will be able to answer.

I wish success in the course and I hope you will find it both interesting and useful.

10

MODULE 1: Basic Concept of Software Engineering

Unit 1: Computer software

1.0 Introduction

The Computer system has two major components namely hardware and software.

The hardware component is physical (can be touched or held). The non physical

part of the computer system is the software. As the voice of man is non physical

yet it so important for the complete performance of man, so is the software. In this

unit, the categories of software are examined.

2.0 Objectives

By the end of this unit, you should be able to:

 Define what software is

 Differentiate between System, Application and programming Software.

 Explain the role of System Software.

3.0 Definition of software

Computer software is a general name for all forms of programs. A program itself

is a sequence of instruction which the computer follows to perform a given task.

3.1 Types of software

Software can be categorised into three major types namely system software,

programming software and application software..

3.1.2 System software

System software helps to run the computer hardware and the entire computer

system. It includes the following:

 device drivers

 operating systems

 servers

 utilities

 windowing systems

The function of systems software is to assist the applications programmer from the details

of the particular computer complex being used, including such peripheral devices as

communications, printers, readers, displays and keyboards, and also to partition the

computer's resources such as memory and processor time in a safe and stable manner.

http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Programming_software
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Device_driver
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Server_(computing)
http://en.wikipedia.org/wiki/Software_utility
http://en.wikipedia.org/wiki/Windowing_system

11

3.1.3 Programming software

Programming software offers tools to assist a programmer in writing programs,

and software using different programming languages in a more convenient way.

The tools include:

 compilers

 debuggers

 interpreters

 linkers

 text editors

3.1.4 Application software
Application software is a class of software which the user of computer needs to

accomplish one or more definite tasks. The common applications include the

following:

 industrial automation

 business software

 computer games

 quantum chemistry and solid state physics software

 telecommunications (i.e., the internet and everything that flows on it)

 databases

 educational software

 medical software

 military software

 molecular modeling software

 photo-editing

 spreadsheet

 Word processing

 Decision making software

Activity A Differentiate between hardware and software

4.0 Conclusion

A major component of computer system is the software and it plays a major role

in the functioning of the system.

5.0 Summary

In this unit we have learnt that:

 Computer software is a general name for all forms of programs.

 System software helps run the computer hardware and computer system.

 Programming software offers tools to assist a programmer in writing programs.

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Text_editor
http://en.wikipedia.org/wiki/Task
http://en.wikipedia.org/wiki/Computer_games
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Medical_software
http://en.wikipedia.org/w/index.php?title=Military_software&action=edit&redlink=1
http://en.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling
http://en.wikipedia.org/w/index.php?title=Photo-editing&action=edit&redlink=1
http://en.wikipedia.org/wiki/Word_processing
http://en.wikipedia.org/wiki/System_software
http://en.wikipedia.org/wiki/Computer_program

12

 Application software is a class of software which the user of computer needs to

accomplish one or more definite tasks.

 Briefly explain the role of system software

6.0 Tutor Marked Assignment

1 What is Software?

2 With four (4) examples each, differentiate between System and Application

software

3 What is Programming software? Give five (5) examples

7.0 Further Reading and Other Resources

Hally, Mike (2005:79). Electronic brains/Stories from the dawn of the computer age.

British Broadcasting Corporation and Granta Books, London. ISBN 1-86207-663-4.

GNU project: "Selling Free Software": "we encourage people who redistribute free

software to charge as much as they wish or can."

Engelhardt, Sebastian (2008): "The Economic Properties of Software", Jena

Economic Research Papers, Volume 2 (2008), Number 2008-045. (in Adobe pdf

format)

http://www.gnu.org/philosophy/selling.html
http://ideas.repec.org/p/jrp/jrpwrp/2008-045.html
http://ideas.repec.org/p/jrp/jrpwrp/2008-045.html
http://en.wikipedia.org/wiki/Portable_Document_Format

13

UNIT 2`: What is Software Engineering?

1.0 Introduction

Software Engineering is the application of engineering to software. This unit looks at its

goals and principles

2.0 Objectives

By the end of this unit, you should be able to:

 Define what software engineering is

 Explain the goals of software engineering

 Explain the principles of software engineering.

3.0 Definition of Software Engineering.

Software engineering is the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software, and the study of

these approaches. In other words, it is the application of engineering to software.

3.1 Sub-disciplines of Software engineering

Software engineering can be divided into ten sub-disciplines. They are as follows:

 Software requirements: The elicitation, analysis, specification, and validation of

requirements for software.

 Software design: Software Design consists of the steps a programmer should do

before they start coding the program in a specific language.It is usually done with

Computer-Aided Software Engineering (CASE) tools and use standards for the

format, such as the Unified Modeling Language (UML).

 Software development: It is construction of software through the use of

programming languages.

 Software testing Software Testing is an empirical investigation conducted to

provide stakeholders with information about the quality of the product or service

under test.

 Software maintenance: This deals with enhancements of Software systems to

solve the problems the may have after being used for a long time after they are

first completed..

 Software configuration management: is the task of tracking and controlling

changes in the software. Configuration management practices include revision

control and the establishment of baselines.

 Software engineering management: The management of software systems

borrows heavily from project management.

http://en.wikipedia.org/wiki/Requirements
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Project_management

14

 Software development process: A software development process is a structure

imposed on the development of a software product. There are several models for

such processes, each describing approaches to a variety of tasks or activities that

take place during the process.

 Software engineering tools, (CASE which stands for Computer Aided Software

Engineering) CASE tools are a class of software that automates many of the

activities involved in various life cycle phases.

 Software quality The totality of functionality and features of a software product

that bear on its ability to satisfy stated or implied needs.

3.2 Software Engineering Goals and Principles

3.2.1 Goals

Stated requirements when they are initially specified for systems are usually incomplete.

Apart from accomplishing these stated requirements, a good software system must be

able to easily support changes to these requirements over the system's life. Therefore, a

major goal of software engineering is to be able to deal with the effects of these changes.

The software engineering goals include:

 Maintainability: Changes to software without increasing the complexity of the

original system design should be possible.

 Reliability: The software should be able to prevent failure in design and

construction as well as recover from failure in operation. In other words, the

software should perform its intended function with the required precision at all

times.

 Efficiency: The software system should use the resources that are available in an

optimal manner.

 Understand ability: The software should accurately model the view the reader

has of the real world. Since code in a large, long-lived software system is usually

read more times than it is written, it should be easy to read at the expense of being

easy to write, and not the other way around.

3.2.2 Principles

Sounds engineering principles must be applied throughout development, from the design

phase to final fielding of the system in order to attain a software system that satisfies the

above goals. These include:

 Abstraction: The purpose of abstraction is to bring out essential properties while

omitting inessential detail. The software should be organized as a ladder of

abstraction in which each level of abstraction is built from lower levels. The code

is sufficiently conceptual so the user need not have a great deal of technical

background in the subject. The reader should be able to easily follow the logical

http://en.wikipedia.org/wiki/Software_development_process

15

path of each of the various modules. The decomposition of the code should be

clear.

 Information Hiding: The code should include no needless detail. Elements that

do not affect other segment of the system are inaccessible to the user, so that only

the intended operations can be performed. There are no "undocumented features".

 Modularity: The code is purposefully structured. Components of a given module

are logically or functionally dependent.

 Localization: The breakdown and decomposition of the code is rational.

Logically related computational units are collected together in modules.

 Uniformity: The notation and use of comments, specific keywords and

formatting is consistent and free from unnecessary differences in other parts of the

code.

 Completeness: Nothing is deliberately missing from any module. All important

or relevant components are present both in the modules and in the overall system

as appropriate.

 Confirm ability: The modules of the program can be tested individually with

adequate rigor. This gives rise to a more readily alterable system, and enables the

reusability of tested components.

Activity B 1 What is software engineering

2 Explain briefly the Sub-disciplines of Software engineering

4.0 Conclusion

Software Engineering as the application of engineering to software has overall goal to

easily support changes to software requirements over the system's life. It is also

characterised with sounds engineering principles which must be applied throughout

development, from the design phase to final fielding of the system in order to attain a

software system that satisfies the overall goal

5.0 Summary

In this unit, we have learnt that:

 Software engineering is the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of

16

software, and the study of these approaches. In other words, it is the

application of engineering to software.

 The goals of Software engineering include: Maintainability, Reliability,

Efficiency, Understand ability.

 The principles of software engineering include: Abstraction, Information

Hiding, Modularity, Localization, Uniformity, Completeness, Confirm ability

6.0 Tutor Marked Assignment

1 Discuss the goals of software engineering

2 Discuss the principles of software engineering

7.0 Further Reading and Other Resources

―The mythical man-month‖, Frederick P. Brooks, Jr., Anniversary Edition,

Addison-Wesley, 1995

―Fundamentals of software engineering‖, Carlo Ghezzi et al, Prentice-Hall,

1991

―Software engineering: A practitioner‘s approach‖, Roger S. Pressman, Third

Edition, McGraw-Hill, 1992

―Classical and object-oriented software engineering‖, Stephen R. Schach,

Third Edition, Irwin, 1996

―Software Engineering‖, Ian Sommerville, Fifth Edition, Addison-Wesley

1996

Unit 3: History of Software Engineering

17

1.0 Introduction

This unit traces the historical development of software engineering from 1968 till date.

2.0 Objectives

By the end of this unit, you should be able to:

 Explain the historical development of software engineering.

3.0 Overview of Software Engineering.

In the 1968, software engineering originated from the NATO Software Engineering

Conference. It came at the time of software crisis. The field of software engineering has

since then been growing gradually as a study dedicated to creating qualified software. In

spite of being around for a long time, it is a relatively young field compared to other

fields of engineering. Though some people are still confused whether software

engineering is actually engineering because software is more of invisible course.

Although it is disputed what impact it has had on actual software development over the

last more than 40 years, the field's future looks bright according to Money Magazine and

Salary.com who rated "software engineering" as the best job in America in 2006.

The early computers had their software wired with the hardware thereby making them to

be inflexible because the software could not easily be upgraded from one machine to

another. This problem necessitated the development. Programming languages started to

appear in the 1950s and this was also another major step in abstraction. Major languages

such as FORTRAN, ALGOL, and COBOL were released in the late 1950s to deal with

scientific, algorithmic, and business problems respectively. E.W. Dijkstra wrote his

seminal paper, "Go To Statement Considered Harmful", in 1968 and David Parnas

introduced the key concept of modularity and information hiding in 1972 to help

programmers deal with the ever increasing complexity of software systems. A software

system for managing the hardware called an operating system was also introduced, most

notably by Unix in 1969. In 1967, the Simula language introduced the object-oriented

programming paradigm.

The technological advancement in software has always been driven by the ever changing

manufacturing of various types of computer hardware. The more the new technologies

upgrade, from vacuum tube to transistor, and to microprocessor were emerging, the more

the necessity to upgrade and even write new software. In the mid 1980s software experts

had a consensus for centralised construction of software with the use of software

development Life Cycle from system analysis. This period gave birth to object-oriented

programming languages. Open-source software started to appear in the early 90s in the

form of Linux and other software introducing the "bazaar" or decentralized style of

constructing software.
[10]

 Then the Internet and World Wide Web hit in the mid 90s

changing the engineering of software once again. Distributed Systems gained sway as a

way to design systems and the Java programming language was introduced as another

step in abstraction having its own virtual machine. Programmers collaborated and wrote

http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/ALGOL
http://en.wikipedia.org/wiki/Cobol
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/David_Parnas
http://en.wikipedia.org/wiki/Modularity
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Software_systems
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Unix
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Open-source
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Software_engineering#cite_note-9%23cite_note-9
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Distributed_Systems
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Virtual_machine
http://en.wikipedia.org/wiki/Programmers

18

the Agile Manifesto that favored more light weight processes to create cheaper and more

timely software.

3.1 Evolution of Software Engineering

There are a number of areas where the evolution of software engineering is notable:

 Professionanism: The early 1980s witnessed software engineering becoming a

full-fledged profession like computer science and other engineering fields.

 Impact of women: In the early days of computer development (1940s, 1950s, and

1960s,), the men were found in the hardware sector because of the mental

demand of hardwaring heavy duty equipment which was too strenuous for

women. The witing of software was delegated to the women. Some of the women

who were into many programming jobs at this time include Grace Hopper and

Jamie Fenton. Today, many fewer women work in software engineering than in

other professions, this reason for this is yet to be ascertained.

 Processes: Processes have become a great part of software engineering and re

praised for their ability to improve software and sharply condemned for their

potential to narrow programmers.

 Cost of hardware: The relative cost of software versus hardware has changed

substantially over the last 50 years. When mainframes were costly and needed

large support staffs, the few organizations purchasing them also had enough to

fund big, high-priced custom software engineering projects. Computers can now

be said to be much more available and much more powerful, which has a lot of

effects on software. The larger market can sustain large projects to create

commercial packages, as the practice of companies such as Microsoft. The

inexpensive machines permit each programmer to have a terminal capable of

fairly rapid compilation. The programs under consideration can use techniques

such as garbage collection, which make them easier and faster for the programmer

to write. Conversely, many fewer organizations are concerned in employing

programmers for large custom software projects, instead using commercial

packages as much as possible.

3.2 The Pioneering Era

The most key development was that new computers were emerging almost every year or

two, making existing ones outdated. Programmers had to rewrite all their programs to run

on these new computers. They did not have computers on their desks and had to go to the

"computer room" or ―computer laboratory‖. Jobs were run by booking for machine time

or by operational staff. Jobs were run by inserting punched cards for input into the

computer‘s card reader and waiting for results to come back on the printer.

The field was so new that the idea of management using schedule was absent. Guessing

the completion time of project predictions was almost unfeasible Computer hardware was

application-based. Scientific and business tasks needed different machines. High level

http://en.wikipedia.org/wiki/Agile_Manifesto
http://en.wikipedia.org/wiki/Grace_Hopper
http://en.wikipedia.org/wiki/Jamie_Fenton
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Cost
http://en.wikipedia.org/wiki/Mainframe_computer
http://en.wikipedia.org/wiki/Commercial_off_the_shelf
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Garbage_collection

19

languages like FORTRAN, COBOL, and ALGOL were developed to take care of the

need to frequently translate old software to meet the needs of new machines. Systems

software was given out for free by the vendors since it must to be installed in the

computer before it is sold. Custom software was sold by a few companies but no sale of

packaged software.

Organisation such as like IBM's scientific user group SHARE gave out software free and

as a result reuse was order of the day. Academia did not yet teach the principles of

computer science. Modular programming and data abstraction were already being used in

programming.

3.3 1945 to 1965: The origins

The term software engineering came into existence in the late 1950s and early 1960s.

Programmers have always known about civil, electrical, and computer engineering but

fount it difficult to marry engineering with software.

In 1968 and 1969, two conferences on software engineering were sponsored by the

NATO Science Committee. This gave the field its initial boost. It was widely believed

that these conferences marked the official start of the profession of software engineering.

3.4 1965 to 1985: The software crisis

Software engineering was prompted by the software crisis of the 1960s, 1970s, and

1980s. It was the crisis that identified many of the problems of software development.

This era was also characterised by: run over budget and schedule, property damage and

loss of life caused by poor project management. Initially the software crisis was defined

in terms of productivity, but advanced to emphasize quality.

 Cost and Budget Overruns: The OS/360 operating system was a classic example.

It was a decade-long project from the 1960s and eventually produced one of the

most complex software systems at the time.

 Property Damage: Software defects can result in property damage. Poor software

security allows hackers to steal identities, costing time, money, and reputations.

 Life and Death: Software defects can kill. Some embedded systems used in

radiotherapy machines failed so disastrously that they administered poisonous

doses of radiation to patients. The most famous of these failures is the Therac 25

incident.

3.5 1985 to 1989: No silver bullet

For years, solving the software crisis was the primary concern for researchers and

companies producing software tools. Apparently, they proclaim every new technology

and practice from the 1970s to the 1990s as a silver bullet to solve the software crisis.

Tools, discipline, formal methods, process, and professionalism were published as silver

bullets:

http://en.wikipedia.org/w/index.php?title=NATO_Science_Committee&action=edit&redlink=1
http://en.wikipedia.org/wiki/Software_crisis
http://en.wikipedia.org/wiki/Productivity
http://en.wikipedia.org/wiki/Software_quality_assurance
http://en.wikipedia.org/wiki/Budget_overrun
http://en.wikipedia.org/wiki/OS/360
http://en.wikipedia.org/wiki/Software_security
http://en.wikipedia.org/wiki/Software_security
http://en.wikipedia.org/wiki/Radiotherapy
http://en.wikipedia.org/wiki/Radiation
http://en.wikipedia.org/wiki/Therac_25
http://en.wikipedia.org/wiki/Silver_bullet
http://en.wikipedia.org/wiki/Formal_methods

20

 Tools: Particularly underline tools include: Structured programming, object-

oriented programming, CASE tools, Ada, Java, documentation, standards, and

Unified Modeling Language were touted as silver bullets.

 Discipline: Some pundits argued that the software crisis was due to the lack of

discipline of programmers.

 Formal methods: Some believed that if formal engineering methodologies would

be applied to software development, then production of software would become

as predictable an industry as other branches of engineering. They advocated

proving all programs correct.

 Process: Many advocated the use of defined processes and methodologies like the

Capability Maturity Model.

 Professionalism: This led to work on a code of ethics, licenses, and

professionalism.

Fred Brooks (1986), No Silver Bullet article, argued that no individual technology or

practice would ever make a 10-fold improvement in productivity within 10 years.

Debate about silver bullets continued over the following decade. Supporter for Ada,

components, and processes continued arguing for years that their favorite technology

would be a silver bullet. Skeptics disagreed. Eventually, almost everyone accepted that

no silver bullet would ever be found. Yet, claims about silver bullets arise now and again,

even today.

” No silver bullet” means different things to different people; some take” no silver

bullet” to mean that software engineering failed. The pursuit for a single key to success

never worked. All known technologies and practices have only made incremental

improvements to productivity and quality. Yet, there are no silver bullets for any other

profession, either. Others interpret no silver bullet as evidence that software engineering

has finally matured and recognized that projects succeed due to hard work.

However, it could also be pointed out that there are, in fact, a series of silver bullets

today, including lightweight methodologies, spreadsheet calculators, customized

browsers, in-site search engines, database report generators, integrated design-test

coding-editors with memory/differences/undo, and specialty shops that generate niche

software, such as information websites, at a fraction of the cost of totally customized

website development. Nevertheless, the field of software engineering looks as if it is too

difficult and different for a single "silver bullet" to improve most issues, and each issue

accounts for only a small portion of all software problems.

3.6 1990 to 1999: Importance of the Internet

http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Documentation
http://en.wikipedia.org/wiki/Standardization
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Discipline
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Industry
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Methodology_(software_engineering)
http://en.wikipedia.org/wiki/Capability_Maturity_Model
http://en.wikipedia.org/wiki/Ethic
http://en.wikipedia.org/wiki/License
http://en.wikipedia.org/wiki/Professionalism
http://en.wikipedia.org/wiki/1986
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Ada_programming_language
http://en.wikipedia.org/wiki/Software_componentry
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Web_browser

21

The birth of internet played a major role in software engineering. With its arrival,

information could be gotten from the World Wide Web speedily. Programmers could

handle illustrations, maps, photographs, and other images, plus simple animation, at a

very fast rate.

It became easier to display and retrieve information as a result of the usage of browser on

the HTML language. The widespread of network connections brought in computer

viruses and worms on MS Windows computers. These new technologies brought in a lot

good innovations such as e-mailing, web-based searching, e-education to to mention a

few. As a result, many software systems had to be re-designed for international searching.

It was also required to translate the information flow in multiple foreign languages Many

software systems were designed for multi-language usage, based on design concepts from

human translators.

3.7 2000 to Present: Lightweight Methodologies

This era witnessed increasing demand for software in many smaller organizations. There

was also the need for inexpensive software solutions and this led to the growth of

simpler, faster methodologies that developed running software, from requirements to

deployment. There was a change from rapid-prototyping to entire lightweight

methodologies. For example, Extreme Programming (XP), tried to simplify many areas of

software engineering, including requirements gathering and reliability testing for the

growing, vast number of small software systems.

3.8 What is it today

Software Engineering as a profession is now being defined as a field of human experts in

boundary and content. Software Engineering is rated as one of the best job in developed

economies in terms of growth, pay, and flexibility and so on.

3.8.1 Important figures in the history of software engineering

Listed below are some renowned software engineers:

 Charles Bachman (born 1924) is particularly known for his work in the area of

databases.

 Fred Brooks (born 1931)) best-known for managing the development of OS/360.

 Peter Chen, known for the development of entity-relationship modeling.

 Edsger Dijkstra (1930-2002) developed the framework for proper programming.

 David Parnas (born 1941) developed the concept of information hiding in

modular programming.

Activity C What is the situation of software Engineering today?

http://en.wikipedia.org/wiki/Charles_Bachman
http://en.wikipedia.org/wiki/Databases
http://en.wikipedia.org/wiki/Fred_Brooks
http://en.wikipedia.org/wiki/OS/360
http://en.wikipedia.org/wiki/Peter_Chen
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/David_Parnas
http://en.wikipedia.org/wiki/Information_hiding
http://en.wikipedia.org/wiki/Modular_programming

22

4.0 Conclusion

This unit has looked at the historical development of software engineering. It has

considered among other things, the pioneering era, 1945-1965: the origins, 1965-1985:

thee software crisis, 1985 to 1989: No silver bullet, 1990 to 1999: Prominence of the

Internet, 2000 to Present, Lightweight Methodologies,, Software engineering today

and the prominent figures in the history of software engineering

5.0 Summary

In this unit, we have learnt that:

Software engineering has historical development which can be traced from 1968 till date.

6.0 Tutor Marked Assignment

Discuss the historical development of software engineering

7.0 Further Reading and Other Resources

Pressman, Roger S (2005). Software Engineering: A Practitioner's Approach (6th

ed.). Boston, Mass: McGraw-Hill. ISBN 0072853182.

Sommerville, Ian (2007) [1982]. Software Engineering (8th ed.). Harlow, England:

Pearson Education. ISBN 0-321-31379-8.

http://www.pearsoned.co.uk/HigherEducation/Booksby/Sommerville/.

Ghezzi, Carlo (2003) [1991]. Fundamentals of Software Engineering (2nd

(International) ed.). Pearson Education @ Prentice-Hall.

http://www.pearsoned.co.uk/HigherEducation/Booksby/Sommerville/

23

Unit 4 Software Engineer

1.0 Introduction

In unit 3 the historical development of software engineering was discussed. If you will

recall, it traced among other things, the pioneering era, 1945-1965: the origins, 1965-

1985: thee software crisis, 1985 to 1989: No silver bullet, 1990 to 1999: Prominence of

the Internet, 2000 to Present, Lightweight Methodologies, Software engineering

today and the prominent figures in the history of software engineering. The material

in this unit will explain who a software engineer is, his tasks, technical and functional

knowledge as well as occupational characteristics. It is expected of you that at the end

of the unit, you will have achieved the objectives listed below.

2.0 Objectives

By the end of this unit, you should be able to:

 Define who a software engineer is

 Explain the various tasks of a software engineer.

 Explain Technical and Functional Knowledge of a Software Engineer

 Explain the occupational characteristic of a software engineer.

3.0 Who is a Software Engineer?

A software engineer is an individual who applies the principles of software engineering

to the design, development, testing, and evaluation of the software and systems in order

to meet with client‘s requirements. He/she fully designs software, tests, debugs and

maintains it. Software engineer needs knowledge of varieties of computer programming

languages and applications; to enable him cope with the varieties of works before him. In

view of this, he can sometimes be referred to as a computer programmer.

3.1 Functions of a Software Engineer

 Analyses information to determine, recommend, and plan computer specifications

and layouts, and peripheral equipment modifications.

 Analyses user needs and software requirements to determine feasibility of design

within time and cost constraints.

 Coordinates software system installation and monitor equipment functioning to

ensure specifications are met.

 Designs, develops and modifies software systems, using scientific analysis and

mathematical models to predict and measure outcome and consequences of

design.

24

 Determines system performance standards.

 Develops and direct software system testing and validation procedures,

programming, and documentation.

 Modifies existing software to correct errors; allow it to acclimatise to new

hardware, or to improve its performance.

 Obtains and evaluates information on factors such as reporting formats required,

costs, and security needs to determine hardware configuration.

 Stores, retrieves, and manipulates data for analysis of system capabilities and

requirements.

3.8.2 Technical and Functional Knowledge and requirements of a Software

Engineer

Most employers commonly recognise the technical and functional knowledge statements

listed below as general occupational qualifications for Computer Software Engineers

Although it is not required for the software engineer to have all of the knowledge on the

list in order to be a successful performer, adequate knowledge, skills, and abilities are

necessary for effective delivery of service.

The Software Engineer should have Knowledge of:

 Circuit boards, processors, chips, electronic equipment, and computer

hardware and software, as well as applications and programming.

 Practical application of engineering science and technology. This includes

applying principles, techniques, procedures, and equipment to the design and

production of various goods and services.

 Arithmetic, algebra, geometry, calculus, statistics, and their applications.

 Structure and content of the English language including the meaning and

spelling of words, rules of composition, and grammar.

 Business and management principles involved in strategic planning, resource

allocation, human resources modelling, leadership technique, production

methods, and coordination of human and material resources.

 Principles and methods for curriculum and training design, teaching and

instruction for individuals and groups, and the measurement of training

effects.

 Design techniques, tools, and principles involved in production of precision

technical plans, blueprints, drawings, and models.

25

 Administrative and clerical procedures and systems such as word processing,

managing files and records, stenography and transcription, designing forms,

and other office procedures and terminology.

 Principles and processes for providing customer and personal services. This

includes customer needs assessment, meeting quality standards for services,

and evaluation of customer satisfaction.

 Transmission, broadcasting, switching, control, and operation of

telecommunications systems.

3.3 Occupational features of a software Engineer

Occupations have traits or characteristics which give important clues about the nature of

the work and work environment and offer you an opportunity to match your own personal

interests to a specific occupation.

Software engineer occupational characteristics or features can be categorised as:

Realistic, Investigative and Conventional as described below:

Realistic — Realistic occupations frequently involve work activities that include

practical, hands-on problems and solutions. They often deal with plants, animals, and

real-world materials like wood, tools, and machinery. Many of the occupations require

working outside, and do not involve a lot of paperwork or working closely with others.

Investigative — Investigative occupations frequently involve working with ideas, and

require an extensive amount of thinking. These occupations can involve searching for

facts and figuring out problems mentally.

Activity D Discus the various tasks of software engineer.

4.0 Conclusion

This unit has explained to you who software engineer is. You have also been informed of

about his various task and occupational characteristics.

5.0 Summary

In this unit, we have learnt that:

 A software engineer is an individual who applies the principles of software

engineering to the design, development, testing, and evaluation of the

software and systems in order to meet with client‘s requirements.

26

 The tasks of a software engineer include: analysis of information, analysis of

user needs and software requirements, coordination of software system

installation, designs, development and modification of software systems etc.

 The software engineer should have functional and technical knowledge that

will assist in service delivery.

 Occupational characteristics of a software engineer are categorise as :

Realistic, Investigative and Conventional

6.0 Tutor Marked Assignment

1 Who is a software engineer?

2 Explain the Technical and Functional Knowledge of a Software Engineer.

3 Discuss the occupational characteristic of a software engineer.

7.0 Further Reading and Other Resources

Bureau of Labor Statistics, U.S. Department of Labor, USDL 05-2145: Occupational

Employment and Wages, November 2004

McConnell, Steve (July 10, 2003. Professional Software Development: Shorter

Schedules, Higher Quality Products, More Successful Projects, Enhanced Careers. ISBN

978-0321193674.

UNIT 5: Software Crisis.

1.0 Introduction

http://en.wikipedia.org/wiki/July_10
http://en.wikipedia.org/wiki/2003

27

The major cause of the software crisis is that the machines have become more powerful!

This implied that: as long as there were no machines, programming was no problem at

all; when there were few weak computers, programming became a mild problem, and

now with huge computers, programming has equally become a huge problem.

3.1 Manifestation of Software Crisis

In the last unit, you have learnt about the software engineer- his task, technical and

functional knowledge as well as occupational characteristic. In this unit, we are going to

learn about software crisis. You will learn among other things, the manifestation of

software crisis, the causes of software engineering crisis and the solution to the crisis.

Thus after studying this unit certain things will be required of you. They are listed in the

objectives below.

2.0 Objectives

By the end of this unit, you should be able to:

 Define software crisis.

 Explain the manifestation of software crisis

 Explain the causes of software engineering crisis.

 Explain the solution of software crisis.

3.0 What is Software Crisis?

The term software crisis was used in the early days of software engineering. It was used

to describe the impact of prompt increases in computer power and the difficulty of the

problems which could be tackled. In essence, it refers to the difficulty of writing correct,

understandable, and verifiable computer programs. The sources of the software crisis are

complexity, expectations, and change.

Conflicting requirements has always hindered software development process. For

instance, while users demand a large number of features, customers generally want to

minimise the amount they must pay for the software and the time required for its

development.

F. L. Bauer coined the term "software crisis" at the first NATO Software Engineering

Conference in 1968 at Garmisch, Germany. The term was used early in Edsger Dijkstra's

1972 ACM Turing Award Lecture:

The crisis manifested itself in several ways:

 Projects running over-budget.

 Projects running over-time.

 Software was very inefficient.

 Software was of low quality.

 Software often did not meet requirements.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Garmisch
http://en.wikipedia.org/wiki/Edsger_Dijkstra

28

 Projects were unmanageable and code difficult to maintain.

 Software was never delivered.

3.2 Causes of Software Engineering Crisis

The challenging practical areas include: fiscal, human resource, infrastructure, and

marketing.. The very causes of failure in software development industries can be from

two areas twofold: 1) Poor marketing efforts, and 2) Lack of quality products.

3.2.1 Poor marketing efforts

The problem of poor marketing efforts is more noticeable in the developing economies,

where consumers of software products prefers imported software to the detriment of

locally developed ones. This problem is compounded by poor marketing approaches and

the fact that most of the hardware was not manufactured locally. Though the use of

software in our industries, service providing organizations, and other commercial

institutions is increasing appreciably, the demand of locally developed software products

is not going faster at the same rate.

One of the major reasons of this is lack of any established national policy that can speed

up the creation of internal market for locally developed software products. Relatively low

price of foreign (especially from the neighbouring country) software attracts the

consumers in acquiring foreign products rather than buying local one.

One may wants to ask why the clients will go for local software. In this situation, the

question may also be why is that the foreign software products are cheaper than the

locally developed software products? The answers to these questions are not far fetched.

The cost of initial take off of producing software product is significantly much higher

than its subsequent versions because the latter can be produced by merely copying the

initial one.

Most of the foreign software products available in the market are their succeeding

versions. For this reason, the consumers in our country do not have to bear the initial cost

of the development. Furthermore, this software is more reliable as they already have

reputable high report. Many international commercial companies use these products

efficiently.

On the contrary, most of the software firms in Bangladesh for example, need to charge

the initial cost for development for their clients even though the reliability of their

products is quite uncertain. Consequently, the local clients are not interested in buying

local software products. To change this situation, the government must take steps by

imposing high tax on foreign software products and by implementing strict copyright act

for the use of software products.

International market

29

Apart from developing internal software market, we also need to aim at the international

market. At present, as our software firms have no high report in developing software

products, competing with other country will just be a fruitless effort. India for example

has a high profile as far as software development is concern. India has been in global

market for at least twenty years. India can take advantage of buying software from global

market because of the long-time experience as well as availability of many high level IT

experts at relatively low cost compared with the developed countries. Apart from these,

India has professional immigrant communities in the US and in other developed countries

who have succeeded in influencing the global market to procure software projects for

India.

We cannot, therefore compete with India at this time to buy software projects from the

global market. However, there is the need to have a policy to boost our marketing

strategy to procure global software projects. One of the ways to do this is to allow

country like Bangladesh through its embassies/high commissions to open up a special

software marketing unit in different developed countries. Apart from this our professional

expatriates living in the USA and other developed countries can also assist by setting up

software firms to procure software projects to be developed in Bangladesh at low cost.

In the area of software development, timing is a essential factor. Inability to deliver the

product to time can lead to loss of clients. . Our observation has shown that client cancel

out work order when the software firms failed to meet up the deadline. Failure to meet up

deadline for any software project may result in negative attitude to our software

marketing efforts

Pricing. One of the major challenges to software developer is how to put price on the

product. Most of the time, the question is "How much should our product go for. On one

hand, asking too little price will be jeopardized because in that case developers will no be

able to brake even. On the other hand, charging too much for the product will be a barrier

to our marketing efforts. In order to solve this problem, scientific economic theories

needs to be applied.

These theories must be applied when the software companies fix the prices of their

product. One major lesson here is that we that are just starting in the global software

market should minimise our profit margin.

3.2.2 Lack of quality products

Since most of the systems are to be used in real time environment, quality assurance is of

primary concern. Presently our software companies are yet to be on ground as far as

developing quality software is concerned. It will be of interest to note that presently we

have over 200 software developing firms and only 20 of them have earned ISO 9001

certification and not even a single one has gotten CMM/CMM1 level 3. Even though

certification is not important yardstick for quality of software product, yet ISO

certification is important because it focuses on the general aspects of development to

certify the quality. It must also be stated that if a software product could pass at least

30

level three of CMM/CMM1 then we can classify this as quality product. The hindrances

to achieving quality software on part of our software industries are discussed below:

3.2.1 Lack of expertise in producing sound user requirements: Allowing the

developing firms to go through some defined software development steps as suggested in

software engineering discipline is a pathway to ensure the quality of software products..

The very first step is to analyze the users' requirement and designing of the system vastly

depends on defining users' requirement precisely.

Ideally system analysts should do all sorts of analysis to produce user requirement

analysis documents. Regrettably, in Bangladesh, a few firms do not pay much attention to

producing sound user requirement documents. This reveals lack of theoretical knowledge

in system analysis and design. To produce high quality requirement analysis documents

there is needs for an in-depth theoretical knowledge in system analysis and design. But

many of local software development firms lack the expertise in this field. In order to

rectify this problem, academics in the field have to be consulted to give necessary

assistance that will gear towards producing sound user requirement analysis documents.

Lack of expertise in designing the system: Aside user requirement analysis, another

important aspect is the development process is the designing part of the software product.

The design of any system affects the effectiveness of any implemented software. Again,

one of the major problems confronting our software industries is non availability of

expert software designers. It is a fact to point out that out what we have on ground are

programmers or coders but the number of experienced and expert software engineers is

till not many.

In fact, we rarely have resourceful persons who can guide large and complex software

projects properly our software industries. The result is that there are no quality end

products It may be mentioned here that sound academic knowledge in software

engineering is a must for developing a quality software system. A link between industries

and academic institutions can improve this situation. The utilisation of theoretical sound

knowledge of academics in industrial software project cannot be overlooked. Besides

depending on the complexity of the project, software firms may need to involve foreign

experts for specific period to complete the project properly.

Lack of knowledge in developing model

There is need to follow some specific model in software development process. The

practice in many software development firms is not to follow any particular model, and

this has so much affected the quality of software product. It is mandatory for a software

developer, therefore, to select a model prior to starting a software project so as to have

quality product.

Absence of proper software testing procedure: For us to have quality software

production the issue of software testing should be taken with utmost seriousness.

demands exhaustive test to check its performance. Many theoretical testing

31

methodologies abound to check the performance and integrity of the software. It is rather

unfortunate to note that many developing firms go ahead to , hastily deliver the end

products to their clients without performing extensive test. The result of this is that many

software products are not free from bugs. It should be pointed here that fixing the bugs

after is costlier than during the developing time. It is therefore important for developers

to perform the test phase of the development before delivering the end product to the

clients.

Inconsistent documentation: Documentation is a very important aspect of software

development. Most of the time, the document produced by some software firms is either

incomplete or inconsistent. Since software is ever-growing product, documentation in

coding must be produced and preserved for the future possible enhancement of the

software.

Solution to Software Crisis

Various processes and methodologies have been developed over the last few decades to

"tame" the software crisis, with varying degrees of success. However, it is widely agreed

that there is no "silver bullet" ― that is, no single approach which will prevent project

overruns and failures in all cases. In general, software projects which are large,

complicated, poorly-specified, and involve unfamiliar aspects, are still particularly

vulnerable to large, unanticipated problems

Activity E What is the major cause software crisis

4.0 Conclusion

In this unit you have learnt about the crisis in software engineering- its manifestation,

causes and solution.

5.0 Summary

In this unit, we have learnt that:

Software crisis refers to the difficulty of writing correct, understandable, and verifiable

computer programs

.The crisis manifested itself in several ways such as: Projects running over-budget,

Projects running over-time, Software was very inefficient, software was of low quality,

Software often did not meet requirements, Projects were unmanageable and code difficult

to maintain, Software was never delivered.

The very causes of failure in software development industries can be seen as twofold: 1)

Poor marketing efforts, and 2) Lack of quality products.

6.0 Tutor Marked Assignment

http://en.wikipedia.org/wiki/No_Silver_Bullet

32

1 What is a software crisis?

2 Discus how software crisis manifested itself in the early day of software

engineering.

3 Explain the causes of software crisis.

7.0 Further Reading And Other Resources

Frederick P. (1987). No Silver Bullet: Essence and Accidents of Software Engineering.

(Reprinted in the 1995 edition of The Mythical Man-Month)

Disjkstra, Edsger (originally published March 1968; re-published, January 2008). "(A

Look Back at) Go To Statement Considered Harmful". Association for Computing

Machinery, Inc. (ACM). http://mags.acm.org/communications/200801/?pg=9. Retrieved

2008-06-12.

MODULE 2: Software Development

Unit 1: Overview of Software Development

1.0 Introduction

http://en.wikipedia.org/wiki/No_Silver_Bullet
http://mags.acm.org/communications/200801/?pg=9

33

In the last unit, you have learnt about the software crisis- its manifestation, causes, as

well as solution to the crisis. In this unit, we are going to look at the overview of software

development. You will learn specifically about the overview of various stages involved in

software development. After studying this unit you are expected to have achieved the

following objectives listed below.

2.0 Objectives

By the end of this unit, you should be able to:

 Define clearly software development.

 List clearly the stages of software development

3.0 Definition of Software Development

Software development is the set of activities that results in software products. Software

development may include research, new development, modification, reuse, re-

engineering, maintenance, or any other activities that result in software products.

Particularly the first phase in the software development process may involve many

departments, including marketing, engineering, research and development and general

management.

The term software development may also refer to computer programming, the process of

writing and maintaining the source code.

3.1 Stages of Software Development

There are several different approaches to software development. While some take a more

structured, engineering-based approach, others may take a more incremental approach,

where software evolves as it is developed piece-by-piece. In general, methodologies

share some combination of the following stages of software development:

 Market research

 Gathering requirements for the proposed business solution

 Analyzing the problem

 Devising a plan or design for the software-based solution

 Implementation (coding) of the software

 Testing the software

 Deployment

 Maintenance and bug fixing

These stages are collectively referred to as the software development lifecycle (SDLC).,

These stages may be carried out in different orders, depending on approach to software

development. Time devoted on different stages may also vary. The detail of the

documentation produced at each stage may not be the same.. In ―waterfall‖ based

approach, stages may be carried out in turn whereas in a more "extreme" approach, the

stages may be repeated over various cycles or iterations. It is important to note that more

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Marketing
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Research_and_development
http://en.wikipedia.org/wiki/Management
http://en.wikipedia.org/wiki/Computer_programming

34

―extreme‖ approach usually involves less time spent on planning and documentation, and

more time spent on coding and development of automated tests. More ―extreme‖

approaches also encourage continuous testing throughout the development lifecycle. It

ensures bug-free product at all times. The ―waterfall‖ based approach attempts to assess

the majority of risks and develops a detailed plan for the software before implementation

(coding) begins. It avoids significant design changes and re-coding in later stages of the

software development lifecycle.

Each methodology has its merits and demerits. The choice of an approach to solving a

problem using software depends on the type of problem. If the problem is well

understood and a solution can be effectively planned out ahead of time, the more

"waterfall" based approach may work the best choice. On the other hand, if the problem

is unique (at least to the development team) and the structure of the software solution

cannot be easily pictured, then a more "extreme" incremental approach may work best..

Activity F What do you think determine the choice of approach in software

development?

4.0 Conclusion

This unit has introduce you to software development. You have been informed of the

various stages of software development.

5.0 Summary

In this unit, we have learnt that:

 Software development is the set of activities that results in software products.

 . Most methodologies share some combination of the following stages of

software development: market research, gathering requirements for the

proposed business solution, analyzing the problem, devising a plan or design

for the software-based solution , implementation (coding) of the software,

testing the software, deployment, maintenance and bug fixing

6.0 Tutor Marked Assignment

1 What is software development?

2 Briefly explain the various stages of software development.

7.0 Further Reading And Other Resources

A.M. Davis (2005). Just enough requirements management: where software development

meets marketing.

http://en.wikipedia.org/wiki/Software

35

Edward Hasted. (2005). Software That Sells : A Practical Guide to Developing and

Marketing Your Software Project.

John W. Horch (2005). "Two Orientations On How To Work With Objects." In: IEEE

Software. vol. 12, no. 2, pp. 117-118, Mar., 1995.

Karl E. Wiegers (2005). More About Software Requirements: Thorny Issues and

Practical Advice.

Robert K. Wysocki (2006). Effective Software Project Management.

Unit 2:Software Development Life Cycle Model

1.0 Introduction

36

The last unit exposed you to the overview of software development. In this unit you

will learn about the various lifecycle models (the phases of the software life cycle) in

general. You will also specifically learn about the requirement and the design phases

2.0 Objectives

By the end of this unit, you should be able to:

 Define software life cycle model

 Explain the general model

 Explain Waterfall Model

 Explain V-Shaped Life Cycle Model

 Explain Incremental Model

 Explain Spiral Model

 Discus the requirement and design phases

3.0 Definition of Life Cycle Model

Software life cycle models describe phases of the software cycle and the order in which

those phases are executed. There are a lot of models, and many companies adopt their

own, but all have very similar patterns. According to Raymond Lewallen (2005), the general,

basic model is shown below:

3.1 The General Model

General Life Cycle Model

Fig 1 the General Model

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

Each phase produces deliverables needed by the next phase in the life cycle.

Requirements are converted into design. Code is generated during implementation that is

driven by the design. Testing verifies the deliverable of the implementation phase against

requirements.

3.2 Waterfall Model

This is the most common life cycle models, also referred to as a linear-sequential life

cycle model. It is very simple to understand and use. In a waterfall model, each phase

must be completed before the next phase can begin. At the end of each phase, there is

http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx

37

always a review to ascertain if the project is in the right direction and whether or not to

carry on or abandon the project. Unlike the general model, phases do not overlap in a

waterfall model.

Waterfall Life Cycle

Fig 2 Waterfall Life Cycle

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

3.2.1 Advantages

 Simple and easy to use.

 Easy to manage due to the rigidity of the model – each phase has specific

deliverables and a review process.

 Phases are processed and completed one at a time.

 Works well for smaller projects where requirements are very well understood.

3.2.2 Disadvantages

 Adjusting scope during the life cycle can kill a project

 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Poor model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Poor model where requirements are at a moderate to high risk of changing.

3.3 V-Shaped Model

Just like the waterfall model, the V-Shaped life cycle is a sequential path of execution of

processes. Each phase must be completed before the next phase begins. Testing is

emphasized in this model more so than the waterfall model The testing procedures are

http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx

38

developed early in the life cycle before any coding is done, during each of the phases

preceding implementation.

Requirements begin the life cycle model just like the waterfall model. Before

development is started, a system test plan is created. The test plan focuses on meeting the

functionality specified in the requirements gathering.

The high-level design phase focuses on system architecture and design. An integration

test plan is created in this phase as well in order to test the pieces of the software systems

ability to work together.

The low-level design phase is where the actual software components are designed, and

unit tests are created in this phase as well.

The implementation phase is, again, where all coding takes place. Once coding is

complete, the path of execution continues up the right side of the V where the test plans

developed earlier are now put to use.

Fig 3 V-Shaped Life Cycle Model

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

3.3.1 Advantages

http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx

39

 Simple and easy to use.

 Each phase has specific deliverables.

 Higher chance of success over the waterfall model due to the development of test

plans early on during the life cycle.

 Works well for small projects where requirements are easily understood.

3.3.2 Disadvantages

 Very rigid, like the waterfall model.

 Little flexibility and adjusting scope is difficult and expensive.

 Software is developed during the implementation phase, so no early prototypes of

the software are produced.

 Model doesn‘t provide a clear path for problems discovered during testing phases.

3.4 Incremental Model

The incremental model is an intuitive approach to the waterfall model. It is a kind of a

―multi-waterfall‖ cycle. In that multiple development cycles take at this point. Cycles are

broken into smaller, more easily managed iterations. Each of the iterations goes through

the requirements, design, implementation and testing phases.

The first iteration produces a working version of software and this makes possible to have

working software early on during the software life cycle. Subsequent iterations build on

the initial software produced during the first iteration.

Incremental Life Cycle Model

Fig 4 Incremental Life Cycle Model

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

3.4.1 Advantages

 Generates working software quickly and early during the software life cycle.

http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx

 More flexible – inexpensive to change scope and requirements.

 Easier to test and debug during a smaller iteration.

 Easier to manage risk because risky pieces are identified and handled during its

iteration.

 Each of the iterations is an easily managed landmark

3.4.2 Disadvantages

 Each phase of an iteration is rigid and do not overlap each other.

 Problems as regard to system architecture may arise as a result of inability to

gathered requirements up front for the entire software life cycle.

3.5 Spiral Model

The spiral model is similar to the incremental model, with more emphases placed on risk

analysis. The spiral model has four phases namely Planning, Risk Analysis, Engineering

and Evaluation. A software project continually goes through these phases in iterations

which are called spirals. In the baseline spiral requirements are gathered and risk is

assessed. Each subsequent spiral builds on the baseline spiral.

Requirements are gathered during the planning phase. In the risk analysis phase, a

process is carried out to discover risk and alternate solutions. A prototype is produced at

the end of the risk analysis phase.

Software is produced in the engineering phase, alongside with testing at the end of the

phase. The evaluation phase provides the customer with opportunity to evaluate the

output of the project to date before the project continues to the next spiral.

In the spiral model, the angular component denotes progress, and the radius of the spiral

denotes cost.

Spiral Life Cycle Model

40

41

Fig 5 Spiral Life Cycle Model

Source: http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx.

3.5.1 Merits

 High amount of risk analysis

 Good for large and mission-critical projects.

 Software is produced early in the software life cycle.

3.5.2 Demerits

 Can be a costly model to use.

 Risk analysis requires highly specific expertise.

 Project‘s success is highly dependent on the risk analysis phase.

 Doesn‘t work well for smaller projects.

3.6 Requirements Phase

http://codebetter.com/blogs/raymond.lewallen/archive/2005/07/13/129114.aspx

42

Business requirements are gathered in this phase. This phase is the main center of

attention of the project managers and stake holders. Meetings with managers, stake

holders and users are held in order to determine the requirements. Th general questions

that require answers during a requirements gathering phase are: Who is going to use the

system? How will they use the system? What data should be input into the system?

What data should be output by the system? A list of functionality that the system should

provide, which describes functions the system should perform, business logic that

processes data, what data is stored and used by the system, and how the user interface

should work is produced at this point. The requirements development phase may have

been preceded by a feasibility study, or a conceptual analysis phase of the project. The

requirements phase may be divided into requirements elicitation (gathering the

requirements from stakeholders), analysis (checking for consistency and completeness),

specification (documenting the requirements) and validation (making sure the specified

requirements are correct)

In systems engineering, a requirement can be a description of what a system must do,

referred to as a Functional Requirement. This type of requirement specifies something

that the delivered system must be able to do. Another type of requirement specifies

something about the system itself, and how well it performs its functions. Such

requirements are often called Non-functional requirements, or 'performance requirements'

or 'quality of service requirements.' Examples of such requirements include usability,

availability, reliability, supportability, testability, maintainability, and (if defined in a way

that's verifiably measurable and unambiguous) ease-of-use.

3.6.1 Types of Requirements

Requirements are categorised as:

 Functional requirements which describe the functionality that the system is to

execute; for example, formatting some text or modulating a signal.

 Non-functional requirements which are the ones that act to constrain the solution.

Nonfunctional requirements are sometimes known as quality requirements or

Constraint requirements No matter how the problem is solved the constraint

requirements must be adhered to.

It is important to note that functional requirements can be directly implemented in

software. The non-functional requirements are controlled by other aspects of the system.

For example, in a computer system reliability is related to hardware failure rates,

performance controlled by CPU and memory. Non-functional requirements can in some

cases be broken into functional requirements for software. For example, a system level

non-functional safety requirement can be decomposed into one or more functional

requirements. In addition, a non-functional requirement may be converted into a process

requirement when the requirement is not easily measurable. For example, a system level

43

maintainability requirement may be decomposed into restrictions on software constructs

or limits on lines or code.

3.6.2 Requirements analysis

Requirements analysis in systems engineering and software engineering, consist of

those activities that go into determining the needs or conditions to meet for a new or

altered product, taking account of the possibly conflicting requirements of the various

stakeholders, such as beneficiaries or users.

Requirements analysis is critical to the success of a development project. Requirements

must be actionable, measurable, testable, related to identified business needs or

opportunities, and defined to a level of detail sufficient for system design.

3.6.3 The Need for Requirements Analysis

Studies reveal that insufficient attention to Software Requirements Analysis at the

beginning of a project is the major reason for critically weak projects that often do not

fulfil basic tasks for which they were designed. Software companies are now spending

time and resources on effective and streamlined Software Requirements Analysis

Processes as a condition to successful projects that support the customer‘s business goals

and meet the project‘s requirement specifications.

3.6.4 Requirements Analysis Process: Requirements Elicitation, Analysis And

Specification

Requirements Analysis is the process of understanding the client needs and expectations

from a proposed system or application. It is a well-defined stage in the Software

Development Life Cycle model.

Requirements are a description of how a system should behave, in other words, a

description of system properties or attributes. Considering the numerous levels of

dealings between users, business processes and devices in worldwide corporations today,

there are immediate and composite requirements from a single application, from different

levels within an organization and outside it

The Software Requirements Analysis Process involves the complex task of eliciting and

documenting the requirements of all customers, modelling and analyzing these

requirements and documenting them as a foundation for system design.

This job (requirements analysis process) is dedicated to a specialized Requirements

Analyst. The Requirements Analysis function may also come under the scope of Project

Manager, Program Manager or Business Analyst, depending on the organizational

hierarchy.

3.6.5 Steps in the Requirements Analysis Process

44

3.6.5.1 Fix system boundaries

This is initial step and helps in identifying how the new application fit in into the business

processes, how it fits into the larger picture as well as its capacity and limitations.

3.6.5.2 Identify the customer

This focuses on identifying who the ‗users‘ or ‗customers‘ of an application are that is to

say knowing the group or groups of people who will be directly or indirectly impacted by

the new application. This allows the Requirements Analyst to know in advance where he

has to look for answers.

3.6.5.3 Requirements elicitation

Here information is gathered from the multiple stakeholders identified. The Requirements

Analyst brings out from each of these groups what their requirements from the

application are and what they expect the application to achieve. Taking into account the

multiple stakeholders involved, the list of requirements gathered in this manner could go

into pages. The level of detail of the requirements list depends on the number and size of

user groups, the degree of complexity of business processes and the size of the

application.

3.6.5.3.1 Problems faced in Requirements Elicitation

 Ambiguous understanding of processes

 Inconsistency within a single process by multiple users

 Insufficient input from stakeholders

 Conflicting stakeholder interests

 Changes in requirements after project has begun

3.6.5.3.2 Tools used in Requirements Elicitation

Tools used in Requirements Elicitation include stakeholder interviews and focus group

studies. Other methods like flowcharting of business processes and the use of existing

documentation like user manuals, organizational charts, process models and systems or

process specifications, on-site analysis, interviews with end-users, market research and

competitor analysis are also used widely in Requirements Elicitation.

There are of course, modern tools that are better equipped to handle the complex and

multilayered process of Requirements Elicitation. Some of the current Requirements

Elicitation tools in use are:

 Prototypes

 Use cases

 Data flow diagrams

 Transition process diagrams

45

 User interfaces

3.6.5.4 Requirements Analysis

The moment all stakeholder requirements have been gathered, a structured analysis of

these can be done after modeling the requirements. Some of the Software Requirements

Analysis techniques used are requirements animation, automated reasoning, knowledge-

based critiquing, consistency checking, analogical and case-based reasoning.

3.6.5.5. Requirements Specification

After requirements have been elicited, modeled and analyzed, they should be

documented in clear, definite terms. A written requirements document is crucial and as

such its circulation should be among all stakeholders including the client, user-groups,

the development and testing teams. It has been observed that a well-designed, clearly

documented Requirements Specification is vital and serves as a:

 Base for validating the stated requirements and resolving stakeholder conflicts, if any

 Contract between the client and development team

 Basis for systems design for the development team

 Bench-mark for project managers for planning project development lifecycle and

goals

 Source for formulating test plans for QA and testing teams

 Resource for requirements management and requirements tracing

 Basis for evolving requirements over the project life span

Software requirements specification involves scoping the requirements so that it meets

the customer‘s vision. It is the result of teamwork between the end-user who is usually

not a technical expert, and a Technical/Systems Analyst, who is expected to approach the

situation in technical terms.

The software requirements specification is a document that lists out stakeholders‘ needs

and communicates these to the technical community that will design and build the

system. It is really a challenge to communicate a well-written requirements specification,

to both these groups and all the sub-groups within. To overcome this, Requirements

Specifications may be documented separately as:

 User Requirements - written in clear, precise language with plain text and use cases,

for the benefit of the customer and end-user

 System Requirements - expressed as a programming or mathematical model, meant

to address the Application Development Team and QA and Testing Team.

Requirements Specification serves as a starting point for software, hardware and database

design. It describes the function (Functional and Non-Functional specifications) of the

system, performance of the system and the operational and user-interface constraints that

will govern system development.

46

3.7 Requirements Management

Requirements Management is the all-inclusive process that includes all aspects of

software requirements analysis and as well ensures verification, validation and

traceability of requirements. Effective requirements management practices assure that all

system requirements are stated unmistakably, that omissions and errors are corrected and

that evolving specifications can be included later in the project lifecycle.

3.7 Design Phase

The software system design is formed from the results of the requirements phase. This is

where the details on how the system will work are produced. Deliverables in this phase

include hardware and software, communication, software design.

3.8 Definition of software design

A software design is a meaningful engineering representation of some software product

that is to be built. A design can be traced to the customer's requirements and can be

assessed for quality against predefined criteria. In the software engineering context,

design focuses on four major areas of concern: data, architecture, interfaces and

components.

The design process is very important. As a labourer, for example one would not attempt

to build a house without an approved blueprint so as not to risk the structural integrity

and customer satisfaction. In the same way, the approach to building software products is

no unlike. The emphasis in design is on quality. It is pertinent to note that, this is the only

phase in which the customer‘s requirements can be precisely translated into a finished

software product or system. As such, software design serves as the foundation for all

software engineering steps that follow regardless of which process model is being

employed.

During the design process the software specifications are changed into design models that

express the details of the data structures, system architecture, interface, and components.

Each design product is re-examined for quality before moving to the next phase of

software development. At the end of the design process a design specification document

is produced. This document is composed of the design models that describe the data,

architecture, interfaces and components.

3.9 Design Specification Models

 Data design – created by changing the analysis information model (data

dictionary and ERD) into data structures needed to implement the software. Part

of the data design may occur in combination with the design of software

architecture. More detailed data design occurs as each software component is

designed.

47

 Architectural design - defines the relationships among the major structural

elements of the software, the ―design patterns‖ that can be used to attain the

requirements that have been defined for the system, and the constraint that affect

the way in which the architectural patterns can be applied. It is derived from the

system specification, the analysis model, and the subsystem interactions defined

in the analysis model (DFD).

 Interface design - explains how the software elements communicate with each

other, with other systems, and with human users. Much of the necessary

information required is provided by the e data flow and control flow diagrams.

 Component-level design – It converts the structural elements defined by the

software architecture into procedural descriptions of software components using

information acquired from the process specification (PSPEC), control

specification (CSPEC), and state transition diagram (STD).

3.10 Design Guidelines

In order to assess the quality of a design (representation) the yardstick for a good design

should be established. Such a design should:

 exhibit good architectural structure

 be modular

 contain distinct representations of data, architecture, interfaces, and components

(modules)

 lead to data structures that are appropriate for the objects to be implemented and

be drawn from recognizable design patterns

 lead to components that exhibit independent functional characteristics

 lead to interfaces that reduce the complexity of connections between modules and

with the external environment

 be derived using a reputable method that is driven by information obtained during

software requirements analysis

These criteria are not acquired by chance. The software design process promotes good

design through the application of fundamental design principles, systematic methodology

and through review.

3.11 Design Principles

Software design can be seen as both a process and a model.

―The design process is a series of steps that allow the designer to describe all aspects of

the software to be built. However, it is not merely a recipe book; for a competent and

successful design, the designer must use creative skill, past experience, a sense of what

makes ―good‖ software, and have a commitment to quality.

48

The set of principles which has been established to help the software engineer in directing

the design process are:

 The design process should not suffer from tunnel vision – Alternative

approaches should be considered by a good designer. Designer should judge

each approach based on the requirements of the problem, the resources

available to do the job and any other constraints.

 The design should be traceable to the analysis model – because a single

element of the design model often traces to multiple requirements, it is

necessary to have a means of tracking how the requirements have been

satisfied by the model

 The design should not reinvent the wheel – Systems are constructed using a

suite of design patterns, many of which may have likely been encountered

before. These patterns should always be chosen as an alternative to

reinvention. Design time should be spent in expressing truly fresh ideas and

incorporating those patterns that already exist.

 The design should reduce intellectual distance between the software and the

problem as it exists in the real world – This means that, the structure of the

software design should imitate the structure of the problem domain.

 The design should show uniformity and integration – a design is uniform if it

appears that one person developed the whole thing. Rules of style and format

should be defined for a design team before design work begins. A design is

integrated if care is taken in defining interfaces between design components.

 The design should be structured to degrade gently, even with bad data, events,

or operating conditions are encountered – Well-designed software should

never ―bomb‖. It should be designed to accommodate unusual circumstances,

and if it must terminate processing, do so in a graceful manner.

 The design should be reviewed to minimize conceptual (semantic) errors –

there is sometimes the tendency to focus on minute details when the design is

reviewed, missing the forest for the trees. The designer team should ensure

that major conceptual elements of the design have been addressed before

worrying about the syntax if the design model.

 Design is not coding, coding is not design – Even when detailed designs are

created for program components, the level of abstraction of the design model

is higher than source code. The only design decisions made of the coding level

address the small implementation details that enable the procedural design to

be coded.

 The design should be structured to accommodate change

 The design should be assessed for quality as it is being created

With proper application of design principles, the design displays both external and

internal quality factors. External quality factors are those factors that can readily be

observed by the user, (e.g. speed, reliability, correctness, usability). Internal quality

factors have to do with technical quality more so the quality of the design itself. To

achieve internal quality factors the designer must understand basic design concepts.

49

3.12 Fundamental Software Design Concepts

Over the past four decades, a set of fundamental software design concepts has evolved,

each providing the software designer with a foundation from which more sophisticated

design methods can be applied. Each concept assists the soft ware engineer to answer the

following questions:

 What criteria can be used to partition software into individual components?

 How is function or data structure detail separated from a conceptual

representation of software?

 Are there uniform criteria that define the technical quality of a software

design?

The fundamental design concepts are:

 Abstraction - allows designers to focus on solving a problem without being

concerned about irrelevant lower level details (procedural abstraction - named

sequence of events, data abstraction - named collection of data objects)

 Refinement - process of elaboration where the designer provides successively

more detail for each design component

 Modularity - the degree to which software can be understood by examining its

components independently of one another

 Software architecture - overall structure of the software components and the

ways in which that structure provides conceptual integrity for a system

 Control hierarchy or program structure - represents the module organization

and implies a control hierarchy, but does not represent the procedural aspects of

the software (e.g. event sequences)

 Structural partitioning - horizontal partitioning defines three partitions (input,

data transformations, and output); vertical partitioning (factoring) distributes

control in a top-down manner (control decisions in top level modules and

processing work in the lower level modules).

 Data structure - representation of the logical relationship among individual data

elements (requires at least as much attention as algorithm design)

 Software procedure - precise specification of processing (event sequences,

decision points, repetitive operations, data organization/structure)

 Information hiding - information (data and procedure) contained within a

module is inaccessible to modules that have no need for such information

Activity G 1 What are the steps in requirement Analysis process?

2 What are the fundamental design concepts ?

50

4.0 Conclusion

Software life cycle models describe phases of the software cycle and the order in which

those phases are executed.

5.0 Summary

In this unit, we have learnt that:

 Software life cycle models describe phases of the software cycle and the order

in which those phases are executed. .

 In general model, each phase produces deliverables required by the next phase

in the life cycle. Requirements are translated into design. Code is produced

during implementation that is driven by the design. Testing verifies the

deliverable of the implementation phase against requirements.

 In a waterfall model, each phase must be completed in its entirety before the

next phase can begin. At the end of each phase, a review takes place to

determine if the project is on the right path and whether or not to continue or

discard the project. Unlike what I mentioned in the general model, phases do

not overlap in a waterfall model.

 Just like the waterfall model, the V-Shaped life cycle is a sequential path of

execution of processes. Each phase must be completed before the next phase

begins. Testing is emphasized in this model more so than the waterfall model

though. The testing procedures are developed early in the life cycle before

any coding is done, during each of the phases preceding implementation.

 The incremental model is an intuitive approach to the waterfall model.

Multiple development cycles take place here, making the life cycle a ―multi-

waterfall‖ cycle. Cycles are divided up into smaller, more easily managed

iterations. Each iteration passes through the requirements, design,

implementation and testing phases.

 The spiral model is similar to the incremental model, with more emphases

placed on risk analysis. The spiral model has four phases: Planning, Risk

Analysis, Engineering and Evaluation. A software project repeatedly passes

through these phases in iterations (called Spirals in this model). The baseline

spirals, starting in the planning phase, requirements are gathered and risk is

assessed. Each subsequent spirals builds on the baseline spiral.

 In requirement phase business requirements are gathered and that the phase is

the main focus of the project managers and stake holders.

 The software system design is produced from the results of the requirements

phase and it is the phase is where the details on how the system will work is

produced

6.0 Tutor Marked Assignment

51

1 What is software life cycle model?

2 Explain the general model

3 Compare and contrast General and Waterfall Models

4 Explain V-Shaped Life Cycle Model

5 Explain Incremental Model

6 Compare and contrast Incremental and Spiral Models

7 Discus the requirement and design phases

7.0 Further Reading And Other Resources

Blanchard, B. S., & Fabrycky, W. J.(2006) Systems engineering and analysis (4th ed.)

New Jersey: Prentice Hall.

Ummings, Haag (2006). Management Information Systems for the Information Age.

Toronto, McGraw-Hill Ryerson

Unit 3 Modularity

1.0 Introduction

In unit 2 we discussed about software lifecycle models in general and also in detailed

the requirement and the design phases of software development. In this unit we will

look at Modudularity in programming.

52

2.0 Objectives

By the end of this unit, you should be able to:

 Define Modularity

 Differentiate between logical and physical modularity

 Explain benefits of modular design

 Explain approaches of writing modular program

 Explain Criteria for using modular design

 Outlines the attributes of a good module

 Outline the steps to creating effective module

 Differentiate between Top-down and Bottom-up programming approach

What is Modularity?

Modularity is a general systems concept which is the degree to which a system‘s

components may be separated and recombined. It refers to both the tightness of coupling

between components, and the degree to which the ―rules‖ of the system architecture

enable (or prohibit) the mixing and matching of components

The concept of modularity in computer software has been promoted for about five

decades. In essence, the software is divided into separately names and addressable

components called modules that are integrated to satisfy problem requirements. It is

important to note that a reader cannot easily understand large programs with a single

module. The number of variables, control paths and sheer complexity make

understanding almost impossible. As a result a modular approach will allow for the

software to be intellectually manageable. However, it is important to note that software

cannot be subdivided indefinitely so as to make the effort required to understand or

develop it negligible. This is because the more the number of modules, the less the effort

to develop them.

3.14 Logical Modularity

Generally in software, modularity can be categorized as logical or physical. Logical

Modularity is concerned with the internal organization of code into logically-related

units. In modern high level languages, logical modularity usually starts with the class, the

smallest code group that can be defined. In languages such as Java and C#, classes can be

further combined into packages which allow developers to organize code into group of

related classes. Depending on the environment, a module can be implemented as a single

class, several classes in a package, or an entire API (a collection of packages). You

should be able to describe the functionality of tour module in a single sentence (i.e.

this module calculates tax per zip code) regardless of the implementation scale of your

module,). Your module should expose its functionality as simple interfaces that shield

callers from all implementation details. The functionality of a module should be

accessible through a published interface that allows the module to expose its

53

functionalities to the outside world while hiding its implementation details.

3.15 Physical Modularity

Physical Modularity is probably the earliest form of modularity introduced in software

creation. Physical modularity consists of two main components namely: (1) a file that

contains compiled code and other resources and (2) an executing environment that

understand how to execute the file. Developers build and assemble their modules into

compiled assets that can be distributed as single or multiple files. In Java for example,

the jar file is the unit of physical modularity for code distribution (.Net has the assembly).

The file and its associated meta-data are designed to be loaded and executed by the run

time environment that understands how to run the compiled code.

Physical modularity can also be affected by the context and scale of abstraction. Within

Java, for instance, the developer community has created and accept several physical

modularity strategies to address different aspects of enterprise development 1) WAR

for web components 2) EJB for distributed enterprise components 3) EAR for enterprise

application components 4) vendor specific modules such as JBoss Service Archive

(SAR). These are usually a variation of the JAR file format with special meta data to

target the intended runtime environment. The current trend of adoption seems to be

pointing to OSGi as a generic physical module format. OSGi provides the Java

environment with additional functionalties that should allow developers to model their

modules to scale from small emddeable to complex enterprise components (a lofty

goal in deed).

3.16 Benefits of Modular Design

 Scalable Development: a modular design allows a project to be naturally

subdivided along the lines of its modules. A developer (or groups of developers)

can be assigned a module to implement independently which can produce an

asynchronous project flow.

 Testable Code Unit: when your code is partition into functionally-related chunks,

it facilitates the testing of each module independently. With the proper testing

framework, developers can exercise each module (and its constituencies) without

having to bring up the entire project.

 Build Robust System: in the monolithic software design, as your system grows

in complexity so does its propensity to be brittle (changes in one section causes

failure in another). Modularity lets you build complex system composed of

smaller parts that can be independently managed and maintained. Fixes in

one portion of the code does not necessarily affect the entire system.

 Easier Modification & Maintenance: post-production system maintenance is

another crucial benefit of modular design. Developers have the ability to fix and

make non-infrastructural changes to module without affecting other modules.

The updated module can independently go through the build and release cycle

without the need to re-build and redeploy the entire system.

54

 Functionally Scalable: depending on the level of sophistication of your modular

design, it's possible to introduce new functionalities with little or no change to

existing modules. This allows your software system to scale in functionality

without becoming brittle and a burden on developers.

3.17 Approaches of writing Modular program

The three basic approaches of designing Modular program are:

 Process-oriented design

This approach places the emphasis on the process with the objective being to design

modules that have high cohesion and low coupling. (Data flow analysis and data flow

diagrams are often used.)

 Data-oriented design

In this approach the data comes first. That is the structure of the data is determined first

and then procedures are designed in a way to fit to the structure of the data.

 Object-oriented design

In this approach, the objective is to first identify the objects and then build the product

around them. In concentrate, this technique is both data- and process-oriented.

3.18 Criteria for using Modular Design

 Modular decomposability – If the design method provides a systematic

means for breaking problem into sub problems, it will reduce the complexity

of the overall problem, thereby achieving a modular solution.

 Modular compos ability - If the design method enables existing (reusable)

design components to be assembled into a new system, it will yield a modular

solution that does not reinvent the wheel.

 Modular understand ability – If a module can be understood as a stand-

alone unit (without reference to other modules) it will be easier to build and

easier to change.

 Modular continuity – If small changes to the system requirements result in

changes to individual modules, rather than system-wide changes, the impact

of change-induced side-effects will be minimised

 Modular protection – If an abnormal condition occurs within a module and

its effects are constrained within that module, then impact of error-induced

side-effects are minimised

3.19 Attributes of a good Module

 Functional independence - modules have high cohesion and low coupling

 Cohesion - qualitative indication of the degree to which a module focuses on just

one thing

 Coupling - qualitative indication of the degree to which a module is connected to

other modules and to the outside world

3.20 Steps to Creating Effective Module

 Evaluate the first iteration of the program structure to reduce coupling and

improve cohesion. Once program structure has been developed modules may be

exploded or imploded with aim of improving module independence.

o An exploded module becomes two or more modules in the final program

structure.

o An imploded module is the result of combining the processing implied by

two or more modules.

An exploded module normally results when common processing exists in two or more

modules and can be redefined as a separate cohesive module. When high coupling is

expected, modules can sometimes be imploded to reduce passage of control, reference to

global data and interface complexity.

 Attempt to minimise structures with high fan-out; strive for fan-in as structure

depth increases. The structure shown inside the cloud in Fig. 3 does not make

effective use of factoring.

55

56

Fig 6 Example of a program structure

 Keep the scope of effect of a module within the scope of control for that module.

o The scope of effect of a module is defined as all other modules that are

affected by a decision made by that module. For example, the scope of

control of module e is all modules that are subordinate i.e. modules f, g, h,

n, p and q.

 Evaluate module interfaces to reduce complexity, reduce redundancy, and

improve consistency.

o Module interface complexity is a prime cause of software errors.

Interfaces should be designed to pass information simply and should be

consistent with the function of a module. Interface inconsistency (i.e.

seemingly unrelated data passed via an argument list or other technique) is

an indication of low cohesion. The module in question should be re-

evaluated.

 Define modules whose function is predictable and not overly restrictive (e.g. a

module that only implements a single task).

o A module is predictable when it can be treated as a black box; that is, the

same external data will be produced regardless of internal processing

details. Modules that have internal ―memory‖ can be unpredictable unless

care is taken in their use.

o A module that restricts processing to a single task exhibits high cohesion

and is viewed favourably by a designer.

57

 Strive for controlled entry modules, avoid pathological connection (e.g. branches

into the middle of another module)

o This warns against content coupling. Software is easier to understand and

maintain if the module interfaces are constrained and controlled.

3.21 Programming Languages that formally support module concept

Languages that formally support the module concept include IBM/360 Assembler,

COBOL, RPG and PL/1, Ada, D, F, Fortran, Haskell, OCaml, Pascal, ML, Modula-2,

Erlang, Perl, Python and Ruby. The IBM System i also uses Modules in RPG, COBOL

and CL, when programming in the ILE environment. Modular programming can be

performed even where the programming language lacks explicit syntactic features to

support named modules.

Software tools can create modular code units from groups of components. Libraries of

components built from separately compiled modules can be combined into a whole by

using a linker.

3.22 Module Interconnection Languages

Module interconnection languages (MILs) provide formal grammar constructs for

deciding the various module interconnection specifications required to assemble a

complete software system. MILs enable the separation between programming-in-the-

small and programming-in-the-large. Coding a module represents programming in the

small, while assembling a system with the help of a MIL represents programming in the

large. An example of MIL is MIL-75.

3.23 Top-Down Design

Top-down is a programming style, the core of traditional procedural languages, in which

design begins by specifying complex pieces and then dividing them into successively

smaller pieces. Finally, the components are precise enough to be coded and the program

is written. It is the exact opposite of the bottom-up programming approach which is

common in object-oriented languages such as C++ or Java.

The method of writing a program using top-down approach is to write a main procedure

that names all the major functions it will need. After that the programming team

examines the requirements of each of those functions and repeats the process. These

compartmentalized sub-routines finally will perform actions so straightforward they can

be easily and concisely coded. The program is done when all the various sub-routines

have been coded.

58

Merits of top-down programming:

 Separating the low level work from the higher level abstractions leads to a

modular design.

 Modular design means development can be self contained.

 Having "skeleton" code illustrates clearly how low level modules integrate.

 Fewer operations errors

 Much less time consuming (each programmer is only concerned in a part of the

big project).

 Very optimized way of processing (each programmer has to apply their own

knowledge and experience to their parts (modules), so the project will become an

optimized one).

 Easy to maintain (if an error occurs in the output, it is easy to identify the errors

generated from which module of the entire program).

3.24 Bottom-up approach

In a bottom-up approach the individual base elements of the system are first specified in

great detail. These elements are then connected together to form bigger subsystems,

which are linked, sometimes in many levels, until a complete top-level system is formed.

This strategy often resembles a "seed" model, whereby the beginnings are small, but

eventually grow in complexity and completeness.

Object-oriented programming (OOP) is a programming paradigm that uses "objects" to

design applications and computer programs.

. This bottom-up approach has one drawback. We need to use a lot of perception to

decide the functionality that is to be provided by the module. This approach is more

suitable if a system is to be developed from existing system, because it starts from some

existing modules. Modern software design approaches usually mix both top-down and

bottom-up approaches.

Activity H What are the steps to create effective modules?

4.0 Conclusion

The benefits of modular programming cannot be overemphasised. It among other things,

allows for scalar development, it facilitates code testing, helps in building robust system,

allows for easier modification and maintenance.

5.0 Summary

In this unit, we have learnt that:

59

 Modularity is a general systems concept, the degree to which a system‘s

components may be separated and recombined. It refers to both the tightness of

coupling between components, and the degree to which the ―rules‖ of the system

architecture enable (or prohibit) the mixing and matching of components

 Physical Modularity is probably the earliest form of modularity introduced in

software creation. Physical modularity consists of two main components namely:

(1) a file that contains compiled code and other resources and (2) an executing

environment that understand how to execute the file. Developers build and

assemble their modules into compiled assets that can be distributed as single or

multiple files.

 Logical Modularity is concerned with the internal organization of code into

logically-related units.

 Modular programming is beneficial in that:It allows for scalar development, it

facilitates code testing, helps in building robust system, allows for easier

modification and maintenance.

 The three basic approaches of designing Modular program are: Process-oriented

design, Data-oriented design and Object-oriented design.

 Criteria for using Modular Design include: Modular decomposability, Modular

compos ability, Modular understand ability, Modular continuity, and Modular

protection.

 Attributes of a good Module include: Functional independence, Cohesion, and

Coupling

 Steps to Creating Effective Module include: Evaluate the first iteration of the

program structure to reduce coupling and improve cohesion, Attempt to minimise

structures with high fan-out; strive for fan-in as structure depth increases, Define

modules whose function is predictable and not overly restrictive (e.g. a module

that only implements a single task), Strive for controlled entry modules, avoid

pathological connection (e.g. branches into the middle of another module)

 Top-down is a programming style, the core of traditional procedural languages, in

which design begins by specifying complex pieces and then dividing them into

successively smaller pieces. Finally, the components are precise enough to be

coded and the program is written.

 In a bottom-up approach the individual base elements of the system are first

specified in great detail. These elements are then connected together to form

bigger subsystems, which are linked, sometimes in many levels, until a complete

top-level system is formed

6.0 Tutor Marked Assignment

 What is Modularity?

 Differentiate between logical and physical modularity

 What are the benefits of modular design

 Explain the approaches of writing modular program

60

 What are the Criteria for using modular design

 Outlines the attributes of a good module

 Outline the steps to creating effective module

 Differentiate between Top-down and Bottom-up programming approach

7.0 Futher Reading And Other Resouces

Laplante, Phil (2009). Requirements Engineering for Software and Systems (1st ed.).

Redmond, WA: CRC Press. ISBN 1-42006-467-3.

http://beta.crcpress.com/product/isbn/9781420064674.

McConnell, Steve (1996). Rapid Development: Taming Wild Software Schedules (1st

ed.). Redmond, WA: Microsoft Press. ISBN 1-55615-900-5.

http://www.stevemcconnell.com/.

Wiegers, Karl E. (2003). Software Requirements 2: Practical techniques for

gathering and managing requirements throughout the product development cycle

(2nd ed.). Redmond: Microsoft Press. ISBN 0-7356-1879-8.

Andrew Stellman and Jennifer Greene (2005). Applied Software Project

Management. Cambridge, MA: O'Reilly Media. ISBN 0-596-00948-8.

http://www.stellman-greene.com.

Unit 4 Pseudo code

1.0 Introduction

In the last unit, you have learnt about Modudularity in programming. Its benefits,

design approaches and criteria, attributes of a good Module and the steps to creating

effective module. You equally learnt about Top-Down and Bottom-up approaches in

programming. This unit ushers you into Pseudo code a way to create a logical structure

http://beta.crcpress.com/product/isbn/9781420064674
http://www.stevemcconnell.com/
http://www.stellman-greene.com/

61

that will describing the actions, which will be executed by the application. After studying

this unit you are expected to have achieved the following objectives listed below.

2.0 Objectives

By the end of this unit, you should be able to:

 Define Pseudo code

 Explain General guidelines for writing Pseudo code.

 Give examples of Pseudo codes

3.26 Definition of Pseudo code

Pseudo-code is a non-formal language, a way to create a logical structure, describing the

actions, which will be executed by the application. Using pseudo-code, the developer

shows the application logic using his local language, without applying the structural rules

of a specific programming language. The big advantage of the pseudo-code is that the

application logic can be easily comprehended by any developer in the development team.

In addition, when the application algorithm is expressed in pseudo-code, it is very easy to

convert the pseudo-code into real code (using any programming language).

3.26 General guidelines for writing Pseudo code

Here are a few general guidelines for writing your pseudo code:

Mimic good code and good English. Using aspects of both systems means

adhering to the style rules of both to

some degree. It is still important that variable names be mnemonic, comments

be included where useful, and English

phrases be comprehensible (full sentences are usually not necessary).

Ignore unnecessary details. If you are worrying about the placement of commas,

you are using too much detail. It is a

good idea to use some convention to group statements (begin/end, brackets, or

whatever else is clear), but you shouldn't

obsess about syntax.

Don't belabor the obvious. In many cases, the type of a variable is clear from

context; unless it is critical that it is specified to be an integer or real, it is

often unnecessary to make it explicit.

Take advantage of programming shorthands. Using if-then-else or looping

structures is more concise than writing

out the equivalent in English; general constructs that are not peculiar to a

small number of languages are good candidates

for use in pseudocode. Using parameters in specifying procedures is concise,

clear, and accurate, and hence should not

be omitted from pseudocode.

Consider the context. If you are writing an algorithm for quicksort, the statement

use quicksort to sort the values is

hiding too much detail; if you have already studied quicksort in a class and

later use it as a subroutine in another

62

algorithm, the statement would be appropriate to use.

Don't lose sight of the underlying model. It should be possible to see through"

your pseudocode to the model below;

if not (that is, you are not able to analyze the algorithm easily), it is written at

too high a level.

Check for balance. If the pseudocode is hard for a person to read or difficult to

translate into working code (or worse

yet, both!), then something is wrong with the level of detail you have chosen

to use.

3.27 Examples of Pseudocode

Example 1 - Computing Sales Value Added (VAT) Tax : Pseudo-code the task of

computing the final price of an item after figuring in sales tax. Note the three types of

instructions: input (get), process/calculate (=) and output (display)

1. get price of item

2. get VAT rate

3. VAT = price of time times VAT rate

4 final price = price of item plus VAT

5. display final price

6. stop

Variables: price of item, sales tax rate, sales tax, final price

Note that the operations are numbered and each operation is unambiguous and effectively

computable. We also extract and list all variables used in our pseudo-code. This will be

useful when translating pseudo-code into a programming language

Example 2 - Computing Weekly Wages: Gross pay depends on the pay rate and the

number of hours worked per week. However, if you work more than 50 hours, you get

paid time-and-a-half for all hours worked over 50. Pseudo-code the task of computing

gross pay given pay rate and hours worked.

1. get hours worked

2. get pay rate

3. if hours worked ≤ 50 then

3.1 gross pay = pay rate times hours worked

4. else

4.1 gross pay = pay rate times 50 plus 1.5 times pay rate times (hours

worked minus 50)

5. display gross pay

63

6. halt

variables: hours worked, ray rate, gross pay

This example presents the conditional control structure. On the basis of the true/false

question asked in line 3, line 3.1 is executed if the answer is True; otherwise if the answer

is False the lines subordinate to line 4 (i.e. line 4.1) is executed. In both cases pseudo-

code is resumed at line 5.

Example 3 - Computing a Question Average: Pseudo-code a routine to calculate your

question average.

1. get number of questions

2. sum = 0

3. count = 0

4. while count < number of questions

4.1 get question grade

4.2 sum = sum + question grade

4.3 count = count + 1

5. average = sum / number of question

6. display average

7. stop

variables: number of question, sum ,count, question grade, average

This example presents an iterative control statement. As long as the condition in line 4 is

True, we execute the subordinate operations 4.1 - 4.3. When the condition is False, we

return to the pseudo-code at line 5.

This is an example of a top-test or while do iterative control structure. There is also a

bottom-test or repeat until iterative control structure which executes a block of statements

until the condition tested at the end of the block is False.

Some Keywords That Should be Used

For looping and selection, The keywords that are to be used include Do While...EndDo;

Do Until...Enddo; Case...EndCase; If...Endif; Call ... with (parameters); Call; Return ;

Return; When; Always use scope terminators for loops and iteration.

As verbs, use the words Generate, Compute, Process, etc. Words such as set, reset,

increment, compute, calculate, add, sum, multiply,print, display, input, output, edit,

test , etc. with careful indentation tend to foster desirable pseudocode.

64

Do not include data declarations in your pseudo code.

Activity I Write a pseudo code to find the average of even number between 1 and 20

4.0 Conclusion

The role of pseudo-code in program design cannot be underestimated. When it used, it is

not only that logic of application can easily be understood but it can easily be converted

into real code.

5.0 Summary

In this unit, you have learnt about the essence of pseudo code in program design

6.0 Tutor Marked Assignment

 What is Pseudo code

 Explain the General guidelines for writing Pseudo code.

 Write a Pseudo code to find the average of even number between 1 and 20.

7.0 Futher Reading And Other Resouces

Robertson, L. A. (2003) Simple Program Design: A Step-by-Step Approach. 4th ed.

Melbourne: Thomson.

Unit 5 Programming Environment, CASE Tools & HIPO Diagrams

1.0 Introduction

In the last unit, you have learnt about pseudo code. In this unit you will be exposed to

Programming Environment, CASE Tools & HIPO Diagrams. After studying this unit you

are expected to have achieved the following objectives listed below.

2.0 Objectives

By the end of this unit, you should be able to:

 Explain Programming Environment

65

 Discuss Case Tools.

 Explain Hipo Diagrams.

3.0 Definition of Programming Environment

Programming environments gives the basic tools and Application Programming

Interfaces, or APIs, necessary to construct programs. Programming environments help

the creation, modification, execution and debugging of programs. The goal of integrating

a programming environment is more than simply building tools that share a common data

base and provide a consistent user interface. Altogether, the programming environment

appears to the programmer as a single tool; there are no firewalls separating the various

functions provided by the environment.

3.1 History of Programming Environment

The history of software tools began with the first computers in the early 1950s that used

linkers, loaders, and control programs. In the early 1970s the tools became famous with

Unix with tools like grep, awk and make that were meant to be combined flexibly with

pipes. The term "software tools" came from the book of the same name by Brian

Kernighan and P. J. Plauger. Originally, Tools were simple and light weight. As some

tools have been maintained, they have been integrated into more powerful integrated

development environments (IDEs). These environments combine functionality into one

place, sometimes increasing simplicity and productivity, other times part with flexibility

and extensibility. The workflow of IDEs is routinely contrasted with alternative

approaches, such as the use of Unix shell tools with text editors like Vim and Emacs.

The difference between tools and applications is unclear. For example, developers use

simple databases (such as a file containing a list of important values) all the time as tools.

However a full-blown database is usually thought of as an application in its own right.

For many years, computer-assisted software engineering (CASE) tools were preferred.

CASE tools emphasized design and architecture support, such as for UML. But the most

successful of these tools are IDEs.

The ability to use a variety of tools productively is one quality of a skilled software

engineer.

3.2 Types of Programming Environment

Software development tools can be roughly divided into the following categories:

 performance analysis tools

 debugging tools

 static analysis and formal verification tools

66

 correctness checking tools

 memory usage tools

 application build tools

 integrated development environment

3.3 Forms of Software tools

Software tools come in many forms namely :

 Bug Databases: Bugzilla, Trac, Atlassian Jira, LibreSource, SharpForge

 Build Tools: Make, automake, Apache Ant, SCons, Rake, Flowtracer, cmake,

qmake

 Code coverage: C++test,GCT, Insure++, Jtest, CCover

 Code Sharing Sites: Freshmeat, Krugle, Sourceforge. See also Code search

engines.

 Compilation and linking tools: GNU toolchain, gcc, Microsoft Visual Studio,

CodeWarrior, Xcode, ICC

 Debuggers: gdb, GNU Binutils, valgrind. Debugging tools also are used in the

process of debugging code, and can also be used to create code that is more

compliant to standards and portable than if they were not used.

 Disassemblers: Generally reverse-engineering tools.

 Documentation generators: Doxygen, help2man, POD, Javadoc, Pydoc/Epydoc,

asciidoc

 Formal methods: Mathematically-based techniques for specification, development

and verification

 GUI interface generators

 Library interface generators: Swig

 Integration Tools

 Memory Use/Leaks/Corruptions Detection: dmalloc, Electric Fence, duma, Insure

++. Memory leak detection: In the C programming language for instance, memory

leaks are not as easily detected - software tools called memory debuggers are

often used to find memory leaks enabling the programmer to find these problems

much more efficiently than inspection alone.

 Parser generators: Lex, Yacc

 Performance analysis or profiling

 Refactoring Browser

 Revision control: Bazaar, Bitkeeper, Bonsai, ClearCase, CVS, Git, GNU arch,

Mercurial, Monotone, Perforce, PVCS, RCS, SCM, SCCS, SourceSafe, SVN,

LibreSource Synchronizer

 Scripting languages: Awk, Perl, Python, REXX, Ruby, Shell, Tcl

 Search: grep, find

 Source-Code Clones/Duplications Finding

http://en.wikipedia.org/wiki/Trac
http://en.wikipedia.org/wiki/Rake_(software)
http://en.wikipedia.org/wiki/Cmake
http://en.wikipedia.org/wiki/Qmake
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/GNU_Compiler_Collection
http://en.wikipedia.org/wiki/Xcode
http://en.wikipedia.org/wiki/Intel_C_Compiler
http://en.wikipedia.org/wiki/POD
http://en.wikipedia.org/wiki/Mercurial_(software)
http://en.wikipedia.org/wiki/SCM
http://en.wikipedia.org/wiki/AWK_(programming_language)
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Grep
http://en.wikipedia.org/wiki/Find

67

 Source code formatting

 Source code generation tools

 Static code analysis: C++test, Jtest, lint, Splint, PMD, Findbugs, .TEST

 Text editors: emacs, vi, vim

3.4 Integrated development environments

Integrated development environments (IDEs) merge the features of many tools into one

complete package. They are usually simpler and make it easier to do simple tasks, such as

searching for content only in files in a particular project. IDEs are often used for

development of enterprise-level applications.Some examples of IDEs are:

 Delphi

 C++ Builder (CodeGear)

 Microsoft Visual Studio

 EiffelStudio

 GNAT Programming Studio

 Xcode

 IBM Rational Application Developer

 Eclipse

 NetBeans

 IntelliJ IDEA

 WinDev

 Code::Blocks

 Lazarus

3.5 What is CASE Tools?

CASE tools are a class of software that automates many of the activities involved in

various life cycle phases. For example, when establishing the functional requirements of

a proposed application, prototyping tools can be used to develop graphic models of

application screens to assist end users to visualize how an application will look after

development. Subsequently, system designers can use automated design tools to

transform the prototyped functional requirements into detailed design documents.

Programmers can then use automated code generators to convert the design documents

into code. Automated tools can be used collectively, as mentioned, or individually. For

example, prototyping tools could be used to define application requirements that get

passed to design technicians who convert the requirements into detailed designs in a

traditional manner using flowcharts and narrative documents, without the assistance of

automated design software.

It is the scientific application of a set of tools and methods to a software system which is

meant to result in high-quality, defect-free, and maintainable software products. It also

refers to methods for the development of information systems together with automated

tools that can be used in the software development process.

http://en.wikipedia.org/wiki/Jtest
http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/Vi
http://en.wikipedia.org/wiki/Vim

68

3.6 Types of CASE Tools

Some typical CASE tools are:

 Configuration management tools

 Data modeling tools

 Model transformation tools

 Program transformation tools

 Refactoring tools

 Source code generation tools, and

 Unified Modeling Language

Many CASE tools not only yield code but also generate other output typical of various

systems analysis and design methodologies such as:

 data flow diagram

 entity relationship diagram

 logical schema

 Program specification

 SSADM.

 User documentation

3.7 History of CASE

The term CASE was originally formulated by software company, Nastec Corporation of

Southfield, Michigan in 1982 with their original integrated graphics and text editor

GraphiText, which also was the first microcomputer-based system to use hyperlinks to

cross-reference text strings in documents Under the direction of Albert F. Case, Jr. vice

president for product management and consulting, and Vaughn Frick, director of product

management, the DesignAid product suite was expanded to support analysis of a wide

range of structured analysis and design methodologies, notable Ed Yourdon and Tom

DeMarco, Chris Gane & Trish Sarson, Ward-Mellor (real-time) SA/SD and Warnier-Orr

(data driven).

The next competitor into the market was Excelerator from Index Technology in

Cambridge, Mass. While DesignAid ran on Convergent Technologies and later

Burroughs Ngen networked microcomputers, Index launched Excelerator on the IBM PC/

AT platform. While, at the time of launch, and for several years, the IBM platform did

not support networking or a centralized database as did the Convergent Technologies or

Burroughs machines, the allure of IBM was strong, and Excelerator came to prominence.

Hot on the heels of Excelerator were a rash of offerings from companies such as

Knowledgeware (James Martin, Fran Tarkenton and Don Addington), Texas Instrument's

IEF and Accenture's FOUNDATION toolset (METHOD/1, DESIGN/1, INSTALL/1,

FCP).

69

CASE tools were at their peak in the early 1990s. At the time IBM had proposed

AD/Cycle which was an alliance of software vendors centered around IBM's Software

repository using IBM DB2 in mainframe and OS/2:

The application development tools can be from several sources: from IBM, from vendors,

and from the customers themselves. IBM has entered into relationships with Bachman

Information Systems, Index Technology Corporation, and Knowledgeware, Inc. wherein

selected products from these vendors will be marketed through an IBM complementary

marketing program to provide offerings that will help to achieve complete life-cycle

coverage.

With the decline of the mainframe, AD/Cycle and the Big CASE tools died off, opening

the market for the mainstream CASE tools of today. Interestingly, nearly all of the

leaders of the CASE market of the early 1990s ended up being purchased by Computer

Associates, including IEW, IEF, ADW, Cayenne, and Learmonth & Burchett

Management Systems (LBMS).

3.8 Categories of Case Tools

CASE Tools can be classified into 3 categories:

 Tools support only specific tasks in the software process.

 Workbenches support only one or a few activities.

 Environments support (a large part of) the software process.

Workbenches and environments are generally built as collections of tools. Tools can

therefore be either stand alone products or components of workbenches and

environments.

3.9 CASE Environment

An environment is a collection of CASE tools and workbenches that supports the

software process. CASE environments are classified based on the focus/basis of

integration

 Toolkits

 Language-centered

 Integrated

 Fourth generation

 Process-centered

70

3.9.1 Toolkits

Toolkits are loosely integrated collections of products easily extended by aggregating

different tools and workbenches. Typically, the support provided by a toolkit is limited to

programming, configuration management and project management. And the toolkit itself

is environments extended from basic sets of operating system tools, for example, the

Unix Programmer's Work Bench and the VMS VAX Set. In addition, toolkits' loose

integration requires user to activate tools by explicit invocation or simple control

mechanisms. The resulting files are unstructured and could be in different format,

therefore the access of file from different tools may require explicit file format

conversion. However, since the only constraint for adding a new component is the

formats of the files, toolkits can be easily and incrementally extended.

3.9.2 Language-centered

The environment itself is written in the programming language for which it was

developed, thus enable users to reuse, customize and extend the environment. Integration

of code in different languages is a major issue for language-centered environments. Lack

of process and data integration is also a problem. The strengths of these environments

include good level of presentation and control integration. Interlisp, Smalltalk, Rational,

and KEE are examples of language-centered environments.

3.9.3 Integrated

These environments achieve presentation integration by providing uniform, consistent,

and coherent tool and workbench interfaces. Data integration is achieved through the

repository concept: they have a specialized database managing all information produced

and accessed in the environment. Examples of integrated environment are IBM AD/Cycle

and DEC Cohesion.

3.9.4 Fourth generation

Forth generation environments were the first integrated environments. They are sets of

tools and workbenches supporting the development of a specific class of program:

electronic data processing and business-oriented applications. In general, they include

programming tools, simple configuration management tools, document handling facilities

and, sometimes, a code generator to produce code in lower level languages. Informix

4GL, and Focus fall into this category.

3.9.5 Process-centered

Environments in this category focus on process integration with other integration

dimensions as starting points. A process-centered environment operates by interpreting a

process model created by specialized tools. They usually consist of tools handling two

functions:

 Process-model execution, and

 Process-model production

71

Examples are East, Enterprise II, Process Wise, Process Weaver, and Arcadia.
[6]

3.10 Application areas of CASE Tools

All aspects of the software development life cycle can be supported by software tools,

and so the use of tools from across the spectrum can, arguably, be described as CASE;

from project management software through tools for business and functional analysis,

system design, code storage, compilers, translation tools, test software, and so on.

However, it is the tools that are concerned with analysis and design, and with using

design information to create parts (or all) of the software product, that are most

frequently thought of as CASE tools. CASE applied, for instance, to a database software

product, might normally involve:

 Modeling business/real world processes and data flow

 Development of data models in the form of entity-relationship diagrams

 Development of process and function descriptions

 Production of database creation SQL and stored procedures

3.11 CASE Risk

Common CASE risks and associated controls include:

 Inadequate Standardization: Linking CASE tools from different vendors (design

tool from Company X, programming tool from Company Y) may be difficult if

the products do not use standardized code structures and data classifications. File

formats can be converted, but usually not economically. Controls include using

tools from the same vendor, or using tools based on standard protocols and

insisting on demonstrated compatibility. Additionally, if organizations obtain

tools for only a portion of the development process, they should consider

acquiring them from a vendor that has a full line of products to ensure future

compatibility if they add more tools.

 Unrealistic Expectations: Organizations often implement CASE technologies to

reduce development costs. Implementing CASE strategies usually involves high

start-up costs. Generally, management must be willing to accept a long-term

payback period. Controls include requiring senior managers to define their

purpose and strategies for implementing CASE technologies.

 Quick Implementation: Implementing CASE technologies can involve a

significant change from traditional development environments. Typically,

organizations should not use CASE tools the first time on critical projects or

projects with short deadlines because of the lengthy training process.

Additionally, organizations should consider using the tools on smaller, less

complex projects and gradually implementing the tools to allow more training

time.

http://en.wikipedia.org/wiki/CASE_Tool#cite_note-AF_93-5%23cite_note-AF_93-5

72

 Weak Repository Controls : Failure to adequately control access to CASE

repositories may result in security breaches or damage to the work documents,

system designs, or code modules stored in the repository. Controls include

protecting the repositories with appropriate access, version, and backup controls.

3.12 HIPO Diagrams

The HIPO (Hierarchy plus Input-Process-Output) technique is a tool for planning and/or

documenting a computer program. A HIPO model consists of a hierarchy chart that

graphically represents the program‘s control structure and a set of IPO (Input-Process-

Output) charts that describe the inputs to, the outputs from, and the functions (or

processes) performed by each module on the hierarchy chart.

3.13 Strengths, weaknesses, and limitations

Using the HIPO technique, designers can evaluate and refine a program‘s design, and

correct flaws prior to implementation. Given the graphic nature of HIPO, users and

managers can easily follow a program‘s structure. The hierarchy chart serves as a useful

planning and visualization document for managing the program development process.

The IPO charts define for the programmer each module‘s inputs, outputs, and algorithms.

In theory, HIPO provides valuable long-term documentation. However, the ―text plus

flowchart‖ nature of the IPO charts makes them difficult to maintain, so the

documentation often does not represent the current state of the program.

By its very nature, the HIPO technique is best used to plan and/or document a

hierarchically structured program.

The HIPO technique is often used to plan or document a structured program A variety of

tools, including pseudocode (and structured English can be used to describe processes on

an IPO chart. System flowcharting symbols are sometimes used to identify physical

input, output, and storage devices on an IPO chart.

3.14 Components of HIPO

A completed HIPO package has two parts. A hierarchy chart is used to represent the top-

down structure of the program. For each module depicted on the hierarchy chart, an IPO

(Input-Process-Output) chart is used to describe the inputs to, the outputs from, and the

process performed by the module.

3.14.1 The hierarchy chart

It summarises the primary tasks to be performed by an interactive inventory program.

Figure 7 shows one possible hierarchy chart (or visual table of contents) for that program.

Each box represents one module that can call its subordinates and return control to its

higher-level parent.

A Set of Tasks to Be Performed by an Interactive Inventory Program is:

 Manage inventory

 Update stock

 Process sale

 Process return

 Process shipment

 Generate report

 Respond to query

 Display status report

 Maintain inventory data

 Modify record

 Add record

 Delete record

73

74

Figure 7 A hierarchy chart for an interactive inventory control program.

Source: www.hit.ac.il/staff/leonidM/information-systems/ch64.html

At the top of Figure 7 is the main control module, Manage inventory (module 1.0). It

accepts a transaction, determines the transaction type, and calls one of its three

subordinates (modules 2.0, 3.0, and 4.0).

Lower-level modules are identified relative to their parent modules; for example,

modules 2.1, 2.2, and 2.3 are subordinates of module 2.0, modules 2.1.1, 2.1.2, and 2.1.3

are subordinates of 2.1, and so on. The module names consist of an active verb followed

by a subject that suggests the module‘s function.

The objective of the module identifiers is to uniquely identify each module and to

indicate its place in the hierarchy. Some designers use Roman numerals (level I, level II)

or letters (level A, level B) to designate levels. Others prefer a hierarchical numbering

scheme; e.g., 1.0 for the first level; 1.1, 1.2, 1.3 for the second level; and so on. The key

is consistency.

The box at the lower-left of Figure 7 is a legend that explains how the arrows on the

hierarchy chart and the IPO charts are to be interpreted. By default, a wide clear arrow

represents a data flow, a wide black arrow represents a control flow, and a narrow arrow

indicates a pointer.

3.14.2 The IPO charts

An IPO chart is prepared to document each of the modules on the hierarchy chart.

http://www.hit.ac.il/staff/leonidM/information-systems/ch64.html

75

3.14.2.1 Overview diagrams

An overview diagram is a high-level IPO chart that summarizes the inputs to, processes

or tasks performed by, and outputs from a module. For example, shows an overview

diagram for process 2.0, Update stock. Where appropriate, system flowcharting symbols

are used to identify the physical devices that generate the inputs and accept the outputs.

The processes are typically described in brief paragraph or sentence form. Arrows show

the primary input and output data flows.

Figure 7.1 An overview diagram for process 2.0.

Source: www.hit.ac.il/staff/leonidM/information-systems/ch64.html

Overview diagrams are primarily planning tools. They often do not appear in the

completed documentation package.

3.14.2.2 Detail diagrams

A detail diagram is a low-level IPO chart that shows how specific input and output data

elements or data structures are linked to specific processes. In effect, the designer

http://www.hit.ac.il/staff/leonidM/information-systems/ch64.html

76

.

integrates a system flowchart into the overview diagram to show the flow of data and

control through the module.

Figure 7.2 shows a detail diagram for module 2.0, Update stock. The process steps are

written in pseudocode. Note that the first step writes a menu to the user screen and input

data (the transaction type) flows from that screen to step 2. Step 3 is a case structure. Step

4 writes a transaction complete message to the user screen.

The solid black arrows at the top and bottom of the process box show that control flows

from module 1.0 and, upon completion, returns to module 1.0. Within the case structure

(step 3) are other solid black arrows.

Following case 0 is a return (to module 1.0). The two-headed black arrows following

cases 1, 2, and 3 represent subroutine calls; the off-page connector symbols (the little

home plates) identify each subroutine‘s module number. Note that each subroutine is

documented in a separate IPO chart. Following the default case, the arrow points to an

on-page connector symbol numbered 1. Note the matching on-page connector symbol

pointing to the select structure. On-page connectors are also used to avoid crossing

arrows on data flows.

Figure 7.2 A detail diagram for process 2.1.

77

Source: www.hit.ac.il/staff/leonidM/information-systems/ch64.html

Often, detailed notes and explanations are written on an extended description that is

attached to each detail diagram. The notes might specify access methods, data types, and

so on.

Figure 64.4 shows a detail diagram for process 2.1. The module writes a template to the

user screen, reads a stock number and a quantity from the screen, uses the stock number

as a key to access an inventory file, and updates the stock on hand. Note that the logic

repeats the data entry process if the stock number does not match an inventory record. A

real IPO chart is likely to show the error response process in greater detail.

3.14.2.3 Simplified IPO charts

Some designers simplify the IPO charts by eliminating the arrows and system flowchart

symbols and showing only the text. Often, the input and out put blocks are moved above

the process block (Figure 64.5), yielding a form that fits better on a standard 8.5 × 11

(portrait orientation) sheet of paper. Some programmers insert modified IPO charts

similar to Figure 64.5 directly into their source code as comments. Because the

documentation is closely linked to the code, it is often more reliable than stand-alone

HIPO documentation, and more likely to be maintained.

http://www.hit.ac.il/staff/leonidM/information-systems/ch64.html

78

Fig 7.3 Simplified HIPO diaram

Source: www.hit.ac.il/staff/leonidM/information-systems/ch64.html

Detail diagram —

A low-level IPO chart that shows how specific input and output data elements or

data structures are linked to specific processes.

Hierarchy chart —

A diagram that graphically represents a program‘s control structure.

HIPO (Hierarchy plus Input-Process-Output) —

A tool for planning and/or documenting a computer program that utilizes a

hierarchy chart to graphically represent the program‘s control structure and a set

http://www.hit.ac.il/staff/leonidM/information-systems/ch64.html

79

of IPO (Input-Process-Output) charts to describe the inputs to, the outputs from,

and the functions performed by each module on the hierarchy chart.

IPO (Input-Process-Output) chart —

A chart that describes or documents the inputs to, the outputs from, and the

functions (or processes) performed by a program module.

Overview diagram —

A high-level IPO chart that summarizes the inputs to, processes or tasks

performed by, and outputs from a module.

Visual Table of Contents (VTOC) —

A more formal name for a hierarchy chart.

3.15 Software

In the 1970s and early 1980s, HIPO documentation was typically prepared by hand using

a template. Some CASE products and charting programs include HIPO support. Some

forms generation programs can be used to generate HIPO forms. The examples in this #

were prepared using Visio.

Activity J Discuss the historical development of Case Tools

4.0 Conclusion

Programming tools are so important for effective program design.

5.0 Summary.

In this unit, you have learnt that:

 Programming environments gives the basic tools and Application Programming

Interfaces, or APIs, necessary to construct programs.

 Using the HIPO technique, designers can evaluate and refine a program‘s design,

and correct flaws prior to implementation.

 CASE tools are a class of software that automates many of the activities involved

in various life cycle phases

6.0 Tutor Marked Assignment

 Explain Programming Environment

 What is Case Tools?, enumerate different categories of case tools

 What is HIPO technique?

 With the aid of well labeled diagrams, discuss the components of Hipo.

7.0 Further Reading And Other Resources

Gane, C. and Sarson, T., Structured Systems Analysis: Tools and Techniques, Prentice-

Hall, Englewood Cliffs, NJ, 1979.

80

IBM Corporation, HIPO—A Design Aid and Documentation Technique, Publication

Number GC20-1851, IBM Corporation, White Plains, NY, 1974.

Katzan, H., Jr., Systems Design and Documentation: An Introduction to the HIPO

Method, Van Nostrand Reinhold, New York, 1976.

Peters, L. J., Software Design: Methods and Techniques, Yourdon Press, New York,

1981.

Yourdon, E. and Constantine, Structured Design, Prentice-Hall, Englewood Cliffs, NJ,

1979.

Module 3 Implementation and Testing

Unit 1 Implementation

1.0 Introduction

This unit examines the implementation phase of software development. After studying

the unit you are expected to have achieved the following objectives listed below.

81

2.0 Objectives

By the end of this unit, you should be able to:

 Define clearly software Implementation

 Differentiate between the three types of errors

 Explain the application of Six Sigma to Software Implementation Projects

 Discuss the Major Tasks in Implementation

 Explain the Major Requirement in Implementation

 Explain the Implementation Support

3.0 What is Implementation?

Code is formed from the deliverables of the design phase during implementation. It is the

longest phase of the software development life cycle. Since code is produce here, the

developer regards this phase as the main focus of the life cycle. Implementation my

overlap with both the design and testing phases. As we learnt in previous unit many tools

exists (CASE tools) to actually automate the production of code using information

gathered and produced during the design phase. The implementation phase concerns with

issues of quality, performance, baselines, libraries, and debugging. The end deliverable is

the product itself.

3.1 The Implementation Phase

Phase Deliverable

Implementation Code

 Critical Error Removal

Table 1 The Implementation Phase

Source: Ronald LeRoi Burback

1998-12-14

. 3.2 Critical Error Removal

There are three kinds of errors in a system, namely critical errors, non-critical errors, and

unknown errors.

3.2.1 A critical error prevents the system from fully satisfying its usage. The errors

have to be corrected before the system can be given to a customer or even before future

development can progress.

82

3.2.2 A non-critical error is known but the occurrence of the error does not notably

affect the system's expected quality. There may indeed be many known errors in the

system. They are usually listed in the release notes and have well established work

arounds.

Actually, the system is likely to have many, yet-to-be-discovered errors. The outcome of

these errors is unknown. Some may become critical while some may be simply fixed by

patches or fixed in the next release of the system.

3.3 Application of Six Sigma to Software Implementation Projects

Software implementation can be a demanding project. When a company is attempting

new software integration, it can be hectic Six Sigma is a management approach meant to

discover and control defects. A summary of Six Sigma can be found in Natasha Baker‘s

―Key Concepts of Six Sigma.‖ The technique consists of five steps:

 · Define

 · Measure

 · Analyze

 · Improve

 · Control

Defining the Implementation

By defining the goals, projects, and deliverables your company will have greater

direction during the changeover. The goals and projects must be measurable. The

following questions, for examples, may be necessary: Is it your goal to have 25% of your

staff comfortable enough to train the remaining staff? Do you want full implementation

of the software by March? By utilizing Six Sigma metrics careful monitoring of team

productivity and implementation success is possible.

2. Measurement of the Implementation

Goals and projects must be usable with metrics. By using Six Sigma measurement

methods, it is possible to follow user understanding, familiarity, and progress accurately.

It should be noted that, continuous data is more useful than discrete data. This is because

it gives a better implementation success rate overview.

3. Implementation Analysis

Analysis is important to tackle defects occurrence. The Six Sigma method examines

essential relationships and ensures all factors are considered. For example, in a software

implementation trial, employees are frustrated and confused by new processes. Careful

analysis will look at the reasons behind the confusion.

4. Implementation Improvement

83

After analysis, it is important to look at how the implementation could improve. In the

example utilizing the team members, perhaps utilizing proficient resources to mentor

struggling resources will help. Six Sigma improvements depends upon experimental

design and carefully constructed analysis of data in order to keep further defects in the

implementation process at bay.

5. Control of the Implementation

If implementation is going to be successful, control is important. It involves consistent

monitoring for proficiency. This ensures that the implementation does not fail. Any

deviations from the goals set demand correcting before they become defects. For

example, if you notice your team does not adapt quickly enough, you need to identify the

causes before the deadline. By carefully monitoring the implementation process this way,

will minimise the defect. The two most important features of software implementation

using Six Sigma are setting measurable goals and employing metrics in order to

maximize improvement and minimize the chance of defects in the new process.

3.4 Major Tasks in Implementation

This part provides a brief description of each major task needed for the

implementation of the system. The tasks described here are not particular to site

but overall project tasks that are needed to install hardware and software, prepare

data, and verify the system. Include the following information for the description of

each major task, if appropriate:

Add as many subsections as necessary to this section to describe all the major tasks

adequately. The tasks described in this section are not site-specific, but generic or

overall project tasks that are required to install hardware and software, prepare data,

and verify the system.

Examples of major tasks are the following:

 Providing overall planning and coordination for the implementation

 Providing appropriate training for personnel

 Ensuring that all manuals applicable to the implementation effort are

available when needed

 Providing all needed technical assistance

 Scheduling any special computer processing required for the

implementation

 Performing site surveys before implementation

 Ensuring that all prerequisites have been fulfilled before the

implementation date

 Providing personnel for the implementation team

 Acquiring special hardware or software

 Performing data conversion before loading data into the system

 Preparing site facilities for implementation

84

3.5 Major Requirement in Implementation

3.5.1 Security

If suitable for the system to be implemented, there is need to include an overview

of the system security features and requirements during the implementation.

3.5.1.1 System Security Features

It is pertinent to discuss the security features that will be associated with the

system when it is implemented. It should include the primary security features

associated with the system hardware and software. Security and protection of

sensitive bureau data and information should be discussed.

3.5.1.2 Security during Implementation

This part addresses security issues particularly related to the implementation

effort. It will be necessary to consider for example, if LAN servers or

workstations will he installed at a site with sensitive data preloaded on non-

removable hard disk drives. It will also be important to see to how security would

be provided for the data on these devices during shipping, transport, and

installation so as not to allow theft of the devices to compromise the sensitive

data.

3.6 Implementation Support

This part describes the support such as: software, materials, equipment, and facilities

necessary for the implementation, as well as the personnel requirements and training

essential for the implementation.

3.6.1 Hardware, Software, Facilities, and Materials

This section, provides a list of support software, materials, equipment, and facilities

required for the implementation..

3.6.1.1 Hardware

This section offers a list of support equipment and includes all hardware used for

testing time implementation. For example, if a client/server database is

implemented on a LAN, a network monitor or ―sniffer‖ might be used, along with

test programs. to determine the performance of the database and LAN at high-

utilization rates

3.6.1.2 Software

This section provides a list of software and databases required to support the

implementation. Identify the software by name, code, or acronym. Identify which

software is commercial off-the-shelf and which is State-specific. Identify any

software used to facilitate the implementation process.

85

3.6.1.3 Facilities

This section identifies the physical facilities and accommodations required during

implementation. Examples include physical workspace for assembling and

testing hardware components, desk space for software installers, and classroom

space for training the implementation stall. Specify the hours per day needed,

number of days, and anticipated dates.

3.6.1.4 Material

This section provides a list of required support materials, such as magnetic tapes

and disk packs.

3.7 Personnel

This section describes personnel requirements and any known or proposed staffing

requirements. It also describes the training, to be provided for the implementation

staff.

3.7.1 Personnel Requirements and Staffing

This section, describes the number of personnel, length of time needed, types of

skills, and skill levels for the staff required during the implementation period. If

particular staff members have been selected or proposed for the implementation,

identify them and their roles in the implementation.

3.7.2 Training of Implementation Staff

This section addresses the training, necessary to prepare staff for implementing

and maintaining the system; it does not address user training, which is the subject

of the Training Plan. It also describes the type and amount of training required

for each of the following areas, if appropriate, for the system:

 System hardware/software installation

 System support

 System maintenance and modification

Present a training curriculum listing the courses that will be provided, a course

sequence and a proposed schedule. If appropriate, identify which courses

particular types of staff should attend by job position description.

If training will be provided by one or more commercial vendors, identify them,

the course name(s), and a brief description of the course content.

If the training will be provided by State staff, provide the course name(s) and an

outline of the content of each course. Identify the resources, support materials,

and proposed instructors required to teach the course(s).

86

3.8 Performance Monitoring

This section describes the performance monitoring tool and techniques and how it

will be used to help decide if the implementation is successful.

3.9 Configuration Management Interface

This section describes the interactions required with the Configuration

Management (CM) representative on CM-related issues, such as when software

listings will be distributed, and how to confirm that libraries have been moved from

the development to the production environment.

3.10 Implementation Requirements by Site

This section describes specific implementation requirements and procedures. If

these requirements and procedures differ by site, repeat these subsections for each

site; if they are the same for each site, or if there is only one implementation site, use

these subsections only once. The ―X‖ in the subsection number should be replaced

with a sequenced number beginning with I. Each subsection with the same value of

―X‖ is associated with the same implementation site. If a complete set of subsections

will be associated with each implementation site, then ―X‖ is assigned a new value

for each site.

3.10.1 Site Name or identification for Site X

This section provides the name of the specific site or sites to be discussed in the

subsequent sections.

3.10.2 Site Requirements

This section defines the requirements that must he met for the orderly

implementation of the system and describes the hardware, software, and site-

specific facilities requirements for this area.

Any site requirements that do not fall into the following three categories and were

not described in Section 3, Implementation Support, may be described in this

section, or other subsections may be added following Facilities Requirements

below:

 Hardware Requirements - Describe the site-specific hardware requirements

necessary to support the implementation (such as. LAN hardware for a

client/server database designed to run on a LAN).

 Software Requirements - Describe any software required to implement the

system (such as, software specifically designed for automating the installation

process).

 Data Requirements - Describe specific data preparation requirements and data

that must be available for the system implementation. An example would be

the assignment of individual IDs associated with data preparation.

87

 Facilities Requirements - Describe the site-specific physical facilities and

accommodations required during the system implementation period. Some

examples of this type of information are provided in Section 3.

3.10.3 Site implementation Details

This section addresses the specifics of the implementation for this site. Include a

description of the implementation team, schedule, procedures, and database and

data updates. This section should also provide information on the following:

 Team--If an implementation team is required, describe its composition and the

tasks to be performed at this site by each team member.

 Schedule--Provide a schedule of activities, including planning and

preparation, to be accomplished during implementation at this site. Describe

the required tasks in chronological order with the beginning and end dates of

each task. If appropriate, charts and graphics may be used to present the

schedule.

 Procedures--Provide a sequence of detailed procedures required to accomplish

the specific hardware and software implementation at this site. If necessary,

other documents may be referenced. If appropriate, include a step-by-step

sequence of the detailed procedures. A checklist of the installation events

may he provided to record the results of the process.

If the site operations startup is an important factor in the implementation, then

address startup procedures in some detail. If the system will replace an already

operating system, then address the startup and cutover processes in detail. If there

is a period of parallel operations with an existing system, address the startup

procedures that include technical and operations support during the parallel cycle

and the consistency of data within the databases of the two systems.

 Database--Describe the database environment where the software system and

the database(s), if any, will be installed. Include a description of the different

types of database and library environments (such as, production, test, and

training databases).

 Include the host computer database operating procedures, database file and

library naming conventions, database system generation parameters, and any

other information needed to effectively establish the system database

environment.

 Include database administration procedures for testing changes, if any, to the

database management system before the system implementation.

88

 Data Update--If data update procedures are described in another document,

such as the operations manual or conversion plan, that document may be

referenced here. The following are examples of information to be included:

- Control inputs

- Operating instructions

- Database data sources and inputs

- Output reports

- Restart and recovery procedures

3.11 Back-Off Plan

This section specifies when to make the go/no go decision and the factors to be

included in making the decision. The plan then goes on to provide a detailed list

of steps and actions required to restore the site to the original, pre-conversion

condition,

3.12 Post-Implementation Verification

This section describes the process for reviewing the implementation and deciding

if it was successful. It describes how an action item list will be created to rectify

any noted discrepancies. It also references the Back-Off Plan for instructions on

how to back-out the installation, if, as a result of the post-implementation

verification, a no-go decision is made.

Activity K Explain the Major Requirement in Implementation

4.0 Conclusion

Implementation phase is vital aspect of software development. It is the longest phase of

the software development life cycle. It is a phase where code is produced and as such tge

developer regards it as the main focus of the software development life cycle.

5.0 Summary

In this unit, you have learnt that:

 Code is formed from the deliverables of the design phase during implementation.

 A critical error prevents the system from fully satisfying its usage. The errors

have to be corrected before the system can be given to a customer or even before

future development can progress.

 A non-critical error is known but the occurrence of the error does not notably

affect the system's expected quality.

 The system is likely to have many, yet-to-be-discovered errors known as

unknown errors which may become critical while some may be simply fixed by

patches or fixed in the next release of the system.

 The technique Six Sigma to Software Implementation Projects consists of five

steps: Define, Measure, Analyze,· Improve, Control.

89

 The Major Tasks in Implementation include: Providing overall planning and

coordination for the implementation, Providing appropriate training for personnel

Ensuring that all manuals applicable to the implementation effort are available

when needed, Providing all needed technical assistance, Scheduling any special

computer processing required for the implementation, Performing site surveys

before implementation, Ensuring that all prerequisites have been fulfilled before

the implementation date, Providing personnel for the implementation team,

Acquiring special hardware or software, Performing data conversion before

loading data into the system, Preparing site facilities for implementation.

 Major Requirement in Implementation include: Security, Implementation

Support, Personnel and Performance Monitoring

6.0 Tutor Marked Assignment

 What is software Implementation

 Differentiate between critical, non-critical and unknown errors

 Explain the application of Six Sigma Software Implementation techniques.

 Discuss the Major Tasks in Implementation

 Explain the various Implementation Support

7.0 Further Reading And Other Resources

Moshe Bar and Karl Franz Fogel. Open Source Development with CVS. The Coriolis

Group, Scottsdale, AZ, 2001.

Kent Beck and Erich Gamma. Test infected: Programmers love writing tests. Java

Report, 3(7):37–50, July 1998.

Stephen P. Berczuk and Brad Appleton. Software Configuration Management

Patterns: Effective Teamwork, Practical Integration. Addison-Wesley, Boston, MA,

2002.

Don Bolinger, Tan Bronson, and Mike Loukides. Applying RCS and SCCS: From

Source Control to Project Control. O'Reilly and Associates, Sebastopol, CA, 1995.

Unit 2 Testing Phase

1.0 Introduction

In the last unit, we looked at implementation phase of software development. In this unit,

we shall consider the testing phase. It is important for stakeholders to have information

90

about the quality of product (software), hence the importance of testing cannot be

overemphasised.

2.0 Objectives

By the end of this unit, you should be able to:

 Define clearly software testing

 Explain testing methods.

 Explain software testing process

 Explain testing tools

3.0 Definition of software testing

Software testing is an empirical examination carried out to provide stakeholders with

information about the quality of the product or service under test. Software Testing in

addition provides an objective, independent view of the software to allow the business to

value and comprehend the risks associated with implementation of the software..

Software Testing can also be viewed as the process of validating and verifying that a

software program/application/product (1) meets the business and technical requirements

that guided its design and development; (2) works as expected; and (3) can be

implemented with the same characteristics. It is important to note that depending on the

testing method used, software testing, can be applied at any time in the development

process, though most of the test effort occurs after the requirements have been defined

and the coding process has been completed.

Testing can never totally detect all the defects within software. Instead, it provides a

comparison that put side by side the state and behavior of the product against the

instrument someone applies to recognize a problem. These instruments may include

specifications, contracts, comparable products, past versions of the same product,

inferences about intended or expected purpose, user or customer expectations, relevant

standards, applicable laws, or other criteria.

Every software product has a target audience. For instance, the audience for video game

software is completely different from banking software. Software testing therefore, is the

process of attempting to make this assessment whether the software product will be

satisfactory to its end users, its target audience, its purchasers, and other stakeholders.

3.1 Brief History of software testing

In 1979, Glenford J. Myers introduced the separation of debugging from testing,

illustrated the desire of the software engineering community to separate fundamental

development activities, such as debugging, from that of verification. 1988, Dave Gelperin

and William C. Hetzel classified the phases and goals in software testing in the following

stages:

 Until 1956 - Debugging oriented.

 1957–1978 - Demonstration oriented.

91

 1983–1987 - Evaluation oriented.

 1988–2000 - Prevention oriented.

3.2 Testing methods

Traditionally, software testing methods are divided into black box testing ,white box

testing and Grey Box Testing. A test engineer used these approaches to describe his

opinion when designing test cases.

3.2.1.1 Black box testing

Black box testing considers the software as a "black box" in the sense that there is no

knowledge of internal implementation. Black box testing methods include: equivalence

partitioning, boundary value analysis, all-pairs testing, fuzz testing, model-based testing,

traceability matrix, exploratory testing and specification-based testing.

3.2.1.1 Specification-based testing: Specification-based testing intends to test the

functionality of software based on the applicable requirements. Consequently, the

tester inputs data into, and only sees the output from, the test object. This level of

testing usually needs thorough test cases to be supplied to the tester, who can then

verify that for a given input, the output value ,either "is" or "is not" the same as

the expected value specified in the test case.

Specification-based testing though necessary, but it is insufficient to guard

against certain risks.

Merits and Demerits: The black box testing has the advantage of "an unaffiliated

opinion in the sense that there is no "bonds" with the code and the perception of

the tester is very simple. He believes a code must have bugs and he goes for it.

But, on the other hand, black box testing has the disadvantage of blind exploring

because the tester doesn't know how the software being tested was actually

constructed. As a result, there are situations when (1) a tester writes many test

cases to check something that could have been tested by only one test case, and/or

(2) some parts of the back-end are not tested at all.

3.2.1.2 White box testing

In a White box testing the tester has the privilege to the internal data structures and

algorithms including the code that implement these.

Types of white box testing

White box testing is of different types namely:

 API testing (application programming interface) - Testing of the application

using Public and Private APIs

http://en.wikipedia.org/wiki/Fuzz_testing
http://en.wikipedia.org/wiki/Application_programming_interface

92

 Code coverage - creating tests to satisfy some criteria of code coverage (e.g.,

the test designer can create tests to cause all statements in the program to be

executed at least once)

 Fault injection methods

 Mutation testing methods

 Static testing - White box testing includes all static testing

3.2.1.3 Grey Box Testing

Grey box testing requires gaining access to internal data structures and algorithms for

purposes of designing the test cases, but testing at the user, or black-box level.

Manipulating input data and formatting output cannot be regarded as grey box, because

the input and output are clearly outside of the "black-box" that we are calling the system

under test. This difference is important especially when conducting integration testing

between two modules of code written by two different developers, where only the

interfaces are exposed for test. However, changing a data repository can be seen as grey

box, because the use would not ordinarily be able to change the data outside of the

system under test. Grey box testing may also include reverse engineering to ascertain

boundary values or error messages.

3.2.2 Integration Testing

Integration testing is any type of software testing that seeks to reveal clash of individual

software modules to each other. Such integration flaws can result, when the new modules

are developed in separate branches, and then integrated into the main project.

3.2.3 Regression Testing

Regression testing is any type of software testing that attempts to reveal software

regressions. Regression of the nature can occurs at any time software functionality, that

was previously working correctly, stops working as anticipated. Usually, regressions

occur as an unplanned result of program changes, when the newly developed part of the

software collides with the previously existing. Methods of regression testing include re-

running previously run tests and finding out whether previously repaired faults have re-

appeared. The extent of testing depends on the phase in the release process and the risk of

the added features.

3.2.4 Acceptance testing

One of two things below can be regarded as Acceptance testing:

1. A smoke test which is used as an acceptance test prior to introducing a new build

to the main testing process, i.e. before integration or regression.

2. Acceptance testing performed by the customer, usually in their lab environment

on their own HW, is known as user acceptance testing (UAT).

http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Fault_injection
http://en.wikipedia.org/wiki/Mutation_testing
http://en.wikipedia.org/wiki/Static_testing

93

3.2.5 Non Functional Software Testing

The following methods are used to test non-functional aspects of software:

 Performance testing confirms to see if the software can deal with large quantities

of data or users. This is generally referred to as software scalability. This activity

of Non Functional Software Testing is often referred to as Endurance Testing.

 Stability testing checks to see if the software can continuously function well in or

above an acceptable period. This activity of Non Functional Software Testing is

oftentimes referred to as load (or endurance) testing.

 Usability testing is used to check if the user interface is easy to use and

understand.

 Security testing is essential for software that processes confidential data to

prevent system intrusion by hackers.

 Internationalization and localization is needed to test these aspects of software, for

which a pseudo localization method can be used.

Compare to functional testing, which establishes the correct operation of the software in

that it matches the expected behavior defined in the design requirements, non-functional

testing confirms that the software functions properly even when it receives invalid or

unexpected inputs. Non-functional testing, especially for software, is meant to establish

whether the device under test can tolerate invalid or unexpected inputs, thereby

establishing the robustness of input validation routines as well as error-handling routines.

An example of non-functional testing is software fault injection, in the form of fuzzing.

3.2.6 Destructive testing

Destructive testing attempts to cause the software or a sub-system to fail, in order to test

its robustness.

3.3 Testing process

Testing process can take two forms: Usually the testing can be performed by an

independent group of testers after the functionality is developed before it is sent to the

customer. Another practice is to start software testing at the same time the project starts

and it continues until the project finishes. The first practice always results in the testing

phase being used as project buffer to compensate for project delays, thereby

compromising the time devoted to testing.

Testing can be done on the following levels:

 Unit testing tests the minimal software component, or module. Each unit (basic

component) of the software is tested to verify that the detailed design for the unit

has been correctly implemented. In an object-oriented environment, this is usually

at the class level, and the minimal unit tests include the constructors and

destructors.

http://en.wikipedia.org/wiki/Fuzz_testing

94

 Integration testing exposes defects in the interfaces and interaction between

integrated components (modules). Progressively larger groups of tested software

components corresponding to elements of the architectural design are integrated

and tested until the software works as a system.

 System testing tests a completely integrated system to verify that it meets its

requirements.

 System integration testing verifies that a system is integrated to any external or

third party systems defined in the system requirements.

Before shipping the final version of software, alpha and beta testing are often done

additionally:

 Alpha testing is simulated or actual operational testing by potential

users/customers or an independent test team at the developers' site. Alpha testing

is often employed for off-the-shelf software as a form of internal acceptance

testing, before the software goes to beta testing.

 Beta testing comes after alpha testing. Versions of the software, known as beta

versions, are released to a limited audience outside of the programming team. The

software is released to groups of people so that further testing can ensure the

product has few faults or bugs. Sometimes, beta versions are made available to

the open public to increase the feedback field to a maximal number of future

users.

Finally, acceptance testing can be conducted by the end-user, customer, or client to

validate whether or not to accept the product. Acceptance testing may be performed as

part of the hand-off process between any two phases of development.

Benchmarks may be employed during regression testing to ensure that the performance

of the newly modified software will be at least as acceptable as the earlier version or, in

the case of code optimization, that some real improvement has been achieved.

3.4.2 Testing Tools

Program testing and fault detection can be aided significantly by testing tools and

debuggers. Testing/debug tools include features such as:

 Program monitors, permitting full or partial monitoring of program code

including:

o Instruction Set Simulator, permitting complete instruction level

monitoring and trace facilities

o Program animation, permitting step-by-step execution and conditional

breakpoint at source level or in machine code

o Code coverage reports

http://en.wikipedia.org/wiki/Benchmark_(computing)
http://en.wikipedia.org/wiki/Optimization_(computer_science)

95

 Formatted dump or Symbolic debugging, tools allowing inspection of program

variables on error or at chosen points

 Automated functional GUI testing tools are used to repeat system-level tests

through the GUI

 Benchmarks, allowing run-time performance comparisons to be made

 Performance analysis (or profiling tools) that can help to highlight hot spots and

resource usage

Activity l Discuss the various testing methods.

4.0 Conclusion

It has been made abundantly clear that software testing is so important in assessing

whether the software product will be satisfactory to its end users, its target audience, its

purchasers, and other stakeholders.

5.0 Summary

In this unit, you have learnt that:

 Software testing is an empirical examination carried out to provide stakeholders

with information about the quality of the product or service under test.

 Traditionally, software testing methods are divided into black box testing, white

box testing and Grey Box Testing. A test engineer used these approaches to

describe his opinion when designing test cases.

 Black box testing considers the software as a "black box" in the sense that there is

no knowledge of internal implementation.

 In White box testing the tester has the privilege to the internal data structures and

algorithms including the code that implement these.

 Grey box testing requires gaining access to internal data structures and

algorithms for purposes of designing the test cases, but testing at the user, or

black-box level.

 Manipulating input data and formatting output cannot be regarded as grey box,

because the input and output are clearly outside of the "black-box" that we are

calling the system under test.

 Testing process can take two forms: (1) usually the testing can be performed by

an independent group of testers after the functionality is developed before it is

sent to the customer. (2) Another practice is to start software testing at the same

time the project starts and it continues until the project finishes. The first practice

always results in the testing phase being used as project buffer to compensate for

project delays, thereby compromising the time devoted to testing.

 Testing/debug tools include features such as:

o Program monitors, permitting full or partial monitoring of program code

o Formatted dump or Symbolic debugging, tools allowing inspection of

program variables on error or at chosen points

o Automated functional GUI testing tools are used to repeat system-level

tests through the GUI

96

o Benchmarks, allowing run-time performance comparisons to be made

o Performance analysis (or profiling tools) that can help to highlight hot

spots and resource usage

6.0 Tutor-Marked Assignment

 What is software testing?

 Explain software testing process

 Explain testing tools

7.0 Further Reading And Other Resources

Exploratory Testing, Cem Kaner, Florida Institute of Technology, Quality Assurance

Institute Worldwide Annual Software Testing Conference, Orlando, FL, November 2006

Software errors cost U.S. economy $59.5 billion annually, NIST report

Myers, Glenford J. (1979). The Art of Software Testing. John Wiley and Sons. ISBN

0-471-04328-1.

Dr. Dobb's journal of software tools for the professional programmer (M&T Pub) 12

(1-6): 116. 1987.

Gelperin, D.; B. Hetzel (1988). "The Growth of Software Testing". CACM 31 (6). ISSN

0001-0782. Laycock, G. T. (1993) (PostScript). The Theory and Practice of

Specification Based Software Testing. Dept of Computer Science, Sheffield University,

UK. http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz. Retrieved 2008-02-13.

Unit 3 Software Quality Assurance (SQA)

1.0 Introduction

http://www.mcs.le.ac.uk/people/gtl1/thesis.ps.gz

97

In the last unit, we looked at testing phase of software development. In this unit, we

shall consider the Software Quality Assurance (SQA). There is need to ensure that the

software development and control processes described in the project's Management

Plan are correctly carried out and that the project's procedures and standards are

followed hence the need for Software Quality Assurance cannot be underestimated.

2.0 Objectives

By the end of this unit, you should be able to:

 Define clearly Software Quality Assurance

 Explain the concept of standards and procedures.

 Discuss Software Quality Assurance Activities

 Discuss SQA Relationships to Other Assurance Activities

 Discuss Software Quality Assurance During the Software Acquisition Life Cycle.

3.0 Concepts and Definitions

Software Quality Assurance (SQA) is defined as a planned and systematic approach to

the evaluation of the quality of and adherence to software product standards,

processes, and procedures. SQA includes the process of assuring that standards and

procedures are established and are followed throughout the software acquisition life

cycle. Compliance with agreed-upon standards and procedures is evaluated through

process monitoring, product evaluation, and audits. Software development and control

processes should include quality assurance approval points, where an SQA evaluation

of the product may be done in relation to the applicable standards.

3.1 Standards and Procedures

Establishing standards and procedures for software development is critical, since these

provide the structure from which the software evolves. Standards are the established

yardsticks to which the software products are compared. Procedures are the

established criteria to which the development and control processes are compared.

Standards and procedures establish the prescribed methods for developing software;

the SQA role is to ensure their existence and adequacy. Proper documentation of

standards and procedures is necessary since the SQA activities of process monitoring,

product evaluation and auditing rely upon clear definitions to measure project

compliance.

3.1.1 Types of standards include:

 Documentation Standards specify form and content for planning, control, and

product documentation and provide consistency throughout a project.

98

 Design Standards specify the form and content of the design product. They

provide rules and methods for translating the software requirements into the

software design and for representing it in the design documentation.

 Code Standards specify the language in which the code is to be written and

define any restrictions on use of language features. They define legal

language structures, style conventions, rules for data structures and

interfaces, and internal code documentation.

Procedures are explicit steps to be followed in carrying out a process. All processes

should have documented procedures. Examples of processes for which procedures are

needed are configuration management, non-conformance reporting and corrective

action, testing, and formal inspections.

If developed according to the NASA DID, the Management Plan describes the

software development control processes, such as configuration management, for

which there have to be procedures, and contains a list of the product standards.

Standards are to be documented according to the Standards and Guidelines DID in the

Product Specification. The planning activities required to assure that both products

and processes comply with designated standards and procedures are described in the

QA portion of the Management Plan.

3.2 Software Quality Assurance Activities

Product evaluation and process monitoring are the SQA activities that assure the

software development and control processes described in the project's Management

Plan are correctly carried out and that the project's procedures and

standards are followed. Products are monitored for conformance to standards and

processes are monitored for conformance to procedures. Audits are a key technique

used to perform product evaluation and process monitoring. Review of the

Management Plan should ensure that appropriate SQA approval points are built into

these processes.

3.2.1 Product evaluation is an SQA activity that assures standards are being

followed. Ideally, the first products monitored by SQA should be the project's

standards and procedures. SQA assures that clear and achievable standards exist and

then evaluates compliance of the software product to the established standards.

Product evaluation assures that the software product reflects the requirements of the

applicable standard(s) as identified in the Management Plan.

3.2.2 Process monitoring is an SQA activity that ensures that appropriate steps to

carry out the process are being followed. SQA monitors processes by comparing the

actual steps carried out with those in the documented procedures. The Assurance

99

section of the Management Plan specifies the methods to be used by the SQA process

monitoring activity.

A fundamental SQA technique is the audit, which looks at a process and/or a product

in depth, comparing them to established procedures and standards. Audits are used to

review management, technical, and assurance processes to provide an indication of the

quality and status of the software product.

The purpose of an SQA audit is to assure that proper control procedures are being

followed, that required documentation is maintained, and that the developer's status

reports accurately reflect the status of the activity. The SQA product is an audit report

to management consisting of findings and recommendations to bring the development

into conformance with standards and/or procedures.

3.3. SQA Relationships to Other Assurance Activities

Some of the more important relationships of SQA to other management and assurance

activities are described below.

3.3.1 Configuration Management Monitoring

SQA assures that software Configuration Management (CM) activities are performed

in accordance with the CM plans, standards, and procedures. SQA reviews the CM

plans for compliance with software CM policies and requirements and

provides follow-up for nonconformances. SQA audits the CM functions for

adherence to standards and procedures and prepares reports of its findings.

The CM activities monitored and audited by SQA include baseline control,

configuration identification, configuration control, configuration status accounting,

and configuration authentication. SQA also monitors and audits the software library.

SQA assures that:

 Baselines are established and consistently maintained for use in subsequent

baseline development and control.

 Software configuration identification is consistent and accurate with

respect to the numbering or naming of computer programs, software

modules, software units, and associated software documents.

100

 Configuration control is maintained such that the software configuration

used in critical phases of testing, acceptance, and delivery is compatible

with the associated documentation.

 Configuration status accounting is performed accurately including the

recording and reporting of data reflecting the software's configuration

identification, proposed changes to the configuration identification, and the

implementation status of approved changes.

 Software configuration authentication is established by a series of

configuration reviews and audits that exhibit the performance required by

the software requirements specification and the configuration of the

software is accurately reflected in the software design documents.

 Software development libraries provide for proper handling of software

code, documentation, media, and related data in their various forms and

versions from the time of their initial approval or acceptance until they

have been incorporated into the final media.

 Approved changes to baselined software are made properly and consistently

in all products, and no unauthorized changes are made.

3.3.2 Verification and Validation Monitoring

SQA assures Verification and Validation (V&V) activities by monitoring technical

reviews, inspections, and walkthroughs.The SQA role in formal testing is described in

the next section. The SQA role in reviews,inspections, and walkthroughs is to observe,

participate as needed, and verify that they were properly conducted and documented.

SQA also ensures that any actions required are assigned, documented, scheduled, and

updated.Formal software reviews should be conducted at the end of each phase of the

life cycle to identify problems and determine whether the interim product meets all

applicable requirements. Examples of formal reviews are the Preliminary Design

Review (PDR), Critical Design Review (CDR), and Test Readiness Review (TRR). A

review looks at the overall picture of the product being developed to see if it satisfies

its requirements. Reviews are part of the development process, designed to provide a

ready/not-ready decision to begin the next phase. In formal reviews, actual work done

is compared with established standards. SQA's main objective in reviews is to assure

that the Management and Development Plans have been followed, and that the product

is ready to proceed with the next phase of development. Although the decision to

proceed is a management decision, SQA is responsible for advising management and

participating in the decision. An inspection or walkthrough is a detailed examination

of a product on a step-by-step or line-of-code by line-of-code basis to find errors. For

inspections and walkthroughs, SQA assures, at a minimum that the process is properly

completed and that needed follow-up is done. The inspection process may be used to

measure compliance to standards.

101

3.3.3 Formal Test Monitoring

SQA assures that formal software testing, such as Acceptance testing, is done in

accordance with plans and procedures. SQA reviews testing documentation for

completeness and adherence to standards. The documentation review includes test

plans,test specifications, test procedures, and test reports. SQA monitors testing and

provides follow-up on nonconformances. By test monitoring, SQA assures software

completeness and readiness for delivery. The objectives of SQA in monitoring formal

software testing are to assure that:

 The test procedures are testing the software requirements in accordance

with test plans.

 The test procedures are verifiable.

 The correct or "advertised" version of the software is being tested (by SQA

monitoring of the CM activity).

 The test procedures are followed.

 Nonconformances occurring during testing (that is, any incident not

expected in the test procedures) are noted and recorded.

 Test reports are accurate and complete.

 Regression testing is conducted to assure nonconformances have been

corrected.

 Resolution of all nonconformances takes place prior to delivery.

Software testing verifies that the software meets its requirements. The quality of

testing is assured by verifying that project requirements are satisfied and that the

testing process is in accordance with the test plans and procedures.

3.4 Software Quality Assurance during the Software Acquisition Life Cycle

In addition to the general activities described in subsections C and D, there are phase-

specific SQA activities that should be conducted during the Software Acquisition

Life Cycle. At the conclusion of each phase, SQA concurrence is a key element in the

management decision to initiate the following life cycle phase. Suggested activities

for each phase are described below.

3.4.1 Software Concept and Initiation Phase

102

SQA should be involved in both writing and reviewing the Management Plan in order

to assure that the processes, procedures, and standards identified in the plan are

appropriate, clear, specific, and auditable. During this phase, SQA also provides the

QA section of the Management Plan.

3.4.2 Software Requirements Phase

During the software requirements phase, SQA assures that software requirements are

complete, testable, and properly expressed as functional, performance, and interface

requirements.

3.4.3 Software Architectural (Preliminary) Design Phase

SQA activities during the architectural (preliminary) design phase include:

 Assuring adherence to approved design standards as designated in the

Management Plan.

 Assuring all software requirements are allocated to software components.

 Assuring that a testing verification matrix exists and is kept up to date.

 Assuring the Interface Control Documents are in agreement with the

standard in form and content.

 Reviewing PDR documentation and assuring that all action items are

resolved.

 Assuring the approved design is placed under configuration management.

3.4.4 Software Detailed Design Phase

SQA activities during the detailed design phase include:

 Assuring that approved design standards are followed.

 Assuring that allocated modules are included in the detailed design.

 Assuring that results of design inspections are included in the design.

 Reviewing CDR documentation and assuring that all action items are

resolved.

3.4.5 Software Implementation Phase

103

SQA activities during the implementation phase include the audit of:

 Results of coding and design activities including the

schedule contained in the Software Development Plan.

 Status of all deliverable items.

 Configuration management activities and the software development library.

 Nonconformance reporting and corrective action system.

3.4.6 Software Integration and Test Phase

SQA activities during the integration and test phase include:

 Assuring readiness for testing of all deliverable items.

 Assuring that all tests are run according to test plans and procedures and

that any non-conformances are reported and resolved.

 Assuring that test reports are complete and correct.

 Certifying that testing is complete and software and documentation are

ready for delivery.

 Participating in the Test Readiness Review and assuring all action items

are completed.

3.4.7 Software Acceptance and Delivery Phase

As a minimum, SQA activities during the software acceptance and delivery phase

include assuring the performance of a final configuration audit to demonstrate that all

deliverable items are ready for delivery.

3.4.8 Software Sustaining Engineering and Operations Phase

During this phase, there will be mini-development cycles to enhance or correct the

software. During these development cycles, SQA conducts the appropriate phase-

specific activities described above.

3.4.9 Techniques and Tools

SQA should evaluate its needs for assurance tools versus those available off-the-shelf

for applicability to the specific project, and must develop the others it requires. Useful

tools might include audit and inspection checklists and automatic code standards

analyzers.

104

Activity J Discuss Software Quality Assurance during the Software Acquisition

Life Cycle

4.0 Conclusion

There is the need to ensure Software quality and adherence to software product

standards, processes, and procedures and this is what Software Quality Assurance is

out to achieve.

5.0 Summary

In this unit, you have learnt that:

 Software Quality Assurance (SQA) is a planned and systematic approach to the

evaluation of the quality of and adherence to software product standards,

processes, and procedures.

 Standards are the established yardsticks to which the software products are

compared. Procedures are the established criteria to which the development and

control processes are compared.

 Product evaluation and process monitoring are the SQA activities that assure the

software development and control processes described in the project's

Management Plan are correctly carried out and that the project's procedures and

6.0 Tutor-Marked Assignment

What is Software Quality Assurance?

Explain the concept of standards and procedures.

Discuss Software Quality Assurance Activities

7.0 Further Reading And Other Resources

Pyzdek, T, "Quality Engineering Handbook", 2003, ISBN 0-8247-4614-7

Godfrey, A. B., "Juran's Quality Handbook", 1999, ISBN 0-07-034003-X

http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-appb.html

http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-appb.html

105

Unit 4 Compatibility

1.0 Introduction

In the last unit, we considered Software Quality Assurance (SQA). We saw the essence

of Software Quality Assurance to ensure that the software development and control

processes described in the project's Management Plan are correctly carried out and that

the project's procedures and standards are followed at testing phase of software

development. In this unit, we shall look at Compatibility testing. After studying the unit

you are expected to have achieved the following objectives listed below.

2.0 Objectives

By the end of this unit, you should be able to:

 Define Compatibility Testing

 Explain Usefulness of Compatibility Testing.

3.0 What is Compatibility Testing?

Software testing comes in different types. Compatibility testing is one of the several types

of software testing which can be carried out on a system that is develop based on certain

yardsticks and which has to perform definite functionality in an already existing

setup/environment. Many things are decided n compatibility of a system/application

being developed with, for example, other systems/applications, OS, Network. They

include the use of the system/application in that environment, demand of the

system/application etc. On many occasions, the reason while users prefer not to go for an

application/system cannot be unconnected with it non-compatibility of such

application/system with any other system/application, network, hardware or OS they are

already using. This explains the reason why the efforts of developers may appear to be in

vain. Compatibility testing can also be used to certify compatibility of the

system/application/website built with various other objects such as other web browsers,

hardware platforms, users, operating systems etc. It helps to find out how well a system

performs in a particular environment such as hardware, network; operating system etc.

Compatibility testing can be performed manually or with automation tools.

3.1 Compatibility testing computing environment.

. Computing environment that will require compatibly testing may include some or all of

the below mentioned elements:

 Computing capacity of Hardware Platform (IBM 360, HP 9000, etc.)..

 Bandwidth handling capacity of networking hardware

 Compatibility of peripherals (Printer, DVD drive, etc.)

 Operating systems (MVS, UNIX, Windows, etc.)

 Database (Oracle, Sybase, DB2, etc.)

 Other System Software (Web server, networking/ messaging tool, etc.)

 Browser compatibility (Firefox, Netscape, Internet Explorer, Safari, etc.)

http://www.buzzle.com/articles/software-testing/

106

Browser compatibility testing which can also be referred to as user experience testing

requires that the web applications are tested on different web browsers, to ensure the

following:

 Users have the same visual experience irrespective of the browsers through which

they view the web application.

 In terms of functionality, the application must behave and respond the same way

across different browsers.

Compatibility between versions: This has to do with testing of the performance of

system/application in connection with its own predecessor/successor versions. This is

sometimes referred to as backward and forward compatibility. For example, Windows 98

was developed with backward compatibility for Windows 95.

Software Compatibility testing: This is the evaluation of the performance of

system/application in connection with other software. For example: Software

compatibility with operating tools for network, web servers, messaging tools etc.

Operating System compatibility testing: This is the evaluation of the performance of

system/application in connection with the underlying operating system on which it will

be used.

Databases compatibility testing: Many applications/systems operate on databases.

Database compatibility testing is used to evaluate an application/system‘s performance in

connection to the database it will interact with.

3.3 Usefulness of Compatibility Testing

Compatibility testing can help developers understand the yardsticks that their

system/application needs to reach and fulfil, so as to get acceptance by intended users

who are already using some OS, network, software and hardware etc. It also helps the

users to find out which system will better fit in the existing setup they are using.

3.4 Certification testing falls within the range of Compatibility testing. Product

Vendors do run the complete suite of testing on the newer computing environment to get

their application certified for a specific Operating Systems or Databases.

Activity K What is Browser compatibility testing

4.0 Conclusion

Compatibility testing is highly beneficial to software development. It can help developers

understand the criteria that their system/application needs to attain and fulfil, in order to

get accepted by intended users who are already using some OS, network, software and

hardware etc. It also helps the users to find out which system will better fit in the existing

107

setup they are using.

5.0 Summary

In this unit, we have learnt that:

 Compatibility testing is one of the several types of software testing performed on

a system that is built based on certain criteria and which has to perform specific

functionality in an already existing setup/environment.
 Compatibility testing can be automated using automation tools or can be

performed manually and is a part of non-functional software testing.

 Computing environment may contain some or all of the below mentioned

elements:

o Computing capacity of Hardware Platform (IBM 360, HP 9000, etc.)..

o Bandwidth handling capacity of networking hardware

o Compatibility of peripherals (Printer, DVD drive, etc.)

o Operating systems (MVS, UNIX, Windows, etc.)

o Database (Oracle, Sybase, DB2, etc.)

o Other System Software (Web server, networking/ messaging tool, etc.)

o Browser compatibility (Firefox, Netscape, Internet Explorer, Safari, etc.)

 The most important use of the compatibility testing is to ensure its performance

in a computing environment in which it is supposed to operate. This helps in

figuring out necessary changes/modifications/additions required to make the

system/application compatible with the computing environment.

6.0 Tutor-Marked Assignment

 Define Compatibility Testing

 Explain Usefulness of Compatibility Testing.

 What are the elements in computing enviroment?

7.0 Further Reading And Other Resources

E. Anderson , Z. Bai , J. Dongarra , A. Greenbaum , A. McKenney , J. Du Croz ,

S. Hammerling , J. Demmel , C. Bischof , D. Sorensen, LAPACK: a portable

linear algebra library for high-performance computers, Proceedings of the 1990

conference on Supercomputing, p.2-11, October 1990, New York, New York,

United States

S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley,

L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical

Report ANL-95/11 -- Revision 2.3.2, Argonne National Laboratory, Sep. 2006.

http://www.buzzle.com/articles/software-testing/

108

Myra B. Cohen , Matthew B. Dwyer , Jiangfan Shi, Coverage and adequacy in

software product line testing, Proceedings of the ISSTA 2006 workshop on Role

of software architecture for testing and analysis, p.53-63, July 17-20, 2006,

Portland, Maine [doi>10.1145/1147249.1147257]

Uni 5 Software verification and validation

109

1.0 Introduction

In the last unit, we considered Compatibility testing .You will recall that, Compatibility

testing is highly beneficial to software development. It can help developers understand

the criteria that their system/application needs to attain and fulfil, in order to get accepted

by intended users who are already using some OS, network, software and hardware etc. It

also helps the users to find out which system will better fit in the existing setup they are

using. In this unit we are going to look at software verification and validation.

After studying the unit you are expected to have achieved the following objectives listed

below.

2.0 Objectives

By the end of this unit, you should be able to:

 Define software verification and validation

 Outline the method of verification and validation

 Discuss Software Verification & Validation Model

 Discuss terms used in validation process

3.0 What is Verification and Validation (V&V)

Verification and Validation (V&V) is the process of checking that a software system

meets specifications and that it fulfils its expected purpose. It is normally part of the

software testing process of a project.

According to the Capability Maturity Model (CMMI-SW v1.1),

 Verification is the process of evaluating software to determine whether the

products of a given development phase satisfy the conditions imposed at the start

of that phase. [IEEE-STD-610].

 Validation is the process of evaluating software during or at the end of the

development process to determine whether it satisfies specified requirements.

[IEEE-STD-610]

In other words, validation ensures that the product actually meets the user's needs, and

that the specifications were correct in the first place, while verification is ensuring that

the product has been built according to the requirements and design specifications.

Validation ensures that ‗you built the right thing‘. Verification ensures that ‗you built it

right‘. Validation confirms that the product, as provided, will fulfill its intended use.

Looking at it from arena of modeling and simulation, the definitions of validation,

verification and accreditation are similar:

 Validation is the process of determining the degree to which a model, simulation,

or federation of models and simulations, and their associated data are accurate

representations of the real world from the perspective of the intended use(s).

Accreditation is the formal certification that a model or simulation is acceptable to

be used for a specific purpose.

 Verification is the process of determining that a computer model, simulation, or

federation of models and simulations implementations and their associated data

accurately represents the developer's conceptual description and specifications.

3.1 Classification of methods

In mission-critical systems where flawless performance is absolutely necessary, formal

methods can be used to ensure the correct operation of a system. However, often for non-

mission-critical systems, formal methods prove to be very costly and an alternative

method of V&V must be sought out. In this case, syntactic methods are often used.

3.2 Test cases

A test case is a tool used in the Verification and Validation process.

The Quality Assurance (QA) team prepares test cases for verification and these help to

determine if the process that was followed to develop the final product is right.

The Quality Certificate (QC) team uses a test case for validation and this will ascertain if

the product is built according to the requirements of the user. Other methods, such as

reviews, provide for validation in Software Development Life Cycle provided it is used

early for validation.

3.3 Independent Verification and Validation

Verification and validation often is carried out by a separate group from the development

team; in this case, the process is called "Independent Verification and Validation", or

IV&V.

3.4 Regulatory environment

The task is must to meet the compliance requirements of law regulated industries, which

is often guided by government agencies or industrial administrative authorities. FDA

even demands to validate software versions and patches.

3.5 Software Verification & Validation Model

110

‗Verification & Validation Model‘ is used in improvement of software project

development life cycle.

http://en.wikipedia.org/wiki/IV%26V

111

Fig 8 Verification and Validation Model

Source: http://www.buzzle.com/editorials/4-5-2005-68117.asp

A perfect software product is developed when every step is taken in right direction. That

is to say that ―A right product is developed in a right manner‖. Software Verification

Model helps to achieve this and also help to improve the quality of the software product.

The model will not only will not only makes sure that certain rules are followed at the

time of development of a software but will also ensure that the product that is developed

fulfils the required specifications. The result is that risk associated with any software

project up to certain level is reduced by helping in detection and correction of errors and

mistakes, which are unknowingly done during the development process.

3.6 Few terms involved in Verification:

3.61. Inspection:

Inspection involves a team of few people usually about 3-6 people. It usually led by a

leader, which properly reviews the documents and work product during various phases of

the product development life cycle. The product, as well as related documents is

presented to the team, the members of which carry different interpretations of the

presentation. The bugs that are discovered during the inspection are conveyed to the next

level in order to take care of them.

3.6.2 Walkthroughs:

http://www.buzzle.com/editorials/4-5-2005-68117.asp

112

In walkthrough inspection is carried out without formal preparation (of any presentation

or documentations). During the walkthrough, the presenter/author introduces the material

to all the participants in order to make them familiar with it. Though walkthroughs can

help in finding bugs, they are used for knowledge sharing or communication purpose.

3.6.3 Buddy Checks:

Buddy Checks does not involve a team rather, one person goes through the documents

prepared by another person in order. to find out bugs which the author couldn‘t find

previously.

The activities involved in Verification process are: Requirement Specification

verification, Functional design verification, internal/system design verification and code

verification Each activity ascertains that the product is developed correctly and every

requirement, every specification, design code etc. is verified.

3.7 Terms used in Validation process:

3.7.1 Code Validation/Testing:

Unit Code Validation or Unit Testing is a type of testing, which the developers conduct in

order to find out any bug in the code unit/module developed by them. Code testing other

than Unit Testing can be done by testers or developers.

3.7.2 Integration Validation/Testing:

Integration testing is conducted in order to find out if different (two or more)

units/modules match properly. This test helps in finding out if there is any defect in the

interface between different modules.

3.7.3 Functional Validation/Testing:

This type of testing is meant to find out if the system meets the functional requirements.

In this type of testing, the system is validated for its functional behavior. Functional

testing does not deal with internal coding of the project, in stead, it checks if the system

behaves as per the expectations.

3.7.4 User Acceptance Testing or System Validation:

In this type of testing, the developed product is handed over to the user/paid testers in

order to test it in real time state. The product is validated to find out if it works according

to the system specifications and satisfies all the user requirements. As the user/paid

testers use the software, it may happen that bugs that are yet undiscovered, come up,

which are communicated to the developers to be fixed. This helps in improvement of the

final product.

Activity L Discuss Software Verification & Validation Model

113

4.0 Conclusion

The importance of Verification and Validation cannot be overemphasisd. Verification

and Validation (V&V) checks that a software system meets specifications and that it

fulfils its intended purpose.

5.0 Summary

In this unit, we have learnt that:

 Verification and Validation (V&V) is the process of checking that a software

system meets specifications and that it fulfils its intended purpose.

 In mission-critical systems where flawless performance is absolutely necessary,

formal methods can be used to ensure the correct operation of a system. However,

often for non-mission-critical systems, formal methods prove to be very costly

and an alternative method of V&V must be sought out. In this case, syntactic

methods are often used.

 Verification and validation often is carried out by a separate group from the

development team; in this case, the process is called "Independent Verification

and Validation

6.0 Tutor-Marked Assignment

 Define software verification and validation

 Outline the method of verification and validation

 Discuss terms used in validation process

7.0 Further Reading And Other Resources

Department of Defense Documentation of Verification, Validation & Accreditation

(VV&A) for Models and Simulations, Missile Defense Agency, 2008

General Principles of Software validation; Final Guidance for Industry and FDA

Staff" (PDF). Food and Drug Administration. 11 January 2002.

http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Guidanc

eDocuments/ucm085371.pdf. Retrieved 12 July 2009.

Guidance for Industry: Part 11, Electronic Records; Electronic Signatures — Scope and

Application" (PDF). Food and Drug Administration. August 2003.

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guid

ances/UCM072322.pdf. Retrieved 12 July 2009.

http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Guidanc
http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guid

