- 4
COURSE
GUIDE

CIT108

Course Team

E

N2DUN

PROBLEM SOLVING STRATEGIES

Dr. Tola John Odule
(Developer/Writer)

Prof. Julius Olatunji Okesola
(Content Editor)

Dr. Francis B. Osang — HOD/Internal
Quality Control Expert

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT108 COURSE GUIDE

National Open University of Nigeria
University Village, Plot 91

Jabi Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

Departmental email: computersciencedepartment@noun.edu.ng
NOUN e-mail: centralinfo@noun.edu.ng

URL: www.nou.edu.ng

First Printed 2022

ISBN: 978-058-557-5
All Rights Reserved

Printed by: NOUN PRESS
January 2022

CIT108

CONTENTS PAGES

INtroduCtion. ...

COUISE A . e

Course ObJECLIVES ...oviniii i

Working through this course........................

Study UNits. ...

Presentation Schedule.........ccooveeiiiiiiii ..

ASSESSMENT. oot

Tutor-Marked Assignment (TMAS).................

Final Examination and Grading.....................

Course Marking Scheme................ccoooviiine..

Facilitators/Tutors and Tutorials....................

SUMMANY. .. e

COURSE GUIDE

Vil

Vil

viii

Xi

file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685074
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685077
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685078
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685081
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685082
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685085
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685086
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685088
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685091
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685094
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685096
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685097

CIT108 COURSE GUIDE

INTRODUCTION

Usually the term problem is used to refer to a situation where it is not
immediately obvious how to reach the goal. Formally, a problem is
defined by the following four conditions or parameters: A clearly
defined

1. Initial situation.
2. Goal.
3. Set of resources that may be applicable to move from the given

initial situation to the desired goal situation. There may be
specified limitations on resources, such as rules, regulations, and
guidelines for what is allowed to do in attempting to solve a
particular problem.

4, Commitment to using some of one’s own resources, such as
knowledge, skills, and energies, to achieve the desired final goal.

If one or more of these components are missing, the problem is ill-
defined.

Critical thinking is the use of those cognitive skills or strategies that
increases the probability of a desirable outcome. Problem solving
consists of moving from a given initial situation to a desired goal
situation. It is the process of designing and carrying out a set of steps to
reach a goal, and includes answering questions, solving problems,
accomplishing tasks, making decisions, using critical thinking to do all
of the above. Often the problem solving that students are expected to do
Is to recognize, pose, clarify, and solve complex, challenging problems
that they have not previously encountered.

Although nowadays algorithms are primarily associated with software
and computers, their origins lie much further in the past. They have been
used intuitively for centuries, in the form of regulatory systems,
instructions, rules for games, architectural plans and musical scores. An
algorithm is a procedure for decision-making or an instruction on how to
act which consists of a finite number of rules. It may also be defined as a
limited sequence of unambiguous elementary instructions which exactly
and completely describe the way to solve a specific problem.” This
applies regardless of whether it relates to mathematics, fine art or music.
However, the most well-known application of algorithms is undoubtedly
their use in computer programming. A program is thus an algorithm that
Is formulated in a language that allows it to be processed by a computer.
This course is about deploying computational approaches to the
problem-solving process using algorithm as a medium to achieve the
defined goal in a computer-enabled format.

iv

CIT108 COURSE GUIDE

COURSE AIM

This course has two main goals:

1. It intends to introduction the student to the logical formulation
and representation of problems in computer science, using critical
thinking together with the established problem-solving strategies
presented and with applicable implementation approaches.

It seeks to equip the learner with the required technical know-how to
handle common elementary routine problems that arise in practice the
use of appropriate algorithms, flowcharts and pseudocodes as tools in a
way to facilitate a computer-enabled representation for solution.

COURSE OBJECTIVES

To achieve the aims set out, the course has a set of objectives. Each unit
has specific objectives which are included at the beginning of the unit.
Students may wish to refer to them during their study to check on their
progress. They should always look at the unit objectives after
completion of each unit. By doing so, they would know whether they
have followed the instruction in the unit. Below are the comprehensive
objectives of the course as a whole. By meeting these objectives,
learners should have achieved the aims of the course as a whole. In
addition to the aims earlier stated, this course sets to achieve some
objectives. Thus, after going through the course, learners should be able
to:

o Understand problem solving strategies

J Define algorithm and heuristic and their role in problem solving

. Describe typical common problem solving strategies

o Explain some common roadblocks to effective problem solving

o Understand the computer as a model of computation

o Explain the problem solving process in detail

o Apply the problem solving paradigm to routine elementary
problems

o Describe the various computational approaches available for
solving a problem

o Classify computational approaches based on their paradigms

o Evaluate a computational approach best suited for a given
problem

o Apply a computational approach to solve a problem

o Define abstraction as a problem aid

o Understand the importance of abstraction in problem solving

o Describe how to perform abstraction

CIT108

vi

COURSE GUIDE

Explain the various types of abstraction used in problem solving
Understand the concept of algorithms

Appreciate the need for algorithms

Describe the steps involved in developing an algorithm

Develop algorithms for simple problems

Evaluate different algorithms based on their efficiency
Understand the basic concepts of flowcharts

Apply basic symbols and notations to create flowcharts
Differentiate among common types of flowcharts and where they
apply

Understand the conditions that apply in the design of flowcharts
Undertake simple flowcharting problems

Understand the relevance of pseudocode in problem solving
Apply the rules guiding the use of pseudocodes

Demonstrate basic skills in writing pseudocode to address simple
problems

Understand and define recursion as an implementation strategy

Know where and when to apply recursion to implement a
solution

Determine how to avoid circularity in recursion

Explain the inner workings of recursion and the associated
overhead

Explain control structures and their importance in implementation
Apply selection control structure to implement algorithms

Implement solutions using iteration as an alternative
implementation strategy

Combine control structures in ways that facilitate solution to the
problem at hand

Appreciate the term “decomposition” and “modularisation’
Understand how best decomposition can be approached
Justify the motivations for modularisation

Describe the basic properties of modularisation

Discuss the advantages of modularisation

Define and classify program testing

Explain the desirable properties of program testing
Appreciate the need for and benefits of program testing
Understand the debugging process and programming errors
Apply common strategies in debugging processes

b

CIT108 COURSE GUIDE

WORKING THROUGH THIS COURSE

To complete this course, learners are required to read each study unit,
read the textbooks and read other materials which may be provided by
the National Open University of Nigeria.

Each unit contains self-assessment exercises and at certain point in the
course learners would be required to submit assignments for assessment
purposes. At the end of the course there is a final examination. The
course should take you about a total of 17 weeks to complete. Below
learners will find listed all the components of the course, what they have
to do and how they should allocate their time to each unit in order to
complete the course on time and successfully.

This course entails that learners spend a lot of time reading. It is advised
that learners avail themselves the opportunity of comparing their
knowledge with that of others.

Study Units

The study units in this course are as follows:

Module 1 Problem Solving Strategies

Unit 1 Roadmap to Solving Problems: Typical Strategies
Unit 2 The Problem Solving Process

Unit 3 Computational Approaches to Problem Solving
Module 2 Role of Algorithms in Problem Solving

Unit 1 Abstraction as a Problem Solving Tool

Unit 2 Algorithms

Unit 3 Flowcharts

Unit 4 Pseudocode

Module 3 Implementation Strategies

Unit 1 Recursion

Unit 2 Control Structure: Selection and Iteration

Unit 3 Decomposition and Modularisation

Unit 4 Testing and Debugging

Module 1 is concerned with the problem solving strategies. It discusses
the typical strategies commonly employed in creative thinking. It then

vii

CIT108 COURSE GUIDE

goes on to discuss the actual processes involved in solving typical real-
life problems using the computational paradigm. The module concludes
with an examination of the different computational approaches
applicable to different problem classes.

The central theme of Module 2 is the role of algorithms in problem
solving. The use of abstraction (logical representation of ideas) as a
problem-solving tool was given prominence in this module. Ways to
present the abstraction step-by-step for a mechanical procedure were
discussed. Two other complementary discussions meant to aid graphical
representation of the abstraction as well as constructs to aid the logical
flow were also presented.

Module 3, the final module, focussed on the implementation strategies.
Since the main goal of every problem solving approach is to produce an
efficient solution, various means through which a cost-effective
implementation could be achieved constitute the subject-matter of this
module. Implementation strategies such as recursion, control structures
involving selection and iteration, decomposition and modularisation
were covered. Finally, the issue of program testing and debugging was
carefully x-rayed to ensure that the learner is adequately equipped with
techniques to ensure that the presented solution not only works but is
guaranteed to work.

Each unit consists of one or two weeks’ work and include an
introduction, objectives, reading materials, exercises, conclusion,
summary, tutor-marked assignments (TMAS), references and other
resources. The units direct the learners to work on exercises related to
the required reading. In general, these exercises are meant to test the
learners on the materials they have just covered or require them to apply
the knowledge gained. They are thus assisted in evaluating their
progress and reinforce their understanding of the materials. Together
with TMAs, these exercises will help learners in achieving the stated
learning objectives of the individual units and of the course as a whole.

PRESENTATION SCHEDULE

The course materials have important dates for the early and timely
completion and submission of the TMAs and attending tutorials.
Learners should remember that they are required to submit all their
assignments by the stipulated time and date. They should guide against
falling behind in their schedules.

viii

CIT108 COURSE GUIDE

ASSESSMENT

There are three aspects to the assessment of the course. First is made up
of self-assessment exercises. Second, consists of the tutor-marked
assignments and third is the written examination/end of course
examination. Learners are strictly advised to do the exercises. In
tackling the assignments, they are expected to apply information,
knowledge and techniques gathered during the course. The assignments
must be submitted to their facilitator for formal assessment in
accordance with the deadline stated in the presentation schedule and the
assessment file. The work submitted to the tutor for assessment will
count for 30% of the total course mark. At the end of the course,
learners will need to sit for a final or end of course examination of about
three hours’ duration. This examination will count for 70% of the total
course mark.

TUTOR-MARKED ASSIGNMENT (TMAS)

The TMA is a continuous assessment component of the course. It
accounts for 30% of the total score. Learners will be given four TMAs
to answer. Three of these must be answered before they are allowed to
sit for end of course examination. The TMAs would be assigned by the
facilitator and should be returned after you have done the assignment.
Assignment questions for the units in this course are contained in the
assignment file. Learners will be able to complete their assignments
from the information and material contained in their reading, references
and study units. However, it is desirable in all degree level of education
for learners to demonstrate that they have read and researched more into
their references, which will give a wider view point and may provide
them with a deeper understanding of the subject.

Make sure that each assignment reaches your facilitator on or before the
deadline given in the presentation schedule and assignment file. If for
any reason you cannot complete your work on time, contact your
facilitator before the assignment is due to discuss the possibility of an
extension. Extension will not be granted after the due date unless in
exceptional circumstances.

FINAL EXAMINATION AND GRADING

The end of course examination for Problem Solving Algorithm
(CIT108) will be for three (2) hours and it has a value of 70% of the
total course score. The examination will consist of questions, which will

iX

CIT108 COURSE GUIDE

reflect the type of self-testing, practice exercise and tutor-marked
assignment problems that were previously encountered. All areas of the
course will be assessed.

Use the time between finishing the last unit and sitting for the
examination to revise the whole course. You might find it useful to
review your self-test;, TMAs and comments on them before the
examination. The end of course examination covers information from all
parts of the course.

COURSE MARKING SCHEME

Assignment Marks

Assignment 1 — 4 For assignment, best three marks of the four
counts at 10% each, i.e., 30% of Course
Marks.

End of Course | 70% Of the overall Course Marks.

Examination

Total 100% of Course Material.

FACILITATORS/TUTORS AND TUTORIALS

There are 16 hours of tutorials provided in support of this course.
Learners will be notified of the dates, time, and location of these
tutorials as well as the name and phone number of the facilitator, as soon
as they are allocated to a tutorial group.

The facilitator will mark and comment on your assignments, keep a
close watch on your progress and any difficulties you might face and
provide assistance to you during the course. You are expected to mail
your Tutor-Marked Assignments to your facilitator before the schedule
date (at least two working days are required). They will be marked by
the tutor and returned as soon as possible.

Do not delay to contact your facilitator by telephone or e-mail if you
need assistance.

The following might be circumstances in which learners may find
assistance necessary, hence they have to contact their facilitator if:

) They do not understand any part of the study or assigned readings
) They have difficulty with self-tests

CIT108 COURSE GUIDE

. They have question or problem with an assignment or with the
grading of an assignment.

Learners should endeavour to attend the tutorials. This is the only
chance to have face- to-face contact with their course facilitator and to
ask questions which may be answered instantly. They can also raise any
problem encountered in the course of your study.

To have more benefits from course tutorials, learners are advised to
prepare a list of questions before attending them. They will learn a lot
from participating actively in discussions.

SUMMARY

Problem solving algorithm is a course designed to acquaint the learner
with the tools and techniques required to navigate the deeper waters of
computer science. It prepares the learner with the knowledge needed in
the application of principles and theories of other areas of information
communication technology. Upon completion of this course, learners
will be able to apply the techniques and knowledge gained in handling
basic and rudimentary design problems in computer science.

Xi

MAIN
COURSE

CONTENT

Module 1

Unit 1

Unit 2

Unit 3

Module 2

Unit 1

Unit 2
Unit 3
Unit4

Module 3
Unit 1l
Unit 2

Unit 3
Unit4

PAGE
Problem Solving Strategies............... 1
Roadmap to Solving Problems:
Typical Strategies........................... 1
The Problem Solving Process............. 11
Computational Approaches to
Problem Solving........................... 24
Role of Algorithms in Problem
SOIVING.eteitereteieenneeineenareneceneennnes 34
Abstraction as a Problem
SolvingTool..............oooiiii, 34
Algorithms...............o 44
Flowcharts...............coooiin, 59
Pseudocode..........ccooeviviiiiiiniin, 73
Implementation Strategies.............. 83
Recursion...........coovviiiiiniininn, 83
Control Structure: Selection and
Iteration.........coovviiiiii 96

Decomposition and Modularisation...112
Testing and Debugging.................. 121

CIT 108 MODULE 1

MODULE 1 PROBLEM SOLVING STRATEGIES
INTRODUCTION OF MODULE

Problem solving is the process of identifying an existing problem,
determining the root cause or causes of the problem, deciding the best
course of action in order to solve the problem, and then finally
implementing it to solve the problem. Problem-solving is used to solve
our everyday basic needs; and there are many ways to solve problems.
The countless number of everyday solutions are as diverse and
specialized as the problems themselves.

Problem solving techniques are great in variation and are nearly as
Important as the problem solving itself. Without having proper
techniques to begin the problem solving process, individuals would find
it much more difficult to do effectively. It Includes: trial and error,
algorithms and heuristics, means-ends-analysis, etc. This list is by no
means exhaustive and exemplifies how simple problem-solving
techniques can be as well as how different they are from one another at
times. Choosing the correct technique for the given situation is
dependent on the individual, their experience and their resourcefulness.

These issues are the subject-matter of this module and are covered in
greater detail in subsequent Units that follow.

UNIT 1 ROADMAP TO SOLVING PROBLEM:
TYPICAL STRATEGIES

1.0 Introduction
2.0 Intended Learning Outcome
3.0 Main Content
3.1 Problem-solving strategies defined
3.2 Importance of Understanding Multiple Problem-solving
Strategies
3.3 Trial and Error
3.4 Algorithm and Heuristic
3.5 Means-Ends Analysis
3.6 Other Problem-solving Strategies
4.0 Conclusion
5.0 Summary
6.0 Self-Assessment Exercise
7.0 References/Further Reading

CIT 108 PROBLEM SOLVING STRATEGIES

1.0 INTRODUCTION

People face problems every day—usually. Sometimes these problems
are straightforward, however, the problems we encounter are more
complex. For example, say you have a work deadline, and you must
mail a printed copy of a report to your supervisor by the end of the
business day. The report is time-sensitive and must be sent overnight.
You finished the report last night, but your printer will not work today.
What should you do? First, you need to identify the problem and then
apply a strategy for solving the problem.

Practicing different problem-solving strategies can help professionals
develop efficient solutions to challenges they encounter at work and in
their everyday lives. Each industry, business and career has its own
unique challenges suggesting that employees may implement different
strategies to solve them. If you are interested in learning how to solve
problems more effectively, then understanding how to implement
several common problem-solving strategies may benefit you. In the
sections that follow, we discuss what problem-solving strategies are,
why they are important and list several examples of problem-solving
strategies you can try.

2.0 Intended Learning Outcome

At the end of this unit, students should be able to:

o Understand problem solving strategies

o Define algorithm and heuristic and their role in problem solving
) Describe typical common problem solving strategies

) Explain some common roadblocks to effective problem solving

3.0 Main Content
3.1 Problem-solving strategies defined

Given a problem—be it a complex mathematical problem or a broken
printer, the main concern is mapping out a strategy to solve or fix it.
Finding a solution implies that the problem must first be clearly
identified. After that, one of the many problem solving strategies can be
applied, hopefully resulting in a solution.

A problem-solving strategy is a plan used to find a solution or overcome
a challenge. Different strategies have different action plans associated
with them. For example, a well-known strategy is trial and error. Each
problem-solving strategy includes multiple steps to provide you with
helpful guidelines on how to resolve a business problem or industry

2

CIT 108 MODULE 1

challenge. Effective problem-solving requires you to identify the
problem, select the right process to approach it and follow a plan
tailored to the specific issue you are trying to solve.

3.2 Importance of Understanding Multiple Problem-solving
Strategies

Problems themselves can be classified into two different categories
known as ill-defined and well-defined problems. IllI-defined problems
represent issues that do not have clear goals, solution paths, or expected
solutions whereas well-defined problems have specific goals, clearly
defined solutions, and clear expected solutions. Problem solving often
incorporates logical reasoning and interpretation of meanings behind the
problem, and also in many cases require abstract thinking and creativity
in order to find novel solutions. Various methods of studying problem
solving exist including introspection, simulation, computer modelling,
and experimentation.

It is important to have a clear understanding of how a variety of
problem-solving strategies work because different problems are
typically required to be approached in different ways to find the best
solution. By mastering several problem-solving strategies, you can more
effectively select the right plan of action when faced with challenges in
the future. This can help you solve problems faster and develop stronger
critical thinking skills.

3.3 Trial and Error

A trial-and-error approach to problem-solving involves trying a number
of different solutions and ruling out those that do not work. This
approach can be a good option if you have a very limited number of
options available. In terms of a broken printer for example, one could try
checking the ink levels, and if that doesn’t work, you could check to
make sure the paper tray isn’t jammed. Or maybe the printer isn’t
connected to a laptop. When using trial and error, one would continue to
try different solutions until the problem is solved. Although trial and
error is not typically one of the most time-efficient strategies, it is a
commonly used one.

3.4 Algorithm and Heuristic

A common type of strategy is an algorithm. An algorithm is a problem-
solving formula that provides you with step-by-step instructions used to
achieve a desired outcome (Kahneman, 2011). You can think of an
algorithm as a recipe with highly detailed instructions that produce the
same result every time they are performed. Algorithms are used

3

CIT 108 PROBLEM SOLVING STRATEGIES

frequently in our everyday lives, especially in computer science. When
you run a search on the Internet, search engines like Google use
algorithms to decide which entries will appear first in your list of results.
Facebook also uses algorithms to decide which posts to display on your
newsfeed. Can you identify other situations in which algorithms are
used?

A heuristic is another type of problem-solving strategy. While an
algorithm must be followed exactly to produce a correct result, a
heuristic is a general problem-solving framework. You can think of
these as mental shortcuts that are used to solve problems. A “rule of
thumb” is an example of a heuristic. Such a rule saves the person time
and energy when making a decision, but despite its time-saving
characteristics, it is not always the best method for making a rational
decision. Different types of heuristics are used in different types of
situations, but the impulse to use a heuristic occurs when one of five
conditions is met:

. When one is faced with too much information

. When the time to make a decision is limited

. When the decision to be made is unimportant

. When there is access to very little information to use in making
the decision

. When an appropriate heuristic happens to come to mind in the

same moment

Working backwards is a useful heuristic in which you begin solving the
problem by focusing on the end result. It is common to use the working
backwards heuristic to plan the events of your day on a regular basis,
probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or
task by breaking it into a series of smaller steps. Students often use this
common method to complete a large research project or long essay for
school. For example, students typically brainstorm, develop a thesis or
main topic, research the chosen topic, organize their information into an
outline, write a rough draft, revise and edit the rough draft, develop a
final draft, organize the references list, and proofread their work before
turning in the project. The large task becomes less overwhelming when
it is broken down into a series of small steps.

3.5 Means-Ends Analysis

This strategy involves choosing and analysing an action at a series of
smaller steps to move closer to the goal. One example of means-end

4

CIT 108 MODULE 1

analysis can be found by using the Tower of Hanoi paradigm. This
paradigm can be modelled as a word problem.

The actual Tower of Hanoi problem consists of three rods sitting
vertically on a base with a number of disks of different sizes that can
slide onto any rod. The puzzle starts with the disks in a neat stack in
ascending order of size on one rod, the smallest at the top making a
conical shape. The objective of the puzzle is to move the entire stack to
another rod obeying the following rules:

1. Only one disk can be moved at a time.

2. Each move consists of taking the upper disk from one of the
stacks and placing it on top of another stack or on an empty rod.

3. No larger disc may be placed on top of a smaller disk.

With 3 disks, the puzzle can be solved in 7 moves. The minimal moves
required to solve a Tower of Hanoi puzzle is 2" — 1, where n is the
number of disks. For example, if there were 14 disks in the tower, the
minimum amount of moves that could be made to solve the puzzle
would be 2% — 1 = 16,383 moves. There are various ways of
approaching the Tower of Hanoi or its related problems in addition to
the approaches listed above including an iterative solution, recursive
solution, non-recursive solution, a binary and Gray-code solutions, and
graphical representations.

An iterative solution entails moving the smallest pieces over one, then
moving the next over one and if there is no tower position in the chosen
direction you are moving to, move the pieces to the opposite end, but
then continue to move in the same direction. By doing this one will
complete the puzzle in the minimum amount of moves when there are 3
disks. Recursive solutions represent recognizing that the puzzle can be
broken down into a series of sub problems to each of which the same
general solving procedures apply, and then the total solution can be
found by putting together the sub solutions. Non-recursive solutions
entail recognizing that the procedures required to solve the problem
have many regularities such as when counting the moves starting at 1,
position of the disk in the series to be moved during move m represents
the number of times m can be divided by 2 which indicates that every
odd move involves the smallest disk. This allows for the following
algorithm:

Move the smallest disk to the peg that it has not recently come from.
Move another disk legally (there will only be one possibility).

A binary and Gray solutions describe disk move numbers in binary
notation (base-2) where there is only one binary digit (a bit) for each

5

CIT 108 PROBLEM SOLVING STRATEGIES

disk and the most significant (leftmost bit) represents the largest disk. A
bit with a different value to the previous one means that the
corresponding disk is one position to the left or right of the previous
one.

Graphical representations, as their name imply, represent visual
presentations of conditions that can be modelled in order to view the
most efficient and effective solutions. A common graph for the Tower of
Hanoi is represented by a unidirectional, pyramid shaped graph, where
different nodes (pieces within each level of the graph) represent
distributions of disks and the edges represent moves, as shown in Fig. 1-
1-1 below.

1 2 1

abc a%c
Figure 1-1-1: Graphical representation of nodes (circles) and
moves (lines) of Tower of Hanoi.

3.6 Other Problem-solving Strategies

Here are some examples of problem-solving strategies that may equally
be adopted to see which works best for you in different situations:

3.6.1 Past Experience

Take the time to consider if you have encountered a similar situation to
your current problem in the past. This can help draw connections
between different events. Ask yourself how you approached the
previous situation and adapt those solutions to the problem currently
being solved. For example, a company trying to market a new clothing
line may consider marketing tactics they have previously used, such as
magazine advertisements, influencer campaigns or social media

6

CIT 108 MODULE 1

advertisements. By analysing what tactics have worked in the past, they
can create a successful marketing campaign again.

3.6.2 Bring in a facilitator

If one is trying to solve a complex problem with a group of other people,
bringing in a facilitator can help increase efficiency and mediate
collaboration. Having an impartial third party can help a group stay on
task, document the process and have a more meaningful conversation.
Consider inviting a facilitator to your next group meeting to help
generate better solutions.

3.6.3 Develop a decision matrix for evaluation

If multiple solutions are developed for a problem, one may need to
determine which one is the best. A decision matrix can be an excellent
tool to help you approach this task because it allows you to rank
potential solutions. Some factors you can analyse when ranking each
potential solution are:

Timeliness
Risk
Manageability
Expense
Practicality
Effectiveness

After having decided which factors to include, use them to rank each
potential solution by assigning a weighted value of 0 to 10 in each of
these areas. For example, one solution may receive a score of 10 in the
timeliness factor because it meets all the requirements, while another
solution may only receive a seven. Having ranked each of the potential
solutions based on these factors, add up the total number of points each
solution received. The solution with the highest number of points should
meet the most important criteria.

3.6.4 Ask your peers for help

Getting opinions from peers can expose new perspectives and unique
solutions. Friends, families or colleagues may have different
experiences, ideas and skills that may contribute to finding the best
solution to a problem. Consider asking a diverse range of colleagues or
peers to share what they would do if they were in your situation. Even if
you don't end up taking one of their suggestions, the conversation may
help you process your ideas and arrive at a new solution.

CIT 108 PROBLEM SOLVING STRATEGIES

3.6.5 Step away from the problem

Finally, if the problem being worked on does not need an immediate
solution, consider stepping away from it for a short period of time. You
can do this literally by taking a walk to help clear your mind or
figuratively by setting the problem aside for a few days until you are
ready to approach it again. Allowing yourself time to rest, exercise and
take care of your own well-being can make solving the problem easier
when you come back to it because you may feel energised and focused.

4.0 CONCLUSION

Problem-solving is not a flawless process. There are a number of
different obstacles that can interfere with the ability to solve a problem
quickly and efficiently. These include functional fixedness, irrelevant
information, and assumptions.

When dealing with a problem, people often make assumptions about the
constraints and obstacles that prevent certain solutions. Functional
fixedness is the tendency to view problems only in their customary
manner. It prevents people from fully seeing all of the different options
that might be available to find a solution. It is important to distinguish
between information that is relevant to the issue and irrelevant data that
can lead to faulty solutions. When a problem is very complex, the easier
it is to focus on misleading or irrelevant information. Mental set makes
people to only want to use solutions that have worked in the past rather
than looking for alternative ideas. It can often work as a heuristic,
making it a useful problem-solving tool. However, it can also lead to
inflexibility, making it more difficult to find effective solutions.

5.0 SUMMARY

In this unit you learnt that:

o Problem-solving strategies which may include multiple steps in
order to proffer solution to business problem or industrial
challenges.

o Effective problem-solving requires you to identify the problem,

select the right process to approach it and follow a plan tailored
to the specific issue you are trying to solve

o Understanding the strategies of proffering solutions to problem
through trial and error, algorithm, heuristic and means-ends
analysis.

CIT 108 MODULE 1

. Applying Tower of Hanoi to solve strategy which involves
choosing and analysing an action at a series of smaller steps to
move closer to the goal

6.0 SELF ASSESSMENT EXERCISE

1. Identify differences between ill-defined problem and well-
defined problems

2. Explain how the following methods for solving algorithmic

problem: introspection, simulation, computer modelling, and
experimentation.

3. Describe how the following methods: Trial and error, Algorithm,
Heuristic and Means-ends analysis can be applied in proffering
solution to problems

4, Use a diagram to describe the application of Tower of Hanoi in
choosing and analysing an action at a series of smaller steps to
move closer to the goal

5. State the factors to consider when developing a decision matrix
for evaluation

7.0 REFERENCES/FURTHER READINGS

Mueller, J., Beckett, D., Hennessey, E., & Shodiev, H. (2017).
Assessing computational thinking across the curriculum. In
Emerging research, practice, and policy on computational thinking
(pp. 251-267). Springer, Cham.

Saygili, S. (2017). Examining the problem solving skills and the
strategies used by high school students in solving non-routine
problems. E-International Journal of Educational Research, 8(2),
91-114.

Spielman, R. M., Dumper, K., Jenkins, W., Lacombe, A., Lovett, M., &
Perlmutter, M. (2021). Problem Solving. Psychology-H5P Edition.

Tambunan, H. (2019). The Effectiveness of the Problem Solving
Strategy and the Scientific Approach to Students' Mathematical
Capabilities in High Order Thinking Skills. International
Electronic Journal of Mathematics Education, 14(2), 293-302.

Yagci, M. (2019). A valid and reliable tool for examining computational
thinking skills. Education and Information Technologies, 24(1),
929-951.

Zhao, N., Teng, X., Li, W., Li, Y., Wang, S., Wen, H., & Yi, M. (2019).
A path model for metacognition and its relation to problem-solving

9

CIT 108 PROBLEM SOLVING STRATEGIES

strategies and achievement for different tasks. ZDM, 51(4), 641-
653.

10

CIT 108 MODULE 1

UNIT 2 THE PROBLEM SOLVING PROCESS

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content
3.1 Computer as a model of computation
3.2 Understanding the Problem
3.3 Formulating a Model
3.4 Developing an Algorithm
3.5 Writing the Program
3.6 Testing the Program
3.7 Evaluating the Solution

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

Regardless of the area of study, computer science is all about solving
problems with computers. Hence, it is important to first understand the
computer’s information processing model. The problems that we want to
solve can come from any real-world problem or perhaps even from the
abstract world. We need to have a standard systematic approach to
solving problems. The model shown in Fig. 1-2-1 below assumes a
single CPU (Central Processing Unit). Many computers today have
multiple CPUs, so it can be imagined the above model being duplicated
multiple times within the computer.

11

CIT 108 PROBLEM SOLVING STRATEGIES

Input devices

-

Figure 1-2-1: Simplified Model of a Uniprocessor Computer

A typical single CPU computer processes information as shown in the
diagram. Problems are solved using a computer by obtaining some kind
of user input (e.g., keyboard/mouse information or game control
movements), then processing the input and producing some kind of
output (e.g., images, text, sound). Sometimes the incoming and outgoing
data may be in the form of hard drives or network devices.

12

Storage/Network devices

CIT 108 MODULE 1

2.0 INTENDED LEARNING OUTCOME

At the end of this unit, students should be able to:

) Understand the computer as a model of computation

. Explain the problem solving process in detail

o Apply the problem solving paradigm to routine elementary
problems

3.0 MAIN CONTENT
3.1 Computer as a model of computation

In regards to problem solving, we will apply the model in Fig. 2-1 and
assume that we are given some kind of input information that we need to
work with in order to produce some desired output as solution.
However, the above model is quite simplified. For larger and more
complex problems, we need to iterate (i.e., repeat) the
input/process/output stages multiple times in sequence, producing
intermediate results along the way that solve part of our problem, but not
necessarily the whole problem. For simple computations, the above
model is sufficient.

Since it is the “problem solving” part of the process that is the main
focus in this unit, more attention will be devoted to this. Among the
many definitions for “problem solving”, the following will be adopted in
this unit:

Definition 1-2-1: Problem Solving is the sequential process of
analysing information related to a given situation and generating
appropriate response options.

In solving a problem, there are some well-defined steps to be followed.
For example, consider how the input/process/output works on a simple
problem:

Example: Calculate the average grade for all students in a class.

1. Input: get all the grades ... possibly by typing them in via the
keyboard or by reading them from a USB flash drive or hard disk.

2. Process: add them all up and compute the average grade.

3. Output: output the answer to either the monitor, to the printer, to

the USB flash drive or hard disk ... or a combination of any of
these devices.

13

CIT 108 PROBLEM SOLVING STRATEGIES

It is noted that the problem is easily solved by simply getting the input,
computing something and producing the output. We now examine the
steps to problem solving within the context of the above example.

3.2 Understand the Problem

It sounds strange, but the first step to solving any problem is to make
sure that one understands the problem about to be solved. One needs to
know:

What input data/information is available?

What does the data/information represent?

In what format is the data/information?

What is missing in the data provided?

Does the person solving the problem have everything needed?
What output information needs to be produced?

In what format should the result be: text, picture, graph?
What are the other requirements needed for computation?

In the example given above, it is understood that the input is a bunch of
grades. But we need to understand the format of the grades. Each grade
might be a number from 0 to 100 or it may be a letter grade from A to F.
If it is a number, the grade might be a whole integer like 73 or it may be
a real number like 73.42. We need to understand the format of the
grades in order to solve the problem.

We also need to consider missing grades. What if we do not have the
grade for every student: for instance, some were away during the test?
Should we be able to include that person in our average (i.e., they
received Q) or ignore them when computing the average? We also need
to understand what the output should be. Again, there is a formatting
issue. Should the output be a whole or real number or a letter grade? Do
we want to display a pie chart with the average grade? The choice is
ours.

Finally, one needs to understand the kind of processing that must be
performed on the data. This leads to the next step.

3.3 Formulating a Model

The next step is to formulate a model for the problem. A model (or
formula) is thus needed for computing the average of a bunch of
numbers. If there is no such “formula”, one must be developed. In order
to come up with a model, we need to fully understand the information
available to us. Assuming that the input data is a bunch of integers or

14

CIT 108 MODULE 1

real numbers x,,x,,:-,x, representing a grade percentage, the
following computational model may apply:
Averagel = (x; + x; + x5+ -+ x,)/n

where the result will be a number from 0 to 100.

That is very straight forward, assuming that the formula for computing
the average of a bunch of numbers is known. However, this approach
will not work if the input data is a set of letter grades like B-, C, A+, F,
D-, etc., because addition and division cannot be performed on the
letters. This problem solving step must figure out a way to produce an
average from such letters. Thinking is required.

After some thought, we may decide to assign an integer number to the
incoming letters as follows:

AT =12 B*=9 Ct=6 D* =3
A =11 B =38 C =5 D =2 F=0
A~ =10 B~ =7 - =4 D=1

If it is assumed that these newly assigned grade numbers are
V1, Y2, -, Y, then the following computational model may be used:

Average2 = (y;+ y, +ys+ =+ y,)/n

where the result will be a number from 0 to 12.

As for the output, if it is to be represented as a percentage, then
Averagel can either be used directly or one may use (Average2/12),
depending on the input that we had originally. If a letter grade is
preferred as output, then one may need to use (Averagel/100 * 12) or
(Averagel * 0.12) or Average?2 and then map that to some kind of
“lookup table” that allows one to look up a grade letter according to a
number from O to 12.

The main point to understand in this step is that it is all about figuring
out how to make use of the available data to compute an answer.

3.4 Develop an Algorithm

Having understood the problem and formulated a model, it is time to
come up with a precise plan of what the computer is expected to do.

Definition 1-2-2: Algorithm is a precise sequence of instructions for
solving a problem.

15

CIT 108 PROBLEM SOLVING STRATEGIES

Some of the more complex algorithms may be considered randomized
algorithms or non-deterministic algorithms where the instructions are
not necessarily in sequence and may not even have a finite number of
instructions. However, the above definition will apply for all algorithms
that will be discussed in this course.

To develop an algorithm, the instructions must be represented in a way
that is understandable to a person who is trying to figure out the steps
involved. Two commonly used representations for an algorithm is by
using (1) pseudocode, or (2) flowcharts. Consider the following example
for solving the problem of a broken lamp. First is the example in a
flowchart, and then in pseudocode, as presented in Fig. 1-2-2 and Fig. 1-
2-3 respectively.

Lamp not working

Lamp -
plugged Plug in Lamp
in?
Yes
Bulb
burned Replace Bulb
out?
No

Buy new Lamp

Figure 1-2-2: Flowchart for a broken Lamp

Pseudocode

IF lamp works, go to step 7.

Check if lamp is plugged in.

IF not plugged in, plug in lamp.
Check if bulb is burnt out.

IF blub is burnt, replace bulb.

IF lamp doesn’t work buy new lamp.
Quit ... problem is solved.

Noak~owdE

Figure 1-2-3: Flowchart for a broken Lamp

16

CIT 108 MODULE 1

Note: pseudocode is a simple and concise sequence of English-like
instructions to solve a problem.

Pseudocode is often used as a way of describing a computer program to
someone who doesn’t understand how to program a computer.

Although flowcharts can be visually appealing, pseudocode is often the
preferred choice for algorithm development because:

. It can be difficult to draw a flowchart neatly, especially when
mistakes are made.

o Pseudocode fits more easily on a page of paper.

o Pseudocode can be written in a way that is very close to real
program code, making it easier later to write the program.

o Pseudocode takes less time to write than drawing a flowchart.

Pseudocode will vary according to whoever writes it. That is, one
person’s pseudocode is often quite different from that of another person.
However, there are some common control structures (i.e., features) that
appear whenever pseudocode is written. These features are shown along
with some examples:

. Sequence: Listing instructions step-by-step in order (often
numbered)

1. Make sure switch is turned on

2. Check if lamp is plugged in

3. Check if bulb is burned out

4. ...

If lamp is not plugged in
then plug it in

If bulb is burned out
then replace bulb

Else buy new lamp

. Condition: Making a decision and doing one thing or something
else depending on the outcome of the decision.

o Repetition: repeating something a fixed number of times or until
some condition occurs

17

CIT 108 PROBLEM SOLVING STRATEGIES

get a new light bulb
Repeat put it in the lamp

Until lamp works or no more bulbs left

Repeat 3 times
Unplug lamp
Plug into different socket

Storage: storing information for use in instructions further down the list
X «— a new bulb
count «— 8

Transfer of Control: being able to go to a specific step when needed If
bulb works then goto step 7

Note:

e The bold in the above examples highlights the specific control
structure.

e For the condition and repetition structures, the portion of the
pseudocode that is part of the condition or the repeat loop are
indented a bit in order to make it clear that these kinds of inner
steps that belong to that structure. Braces ({ }) may also be used
to indicate what is in or out of a control structure as shown

belo If (bulb is burned out) then {
Replace bulb

¥
Else {

Buy a new bulb
Repeat {
Get a new light bulb
Put it in the lamp
} until lamp works or no more bulbs left

Repeat 3 times {
Unplug lamp
Plug into different socket }

The point is that there are a variety of ways to write pseudocode. The
important thing to remember is that the algorithm should be clearly
explained with no ambiguity as to what order the steps are performed in.
Whether using a flow chart of pseudocode, an algorithm should be
tested by manually going through the steps in mentally to make sure a
step or a special situation is not missed out. Often, a flaw will be found
in one’s algorithm because a special situation that could arise was

18

CIT 108 MODULE 1

missed out. Only when one is convinced that the algorithm will solve
the problem, should the next step be attempted.

Consider the previous example of finding the average of a set of n
grades stored in a file. What would the pseudocode look like? Here is an
example of what it might look like if we had the example of n numeric
grades x4, x,, -+, x,, that were loaded from a file:

Algorithm: DisplayGrades

set the sum of the grade values to 0.
load all grades x4, x5, -+, x,, from file.
repeat n times {

get grade xi

add xi to the sum

o~ wbdE

o

compute the average to be sum/ n.
7. print the average

It would be wise to run through the above algorithm with a real set of
numbers. Each time an algorithm is tested with a fixed set of input data,
this i1s known as a test case.

Many test cases can be created. Here are some to try:

n=5x =92,x, =37,x3 =43,x, = 12,x; = 71... result
should be 51
n=3,x=1Lx,=1Lx3=1........cccciiiiiiiii.. result
should be 1

= 0 result
should be 0

3.5 Writing the Program

Writing a program is often called "coding" or “implementing an
algorithm”. So the code (or source code) is actually the program itself.
Without much of an explanation, below is a program (written in
processing) that implements the given algorithm for finding the average
of a set of grades. Note that the code looks quite similar in structure,
however, the processing code is less readable and seems somewhat more
mathematical:

19

CIT 108

Pseudocode

set the sum of the grade values to 0.

load all grades x4, x5, -+, x,, from file.

1

2

3. repeat n times {
4 get grade x;

5 add x; to the sum

ks

6. compute average to be sum/n.
7. print the average.

PROBLEM SOLVING STRATEGIES

Processing code (Program)

int sum = ©;

byte[] x = loadBytes("numbers");

for (int i=0; i<x.length; i++)
sum = sum + Xx[1i];

int avg = sum / x.length;

print(avg);

For now, the details of how to produce the above source code will not be
discussed. In fact, the source code would vary depending on the
programming language that was used. Learning a programming
language may seem difficult at first, but it will become easier with
practice.

The computer requires precise instructions in order to understand what it
Is being asked to do. For example, removing one of the semi-colon
characters (;) from the program above, will make the computer become
confused as to what it’s being asked to do because the semi-colon
characters (;) is what it understands to be the end of an instruction.
Leaving one of them off will cause the program to generate what is
known as a compile-time error.

Definition 1-2-3: Compiling is the process of converting a program into
instructions that can be understood by the computer.

The longer a program is, the more the likelihood of having multiple
compile-time errors. One needs to fix all such compile-time errors
before continuing on to the next step.

3.6 Test the Program

Running a program is the process of telling the computer to evaluate the
compiled instructions. When a program is run and all is well, you should
see the correct output. It is possible however, that a program works
correctly for some set of input data but not for all. If the output of a
program is incorrect, it is possible that the algorithm was not properly
converted into a proper program. It is also possible that the programmer
did not produce a proper algorithm back in step 3 that handles all
situations that could arise. Perhaps some instructions are performed out
of sequence. Whatever happened, such problems with the program are
known as bugs.

20

CIT 108 MODULE 1

Definition 1-2-4: Bugs are errors with a program that cause it to stop
working or produce incorrect or undesirable results.

It is the responsibility of the programmer to fix as many bugs in a
program as present. To find bugs effectively, a program should be tested
with many test cases (called a test suite). It is also a good idea to have
others test one’s program because they may think up situations or input
data that one may never have thought of.

Definition 1-2-5: Debugging is the process of finding and fixing errors
In program code.

Debugging is often a very time-consuming “chore” when it comes to
being a programmer. However, if one painstakingly and carefully
follows steps 1 through 3, this should greatly reduce the amount of bugs
in a program, thus making debugging much easier.

3.7 Evaluating the Solution

Once the program produces a result that seems correct, the original
problem needs to be reconsidered to make sure that the answer is
formatted into a proper solution to the problem. It is often the case that it
may be realised that the program solution does not solve the problem the
way it is expected. It may also be realised that more steps are involved.
For example, if the result of a program is a long list of numbers, but the
intent was to determine a pattern in the numbers or to identify some
feature from the data, then simply producing a list of numbers may not
suffice. There may be a need to display the information in a way that
helps visualise or interpret the results with respect to the problem;
perhaps a chart or graph is needed. It is also possible that when the
results are examined, it is realised that additional data are needed to fully
solve the problem. Alternatively, the results may need to be adjusted to
solve the problem more efficiently (e.g., a game is too slow).

It is important to remember that the computer will only do what it is told
to do. It is up to the user to interpret the results in a meaningful way and
determine whether or not it solves the original problem. It may be
necessary to re-do some of the steps again, perhaps going as far back as
step 1 again, if data were missing.

4.0 CONCLUSION

The decision to get a solution to any existing problem involves a cycle
that consist of the following using a Computer as a model of
computation, Understanding the Problem, Formulating a Model,
Developing an Algorithm, Writing the Program, Testing the Program
and finally Evaluating the Solution. It is important to emphasize,

21

CIT 108 PROBLEM SOLVING STRATEGIES

however, that there are usually many different problem-solving
processes with different steps, and the afore stated is simply meant as a
guide. Problem-solving in real world situations requires a great deal of
resourcefulness, flexibility, resilience and continuous interaction with
the environment.

5.0 SUMMARY

Problem-solving involves defining the problem, determining,
identifying, prioritising and selecting alternatives for a solution and
implementing the solution. Regardless of how the solution is deployed,
however, feedback channels should be built into the implementation.
This allows for continuous monitoring and testing of actual events
against expectations. Problem-solving, and the processes used to gain
clarity, are most effective if the solution remains in place and is
updatable to respond to future changes.

6.0 SELF ASSESSMENT EXERCISES

1. Discuss various stages that will be needed to get a problem
solved.

2. How do you identify the most important stage in the problem-
solving process?

3. What effect will be generated if the stage that involves program
writing is not observed in the problem-solving process?

4, List the steps involved in writing an algorithm

5. What is the role of model formulation in the problem-solving
process?

6. State the properties of algorithms
7.0 REFERENCES/FURTHER READINGS

Kirn, A., & Benson, L. (2018). Engineering students' perceptions of
problem solving and their future. Journal of engineering
education, 107(1), 87-112.

Koren, 1. (2018). Computer arithmetic algorithms: AK Peters/CRC
Press.

Price, A. M., Kim, C. J., Burkholder, E. W., Fritz, A. V., & Wieman, C.
E. (2021). A detailed characterization of the expert problem-
solving process in science and engineering: Guidance for teaching
and assessment. CBE—L.ife Sciences Education, 20(3), ar43.

Sarathy, V. (2018). Real world problem-solving. Frontiers in human
neuroscience, 12, 261.

22

CIT 108 MODULE 1

doi:10.3389/frhum.2018.00261

Spielman, R. M., Dumper, K., Jenkins, W., Lacombe, A., Lovett, M., &
Perlmutter, M. (2021). Problem Solving. Psychology-H5P
Edition.

23

CIT 108 PROBLEM SOLVING STRATEGIES

UNIT 3 COMPUTATIONAL APPROACHES TO
PROBLEM-SOLVING

1.0 Introduction
2.0 Intended Learning Outcome
3.0 Main Content
3.1 Brute-force Approach
3.2 Divide-and-conquer Approach
3.2.1 Example: The Merge Sort Algorithm
3.2.2 Advantages of Divide and Conquer Approach
3.2.3 Disadvantages of Divide and Conquer Approach
3.3 Dynamic Programming Approach
3.3.1 Example: Fibonacci series
3.3.2 Recursion vs Dynamic Programming
3.4 Greedy Algorithm Approach
3.4.1 Characteristics of the Greedy Algorithm
3.4.2 Motivations for Greedy Approach
3.4.3 Greedy Algorithms vs Dynamic Programming
3.5 Randomized Approach
4.0 Conclusion
5.0 Summary
6.0 Self-Assessment Exercise
7.0 References/Further Reading

1.0 INTRODUCTION

Solving a problem involves finding a way to move from a current
situation to a desired outcome. To be able to solve a problem using
computational approaches, the problem itself needs to have certain
characteristics such as:

. The problem needs to be clearly defined — this means that one
should be able to identify the current situation, the end goal, the
possible means of reaching the end goal, and the potential
obstacles

. The problem needs to be computable — one should consider
what type of calculations are required, and if these are feasible
within a reasonable time frame and processing capacity

. The data requirements of the problem need to be examined, such
as what types of data the problem involves, and the storage
capacity required to keep this data

. One should be able to determine if the problem can be
approached using decomposition and abstraction, as these
methods are key for tackling complex problems

24

CIT 108 MODULE 1

Once these features of the given problem are identified, an informed
decision can then be made as to whether the problem is solvable or not
using computational approaches.

2.0 INTENDED LEARNING OUTCOME

At the end of this unit, students should be able to:

o Describe the various computational approaches available for
solving a problem

o Classify computational approaches based on their paradigms

o Evaluate a computational approach best suited for a given
problem

o Apply a computational approach to solve a problem

3.0 MAINCONTENT

3.1 Brute-force Approach

This strategy is characterised by a lack of sophistication in terms of their
approach to the solution. It typically takes the most direct or obvious
route, without attempting to minimise the number of operations required
to compute the solution.

Brute-force approach is considered quite often in the course of
searching. In a searching problem, we are required to look through a list
of candidates in an attempt to find a desired object. In many cases, the
structure of the problem itself allows us to eliminate a large number of
the candidates without having to actually search through them. As an
analogy, consider the problem of trying to find a frozen pie in an
unfamiliar grocery store. You would immediately go to the frozen food
aisle, without bothering to look down any of the other aisles. Thus, at
the outset of your search, you would eliminate the need to search down
most of the aisles in the store. Brute force approach, however, ignores
such possibilities and naively search through all candidates in an attempt
to find the desired object. This approach is otherwise known as
exhaustive search.

Example:

Imagine a small padlock with 4 digits, each from 0-9. You forgot your
combination, but you don't want to buy another padlock. Since you can't
remember any of the digits, you have to use a brute force method to
open the lock. So you set all the numbers back to 0 and try them one by
one: 0001, 0002, 0003, and so on until it opens. In the worst case
scenario, it would take 10%, or 10,000 tries to find your combination.

25

CIT 108 PROBLEM SOLVING STRATEGIES

3.2 Divide-and-conquer Approach

In the divide and conquer strategy, a problem is solved recursively by
applying three steps at each level of the recursion: Divide, conquer, and
combine.

Divide

“Divide” is the first step of the divide and conquer strategy. In this step
the problem is divided into smaller sub-problems until it is small enough
to be solved. At this step, sub-problems become smaller but still
represent some part of the actual problem. As stated above, recursion is
used to implement the divide and conquer algorithm. A recursive
algorithm calls itself with smaller or simpler input values, known as the
recursive case. So, when the divide step is implemented, the recursive
case is determined which will divide the problem into smaller sub-
problems.

Then comes the “conquer” step where we straightforwardly solve the
sub-problems. By now, the input has already been divided into the
smallest possible parts and we’re now going to solve them by
performing basic operations. The conquer step is normally implemented
with recursion by specifying the recursive base case. Once the sub-
problems become small enough that it can no longer be divided, we say
that the recursion “bottoms out” and that we’ve gotten down to the base
case. Once the base case is arrived at, the sub-problem is solved.

Combine

In this step, the solution of the sub-problems is combined to solve the
whole problem. The output returned from solving the base case will be
the input of larger sub-problems. So after reaching the base case we will
begin to go up to solve larger sub-problems with input returned from
smaller sub-problems. In this step, we merge output from the conquer
step to solve bigger sub-problems. Solutions to smaller sub-problems
propagate from the bottom up until they are used to solve the whole
original problem.

Example: The Merge Sort Algorithm

The merge sort algorithm closely follows the divide and conquer
paradigm. In the merge sort algorithm, we divide the n-element
sequence to be sorted into two subsequences of n = 2 elements each.
Next, we sort the two subsequences recursively using merge sort.
Finally, we combine the two sorted subsequences to produce the sorted
answer.

26

https://www.baeldung.com/java-merge-sort

CIT 108 MODULE 1

Let the given array be:

7 6/1/5/4.3

Divide the array into two halves

Again, divide each subpart recursively into two halves until you get
individual elements.

7 6/1.5/4/3

a” Bt
HEEE BB
o o N

76 B B
o~ o~
B 8B DB

Now, combine the individual elements in a sorted manner. Here,
conquer and combine steps go side by side.

00O B
N o N '
Qe s

O BoB
BEnone

3.2.1 Advantages of Divide and Conquer Algorithms

The first, and probably the most recognizable benefit of the divide and
conquer paradigm is the fact that it allows us to solve difficult problems.
Being given a difficult problem can often be discouraging if there is no

27

CIT 108 PROBLEM SOLVING STRATEGIES

idea how to go about solving it. However, with the divide and conquer
method, it reduces the degree of difficulty since it divides the
problem into easily solvable sub-problems.

Another advantage of this paradigm is that it often plays a part in finding
other efficient algorithms. In fact, it played a central role in finding the
quick sort and merge sort algorithms. It also uses memory caches
effectively. The reason for this is the fact that when the sub-problems
become simple enough, they can be solved within a cache, without
having to access the slower main memory, which saves time and
makes the algorithm more efficient. And in some cases, it can even
produce more precise outcomes in computations with rounded
arithmetic than iterative methods would.

In the divide and conquer strategy problems are divided into sub-
problems that can be executed independently from each other. Thus,
making this strategy suited for parallel execution.

3.2.2 Disadvantages of Divide and Conquer Algorithms

One of the most common issues with this sort of algorithm is the fact
that the recursion is slow, which in some cases outweighs any
advantages of this divide and conquer process. Another concern with it
is the fact that sometimes it can become more complicated than a
basic iterative approach, especially in cases with a large n. In other
words, if someone wanted to add large numbers together, if they just
create a simple loop to add them together, it would turn out to be a much
simpler approach than it would be to divide the numbers up into two
groups, add these groups recursively, and then add the sums of the two
groups together.

3.3 Dynamic Programming Approach

Dynamic programming approach is similar to divide-and-conquer in that
both solve problems by breaking it down into several sub-problems that
can be solved recursively. The difference between the two is that in the
dynamic programming approach, the results obtained from solving
smaller sub-problems are reused in the calculation of larger sub-
problems. Thus, dynamic programming is a bottom-up technique that
usually begins by solving the smallest sub=problems, saving these
results and then reusing them to solve larger and larger sub-problems
until the solution to the original problem is obtained. This is in contrast
to the divide-and-conquer approach, which solves problems in a top-
down fashion. In this case the original problem is solved by breaking it
down into increasingly smaller sub-problems, and no attempt is made to
reuse previous results in the solution of any of the sub-problems.

28

CIT 108 MODULE 1

It is important to realise that a dynamic programming approach is only
justified if there is some degree of overlap in the sub-problems. The
underlying idea is to avoid calculating the same result twice. This is
usually accomplished by constructing a table in memory, and filling it
with known results as they are calculated (memoization). These results
are then used to solve larger sub-problems. Note that retrieving a given
result from this table takes ©(1) time.

Dynamic programming is often used to solve optimisation problems. In
an optimisation problem, there are typically large number of possible
solutions, and each has a cost associated with it. The goal is to find a
solution that has the smallest cost (i.e., optimal solution).

Example: Fibonacci Series

Let's find the Fibonacci sequence up to the 5th term. A Fibonacci series
is the sequence of numbers in which each number is the sum of the two
preceding ones. For example, 0,1,1, 2, 3. Here, each number is the sum
of the two preceding numbers.

Algorithm

Let n be the number of terms.
1.1fn <1, return 1.

2. Else return the sum of two preceding numbers.

We are calculating the Fibonacci sequence up to the 5th term.
1. The first term is 0.

2. The second term is 1.
3. The third term is sum of 0 (from step 1) and 1(from step 2),
which is 1.

4, The fourth term is the sum of the third term (from step 3) and
second term (from step 2) i.e. 1 +1 =2,

5. The fifth term is the sum of the fourth term (from step 4) and
third term (fromstep 3) i.e. 2+ 1= 3.

Hence, we have the sequence 0,1,1, 2, 3. Here, we have used the results
of the previous steps as shown below. This is called a dynamic
programming approach.

29

CIT 108 PROBLEM SOLVING STRATEGIES

F@O)=0
F(1)=1
F(2) = F(1) + F(0)
F(3) = F(2) + F(1)
F(4) =F(3) + F(2)

Recursion vs Dynamic Programming

Dynamic programming is mostly applied to recursive algorithms. This is
not a coincidence, most optimization problems require recursion and
dynamic programming is used for optimization. But not all problems
that use recursion can use Dynamic Programming. Unless there is a
presence of overlapping sub-problems like in the Fibonacci sequence
problem, a recursion can only reach the solution using a divide and
conquer approach. This is the reason why a recursive algorithm like
Merge Sort cannot use Dynamic Programming, because the sub-
problems are not overlapping in any way.

3.4 Greedy Algorithm Approach

In a greedy algorithm, at each decision point the choice that has the
smallest immediate (i.e., local) cost is selected, without attempting to
look ahead to determine if this choice is part of our optimal solution to
the problem as a whole (i.e., a global solution). By locally optimal, we
mean a choice that is optimal with respect to some small portion of the
total information available about a problem.

The most appealing aspect of greedy algorithm is that they are simple
and efficient — typically very little effort is required to compute each
local decision. However, for general optimization problems, it is
obvious that this strategy will not always produce globally optimal
solutions. Nevertheless, there are certain optimization problems for
which a greedy strategy is, in fact, guaranteed to yield a globally optimal
solution.

30

CIT 108 MODULE 1

34.1 Characteristics of the Greedy Algorithm

The important characteristics of a Greedy algorithm are:

1. There is an ordered list of resources, with costs or value
attributions. These quantify constraints on a system.

2. Take the maximum quantity of resources in the time a constraint
applies.

3. For example, in an activity scheduling problem, the resource
costs are in hours, and the activities need to be performed in
serial order.

3.4.2 Motivations for Greedy Approach

Here are the reasons for using the greedy approach:

. The greedy approach has a few trade-offs, which may make it
suitable for optimization.
. One prominent reason is to achieve the most feasible solution

immediately. In the activity selection problem (Explained below),
iIf more activities can be done before finishing the current
activity, these activities can be performed within the same time.

. Another reason is to divide a problem recursively based on a
condition, with no need to combine all the solutions.
. In the activity selection problem, the “recursive division” step is

achieved by scanning a list of items only once and considering
certain activities.

3.4.3 Greedy Algorithms vs Dynamic Programming

Greedy algorithms are similar to dynamic programming in the sense that
they are both tools for optimization. However, greedy algorithms look
for locally optimum solutions or in other words, a greedy choice, in the
hopes of finding a global optimum. Hence greedy algorithms can make a
guess that looks optimum at the time but becomes costly down the line
and do not guarantee a globally optimum. Dynamic programming, on
the other hand, finds the optimal solution to sub-problems and then
makes an informed choice to combine the results of those sub-problems
to find the most optimum solution.

3.5 Randomized Approach

This approach is dependent not only on the input data, but also on the
values provided by a random number generator. If some portion of an
algorithm involves choosing between a number of alternatives, and it is

31

CIT 108 PROBLEM SOLVING STRATEGIES

difficult to determine the optimal choice, then it is often more effective
to choose the course of action at random rather than taking the time to
determine the vest alternative. This is particularly true in cases where
there are a large number of choices, most of which are “good.”

Although randomising an algorithm will typically not improve its worst-
case running time, it can be used to ensure that no particular input
always produces the worst-case behaviour. Specifically, because the
behaviour of a randomised algorithm is determined by a sequence of
random numbers, it would be unusual for the algorithm to behave the
same way on successive runs even when it is supplied with the same
input data.

Randomised approaches are best suited in game-theoretic situations
where we want to ensure fairness in the face of mutual suspicion. This
approach is widely used in computer and information security as well as
in various computer-based games.

4.0 CONCLUSION

Solving problems is a key professional skill. Quickly weighing up
available options and taking decisive actions to select the best
computational approach to a problem is integral to efficient
performance.

It is important to always get the problem-solving process right, avoiding
taking too little time to define the problem or generate potential
solutions. A wide range of computational techniques for problem
solving exist, and each can be appropriate given the peculiarity of the
problem and the individual involved. The important skills to attain are to
assess the situation independently of any other factors and to know when
to trust your own instincts and when to ask for a second opinion on a
potential solution to a problem.

5.0 SUMMARY

In this Unit computational approaches for solving a problem were
discussed viz. brute force, divide and conquer, dynamic programming,
genetic algorithm and randomized. The technique for classifying the
computational approaches based on their paradigms was deliberated and
various computational approaches best suited for a given problem were
evaluated and recommended. The conclusion of the Unit applies the
computational approach to solve a problem.

32

CIT 108 MODULE 1

6.0 SELF ASSESSMENT EXERCISE

State the characteristics of the Greedy algorithm
Explain how the divide-and-conquer algorithm works
Define brute-force approach in the problem-solving process

A

In what problem-solving scenario is dynamic programming a
preferred option?

5. Give an instance where the use of a randomised algorithm is
desirable.

7.0 REFERENCES/FURTHER READINGS

Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering
computational thinking through educational robotics: a model for
creative computational problem solving. International Journal of
STEM Education, 7(1), 1-18.

Costa, E. J. F., Campos, L. M. R. S., & Guerrero, D. D. S. (2017).
Computational thinking in mathematics education: A joint
approach to encourage problem-solving ability. In 2017 IEEE
Frontiers in Education Conference (FIE) 1-8. IEEE.

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B.
(2017). Algorithmic thinking, cooperativity, creativity, critical
thinking, and problem solving: exploring the relationship between
computational thinking skills and academic performance. Journal
of Computers in Education, 4(4), 355-369.

de Ruffieu, F. L. (2016). Divide and Conquer Book 1: Fundamental
Dressage Techniques: Xenophon Press LLC.

Priem